1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
3 2001 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
28 #include "gdb_string.h"
29 #include "coff/internal.h" /* Internal format of COFF symbols in BFD */
30 #include "dis-asm.h" /* For register flavors. */
31 #include <ctype.h> /* for isupper () */
35 #include "solib-svr4.h"
37 /* Each OS has a different mechanism for accessing the various
38 registers stored in the sigcontext structure.
40 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
41 function pointer) which may be used to determine the addresses
42 of the various saved registers in the sigcontext structure.
44 For the ARM target, there are three parameters to this function.
45 The first is the pc value of the frame under consideration, the
46 second the stack pointer of this frame, and the last is the
47 register number to fetch.
49 If the tm.h file does not define this macro, then it's assumed that
50 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
53 When it comes time to multi-arching this code, see the identically
54 named machinery in ia64-tdep.c for an example of how it could be
55 done. It should not be necessary to modify the code below where
56 this macro is used. */
58 #ifdef SIGCONTEXT_REGISTER_ADDRESS
59 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
60 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
63 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
64 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
67 extern void _initialize_arm_tdep (void);
69 /* Number of different reg name sets (options). */
70 static int num_flavor_options;
72 /* We have more registers than the disassembler as gdb can print the value
73 of special registers as well.
74 The general register names are overwritten by whatever is being used by
75 the disassembler at the moment. We also adjust the case of cpsr and fps. */
77 /* Initial value: Register names used in ARM's ISA documentation. */
78 static char * arm_register_name_strings[] =
79 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
80 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
81 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
82 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
83 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
84 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
85 "fps", "cpsr" }; /* 24 25 */
86 char **arm_register_names = arm_register_name_strings;
88 /* Valid register name flavors. */
89 static const char **valid_flavors;
91 /* Disassembly flavor to use. Default to "std" register names. */
92 static const char *disassembly_flavor;
93 static int current_option; /* Index to that option in the opcodes table. */
95 /* This is used to keep the bfd arch_info in sync with the disassembly
97 static void set_disassembly_flavor_sfunc(char *, int,
98 struct cmd_list_element *);
99 static void set_disassembly_flavor (void);
101 static void convert_from_extended (void *ptr, void *dbl);
103 /* Define other aspects of the stack frame. We keep the offsets of
104 all saved registers, 'cause we need 'em a lot! We also keep the
105 current size of the stack frame, and the offset of the frame
106 pointer from the stack pointer (for frameless functions, and when
107 we're still in the prologue of a function with a frame) */
109 struct frame_extra_info
111 struct frame_saved_regs fsr;
117 /* Addresses for calling Thumb functions have the bit 0 set.
118 Here are some macros to test, set, or clear bit 0 of addresses. */
119 #define IS_THUMB_ADDR(addr) ((addr) & 1)
120 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
121 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
123 /* Will a function return an aggregate type in memory or in a
124 register? Return 0 if an aggregate type can be returned in a
125 register, 1 if it must be returned in memory. */
128 arm_use_struct_convention (int gcc_p, struct type *type)
131 register enum type_code code;
133 /* In the ARM ABI, "integer" like aggregate types are returned in
134 registers. For an aggregate type to be integer like, its size
135 must be less than or equal to REGISTER_SIZE and the offset of
136 each addressable subfield must be zero. Note that bit fields are
137 not addressable, and all addressable subfields of unions always
138 start at offset zero.
140 This function is based on the behaviour of GCC 2.95.1.
141 See: gcc/arm.c: arm_return_in_memory() for details.
143 Note: All versions of GCC before GCC 2.95.2 do not set up the
144 parameters correctly for a function returning the following
145 structure: struct { float f;}; This should be returned in memory,
146 not a register. Richard Earnshaw sent me a patch, but I do not
147 know of any way to detect if a function like the above has been
148 compiled with the correct calling convention. */
150 /* All aggregate types that won't fit in a register must be returned
152 if (TYPE_LENGTH (type) > REGISTER_SIZE)
157 /* The only aggregate types that can be returned in a register are
158 structs and unions. Arrays must be returned in memory. */
159 code = TYPE_CODE (type);
160 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
165 /* Assume all other aggregate types can be returned in a register.
166 Run a check for structures, unions and arrays. */
169 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
172 /* Need to check if this struct/union is "integer" like. For
173 this to be true, its size must be less than or equal to
174 REGISTER_SIZE and the offset of each addressable subfield
175 must be zero. Note that bit fields are not addressable, and
176 unions always start at offset zero. If any of the subfields
177 is a floating point type, the struct/union cannot be an
180 /* For each field in the object, check:
181 1) Is it FP? --> yes, nRc = 1;
182 2) Is it addressable (bitpos != 0) and
183 not packed (bitsize == 0)?
187 for (i = 0; i < TYPE_NFIELDS (type); i++)
189 enum type_code field_type_code;
190 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
192 /* Is it a floating point type field? */
193 if (field_type_code == TYPE_CODE_FLT)
199 /* If bitpos != 0, then we have to care about it. */
200 if (TYPE_FIELD_BITPOS (type, i) != 0)
202 /* Bitfields are not addressable. If the field bitsize is
203 zero, then the field is not packed. Hence it cannot be
204 a bitfield or any other packed type. */
205 if (TYPE_FIELD_BITSIZE (type, i) == 0)
218 arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
220 return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
223 /* Set to true if the 32-bit mode is in use. */
227 /* Flag set by arm_fix_call_dummy that tells whether the target
228 function is a Thumb function. This flag is checked by
229 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
230 its use in valops.c) to pass the function address as an additional
233 static int target_is_thumb;
235 /* Flag set by arm_fix_call_dummy that tells whether the calling
236 function is a Thumb function. This flag is checked by
237 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
239 static int caller_is_thumb;
241 /* Determine if the program counter specified in MEMADDR is in a Thumb
245 arm_pc_is_thumb (CORE_ADDR memaddr)
247 struct minimal_symbol *sym;
249 /* If bit 0 of the address is set, assume this is a Thumb address. */
250 if (IS_THUMB_ADDR (memaddr))
253 /* Thumb functions have a "special" bit set in minimal symbols. */
254 sym = lookup_minimal_symbol_by_pc (memaddr);
257 return (MSYMBOL_IS_SPECIAL (sym));
265 /* Determine if the program counter specified in MEMADDR is in a call
266 dummy being called from a Thumb function. */
269 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
271 CORE_ADDR sp = read_sp ();
273 /* FIXME: Until we switch for the new call dummy macros, this heuristic
274 is the best we can do. We are trying to determine if the pc is on
275 the stack, which (hopefully) will only happen in a call dummy.
276 We hope the current stack pointer is not so far alway from the dummy
277 frame location (true if we have not pushed large data structures or
278 gone too many levels deep) and that our 1024 is not enough to consider
279 code regions as part of the stack (true for most practical purposes) */
280 if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
281 return caller_is_thumb;
287 arm_addr_bits_remove (CORE_ADDR val)
289 if (arm_pc_is_thumb (val))
290 return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe));
292 return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc));
296 arm_saved_pc_after_call (struct frame_info *frame)
298 return ADDR_BITS_REMOVE (read_register (LR_REGNUM));
302 arm_frameless_function_invocation (struct frame_info *fi)
304 CORE_ADDR func_start, after_prologue;
307 func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET);
308 after_prologue = SKIP_PROLOGUE (func_start);
310 /* There are some frameless functions whose first two instructions
311 follow the standard APCS form, in which case after_prologue will
312 be func_start + 8. */
314 frameless = (after_prologue < func_start + 12);
318 /* A typical Thumb prologue looks like this:
322 Sometimes the latter instruction may be replaced by:
330 or, on tpcs, like this:
337 There is always one instruction of three classes:
342 When we have found at least one of each class we are done with the prolog.
343 Note that the "sub sp, #NN" before the push does not count.
347 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
349 CORE_ADDR current_pc;
350 int findmask = 0; /* findmask:
351 bit 0 - push { rlist }
352 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
353 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
356 for (current_pc = pc; current_pc + 2 < func_end && current_pc < pc + 40; current_pc += 2)
358 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
360 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
362 findmask |= 1; /* push found */
364 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
366 if ((findmask & 1) == 0) /* before push ? */
369 findmask |= 4; /* add/sub sp found */
371 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
373 findmask |= 2; /* setting of r7 found */
375 else if (insn == 0x466f) /* mov r7, sp */
377 findmask |= 2; /* setting of r7 found */
380 continue; /* something in the prolog that we don't care about or some
381 instruction from outside the prolog scheduled here for optimization */
387 /* The APCS (ARM Procedure Call Standard) defines the following
391 [stmfd sp!, {a1,a2,a3,a4}]
392 stmfd sp!, {...,fp,ip,lr,pc}
393 [stfe f7, [sp, #-12]!]
394 [stfe f6, [sp, #-12]!]
395 [stfe f5, [sp, #-12]!]
396 [stfe f4, [sp, #-12]!]
397 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
400 arm_skip_prologue (CORE_ADDR pc)
404 CORE_ADDR func_addr, func_end;
406 struct symtab_and_line sal;
408 /* See what the symbol table says. */
410 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
414 /* Found a function. */
415 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
416 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
418 /* Don't use this trick for assembly source files. */
419 sal = find_pc_line (func_addr, 0);
420 if ((sal.line != 0) && (sal.end < func_end))
425 /* Check if this is Thumb code. */
426 if (arm_pc_is_thumb (pc))
427 return thumb_skip_prologue (pc, func_end);
429 /* Can't find the prologue end in the symbol table, try it the hard way
430 by disassembling the instructions. */
432 inst = read_memory_integer (skip_pc, 4);
433 if (inst != 0xe1a0c00d) /* mov ip, sp */
437 inst = read_memory_integer (skip_pc, 4);
438 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
441 inst = read_memory_integer (skip_pc, 4);
444 if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */
448 inst = read_memory_integer (skip_pc, 4);
450 /* Any insns after this point may float into the code, if it makes
451 for better instruction scheduling, so we skip them only if we
452 find them, but still consdier the function to be frame-ful. */
454 /* We may have either one sfmfd instruction here, or several stfe
455 insns, depending on the version of floating point code we
457 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
460 inst = read_memory_integer (skip_pc, 4);
464 while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
467 inst = read_memory_integer (skip_pc, 4);
471 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
477 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
478 This function decodes a Thumb function prologue to determine:
479 1) the size of the stack frame
480 2) which registers are saved on it
481 3) the offsets of saved regs
482 4) the offset from the stack pointer to the frame pointer
483 This information is stored in the "extra" fields of the frame_info.
485 A typical Thumb function prologue would create this stack frame
486 (offsets relative to FP)
487 old SP -> 24 stack parameters
490 R7 -> 0 local variables (16 bytes)
491 SP -> -12 additional stack space (12 bytes)
492 The frame size would thus be 36 bytes, and the frame offset would be
493 12 bytes. The frame register is R7.
495 The comments for thumb_skip_prolog() describe the algorithm we use to detect
496 the end of the prolog */
500 thumb_scan_prologue (struct frame_info *fi)
502 CORE_ADDR prologue_start;
503 CORE_ADDR prologue_end;
504 CORE_ADDR current_pc;
505 int saved_reg[16]; /* which register has been copied to register n? */
506 int findmask = 0; /* findmask:
507 bit 0 - push { rlist }
508 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
509 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
513 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
515 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
517 if (sal.line == 0) /* no line info, use current PC */
518 prologue_end = fi->pc;
519 else if (sal.end < prologue_end) /* next line begins after fn end */
520 prologue_end = sal.end; /* (probably means no prologue) */
523 prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */
524 /* 16 pushes, an add, and "mv fp,sp" */
526 prologue_end = min (prologue_end, fi->pc);
528 /* Initialize the saved register map. When register H is copied to
529 register L, we will put H in saved_reg[L]. */
530 for (i = 0; i < 16; i++)
533 /* Search the prologue looking for instructions that set up the
534 frame pointer, adjust the stack pointer, and save registers.
535 Do this until all basic prolog instructions are found. */
538 for (current_pc = prologue_start;
539 (current_pc < prologue_end) && ((findmask & 7) != 7);
546 insn = read_memory_unsigned_integer (current_pc, 2);
548 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
551 findmask |= 1; /* push found */
552 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
553 whether to save LR (R14). */
554 mask = (insn & 0xff) | ((insn & 0x100) << 6);
556 /* Calculate offsets of saved R0-R7 and LR. */
557 for (regno = LR_REGNUM; regno >= 0; regno--)
558 if (mask & (1 << regno))
561 fi->fsr.regs[saved_reg[regno]] = -(fi->framesize);
562 saved_reg[regno] = regno; /* reset saved register map */
565 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
567 if ((findmask & 1) == 0) /* before push ? */
570 findmask |= 4; /* add/sub sp found */
572 offset = (insn & 0x7f) << 2; /* get scaled offset */
573 if (insn & 0x80) /* is it signed? (==subtracting) */
575 fi->frameoffset += offset;
578 fi->framesize -= offset;
580 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
582 findmask |= 2; /* setting of r7 found */
583 fi->framereg = THUMB_FP_REGNUM;
584 fi->frameoffset = (insn & 0xff) << 2; /* get scaled offset */
586 else if (insn == 0x466f) /* mov r7, sp */
588 findmask |= 2; /* setting of r7 found */
589 fi->framereg = THUMB_FP_REGNUM;
591 saved_reg[THUMB_FP_REGNUM] = SP_REGNUM;
593 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
595 int lo_reg = insn & 7; /* dest. register (r0-r7) */
596 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
597 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
600 continue; /* something in the prolog that we don't care about or some
601 instruction from outside the prolog scheduled here for optimization */
605 /* Check if prologue for this frame's PC has already been scanned. If
606 it has, copy the relevant information about that prologue and
607 return non-zero. Otherwise do not copy anything and return zero.
609 The information saved in the cache includes:
610 * the frame register number;
611 * the size of the stack frame;
612 * the offsets of saved regs (relative to the old SP); and
613 * the offset from the stack pointer to the frame pointer
615 The cache contains only one entry, since this is adequate for the
616 typical sequence of prologue scan requests we get. When performing
617 a backtrace, GDB will usually ask to scan the same function twice
618 in a row (once to get the frame chain, and once to fill in the
619 extra frame information). */
621 static struct frame_info prologue_cache;
624 check_prologue_cache (struct frame_info *fi)
628 if (fi->pc == prologue_cache.pc)
630 fi->framereg = prologue_cache.framereg;
631 fi->framesize = prologue_cache.framesize;
632 fi->frameoffset = prologue_cache.frameoffset;
633 for (i = 0; i < NUM_REGS; i++)
634 fi->fsr.regs[i] = prologue_cache.fsr.regs[i];
642 /* Copy the prologue information from fi to the prologue cache. */
645 save_prologue_cache (struct frame_info *fi)
649 prologue_cache.pc = fi->pc;
650 prologue_cache.framereg = fi->framereg;
651 prologue_cache.framesize = fi->framesize;
652 prologue_cache.frameoffset = fi->frameoffset;
654 for (i = 0; i < NUM_REGS; i++)
655 prologue_cache.fsr.regs[i] = fi->fsr.regs[i];
659 /* This function decodes an ARM function prologue to determine:
660 1) the size of the stack frame
661 2) which registers are saved on it
662 3) the offsets of saved regs
663 4) the offset from the stack pointer to the frame pointer
664 This information is stored in the "extra" fields of the frame_info.
666 There are two basic forms for the ARM prologue. The fixed argument
667 function call will look like:
670 stmfd sp!, {fp, ip, lr, pc}
674 Which would create this stack frame (offsets relative to FP):
675 IP -> 4 (caller's stack)
676 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
677 -4 LR (return address in caller)
678 -8 IP (copy of caller's SP)
680 SP -> -28 Local variables
682 The frame size would thus be 32 bytes, and the frame offset would be
683 28 bytes. The stmfd call can also save any of the vN registers it
684 plans to use, which increases the frame size accordingly.
686 Note: The stored PC is 8 off of the STMFD instruction that stored it
687 because the ARM Store instructions always store PC + 8 when you read
690 A variable argument function call will look like:
693 stmfd sp!, {a1, a2, a3, a4}
694 stmfd sp!, {fp, ip, lr, pc}
697 Which would create this stack frame (offsets relative to FP):
698 IP -> 20 (caller's stack)
703 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
704 -4 LR (return address in caller)
705 -8 IP (copy of caller's SP)
707 SP -> -28 Local variables
709 The frame size would thus be 48 bytes, and the frame offset would be
712 There is another potential complication, which is that the optimizer
713 will try to separate the store of fp in the "stmfd" instruction from
714 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
715 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
717 Also, note, the original version of the ARM toolchain claimed that there
720 instruction at the end of the prologue. I have never seen GCC produce
721 this, and the ARM docs don't mention it. We still test for it below in
727 arm_scan_prologue (struct frame_info *fi)
729 int regno, sp_offset, fp_offset;
730 LONGEST return_value;
731 CORE_ADDR prologue_start, prologue_end, current_pc;
733 /* Check if this function is already in the cache of frame information. */
734 if (check_prologue_cache (fi))
737 /* Assume there is no frame until proven otherwise. */
738 fi->framereg = SP_REGNUM;
742 /* Check for Thumb prologue. */
743 if (arm_pc_is_thumb (fi->pc))
745 thumb_scan_prologue (fi);
746 save_prologue_cache (fi);
750 /* Find the function prologue. If we can't find the function in
751 the symbol table, peek in the stack frame to find the PC. */
752 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
754 /* One way to find the end of the prologue (which works well
755 for unoptimized code) is to do the following:
757 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
760 prologue_end = fi->pc;
761 else if (sal.end < prologue_end)
762 prologue_end = sal.end;
764 This mechanism is very accurate so long as the optimizer
765 doesn't move any instructions from the function body into the
766 prologue. If this happens, sal.end will be the last
767 instruction in the first hunk of prologue code just before
768 the first instruction that the scheduler has moved from
769 the body to the prologue.
771 In order to make sure that we scan all of the prologue
772 instructions, we use a slightly less accurate mechanism which
773 may scan more than necessary. To help compensate for this
774 lack of accuracy, the prologue scanning loop below contains
775 several clauses which'll cause the loop to terminate early if
776 an implausible prologue instruction is encountered.
782 is a suitable endpoint since it accounts for the largest
783 possible prologue plus up to five instructions inserted by
786 if (prologue_end > prologue_start + 64)
788 prologue_end = prologue_start + 64; /* See above. */
793 /* Get address of the stmfd in the prologue of the callee; the saved
794 PC is the address of the stmfd + 8. */
795 if (!safe_read_memory_integer (fi->frame, 4, &return_value))
799 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
800 prologue_end = prologue_start + 64; /* See above. */
804 /* Now search the prologue looking for instructions that set up the
805 frame pointer, adjust the stack pointer, and save registers.
807 Be careful, however, and if it doesn't look like a prologue,
808 don't try to scan it. If, for instance, a frameless function
809 begins with stmfd sp!, then we will tell ourselves there is
810 a frame, which will confuse stack traceback, as well ad"finish"
811 and other operations that rely on a knowledge of the stack
814 In the APCS, the prologue should start with "mov ip, sp" so
815 if we don't see this as the first insn, we will stop. [Note:
816 This doesn't seem to be true any longer, so it's now an optional
817 part of the prologue. - Kevin Buettner, 2001-11-20] */
819 sp_offset = fp_offset = 0;
821 if (read_memory_unsigned_integer (prologue_start, 4)
822 == 0xe1a0c00d) /* mov ip, sp */
823 current_pc = prologue_start + 4;
825 current_pc = prologue_start;
827 for (; current_pc < prologue_end; current_pc += 4)
829 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
831 if ((insn & 0xffff0000) == 0xe92d0000)
832 /* stmfd sp!, {..., fp, ip, lr, pc}
834 stmfd sp!, {a1, a2, a3, a4} */
836 int mask = insn & 0xffff;
838 /* Calculate offsets of saved registers. */
839 for (regno = PC_REGNUM; regno >= 0; regno--)
840 if (mask & (1 << regno))
843 fi->fsr.regs[regno] = sp_offset;
846 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
848 unsigned imm = insn & 0xff; /* immediate value */
849 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
850 imm = (imm >> rot) | (imm << (32 - rot));
852 fi->framereg = FP_REGNUM;
854 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
856 unsigned imm = insn & 0xff; /* immediate value */
857 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
858 imm = (imm >> rot) | (imm << (32 - rot));
861 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
864 regno = F0_REGNUM + ((insn >> 12) & 0x07);
865 fi->fsr.regs[regno] = sp_offset;
867 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
870 unsigned int fp_start_reg, fp_bound_reg;
872 if ((insn & 0x800) == 0x800) /* N0 is set */
874 if ((insn & 0x40000) == 0x40000) /* N1 is set */
881 if ((insn & 0x40000) == 0x40000) /* N1 is set */
887 fp_start_reg = F0_REGNUM + ((insn >> 12) & 0x7);
888 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
889 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
892 fi->fsr.regs[fp_start_reg++] = sp_offset;
895 else if ((insn & 0xf0000000) != 0xe0000000)
896 break; /* Condition not true, exit early */
897 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
898 break; /* Don't scan past a block load */
900 /* The optimizer might shove anything into the prologue,
901 so we just skip what we don't recognize. */
905 /* The frame size is just the negative of the offset (from the original SP)
906 of the last thing thing we pushed on the stack. The frame offset is
907 [new FP] - [new SP]. */
908 fi->framesize = -sp_offset;
909 if (fi->framereg == FP_REGNUM)
910 fi->frameoffset = fp_offset - sp_offset;
914 save_prologue_cache (fi);
917 /* Find REGNUM on the stack. Otherwise, it's in an active register.
918 One thing we might want to do here is to check REGNUM against the
919 clobber mask, and somehow flag it as invalid if it isn't saved on
920 the stack somewhere. This would provide a graceful failure mode
921 when trying to get the value of caller-saves registers for an inner
925 arm_find_callers_reg (struct frame_info *fi, int regnum)
927 for (; fi; fi = fi->next)
929 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
930 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
931 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
934 if (fi->fsr.regs[regnum] != 0)
935 return read_memory_integer (fi->fsr.regs[regnum],
936 REGISTER_RAW_SIZE (regnum));
937 return read_register (regnum);
940 /* Function: frame_chain
941 Given a GDB frame, determine the address of the calling function's frame.
942 This will be used to create a new GDB frame struct, and then
943 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
944 For ARM, we save the frame size when we initialize the frame_info.
946 The original definition of this function was a macro in tm-arm.h:
947 { In the case of the ARM, the frame's nominal address is the FP value,
948 and 12 bytes before comes the saved previous FP value as a 4-byte word. }
950 #define FRAME_CHAIN(thisframe) \
951 ((thisframe)->pc >= LOWEST_PC ? \
952 read_memory_integer ((thisframe)->frame - 12, 4) :\
958 arm_frame_chain (struct frame_info *fi)
960 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
961 CORE_ADDR fn_start, callers_pc, fp;
963 /* is this a dummy frame? */
964 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
965 return fi->frame; /* dummy frame same as caller's frame */
967 /* is caller-of-this a dummy frame? */
968 callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
969 fp = arm_find_callers_reg (fi, FP_REGNUM);
970 if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
971 return fp; /* dummy frame's frame may bear no relation to ours */
973 if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
974 if (fn_start == entry_point_address ())
975 return 0; /* in _start fn, don't chain further */
977 CORE_ADDR caller_pc, fn_start;
978 struct frame_info caller_fi;
979 int framereg = fi->framereg;
981 if (fi->pc < LOWEST_PC)
984 /* If the caller is the startup code, we're at the end of the chain. */
985 caller_pc = FRAME_SAVED_PC (fi);
986 if (find_pc_partial_function (caller_pc, 0, &fn_start, 0))
987 if (fn_start == entry_point_address ())
990 /* If the caller is Thumb and the caller is ARM, or vice versa,
991 the frame register of the caller is different from ours.
992 So we must scan the prologue of the caller to determine its
993 frame register number. */
994 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
996 memset (&caller_fi, 0, sizeof (caller_fi));
997 caller_fi.pc = caller_pc;
998 arm_scan_prologue (&caller_fi);
999 framereg = caller_fi.framereg;
1002 /* If the caller used a frame register, return its value.
1003 Otherwise, return the caller's stack pointer. */
1004 if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM)
1005 return arm_find_callers_reg (fi, framereg);
1007 return fi->frame + fi->framesize;
1010 /* This function actually figures out the frame address for a given pc
1011 and sp. This is tricky because we sometimes don't use an explicit
1012 frame pointer, and the previous stack pointer isn't necessarily
1013 recorded on the stack. The only reliable way to get this info is
1014 to examine the prologue. FROMLEAF is a little confusing, it means
1015 this is the next frame up the chain AFTER a frameless function. If
1016 this is true, then the frame value for this frame is still in the
1020 arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1026 fi->pc = FRAME_SAVED_PC (fi->next);
1028 memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
1030 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
1031 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1033 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
1034 by assuming it's always FP. */
1035 fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
1037 fi->frameoffset = 0;
1043 /* Compute stack pointer for this frame. We use this value for both the
1044 sigtramp and call dummy cases. */
1048 sp = fi->next->frame - fi->next->frameoffset + fi->next->framesize;
1050 /* Determine whether or not we're in a sigtramp frame.
1051 Unfortunately, it isn't sufficient to test
1052 fi->signal_handler_caller because this value is sometimes set
1053 after invoking INIT_EXTRA_FRAME_INFO. So we test *both*
1054 fi->signal_handler_caller and IN_SIGTRAMP to determine if we need
1055 to use the sigcontext addresses for the saved registers.
1057 Note: If an ARM IN_SIGTRAMP method ever needs to compare against
1058 the name of the function, the code below will have to be changed
1059 to first fetch the name of the function and then pass this name
1062 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1063 && (fi->signal_handler_caller || IN_SIGTRAMP (fi->pc, (char *)0)))
1065 for (reg = 0; reg < NUM_REGS; reg++)
1066 fi->fsr.regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg);
1068 /* FIXME: What about thumb mode? */
1069 fi->framereg = SP_REGNUM;
1070 fi->frame = read_memory_integer (fi->fsr.regs[fi->framereg],
1071 REGISTER_RAW_SIZE (fi->framereg));
1073 fi->frameoffset = 0;
1076 else if (PC_IN_CALL_DUMMY (fi->pc, sp, fi->frame))
1079 CORE_ADDR callers_sp;
1081 /* Set rp point at the high end of the saved registers. */
1082 rp = fi->frame - REGISTER_SIZE;
1084 /* Fill in addresses of saved registers. */
1085 fi->fsr.regs[PS_REGNUM] = rp;
1086 rp -= REGISTER_RAW_SIZE (PS_REGNUM);
1087 for (reg = PC_REGNUM; reg >= 0; reg--)
1089 fi->fsr.regs[reg] = rp;
1090 rp -= REGISTER_RAW_SIZE (reg);
1093 callers_sp = read_memory_integer (fi->fsr.regs[SP_REGNUM],
1094 REGISTER_RAW_SIZE (SP_REGNUM));
1095 fi->framereg = FP_REGNUM;
1096 fi->framesize = callers_sp - sp;
1097 fi->frameoffset = fi->frame - sp;
1101 arm_scan_prologue (fi);
1104 /* this is the innermost frame? */
1105 fi->frame = read_register (fi->framereg);
1106 else if (fi->framereg == FP_REGNUM || fi->framereg == THUMB_FP_REGNUM)
1108 /* not the innermost frame */
1109 /* If we have an FP, the callee saved it. */
1110 if (fi->next->fsr.regs[fi->framereg] != 0)
1112 read_memory_integer (fi->next->fsr.regs[fi->framereg], 4);
1114 /* If we were called by a frameless fn. then our frame is
1115 still in the frame pointer register on the board... */
1116 fi->frame = read_fp ();
1119 /* Calculate actual addresses of saved registers using offsets
1120 determined by arm_scan_prologue. */
1121 for (reg = 0; reg < NUM_REGS; reg++)
1122 if (fi->fsr.regs[reg] != 0)
1123 fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset;
1128 /* Find the caller of this frame. We do this by seeing if LR_REGNUM
1129 is saved in the stack anywhere, otherwise we get it from the
1132 The old definition of this function was a macro:
1133 #define FRAME_SAVED_PC(FRAME) \
1134 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
1137 arm_frame_saved_pc (struct frame_info *fi)
1139 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
1140 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1141 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1144 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->frameoffset, fi->frame))
1146 return read_memory_integer (fi->fsr.regs[PC_REGNUM], REGISTER_RAW_SIZE (PC_REGNUM));
1150 CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM);
1151 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1155 /* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1156 Examine the Program Status Register to decide which state we're in. */
1159 arm_target_read_fp (void)
1161 if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
1162 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1164 return read_register (FP_REGNUM); /* R11 if ARM */
1167 /* Calculate the frame offsets of the saved registers (ARM version). */
1170 arm_frame_find_saved_regs (struct frame_info *fi,
1171 struct frame_saved_regs *regaddr)
1173 memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
1177 arm_push_dummy_frame (void)
1179 CORE_ADDR old_sp = read_register (SP_REGNUM);
1180 CORE_ADDR sp = old_sp;
1181 CORE_ADDR fp, prologue_start;
1184 /* Push the two dummy prologue instructions in reverse order,
1185 so that they'll be in the correct low-to-high order in memory. */
1186 /* sub fp, ip, #4 */
1187 sp = push_word (sp, 0xe24cb004);
1188 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1189 prologue_start = sp = push_word (sp, 0xe92ddfff);
1191 /* Push a pointer to the dummy prologue + 12, because when stm
1192 instruction stores the PC, it stores the address of the stm
1193 instruction itself plus 12. */
1194 fp = sp = push_word (sp, prologue_start + 12);
1196 /* Push the processor status. */
1197 sp = push_word (sp, read_register (PS_REGNUM));
1199 /* Push all 16 registers starting with r15. */
1200 for (regnum = PC_REGNUM; regnum >= 0; regnum--)
1201 sp = push_word (sp, read_register (regnum));
1203 /* Update fp (for both Thumb and ARM) and sp. */
1204 write_register (FP_REGNUM, fp);
1205 write_register (THUMB_FP_REGNUM, fp);
1206 write_register (SP_REGNUM, sp);
1209 /* Fix up the call dummy, based on whether the processor is currently
1210 in Thumb or ARM mode, and whether the target function is Thumb or
1211 ARM. There are three different situations requiring three
1214 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
1215 been copied into the dummy parameter to this function.
1216 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
1217 "mov pc,r4" instruction patched to be a "bx r4" instead.
1218 * Thumb calling anything: uses the Thumb dummy defined below, which
1219 works for calling both ARM and Thumb functions.
1221 All three call dummies expect to receive the target function
1222 address in R4, with the low bit set if it's a Thumb function. */
1225 arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1226 struct value **args, struct type *type, int gcc_p)
1228 static short thumb_dummy[4] =
1230 0xf000, 0xf801, /* bl label */
1231 0xdf18, /* swi 24 */
1232 0x4720, /* label: bx r4 */
1234 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1236 /* Set flag indicating whether the current PC is in a Thumb function. */
1237 caller_is_thumb = arm_pc_is_thumb (read_pc ());
1239 /* If the target function is Thumb, set the low bit of the function
1240 address. And if the CPU is currently in ARM mode, patch the
1241 second instruction of call dummy to use a BX instruction to
1242 switch to Thumb mode. */
1243 target_is_thumb = arm_pc_is_thumb (fun);
1244 if (target_is_thumb)
1247 if (!caller_is_thumb)
1248 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1251 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1252 instead of the ARM one that's already been copied. This will
1253 work for both Thumb and ARM target functions. */
1254 if (caller_is_thumb)
1258 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1260 for (i = 0; i < len; i++)
1262 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1263 p += sizeof (thumb_dummy[0]);
1267 /* Put the target address in r4; the call dummy will copy this to
1269 write_register (4, fun);
1272 /* Return the offset in the call dummy of the instruction that needs
1273 to have a breakpoint placed on it. This is the offset of the 'swi
1274 24' instruction, which is no longer actually used, but simply acts
1275 as a place-holder now.
1277 This implements the CALL_DUMMY_BREAK_OFFSET macro. */
1280 arm_call_dummy_breakpoint_offset (void)
1282 if (caller_is_thumb)
1290 This function does not support passing parameters using the FPA
1291 variant of the APCS. It passes any floating point arguments in the
1292 general registers and/or on the stack. */
1295 arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1296 int struct_return, CORE_ADDR struct_addr)
1299 int argnum, argreg, nstack_size;
1301 /* Walk through the list of args and determine how large a temporary
1302 stack is required. Need to take care here as structs may be
1303 passed on the stack, and we have to to push them. */
1304 nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */
1305 if (struct_return) /* The struct address goes in A1. */
1306 nstack_size += REGISTER_SIZE;
1308 /* Walk through the arguments and add their size to nstack_size. */
1309 for (argnum = 0; argnum < nargs; argnum++)
1312 struct type *arg_type;
1314 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1315 len = TYPE_LENGTH (arg_type);
1317 /* ANSI C code passes float arguments as integers, K&R code
1318 passes float arguments as doubles. Correct for this here. */
1319 if (TYPE_CODE_FLT == TYPE_CODE (arg_type) && REGISTER_SIZE == len)
1320 nstack_size += FP_REGISTER_VIRTUAL_SIZE;
1325 /* Allocate room on the stack, and initialize our stack frame
1328 if (nstack_size > 0)
1334 /* Initialize the integer argument register pointer. */
1337 /* The struct_return pointer occupies the first parameter passing
1340 write_register (argreg++, struct_addr);
1342 /* Process arguments from left to right. Store as many as allowed
1343 in the parameter passing registers (A1-A4), and save the rest on
1344 the temporary stack. */
1345 for (argnum = 0; argnum < nargs; argnum++)
1350 enum type_code typecode;
1351 struct type *arg_type, *target_type;
1353 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1354 target_type = TYPE_TARGET_TYPE (arg_type);
1355 len = TYPE_LENGTH (arg_type);
1356 typecode = TYPE_CODE (arg_type);
1357 val = (char *) VALUE_CONTENTS (args[argnum]);
1359 /* ANSI C code passes float arguments as integers, K&R code
1360 passes float arguments as doubles. The .stabs record for
1361 for ANSI prototype floating point arguments records the
1362 type as FP_INTEGER, while a K&R style (no prototype)
1363 .stabs records the type as FP_FLOAT. In this latter case
1364 the compiler converts the float arguments to double before
1365 calling the function. */
1366 if (TYPE_CODE_FLT == typecode && REGISTER_SIZE == len)
1369 dblval = extract_floating (val, len);
1370 len = TARGET_DOUBLE_BIT / TARGET_CHAR_BIT;
1372 store_floating (val, len, dblval);
1375 /* I don't know why this code was disable. The only logical use
1376 for a function pointer is to call that function, so setting
1377 the mode bit is perfectly fine. FN */
1378 /* If the argument is a pointer to a function, and it is a Thumb
1379 function, set the low bit of the pointer. */
1380 if (TYPE_CODE_PTR == typecode
1381 && NULL != target_type
1382 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1384 CORE_ADDR regval = extract_address (val, len);
1385 if (arm_pc_is_thumb (regval))
1386 store_address (val, len, MAKE_THUMB_ADDR (regval));
1389 /* Copy the argument to general registers or the stack in
1390 register-sized pieces. Large arguments are split between
1391 registers and stack. */
1394 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1396 if (argreg <= ARM_LAST_ARG_REGNUM)
1398 /* It's an argument being passed in a general register. */
1399 regval = extract_address (val, partial_len);
1400 write_register (argreg++, regval);
1404 /* Push the arguments onto the stack. */
1405 write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE);
1406 fp += REGISTER_SIZE;
1414 /* Return adjusted stack pointer. */
1418 /* Pop the current frame. So long as the frame info has been initialized
1419 properly (see arm_init_extra_frame_info), this code works for dummy frames
1420 as well as regular frames. I.e, there's no need to have a special case
1421 for dummy frames. */
1423 arm_pop_frame (void)
1426 struct frame_info *frame = get_current_frame ();
1427 CORE_ADDR old_SP = frame->frame - frame->frameoffset + frame->framesize;
1429 for (regnum = 0; regnum < NUM_REGS; regnum++)
1430 if (frame->fsr.regs[regnum] != 0)
1431 write_register (regnum,
1432 read_memory_integer (frame->fsr.regs[regnum],
1433 REGISTER_RAW_SIZE (regnum)));
1435 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
1436 write_register (SP_REGNUM, old_SP);
1438 flush_cached_frames ();
1442 print_fpu_flags (int flags)
1444 if (flags & (1 << 0))
1445 fputs ("IVO ", stdout);
1446 if (flags & (1 << 1))
1447 fputs ("DVZ ", stdout);
1448 if (flags & (1 << 2))
1449 fputs ("OFL ", stdout);
1450 if (flags & (1 << 3))
1451 fputs ("UFL ", stdout);
1452 if (flags & (1 << 4))
1453 fputs ("INX ", stdout);
1458 arm_float_info (void)
1460 register unsigned long status = read_register (FPS_REGNUM);
1463 type = (status >> 24) & 127;
1464 printf ("%s FPU type %d\n",
1465 (status & (1 << 31)) ? "Hardware" : "Software",
1467 fputs ("mask: ", stdout);
1468 print_fpu_flags (status >> 16);
1469 fputs ("flags: ", stdout);
1470 print_fpu_flags (status);
1474 arm_register_type (int regnum)
1476 if (regnum >= F0_REGNUM && regnum < F0_REGNUM + NUM_FREGS)
1478 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1479 return builtin_type_arm_ext_big;
1481 return builtin_type_arm_ext_littlebyte_bigword;
1484 return builtin_type_int32;
1487 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1488 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1489 It is thought that this is is the floating-point register format on
1490 little-endian systems. */
1493 convert_from_extended (void *ptr, void *dbl)
1496 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1497 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1499 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1501 floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl);
1505 convert_to_extended (void *dbl, void *ptr)
1508 floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d);
1509 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1510 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1512 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1517 condition_true (unsigned long cond, unsigned long status_reg)
1519 if (cond == INST_AL || cond == INST_NV)
1525 return ((status_reg & FLAG_Z) != 0);
1527 return ((status_reg & FLAG_Z) == 0);
1529 return ((status_reg & FLAG_C) != 0);
1531 return ((status_reg & FLAG_C) == 0);
1533 return ((status_reg & FLAG_N) != 0);
1535 return ((status_reg & FLAG_N) == 0);
1537 return ((status_reg & FLAG_V) != 0);
1539 return ((status_reg & FLAG_V) == 0);
1541 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1543 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1545 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1547 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1549 return (((status_reg & FLAG_Z) == 0) &&
1550 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1552 return (((status_reg & FLAG_Z) != 0) ||
1553 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1558 /* Support routines for single stepping. Calculate the next PC value. */
1559 #define submask(x) ((1L << ((x) + 1)) - 1)
1560 #define bit(obj,st) (((obj) >> (st)) & 1)
1561 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1562 #define sbits(obj,st,fn) \
1563 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1564 #define BranchDest(addr,instr) \
1565 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1568 static unsigned long
1569 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1570 unsigned long status_reg)
1572 unsigned long res, shift;
1573 int rm = bits (inst, 0, 3);
1574 unsigned long shifttype = bits (inst, 5, 6);
1578 int rs = bits (inst, 8, 11);
1579 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1582 shift = bits (inst, 7, 11);
1585 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1586 + (bit (inst, 4) ? 12 : 8))
1587 : read_register (rm));
1592 res = shift >= 32 ? 0 : res << shift;
1596 res = shift >= 32 ? 0 : res >> shift;
1602 res = ((res & 0x80000000L)
1603 ? ~((~res) >> shift) : res >> shift);
1606 case 3: /* ROR/RRX */
1609 res = (res >> 1) | (carry ? 0x80000000L : 0);
1611 res = (res >> shift) | (res << (32 - shift));
1615 return res & 0xffffffff;
1618 /* Return number of 1-bits in VAL. */
1621 bitcount (unsigned long val)
1624 for (nbits = 0; val != 0; nbits++)
1625 val &= val - 1; /* delete rightmost 1-bit in val */
1630 thumb_get_next_pc (CORE_ADDR pc)
1632 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1633 unsigned short inst1 = read_memory_integer (pc, 2);
1634 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1635 unsigned long offset;
1637 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1641 /* Fetch the saved PC from the stack. It's stored above
1642 all of the other registers. */
1643 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
1644 sp = read_register (SP_REGNUM);
1645 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1646 nextpc = ADDR_BITS_REMOVE (nextpc);
1648 error ("Infinite loop detected");
1650 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1652 unsigned long status = read_register (PS_REGNUM);
1653 unsigned long cond = bits (inst1, 8, 11);
1654 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1655 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1657 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1659 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1661 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1663 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1664 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1665 nextpc = pc_val + offset;
1672 arm_get_next_pc (CORE_ADDR pc)
1674 unsigned long pc_val;
1675 unsigned long this_instr;
1676 unsigned long status;
1679 if (arm_pc_is_thumb (pc))
1680 return thumb_get_next_pc (pc);
1682 pc_val = (unsigned long) pc;
1683 this_instr = read_memory_integer (pc, 4);
1684 status = read_register (PS_REGNUM);
1685 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1687 if (condition_true (bits (this_instr, 28, 31), status))
1689 switch (bits (this_instr, 24, 27))
1692 case 0x1: /* data processing */
1696 unsigned long operand1, operand2, result = 0;
1700 if (bits (this_instr, 12, 15) != 15)
1703 if (bits (this_instr, 22, 25) == 0
1704 && bits (this_instr, 4, 7) == 9) /* multiply */
1705 error ("Illegal update to pc in instruction");
1707 /* Multiply into PC */
1708 c = (status & FLAG_C) ? 1 : 0;
1709 rn = bits (this_instr, 16, 19);
1710 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1712 if (bit (this_instr, 25))
1714 unsigned long immval = bits (this_instr, 0, 7);
1715 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1716 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1719 else /* operand 2 is a shifted register */
1720 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1722 switch (bits (this_instr, 21, 24))
1725 result = operand1 & operand2;
1729 result = operand1 ^ operand2;
1733 result = operand1 - operand2;
1737 result = operand2 - operand1;
1741 result = operand1 + operand2;
1745 result = operand1 + operand2 + c;
1749 result = operand1 - operand2 + c;
1753 result = operand2 - operand1 + c;
1759 case 0xb: /* tst, teq, cmp, cmn */
1760 result = (unsigned long) nextpc;
1764 result = operand1 | operand2;
1768 /* Always step into a function. */
1773 result = operand1 & ~operand2;
1780 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1783 error ("Infinite loop detected");
1788 case 0x5: /* data transfer */
1791 if (bit (this_instr, 20))
1794 if (bits (this_instr, 12, 15) == 15)
1800 if (bit (this_instr, 22))
1801 error ("Illegal update to pc in instruction");
1803 /* byte write to PC */
1804 rn = bits (this_instr, 16, 19);
1805 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1806 if (bit (this_instr, 24))
1809 int c = (status & FLAG_C) ? 1 : 0;
1810 unsigned long offset =
1811 (bit (this_instr, 25)
1812 ? shifted_reg_val (this_instr, c, pc_val, status)
1813 : bits (this_instr, 0, 11));
1815 if (bit (this_instr, 23))
1820 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1823 nextpc = ADDR_BITS_REMOVE (nextpc);
1826 error ("Infinite loop detected");
1832 case 0x9: /* block transfer */
1833 if (bit (this_instr, 20))
1836 if (bit (this_instr, 15))
1841 if (bit (this_instr, 23))
1844 unsigned long reglist = bits (this_instr, 0, 14);
1845 offset = bitcount (reglist) * 4;
1846 if (bit (this_instr, 24)) /* pre */
1849 else if (bit (this_instr, 24))
1853 unsigned long rn_val =
1854 read_register (bits (this_instr, 16, 19));
1856 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1860 nextpc = ADDR_BITS_REMOVE (nextpc);
1862 error ("Infinite loop detected");
1867 case 0xb: /* branch & link */
1868 case 0xa: /* branch */
1870 nextpc = BranchDest (pc, this_instr);
1872 nextpc = ADDR_BITS_REMOVE (nextpc);
1874 error ("Infinite loop detected");
1880 case 0xe: /* coproc ops */
1885 fprintf (stderr, "Bad bit-field extraction\n");
1893 /* single_step() is called just before we want to resume the inferior,
1894 if we want to single-step it but there is no hardware or kernel
1895 single-step support. We find the target of the coming instruction
1898 single_step is also called just after the inferior stops. If we had
1899 set up a simulated single-step, we undo our damage. */
1902 arm_software_single_step (ignore, insert_bpt)
1903 int ignore; /* Signal, not needed */
1906 static int next_pc; /* State between setting and unsetting. */
1907 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1911 next_pc = arm_get_next_pc (read_register (PC_REGNUM));
1912 target_insert_breakpoint (next_pc, break_mem);
1915 target_remove_breakpoint (next_pc, break_mem);
1918 #include "bfd-in2.h"
1919 #include "libcoff.h"
1922 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1924 if (arm_pc_is_thumb (memaddr))
1926 static asymbol *asym;
1927 static combined_entry_type ce;
1928 static struct coff_symbol_struct csym;
1929 static struct _bfd fake_bfd;
1930 static bfd_target fake_target;
1932 if (csym.native == NULL)
1934 /* Create a fake symbol vector containing a Thumb symbol. This is
1935 solely so that the code in print_insn_little_arm() and
1936 print_insn_big_arm() in opcodes/arm-dis.c will detect the presence
1937 of a Thumb symbol and switch to decoding Thumb instructions. */
1939 fake_target.flavour = bfd_target_coff_flavour;
1940 fake_bfd.xvec = &fake_target;
1941 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1943 csym.symbol.the_bfd = &fake_bfd;
1944 csym.symbol.name = "fake";
1945 asym = (asymbol *) & csym;
1948 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1949 info->symbols = &asym;
1952 info->symbols = NULL;
1954 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1955 return print_insn_big_arm (memaddr, info);
1957 return print_insn_little_arm (memaddr, info);
1960 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the
1961 program counter value to determine whether a 16-bit or 32-bit
1962 breakpoint should be used. It returns a pointer to a string of
1963 bytes that encode a breakpoint instruction, stores the length of
1964 the string to *lenptr, and adjusts the program counter (if
1965 necessary) to point to the actual memory location where the
1966 breakpoint should be inserted. */
1969 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1971 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
1973 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1975 static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT;
1976 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1977 *lenptr = sizeof (thumb_breakpoint);
1978 return thumb_breakpoint;
1982 static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT;
1983 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1984 *lenptr = sizeof (thumb_breakpoint);
1985 return thumb_breakpoint;
1990 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1992 static char arm_breakpoint[] = ARM_BE_BREAKPOINT;
1993 *lenptr = sizeof (arm_breakpoint);
1994 return arm_breakpoint;
1998 static char arm_breakpoint[] = ARM_LE_BREAKPOINT;
1999 *lenptr = sizeof (arm_breakpoint);
2000 return arm_breakpoint;
2005 /* Extract from an array REGBUF containing the (raw) register state a
2006 function return value of type TYPE, and copy that, in virtual
2007 format, into VALBUF. */
2010 arm_extract_return_value (struct type *type,
2011 char regbuf[REGISTER_BYTES],
2014 if (TYPE_CODE_FLT == TYPE_CODE (type))
2015 convert_from_extended (®buf[REGISTER_BYTE (F0_REGNUM)], valbuf);
2017 memcpy (valbuf, ®buf[REGISTER_BYTE (A1_REGNUM)], TYPE_LENGTH (type));
2020 /* Return non-zero if the PC is inside a thumb call thunk. */
2023 arm_in_call_stub (CORE_ADDR pc, char *name)
2025 CORE_ADDR start_addr;
2027 /* Find the starting address of the function containing the PC. If
2028 the caller didn't give us a name, look it up at the same time. */
2029 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
2032 return strncmp (name, "_call_via_r", 11) == 0;
2035 /* If PC is in a Thumb call or return stub, return the address of the
2036 target PC, which is in a register. The thunk functions are called
2037 _called_via_xx, where x is the register name. The possible names
2038 are r0-r9, sl, fp, ip, sp, and lr. */
2041 arm_skip_stub (CORE_ADDR pc)
2044 CORE_ADDR start_addr;
2046 /* Find the starting address and name of the function containing the PC. */
2047 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2050 /* Call thunks always start with "_call_via_". */
2051 if (strncmp (name, "_call_via_", 10) == 0)
2053 /* Use the name suffix to determine which register contains the
2055 static char *table[15] =
2056 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2057 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2061 for (regno = 0; regno <= 14; regno++)
2062 if (strcmp (&name[10], table[regno]) == 0)
2063 return read_register (regno);
2066 return 0; /* not a stub */
2069 /* If the user changes the register disassembly flavor used for info register
2070 and other commands, we have to also switch the flavor used in opcodes
2071 for disassembly output.
2072 This function is run in the set disassembly_flavor command, and does that. */
2075 set_disassembly_flavor_sfunc (char *args, int from_tty,
2076 struct cmd_list_element *c)
2078 set_disassembly_flavor ();
2082 set_disassembly_flavor (void)
2084 const char *setname, *setdesc, **regnames;
2087 /* Find the flavor that the user wants in the opcodes table. */
2089 numregs = get_arm_regnames (current, &setname, &setdesc, ®names);
2090 while ((disassembly_flavor != setname)
2091 && (current < num_flavor_options))
2092 get_arm_regnames (++current, &setname, &setdesc, ®names);
2093 current_option = current;
2095 /* Fill our copy. */
2096 for (j = 0; j < numregs; j++)
2097 arm_register_names[j] = (char *) regnames[j];
2100 if (isupper (*regnames[PC_REGNUM]))
2102 arm_register_names[FPS_REGNUM] = "FPS";
2103 arm_register_names[PS_REGNUM] = "CPSR";
2107 arm_register_names[FPS_REGNUM] = "fps";
2108 arm_register_names[PS_REGNUM] = "cpsr";
2111 /* Synchronize the disassembler. */
2112 set_arm_regname_option (current);
2115 /* arm_othernames implements the "othernames" command. This is kind
2116 of hacky, and I prefer the set-show disassembly-flavor which is
2117 also used for the x86 gdb. I will keep this around, however, in
2118 case anyone is actually using it. */
2121 arm_othernames (char *names, int n)
2123 /* Circle through the various flavors. */
2124 current_option = (current_option + 1) % num_flavor_options;
2126 disassembly_flavor = valid_flavors[current_option];
2127 set_disassembly_flavor ();
2130 /* Fetch, and possibly build, an appropriate link_map_offsets structure
2131 for ARM linux targets using the struct offsets defined in <link.h>.
2132 Note, however, that link.h is not actually referred to in this file.
2133 Instead, the relevant structs offsets were obtained from examining
2134 link.h. (We can't refer to link.h from this file because the host
2135 system won't necessarily have it, or if it does, the structs which
2136 it defines will refer to the host system, not the target.) */
2138 struct link_map_offsets *
2139 arm_linux_svr4_fetch_link_map_offsets (void)
2141 static struct link_map_offsets lmo;
2142 static struct link_map_offsets *lmp = 0;
2148 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
2151 lmo.r_map_offset = 4;
2154 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
2157 lmo.l_addr_offset = 0;
2158 lmo.l_addr_size = 4;
2160 lmo.l_name_offset = 4;
2161 lmo.l_name_size = 4;
2163 lmo.l_next_offset = 12;
2164 lmo.l_next_size = 4;
2166 lmo.l_prev_offset = 16;
2167 lmo.l_prev_size = 4;
2174 _initialize_arm_tdep (void)
2176 struct ui_file *stb;
2178 struct cmd_list_element *new_cmd;
2179 const char *setname;
2180 const char *setdesc;
2181 const char **regnames;
2183 static char *helptext;
2185 tm_print_insn = gdb_print_insn_arm;
2187 /* Get the number of possible sets of register names defined in opcodes. */
2188 num_flavor_options = get_arm_regname_num_options ();
2190 /* Sync the opcode insn printer with our register viewer: */
2191 parse_arm_disassembler_option ("reg-names-std");
2193 /* Begin creating the help text. */
2194 stb = mem_fileopen ();
2195 fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
2196 The valid values are:\n");
2198 /* Initialize the array that will be passed to add_set_enum_cmd(). */
2199 valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
2200 for (i = 0; i < num_flavor_options; i++)
2202 numregs = get_arm_regnames (i, &setname, &setdesc, ®names);
2203 valid_flavors[i] = setname;
2204 fprintf_unfiltered (stb, "%s - %s\n", setname,
2206 /* Copy the default names (if found) and synchronize disassembler. */
2207 if (!strcmp (setname, "std"))
2209 disassembly_flavor = setname;
2211 for (j = 0; j < numregs; j++)
2212 arm_register_names[j] = (char *) regnames[j];
2213 set_arm_regname_option (i);
2216 /* Mark the end of valid options. */
2217 valid_flavors[num_flavor_options] = NULL;
2219 /* Finish the creation of the help text. */
2220 fprintf_unfiltered (stb, "The default is \"std\".");
2221 helptext = ui_file_xstrdup (stb, &length);
2222 ui_file_delete (stb);
2224 /* Add the disassembly-flavor command */
2225 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2227 &disassembly_flavor,
2230 new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
2231 add_show_from_set (new_cmd, &showlist);
2233 /* ??? Maybe this should be a boolean. */
2234 add_show_from_set (add_set_cmd ("apcs32", no_class,
2235 var_zinteger, (char *) &arm_apcs_32,
2236 "Set usage of ARM 32-bit mode.\n", &setlist),
2239 /* Add the deprecated "othernames" command */
2241 add_com ("othernames", class_obscure, arm_othernames,
2242 "Switch to the next set of register names.");
2245 /* Test whether the coff symbol specific value corresponds to a Thumb
2249 coff_sym_is_thumb (int val)
2251 return (val == C_THUMBEXT ||
2252 val == C_THUMBSTAT ||
2253 val == C_THUMBEXTFUNC ||
2254 val == C_THUMBSTATFUNC ||
2255 val == C_THUMBLABEL);