2 Copyright 1995, 1996 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 /* ELF linker code. */
22 static boolean elf_link_add_object_symbols
23 PARAMS ((bfd *, struct bfd_link_info *));
24 static boolean elf_link_add_archive_symbols
25 PARAMS ((bfd *, struct bfd_link_info *));
26 static boolean elf_export_symbol
27 PARAMS ((struct elf_link_hash_entry *, PTR));
28 static boolean elf_adjust_dynamic_symbol
29 PARAMS ((struct elf_link_hash_entry *, PTR));
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
34 struct elf_info_failed
37 struct bfd_link_info *info;
40 /* Given an ELF BFD, add symbols to the global hash table as
44 elf_bfd_link_add_symbols (abfd, info)
46 struct bfd_link_info *info;
48 switch (bfd_get_format (abfd))
51 return elf_link_add_object_symbols (abfd, info);
53 return elf_link_add_archive_symbols (abfd, info);
55 bfd_set_error (bfd_error_wrong_format);
61 /* Add symbols from an ELF archive file to the linker hash table. We
62 don't use _bfd_generic_link_add_archive_symbols because of a
63 problem which arises on UnixWare. The UnixWare libc.so is an
64 archive which includes an entry libc.so.1 which defines a bunch of
65 symbols. The libc.so archive also includes a number of other
66 object files, which also define symbols, some of which are the same
67 as those defined in libc.so.1. Correct linking requires that we
68 consider each object file in turn, and include it if it defines any
69 symbols we need. _bfd_generic_link_add_archive_symbols does not do
70 this; it looks through the list of undefined symbols, and includes
71 any object file which defines them. When this algorithm is used on
72 UnixWare, it winds up pulling in libc.so.1 early and defining a
73 bunch of symbols. This means that some of the other objects in the
74 archive are not included in the link, which is incorrect since they
75 precede libc.so.1 in the archive.
77 Fortunately, ELF archive handling is simpler than that done by
78 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
79 oddities. In ELF, if we find a symbol in the archive map, and the
80 symbol is currently undefined, we know that we must pull in that
83 Unfortunately, we do have to make multiple passes over the symbol
84 table until nothing further is resolved. */
87 elf_link_add_archive_symbols (abfd, info)
89 struct bfd_link_info *info;
92 boolean *defined = NULL;
93 boolean *included = NULL;
97 if (! bfd_has_map (abfd))
99 /* An empty archive is a special case. */
100 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
102 bfd_set_error (bfd_error_no_armap);
106 /* Keep track of all symbols we know to be already defined, and all
107 files we know to be already included. This is to speed up the
108 second and subsequent passes. */
109 c = bfd_ardata (abfd)->symdef_count;
112 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
113 included = (boolean *) bfd_malloc (c * sizeof (boolean));
114 if (defined == (boolean *) NULL || included == (boolean *) NULL)
116 memset (defined, 0, c * sizeof (boolean));
117 memset (included, 0, c * sizeof (boolean));
119 symdefs = bfd_ardata (abfd)->symdefs;
132 symdefend = symdef + c;
133 for (i = 0; symdef < symdefend; symdef++, i++)
135 struct elf_link_hash_entry *h;
137 struct bfd_link_hash_entry *undefs_tail;
140 if (defined[i] || included[i])
142 if (symdef->file_offset == last)
148 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
149 false, false, false);
150 if (h == (struct elf_link_hash_entry *) NULL)
152 if (h->root.type != bfd_link_hash_undefined)
154 if (h->root.type != bfd_link_hash_undefweak)
159 /* We need to include this archive member. */
161 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
162 if (element == (bfd *) NULL)
165 if (! bfd_check_format (element, bfd_object))
168 /* Doublecheck that we have not included this object
169 already--it should be impossible, but there may be
170 something wrong with the archive. */
171 if (element->archive_pass != 0)
173 bfd_set_error (bfd_error_bad_value);
176 element->archive_pass = 1;
178 undefs_tail = info->hash->undefs_tail;
180 if (! (*info->callbacks->add_archive_element) (info, element,
183 if (! elf_link_add_object_symbols (element, info))
186 /* If there are any new undefined symbols, we need to make
187 another pass through the archive in order to see whether
188 they can be defined. FIXME: This isn't perfect, because
189 common symbols wind up on undefs_tail and because an
190 undefined symbol which is defined later on in this pass
191 does not require another pass. This isn't a bug, but it
192 does make the code less efficient than it could be. */
193 if (undefs_tail != info->hash->undefs_tail)
196 /* Look backward to mark all symbols from this object file
197 which we have already seen in this pass. */
201 included[mark] = true;
206 while (symdefs[mark].file_offset == symdef->file_offset);
208 /* We mark subsequent symbols from this object file as we go
209 on through the loop. */
210 last = symdef->file_offset;
221 if (defined != (boolean *) NULL)
223 if (included != (boolean *) NULL)
228 /* Add symbols from an ELF object file to the linker hash table. */
231 elf_link_add_object_symbols (abfd, info)
233 struct bfd_link_info *info;
235 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
236 const Elf_Internal_Sym *,
237 const char **, flagword *,
238 asection **, bfd_vma *));
239 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
240 asection *, const Elf_Internal_Rela *));
242 Elf_Internal_Shdr *hdr;
246 Elf_External_Sym *buf = NULL;
247 struct elf_link_hash_entry **sym_hash;
249 Elf_External_Dyn *dynbuf = NULL;
250 struct elf_link_hash_entry *weaks;
251 Elf_External_Sym *esym;
252 Elf_External_Sym *esymend;
254 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
255 collect = get_elf_backend_data (abfd)->collect;
257 /* As a GNU extension, any input sections which are named
258 .gnu.warning.SYMBOL are treated as warning symbols for the given
259 symbol. This differs from .gnu.warning sections, which generate
260 warnings when they are included in an output file. */
265 for (s = abfd->sections; s != NULL; s = s->next)
269 name = bfd_get_section_name (abfd, s);
270 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
275 sz = bfd_section_size (abfd, s);
276 msg = (char *) bfd_alloc (abfd, sz);
280 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
283 if (! (_bfd_generic_link_add_one_symbol
285 name + sizeof ".gnu.warning." - 1,
286 BSF_WARNING, s, (bfd_vma) 0, msg, false, collect,
287 (struct bfd_link_hash_entry **) NULL)))
290 if (! info->relocateable)
292 /* Clobber the section size so that the warning does
293 not get copied into the output file. */
300 /* A stripped shared library might only have a dynamic symbol table,
301 not a regular symbol table. In that case we can still go ahead
302 and link using the dynamic symbol table. */
303 if (elf_onesymtab (abfd) == 0
304 && elf_dynsymtab (abfd) != 0)
306 elf_onesymtab (abfd) = elf_dynsymtab (abfd);
307 elf_tdata (abfd)->symtab_hdr = elf_tdata (abfd)->dynsymtab_hdr;
310 hdr = &elf_tdata (abfd)->symtab_hdr;
311 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
313 /* The sh_info field of the symtab header tells us where the
314 external symbols start. We don't care about the local symbols at
316 if (elf_bad_symtab (abfd))
318 extsymcount = symcount;
323 extsymcount = symcount - hdr->sh_info;
324 extsymoff = hdr->sh_info;
327 buf = ((Elf_External_Sym *)
328 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
329 if (buf == NULL && extsymcount != 0)
332 /* We store a pointer to the hash table entry for each external
334 sym_hash = ((struct elf_link_hash_entry **)
336 extsymcount * sizeof (struct elf_link_hash_entry *)));
337 if (sym_hash == NULL)
339 elf_sym_hashes (abfd) = sym_hash;
341 if (elf_elfheader (abfd)->e_type != ET_DYN)
345 /* If we are creating a shared library, create all the dynamic
346 sections immediately. We need to attach them to something,
347 so we attach them to this BFD, provided it is the right
348 format. FIXME: If there are no input BFD's of the same
349 format as the output, we can't make a shared library. */
351 && ! elf_hash_table (info)->dynamic_sections_created
352 && abfd->xvec == info->hash->creator)
354 if (! elf_link_create_dynamic_sections (abfd, info))
363 bfd_size_type oldsize;
364 bfd_size_type strindex;
368 /* You can't use -r against a dynamic object. Also, there's no
369 hope of using a dynamic object which does not exactly match
370 the format of the output file. */
371 if (info->relocateable
372 || info->hash->creator != abfd->xvec)
374 bfd_set_error (bfd_error_invalid_operation);
378 /* Find the name to use in a DT_NEEDED entry that refers to this
379 object. If the object has a DT_SONAME entry, we use it.
380 Otherwise, if the generic linker stuck something in
381 elf_dt_name, we use that. Otherwise, we just use the file
382 name. If the generic linker put a null string into
383 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
384 there is a DT_SONAME entry. */
386 name = bfd_get_filename (abfd);
387 if (elf_dt_name (abfd) != NULL)
389 name = elf_dt_name (abfd);
393 s = bfd_get_section_by_name (abfd, ".dynamic");
396 Elf_External_Dyn *extdyn;
397 Elf_External_Dyn *extdynend;
401 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
405 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
406 (file_ptr) 0, s->_raw_size))
409 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
412 link = elf_elfsections (abfd)[elfsec]->sh_link;
415 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
416 for (; extdyn < extdynend; extdyn++)
418 Elf_Internal_Dyn dyn;
420 elf_swap_dyn_in (abfd, extdyn, &dyn);
421 if (dyn.d_tag == DT_SONAME)
423 name = bfd_elf_string_from_elf_section (abfd, link,
428 if (dyn.d_tag == DT_NEEDED)
430 struct bfd_link_needed_list *n, **pn;
433 n = ((struct bfd_link_needed_list *)
434 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
435 fnm = bfd_elf_string_from_elf_section (abfd, link,
437 if (n == NULL || fnm == NULL)
439 anm = bfd_alloc (abfd, strlen (fnm) + 1);
446 for (pn = &elf_hash_table (info)->needed;
458 /* We do not want to include any of the sections in a dynamic
459 object in the output file. We hack by simply clobbering the
460 list of sections in the BFD. This could be handled more
461 cleanly by, say, a new section flag; the existing
462 SEC_NEVER_LOAD flag is not the one we want, because that one
463 still implies that the section takes up space in the output
465 abfd->sections = NULL;
466 abfd->section_count = 0;
468 /* If this is the first dynamic object found in the link, create
469 the special sections required for dynamic linking. */
470 if (! elf_hash_table (info)->dynamic_sections_created)
472 if (! elf_link_create_dynamic_sections (abfd, info))
478 /* Add a DT_NEEDED entry for this dynamic object. */
479 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
480 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
482 if (strindex == (bfd_size_type) -1)
485 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
488 Elf_External_Dyn *dyncon, *dynconend;
490 /* The hash table size did not change, which means that
491 the dynamic object name was already entered. If we
492 have already included this dynamic object in the
493 link, just ignore it. There is no reason to include
494 a particular dynamic object more than once. */
495 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
497 BFD_ASSERT (sdyn != NULL);
499 dyncon = (Elf_External_Dyn *) sdyn->contents;
500 dynconend = (Elf_External_Dyn *) (sdyn->contents +
502 for (; dyncon < dynconend; dyncon++)
504 Elf_Internal_Dyn dyn;
506 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
508 if (dyn.d_tag == DT_NEEDED
509 && dyn.d_un.d_val == strindex)
518 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
522 /* Save the SONAME, if there is one, because sometimes the
523 linker emulation code will need to know it. */
525 name = bfd_get_filename (abfd);
526 elf_dt_name (abfd) = name;
530 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
532 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
533 != extsymcount * sizeof (Elf_External_Sym)))
538 esymend = buf + extsymcount;
539 for (esym = buf; esym < esymend; esym++, sym_hash++)
541 Elf_Internal_Sym sym;
547 struct elf_link_hash_entry *h;
549 boolean size_change_ok, type_change_ok;
552 elf_swap_symbol_in (abfd, esym, &sym);
554 flags = BSF_NO_FLAGS;
556 value = sym.st_value;
559 bind = ELF_ST_BIND (sym.st_info);
560 if (bind == STB_LOCAL)
562 /* This should be impossible, since ELF requires that all
563 global symbols follow all local symbols, and that sh_info
564 point to the first global symbol. Unfortunatealy, Irix 5
568 else if (bind == STB_GLOBAL)
570 if (sym.st_shndx != SHN_UNDEF
571 && sym.st_shndx != SHN_COMMON)
576 else if (bind == STB_WEAK)
580 /* Leave it up to the processor backend. */
583 if (sym.st_shndx == SHN_UNDEF)
584 sec = bfd_und_section_ptr;
585 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
587 sec = section_from_elf_index (abfd, sym.st_shndx);
591 sec = bfd_abs_section_ptr;
593 else if (sym.st_shndx == SHN_ABS)
594 sec = bfd_abs_section_ptr;
595 else if (sym.st_shndx == SHN_COMMON)
597 sec = bfd_com_section_ptr;
598 /* What ELF calls the size we call the value. What ELF
599 calls the value we call the alignment. */
604 /* Leave it up to the processor backend. */
607 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
608 if (name == (const char *) NULL)
613 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
617 /* The hook function sets the name to NULL if this symbol
618 should be skipped for some reason. */
619 if (name == (const char *) NULL)
623 /* Sanity check that all possibilities were handled. */
624 if (sec == (asection *) NULL)
626 bfd_set_error (bfd_error_bad_value);
630 if (bfd_is_und_section (sec)
631 || bfd_is_com_section (sec))
636 size_change_ok = false;
637 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
638 if (info->hash->creator->flavour == bfd_target_elf_flavour)
640 /* We need to look up the symbol now in order to get some of
641 the dynamic object handling right. We pass the hash
642 table entry in to _bfd_generic_link_add_one_symbol so
643 that it does not have to look it up again. */
644 if (! bfd_is_und_section (sec))
645 h = elf_link_hash_lookup (elf_hash_table (info), name,
648 h = ((struct elf_link_hash_entry *)
649 bfd_wrapped_link_hash_lookup (abfd, info, name, true,
655 if (h->root.type == bfd_link_hash_new)
656 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
658 while (h->root.type == bfd_link_hash_indirect
659 || h->root.type == bfd_link_hash_warning)
660 h = (struct elf_link_hash_entry *) h->root.u.i.link;
662 /* It's OK to change the type if it used to be a weak
664 if (h->root.type == bfd_link_hash_defweak
665 || h->root.type == bfd_link_hash_undefweak)
666 type_change_ok = true;
668 /* It's OK to change the size if it used to be a weak
669 definition, or if it used to be undefined, or if we will
670 be overriding an old definition. */
672 || h->root.type == bfd_link_hash_undefined)
673 size_change_ok = true;
675 /* If we are looking at a dynamic object, and this is a
676 definition, we need to see if it has already been defined
677 by some other object. If it has, we want to use the
678 existing definition, and we do not want to report a
679 multiple symbol definition error; we do this by
680 clobbering sec to be bfd_und_section_ptr. We treat a
681 common symbol as a definition if the symbol in the shared
682 library is a function, since common symbols always
683 represent variables; this can cause confusion in
684 principle, but any such confusion would seem to indicate
685 an erroneous program or shared library. */
686 if (dynamic && definition)
688 if (h->root.type == bfd_link_hash_defined
689 || h->root.type == bfd_link_hash_defweak
690 || (h->root.type == bfd_link_hash_common
692 || ELF_ST_TYPE (sym.st_info) == STT_FUNC)))
694 sec = bfd_und_section_ptr;
696 size_change_ok = true;
697 if (h->root.type == bfd_link_hash_common)
698 type_change_ok = true;
702 /* Similarly, if we are not looking at a dynamic object, and
703 we have a definition, we want to override any definition
704 we may have from a dynamic object. Symbols from regular
705 files always take precedence over symbols from dynamic
706 objects, even if they are defined after the dynamic
707 object in the link. */
710 || (bfd_is_com_section (sec)
711 && (h->root.type == bfd_link_hash_defweak
712 || h->type == STT_FUNC)))
713 && (h->root.type == bfd_link_hash_defined
714 || h->root.type == bfd_link_hash_defweak)
715 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
716 && (bfd_get_flavour (h->root.u.def.section->owner)
717 == bfd_target_elf_flavour)
718 && (elf_elfheader (h->root.u.def.section->owner)->e_type
721 /* Change the hash table entry to undefined, and let
722 _bfd_generic_link_add_one_symbol do the right thing
723 with the new definition. */
724 h->root.type = bfd_link_hash_undefined;
725 h->root.u.undef.abfd = h->root.u.def.section->owner;
726 size_change_ok = true;
727 if (bfd_is_com_section (sec))
728 type_change_ok = true;
732 if (! (_bfd_generic_link_add_one_symbol
733 (info, abfd, name, flags, sec, value, (const char *) NULL,
734 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
738 while (h->root.type == bfd_link_hash_indirect
739 || h->root.type == bfd_link_hash_warning)
740 h = (struct elf_link_hash_entry *) h->root.u.i.link;
746 && (flags & BSF_WEAK) != 0
747 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
748 && info->hash->creator->flavour == bfd_target_elf_flavour
749 && h->weakdef == NULL)
751 /* Keep a list of all weak defined non function symbols from
752 a dynamic object, using the weakdef field. Later in this
753 function we will set the weakdef field to the correct
754 value. We only put non-function symbols from dynamic
755 objects on this list, because that happens to be the only
756 time we need to know the normal symbol corresponding to a
757 weak symbol, and the information is time consuming to
758 figure out. If the weakdef field is not already NULL,
759 then this symbol was already defined by some previous
760 dynamic object, and we will be using that previous
761 definition anyhow. */
768 /* Get the alignment of a common symbol. */
769 if (sym.st_shndx == SHN_COMMON
770 && h->root.type == bfd_link_hash_common)
771 h->root.u.c.p->alignment_power = bfd_log2 (sym.st_value);
773 if (info->hash->creator->flavour == bfd_target_elf_flavour)
779 /* Remember the symbol size and type. */
781 && (definition || h->size == 0))
783 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
784 (*_bfd_error_handler)
785 ("Warning: size of symbol `%s' changed from %lu to %lu in %s",
786 name, (unsigned long) h->size, (unsigned long) sym.st_size,
787 bfd_get_filename (abfd));
789 h->size = sym.st_size;
791 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
792 && (definition || h->type == STT_NOTYPE))
794 if (h->type != STT_NOTYPE
795 && h->type != ELF_ST_TYPE (sym.st_info)
797 (*_bfd_error_handler)
798 ("Warning: type of symbol `%s' changed from %d to %d in %s",
799 name, h->type, ELF_ST_TYPE (sym.st_info),
800 bfd_get_filename (abfd));
802 h->type = ELF_ST_TYPE (sym.st_info);
805 /* Set a flag in the hash table entry indicating the type of
806 reference or definition we just found. Keep a count of
807 the number of dynamic symbols we find. A dynamic symbol
808 is one which is referenced or defined by both a regular
809 object and a shared object, or one which is referenced or
810 defined by more than one shared object. */
811 old_flags = h->elf_link_hash_flags;
816 new_flag = ELF_LINK_HASH_REF_REGULAR;
818 new_flag = ELF_LINK_HASH_DEF_REGULAR;
820 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
821 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
827 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
829 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
830 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
831 | ELF_LINK_HASH_REF_REGULAR)) != 0
832 || (h->weakdef != NULL
833 && (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
834 | ELF_LINK_HASH_REF_DYNAMIC)) != 0))
838 h->elf_link_hash_flags |= new_flag;
839 if (dynsym && h->dynindx == -1)
841 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
843 if (h->weakdef != NULL
845 && h->weakdef->dynindx == -1)
847 if (! _bfd_elf_link_record_dynamic_symbol (info,
855 /* Now set the weakdefs field correctly for all the weak defined
856 symbols we found. The only way to do this is to search all the
857 symbols. Since we only need the information for non functions in
858 dynamic objects, that's the only time we actually put anything on
859 the list WEAKS. We need this information so that if a regular
860 object refers to a symbol defined weakly in a dynamic object, the
861 real symbol in the dynamic object is also put in the dynamic
862 symbols; we also must arrange for both symbols to point to the
863 same memory location. We could handle the general case of symbol
864 aliasing, but a general symbol alias can only be generated in
865 assembler code, handling it correctly would be very time
866 consuming, and other ELF linkers don't handle general aliasing
868 while (weaks != NULL)
870 struct elf_link_hash_entry *hlook;
873 struct elf_link_hash_entry **hpp;
874 struct elf_link_hash_entry **hppend;
877 weaks = hlook->weakdef;
878 hlook->weakdef = NULL;
880 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
881 || hlook->root.type == bfd_link_hash_defweak
882 || hlook->root.type == bfd_link_hash_common
883 || hlook->root.type == bfd_link_hash_indirect);
884 slook = hlook->root.u.def.section;
885 vlook = hlook->root.u.def.value;
887 hpp = elf_sym_hashes (abfd);
888 hppend = hpp + extsymcount;
889 for (; hpp < hppend; hpp++)
891 struct elf_link_hash_entry *h;
894 if (h != NULL && h != hlook
895 && h->root.type == bfd_link_hash_defined
896 && h->root.u.def.section == slook
897 && h->root.u.def.value == vlook)
901 /* If the weak definition is in the list of dynamic
902 symbols, make sure the real definition is put there
904 if (hlook->dynindx != -1
907 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
922 /* If this object is the same format as the output object, and it is
923 not a shared library, then let the backend look through the
926 This is required to build global offset table entries and to
927 arrange for dynamic relocs. It is not required for the
928 particular common case of linking non PIC code, even when linking
929 against shared libraries, but unfortunately there is no way of
930 knowing whether an object file has been compiled PIC or not.
931 Looking through the relocs is not particularly time consuming.
932 The problem is that we must either (1) keep the relocs in memory,
933 which causes the linker to require additional runtime memory or
934 (2) read the relocs twice from the input file, which wastes time.
935 This would be a good case for using mmap.
937 I have no idea how to handle linking PIC code into a file of a
938 different format. It probably can't be done. */
939 check_relocs = get_elf_backend_data (abfd)->check_relocs;
941 && abfd->xvec == info->hash->creator
942 && check_relocs != NULL)
946 for (o = abfd->sections; o != NULL; o = o->next)
948 Elf_Internal_Rela *internal_relocs;
951 if ((o->flags & SEC_RELOC) == 0
952 || o->reloc_count == 0)
955 /* I believe we can ignore the relocs for any section which
956 does not form part of the final process image, such as a
957 debugging section. */
958 if ((o->flags & SEC_ALLOC) == 0)
961 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
962 (abfd, o, (PTR) NULL,
963 (Elf_Internal_Rela *) NULL,
965 if (internal_relocs == NULL)
968 ok = (*check_relocs) (abfd, info, o, internal_relocs);
970 if (! info->keep_memory)
971 free (internal_relocs);
978 /* If this is a non-traditional, non-relocateable link, try to
979 optimize the handling of the .stab/.stabstr sections. */
981 && ! info->relocateable
982 && ! info->traditional_format
983 && info->hash->creator->flavour == bfd_target_elf_flavour
984 && (info->strip != strip_all && info->strip != strip_debugger))
986 asection *stab, *stabstr;
988 stab = bfd_get_section_by_name (abfd, ".stab");
991 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
995 struct bfd_elf_section_data *secdata;
997 secdata = elf_section_data (stab);
998 if (! _bfd_link_section_stabs (abfd,
999 &elf_hash_table (info)->stab_info,
1001 &secdata->stab_info))
1017 /* Create some sections which will be filled in with dynamic linking
1018 information. ABFD is an input file which requires dynamic sections
1019 to be created. The dynamic sections take up virtual memory space
1020 when the final executable is run, so we need to create them before
1021 addresses are assigned to the output sections. We work out the
1022 actual contents and size of these sections later. */
1025 elf_link_create_dynamic_sections (abfd, info)
1027 struct bfd_link_info *info;
1030 register asection *s;
1031 struct elf_link_hash_entry *h;
1032 struct elf_backend_data *bed;
1034 if (elf_hash_table (info)->dynamic_sections_created)
1037 /* Make sure that all dynamic sections use the same input BFD. */
1038 if (elf_hash_table (info)->dynobj == NULL)
1039 elf_hash_table (info)->dynobj = abfd;
1041 abfd = elf_hash_table (info)->dynobj;
1043 /* Note that we set the SEC_IN_MEMORY flag for all of these
1045 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
1047 /* A dynamically linked executable has a .interp section, but a
1048 shared library does not. */
1051 s = bfd_make_section (abfd, ".interp");
1053 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1057 s = bfd_make_section (abfd, ".dynsym");
1059 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1060 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1063 s = bfd_make_section (abfd, ".dynstr");
1065 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1068 /* Create a strtab to hold the dynamic symbol names. */
1069 if (elf_hash_table (info)->dynstr == NULL)
1071 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1072 if (elf_hash_table (info)->dynstr == NULL)
1076 s = bfd_make_section (abfd, ".dynamic");
1078 || ! bfd_set_section_flags (abfd, s, flags)
1079 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1082 /* The special symbol _DYNAMIC is always set to the start of the
1083 .dynamic section. This call occurs before we have processed the
1084 symbols for any dynamic object, so we don't have to worry about
1085 overriding a dynamic definition. We could set _DYNAMIC in a
1086 linker script, but we only want to define it if we are, in fact,
1087 creating a .dynamic section. We don't want to define it if there
1088 is no .dynamic section, since on some ELF platforms the start up
1089 code examines it to decide how to initialize the process. */
1091 if (! (_bfd_generic_link_add_one_symbol
1092 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1093 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1094 (struct bfd_link_hash_entry **) &h)))
1096 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1097 h->type = STT_OBJECT;
1100 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
1103 s = bfd_make_section (abfd, ".hash");
1105 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1106 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1109 /* Let the backend create the rest of the sections. This lets the
1110 backend set the right flags. The backend will normally create
1111 the .got and .plt sections. */
1112 bed = get_elf_backend_data (abfd);
1113 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
1116 elf_hash_table (info)->dynamic_sections_created = true;
1121 /* Add an entry to the .dynamic table. */
1124 elf_add_dynamic_entry (info, tag, val)
1125 struct bfd_link_info *info;
1129 Elf_Internal_Dyn dyn;
1133 bfd_byte *newcontents;
1135 dynobj = elf_hash_table (info)->dynobj;
1137 s = bfd_get_section_by_name (dynobj, ".dynamic");
1138 BFD_ASSERT (s != NULL);
1140 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
1141 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
1142 if (newcontents == NULL)
1146 dyn.d_un.d_val = val;
1147 elf_swap_dyn_out (dynobj, &dyn,
1148 (Elf_External_Dyn *) (newcontents + s->_raw_size));
1150 s->_raw_size = newsize;
1151 s->contents = newcontents;
1157 /* Read and swap the relocs for a section. They may have been cached.
1158 If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
1159 they are used as buffers to read into. They are known to be large
1160 enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
1161 value is allocated using either malloc or bfd_alloc, according to
1162 the KEEP_MEMORY argument. */
1165 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
1169 PTR external_relocs;
1170 Elf_Internal_Rela *internal_relocs;
1171 boolean keep_memory;
1173 Elf_Internal_Shdr *rel_hdr;
1175 Elf_Internal_Rela *alloc2 = NULL;
1177 if (elf_section_data (o)->relocs != NULL)
1178 return elf_section_data (o)->relocs;
1180 if (o->reloc_count == 0)
1183 rel_hdr = &elf_section_data (o)->rel_hdr;
1185 if (internal_relocs == NULL)
1189 size = o->reloc_count * sizeof (Elf_Internal_Rela);
1191 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
1193 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
1194 if (internal_relocs == NULL)
1198 if (external_relocs == NULL)
1200 alloc1 = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
1203 external_relocs = alloc1;
1206 if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0)
1207 || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd)
1208 != rel_hdr->sh_size))
1211 /* Swap in the relocs. For convenience, we always produce an
1212 Elf_Internal_Rela array; if the relocs are Rel, we set the addend
1214 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
1216 Elf_External_Rel *erel;
1217 Elf_External_Rel *erelend;
1218 Elf_Internal_Rela *irela;
1220 erel = (Elf_External_Rel *) external_relocs;
1221 erelend = erel + o->reloc_count;
1222 irela = internal_relocs;
1223 for (; erel < erelend; erel++, irela++)
1225 Elf_Internal_Rel irel;
1227 elf_swap_reloc_in (abfd, erel, &irel);
1228 irela->r_offset = irel.r_offset;
1229 irela->r_info = irel.r_info;
1230 irela->r_addend = 0;
1235 Elf_External_Rela *erela;
1236 Elf_External_Rela *erelaend;
1237 Elf_Internal_Rela *irela;
1239 BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
1241 erela = (Elf_External_Rela *) external_relocs;
1242 erelaend = erela + o->reloc_count;
1243 irela = internal_relocs;
1244 for (; erela < erelaend; erela++, irela++)
1245 elf_swap_reloca_in (abfd, erela, irela);
1248 /* Cache the results for next time, if we can. */
1250 elf_section_data (o)->relocs = internal_relocs;
1255 /* Don't free alloc2, since if it was allocated we are passing it
1256 back (under the name of internal_relocs). */
1258 return internal_relocs;
1269 /* Record an assignment to a symbol made by a linker script. We need
1270 this in case some dynamic object refers to this symbol. */
1274 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
1276 struct bfd_link_info *info;
1280 struct elf_link_hash_entry *h;
1282 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1285 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
1289 if (h->root.type == bfd_link_hash_new)
1290 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
1292 /* If this symbol is being provided by the linker script, and it is
1293 currently defined by a dynamic object, but not by a regular
1294 object, then mark it as undefined so that the generic linker will
1295 force the correct value. */
1297 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1298 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1299 h->root.type = bfd_link_hash_undefined;
1301 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1302 h->type = STT_OBJECT;
1304 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1305 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
1307 && h->dynindx == -1)
1309 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1312 /* If this is a weak defined symbol, and we know a corresponding
1313 real symbol from the same dynamic object, make sure the real
1314 symbol is also made into a dynamic symbol. */
1315 if (h->weakdef != NULL
1316 && h->weakdef->dynindx == -1)
1318 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
1327 /* Array used to determine the number of hash table buckets to use
1328 based on the number of symbols there are. If there are fewer than
1329 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
1330 fewer than 37 we use 17 buckets, and so forth. We never use more
1331 than 521 buckets. */
1333 static const size_t elf_buckets[] =
1335 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 0
1338 /* Set up the sizes and contents of the ELF dynamic sections. This is
1339 called by the ELF linker emulation before_allocation routine. We
1340 must set the sizes of the sections before the linker sets the
1341 addresses of the various sections. */
1344 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
1345 export_dynamic, info, sinterpptr)
1349 boolean export_dynamic;
1350 struct bfd_link_info *info;
1351 asection **sinterpptr;
1354 struct elf_backend_data *bed;
1358 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1361 dynobj = elf_hash_table (info)->dynobj;
1363 /* If there were no dynamic objects in the link, there is nothing to
1368 /* If we are supposed to export all symbols into the dynamic symbol
1369 table (this is not the normal case), then do so. */
1372 struct elf_info_failed eif;
1376 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
1382 if (elf_hash_table (info)->dynamic_sections_created)
1384 struct elf_info_failed eif;
1385 struct elf_link_hash_entry *h;
1386 bfd_size_type strsize;
1388 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
1389 BFD_ASSERT (*sinterpptr != NULL || info->shared);
1395 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, soname,
1397 if (indx == (bfd_size_type) -1
1398 || ! elf_add_dynamic_entry (info, DT_SONAME, indx))
1404 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
1412 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
1414 if (indx == (bfd_size_type) -1
1415 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
1419 /* Find all symbols which were defined in a dynamic object and make
1420 the backend pick a reasonable value for them. */
1423 elf_link_hash_traverse (elf_hash_table (info),
1424 elf_adjust_dynamic_symbol,
1429 /* Add some entries to the .dynamic section. We fill in some of the
1430 values later, in elf_bfd_final_link, but we must add the entries
1431 now so that we know the final size of the .dynamic section. */
1432 h = elf_link_hash_lookup (elf_hash_table (info), "_init", false,
1435 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
1436 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
1438 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
1441 h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false,
1444 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
1445 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
1447 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
1450 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1451 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
1452 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
1453 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
1454 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
1455 || ! elf_add_dynamic_entry (info, DT_SYMENT,
1456 sizeof (Elf_External_Sym)))
1460 /* The backend must work out the sizes of all the other dynamic
1462 bed = get_elf_backend_data (output_bfd);
1463 if (! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
1466 if (elf_hash_table (info)->dynamic_sections_created)
1471 size_t bucketcount = 0;
1472 Elf_Internal_Sym isym;
1474 /* Set the size of the .dynsym and .hash sections. We counted
1475 the number of dynamic symbols in elf_link_add_object_symbols.
1476 We will build the contents of .dynsym and .hash when we build
1477 the final symbol table, because until then we do not know the
1478 correct value to give the symbols. We built the .dynstr
1479 section as we went along in elf_link_add_object_symbols. */
1480 dynsymcount = elf_hash_table (info)->dynsymcount;
1481 s = bfd_get_section_by_name (dynobj, ".dynsym");
1482 BFD_ASSERT (s != NULL);
1483 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
1484 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
1485 if (s->contents == NULL && s->_raw_size != 0)
1488 /* The first entry in .dynsym is a dummy symbol. */
1495 elf_swap_symbol_out (output_bfd, &isym,
1496 (PTR) (Elf_External_Sym *) s->contents);
1498 for (i = 0; elf_buckets[i] != 0; i++)
1500 bucketcount = elf_buckets[i];
1501 if (dynsymcount < elf_buckets[i + 1])
1505 s = bfd_get_section_by_name (dynobj, ".hash");
1506 BFD_ASSERT (s != NULL);
1507 s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
1508 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
1509 if (s->contents == NULL)
1511 memset (s->contents, 0, (size_t) s->_raw_size);
1513 put_word (output_bfd, bucketcount, s->contents);
1514 put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
1516 elf_hash_table (info)->bucketcount = bucketcount;
1518 s = bfd_get_section_by_name (dynobj, ".dynstr");
1519 BFD_ASSERT (s != NULL);
1520 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1522 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
1530 /* This routine is used to export all defined symbols into the dynamic
1531 symbol table. It is called via elf_link_hash_traverse. */
1534 elf_export_symbol (h, data)
1535 struct elf_link_hash_entry *h;
1538 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1540 if (h->dynindx == -1
1541 && (h->elf_link_hash_flags
1542 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
1544 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
1555 /* Make the backend pick a good value for a dynamic symbol. This is
1556 called via elf_link_hash_traverse, and also calls itself
1560 elf_adjust_dynamic_symbol (h, data)
1561 struct elf_link_hash_entry *h;
1564 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1566 struct elf_backend_data *bed;
1568 /* If this symbol was mentioned in a non-ELF file, try to set
1569 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
1570 permit a non-ELF file to correctly refer to a symbol defined in
1571 an ELF dynamic object. */
1572 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
1574 if (h->root.type != bfd_link_hash_defined
1575 && h->root.type != bfd_link_hash_defweak)
1576 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
1579 if (h->root.u.def.section->owner != NULL
1580 && (bfd_get_flavour (h->root.u.def.section->owner)
1581 == bfd_target_elf_flavour))
1582 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
1584 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1587 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1588 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1590 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
1598 /* If this is a final link, and the symbol was defined as a common
1599 symbol in a regular object file, and there was no definition in
1600 any dynamic object, then the linker will have allocated space for
1601 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
1602 flag will not have been set. */
1603 if (h->root.type == bfd_link_hash_defined
1604 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1605 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
1606 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1607 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
1608 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1610 /* If -Bsymbolic was used (which means to bind references to global
1611 symbols to the definition within the shared object), and this
1612 symbol was defined in a regular object, then it actually doesn't
1613 need a PLT entry. */
1614 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1615 && eif->info->shared
1616 && eif->info->symbolic
1617 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
1618 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
1620 /* If this symbol does not require a PLT entry, and it is not
1621 defined by a dynamic object, or is not referenced by a regular
1622 object, ignore it. We do have to handle a weak defined symbol,
1623 even if no regular object refers to it, if we decided to add it
1624 to the dynamic symbol table. FIXME: Do we normally need to worry
1625 about symbols which are defined by one dynamic object and
1626 referenced by another one? */
1627 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
1628 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1629 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1630 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
1631 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
1634 /* If we've already adjusted this symbol, don't do it again. This
1635 can happen via a recursive call. */
1636 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
1639 /* Don't look at this symbol again. Note that we must set this
1640 after checking the above conditions, because we may look at a
1641 symbol once, decide not to do anything, and then get called
1642 recursively later after REF_REGULAR is set below. */
1643 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
1645 /* If this is a weak definition, and we know a real definition, and
1646 the real symbol is not itself defined by a regular object file,
1647 then get a good value for the real definition. We handle the
1648 real symbol first, for the convenience of the backend routine.
1650 Note that there is a confusing case here. If the real definition
1651 is defined by a regular object file, we don't get the real symbol
1652 from the dynamic object, but we do get the weak symbol. If the
1653 processor backend uses a COPY reloc, then if some routine in the
1654 dynamic object changes the real symbol, we will not see that
1655 change in the corresponding weak symbol. This is the way other
1656 ELF linkers work as well, and seems to be a result of the shared
1659 I will clarify this issue. Most SVR4 shared libraries define the
1660 variable _timezone and define timezone as a weak synonym. The
1661 tzset call changes _timezone. If you write
1662 extern int timezone;
1664 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
1665 you might expect that, since timezone is a synonym for _timezone,
1666 the same number will print both times. However, if the processor
1667 backend uses a COPY reloc, then actually timezone will be copied
1668 into your process image, and, since you define _timezone
1669 yourself, _timezone will not. Thus timezone and _timezone will
1670 wind up at different memory locations. The tzset call will set
1671 _timezone, leaving timezone unchanged. */
1673 if (h->weakdef != NULL)
1675 struct elf_link_hash_entry *weakdef;
1677 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1678 || h->root.type == bfd_link_hash_defweak);
1679 weakdef = h->weakdef;
1680 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
1681 || weakdef->root.type == bfd_link_hash_defweak);
1682 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
1683 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
1685 /* This symbol is defined by a regular object file, so we
1686 will not do anything special. Clear weakdef for the
1687 convenience of the processor backend. */
1692 /* There is an implicit reference by a regular object file
1693 via the weak symbol. */
1694 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
1695 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
1700 dynobj = elf_hash_table (eif->info)->dynobj;
1701 bed = get_elf_backend_data (dynobj);
1702 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
1711 /* Final phase of ELF linker. */
1713 /* A structure we use to avoid passing large numbers of arguments. */
1715 struct elf_final_link_info
1717 /* General link information. */
1718 struct bfd_link_info *info;
1721 /* Symbol string table. */
1722 struct bfd_strtab_hash *symstrtab;
1723 /* .dynsym section. */
1724 asection *dynsym_sec;
1725 /* .hash section. */
1727 /* Buffer large enough to hold contents of any section. */
1729 /* Buffer large enough to hold external relocs of any section. */
1730 PTR external_relocs;
1731 /* Buffer large enough to hold internal relocs of any section. */
1732 Elf_Internal_Rela *internal_relocs;
1733 /* Buffer large enough to hold external local symbols of any input
1735 Elf_External_Sym *external_syms;
1736 /* Buffer large enough to hold internal local symbols of any input
1738 Elf_Internal_Sym *internal_syms;
1739 /* Array large enough to hold a symbol index for each local symbol
1740 of any input BFD. */
1742 /* Array large enough to hold a section pointer for each local
1743 symbol of any input BFD. */
1744 asection **sections;
1745 /* Buffer to hold swapped out symbols. */
1746 Elf_External_Sym *symbuf;
1747 /* Number of swapped out symbols in buffer. */
1748 size_t symbuf_count;
1749 /* Number of symbols which fit in symbuf. */
1753 static boolean elf_link_output_sym
1754 PARAMS ((struct elf_final_link_info *, const char *,
1755 Elf_Internal_Sym *, asection *));
1756 static boolean elf_link_flush_output_syms
1757 PARAMS ((struct elf_final_link_info *));
1758 static boolean elf_link_output_extsym
1759 PARAMS ((struct elf_link_hash_entry *, PTR));
1760 static boolean elf_link_input_bfd
1761 PARAMS ((struct elf_final_link_info *, bfd *));
1762 static boolean elf_reloc_link_order
1763 PARAMS ((bfd *, struct bfd_link_info *, asection *,
1764 struct bfd_link_order *));
1766 /* This struct is used to pass information to routines called via
1767 elf_link_hash_traverse which must return failure. */
1769 struct elf_finfo_failed
1772 struct elf_final_link_info *finfo;
1775 /* Do the final step of an ELF link. */
1778 elf_bfd_final_link (abfd, info)
1780 struct bfd_link_info *info;
1784 struct elf_final_link_info finfo;
1785 register asection *o;
1786 register struct bfd_link_order *p;
1788 size_t max_contents_size;
1789 size_t max_external_reloc_size;
1790 size_t max_internal_reloc_count;
1791 size_t max_sym_count;
1793 Elf_Internal_Sym elfsym;
1795 Elf_Internal_Shdr *symtab_hdr;
1796 Elf_Internal_Shdr *symstrtab_hdr;
1797 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1798 struct elf_finfo_failed eif;
1801 abfd->flags |= DYNAMIC;
1803 dynamic = elf_hash_table (info)->dynamic_sections_created;
1804 dynobj = elf_hash_table (info)->dynobj;
1807 finfo.output_bfd = abfd;
1808 finfo.symstrtab = elf_stringtab_init ();
1809 if (finfo.symstrtab == NULL)
1813 finfo.dynsym_sec = NULL;
1814 finfo.hash_sec = NULL;
1818 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
1819 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
1820 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
1822 finfo.contents = NULL;
1823 finfo.external_relocs = NULL;
1824 finfo.internal_relocs = NULL;
1825 finfo.external_syms = NULL;
1826 finfo.internal_syms = NULL;
1827 finfo.indices = NULL;
1828 finfo.sections = NULL;
1829 finfo.symbuf = NULL;
1830 finfo.symbuf_count = 0;
1832 /* Count up the number of relocations we will output for each output
1833 section, so that we know the sizes of the reloc sections. We
1834 also figure out some maximum sizes. */
1835 max_contents_size = 0;
1836 max_external_reloc_size = 0;
1837 max_internal_reloc_count = 0;
1839 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
1843 for (p = o->link_order_head; p != NULL; p = p->next)
1845 if (p->type == bfd_section_reloc_link_order
1846 || p->type == bfd_symbol_reloc_link_order)
1848 else if (p->type == bfd_indirect_link_order)
1852 sec = p->u.indirect.section;
1854 /* Mark all sections which are to be included in the
1855 link. This will normally be every section. We need
1856 to do this so that we can identify any sections which
1857 the linker has decided to not include. */
1858 sec->linker_mark = true;
1860 if (info->relocateable)
1861 o->reloc_count += sec->reloc_count;
1863 if (sec->_raw_size > max_contents_size)
1864 max_contents_size = sec->_raw_size;
1865 if (sec->_cooked_size > max_contents_size)
1866 max_contents_size = sec->_cooked_size;
1868 /* We are interested in just local symbols, not all
1870 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour)
1874 if (elf_bad_symtab (sec->owner))
1875 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
1876 / sizeof (Elf_External_Sym));
1878 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
1880 if (sym_count > max_sym_count)
1881 max_sym_count = sym_count;
1883 if ((sec->flags & SEC_RELOC) != 0)
1887 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
1888 if (ext_size > max_external_reloc_size)
1889 max_external_reloc_size = ext_size;
1890 if (sec->reloc_count > max_internal_reloc_count)
1891 max_internal_reloc_count = sec->reloc_count;
1897 if (o->reloc_count > 0)
1898 o->flags |= SEC_RELOC;
1901 /* Explicitly clear the SEC_RELOC flag. The linker tends to
1902 set it (this is probably a bug) and if it is set
1903 assign_section_numbers will create a reloc section. */
1904 o->flags &=~ SEC_RELOC;
1907 /* If the SEC_ALLOC flag is not set, force the section VMA to
1908 zero. This is done in elf_fake_sections as well, but forcing
1909 the VMA to 0 here will ensure that relocs against these
1910 sections are handled correctly. */
1911 if ((o->flags & SEC_ALLOC) == 0
1912 && ! o->user_set_vma)
1916 /* Figure out the file positions for everything but the symbol table
1917 and the relocs. We set symcount to force assign_section_numbers
1918 to create a symbol table. */
1919 abfd->symcount = info->strip == strip_all ? 0 : 1;
1920 BFD_ASSERT (! abfd->output_has_begun);
1921 if (! _bfd_elf_compute_section_file_positions (abfd, info))
1924 /* That created the reloc sections. Set their sizes, and assign
1925 them file positions, and allocate some buffers. */
1926 for (o = abfd->sections; o != NULL; o = o->next)
1928 if ((o->flags & SEC_RELOC) != 0)
1930 Elf_Internal_Shdr *rel_hdr;
1931 register struct elf_link_hash_entry **p, **pend;
1933 rel_hdr = &elf_section_data (o)->rel_hdr;
1935 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
1937 /* The contents field must last into write_object_contents,
1938 so we allocate it with bfd_alloc rather than malloc. */
1939 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
1940 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
1943 p = ((struct elf_link_hash_entry **)
1944 bfd_malloc (o->reloc_count
1945 * sizeof (struct elf_link_hash_entry *)));
1946 if (p == NULL && o->reloc_count != 0)
1948 elf_section_data (o)->rel_hashes = p;
1949 pend = p + o->reloc_count;
1950 for (; p < pend; p++)
1953 /* Use the reloc_count field as an index when outputting the
1959 _bfd_elf_assign_file_positions_for_relocs (abfd);
1961 /* We have now assigned file positions for all the sections except
1962 .symtab and .strtab. We start the .symtab section at the current
1963 file position, and write directly to it. We build the .strtab
1964 section in memory. */
1966 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1967 /* sh_name is set in prep_headers. */
1968 symtab_hdr->sh_type = SHT_SYMTAB;
1969 symtab_hdr->sh_flags = 0;
1970 symtab_hdr->sh_addr = 0;
1971 symtab_hdr->sh_size = 0;
1972 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
1973 /* sh_link is set in assign_section_numbers. */
1974 /* sh_info is set below. */
1975 /* sh_offset is set just below. */
1976 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
1978 off = elf_tdata (abfd)->next_file_pos;
1979 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
1981 /* Note that at this point elf_tdata (abfd)->next_file_pos is
1982 incorrect. We do not yet know the size of the .symtab section.
1983 We correct next_file_pos below, after we do know the size. */
1985 /* Allocate a buffer to hold swapped out symbols. This is to avoid
1986 continuously seeking to the right position in the file. */
1987 if (! info->keep_memory || max_sym_count < 20)
1988 finfo.symbuf_size = 20;
1990 finfo.symbuf_size = max_sym_count;
1991 finfo.symbuf = ((Elf_External_Sym *)
1992 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
1993 if (finfo.symbuf == NULL)
1996 /* Start writing out the symbol table. The first symbol is always a
1998 if (info->strip != strip_all || info->relocateable)
2000 elfsym.st_value = 0;
2003 elfsym.st_other = 0;
2004 elfsym.st_shndx = SHN_UNDEF;
2005 if (! elf_link_output_sym (&finfo, (const char *) NULL,
2006 &elfsym, bfd_und_section_ptr))
2011 /* Some standard ELF linkers do this, but we don't because it causes
2012 bootstrap comparison failures. */
2013 /* Output a file symbol for the output file as the second symbol.
2014 We output this even if we are discarding local symbols, although
2015 I'm not sure if this is correct. */
2016 elfsym.st_value = 0;
2018 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
2019 elfsym.st_other = 0;
2020 elfsym.st_shndx = SHN_ABS;
2021 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
2022 &elfsym, bfd_abs_section_ptr))
2026 /* Output a symbol for each section. We output these even if we are
2027 discarding local symbols, since they are used for relocs. These
2028 symbols have no names. We store the index of each one in the
2029 index field of the section, so that we can find it again when
2030 outputting relocs. */
2031 if (info->strip != strip_all || info->relocateable)
2033 elfsym.st_value = 0;
2035 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
2036 elfsym.st_other = 0;
2037 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
2039 o = section_from_elf_index (abfd, i);
2041 o->target_index = abfd->symcount;
2042 elfsym.st_shndx = i;
2043 if (! elf_link_output_sym (&finfo, (const char *) NULL,
2049 /* Allocate some memory to hold information read in from the input
2051 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
2052 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
2053 finfo.internal_relocs = ((Elf_Internal_Rela *)
2054 bfd_malloc (max_internal_reloc_count
2055 * sizeof (Elf_Internal_Rela)));
2056 finfo.external_syms = ((Elf_External_Sym *)
2057 bfd_malloc (max_sym_count
2058 * sizeof (Elf_External_Sym)));
2059 finfo.internal_syms = ((Elf_Internal_Sym *)
2060 bfd_malloc (max_sym_count
2061 * sizeof (Elf_Internal_Sym)));
2062 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
2063 finfo.sections = ((asection **)
2064 bfd_malloc (max_sym_count * sizeof (asection *)));
2065 if ((finfo.contents == NULL && max_contents_size != 0)
2066 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
2067 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
2068 || (finfo.external_syms == NULL && max_sym_count != 0)
2069 || (finfo.internal_syms == NULL && max_sym_count != 0)
2070 || (finfo.indices == NULL && max_sym_count != 0)
2071 || (finfo.sections == NULL && max_sym_count != 0))
2074 /* Since ELF permits relocations to be against local symbols, we
2075 must have the local symbols available when we do the relocations.
2076 Since we would rather only read the local symbols once, and we
2077 would rather not keep them in memory, we handle all the
2078 relocations for a single input file at the same time.
2080 Unfortunately, there is no way to know the total number of local
2081 symbols until we have seen all of them, and the local symbol
2082 indices precede the global symbol indices. This means that when
2083 we are generating relocateable output, and we see a reloc against
2084 a global symbol, we can not know the symbol index until we have
2085 finished examining all the local symbols to see which ones we are
2086 going to output. To deal with this, we keep the relocations in
2087 memory, and don't output them until the end of the link. This is
2088 an unfortunate waste of memory, but I don't see a good way around
2089 it. Fortunately, it only happens when performing a relocateable
2090 link, which is not the common case. FIXME: If keep_memory is set
2091 we could write the relocs out and then read them again; I don't
2092 know how bad the memory loss will be. */
2094 for (sub = info->input_bfds; sub != NULL; sub = sub->next)
2095 sub->output_has_begun = false;
2096 for (o = abfd->sections; o != NULL; o = o->next)
2098 for (p = o->link_order_head; p != NULL; p = p->next)
2100 if (p->type == bfd_indirect_link_order
2101 && (bfd_get_flavour (p->u.indirect.section->owner)
2102 == bfd_target_elf_flavour))
2104 sub = p->u.indirect.section->owner;
2105 if (! sub->output_has_begun)
2107 if (! elf_link_input_bfd (&finfo, sub))
2109 sub->output_has_begun = true;
2112 else if (p->type == bfd_section_reloc_link_order
2113 || p->type == bfd_symbol_reloc_link_order)
2115 if (! elf_reloc_link_order (abfd, info, o, p))
2120 if (! _bfd_default_link_order (abfd, info, o, p))
2126 /* That wrote out all the local symbols. Finish up the symbol table
2127 with the global symbols. */
2129 /* The sh_info field records the index of the first non local
2131 symtab_hdr->sh_info = abfd->symcount;
2133 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
2135 /* We get the global symbols from the hash table. */
2138 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
2143 /* Flush all symbols to the file. */
2144 if (! elf_link_flush_output_syms (&finfo))
2147 /* Now we know the size of the symtab section. */
2148 off += symtab_hdr->sh_size;
2150 /* Finish up and write out the symbol string table (.strtab)
2152 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
2153 /* sh_name was set in prep_headers. */
2154 symstrtab_hdr->sh_type = SHT_STRTAB;
2155 symstrtab_hdr->sh_flags = 0;
2156 symstrtab_hdr->sh_addr = 0;
2157 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
2158 symstrtab_hdr->sh_entsize = 0;
2159 symstrtab_hdr->sh_link = 0;
2160 symstrtab_hdr->sh_info = 0;
2161 /* sh_offset is set just below. */
2162 symstrtab_hdr->sh_addralign = 1;
2164 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
2165 elf_tdata (abfd)->next_file_pos = off;
2167 if (abfd->symcount > 0)
2169 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
2170 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
2174 /* Adjust the relocs to have the correct symbol indices. */
2175 for (o = abfd->sections; o != NULL; o = o->next)
2177 struct elf_link_hash_entry **rel_hash;
2178 Elf_Internal_Shdr *rel_hdr;
2180 if ((o->flags & SEC_RELOC) == 0)
2183 rel_hash = elf_section_data (o)->rel_hashes;
2184 rel_hdr = &elf_section_data (o)->rel_hdr;
2185 for (i = 0; i < o->reloc_count; i++, rel_hash++)
2187 if (*rel_hash == NULL)
2190 BFD_ASSERT ((*rel_hash)->indx >= 0);
2192 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
2194 Elf_External_Rel *erel;
2195 Elf_Internal_Rel irel;
2197 erel = (Elf_External_Rel *) rel_hdr->contents + i;
2198 elf_swap_reloc_in (abfd, erel, &irel);
2199 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
2200 ELF_R_TYPE (irel.r_info));
2201 elf_swap_reloc_out (abfd, &irel, erel);
2205 Elf_External_Rela *erela;
2206 Elf_Internal_Rela irela;
2208 BFD_ASSERT (rel_hdr->sh_entsize
2209 == sizeof (Elf_External_Rela));
2211 erela = (Elf_External_Rela *) rel_hdr->contents + i;
2212 elf_swap_reloca_in (abfd, erela, &irela);
2213 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
2214 ELF_R_TYPE (irela.r_info));
2215 elf_swap_reloca_out (abfd, &irela, erela);
2219 /* Set the reloc_count field to 0 to prevent write_relocs from
2220 trying to swap the relocs out itself. */
2224 /* If we are linking against a dynamic object, or generating a
2225 shared library, finish up the dynamic linking information. */
2228 Elf_External_Dyn *dyncon, *dynconend;
2230 /* Fix up .dynamic entries. */
2231 o = bfd_get_section_by_name (dynobj, ".dynamic");
2232 BFD_ASSERT (o != NULL);
2234 dyncon = (Elf_External_Dyn *) o->contents;
2235 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
2236 for (; dyncon < dynconend; dyncon++)
2238 Elf_Internal_Dyn dyn;
2242 elf_swap_dyn_in (dynobj, dyncon, &dyn);
2249 /* SVR4 linkers seem to set DT_INIT and DT_FINI based on
2250 magic _init and _fini symbols. This is pretty ugly,
2251 but we are compatible. */
2259 struct elf_link_hash_entry *h;
2261 h = elf_link_hash_lookup (elf_hash_table (info), name,
2262 false, false, true);
2264 && (h->root.type == bfd_link_hash_defined
2265 || h->root.type == bfd_link_hash_defweak))
2267 dyn.d_un.d_val = h->root.u.def.value;
2268 o = h->root.u.def.section;
2269 if (o->output_section != NULL)
2270 dyn.d_un.d_val += (o->output_section->vma
2271 + o->output_offset);
2274 /* The symbol is imported from another shared
2275 library and does not apply to this one. */
2279 elf_swap_dyn_out (dynobj, &dyn, dyncon);
2293 o = bfd_get_section_by_name (abfd, name);
2294 BFD_ASSERT (o != NULL);
2295 dyn.d_un.d_ptr = o->vma;
2296 elf_swap_dyn_out (dynobj, &dyn, dyncon);
2303 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
2308 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
2310 Elf_Internal_Shdr *hdr;
2312 hdr = elf_elfsections (abfd)[i];
2313 if (hdr->sh_type == type
2314 && (hdr->sh_flags & SHF_ALLOC) != 0)
2316 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
2317 dyn.d_un.d_val += hdr->sh_size;
2320 if (dyn.d_un.d_val == 0
2321 || hdr->sh_addr < dyn.d_un.d_val)
2322 dyn.d_un.d_val = hdr->sh_addr;
2326 elf_swap_dyn_out (dynobj, &dyn, dyncon);
2332 /* If we have created any dynamic sections, then output them. */
2335 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
2338 for (o = dynobj->sections; o != NULL; o = o->next)
2340 if ((o->flags & SEC_HAS_CONTENTS) == 0
2341 || o->_raw_size == 0)
2343 if ((o->flags & SEC_IN_MEMORY) == 0)
2345 /* At this point, we are only interested in sections
2346 created by elf_link_create_dynamic_sections. FIXME:
2347 This test is fragile. */
2350 if ((elf_section_data (o->output_section)->this_hdr.sh_type
2352 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
2354 if (! bfd_set_section_contents (abfd, o->output_section,
2355 o->contents, o->output_offset,
2363 /* The contents of the .dynstr section are actually in a
2365 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
2366 if (bfd_seek (abfd, off, SEEK_SET) != 0
2367 || ! _bfd_stringtab_emit (abfd,
2368 elf_hash_table (info)->dynstr))
2374 /* If we have optimized stabs strings, output them. */
2375 if (elf_hash_table (info)->stab_info != NULL)
2377 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
2381 if (finfo.symstrtab != NULL)
2382 _bfd_stringtab_free (finfo.symstrtab);
2383 if (finfo.contents != NULL)
2384 free (finfo.contents);
2385 if (finfo.external_relocs != NULL)
2386 free (finfo.external_relocs);
2387 if (finfo.internal_relocs != NULL)
2388 free (finfo.internal_relocs);
2389 if (finfo.external_syms != NULL)
2390 free (finfo.external_syms);
2391 if (finfo.internal_syms != NULL)
2392 free (finfo.internal_syms);
2393 if (finfo.indices != NULL)
2394 free (finfo.indices);
2395 if (finfo.sections != NULL)
2396 free (finfo.sections);
2397 if (finfo.symbuf != NULL)
2398 free (finfo.symbuf);
2399 for (o = abfd->sections; o != NULL; o = o->next)
2401 if ((o->flags & SEC_RELOC) != 0
2402 && elf_section_data (o)->rel_hashes != NULL)
2403 free (elf_section_data (o)->rel_hashes);
2406 elf_tdata (abfd)->linker = true;
2411 if (finfo.symstrtab != NULL)
2412 _bfd_stringtab_free (finfo.symstrtab);
2413 if (finfo.contents != NULL)
2414 free (finfo.contents);
2415 if (finfo.external_relocs != NULL)
2416 free (finfo.external_relocs);
2417 if (finfo.internal_relocs != NULL)
2418 free (finfo.internal_relocs);
2419 if (finfo.external_syms != NULL)
2420 free (finfo.external_syms);
2421 if (finfo.internal_syms != NULL)
2422 free (finfo.internal_syms);
2423 if (finfo.indices != NULL)
2424 free (finfo.indices);
2425 if (finfo.sections != NULL)
2426 free (finfo.sections);
2427 if (finfo.symbuf != NULL)
2428 free (finfo.symbuf);
2429 for (o = abfd->sections; o != NULL; o = o->next)
2431 if ((o->flags & SEC_RELOC) != 0
2432 && elf_section_data (o)->rel_hashes != NULL)
2433 free (elf_section_data (o)->rel_hashes);
2439 /* Add a symbol to the output symbol table. */
2442 elf_link_output_sym (finfo, name, elfsym, input_sec)
2443 struct elf_final_link_info *finfo;
2445 Elf_Internal_Sym *elfsym;
2446 asection *input_sec;
2448 boolean (*output_symbol_hook) PARAMS ((bfd *,
2449 struct bfd_link_info *info,
2454 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
2455 elf_backend_link_output_symbol_hook;
2456 if (output_symbol_hook != NULL)
2458 if (! ((*output_symbol_hook)
2459 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
2463 if (name == (const char *) NULL || *name == '\0')
2464 elfsym->st_name = 0;
2467 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
2470 if (elfsym->st_name == (unsigned long) -1)
2474 if (finfo->symbuf_count >= finfo->symbuf_size)
2476 if (! elf_link_flush_output_syms (finfo))
2480 elf_swap_symbol_out (finfo->output_bfd, elfsym,
2481 (PTR) (finfo->symbuf + finfo->symbuf_count));
2482 ++finfo->symbuf_count;
2484 ++finfo->output_bfd->symcount;
2489 /* Flush the output symbols to the file. */
2492 elf_link_flush_output_syms (finfo)
2493 struct elf_final_link_info *finfo;
2495 if (finfo->symbuf_count > 0)
2497 Elf_Internal_Shdr *symtab;
2499 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
2501 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
2503 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
2504 sizeof (Elf_External_Sym), finfo->output_bfd)
2505 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
2508 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
2510 finfo->symbuf_count = 0;
2516 /* Add an external symbol to the symbol table. This is called from
2517 the hash table traversal routine. */
2520 elf_link_output_extsym (h, data)
2521 struct elf_link_hash_entry *h;
2524 struct elf_finfo_failed *eif = (struct elf_finfo_failed *) data;
2525 struct elf_final_link_info *finfo = eif->finfo;
2527 Elf_Internal_Sym sym;
2528 asection *input_sec;
2530 /* If we are not creating a shared library, and this symbol is
2531 referenced by a shared library but is not defined anywhere, then
2532 warn that it is undefined. If we do not do this, the runtime
2533 linker will complain that the symbol is undefined when the
2534 program is run. We don't have to worry about symbols that are
2535 referenced by regular files, because we will already have issued
2536 warnings for them. */
2537 if (! finfo->info->relocateable
2538 && ! finfo->info->shared
2539 && h->root.type == bfd_link_hash_undefined
2540 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
2541 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
2543 if (! ((*finfo->info->callbacks->undefined_symbol)
2544 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
2545 (asection *) NULL, 0)))
2552 /* We don't want to output symbols that have never been mentioned by
2553 a regular file, or that we have been told to strip. However, if
2554 h->indx is set to -2, the symbol is used by a reloc and we must
2558 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2559 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
2560 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2561 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
2563 else if (finfo->info->strip == strip_all
2564 || (finfo->info->strip == strip_some
2565 && bfd_hash_lookup (finfo->info->keep_hash,
2566 h->root.root.string,
2567 false, false) == NULL))
2572 /* If we're stripping it, and it's not a dynamic symbol, there's
2573 nothing else to do. */
2574 if (strip && h->dynindx == -1)
2578 sym.st_size = h->size;
2580 if (h->root.type == bfd_link_hash_undefweak
2581 || h->root.type == bfd_link_hash_defweak)
2582 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
2584 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
2586 switch (h->root.type)
2589 case bfd_link_hash_new:
2593 case bfd_link_hash_undefined:
2594 input_sec = bfd_und_section_ptr;
2595 sym.st_shndx = SHN_UNDEF;
2598 case bfd_link_hash_undefweak:
2599 input_sec = bfd_und_section_ptr;
2600 sym.st_shndx = SHN_UNDEF;
2603 case bfd_link_hash_defined:
2604 case bfd_link_hash_defweak:
2606 input_sec = h->root.u.def.section;
2607 if (input_sec->output_section != NULL)
2610 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
2611 input_sec->output_section);
2612 if (sym.st_shndx == (unsigned short) -1)
2618 /* ELF symbols in relocateable files are section relative,
2619 but in nonrelocateable files they are virtual
2621 sym.st_value = h->root.u.def.value + input_sec->output_offset;
2622 if (! finfo->info->relocateable)
2623 sym.st_value += input_sec->output_section->vma;
2627 BFD_ASSERT ((bfd_get_flavour (input_sec->owner)
2628 == bfd_target_elf_flavour)
2629 && elf_elfheader (input_sec->owner)->e_type == ET_DYN);
2630 sym.st_shndx = SHN_UNDEF;
2631 input_sec = bfd_und_section_ptr;
2636 case bfd_link_hash_common:
2637 input_sec = bfd_com_section_ptr;
2638 sym.st_shndx = SHN_COMMON;
2639 sym.st_value = 1 << h->root.u.c.p->alignment_power;
2642 case bfd_link_hash_indirect:
2643 case bfd_link_hash_warning:
2644 /* We can't represent these symbols in ELF. A warning symbol
2645 may have come from a .gnu.warning.SYMBOL section anyhow. We
2646 just put the target symbol in the hash table. If the target
2647 symbol does not really exist, don't do anything. */
2648 if (h->root.u.i.link->type == bfd_link_hash_new)
2650 return (elf_link_output_extsym
2651 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
2654 /* If this symbol should be put in the .dynsym section, then put it
2655 there now. We have already know the symbol index. We also fill
2656 in the entry in the .hash section. */
2657 if (h->dynindx != -1
2658 && elf_hash_table (finfo->info)->dynamic_sections_created)
2660 struct elf_backend_data *bed;
2663 bfd_byte *bucketpos;
2666 sym.st_name = h->dynstr_index;
2668 /* Give the processor backend a chance to tweak the symbol
2669 value, and also to finish up anything that needs to be done
2671 bed = get_elf_backend_data (finfo->output_bfd);
2672 if (! ((*bed->elf_backend_finish_dynamic_symbol)
2673 (finfo->output_bfd, finfo->info, h, &sym)))
2679 elf_swap_symbol_out (finfo->output_bfd, &sym,
2680 (PTR) (((Elf_External_Sym *)
2681 finfo->dynsym_sec->contents)
2684 bucketcount = elf_hash_table (finfo->info)->bucketcount;
2685 bucket = (bfd_elf_hash ((const unsigned char *) h->root.root.string)
2687 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
2688 + (bucket + 2) * (ARCH_SIZE / 8));
2689 chain = get_word (finfo->output_bfd, bucketpos);
2690 put_word (finfo->output_bfd, h->dynindx, bucketpos);
2691 put_word (finfo->output_bfd, chain,
2692 ((bfd_byte *) finfo->hash_sec->contents
2693 + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
2696 /* If we're stripping it, then it was just a dynamic symbol, and
2697 there's nothing else to do. */
2701 h->indx = finfo->output_bfd->symcount;
2703 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
2712 /* Link an input file into the linker output file. This function
2713 handles all the sections and relocations of the input file at once.
2714 This is so that we only have to read the local symbols once, and
2715 don't have to keep them in memory. */
2718 elf_link_input_bfd (finfo, input_bfd)
2719 struct elf_final_link_info *finfo;
2722 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
2723 bfd *, asection *, bfd_byte *,
2724 Elf_Internal_Rela *,
2725 Elf_Internal_Sym *, asection **));
2727 Elf_Internal_Shdr *symtab_hdr;
2730 Elf_External_Sym *external_syms;
2731 Elf_External_Sym *esym;
2732 Elf_External_Sym *esymend;
2733 Elf_Internal_Sym *isym;
2735 asection **ppsection;
2738 output_bfd = finfo->output_bfd;
2740 get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
2742 /* If this is a dynamic object, we don't want to do anything here:
2743 we don't want the local symbols, and we don't want the section
2745 if (elf_elfheader (input_bfd)->e_type == ET_DYN)
2748 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2749 if (elf_bad_symtab (input_bfd))
2751 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
2756 locsymcount = symtab_hdr->sh_info;
2757 extsymoff = symtab_hdr->sh_info;
2760 /* Read the local symbols. */
2761 if (symtab_hdr->contents != NULL)
2762 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
2763 else if (locsymcount == 0)
2764 external_syms = NULL;
2767 external_syms = finfo->external_syms;
2768 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2769 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
2770 locsymcount, input_bfd)
2771 != locsymcount * sizeof (Elf_External_Sym)))
2775 /* Swap in the local symbols and write out the ones which we know
2776 are going into the output file. */
2777 esym = external_syms;
2778 esymend = esym + locsymcount;
2779 isym = finfo->internal_syms;
2780 pindex = finfo->indices;
2781 ppsection = finfo->sections;
2782 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
2786 Elf_Internal_Sym osym;
2788 elf_swap_symbol_in (input_bfd, esym, isym);
2791 if (elf_bad_symtab (input_bfd))
2793 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
2800 if (isym->st_shndx == SHN_UNDEF)
2801 isec = bfd_und_section_ptr;
2802 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
2803 isec = section_from_elf_index (input_bfd, isym->st_shndx);
2804 else if (isym->st_shndx == SHN_ABS)
2805 isec = bfd_abs_section_ptr;
2806 else if (isym->st_shndx == SHN_COMMON)
2807 isec = bfd_com_section_ptr;
2816 /* Don't output the first, undefined, symbol. */
2817 if (esym == external_syms)
2820 /* If we are stripping all symbols, we don't want to output this
2822 if (finfo->info->strip == strip_all)
2825 /* We never output section symbols. Instead, we use the section
2826 symbol of the corresponding section in the output file. */
2827 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
2830 /* If we are discarding all local symbols, we don't want to
2831 output this one. If we are generating a relocateable output
2832 file, then some of the local symbols may be required by
2833 relocs; we output them below as we discover that they are
2835 if (finfo->info->discard == discard_all)
2838 /* Get the name of the symbol. */
2839 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
2844 /* See if we are discarding symbols with this name. */
2845 if ((finfo->info->strip == strip_some
2846 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
2848 || (finfo->info->discard == discard_l
2849 && strncmp (name, finfo->info->lprefix,
2850 finfo->info->lprefix_len) == 0))
2853 /* If we get here, we are going to output this symbol. */
2857 /* Adjust the section index for the output file. */
2858 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
2859 isec->output_section);
2860 if (osym.st_shndx == (unsigned short) -1)
2863 *pindex = output_bfd->symcount;
2865 /* ELF symbols in relocateable files are section relative, but
2866 in executable files they are virtual addresses. Note that
2867 this code assumes that all ELF sections have an associated
2868 BFD section with a reasonable value for output_offset; below
2869 we assume that they also have a reasonable value for
2870 output_section. Any special sections must be set up to meet
2871 these requirements. */
2872 osym.st_value += isec->output_offset;
2873 if (! finfo->info->relocateable)
2874 osym.st_value += isec->output_section->vma;
2876 if (! elf_link_output_sym (finfo, name, &osym, isec))
2880 /* Relocate the contents of each section. */
2881 for (o = input_bfd->sections; o != NULL; o = o->next)
2885 if (! o->linker_mark)
2887 /* This section was omitted from the link. */
2891 if ((o->flags & SEC_HAS_CONTENTS) == 0
2892 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
2895 if ((o->flags & SEC_IN_MEMORY) != 0
2896 && input_bfd == elf_hash_table (finfo->info)->dynobj)
2898 /* Section was created by elf_link_create_dynamic_sections.
2899 FIXME: This test is fragile. */
2903 /* Get the contents of the section. They have been cached by a
2904 relaxation routine. Note that o is a section in an input
2905 file, so the contents field will not have been set by any of
2906 the routines which work on output files. */
2907 if (elf_section_data (o)->this_hdr.contents != NULL)
2908 contents = elf_section_data (o)->this_hdr.contents;
2911 contents = finfo->contents;
2912 if (! bfd_get_section_contents (input_bfd, o, contents,
2913 (file_ptr) 0, o->_raw_size))
2917 if ((o->flags & SEC_RELOC) != 0)
2919 Elf_Internal_Rela *internal_relocs;
2921 /* Get the swapped relocs. */
2922 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2923 (input_bfd, o, finfo->external_relocs,
2924 finfo->internal_relocs, false));
2925 if (internal_relocs == NULL
2926 && o->reloc_count > 0)
2929 /* Relocate the section by invoking a back end routine.
2931 The back end routine is responsible for adjusting the
2932 section contents as necessary, and (if using Rela relocs
2933 and generating a relocateable output file) adjusting the
2934 reloc addend as necessary.
2936 The back end routine does not have to worry about setting
2937 the reloc address or the reloc symbol index.
2939 The back end routine is given a pointer to the swapped in
2940 internal symbols, and can access the hash table entries
2941 for the external symbols via elf_sym_hashes (input_bfd).
2943 When generating relocateable output, the back end routine
2944 must handle STB_LOCAL/STT_SECTION symbols specially. The
2945 output symbol is going to be a section symbol
2946 corresponding to the output section, which will require
2947 the addend to be adjusted. */
2949 if (! (*relocate_section) (output_bfd, finfo->info,
2950 input_bfd, o, contents,
2952 finfo->internal_syms,
2956 if (finfo->info->relocateable)
2958 Elf_Internal_Rela *irela;
2959 Elf_Internal_Rela *irelaend;
2960 struct elf_link_hash_entry **rel_hash;
2961 Elf_Internal_Shdr *input_rel_hdr;
2962 Elf_Internal_Shdr *output_rel_hdr;
2964 /* Adjust the reloc addresses and symbol indices. */
2966 irela = internal_relocs;
2967 irelaend = irela + o->reloc_count;
2968 rel_hash = (elf_section_data (o->output_section)->rel_hashes
2969 + o->output_section->reloc_count);
2970 for (; irela < irelaend; irela++, rel_hash++)
2972 unsigned long r_symndx;
2973 Elf_Internal_Sym *isym;
2976 irela->r_offset += o->output_offset;
2978 r_symndx = ELF_R_SYM (irela->r_info);
2983 if (r_symndx >= locsymcount
2984 || (elf_bad_symtab (input_bfd)
2985 && finfo->sections[r_symndx] == NULL))
2989 /* This is a reloc against a global symbol. We
2990 have not yet output all the local symbols, so
2991 we do not know the symbol index of any global
2992 symbol. We set the rel_hash entry for this
2993 reloc to point to the global hash table entry
2994 for this symbol. The symbol index is then
2995 set at the end of elf_bfd_final_link. */
2996 indx = r_symndx - extsymoff;
2997 *rel_hash = elf_sym_hashes (input_bfd)[indx];
2999 /* Setting the index to -2 tells
3000 elf_link_output_extsym that this symbol is
3002 BFD_ASSERT ((*rel_hash)->indx < 0);
3003 (*rel_hash)->indx = -2;
3008 /* This is a reloc against a local symbol. */
3011 isym = finfo->internal_syms + r_symndx;
3012 sec = finfo->sections[r_symndx];
3013 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
3015 /* I suppose the backend ought to fill in the
3016 section of any STT_SECTION symbol against a
3017 processor specific section. */
3018 if (sec != NULL && bfd_is_abs_section (sec))
3020 else if (sec == NULL || sec->owner == NULL)
3022 bfd_set_error (bfd_error_bad_value);
3027 r_symndx = sec->output_section->target_index;
3028 BFD_ASSERT (r_symndx != 0);
3033 if (finfo->indices[r_symndx] == -1)
3039 if (finfo->info->strip == strip_all)
3041 /* You can't do ld -r -s. */
3042 bfd_set_error (bfd_error_invalid_operation);
3046 /* This symbol was skipped earlier, but
3047 since it is needed by a reloc, we
3048 must output it now. */
3049 link = symtab_hdr->sh_link;
3050 name = bfd_elf_string_from_elf_section (input_bfd,
3056 osec = sec->output_section;
3058 _bfd_elf_section_from_bfd_section (output_bfd,
3060 if (isym->st_shndx == (unsigned short) -1)
3063 isym->st_value += sec->output_offset;
3064 if (! finfo->info->relocateable)
3065 isym->st_value += osec->vma;
3067 finfo->indices[r_symndx] = output_bfd->symcount;
3069 if (! elf_link_output_sym (finfo, name, isym, sec))
3073 r_symndx = finfo->indices[r_symndx];
3076 irela->r_info = ELF_R_INFO (r_symndx,
3077 ELF_R_TYPE (irela->r_info));
3080 /* Swap out the relocs. */
3081 input_rel_hdr = &elf_section_data (o)->rel_hdr;
3082 output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
3083 BFD_ASSERT (output_rel_hdr->sh_entsize
3084 == input_rel_hdr->sh_entsize);
3085 irela = internal_relocs;
3086 irelaend = irela + o->reloc_count;
3087 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3089 Elf_External_Rel *erel;
3091 erel = ((Elf_External_Rel *) output_rel_hdr->contents
3092 + o->output_section->reloc_count);
3093 for (; irela < irelaend; irela++, erel++)
3095 Elf_Internal_Rel irel;
3097 irel.r_offset = irela->r_offset;
3098 irel.r_info = irela->r_info;
3099 BFD_ASSERT (irela->r_addend == 0);
3100 elf_swap_reloc_out (output_bfd, &irel, erel);
3105 Elf_External_Rela *erela;
3107 BFD_ASSERT (input_rel_hdr->sh_entsize
3108 == sizeof (Elf_External_Rela));
3109 erela = ((Elf_External_Rela *) output_rel_hdr->contents
3110 + o->output_section->reloc_count);
3111 for (; irela < irelaend; irela++, erela++)
3112 elf_swap_reloca_out (output_bfd, irela, erela);
3115 o->output_section->reloc_count += o->reloc_count;
3119 /* Write out the modified section contents. */
3120 if (elf_section_data (o)->stab_info == NULL)
3122 if (! bfd_set_section_contents (output_bfd, o->output_section,
3123 contents, o->output_offset,
3124 (o->_cooked_size != 0
3131 if (! _bfd_write_section_stabs (output_bfd, o,
3132 &elf_section_data (o)->stab_info,
3141 /* Generate a reloc when linking an ELF file. This is a reloc
3142 requested by the linker, and does come from any input file. This
3143 is used to build constructor and destructor tables when linking
3147 elf_reloc_link_order (output_bfd, info, output_section, link_order)
3149 struct bfd_link_info *info;
3150 asection *output_section;
3151 struct bfd_link_order *link_order;
3153 reloc_howto_type *howto;
3157 struct elf_link_hash_entry **rel_hash_ptr;
3158 Elf_Internal_Shdr *rel_hdr;
3160 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
3163 bfd_set_error (bfd_error_bad_value);
3167 addend = link_order->u.reloc.p->addend;
3169 /* Figure out the symbol index. */
3170 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
3171 + output_section->reloc_count);
3172 if (link_order->type == bfd_section_reloc_link_order)
3174 indx = link_order->u.reloc.p->u.section->target_index;
3175 BFD_ASSERT (indx != 0);
3176 *rel_hash_ptr = NULL;
3180 struct elf_link_hash_entry *h;
3182 /* Treat a reloc against a defined symbol as though it were
3183 actually against the section. */
3184 h = ((struct elf_link_hash_entry *)
3185 bfd_wrapped_link_hash_lookup (output_bfd, info,
3186 link_order->u.reloc.p->u.name,
3187 false, false, true));
3189 && (h->root.type == bfd_link_hash_defined
3190 || h->root.type == bfd_link_hash_defweak))
3194 section = h->root.u.def.section;
3195 indx = section->output_section->target_index;
3196 *rel_hash_ptr = NULL;
3197 /* It seems that we ought to add the symbol value to the
3198 addend here, but in practice it has already been added
3199 because it was passed to constructor_callback. */
3200 addend += section->output_section->vma + section->output_offset;
3204 /* Setting the index to -2 tells elf_link_output_extsym that
3205 this symbol is used by a reloc. */
3212 if (! ((*info->callbacks->unattached_reloc)
3213 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
3214 (asection *) NULL, (bfd_vma) 0)))
3220 /* If this is an inplace reloc, we must write the addend into the
3222 if (howto->partial_inplace && addend != 0)
3225 bfd_reloc_status_type rstat;
3229 size = bfd_get_reloc_size (howto);
3230 buf = (bfd_byte *) bfd_zmalloc (size);
3231 if (buf == (bfd_byte *) NULL)
3233 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
3239 case bfd_reloc_outofrange:
3241 case bfd_reloc_overflow:
3242 if (! ((*info->callbacks->reloc_overflow)
3244 (link_order->type == bfd_section_reloc_link_order
3245 ? bfd_section_name (output_bfd,
3246 link_order->u.reloc.p->u.section)
3247 : link_order->u.reloc.p->u.name),
3248 howto->name, addend, (bfd *) NULL, (asection *) NULL,
3256 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
3257 (file_ptr) link_order->offset, size);
3263 /* The address of a reloc is relative to the section in a
3264 relocateable file, and is a virtual address in an executable
3266 offset = link_order->offset;
3267 if (! info->relocateable)
3268 offset += output_section->vma;
3270 rel_hdr = &elf_section_data (output_section)->rel_hdr;
3272 if (rel_hdr->sh_type == SHT_REL)
3274 Elf_Internal_Rel irel;
3275 Elf_External_Rel *erel;
3277 irel.r_offset = offset;
3278 irel.r_info = ELF_R_INFO (indx, howto->type);
3279 erel = ((Elf_External_Rel *) rel_hdr->contents
3280 + output_section->reloc_count);
3281 elf_swap_reloc_out (output_bfd, &irel, erel);
3285 Elf_Internal_Rela irela;
3286 Elf_External_Rela *erela;
3288 irela.r_offset = offset;
3289 irela.r_info = ELF_R_INFO (indx, howto->type);
3290 irela.r_addend = addend;
3291 erela = ((Elf_External_Rela *) rel_hdr->contents
3292 + output_section->reloc_count);
3293 elf_swap_reloca_out (output_bfd, &irela, erela);
3296 ++output_section->reloc_count;
3302 /* Allocate a pointer to live in a linker created section. */
3305 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
3307 struct bfd_link_info *info;
3308 elf_linker_section_t *lsect;
3309 struct elf_link_hash_entry *h;
3310 const Elf_Internal_Rela *rel;
3312 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
3313 elf_linker_section_pointers_t *linker_section_ptr;
3314 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
3316 BFD_ASSERT (lsect != NULL);
3318 /* Is this a global symbol? */
3321 /* Has this symbol already been allocated, if so, our work is done */
3322 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
3327 ptr_linker_section_ptr = &h->linker_section_pointer;
3328 /* Make sure this symbol is output as a dynamic symbol. */
3329 if (h->dynindx == -1)
3331 if (! elf_link_record_dynamic_symbol (info, h))
3335 if (lsect->rel_section)
3336 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
3339 else /* Allocation of a pointer to a local symbol */
3341 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
3343 /* Allocate a table to hold the local symbols if first time */
3346 int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
3347 register unsigned int i;
3349 ptr = (elf_linker_section_pointers_t **)
3350 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
3355 elf_local_ptr_offsets (abfd) = ptr;
3356 for (i = 0; i < num_symbols; i++)
3357 ptr[i] = (elf_linker_section_pointers_t *)0;
3360 /* Has this symbol already been allocated, if so, our work is done */
3361 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
3366 ptr_linker_section_ptr = &ptr[r_symndx];
3370 /* If we are generating a shared object, we need to
3371 output a R_<xxx>_RELATIVE reloc so that the
3372 dynamic linker can adjust this GOT entry. */
3373 BFD_ASSERT (lsect->rel_section != NULL);
3374 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
3378 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
3379 from internal memory. */
3380 BFD_ASSERT (ptr_linker_section_ptr != NULL);
3381 linker_section_ptr = (elf_linker_section_pointers_t *)
3382 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
3384 if (!linker_section_ptr)
3387 linker_section_ptr->next = *ptr_linker_section_ptr;
3388 linker_section_ptr->addend = rel->r_addend;
3389 linker_section_ptr->which = lsect->which;
3390 linker_section_ptr->written_address_p = false;
3391 *ptr_linker_section_ptr = linker_section_ptr;
3394 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
3396 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
3397 lsect->hole_offset += ARCH_SIZE / 8;
3398 lsect->sym_offset += ARCH_SIZE / 8;
3399 if (lsect->sym_hash) /* Bump up symbol value if needed */
3401 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
3403 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
3404 lsect->sym_hash->root.root.string,
3405 (long)ARCH_SIZE / 8,
3406 (long)lsect->sym_hash->root.u.def.value);
3412 linker_section_ptr->offset = lsect->section->_raw_size;
3414 lsect->section->_raw_size += ARCH_SIZE / 8;
3417 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
3418 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
3426 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
3429 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
3432 /* Fill in the address for a pointer generated in alinker section. */
3435 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
3438 struct bfd_link_info *info;
3439 elf_linker_section_t *lsect;
3440 struct elf_link_hash_entry *h;
3442 const Elf_Internal_Rela *rel;
3445 elf_linker_section_pointers_t *linker_section_ptr;
3447 BFD_ASSERT (lsect != NULL);
3449 if (h != NULL) /* global symbol */
3451 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
3455 BFD_ASSERT (linker_section_ptr != NULL);
3457 if (! elf_hash_table (info)->dynamic_sections_created
3460 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3462 /* This is actually a static link, or it is a
3463 -Bsymbolic link and the symbol is defined
3464 locally. We must initialize this entry in the
3467 When doing a dynamic link, we create a .rela.<xxx>
3468 relocation entry to initialize the value. This
3469 is done in the finish_dynamic_symbol routine. */
3470 if (!linker_section_ptr->written_address_p)
3472 linker_section_ptr->written_address_p = true;
3473 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
3474 lsect->section->contents + linker_section_ptr->offset);
3478 else /* local symbol */
3480 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
3481 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
3482 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
3483 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
3487 BFD_ASSERT (linker_section_ptr != NULL);
3489 /* Write out pointer if it hasn't been rewritten out before */
3490 if (!linker_section_ptr->written_address_p)
3492 linker_section_ptr->written_address_p = true;
3493 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
3494 lsect->section->contents + linker_section_ptr->offset);
3498 asection *srel = lsect->rel_section;
3499 Elf_Internal_Rela outrel;
3501 /* We need to generate a relative reloc for the dynamic linker. */
3503 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
3506 BFD_ASSERT (srel != NULL);
3508 outrel.r_offset = (lsect->section->output_section->vma
3509 + lsect->section->output_offset
3510 + linker_section_ptr->offset);
3511 outrel.r_info = ELF_R_INFO (0, relative_reloc);
3512 outrel.r_addend = 0;
3513 elf_swap_reloca_out (output_bfd, &outrel,
3514 (((Elf_External_Rela *)
3515 lsect->section->contents)
3516 + lsect->section->reloc_count));
3517 ++lsect->section->reloc_count;
3522 relocation = (lsect->section->output_offset
3523 + linker_section_ptr->offset
3524 - lsect->hole_offset
3525 - lsect->sym_offset);
3528 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
3529 lsect->name, (long)relocation, (long)relocation);
3532 /* Subtract out the addend, because it will get added back in by the normal
3534 return relocation - linker_section_ptr->addend;