1 /* Target-dependent code for the IA-64 for GDB, the GNU debugger.
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "arch-utils.h"
25 #include "floatformat.h"
28 #include "reggroups.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
34 #include "gdb_assert.h"
36 #include "elf/common.h" /* for DT_PLTGOT value */
41 #include "ia64-tdep.h"
44 #ifdef HAVE_LIBUNWIND_IA64_H
45 #include "elf/ia64.h" /* for PT_IA_64_UNWIND value */
46 #include "libunwind-frame.h"
47 #include "libunwind-ia64.h"
49 /* Note: KERNEL_START is supposed to be an address which is not going
50 to ever contain any valid unwind info. For ia64 linux, the choice
51 of 0xc000000000000000 is fairly safe since that's uncached space.
53 We use KERNEL_START as follows: after obtaining the kernel's
54 unwind table via getunwind(), we project its unwind data into
55 address-range KERNEL_START-(KERNEL_START+ktab_size) and then
56 when ia64_access_mem() sees a memory access to this
57 address-range, we redirect it to ktab instead.
59 None of this hackery is needed with a modern kernel/libcs
60 which uses the kernel virtual DSO to provide access to the
61 kernel's unwind info. In that case, ktab_size remains 0 and
62 hence the value of KERNEL_START doesn't matter. */
64 #define KERNEL_START 0xc000000000000000ULL
66 static size_t ktab_size = 0;
67 struct ia64_table_entry
69 uint64_t start_offset;
74 static struct ia64_table_entry *ktab = NULL;
78 /* An enumeration of the different IA-64 instruction types. */
80 typedef enum instruction_type
82 A, /* Integer ALU ; I-unit or M-unit */
83 I, /* Non-ALU integer; I-unit */
84 M, /* Memory ; M-unit */
85 F, /* Floating-point ; F-unit */
86 B, /* Branch ; B-unit */
87 L, /* Extended (L+X) ; I-unit */
88 X, /* Extended (L+X) ; I-unit */
89 undefined /* undefined or reserved */
92 /* We represent IA-64 PC addresses as the value of the instruction
93 pointer or'd with some bit combination in the low nibble which
94 represents the slot number in the bundle addressed by the
95 instruction pointer. The problem is that the Linux kernel
96 multiplies its slot numbers (for exceptions) by one while the
97 disassembler multiplies its slot numbers by 6. In addition, I've
98 heard it said that the simulator uses 1 as the multiplier.
100 I've fixed the disassembler so that the bytes_per_line field will
101 be the slot multiplier. If bytes_per_line comes in as zero, it
102 is set to six (which is how it was set up initially). -- objdump
103 displays pretty disassembly dumps with this value. For our purposes,
104 we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we
105 never want to also display the raw bytes the way objdump does. */
107 #define SLOT_MULTIPLIER 1
109 /* Length in bytes of an instruction bundle */
111 #define BUNDLE_LEN 16
113 /* See the saved memory layout comment for ia64_memory_insert_breakpoint. */
115 #if BREAKPOINT_MAX < BUNDLE_LEN - 2
116 # error "BREAKPOINT_MAX < BUNDLE_LEN - 2"
119 static gdbarch_init_ftype ia64_gdbarch_init;
121 static gdbarch_register_name_ftype ia64_register_name;
122 static gdbarch_register_type_ftype ia64_register_type;
123 static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc;
124 static gdbarch_skip_prologue_ftype ia64_skip_prologue;
125 static struct type *is_float_or_hfa_type (struct type *t);
126 static CORE_ADDR ia64_find_global_pointer (CORE_ADDR faddr);
128 static struct type *builtin_type_ia64_ext;
130 #define NUM_IA64_RAW_REGS 462
132 static int sp_regnum = IA64_GR12_REGNUM;
133 static int fp_regnum = IA64_VFP_REGNUM;
134 static int lr_regnum = IA64_VRAP_REGNUM;
136 /* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because
137 they may not be accessible via the ptrace register get/set interfaces. */
138 enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM,
139 V127_REGNUM = V32_REGNUM + 95,
140 VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM };
142 /* Array of register names; There should be ia64_num_regs strings in
145 static char *ia64_register_names[] =
146 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
147 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
148 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
149 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
150 "", "", "", "", "", "", "", "",
151 "", "", "", "", "", "", "", "",
152 "", "", "", "", "", "", "", "",
153 "", "", "", "", "", "", "", "",
154 "", "", "", "", "", "", "", "",
155 "", "", "", "", "", "", "", "",
156 "", "", "", "", "", "", "", "",
157 "", "", "", "", "", "", "", "",
158 "", "", "", "", "", "", "", "",
159 "", "", "", "", "", "", "", "",
160 "", "", "", "", "", "", "", "",
161 "", "", "", "", "", "", "", "",
163 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
164 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
165 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
166 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
167 "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
168 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47",
169 "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55",
170 "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63",
171 "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71",
172 "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",
173 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87",
174 "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95",
175 "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103",
176 "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111",
177 "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119",
178 "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127",
180 "", "", "", "", "", "", "", "",
181 "", "", "", "", "", "", "", "",
182 "", "", "", "", "", "", "", "",
183 "", "", "", "", "", "", "", "",
184 "", "", "", "", "", "", "", "",
185 "", "", "", "", "", "", "", "",
186 "", "", "", "", "", "", "", "",
187 "", "", "", "", "", "", "", "",
189 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",
193 "pr", "ip", "psr", "cfm",
195 "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7",
196 "", "", "", "", "", "", "", "",
197 "rsc", "bsp", "bspstore", "rnat",
199 "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "",
200 "ccv", "", "", "", "unat", "", "", "",
201 "fpsr", "", "", "", "itc",
202 "", "", "", "", "", "", "", "", "", "",
203 "", "", "", "", "", "", "", "", "",
205 "", "", "", "", "", "", "", "", "", "",
206 "", "", "", "", "", "", "", "", "", "",
207 "", "", "", "", "", "", "", "", "", "",
208 "", "", "", "", "", "", "", "", "", "",
209 "", "", "", "", "", "", "", "", "", "",
210 "", "", "", "", "", "", "", "", "", "",
212 "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7",
213 "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15",
214 "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23",
215 "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31",
216 "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39",
217 "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47",
218 "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55",
219 "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63",
220 "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71",
221 "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79",
222 "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87",
223 "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95",
224 "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103",
225 "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111",
226 "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119",
227 "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127",
231 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
232 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
233 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
234 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
235 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
236 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
237 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
238 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
239 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
240 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
241 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
242 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
244 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7",
245 "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15",
246 "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23",
247 "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31",
248 "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",
249 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47",
250 "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55",
251 "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63",
254 struct ia64_frame_cache
256 CORE_ADDR base; /* frame pointer base for frame */
257 CORE_ADDR pc; /* function start pc for frame */
258 CORE_ADDR saved_sp; /* stack pointer for frame */
259 CORE_ADDR bsp; /* points at r32 for the current frame */
260 CORE_ADDR cfm; /* cfm value for current frame */
261 CORE_ADDR prev_cfm; /* cfm value for previous frame */
263 int sof; /* Size of frame (decoded from cfm value) */
264 int sol; /* Size of locals (decoded from cfm value) */
265 int sor; /* Number of rotating registers. (decoded from cfm value) */
266 CORE_ADDR after_prologue;
267 /* Address of first instruction after the last
268 prologue instruction; Note that there may
269 be instructions from the function's body
270 intermingled with the prologue. */
271 int mem_stack_frame_size;
272 /* Size of the memory stack frame (may be zero),
273 or -1 if it has not been determined yet. */
274 int fp_reg; /* Register number (if any) used a frame pointer
275 for this frame. 0 if no register is being used
276 as the frame pointer. */
278 /* Saved registers. */
279 CORE_ADDR saved_regs[NUM_IA64_RAW_REGS];
284 ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
285 struct reggroup *group)
290 if (group == all_reggroup)
292 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
293 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
294 raw_p = regnum < NUM_IA64_RAW_REGS;
295 if (group == float_reggroup)
297 if (group == vector_reggroup)
299 if (group == general_reggroup)
300 return (!vector_p && !float_p);
301 if (group == save_reggroup || group == restore_reggroup)
307 ia64_register_name (struct gdbarch *gdbarch, int reg)
309 return ia64_register_names[reg];
313 ia64_register_type (struct gdbarch *arch, int reg)
315 if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM)
316 return builtin_type_ia64_ext;
318 return builtin_type (arch)->builtin_long;
322 ia64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
324 if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM)
325 return V32_REGNUM + (reg - IA64_GR32_REGNUM);
330 floatformat_valid (const struct floatformat *fmt, const void *from)
335 const struct floatformat floatformat_ia64_ext =
337 floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64,
338 floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid, NULL
341 const struct floatformat *floatformats_ia64_ext[2] =
343 &floatformat_ia64_ext,
344 &floatformat_ia64_ext
348 /* Extract ``len'' bits from an instruction bundle starting at
352 extract_bit_field (const char *bundle, int from, int len)
354 long long result = 0LL;
356 int from_byte = from / 8;
357 int to_byte = to / 8;
358 unsigned char *b = (unsigned char *) bundle;
364 if (from_byte == to_byte)
365 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
366 result = c >> (from % 8);
367 lshift = 8 - (from % 8);
369 for (i = from_byte+1; i < to_byte; i++)
371 result |= ((long long) b[i]) << lshift;
375 if (from_byte < to_byte && (to % 8 != 0))
378 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
379 result |= ((long long) c) << lshift;
385 /* Replace the specified bits in an instruction bundle */
388 replace_bit_field (char *bundle, long long val, int from, int len)
391 int from_byte = from / 8;
392 int to_byte = to / 8;
393 unsigned char *b = (unsigned char *) bundle;
396 if (from_byte == to_byte)
398 unsigned char left, right;
400 left = (c >> (to % 8)) << (to % 8);
401 right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
402 c = (unsigned char) (val & 0xff);
403 c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8);
411 c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
412 c = c | (val << (from % 8));
414 val >>= 8 - from % 8;
416 for (i = from_byte+1; i < to_byte; i++)
425 unsigned char cv = (unsigned char) val;
427 c = c >> (to % 8) << (to % 8);
428 c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8);
434 /* Return the contents of slot N (for N = 0, 1, or 2) in
435 and instruction bundle */
438 slotN_contents (char *bundle, int slotnum)
440 return extract_bit_field (bundle, 5+41*slotnum, 41);
443 /* Store an instruction in an instruction bundle */
446 replace_slotN_contents (char *bundle, long long instr, int slotnum)
448 replace_bit_field (bundle, instr, 5+41*slotnum, 41);
451 static const enum instruction_type template_encoding_table[32][3] =
453 { M, I, I }, /* 00 */
454 { M, I, I }, /* 01 */
455 { M, I, I }, /* 02 */
456 { M, I, I }, /* 03 */
457 { M, L, X }, /* 04 */
458 { M, L, X }, /* 05 */
459 { undefined, undefined, undefined }, /* 06 */
460 { undefined, undefined, undefined }, /* 07 */
461 { M, M, I }, /* 08 */
462 { M, M, I }, /* 09 */
463 { M, M, I }, /* 0A */
464 { M, M, I }, /* 0B */
465 { M, F, I }, /* 0C */
466 { M, F, I }, /* 0D */
467 { M, M, F }, /* 0E */
468 { M, M, F }, /* 0F */
469 { M, I, B }, /* 10 */
470 { M, I, B }, /* 11 */
471 { M, B, B }, /* 12 */
472 { M, B, B }, /* 13 */
473 { undefined, undefined, undefined }, /* 14 */
474 { undefined, undefined, undefined }, /* 15 */
475 { B, B, B }, /* 16 */
476 { B, B, B }, /* 17 */
477 { M, M, B }, /* 18 */
478 { M, M, B }, /* 19 */
479 { undefined, undefined, undefined }, /* 1A */
480 { undefined, undefined, undefined }, /* 1B */
481 { M, F, B }, /* 1C */
482 { M, F, B }, /* 1D */
483 { undefined, undefined, undefined }, /* 1E */
484 { undefined, undefined, undefined }, /* 1F */
487 /* Fetch and (partially) decode an instruction at ADDR and return the
488 address of the next instruction to fetch. */
491 fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr)
493 char bundle[BUNDLE_LEN];
494 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
498 /* Warn about slot numbers greater than 2. We used to generate
499 an error here on the assumption that the user entered an invalid
500 address. But, sometimes GDB itself requests an invalid address.
501 This can (easily) happen when execution stops in a function for
502 which there are no symbols. The prologue scanner will attempt to
503 find the beginning of the function - if the nearest symbol
504 happens to not be aligned on a bundle boundary (16 bytes), the
505 resulting starting address will cause GDB to think that the slot
508 So we warn about it and set the slot number to zero. It is
509 not necessarily a fatal condition, particularly if debugging
510 at the assembly language level. */
513 warning (_("Can't fetch instructions for slot numbers greater than 2.\n"
514 "Using slot 0 instead"));
520 val = target_read_memory (addr, bundle, BUNDLE_LEN);
525 *instr = slotN_contents (bundle, slotnum);
526 template = extract_bit_field (bundle, 0, 5);
527 *it = template_encoding_table[(int)template][slotnum];
529 if (slotnum == 2 || (slotnum == 1 && *it == L))
532 addr += (slotnum + 1) * SLOT_MULTIPLIER;
537 /* There are 5 different break instructions (break.i, break.b,
538 break.m, break.f, and break.x), but they all have the same
539 encoding. (The five bit template in the low five bits of the
540 instruction bundle distinguishes one from another.)
542 The runtime architecture manual specifies that break instructions
543 used for debugging purposes must have the upper two bits of the 21
544 bit immediate set to a 0 and a 1 respectively. A breakpoint
545 instruction encodes the most significant bit of its 21 bit
546 immediate at bit 36 of the 41 bit instruction. The penultimate msb
547 is at bit 25 which leads to the pattern below.
549 Originally, I had this set up to do, e.g, a "break.i 0x80000" But
550 it turns out that 0x80000 was used as the syscall break in the early
551 simulators. So I changed the pattern slightly to do "break.i 0x080001"
552 instead. But that didn't work either (I later found out that this
553 pattern was used by the simulator that I was using.) So I ended up
554 using the pattern seen below.
556 SHADOW_CONTENTS has byte-based addressing (PLACED_ADDRESS and SHADOW_LEN)
557 while we need bit-based addressing as the instructions length is 41 bits and
558 we must not modify/corrupt the adjacent slots in the same bundle.
559 Fortunately we may store larger memory incl. the adjacent bits with the
560 original memory content (not the possibly already stored breakpoints there).
561 We need to be careful in ia64_memory_remove_breakpoint to always restore
562 only the specific bits of this instruction ignoring any adjacent stored
565 We use the original addressing with the low nibble in the range <0..2> which
566 gets incorrectly interpreted by generic non-ia64 breakpoint_restore_shadows
567 as the direct byte offset of SHADOW_CONTENTS. We store whole BUNDLE_LEN
568 bytes just without these two possibly skipped bytes to not to exceed to the
571 If we would like to store the whole bundle to SHADOW_CONTENTS we would have
572 to store already the base address (`address & ~0x0f') into PLACED_ADDRESS.
573 In such case there is no other place where to store
574 SLOTNUM (`adress & 0x0f', value in the range <0..2>). We need to know
575 SLOTNUM in ia64_memory_remove_breakpoint.
577 ia64 16-byte bundle layout:
578 | 5 bits | slot 0 with 41 bits | slot 1 with 41 bits | slot 2 with 41 bits |
580 The current addressing used by the code below:
581 original PC placed_address placed_size required covered
582 == bp_tgt->shadow_len reqd \subset covered
583 0xABCDE0 0xABCDE0 0xE <0x0...0x5> <0x0..0xD>
584 0xABCDE1 0xABCDE1 0xE <0x5...0xA> <0x1..0xE>
585 0xABCDE2 0xABCDE2 0xE <0xA...0xF> <0x2..0xF>
587 `objdump -d' and some other tools show a bit unjustified offsets:
588 original PC byte where starts the instruction objdump offset
589 0xABCDE0 0xABCDE0 0xABCDE0
590 0xABCDE1 0xABCDE5 0xABCDE6
591 0xABCDE2 0xABCDEA 0xABCDEC
594 #define IA64_BREAKPOINT 0x00003333300LL
597 ia64_memory_insert_breakpoint (struct gdbarch *gdbarch,
598 struct bp_target_info *bp_tgt)
600 CORE_ADDR addr = bp_tgt->placed_address;
601 gdb_byte bundle[BUNDLE_LEN];
602 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
603 long long instr_breakpoint;
606 struct cleanup *cleanup;
609 error (_("Can't insert breakpoint for slot numbers greater than 2."));
613 /* Disable the automatic memory restoration from breakpoints while
614 we read our instruction bundle. Otherwise, the general restoration
615 mechanism kicks in and we would possibly remove parts of the adjacent
616 placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real
617 breakpoint instruction bits region. */
618 cleanup = make_show_memory_breakpoints_cleanup (1);
619 val = target_read_memory (addr, bundle, BUNDLE_LEN);
621 /* Check for L type instruction in slot 1, if present then bump up the slot
622 number to the slot 2. */
623 template = extract_bit_field (bundle, 0, 5);
624 if (slotnum == 1 && template_encoding_table[template][slotnum] == L)
627 /* Slot number 2 may skip at most 2 bytes at the beginning. */
628 bp_tgt->placed_size = bp_tgt->shadow_len = BUNDLE_LEN - 2;
630 /* Store the whole bundle, except for the initial skipped bytes by the slot
631 number interpreted as bytes offset in PLACED_ADDRESS. */
632 memcpy (bp_tgt->shadow_contents, bundle + slotnum, bp_tgt->shadow_len);
634 /* Breakpoints already present in the code will get deteacted and not get
635 reinserted by bp_loc_is_permanent. Multiple breakpoints at the same
636 location cannot induce the internal error as they are optimized into
637 a single instance by update_global_location_list. */
638 instr_breakpoint = slotN_contents (bundle, slotnum);
639 if (instr_breakpoint == IA64_BREAKPOINT)
640 internal_error (__FILE__, __LINE__,
641 _("Address %s already contains a breakpoint."),
642 paddr_nz (bp_tgt->placed_address));
643 replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum);
646 val = target_write_memory (addr + slotnum, bundle + slotnum,
649 do_cleanups (cleanup);
654 ia64_memory_remove_breakpoint (struct gdbarch *gdbarch,
655 struct bp_target_info *bp_tgt)
657 CORE_ADDR addr = bp_tgt->placed_address;
658 gdb_byte bundle_mem[BUNDLE_LEN], bundle_saved[BUNDLE_LEN];
659 int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER;
660 long long instr_breakpoint, instr_saved;
663 struct cleanup *cleanup;
667 /* Disable the automatic memory restoration from breakpoints while
668 we read our instruction bundle. Otherwise, the general restoration
669 mechanism kicks in and we would possibly remove parts of the adjacent
670 placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real
671 breakpoint instruction bits region. */
672 cleanup = make_show_memory_breakpoints_cleanup (1);
673 val = target_read_memory (addr, bundle_mem, BUNDLE_LEN);
675 /* Check for L type instruction in slot 1, if present then bump up the slot
676 number to the slot 2. */
677 template = extract_bit_field (bundle_mem, 0, 5);
678 if (slotnum == 1 && template_encoding_table[template][slotnum] == L)
681 gdb_assert (bp_tgt->placed_size == BUNDLE_LEN - 2);
682 gdb_assert (bp_tgt->placed_size == bp_tgt->shadow_len);
684 instr_breakpoint = slotN_contents (bundle_mem, slotnum);
685 if (instr_breakpoint != IA64_BREAKPOINT)
687 warning (_("Cannot remove breakpoint at address %s, "
688 "no break instruction at such address."),
689 paddr_nz (bp_tgt->placed_address));
693 /* Extract the original saved instruction from SLOTNUM normalizing its
694 bit-shift for INSTR_SAVED. */
695 memcpy (bundle_saved, bundle_mem, BUNDLE_LEN);
696 memcpy (bundle_saved + slotnum, bp_tgt->shadow_contents, bp_tgt->shadow_len);
697 instr_saved = slotN_contents (bundle_saved, slotnum);
699 /* In BUNDLE_MEM be careful to modify only the bits belonging to SLOTNUM and
700 never any other possibly also stored in SHADOW_CONTENTS. */
701 replace_slotN_contents (bundle_mem, instr_saved, slotnum);
703 val = target_write_memory (addr, bundle_mem, BUNDLE_LEN);
705 do_cleanups (cleanup);
709 /* As gdbarch_breakpoint_from_pc ranges have byte granularity and ia64
710 instruction slots ranges are bit-granular (41 bits) we have to provide an
711 extended range as described for ia64_memory_insert_breakpoint. We also take
712 care of preserving the `break' instruction 21-bit (or 62-bit) parameter to
713 make a match for permanent breakpoints. */
715 static const gdb_byte *
716 ia64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
718 CORE_ADDR addr = *pcptr;
719 static gdb_byte bundle[BUNDLE_LEN];
720 int slotnum = (int) (*pcptr & 0x0f) / SLOT_MULTIPLIER;
721 long long instr_fetched;
724 struct cleanup *cleanup;
727 error (_("Can't insert breakpoint for slot numbers greater than 2."));
731 /* Enable the automatic memory restoration from breakpoints while
732 we read our instruction bundle to match bp_loc_is_permanent. */
733 cleanup = make_show_memory_breakpoints_cleanup (0);
734 val = target_read_memory (addr, bundle, BUNDLE_LEN);
735 do_cleanups (cleanup);
737 /* The memory might be unreachable. This can happen, for instance,
738 when the user inserts a breakpoint at an invalid address. */
742 /* Check for L type instruction in slot 1, if present then bump up the slot
743 number to the slot 2. */
744 template = extract_bit_field (bundle, 0, 5);
745 if (slotnum == 1 && template_encoding_table[template][slotnum] == L)
748 /* A break instruction has its all its opcode bits cleared except for
749 the parameter value. For L+X slot pair we are at the X slot (slot 2) so
750 we should not touch the L slot - the upper 41 bits of the parameter. */
751 instr_fetched = slotN_contents (bundle, slotnum);
752 instr_fetched &= 0x1003ffffc0LL;
753 replace_slotN_contents (bundle, instr_fetched, slotnum);
755 *lenptr = BUNDLE_LEN - 2;
757 /* SLOTNUM is possibly already locally modified - use caller's *PCPTR. */
758 return bundle + (*pcptr & 0x0f);
762 ia64_read_pc (struct regcache *regcache)
764 ULONGEST psr_value, pc_value;
767 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
768 regcache_cooked_read_unsigned (regcache, IA64_IP_REGNUM, &pc_value);
769 slot_num = (psr_value >> 41) & 3;
771 return pc_value | (slot_num * SLOT_MULTIPLIER);
775 ia64_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
777 int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER;
780 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
781 psr_value &= ~(3LL << 41);
782 psr_value |= (ULONGEST)(slot_num & 0x3) << 41;
786 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr_value);
787 regcache_cooked_write_unsigned (regcache, IA64_IP_REGNUM, new_pc);
790 #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f)
792 /* Returns the address of the slot that's NSLOTS slots away from
793 the address ADDR. NSLOTS may be positive or negative. */
795 rse_address_add(CORE_ADDR addr, int nslots)
798 int mandatory_nat_slots = nslots / 63;
799 int direction = nslots < 0 ? -1 : 1;
801 new_addr = addr + 8 * (nslots + mandatory_nat_slots);
803 if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9))
804 new_addr += 8 * direction;
806 if (IS_NaT_COLLECTION_ADDR(new_addr))
807 new_addr += 8 * direction;
813 ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
814 int regnum, gdb_byte *buf)
816 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
818 #ifdef HAVE_LIBUNWIND_IA64_H
819 /* First try and use the libunwind special reg accessor, otherwise fallback to
821 if (!libunwind_is_initialized ()
822 || libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0)
825 /* The fallback position is to assume that r32-r127 are found sequentially
826 in memory starting at $bof. This isn't always true, but without libunwind,
827 this is the best we can do. */
831 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
832 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
834 /* The bsp points at the end of the register frame so we
835 subtract the size of frame from it to get start of register frame. */
836 bsp = rse_address_add (bsp, -(cfm & 0x7f));
838 if ((cfm & 0x7f) > regnum - V32_REGNUM)
840 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
841 reg = read_memory_integer ((CORE_ADDR)reg_addr, 8);
842 store_unsigned_integer (buf, register_size (gdbarch, regnum), reg);
845 store_unsigned_integer (buf, register_size (gdbarch, regnum), 0);
848 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
852 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
853 unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0;
854 store_unsigned_integer (buf, register_size (gdbarch, regnum), unatN_val);
856 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
858 ULONGEST natN_val = 0;
861 CORE_ADDR gr_addr = 0;
862 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
863 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
865 /* The bsp points at the end of the register frame so we
866 subtract the size of frame from it to get start of register frame. */
867 bsp = rse_address_add (bsp, -(cfm & 0x7f));
869 if ((cfm & 0x7f) > regnum - V32_REGNUM)
870 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
874 /* Compute address of nat collection bits. */
875 CORE_ADDR nat_addr = gr_addr | 0x1f8;
876 CORE_ADDR nat_collection;
878 /* If our nat collection address is bigger than bsp, we have to get
879 the nat collection from rnat. Otherwise, we fetch the nat
880 collection from the computed address. */
882 regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
884 nat_collection = read_memory_integer (nat_addr, 8);
885 nat_bit = (gr_addr >> 3) & 0x3f;
886 natN_val = (nat_collection >> nat_bit) & 1;
889 store_unsigned_integer (buf, register_size (gdbarch, regnum), natN_val);
891 else if (regnum == VBOF_REGNUM)
893 /* A virtual register frame start is provided for user convenience.
894 It can be calculated as the bsp - sof (sizeof frame). */
898 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
899 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
901 /* The bsp points at the end of the register frame so we
902 subtract the size of frame from it to get beginning of frame. */
903 vbsp = rse_address_add (bsp, -(cfm & 0x7f));
904 store_unsigned_integer (buf, register_size (gdbarch, regnum), vbsp);
906 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
912 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
913 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
915 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
917 /* Fetch predicate register rename base from current frame
918 marker for this frame. */
919 int rrb_pr = (cfm >> 32) & 0x3f;
921 /* Adjust the register number to account for register rotation. */
923 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
925 prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0;
926 store_unsigned_integer (buf, register_size (gdbarch, regnum), prN_val);
929 memset (buf, 0, register_size (gdbarch, regnum));
933 ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
934 int regnum, const gdb_byte *buf)
936 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
941 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
942 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
944 bsp = rse_address_add (bsp, -(cfm & 0x7f));
946 if ((cfm & 0x7f) > regnum - V32_REGNUM)
948 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
949 write_memory (reg_addr, (void *)buf, 8);
952 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
954 ULONGEST unatN_val, unat, unatN_mask;
955 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
956 unatN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum));
957 unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM));
960 else if (unatN_val == 1)
962 regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat);
964 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
969 CORE_ADDR gr_addr = 0;
970 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
971 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
973 /* The bsp points at the end of the register frame so we
974 subtract the size of frame from it to get start of register frame. */
975 bsp = rse_address_add (bsp, -(cfm & 0x7f));
977 if ((cfm & 0x7f) > regnum - V32_REGNUM)
978 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
980 natN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum));
982 if (gr_addr != 0 && (natN_val == 0 || natN_val == 1))
984 /* Compute address of nat collection bits. */
985 CORE_ADDR nat_addr = gr_addr | 0x1f8;
986 CORE_ADDR nat_collection;
987 int natN_bit = (gr_addr >> 3) & 0x3f;
988 ULONGEST natN_mask = (1LL << natN_bit);
989 /* If our nat collection address is bigger than bsp, we have to get
990 the nat collection from rnat. Otherwise, we fetch the nat
991 collection from the computed address. */
994 regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
996 nat_collection |= natN_mask;
998 nat_collection &= ~natN_mask;
999 regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection);
1004 nat_collection = read_memory_integer (nat_addr, 8);
1006 nat_collection |= natN_mask;
1008 nat_collection &= ~natN_mask;
1009 store_unsigned_integer (nat_buf, register_size (gdbarch, regnum), nat_collection);
1010 write_memory (nat_addr, nat_buf, 8);
1014 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
1021 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
1022 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
1024 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
1026 /* Fetch predicate register rename base from current frame
1027 marker for this frame. */
1028 int rrb_pr = (cfm >> 32) & 0x3f;
1030 /* Adjust the register number to account for register rotation. */
1031 regnum = VP16_REGNUM
1032 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
1034 prN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum));
1035 prN_mask = (1LL << (regnum - VP0_REGNUM));
1038 else if (prN_val == 1)
1040 regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr);
1044 /* The ia64 needs to convert between various ieee floating-point formats
1045 and the special ia64 floating point register format. */
1048 ia64_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type)
1050 return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM
1051 && type != builtin_type_ia64_ext);
1055 ia64_register_to_value (struct frame_info *frame, int regnum,
1056 struct type *valtype, gdb_byte *out)
1058 char in[MAX_REGISTER_SIZE];
1059 frame_register_read (frame, regnum, in);
1060 convert_typed_floating (in, builtin_type_ia64_ext, out, valtype);
1064 ia64_value_to_register (struct frame_info *frame, int regnum,
1065 struct type *valtype, const gdb_byte *in)
1067 char out[MAX_REGISTER_SIZE];
1068 convert_typed_floating (in, valtype, out, builtin_type_ia64_ext);
1069 put_frame_register (frame, regnum, out);
1073 /* Limit the number of skipped non-prologue instructions since examining
1074 of the prologue is expensive. */
1075 static int max_skip_non_prologue_insns = 40;
1077 /* Given PC representing the starting address of a function, and
1078 LIM_PC which is the (sloppy) limit to which to scan when looking
1079 for a prologue, attempt to further refine this limit by using
1080 the line data in the symbol table. If successful, a better guess
1081 on where the prologue ends is returned, otherwise the previous
1082 value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag
1083 which will be set to indicate whether the returned limit may be
1084 used with no further scanning in the event that the function is
1087 /* FIXME: cagney/2004-02-14: This function and logic have largely been
1088 superseded by skip_prologue_using_sal. */
1091 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit)
1093 struct symtab_and_line prologue_sal;
1094 CORE_ADDR start_pc = pc;
1097 /* The prologue can not possibly go past the function end itself,
1098 so we can already adjust LIM_PC accordingly. */
1099 if (find_pc_partial_function (pc, NULL, NULL, &end_pc) && end_pc < lim_pc)
1102 /* Start off not trusting the limit. */
1105 prologue_sal = find_pc_line (pc, 0);
1106 if (prologue_sal.line != 0)
1109 CORE_ADDR addr = prologue_sal.end;
1111 /* Handle the case in which compiler's optimizer/scheduler
1112 has moved instructions into the prologue. We scan ahead
1113 in the function looking for address ranges whose corresponding
1114 line number is less than or equal to the first one that we
1115 found for the function. (It can be less than when the
1116 scheduler puts a body instruction before the first prologue
1118 for (i = 2 * max_skip_non_prologue_insns;
1119 i > 0 && (lim_pc == 0 || addr < lim_pc);
1122 struct symtab_and_line sal;
1124 sal = find_pc_line (addr, 0);
1127 if (sal.line <= prologue_sal.line
1128 && sal.symtab == prologue_sal.symtab)
1135 if (lim_pc == 0 || prologue_sal.end < lim_pc)
1137 lim_pc = prologue_sal.end;
1138 if (start_pc == get_pc_function_start (lim_pc))
1145 #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \
1146 || (8 <= (_regnum_) && (_regnum_) <= 11) \
1147 || (14 <= (_regnum_) && (_regnum_) <= 31))
1148 #define imm9(_instr_) \
1149 ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \
1150 | (((_instr_) & 0x00008000000LL) >> 20) \
1151 | (((_instr_) & 0x00000001fc0LL) >> 6))
1153 /* Allocate and initialize a frame cache. */
1155 static struct ia64_frame_cache *
1156 ia64_alloc_frame_cache (void)
1158 struct ia64_frame_cache *cache;
1161 cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache);
1167 cache->prev_cfm = 0;
1173 cache->frameless = 1;
1175 for (i = 0; i < NUM_IA64_RAW_REGS; i++)
1176 cache->saved_regs[i] = 0;
1182 examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc,
1183 struct frame_info *this_frame,
1184 struct ia64_frame_cache *cache)
1187 CORE_ADDR last_prologue_pc = pc;
1188 instruction_type it;
1193 int unat_save_reg = 0;
1194 int pr_save_reg = 0;
1195 int mem_stack_frame_size = 0;
1197 CORE_ADDR spill_addr = 0;
1200 char reg_contents[256];
1206 CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr;
1208 memset (instores, 0, sizeof instores);
1209 memset (infpstores, 0, sizeof infpstores);
1210 memset (reg_contents, 0, sizeof reg_contents);
1212 if (cache->after_prologue != 0
1213 && cache->after_prologue <= lim_pc)
1214 return cache->after_prologue;
1216 lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit);
1217 next_pc = fetch_instruction (pc, &it, &instr);
1219 /* We want to check if we have a recognizable function start before we
1220 look ahead for a prologue. */
1221 if (pc < lim_pc && next_pc
1222 && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL))
1224 /* alloc - start of a regular function. */
1225 int sor = (int) ((instr & 0x00078000000LL) >> 27);
1226 int sol = (int) ((instr & 0x00007f00000LL) >> 20);
1227 int sof = (int) ((instr & 0x000000fe000LL) >> 13);
1228 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1230 /* Verify that the current cfm matches what we think is the
1231 function start. If we have somehow jumped within a function,
1232 we do not want to interpret the prologue and calculate the
1233 addresses of various registers such as the return address.
1234 We will instead treat the frame as frameless. */
1236 (sof == (cache->cfm & 0x7f) &&
1237 sol == ((cache->cfm >> 7) & 0x7f)))
1241 last_prologue_pc = next_pc;
1246 /* Look for a leaf routine. */
1247 if (pc < lim_pc && next_pc
1248 && (it == I || it == M)
1249 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1251 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1252 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1253 | ((instr & 0x001f8000000LL) >> 20)
1254 | ((instr & 0x000000fe000LL) >> 13));
1255 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1256 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1257 int qp = (int) (instr & 0x0000000003fLL);
1258 if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0)
1260 /* mov r2, r12 - beginning of leaf routine */
1262 last_prologue_pc = next_pc;
1266 /* If we don't recognize a regular function or leaf routine, we are
1272 last_prologue_pc = lim_pc;
1276 /* Loop, looking for prologue instructions, keeping track of
1277 where preserved registers were spilled. */
1280 next_pc = fetch_instruction (pc, &it, &instr);
1284 if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL))
1286 /* Exit loop upon hitting a non-nop branch instruction. */
1291 else if (((instr & 0x3fLL) != 0LL) &&
1292 (frameless || ret_reg != 0))
1294 /* Exit loop upon hitting a predicated instruction if
1295 we already have the return register or if we are frameless. */
1300 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL))
1303 int b2 = (int) ((instr & 0x0000000e000LL) >> 13);
1304 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1305 int qp = (int) (instr & 0x0000000003f);
1307 if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0)
1310 last_prologue_pc = next_pc;
1313 else if ((it == I || it == M)
1314 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1316 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1317 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1318 | ((instr & 0x001f8000000LL) >> 20)
1319 | ((instr & 0x000000fe000LL) >> 13));
1320 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1321 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1322 int qp = (int) (instr & 0x0000000003fLL);
1324 if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0)
1328 last_prologue_pc = next_pc;
1330 else if (qp == 0 && rN == 12 && rM == 12)
1332 /* adds r12, -mem_stack_frame_size, r12 */
1333 mem_stack_frame_size -= imm;
1334 last_prologue_pc = next_pc;
1336 else if (qp == 0 && rN == 2
1337 && ((rM == fp_reg && fp_reg != 0) || rM == 12))
1339 char buf[MAX_REGISTER_SIZE];
1340 CORE_ADDR saved_sp = 0;
1341 /* adds r2, spilloffset, rFramePointer
1343 adds r2, spilloffset, r12
1345 Get ready for stf.spill or st8.spill instructions.
1346 The address to start spilling at is loaded into r2.
1347 FIXME: Why r2? That's what gcc currently uses; it
1348 could well be different for other compilers. */
1350 /* Hmm... whether or not this will work will depend on
1351 where the pc is. If it's still early in the prologue
1352 this'll be wrong. FIXME */
1355 get_frame_register (this_frame, sp_regnum, buf);
1356 saved_sp = extract_unsigned_integer (buf, 8);
1358 spill_addr = saved_sp
1359 + (rM == 12 ? 0 : mem_stack_frame_size)
1362 last_prologue_pc = next_pc;
1364 else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM-32] &&
1365 rN < 256 && imm == 0)
1367 /* mov rN, rM where rM is an input register */
1368 reg_contents[rN] = rM;
1369 last_prologue_pc = next_pc;
1371 else if (frameless && qp == 0 && rN == fp_reg && imm == 0 &&
1375 last_prologue_pc = next_pc;
1380 && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
1381 || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) ))
1383 /* stf.spill [rN] = fM, imm9
1385 stf.spill [rN] = fM */
1387 int imm = imm9(instr);
1388 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1389 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1390 int qp = (int) (instr & 0x0000000003fLL);
1391 if (qp == 0 && rN == spill_reg && spill_addr != 0
1392 && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31)))
1394 cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr;
1396 if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
1399 spill_addr = 0; /* last one; must be done */
1400 last_prologue_pc = next_pc;
1403 else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL))
1404 || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) )
1410 int arM = (int) ((instr & 0x00007f00000LL) >> 20);
1411 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1412 int qp = (int) (instr & 0x0000000003fLL);
1413 if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */)
1415 /* We have something like "mov.m r3 = ar.unat". Remember the
1416 r3 (or whatever) and watch for a store of this register... */
1418 last_prologue_pc = next_pc;
1421 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL))
1424 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1425 int qp = (int) (instr & 0x0000000003fLL);
1426 if (qp == 0 && isScratch (rN))
1429 last_prologue_pc = next_pc;
1433 && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL)
1434 || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)))
1438 st8 [rN] = rM, imm9 */
1439 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1440 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1441 int qp = (int) (instr & 0x0000000003fLL);
1442 int indirect = rM < 256 ? reg_contents[rM] : 0;
1443 if (qp == 0 && rN == spill_reg && spill_addr != 0
1444 && (rM == unat_save_reg || rM == pr_save_reg))
1446 /* We've found a spill of either the UNAT register or the PR
1447 register. (Well, not exactly; what we've actually found is
1448 a spill of the register that UNAT or PR was moved to).
1449 Record that fact and move on... */
1450 if (rM == unat_save_reg)
1452 /* Track UNAT register */
1453 cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr;
1458 /* Track PR register */
1459 cache->saved_regs[IA64_PR_REGNUM] = spill_addr;
1462 if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)
1463 /* st8 [rN] = rM, imm9 */
1464 spill_addr += imm9(instr);
1466 spill_addr = 0; /* must be done spilling */
1467 last_prologue_pc = next_pc;
1469 else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1471 /* Allow up to one store of each input register. */
1472 instores[rM-32] = 1;
1473 last_prologue_pc = next_pc;
1475 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1476 !instores[indirect-32])
1478 /* Allow an indirect store of an input register. */
1479 instores[indirect-32] = 1;
1480 last_prologue_pc = next_pc;
1483 else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL))
1490 Note that the st8 case is handled in the clause above.
1492 Advance over stores of input registers. One store per input
1493 register is permitted. */
1494 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1495 int qp = (int) (instr & 0x0000000003fLL);
1496 int indirect = rM < 256 ? reg_contents[rM] : 0;
1497 if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1499 instores[rM-32] = 1;
1500 last_prologue_pc = next_pc;
1502 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1503 !instores[indirect-32])
1505 /* Allow an indirect store of an input register. */
1506 instores[indirect-32] = 1;
1507 last_prologue_pc = next_pc;
1510 else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL))
1517 Advance over stores of floating point input registers. Again
1518 one store per register is permitted */
1519 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1520 int qp = (int) (instr & 0x0000000003fLL);
1521 if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8])
1523 infpstores[fM-8] = 1;
1524 last_prologue_pc = next_pc;
1528 && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL)
1529 || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)))
1531 /* st8.spill [rN] = rM
1533 st8.spill [rN] = rM, imm9 */
1534 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1535 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1536 int qp = (int) (instr & 0x0000000003fLL);
1537 if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7)
1539 /* We've found a spill of one of the preserved general purpose
1540 regs. Record the spill address and advance the spill
1541 register if appropriate. */
1542 cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr;
1543 if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)
1544 /* st8.spill [rN] = rM, imm9 */
1545 spill_addr += imm9(instr);
1547 spill_addr = 0; /* Done spilling */
1548 last_prologue_pc = next_pc;
1555 /* If not frameless and we aren't called by skip_prologue, then we need
1556 to calculate registers for the previous frame which will be needed
1559 if (!frameless && this_frame)
1561 /* Extract the size of the rotating portion of the stack
1562 frame and the register rename base from the current
1568 rrb_gr = (cfm >> 18) & 0x7f;
1570 /* Find the bof (beginning of frame). */
1571 bof = rse_address_add (cache->bsp, -sof);
1573 for (i = 0, addr = bof;
1577 if (IS_NaT_COLLECTION_ADDR (addr))
1581 if (i+32 == cfm_reg)
1582 cache->saved_regs[IA64_CFM_REGNUM] = addr;
1583 if (i+32 == ret_reg)
1584 cache->saved_regs[IA64_VRAP_REGNUM] = addr;
1586 cache->saved_regs[IA64_VFP_REGNUM] = addr;
1589 /* For the previous argument registers we require the previous bof.
1590 If we can't find the previous cfm, then we can do nothing. */
1592 if (cache->saved_regs[IA64_CFM_REGNUM] != 0)
1594 cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM], 8);
1596 else if (cfm_reg != 0)
1598 get_frame_register (this_frame, cfm_reg, buf);
1599 cfm = extract_unsigned_integer (buf, 8);
1601 cache->prev_cfm = cfm;
1605 sor = ((cfm >> 14) & 0xf) * 8;
1607 sol = (cfm >> 7) & 0x7f;
1608 rrb_gr = (cfm >> 18) & 0x7f;
1610 /* The previous bof only requires subtraction of the sol (size of
1611 locals) due to the overlap between output and input of
1612 subsequent frames. */
1613 bof = rse_address_add (bof, -sol);
1615 for (i = 0, addr = bof;
1619 if (IS_NaT_COLLECTION_ADDR (addr))
1624 cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)]
1627 cache->saved_regs[IA64_GR32_REGNUM + i] = addr;
1633 /* Try and trust the lim_pc value whenever possible. */
1634 if (trust_limit && lim_pc >= last_prologue_pc)
1635 last_prologue_pc = lim_pc;
1637 cache->frameless = frameless;
1638 cache->after_prologue = last_prologue_pc;
1639 cache->mem_stack_frame_size = mem_stack_frame_size;
1640 cache->fp_reg = fp_reg;
1642 return last_prologue_pc;
1646 ia64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1648 struct ia64_frame_cache cache;
1650 cache.after_prologue = 0;
1654 /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */
1655 return examine_prologue (pc, pc+1024, 0, &cache);
1659 /* Normal frames. */
1661 static struct ia64_frame_cache *
1662 ia64_frame_cache (struct frame_info *this_frame, void **this_cache)
1664 struct ia64_frame_cache *cache;
1666 CORE_ADDR cfm, sof, sol, bsp, psr;
1672 cache = ia64_alloc_frame_cache ();
1673 *this_cache = cache;
1675 get_frame_register (this_frame, sp_regnum, buf);
1676 cache->saved_sp = extract_unsigned_integer (buf, 8);
1678 /* We always want the bsp to point to the end of frame.
1679 This way, we can always get the beginning of frame (bof)
1680 by subtracting frame size. */
1681 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
1682 cache->bsp = extract_unsigned_integer (buf, 8);
1684 get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
1685 psr = extract_unsigned_integer (buf, 8);
1687 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
1688 cfm = extract_unsigned_integer (buf, 8);
1690 cache->sof = (cfm & 0x7f);
1691 cache->sol = (cfm >> 7) & 0x7f;
1692 cache->sor = ((cfm >> 14) & 0xf) * 8;
1696 cache->pc = get_frame_func (this_frame);
1699 examine_prologue (cache->pc, get_frame_pc (this_frame), this_frame, cache);
1701 cache->base = cache->saved_sp + cache->mem_stack_frame_size;
1707 ia64_frame_this_id (struct frame_info *this_frame, void **this_cache,
1708 struct frame_id *this_id)
1710 struct ia64_frame_cache *cache =
1711 ia64_frame_cache (this_frame, this_cache);
1713 /* If outermost frame, mark with null frame id. */
1714 if (cache->base == 0)
1715 (*this_id) = null_frame_id;
1717 (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp);
1718 if (gdbarch_debug >= 1)
1719 fprintf_unfiltered (gdb_stdlog,
1720 "regular frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %p\n",
1721 paddr_nz (this_id->code_addr),
1722 paddr_nz (this_id->stack_addr),
1723 paddr_nz (cache->bsp), this_frame);
1726 static struct value *
1727 ia64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1730 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1731 struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
1734 gdb_assert (regnum >= 0);
1736 if (!target_has_registers)
1737 error (_("No registers."));
1739 if (regnum == gdbarch_sp_regnum (gdbarch))
1740 return frame_unwind_got_constant (this_frame, regnum, cache->base);
1742 else if (regnum == IA64_BSP_REGNUM)
1745 CORE_ADDR prev_cfm, bsp, prev_bsp;
1747 /* We want to calculate the previous bsp as the end of the previous
1748 register stack frame. This corresponds to what the hardware bsp
1749 register will be if we pop the frame back which is why we might
1750 have been called. We know the beginning of the current frame is
1751 cache->bsp - cache->sof. This value in the previous frame points
1752 to the start of the output registers. We can calculate the end of
1753 that frame by adding the size of output:
1754 (sof (size of frame) - sol (size of locals)). */
1755 val = ia64_frame_prev_register (this_frame, this_cache, IA64_CFM_REGNUM);
1756 prev_cfm = extract_unsigned_integer (value_contents_all (val), 8);
1757 bsp = rse_address_add (cache->bsp, -(cache->sof));
1759 rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f));
1761 return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
1764 else if (regnum == IA64_CFM_REGNUM)
1766 CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM];
1769 return frame_unwind_got_memory (this_frame, regnum, addr);
1771 if (cache->prev_cfm)
1772 return frame_unwind_got_constant (this_frame, regnum, cache->prev_cfm);
1774 if (cache->frameless)
1775 return frame_unwind_got_register (this_frame, IA64_PFS_REGNUM,
1777 return frame_unwind_got_register (this_frame, regnum, 0);
1780 else if (regnum == IA64_VFP_REGNUM)
1782 /* If the function in question uses an automatic register (r32-r127)
1783 for the frame pointer, it'll be found by ia64_find_saved_register()
1784 above. If the function lacks one of these frame pointers, we can
1785 still provide a value since we know the size of the frame. */
1786 return frame_unwind_got_constant (this_frame, regnum, cache->base);
1789 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
1791 struct value *pr_val;
1794 pr_val = ia64_frame_prev_register (this_frame, this_cache,
1796 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
1798 /* Fetch predicate register rename base from current frame
1799 marker for this frame. */
1800 int rrb_pr = (cache->cfm >> 32) & 0x3f;
1802 /* Adjust the register number to account for register rotation. */
1803 regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
1805 prN = extract_bit_field (value_contents_all (pr_val),
1806 regnum - VP0_REGNUM, 1);
1807 return frame_unwind_got_constant (this_frame, regnum, prN);
1810 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
1812 struct value *unat_val;
1814 unat_val = ia64_frame_prev_register (this_frame, this_cache,
1816 unatN = extract_bit_field (value_contents_all (unat_val),
1817 regnum - IA64_NAT0_REGNUM, 1);
1818 return frame_unwind_got_constant (this_frame, regnum, unatN);
1821 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
1824 /* Find address of general register corresponding to nat bit we're
1828 gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM + IA64_GR0_REGNUM];
1832 /* Compute address of nat collection bits. */
1833 CORE_ADDR nat_addr = gr_addr | 0x1f8;
1835 CORE_ADDR nat_collection;
1838 /* If our nat collection address is bigger than bsp, we have to get
1839 the nat collection from rnat. Otherwise, we fetch the nat
1840 collection from the computed address. */
1841 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
1842 bsp = extract_unsigned_integer (buf, 8);
1843 if (nat_addr >= bsp)
1845 get_frame_register (this_frame, IA64_RNAT_REGNUM, buf);
1846 nat_collection = extract_unsigned_integer (buf, 8);
1849 nat_collection = read_memory_integer (nat_addr, 8);
1850 nat_bit = (gr_addr >> 3) & 0x3f;
1851 natval = (nat_collection >> nat_bit) & 1;
1854 return frame_unwind_got_constant (this_frame, regnum, natval);
1857 else if (regnum == IA64_IP_REGNUM)
1860 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
1864 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
1865 pc = extract_unsigned_integer (buf, 8);
1867 else if (cache->frameless)
1869 get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
1870 pc = extract_unsigned_integer (buf, 8);
1873 return frame_unwind_got_constant (this_frame, regnum, pc);
1876 else if (regnum == IA64_PSR_REGNUM)
1878 /* We don't know how to get the complete previous PSR, but we need it
1879 for the slot information when we unwind the pc (pc is formed of IP
1880 register plus slot information from PSR). To get the previous
1881 slot information, we mask it off the return address. */
1882 ULONGEST slot_num = 0;
1885 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
1887 get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
1888 psr = extract_unsigned_integer (buf, 8);
1892 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
1893 pc = extract_unsigned_integer (buf, 8);
1895 else if (cache->frameless)
1897 get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
1898 pc = extract_unsigned_integer (buf, 8);
1900 psr &= ~(3LL << 41);
1901 slot_num = pc & 0x3LL;
1902 psr |= (CORE_ADDR)slot_num << 41;
1903 return frame_unwind_got_constant (this_frame, regnum, psr);
1906 else if (regnum == IA64_BR0_REGNUM)
1908 CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM];
1911 return frame_unwind_got_memory (this_frame, regnum, addr);
1913 return frame_unwind_got_constant (this_frame, regnum, 0);
1916 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
1917 || (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
1921 if (regnum >= V32_REGNUM)
1922 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
1923 addr = cache->saved_regs[regnum];
1925 return frame_unwind_got_memory (this_frame, regnum, addr);
1927 if (cache->frameless)
1929 struct value *reg_val;
1930 CORE_ADDR prev_cfm, prev_bsp, prev_bof;
1932 /* FIXME: brobecker/2008-05-01: Doesn't this seem redundant
1933 with the same code above? */
1934 if (regnum >= V32_REGNUM)
1935 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
1936 reg_val = ia64_frame_prev_register (this_frame, this_cache,
1938 prev_cfm = extract_unsigned_integer (value_contents_all (reg_val),
1940 reg_val = ia64_frame_prev_register (this_frame, this_cache,
1942 prev_bsp = extract_unsigned_integer (value_contents_all (reg_val),
1944 prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f));
1946 addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM));
1947 return frame_unwind_got_memory (this_frame, regnum, addr);
1950 return frame_unwind_got_constant (this_frame, regnum, 0);
1953 else /* All other registers. */
1957 if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM)
1959 /* Fetch floating point register rename base from current
1960 frame marker for this frame. */
1961 int rrb_fr = (cache->cfm >> 25) & 0x7f;
1963 /* Adjust the floating point register number to account for
1964 register rotation. */
1965 regnum = IA64_FR32_REGNUM
1966 + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96;
1969 /* If we have stored a memory address, access the register. */
1970 addr = cache->saved_regs[regnum];
1972 return frame_unwind_got_memory (this_frame, regnum, addr);
1973 /* Otherwise, punt and get the current value of the register. */
1975 return frame_unwind_got_register (this_frame, regnum, regnum);
1979 static const struct frame_unwind ia64_frame_unwind =
1982 &ia64_frame_this_id,
1983 &ia64_frame_prev_register,
1985 default_frame_sniffer
1988 /* Signal trampolines. */
1991 ia64_sigtramp_frame_init_saved_regs (struct frame_info *this_frame,
1992 struct ia64_frame_cache *cache)
1994 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1996 if (tdep->sigcontext_register_address)
2000 cache->saved_regs[IA64_VRAP_REGNUM] =
2001 tdep->sigcontext_register_address (cache->base, IA64_IP_REGNUM);
2002 cache->saved_regs[IA64_CFM_REGNUM] =
2003 tdep->sigcontext_register_address (cache->base, IA64_CFM_REGNUM);
2004 cache->saved_regs[IA64_PSR_REGNUM] =
2005 tdep->sigcontext_register_address (cache->base, IA64_PSR_REGNUM);
2006 cache->saved_regs[IA64_BSP_REGNUM] =
2007 tdep->sigcontext_register_address (cache->base, IA64_BSP_REGNUM);
2008 cache->saved_regs[IA64_RNAT_REGNUM] =
2009 tdep->sigcontext_register_address (cache->base, IA64_RNAT_REGNUM);
2010 cache->saved_regs[IA64_CCV_REGNUM] =
2011 tdep->sigcontext_register_address (cache->base, IA64_CCV_REGNUM);
2012 cache->saved_regs[IA64_UNAT_REGNUM] =
2013 tdep->sigcontext_register_address (cache->base, IA64_UNAT_REGNUM);
2014 cache->saved_regs[IA64_FPSR_REGNUM] =
2015 tdep->sigcontext_register_address (cache->base, IA64_FPSR_REGNUM);
2016 cache->saved_regs[IA64_PFS_REGNUM] =
2017 tdep->sigcontext_register_address (cache->base, IA64_PFS_REGNUM);
2018 cache->saved_regs[IA64_LC_REGNUM] =
2019 tdep->sigcontext_register_address (cache->base, IA64_LC_REGNUM);
2020 for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++)
2021 cache->saved_regs[regno] =
2022 tdep->sigcontext_register_address (cache->base, regno);
2023 for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++)
2024 cache->saved_regs[regno] =
2025 tdep->sigcontext_register_address (cache->base, regno);
2026 for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++)
2027 cache->saved_regs[regno] =
2028 tdep->sigcontext_register_address (cache->base, regno);
2032 static struct ia64_frame_cache *
2033 ia64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2035 struct ia64_frame_cache *cache;
2043 cache = ia64_alloc_frame_cache ();
2045 get_frame_register (this_frame, sp_regnum, buf);
2046 /* Note that frame size is hard-coded below. We cannot calculate it
2047 via prologue examination. */
2048 cache->base = extract_unsigned_integer (buf, 8) + 16;
2050 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2051 cache->bsp = extract_unsigned_integer (buf, 8);
2053 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
2054 cache->cfm = extract_unsigned_integer (buf, 8);
2055 cache->sof = cache->cfm & 0x7f;
2057 ia64_sigtramp_frame_init_saved_regs (this_frame, cache);
2059 *this_cache = cache;
2064 ia64_sigtramp_frame_this_id (struct frame_info *this_frame,
2065 void **this_cache, struct frame_id *this_id)
2067 struct ia64_frame_cache *cache =
2068 ia64_sigtramp_frame_cache (this_frame, this_cache);
2070 (*this_id) = frame_id_build_special (cache->base,
2071 get_frame_pc (this_frame),
2073 if (gdbarch_debug >= 1)
2074 fprintf_unfiltered (gdb_stdlog,
2075 "sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %p\n",
2076 paddr_nz (this_id->code_addr),
2077 paddr_nz (this_id->stack_addr),
2078 paddr_nz (cache->bsp), this_frame);
2081 static struct value *
2082 ia64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2083 void **this_cache, int regnum)
2085 char buf[MAX_REGISTER_SIZE];
2087 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2088 struct ia64_frame_cache *cache =
2089 ia64_sigtramp_frame_cache (this_frame, this_cache);
2091 gdb_assert (regnum >= 0);
2093 if (!target_has_registers)
2094 error (_("No registers."));
2096 if (regnum == IA64_IP_REGNUM)
2099 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
2103 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
2104 pc = extract_unsigned_integer (buf, 8);
2107 return frame_unwind_got_constant (this_frame, regnum, pc);
2110 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
2111 || (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
2115 if (regnum >= V32_REGNUM)
2116 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
2117 addr = cache->saved_regs[regnum];
2119 return frame_unwind_got_memory (this_frame, regnum, addr);
2121 return frame_unwind_got_constant (this_frame, regnum, 0);
2124 else /* All other registers not listed above. */
2126 CORE_ADDR addr = cache->saved_regs[regnum];
2129 return frame_unwind_got_memory (this_frame, regnum, addr);
2131 return frame_unwind_got_constant (this_frame, regnum, 0);
2136 ia64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2137 struct frame_info *this_frame,
2140 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2141 if (tdep->pc_in_sigtramp)
2143 CORE_ADDR pc = get_frame_pc (this_frame);
2145 if (tdep->pc_in_sigtramp (pc))
2152 static const struct frame_unwind ia64_sigtramp_frame_unwind =
2155 ia64_sigtramp_frame_this_id,
2156 ia64_sigtramp_frame_prev_register,
2158 ia64_sigtramp_frame_sniffer
2164 ia64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2166 struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
2171 static const struct frame_base ia64_frame_base =
2174 ia64_frame_base_address,
2175 ia64_frame_base_address,
2176 ia64_frame_base_address
2179 #ifdef HAVE_LIBUNWIND_IA64_H
2181 struct ia64_unwind_table_entry
2183 unw_word_t start_offset;
2184 unw_word_t end_offset;
2185 unw_word_t info_offset;
2188 static __inline__ uint64_t
2189 ia64_rse_slot_num (uint64_t addr)
2191 return (addr >> 3) & 0x3f;
2194 /* Skip over a designated number of registers in the backing
2195 store, remembering every 64th position is for NAT. */
2196 static __inline__ uint64_t
2197 ia64_rse_skip_regs (uint64_t addr, long num_regs)
2199 long delta = ia64_rse_slot_num(addr) + num_regs;
2203 return addr + ((num_regs + delta/0x3f) << 3);
2206 /* Gdb libunwind-frame callback function to convert from an ia64 gdb register
2207 number to a libunwind register number. */
2209 ia64_gdb2uw_regnum (int regnum)
2211 if (regnum == sp_regnum)
2213 else if (regnum == IA64_BSP_REGNUM)
2214 return UNW_IA64_BSP;
2215 else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128)
2216 return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM);
2217 else if ((unsigned) (regnum - V32_REGNUM) < 95)
2218 return UNW_IA64_GR + 32 + (regnum - V32_REGNUM);
2219 else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128)
2220 return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM);
2221 else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64)
2223 else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8)
2224 return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM);
2225 else if (regnum == IA64_PR_REGNUM)
2227 else if (regnum == IA64_IP_REGNUM)
2229 else if (regnum == IA64_CFM_REGNUM)
2230 return UNW_IA64_CFM;
2231 else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128)
2232 return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM);
2233 else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128)
2234 return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM);
2239 /* Gdb libunwind-frame callback function to convert from a libunwind register
2240 number to a ia64 gdb register number. */
2242 ia64_uw2gdb_regnum (int uw_regnum)
2244 if (uw_regnum == UNW_IA64_SP)
2246 else if (uw_regnum == UNW_IA64_BSP)
2247 return IA64_BSP_REGNUM;
2248 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32)
2249 return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR);
2250 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128)
2251 return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32));
2252 else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128)
2253 return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR);
2254 else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8)
2255 return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR);
2256 else if (uw_regnum == UNW_IA64_PR)
2257 return IA64_PR_REGNUM;
2258 else if (uw_regnum == UNW_REG_IP)
2259 return IA64_IP_REGNUM;
2260 else if (uw_regnum == UNW_IA64_CFM)
2261 return IA64_CFM_REGNUM;
2262 else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128)
2263 return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR);
2264 else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128)
2265 return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT);
2270 /* Gdb libunwind-frame callback function to reveal if register is a float
2273 ia64_is_fpreg (int uw_regnum)
2275 return unw_is_fpreg (uw_regnum);
2278 /* Libunwind callback accessor function for general registers. */
2280 ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2281 int write, void *arg)
2283 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2284 unw_word_t bsp, sof, sol, cfm, psr, ip;
2285 struct frame_info *this_frame = arg;
2286 long new_sof, old_sof;
2287 char buf[MAX_REGISTER_SIZE];
2289 /* We never call any libunwind routines that need to write registers. */
2290 gdb_assert (!write);
2295 /* Libunwind expects to see the pc value which means the slot number
2296 from the psr must be merged with the ip word address. */
2297 get_frame_register (this_frame, IA64_IP_REGNUM, buf);
2298 ip = extract_unsigned_integer (buf, 8);
2299 get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
2300 psr = extract_unsigned_integer (buf, 8);
2301 *val = ip | ((psr >> 41) & 0x3);
2304 case UNW_IA64_AR_BSP:
2305 /* Libunwind expects to see the beginning of the current register
2306 frame so we must account for the fact that ptrace() will return a value
2307 for bsp that points *after* the current register frame. */
2308 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2309 bsp = extract_unsigned_integer (buf, 8);
2310 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
2311 cfm = extract_unsigned_integer (buf, 8);
2313 *val = ia64_rse_skip_regs (bsp, -sof);
2316 case UNW_IA64_AR_BSPSTORE:
2317 /* Libunwind wants bspstore to be after the current register frame.
2318 This is what ptrace() and gdb treats as the regular bsp value. */
2319 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2320 *val = extract_unsigned_integer (buf, 8);
2324 /* For all other registers, just unwind the value directly. */
2325 get_frame_register (this_frame, regnum, buf);
2326 *val = extract_unsigned_integer (buf, 8);
2330 if (gdbarch_debug >= 1)
2331 fprintf_unfiltered (gdb_stdlog,
2332 " access_reg: from cache: %4s=0x%s\n",
2333 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2334 ? ia64_register_names[regnum] : "r??"),
2339 /* Libunwind callback accessor function for floating-point registers. */
2341 ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val,
2342 int write, void *arg)
2344 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2345 struct frame_info *this_frame = arg;
2347 /* We never call any libunwind routines that need to write registers. */
2348 gdb_assert (!write);
2350 get_frame_register (this_frame, regnum, (char *) val);
2355 /* Libunwind callback accessor function for top-level rse registers. */
2357 ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2358 int write, void *arg)
2360 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2361 unw_word_t bsp, sof, sol, cfm, psr, ip;
2362 struct regcache *regcache = arg;
2363 long new_sof, old_sof;
2364 char buf[MAX_REGISTER_SIZE];
2366 /* We never call any libunwind routines that need to write registers. */
2367 gdb_assert (!write);
2372 /* Libunwind expects to see the pc value which means the slot number
2373 from the psr must be merged with the ip word address. */
2374 regcache_cooked_read (regcache, IA64_IP_REGNUM, buf);
2375 ip = extract_unsigned_integer (buf, 8);
2376 regcache_cooked_read (regcache, IA64_PSR_REGNUM, buf);
2377 psr = extract_unsigned_integer (buf, 8);
2378 *val = ip | ((psr >> 41) & 0x3);
2381 case UNW_IA64_AR_BSP:
2382 /* Libunwind expects to see the beginning of the current register
2383 frame so we must account for the fact that ptrace() will return a value
2384 for bsp that points *after* the current register frame. */
2385 regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
2386 bsp = extract_unsigned_integer (buf, 8);
2387 regcache_cooked_read (regcache, IA64_CFM_REGNUM, buf);
2388 cfm = extract_unsigned_integer (buf, 8);
2390 *val = ia64_rse_skip_regs (bsp, -sof);
2393 case UNW_IA64_AR_BSPSTORE:
2394 /* Libunwind wants bspstore to be after the current register frame.
2395 This is what ptrace() and gdb treats as the regular bsp value. */
2396 regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
2397 *val = extract_unsigned_integer (buf, 8);
2401 /* For all other registers, just unwind the value directly. */
2402 regcache_cooked_read (regcache, regnum, buf);
2403 *val = extract_unsigned_integer (buf, 8);
2407 if (gdbarch_debug >= 1)
2408 fprintf_unfiltered (gdb_stdlog,
2409 " access_rse_reg: from cache: %4s=0x%s\n",
2410 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2411 ? ia64_register_names[regnum] : "r??"),
2417 /* Libunwind callback accessor function for top-level fp registers. */
2419 ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum,
2420 unw_fpreg_t *val, int write, void *arg)
2422 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2423 struct regcache *regcache = arg;
2425 /* We never call any libunwind routines that need to write registers. */
2426 gdb_assert (!write);
2428 regcache_cooked_read (regcache, regnum, (char *) val);
2433 /* Libunwind callback accessor function for accessing memory. */
2435 ia64_access_mem (unw_addr_space_t as,
2436 unw_word_t addr, unw_word_t *val,
2437 int write, void *arg)
2439 if (addr - KERNEL_START < ktab_size)
2441 unw_word_t *laddr = (unw_word_t*) ((char *) ktab
2442 + (addr - KERNEL_START));
2451 /* XXX do we need to normalize byte-order here? */
2453 return target_write_memory (addr, (char *) val, sizeof (unw_word_t));
2455 return target_read_memory (addr, (char *) val, sizeof (unw_word_t));
2458 /* Call low-level function to access the kernel unwind table. */
2460 getunwind_table (gdb_byte **buf_p)
2464 /* FIXME drow/2005-09-10: This code used to call
2465 ia64_linux_xfer_unwind_table directly to fetch the unwind table
2466 for the currently running ia64-linux kernel. That data should
2467 come from the core file and be accessed via the auxv vector; if
2468 we want to preserve fall back to the running kernel's table, then
2469 we should find a way to override the corefile layer's
2470 xfer_partial method. */
2472 x = target_read_alloc (¤t_target, TARGET_OBJECT_UNWIND_TABLE,
2478 /* Get the kernel unwind table. */
2480 get_kernel_table (unw_word_t ip, unw_dyn_info_t *di)
2482 static struct ia64_table_entry *etab;
2489 size = getunwind_table (&ktab_buf);
2491 return -UNW_ENOINFO;
2493 ktab = (struct ia64_table_entry *) ktab_buf;
2496 for (etab = ktab; etab->start_offset; ++etab)
2497 etab->info_offset += KERNEL_START;
2500 if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset)
2501 return -UNW_ENOINFO;
2503 di->format = UNW_INFO_FORMAT_TABLE;
2505 di->start_ip = ktab[0].start_offset;
2506 di->end_ip = etab[-1].end_offset;
2507 di->u.ti.name_ptr = (unw_word_t) "<kernel>";
2508 di->u.ti.segbase = 0;
2509 di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t);
2510 di->u.ti.table_data = (unw_word_t *) ktab;
2512 if (gdbarch_debug >= 1)
2513 fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': "
2514 "segbase=0x%s, length=%s, gp=0x%s\n",
2515 (char *) di->u.ti.name_ptr,
2516 paddr_nz (di->u.ti.segbase),
2517 pulongest (di->u.ti.table_len),
2522 /* Find the unwind table entry for a specified address. */
2524 ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip,
2525 unw_dyn_info_t *dip, void **buf)
2527 Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL;
2528 Elf_Internal_Ehdr *ehdr;
2529 unw_word_t segbase = 0;
2530 CORE_ADDR load_base;
2534 bfd = objfile->obfd;
2536 ehdr = elf_tdata (bfd)->elf_header;
2537 phdr = elf_tdata (bfd)->phdr;
2539 load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2541 for (i = 0; i < ehdr->e_phnum; ++i)
2543 switch (phdr[i].p_type)
2546 if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr)
2551 case PT_IA_64_UNWIND:
2552 p_unwind = phdr + i;
2560 if (!p_text || !p_unwind)
2561 return -UNW_ENOINFO;
2563 /* Verify that the segment that contains the IP also contains
2564 the static unwind table. If not, we may be in the Linux kernel's
2565 DSO gate page in which case the unwind table is another segment.
2566 Otherwise, we are dealing with runtime-generated code, for which we
2567 have no info here. */
2568 segbase = p_text->p_vaddr + load_base;
2570 if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz)
2573 for (i = 0; i < ehdr->e_phnum; ++i)
2575 if (phdr[i].p_type == PT_LOAD
2576 && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz)
2579 /* Get the segbase from the section containing the
2581 segbase = phdr[i].p_vaddr + load_base;
2585 return -UNW_ENOINFO;
2588 dip->start_ip = p_text->p_vaddr + load_base;
2589 dip->end_ip = dip->start_ip + p_text->p_memsz;
2590 dip->gp = ia64_find_global_pointer (ip);
2591 dip->format = UNW_INFO_FORMAT_REMOTE_TABLE;
2592 dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd);
2593 dip->u.rti.segbase = segbase;
2594 dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t);
2595 dip->u.rti.table_data = p_unwind->p_vaddr + load_base;
2600 /* Libunwind callback accessor function to acquire procedure unwind-info. */
2602 ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi,
2603 int need_unwind_info, void *arg)
2605 struct obj_section *sec = find_pc_section (ip);
2612 /* XXX This only works if the host and the target architecture are
2613 both ia64 and if the have (more or less) the same kernel
2615 if (get_kernel_table (ip, &di) < 0)
2616 return -UNW_ENOINFO;
2618 if (gdbarch_debug >= 1)
2619 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> "
2620 "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s,"
2621 "length=%s,data=0x%s)\n",
2622 paddr_nz (ip), (char *)di.u.ti.name_ptr,
2623 paddr_nz (di.u.ti.segbase),
2624 paddr_nz (di.start_ip), paddr_nz (di.end_ip),
2626 pulongest (di.u.ti.table_len),
2627 paddr_nz ((CORE_ADDR)di.u.ti.table_data));
2631 ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf);
2635 if (gdbarch_debug >= 1)
2636 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> "
2637 "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s,"
2638 "length=%s,data=0x%s)\n",
2639 paddr_nz (ip), (char *)di.u.rti.name_ptr,
2640 paddr_nz (di.u.rti.segbase),
2641 paddr_nz (di.start_ip), paddr_nz (di.end_ip),
2643 pulongest (di.u.rti.table_len),
2644 paddr_nz (di.u.rti.table_data));
2647 ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info,
2650 /* We no longer need the dyn info storage so free it. */
2656 /* Libunwind callback accessor function for cleanup. */
2658 ia64_put_unwind_info (unw_addr_space_t as,
2659 unw_proc_info_t *pip, void *arg)
2661 /* Nothing required for now. */
2664 /* Libunwind callback accessor function to get head of the dynamic
2665 unwind-info registration list. */
2667 ia64_get_dyn_info_list (unw_addr_space_t as,
2668 unw_word_t *dilap, void *arg)
2670 struct obj_section *text_sec;
2671 struct objfile *objfile;
2672 unw_word_t ip, addr;
2676 if (!libunwind_is_initialized ())
2677 return -UNW_ENOINFO;
2679 for (objfile = object_files; objfile; objfile = objfile->next)
2683 text_sec = objfile->sections + SECT_OFF_TEXT (objfile);
2684 ip = obj_section_addr (text_sec);
2685 ret = ia64_find_unwind_table (objfile, ip, &di, &buf);
2688 addr = libunwind_find_dyn_list (as, &di, arg);
2689 /* We no longer need the dyn info storage so free it. */
2694 if (gdbarch_debug >= 1)
2695 fprintf_unfiltered (gdb_stdlog,
2696 "dynamic unwind table in objfile %s "
2697 "at 0x%s (gp=0x%s)\n",
2698 bfd_get_filename (objfile->obfd),
2699 paddr_nz (addr), paddr_nz (di.gp));
2705 return -UNW_ENOINFO;
2709 /* Frame interface functions for libunwind. */
2712 ia64_libunwind_frame_this_id (struct frame_info *this_frame, void **this_cache,
2713 struct frame_id *this_id)
2720 libunwind_frame_this_id (this_frame, this_cache, &id);
2721 if (frame_id_eq (id, null_frame_id))
2723 (*this_id) = null_frame_id;
2727 /* We must add the bsp as the special address for frame comparison
2729 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2730 bsp = extract_unsigned_integer (buf, 8);
2732 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
2734 if (gdbarch_debug >= 1)
2735 fprintf_unfiltered (gdb_stdlog,
2736 "libunwind frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %p\n",
2737 paddr_nz (id.code_addr), paddr_nz (id.stack_addr),
2738 paddr_nz (bsp), this_frame);
2741 static struct value *
2742 ia64_libunwind_frame_prev_register (struct frame_info *this_frame,
2743 void **this_cache, int regnum)
2746 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2749 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2750 reg = IA64_PR_REGNUM;
2751 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2752 reg = IA64_UNAT_REGNUM;
2754 /* Let libunwind do most of the work. */
2755 val = libunwind_frame_prev_register (this_frame, this_cache, reg);
2757 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2761 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
2765 unsigned char buf[MAX_REGISTER_SIZE];
2767 /* Fetch predicate register rename base from current frame
2768 marker for this frame. */
2769 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
2770 cfm = extract_unsigned_integer (buf, 8);
2771 rrb_pr = (cfm >> 32) & 0x3f;
2773 /* Adjust the register number to account for register rotation. */
2774 regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
2776 prN_val = extract_bit_field (value_contents_all (val),
2777 regnum - VP0_REGNUM, 1);
2778 return frame_unwind_got_constant (this_frame, regnum, prN_val);
2781 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2785 unatN_val = extract_bit_field (value_contents_all (val),
2786 regnum - IA64_NAT0_REGNUM, 1);
2787 return frame_unwind_got_constant (this_frame, regnum, unatN_val);
2790 else if (regnum == IA64_BSP_REGNUM)
2792 struct value *cfm_val;
2793 CORE_ADDR prev_bsp, prev_cfm;
2795 /* We want to calculate the previous bsp as the end of the previous
2796 register stack frame. This corresponds to what the hardware bsp
2797 register will be if we pop the frame back which is why we might
2798 have been called. We know that libunwind will pass us back the
2799 beginning of the current frame so we should just add sof to it. */
2800 prev_bsp = extract_unsigned_integer (value_contents_all (val), 8);
2801 cfm_val = libunwind_frame_prev_register (this_frame, this_cache,
2803 prev_cfm = extract_unsigned_integer (value_contents_all (cfm_val), 8);
2804 prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f));
2806 return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
2813 ia64_libunwind_frame_sniffer (const struct frame_unwind *self,
2814 struct frame_info *this_frame,
2817 if (libunwind_is_initialized ()
2818 && libunwind_frame_sniffer (self, this_frame, this_cache))
2824 static const struct frame_unwind ia64_libunwind_frame_unwind =
2827 ia64_libunwind_frame_this_id,
2828 ia64_libunwind_frame_prev_register,
2830 ia64_libunwind_frame_sniffer,
2831 libunwind_frame_dealloc_cache
2835 ia64_libunwind_sigtramp_frame_this_id (struct frame_info *this_frame,
2837 struct frame_id *this_id)
2844 libunwind_frame_this_id (this_frame, this_cache, &id);
2845 if (frame_id_eq (id, null_frame_id))
2847 (*this_id) = null_frame_id;
2851 /* We must add the bsp as the special address for frame comparison
2853 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2854 bsp = extract_unsigned_integer (buf, 8);
2856 /* For a sigtramp frame, we don't make the check for previous ip being 0. */
2857 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
2859 if (gdbarch_debug >= 1)
2860 fprintf_unfiltered (gdb_stdlog,
2861 "libunwind sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %p\n",
2862 paddr_nz (id.code_addr), paddr_nz (id.stack_addr),
2863 paddr_nz (bsp), this_frame);
2866 static struct value *
2867 ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *this_frame,
2868 void **this_cache, int regnum)
2870 struct value *prev_ip_val;
2873 /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT
2874 method of getting previous registers. */
2875 prev_ip_val = libunwind_frame_prev_register (this_frame, this_cache,
2877 prev_ip = extract_unsigned_integer (value_contents_all (prev_ip_val), 8);
2881 void *tmp_cache = NULL;
2882 return ia64_sigtramp_frame_prev_register (this_frame, &tmp_cache,
2886 return ia64_libunwind_frame_prev_register (this_frame, this_cache, regnum);
2890 ia64_libunwind_sigtramp_frame_sniffer (const struct frame_unwind *self,
2891 struct frame_info *this_frame,
2894 if (libunwind_is_initialized ())
2896 if (libunwind_sigtramp_frame_sniffer (self, this_frame, this_cache))
2901 return ia64_sigtramp_frame_sniffer (self, this_frame, this_cache);
2904 static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind =
2907 ia64_libunwind_sigtramp_frame_this_id,
2908 ia64_libunwind_sigtramp_frame_prev_register,
2910 ia64_libunwind_sigtramp_frame_sniffer
2913 /* Set of libunwind callback acccessor functions. */
2914 static unw_accessors_t ia64_unw_accessors =
2916 ia64_find_proc_info_x,
2917 ia64_put_unwind_info,
2918 ia64_get_dyn_info_list,
2926 /* Set of special libunwind callback acccessor functions specific for accessing
2927 the rse registers. At the top of the stack, we want libunwind to figure out
2928 how to read r32 - r127. Though usually they are found sequentially in memory
2929 starting from $bof, this is not always true. */
2930 static unw_accessors_t ia64_unw_rse_accessors =
2932 ia64_find_proc_info_x,
2933 ia64_put_unwind_info,
2934 ia64_get_dyn_info_list,
2936 ia64_access_rse_reg,
2937 ia64_access_rse_fpreg,
2942 /* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */
2943 static struct libunwind_descr ia64_libunwind_descr =
2948 &ia64_unw_accessors,
2949 &ia64_unw_rse_accessors,
2952 #endif /* HAVE_LIBUNWIND_IA64_H */
2955 ia64_use_struct_convention (struct type *type)
2957 struct type *float_elt_type;
2959 /* Don't use the struct convention for anything but structure,
2960 union, or array types. */
2961 if (!(TYPE_CODE (type) == TYPE_CODE_STRUCT
2962 || TYPE_CODE (type) == TYPE_CODE_UNION
2963 || TYPE_CODE (type) == TYPE_CODE_ARRAY))
2966 /* HFAs are structures (or arrays) consisting entirely of floating
2967 point values of the same length. Up to 8 of these are returned
2968 in registers. Don't use the struct convention when this is the
2970 float_elt_type = is_float_or_hfa_type (type);
2971 if (float_elt_type != NULL
2972 && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8)
2975 /* Other structs of length 32 or less are returned in r8-r11.
2976 Don't use the struct convention for those either. */
2977 return TYPE_LENGTH (type) > 32;
2981 ia64_extract_return_value (struct type *type, struct regcache *regcache,
2984 struct type *float_elt_type;
2986 float_elt_type = is_float_or_hfa_type (type);
2987 if (float_elt_type != NULL)
2989 char from[MAX_REGISTER_SIZE];
2991 int regnum = IA64_FR8_REGNUM;
2992 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
2996 regcache_cooked_read (regcache, regnum, from);
2997 convert_typed_floating (from, builtin_type_ia64_ext,
2998 (char *)valbuf + offset, float_elt_type);
2999 offset += TYPE_LENGTH (float_elt_type);
3007 int regnum = IA64_GR8_REGNUM;
3008 int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache),
3010 int n = TYPE_LENGTH (type) / reglen;
3011 int m = TYPE_LENGTH (type) % reglen;
3016 regcache_cooked_read_unsigned (regcache, regnum, &val);
3017 memcpy ((char *)valbuf + offset, &val, reglen);
3024 regcache_cooked_read_unsigned (regcache, regnum, &val);
3025 memcpy ((char *)valbuf + offset, &val, m);
3031 ia64_store_return_value (struct type *type, struct regcache *regcache,
3032 const gdb_byte *valbuf)
3034 struct type *float_elt_type;
3036 float_elt_type = is_float_or_hfa_type (type);
3037 if (float_elt_type != NULL)
3039 char to[MAX_REGISTER_SIZE];
3041 int regnum = IA64_FR8_REGNUM;
3042 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
3046 convert_typed_floating ((char *)valbuf + offset, float_elt_type,
3047 to, builtin_type_ia64_ext);
3048 regcache_cooked_write (regcache, regnum, to);
3049 offset += TYPE_LENGTH (float_elt_type);
3057 int regnum = IA64_GR8_REGNUM;
3058 int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache),
3060 int n = TYPE_LENGTH (type) / reglen;
3061 int m = TYPE_LENGTH (type) % reglen;
3066 memcpy (&val, (char *)valbuf + offset, reglen);
3067 regcache_cooked_write_unsigned (regcache, regnum, val);
3074 memcpy (&val, (char *)valbuf + offset, m);
3075 regcache_cooked_write_unsigned (regcache, regnum, val);
3080 static enum return_value_convention
3081 ia64_return_value (struct gdbarch *gdbarch, struct type *func_type,
3082 struct type *valtype, struct regcache *regcache,
3083 gdb_byte *readbuf, const gdb_byte *writebuf)
3085 int struct_return = ia64_use_struct_convention (valtype);
3087 if (writebuf != NULL)
3089 gdb_assert (!struct_return);
3090 ia64_store_return_value (valtype, regcache, writebuf);
3093 if (readbuf != NULL)
3095 gdb_assert (!struct_return);
3096 ia64_extract_return_value (valtype, regcache, readbuf);
3100 return RETURN_VALUE_STRUCT_CONVENTION;
3102 return RETURN_VALUE_REGISTER_CONVENTION;
3106 is_float_or_hfa_type_recurse (struct type *t, struct type **etp)
3108 switch (TYPE_CODE (t))
3112 return TYPE_LENGTH (*etp) == TYPE_LENGTH (t);
3119 case TYPE_CODE_ARRAY:
3121 is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)),
3124 case TYPE_CODE_STRUCT:
3128 for (i = 0; i < TYPE_NFIELDS (t); i++)
3129 if (!is_float_or_hfa_type_recurse
3130 (check_typedef (TYPE_FIELD_TYPE (t, i)), etp))
3141 /* Determine if the given type is one of the floating point types or
3142 and HFA (which is a struct, array, or combination thereof whose
3143 bottom-most elements are all of the same floating point type). */
3145 static struct type *
3146 is_float_or_hfa_type (struct type *t)
3148 struct type *et = 0;
3150 return is_float_or_hfa_type_recurse (t, &et) ? et : 0;
3154 /* Return 1 if the alignment of T is such that the next even slot
3155 should be used. Return 0, if the next available slot should
3156 be used. (See section 8.5.1 of the IA-64 Software Conventions
3157 and Runtime manual). */
3160 slot_alignment_is_next_even (struct type *t)
3162 switch (TYPE_CODE (t))
3166 if (TYPE_LENGTH (t) > 8)
3170 case TYPE_CODE_ARRAY:
3172 slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t)));
3173 case TYPE_CODE_STRUCT:
3177 for (i = 0; i < TYPE_NFIELDS (t); i++)
3178 if (slot_alignment_is_next_even
3179 (check_typedef (TYPE_FIELD_TYPE (t, i))))
3188 /* Attempt to find (and return) the global pointer for the given
3191 This is a rather nasty bit of code searchs for the .dynamic section
3192 in the objfile corresponding to the pc of the function we're trying
3193 to call. Once it finds the addresses at which the .dynamic section
3194 lives in the child process, it scans the Elf64_Dyn entries for a
3195 DT_PLTGOT tag. If it finds one of these, the corresponding
3196 d_un.d_ptr value is the global pointer. */
3199 ia64_find_global_pointer (CORE_ADDR faddr)
3201 struct obj_section *faddr_sect;
3203 faddr_sect = find_pc_section (faddr);
3204 if (faddr_sect != NULL)
3206 struct obj_section *osect;
3208 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
3210 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
3214 if (osect < faddr_sect->objfile->sections_end)
3216 CORE_ADDR addr, endaddr;
3218 addr = obj_section_addr (osect);
3219 endaddr = obj_section_endaddr (osect);
3221 while (addr < endaddr)
3227 status = target_read_memory (addr, buf, sizeof (buf));
3230 tag = extract_signed_integer (buf, sizeof (buf));
3232 if (tag == DT_PLTGOT)
3234 CORE_ADDR global_pointer;
3236 status = target_read_memory (addr + 8, buf, sizeof (buf));
3239 global_pointer = extract_unsigned_integer (buf, sizeof (buf));
3242 return global_pointer;
3255 /* Given a function's address, attempt to find (and return) the
3256 corresponding (canonical) function descriptor. Return 0 if
3259 find_extant_func_descr (CORE_ADDR faddr)
3261 struct obj_section *faddr_sect;
3263 /* Return early if faddr is already a function descriptor. */
3264 faddr_sect = find_pc_section (faddr);
3265 if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0)
3268 if (faddr_sect != NULL)
3270 struct obj_section *osect;
3271 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
3273 if (strcmp (osect->the_bfd_section->name, ".opd") == 0)
3277 if (osect < faddr_sect->objfile->sections_end)
3279 CORE_ADDR addr, endaddr;
3281 addr = obj_section_addr (osect);
3282 endaddr = obj_section_endaddr (osect);
3284 while (addr < endaddr)
3290 status = target_read_memory (addr, buf, sizeof (buf));
3293 faddr2 = extract_signed_integer (buf, sizeof (buf));
3295 if (faddr == faddr2)
3305 /* Attempt to find a function descriptor corresponding to the
3306 given address. If none is found, construct one on the
3307 stack using the address at fdaptr. */
3310 find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr)
3314 fdesc = find_extant_func_descr (faddr);
3318 ULONGEST global_pointer;
3324 global_pointer = ia64_find_global_pointer (faddr);
3326 if (global_pointer == 0)
3327 regcache_cooked_read_unsigned (regcache,
3328 IA64_GR1_REGNUM, &global_pointer);
3330 store_unsigned_integer (buf, 8, faddr);
3331 store_unsigned_integer (buf + 8, 8, global_pointer);
3333 write_memory (fdesc, buf, 16);
3339 /* Use the following routine when printing out function pointers
3340 so the user can see the function address rather than just the
3341 function descriptor. */
3343 ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
3344 struct target_ops *targ)
3346 struct obj_section *s;
3348 s = find_pc_section (addr);
3350 /* check if ADDR points to a function descriptor. */
3351 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
3352 return read_memory_unsigned_integer (addr, 8);
3354 /* Normally, functions live inside a section that is executable.
3355 So, if ADDR points to a non-executable section, then treat it
3356 as a function descriptor and return the target address iff
3357 the target address itself points to a section that is executable. */
3358 if (s && (s->the_bfd_section->flags & SEC_CODE) == 0)
3360 CORE_ADDR pc = read_memory_unsigned_integer (addr, 8);
3361 struct obj_section *pc_section = find_pc_section (pc);
3363 if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
3367 /* There are also descriptors embedded in vtables. */
3370 struct minimal_symbol *minsym;
3372 minsym = lookup_minimal_symbol_by_pc (addr);
3374 if (minsym && is_vtable_name (SYMBOL_LINKAGE_NAME (minsym)))
3375 return read_memory_unsigned_integer (addr, 8);
3382 ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3388 ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3389 struct regcache *regcache, CORE_ADDR bp_addr,
3390 int nargs, struct value **args, CORE_ADDR sp,
3391 int struct_return, CORE_ADDR struct_addr)
3397 int nslots, rseslots, memslots, slotnum, nfuncargs;
3399 ULONGEST bsp, cfm, pfs, new_bsp;
3400 CORE_ADDR funcdescaddr, pc, global_pointer;
3401 CORE_ADDR func_addr = find_function_addr (function, NULL);
3405 /* Count the number of slots needed for the arguments. */
3406 for (argno = 0; argno < nargs; argno++)
3409 type = check_typedef (value_type (arg));
3410 len = TYPE_LENGTH (type);
3412 if ((nslots & 1) && slot_alignment_is_next_even (type))
3415 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
3418 nslots += (len + 7) / 8;
3421 /* Divvy up the slots between the RSE and the memory stack. */
3422 rseslots = (nslots > 8) ? 8 : nslots;
3423 memslots = nslots - rseslots;
3425 /* Allocate a new RSE frame. */
3426 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
3428 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
3429 new_bsp = rse_address_add (bsp, rseslots);
3430 regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp);
3432 regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs);
3433 pfs &= 0xc000000000000000LL;
3434 pfs |= (cfm & 0xffffffffffffLL);
3435 regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs);
3437 cfm &= 0xc000000000000000LL;
3439 regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm);
3441 /* We will attempt to find function descriptors in the .opd segment,
3442 but if we can't we'll construct them ourselves. That being the
3443 case, we'll need to reserve space on the stack for them. */
3444 funcdescaddr = sp - nfuncargs * 16;
3445 funcdescaddr &= ~0xfLL;
3447 /* Adjust the stack pointer to it's new value. The calling conventions
3448 require us to have 16 bytes of scratch, plus whatever space is
3449 necessary for the memory slots and our function descriptors. */
3450 sp = sp - 16 - (memslots + nfuncargs) * 8;
3451 sp &= ~0xfLL; /* Maintain 16 byte alignment. */
3453 /* Place the arguments where they belong. The arguments will be
3454 either placed in the RSE backing store or on the memory stack.
3455 In addition, floating point arguments or HFAs are placed in
3456 floating point registers. */
3458 floatreg = IA64_FR8_REGNUM;
3459 for (argno = 0; argno < nargs; argno++)
3461 struct type *float_elt_type;
3464 type = check_typedef (value_type (arg));
3465 len = TYPE_LENGTH (type);
3467 /* Special handling for function parameters. */
3469 && TYPE_CODE (type) == TYPE_CODE_PTR
3470 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
3473 ULONGEST faddr = extract_unsigned_integer (value_contents (arg), 8);
3474 store_unsigned_integer (val_buf, 8,
3475 find_func_descr (regcache, faddr,
3477 if (slotnum < rseslots)
3478 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
3480 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3487 /* Skip odd slot if necessary... */
3488 if ((slotnum & 1) && slot_alignment_is_next_even (type))
3496 memset (val_buf, 0, 8);
3497 memcpy (val_buf, value_contents (arg) + argoffset, (len > 8) ? 8 : len);
3499 if (slotnum < rseslots)
3500 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
3502 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3509 /* Handle floating point types (including HFAs). */
3510 float_elt_type = is_float_or_hfa_type (type);
3511 if (float_elt_type != NULL)
3514 len = TYPE_LENGTH (type);
3515 while (len > 0 && floatreg < IA64_FR16_REGNUM)
3517 char to[MAX_REGISTER_SIZE];
3518 convert_typed_floating (value_contents (arg) + argoffset, float_elt_type,
3519 to, builtin_type_ia64_ext);
3520 regcache_cooked_write (regcache, floatreg, (void *)to);
3522 argoffset += TYPE_LENGTH (float_elt_type);
3523 len -= TYPE_LENGTH (float_elt_type);
3528 /* Store the struct return value in r8 if necessary. */
3531 regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr);
3534 global_pointer = ia64_find_global_pointer (func_addr);
3536 if (global_pointer != 0)
3537 regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer);
3539 regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr);
3541 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
3546 static struct frame_id
3547 ia64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3552 get_frame_register (this_frame, sp_regnum, buf);
3553 sp = extract_unsigned_integer (buf, 8);
3555 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
3556 bsp = extract_unsigned_integer (buf, 8);
3558 if (gdbarch_debug >= 1)
3559 fprintf_unfiltered (gdb_stdlog,
3560 "dummy frame id: code 0x%s, stack 0x%s, special 0x%s\n",
3561 paddr_nz (get_frame_pc (this_frame)),
3562 paddr_nz (sp), paddr_nz (bsp));
3564 return frame_id_build_special (sp, get_frame_pc (this_frame), bsp);
3568 ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3571 CORE_ADDR ip, psr, pc;
3573 frame_unwind_register (next_frame, IA64_IP_REGNUM, buf);
3574 ip = extract_unsigned_integer (buf, 8);
3575 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
3576 psr = extract_unsigned_integer (buf, 8);
3578 pc = (ip & ~0xf) | ((psr >> 41) & 3);
3583 ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info)
3585 info->bytes_per_line = SLOT_MULTIPLIER;
3586 return print_insn_ia64 (memaddr, info);
3589 static struct gdbarch *
3590 ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3592 struct gdbarch *gdbarch;
3593 struct gdbarch_tdep *tdep;
3595 /* If there is already a candidate, use it. */
3596 arches = gdbarch_list_lookup_by_info (arches, &info);
3598 return arches->gdbarch;
3600 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3601 gdbarch = gdbarch_alloc (&info, tdep);
3603 tdep->sigcontext_register_address = 0;
3604 tdep->pc_in_sigtramp = 0;
3606 /* According to the ia64 specs, instructions that store long double
3607 floats in memory use a long-double format different than that
3608 used in the floating registers. The memory format matches the
3609 x86 extended float format which is 80 bits. An OS may choose to
3610 use this format (e.g. GNU/Linux) or choose to use a different
3611 format for storing long doubles (e.g. HPUX). In the latter case,
3612 the setting of the format may be moved/overridden in an
3613 OS-specific tdep file. */
3614 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
3616 set_gdbarch_short_bit (gdbarch, 16);
3617 set_gdbarch_int_bit (gdbarch, 32);
3618 set_gdbarch_long_bit (gdbarch, 64);
3619 set_gdbarch_long_long_bit (gdbarch, 64);
3620 set_gdbarch_float_bit (gdbarch, 32);
3621 set_gdbarch_double_bit (gdbarch, 64);
3622 set_gdbarch_long_double_bit (gdbarch, 128);
3623 set_gdbarch_ptr_bit (gdbarch, 64);
3625 set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS);
3626 set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM);
3627 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
3628 set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM);
3630 set_gdbarch_register_name (gdbarch, ia64_register_name);
3631 set_gdbarch_register_type (gdbarch, ia64_register_type);
3633 set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read);
3634 set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write);
3635 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum);
3636 set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p);
3637 set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p);
3638 set_gdbarch_register_to_value (gdbarch, ia64_register_to_value);
3639 set_gdbarch_value_to_register (gdbarch, ia64_value_to_register);
3641 set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue);
3643 set_gdbarch_return_value (gdbarch, ia64_return_value);
3645 set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint);
3646 set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint);
3647 set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc);
3648 set_gdbarch_read_pc (gdbarch, ia64_read_pc);
3649 set_gdbarch_write_pc (gdbarch, ia64_write_pc);
3651 /* Settings for calling functions in the inferior. */
3652 set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call);
3653 set_gdbarch_frame_align (gdbarch, ia64_frame_align);
3654 set_gdbarch_dummy_id (gdbarch, ia64_dummy_id);
3656 set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc);
3657 #ifdef HAVE_LIBUNWIND_IA64_H
3658 frame_unwind_append_unwinder (gdbarch,
3659 &ia64_libunwind_sigtramp_frame_unwind);
3660 frame_unwind_append_unwinder (gdbarch, &ia64_libunwind_frame_unwind);
3661 frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
3662 libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr);
3664 frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
3666 frame_unwind_append_unwinder (gdbarch, &ia64_frame_unwind);
3667 frame_base_set_default (gdbarch, &ia64_frame_base);
3669 /* Settings that should be unnecessary. */
3670 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3672 set_gdbarch_print_insn (gdbarch, ia64_print_insn);
3673 set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr);
3675 /* The virtual table contains 16-byte descriptors, not pointers to
3677 set_gdbarch_vtable_function_descriptors (gdbarch, 1);
3679 /* Hook in ABI-specific overrides, if they have been registered. */
3680 gdbarch_init_osabi (info, gdbarch);
3685 extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */
3688 _initialize_ia64_tdep (void)
3690 /* Define the ia64 floating-point format to gdb. */
3691 builtin_type_ia64_ext =
3692 init_type (TYPE_CODE_FLT, 128 / 8,
3693 0, "builtin_type_ia64_ext", NULL);
3694 TYPE_FLOATFORMAT (builtin_type_ia64_ext) = floatformats_ia64_ext;
3696 gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL);