1 /* Support routines for manipulating internal types for GDB.
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28 #include "expression.h"
33 #include "complaints.h"
37 #include "cp-support.h"
39 #include "dwarf2loc.h"
42 /* Initialize BADNESS constants. */
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
115 /* Should opaque types be resolved? */
117 static int opaque_type_resolution = 1;
119 /* A flag to enable printing of debugging information of C++
122 unsigned int overload_debug = 0;
124 /* A flag to enable strict type checking. */
126 static int strict_type_checking = 1;
128 /* A function to show whether opaque types are resolved. */
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
140 /* A function to show whether C++ overload debugging is enabled. */
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 /* A function to show the status of strict type checking. */
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
165 alloc_type (struct objfile *objfile)
169 gdb_assert (objfile != NULL);
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
175 OBJSTAT (objfile, n_types++);
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
180 /* Initialize the fields that might not be zero. */
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_VPTR_FIELDNO (type) = -1;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
194 alloc_type_arch (struct gdbarch *gdbarch)
198 gdb_assert (gdbarch != NULL);
200 /* Alloc the structure and start off with all fields zeroed. */
202 type = XCNEW (struct type);
203 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
208 /* Initialize the fields that might not be zero. */
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_VPTR_FIELDNO (type) = -1;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
222 alloc_type_copy (const struct type *type)
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
234 get_type_arch (const struct type *type)
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
239 return TYPE_OWNER (type).gdbarch;
242 /* See gdbtypes.h. */
245 get_target_type (struct type *type)
249 type = TYPE_TARGET_TYPE (type);
251 type = check_typedef (type);
257 /* Alloc a new type instance structure, fill it with some defaults,
258 and point it at OLDTYPE. Allocate the new type instance from the
259 same place as OLDTYPE. */
262 alloc_type_instance (struct type *oldtype)
266 /* Allocate the structure. */
268 if (! TYPE_OBJFILE_OWNED (oldtype))
269 type = XCNEW (struct type);
271 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
274 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
276 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
281 /* Clear all remnants of the previous type at TYPE, in preparation for
282 replacing it with something else. Preserve owner information. */
285 smash_type (struct type *type)
287 int objfile_owned = TYPE_OBJFILE_OWNED (type);
288 union type_owner owner = TYPE_OWNER (type);
290 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
292 /* Restore owner information. */
293 TYPE_OBJFILE_OWNED (type) = objfile_owned;
294 TYPE_OWNER (type) = owner;
296 /* For now, delete the rings. */
297 TYPE_CHAIN (type) = type;
299 /* For now, leave the pointer/reference types alone. */
302 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
303 to a pointer to memory where the pointer type should be stored.
304 If *TYPEPTR is zero, update it to point to the pointer type we return.
305 We allocate new memory if needed. */
308 make_pointer_type (struct type *type, struct type **typeptr)
310 struct type *ntype; /* New type */
313 ntype = TYPE_POINTER_TYPE (type);
318 return ntype; /* Don't care about alloc,
319 and have new type. */
320 else if (*typeptr == 0)
322 *typeptr = ntype; /* Tracking alloc, and have new type. */
327 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
329 ntype = alloc_type_copy (type);
333 else /* We have storage, but need to reset it. */
336 chain = TYPE_CHAIN (ntype);
338 TYPE_CHAIN (ntype) = chain;
341 TYPE_TARGET_TYPE (ntype) = type;
342 TYPE_POINTER_TYPE (type) = ntype;
344 /* FIXME! Assumes the machine has only one representation for pointers! */
347 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
348 TYPE_CODE (ntype) = TYPE_CODE_PTR;
350 /* Mark pointers as unsigned. The target converts between pointers
351 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
352 gdbarch_address_to_pointer. */
353 TYPE_UNSIGNED (ntype) = 1;
355 /* Update the length of all the other variants of this type. */
356 chain = TYPE_CHAIN (ntype);
357 while (chain != ntype)
359 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
360 chain = TYPE_CHAIN (chain);
366 /* Given a type TYPE, return a type of pointers to that type.
367 May need to construct such a type if this is the first use. */
370 lookup_pointer_type (struct type *type)
372 return make_pointer_type (type, (struct type **) 0);
375 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
376 points to a pointer to memory where the reference type should be
377 stored. If *TYPEPTR is zero, update it to point to the reference
378 type we return. We allocate new memory if needed. */
381 make_reference_type (struct type *type, struct type **typeptr)
383 struct type *ntype; /* New type */
386 ntype = TYPE_REFERENCE_TYPE (type);
391 return ntype; /* Don't care about alloc,
392 and have new type. */
393 else if (*typeptr == 0)
395 *typeptr = ntype; /* Tracking alloc, and have new type. */
400 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
402 ntype = alloc_type_copy (type);
406 else /* We have storage, but need to reset it. */
409 chain = TYPE_CHAIN (ntype);
411 TYPE_CHAIN (ntype) = chain;
414 TYPE_TARGET_TYPE (ntype) = type;
415 TYPE_REFERENCE_TYPE (type) = ntype;
417 /* FIXME! Assume the machine has only one representation for
418 references, and that it matches the (only) representation for
421 TYPE_LENGTH (ntype) =
422 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
423 TYPE_CODE (ntype) = TYPE_CODE_REF;
425 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
426 TYPE_REFERENCE_TYPE (type) = ntype;
428 /* Update the length of all the other variants of this type. */
429 chain = TYPE_CHAIN (ntype);
430 while (chain != ntype)
432 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
433 chain = TYPE_CHAIN (chain);
439 /* Same as above, but caller doesn't care about memory allocation
443 lookup_reference_type (struct type *type)
445 return make_reference_type (type, (struct type **) 0);
448 /* Lookup a function type that returns type TYPE. TYPEPTR, if
449 nonzero, points to a pointer to memory where the function type
450 should be stored. If *TYPEPTR is zero, update it to point to the
451 function type we return. We allocate new memory if needed. */
454 make_function_type (struct type *type, struct type **typeptr)
456 struct type *ntype; /* New type */
458 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
460 ntype = alloc_type_copy (type);
464 else /* We have storage, but need to reset it. */
470 TYPE_TARGET_TYPE (ntype) = type;
472 TYPE_LENGTH (ntype) = 1;
473 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
475 INIT_FUNC_SPECIFIC (ntype);
480 /* Given a type TYPE, return a type of functions that return that type.
481 May need to construct such a type if this is the first use. */
484 lookup_function_type (struct type *type)
486 return make_function_type (type, (struct type **) 0);
489 /* Given a type TYPE and argument types, return the appropriate
490 function type. If the final type in PARAM_TYPES is NULL, make a
494 lookup_function_type_with_arguments (struct type *type,
496 struct type **param_types)
498 struct type *fn = make_function_type (type, (struct type **) 0);
503 if (param_types[nparams - 1] == NULL)
506 TYPE_VARARGS (fn) = 1;
508 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
512 /* Caller should have ensured this. */
513 gdb_assert (nparams == 0);
514 TYPE_PROTOTYPED (fn) = 1;
518 TYPE_NFIELDS (fn) = nparams;
519 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
520 for (i = 0; i < nparams; ++i)
521 TYPE_FIELD_TYPE (fn, i) = param_types[i];
526 /* Identify address space identifier by name --
527 return the integer flag defined in gdbtypes.h. */
530 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
534 /* Check for known address space delimiters. */
535 if (!strcmp (space_identifier, "code"))
536 return TYPE_INSTANCE_FLAG_CODE_SPACE;
537 else if (!strcmp (space_identifier, "data"))
538 return TYPE_INSTANCE_FLAG_DATA_SPACE;
539 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
540 && gdbarch_address_class_name_to_type_flags (gdbarch,
545 error (_("Unknown address space specifier: \"%s\""), space_identifier);
548 /* Identify address space identifier by integer flag as defined in
549 gdbtypes.h -- return the string version of the adress space name. */
552 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
554 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
556 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
558 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
559 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
560 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
565 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
567 If STORAGE is non-NULL, create the new type instance there.
568 STORAGE must be in the same obstack as TYPE. */
571 make_qualified_type (struct type *type, int new_flags,
572 struct type *storage)
579 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
581 ntype = TYPE_CHAIN (ntype);
583 while (ntype != type);
585 /* Create a new type instance. */
587 ntype = alloc_type_instance (type);
590 /* If STORAGE was provided, it had better be in the same objfile
591 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
592 if one objfile is freed and the other kept, we'd have
593 dangling pointers. */
594 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
597 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
598 TYPE_CHAIN (ntype) = ntype;
601 /* Pointers or references to the original type are not relevant to
603 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
604 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
606 /* Chain the new qualified type to the old type. */
607 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
608 TYPE_CHAIN (type) = ntype;
610 /* Now set the instance flags and return the new type. */
611 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
613 /* Set length of new type to that of the original type. */
614 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
619 /* Make an address-space-delimited variant of a type -- a type that
620 is identical to the one supplied except that it has an address
621 space attribute attached to it (such as "code" or "data").
623 The space attributes "code" and "data" are for Harvard
624 architectures. The address space attributes are for architectures
625 which have alternately sized pointers or pointers with alternate
629 make_type_with_address_space (struct type *type, int space_flag)
631 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
632 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
633 | TYPE_INSTANCE_FLAG_DATA_SPACE
634 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
637 return make_qualified_type (type, new_flags, NULL);
640 /* Make a "c-v" variant of a type -- a type that is identical to the
641 one supplied except that it may have const or volatile attributes
642 CNST is a flag for setting the const attribute
643 VOLTL is a flag for setting the volatile attribute
644 TYPE is the base type whose variant we are creating.
646 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
647 storage to hold the new qualified type; *TYPEPTR and TYPE must be
648 in the same objfile. Otherwise, allocate fresh memory for the new
649 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
650 new type we construct. */
653 make_cv_type (int cnst, int voltl,
655 struct type **typeptr)
657 struct type *ntype; /* New type */
659 int new_flags = (TYPE_INSTANCE_FLAGS (type)
660 & ~(TYPE_INSTANCE_FLAG_CONST
661 | TYPE_INSTANCE_FLAG_VOLATILE));
664 new_flags |= TYPE_INSTANCE_FLAG_CONST;
667 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
669 if (typeptr && *typeptr != NULL)
671 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
672 a C-V variant chain that threads across objfiles: if one
673 objfile gets freed, then the other has a broken C-V chain.
675 This code used to try to copy over the main type from TYPE to
676 *TYPEPTR if they were in different objfiles, but that's
677 wrong, too: TYPE may have a field list or member function
678 lists, which refer to types of their own, etc. etc. The
679 whole shebang would need to be copied over recursively; you
680 can't have inter-objfile pointers. The only thing to do is
681 to leave stub types as stub types, and look them up afresh by
682 name each time you encounter them. */
683 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
686 ntype = make_qualified_type (type, new_flags,
687 typeptr ? *typeptr : NULL);
695 /* Make a 'restrict'-qualified version of TYPE. */
698 make_restrict_type (struct type *type)
700 return make_qualified_type (type,
701 (TYPE_INSTANCE_FLAGS (type)
702 | TYPE_INSTANCE_FLAG_RESTRICT),
706 /* Replace the contents of ntype with the type *type. This changes the
707 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
708 the changes are propogated to all types in the TYPE_CHAIN.
710 In order to build recursive types, it's inevitable that we'll need
711 to update types in place --- but this sort of indiscriminate
712 smashing is ugly, and needs to be replaced with something more
713 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
714 clear if more steps are needed. */
717 replace_type (struct type *ntype, struct type *type)
721 /* These two types had better be in the same objfile. Otherwise,
722 the assignment of one type's main type structure to the other
723 will produce a type with references to objects (names; field
724 lists; etc.) allocated on an objfile other than its own. */
725 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
727 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
729 /* The type length is not a part of the main type. Update it for
730 each type on the variant chain. */
734 /* Assert that this element of the chain has no address-class bits
735 set in its flags. Such type variants might have type lengths
736 which are supposed to be different from the non-address-class
737 variants. This assertion shouldn't ever be triggered because
738 symbol readers which do construct address-class variants don't
739 call replace_type(). */
740 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
742 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
743 chain = TYPE_CHAIN (chain);
745 while (ntype != chain);
747 /* Assert that the two types have equivalent instance qualifiers.
748 This should be true for at least all of our debug readers. */
749 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
752 /* Implement direct support for MEMBER_TYPE in GNU C++.
753 May need to construct such a type if this is the first use.
754 The TYPE is the type of the member. The DOMAIN is the type
755 of the aggregate that the member belongs to. */
758 lookup_memberptr_type (struct type *type, struct type *domain)
762 mtype = alloc_type_copy (type);
763 smash_to_memberptr_type (mtype, domain, type);
767 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
770 lookup_methodptr_type (struct type *to_type)
774 mtype = alloc_type_copy (to_type);
775 smash_to_methodptr_type (mtype, to_type);
779 /* Allocate a stub method whose return type is TYPE. This apparently
780 happens for speed of symbol reading, since parsing out the
781 arguments to the method is cpu-intensive, the way we are doing it.
782 So, we will fill in arguments later. This always returns a fresh
786 allocate_stub_method (struct type *type)
790 mtype = alloc_type_copy (type);
791 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
792 TYPE_LENGTH (mtype) = 1;
793 TYPE_STUB (mtype) = 1;
794 TYPE_TARGET_TYPE (mtype) = type;
795 /* _DOMAIN_TYPE (mtype) = unknown yet */
799 /* Create a range type with a dynamic range from LOW_BOUND to
800 HIGH_BOUND, inclusive. See create_range_type for further details. */
803 create_range_type (struct type *result_type, struct type *index_type,
804 const struct dynamic_prop *low_bound,
805 const struct dynamic_prop *high_bound)
807 if (result_type == NULL)
808 result_type = alloc_type_copy (index_type);
809 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
810 TYPE_TARGET_TYPE (result_type) = index_type;
811 if (TYPE_STUB (index_type))
812 TYPE_TARGET_STUB (result_type) = 1;
814 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
816 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
817 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
818 TYPE_RANGE_DATA (result_type)->low = *low_bound;
819 TYPE_RANGE_DATA (result_type)->high = *high_bound;
821 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
822 TYPE_UNSIGNED (result_type) = 1;
824 /* Ada allows the declaration of range types whose upper bound is
825 less than the lower bound, so checking the lower bound is not
826 enough. Make sure we do not mark a range type whose upper bound
827 is negative as unsigned. */
828 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
829 TYPE_UNSIGNED (result_type) = 0;
834 /* Create a range type using either a blank type supplied in
835 RESULT_TYPE, or creating a new type, inheriting the objfile from
838 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
839 to HIGH_BOUND, inclusive.
841 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
842 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
845 create_static_range_type (struct type *result_type, struct type *index_type,
846 LONGEST low_bound, LONGEST high_bound)
848 struct dynamic_prop low, high;
850 low.kind = PROP_CONST;
851 low.data.const_val = low_bound;
853 high.kind = PROP_CONST;
854 high.data.const_val = high_bound;
856 result_type = create_range_type (result_type, index_type, &low, &high);
861 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
862 are static, otherwise returns 0. */
865 has_static_range (const struct range_bounds *bounds)
867 return (bounds->low.kind == PROP_CONST
868 && bounds->high.kind == PROP_CONST);
872 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
873 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
874 bounds will fit in LONGEST), or -1 otherwise. */
877 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
879 CHECK_TYPEDEF (type);
880 switch (TYPE_CODE (type))
882 case TYPE_CODE_RANGE:
883 *lowp = TYPE_LOW_BOUND (type);
884 *highp = TYPE_HIGH_BOUND (type);
887 if (TYPE_NFIELDS (type) > 0)
889 /* The enums may not be sorted by value, so search all
893 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
894 for (i = 0; i < TYPE_NFIELDS (type); i++)
896 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
897 *lowp = TYPE_FIELD_ENUMVAL (type, i);
898 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
899 *highp = TYPE_FIELD_ENUMVAL (type, i);
902 /* Set unsigned indicator if warranted. */
905 TYPE_UNSIGNED (type) = 1;
919 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
921 if (!TYPE_UNSIGNED (type))
923 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
927 /* ... fall through for unsigned ints ... */
930 /* This round-about calculation is to avoid shifting by
931 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
932 if TYPE_LENGTH (type) == sizeof (LONGEST). */
933 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
934 *highp = (*highp - 1) | *highp;
941 /* Assuming TYPE is a simple, non-empty array type, compute its upper
942 and lower bound. Save the low bound into LOW_BOUND if not NULL.
943 Save the high bound into HIGH_BOUND if not NULL.
945 Return 1 if the operation was successful. Return zero otherwise,
946 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
948 We now simply use get_discrete_bounds call to get the values
949 of the low and high bounds.
950 get_discrete_bounds can return three values:
951 1, meaning that index is a range,
952 0, meaning that index is a discrete type,
953 or -1 for failure. */
956 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
958 struct type *index = TYPE_INDEX_TYPE (type);
966 res = get_discrete_bounds (index, &low, &high);
970 /* Check if the array bounds are undefined. */
972 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
973 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
985 /* Create an array type using either a blank type supplied in
986 RESULT_TYPE, or creating a new type, inheriting the objfile from
989 Elements will be of type ELEMENT_TYPE, the indices will be of type
992 If BIT_STRIDE is not zero, build a packed array type whose element
993 size is BIT_STRIDE. Otherwise, ignore this parameter.
995 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
996 sure it is TYPE_CODE_UNDEF before we bash it into an array
1000 create_array_type_with_stride (struct type *result_type,
1001 struct type *element_type,
1002 struct type *range_type,
1003 unsigned int bit_stride)
1005 if (result_type == NULL)
1006 result_type = alloc_type_copy (range_type);
1008 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1009 TYPE_TARGET_TYPE (result_type) = element_type;
1010 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1012 LONGEST low_bound, high_bound;
1014 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1015 low_bound = high_bound = 0;
1016 CHECK_TYPEDEF (element_type);
1017 /* Be careful when setting the array length. Ada arrays can be
1018 empty arrays with the high_bound being smaller than the low_bound.
1019 In such cases, the array length should be zero. */
1020 if (high_bound < low_bound)
1021 TYPE_LENGTH (result_type) = 0;
1022 else if (bit_stride > 0)
1023 TYPE_LENGTH (result_type) =
1024 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1026 TYPE_LENGTH (result_type) =
1027 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1031 /* This type is dynamic and its length needs to be computed
1032 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1033 undefined by setting it to zero. Although we are not expected
1034 to trust TYPE_LENGTH in this case, setting the size to zero
1035 allows us to avoid allocating objects of random sizes in case
1036 we accidently do. */
1037 TYPE_LENGTH (result_type) = 0;
1040 TYPE_NFIELDS (result_type) = 1;
1041 TYPE_FIELDS (result_type) =
1042 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1043 TYPE_INDEX_TYPE (result_type) = range_type;
1044 TYPE_VPTR_FIELDNO (result_type) = -1;
1046 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1048 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1049 if (TYPE_LENGTH (result_type) == 0)
1050 TYPE_TARGET_STUB (result_type) = 1;
1055 /* Same as create_array_type_with_stride but with no bit_stride
1056 (BIT_STRIDE = 0), thus building an unpacked array. */
1059 create_array_type (struct type *result_type,
1060 struct type *element_type,
1061 struct type *range_type)
1063 return create_array_type_with_stride (result_type, element_type,
1068 lookup_array_range_type (struct type *element_type,
1069 LONGEST low_bound, LONGEST high_bound)
1071 struct gdbarch *gdbarch = get_type_arch (element_type);
1072 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1073 struct type *range_type
1074 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1076 return create_array_type (NULL, element_type, range_type);
1079 /* Create a string type using either a blank type supplied in
1080 RESULT_TYPE, or creating a new type. String types are similar
1081 enough to array of char types that we can use create_array_type to
1082 build the basic type and then bash it into a string type.
1084 For fixed length strings, the range type contains 0 as the lower
1085 bound and the length of the string minus one as the upper bound.
1087 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1088 sure it is TYPE_CODE_UNDEF before we bash it into a string
1092 create_string_type (struct type *result_type,
1093 struct type *string_char_type,
1094 struct type *range_type)
1096 result_type = create_array_type (result_type,
1099 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1104 lookup_string_range_type (struct type *string_char_type,
1105 LONGEST low_bound, LONGEST high_bound)
1107 struct type *result_type;
1109 result_type = lookup_array_range_type (string_char_type,
1110 low_bound, high_bound);
1111 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1116 create_set_type (struct type *result_type, struct type *domain_type)
1118 if (result_type == NULL)
1119 result_type = alloc_type_copy (domain_type);
1121 TYPE_CODE (result_type) = TYPE_CODE_SET;
1122 TYPE_NFIELDS (result_type) = 1;
1123 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1125 if (!TYPE_STUB (domain_type))
1127 LONGEST low_bound, high_bound, bit_length;
1129 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1130 low_bound = high_bound = 0;
1131 bit_length = high_bound - low_bound + 1;
1132 TYPE_LENGTH (result_type)
1133 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1135 TYPE_UNSIGNED (result_type) = 1;
1137 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1142 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1143 and any array types nested inside it. */
1146 make_vector_type (struct type *array_type)
1148 struct type *inner_array, *elt_type;
1151 /* Find the innermost array type, in case the array is
1152 multi-dimensional. */
1153 inner_array = array_type;
1154 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1155 inner_array = TYPE_TARGET_TYPE (inner_array);
1157 elt_type = TYPE_TARGET_TYPE (inner_array);
1158 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1160 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1161 elt_type = make_qualified_type (elt_type, flags, NULL);
1162 TYPE_TARGET_TYPE (inner_array) = elt_type;
1165 TYPE_VECTOR (array_type) = 1;
1169 init_vector_type (struct type *elt_type, int n)
1171 struct type *array_type;
1173 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1174 make_vector_type (array_type);
1178 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1179 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1180 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1181 TYPE doesn't include the offset (that's the value of the MEMBER
1182 itself), but does include the structure type into which it points
1185 When "smashing" the type, we preserve the objfile that the old type
1186 pointed to, since we aren't changing where the type is actually
1190 smash_to_memberptr_type (struct type *type, struct type *domain,
1191 struct type *to_type)
1194 TYPE_TARGET_TYPE (type) = to_type;
1195 TYPE_DOMAIN_TYPE (type) = domain;
1196 /* Assume that a data member pointer is the same size as a normal
1199 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1200 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1203 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1205 When "smashing" the type, we preserve the objfile that the old type
1206 pointed to, since we aren't changing where the type is actually
1210 smash_to_methodptr_type (struct type *type, struct type *to_type)
1213 TYPE_TARGET_TYPE (type) = to_type;
1214 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1215 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1216 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1219 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1220 METHOD just means `function that gets an extra "this" argument'.
1222 When "smashing" the type, we preserve the objfile that the old type
1223 pointed to, since we aren't changing where the type is actually
1227 smash_to_method_type (struct type *type, struct type *domain,
1228 struct type *to_type, struct field *args,
1229 int nargs, int varargs)
1232 TYPE_TARGET_TYPE (type) = to_type;
1233 TYPE_DOMAIN_TYPE (type) = domain;
1234 TYPE_FIELDS (type) = args;
1235 TYPE_NFIELDS (type) = nargs;
1237 TYPE_VARARGS (type) = 1;
1238 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1239 TYPE_CODE (type) = TYPE_CODE_METHOD;
1242 /* Return a typename for a struct/union/enum type without "struct ",
1243 "union ", or "enum ". If the type has a NULL name, return NULL. */
1246 type_name_no_tag (const struct type *type)
1248 if (TYPE_TAG_NAME (type) != NULL)
1249 return TYPE_TAG_NAME (type);
1251 /* Is there code which expects this to return the name if there is
1252 no tag name? My guess is that this is mainly used for C++ in
1253 cases where the two will always be the same. */
1254 return TYPE_NAME (type);
1257 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1258 Since GCC PR debug/47510 DWARF provides associated information to detect the
1259 anonymous class linkage name from its typedef.
1261 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1265 type_name_no_tag_or_error (struct type *type)
1267 struct type *saved_type = type;
1269 struct objfile *objfile;
1271 CHECK_TYPEDEF (type);
1273 name = type_name_no_tag (type);
1277 name = type_name_no_tag (saved_type);
1278 objfile = TYPE_OBJFILE (saved_type);
1279 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1280 name ? name : "<anonymous>",
1281 objfile ? objfile_name (objfile) : "<arch>");
1284 /* Lookup a typedef or primitive type named NAME, visible in lexical
1285 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1286 suitably defined. */
1289 lookup_typename (const struct language_defn *language,
1290 struct gdbarch *gdbarch, const char *name,
1291 const struct block *block, int noerr)
1296 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1297 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1298 return SYMBOL_TYPE (sym);
1300 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1306 error (_("No type named %s."), name);
1310 lookup_unsigned_typename (const struct language_defn *language,
1311 struct gdbarch *gdbarch, const char *name)
1313 char *uns = alloca (strlen (name) + 10);
1315 strcpy (uns, "unsigned ");
1316 strcpy (uns + 9, name);
1317 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1321 lookup_signed_typename (const struct language_defn *language,
1322 struct gdbarch *gdbarch, const char *name)
1325 char *uns = alloca (strlen (name) + 8);
1327 strcpy (uns, "signed ");
1328 strcpy (uns + 7, name);
1329 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1330 /* If we don't find "signed FOO" just try again with plain "FOO". */
1333 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1336 /* Lookup a structure type named "struct NAME",
1337 visible in lexical block BLOCK. */
1340 lookup_struct (const char *name, const struct block *block)
1344 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1348 error (_("No struct type named %s."), name);
1350 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1352 error (_("This context has class, union or enum %s, not a struct."),
1355 return (SYMBOL_TYPE (sym));
1358 /* Lookup a union type named "union NAME",
1359 visible in lexical block BLOCK. */
1362 lookup_union (const char *name, const struct block *block)
1367 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1370 error (_("No union type named %s."), name);
1372 t = SYMBOL_TYPE (sym);
1374 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1377 /* If we get here, it's not a union. */
1378 error (_("This context has class, struct or enum %s, not a union."),
1382 /* Lookup an enum type named "enum NAME",
1383 visible in lexical block BLOCK. */
1386 lookup_enum (const char *name, const struct block *block)
1390 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1393 error (_("No enum type named %s."), name);
1395 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1397 error (_("This context has class, struct or union %s, not an enum."),
1400 return (SYMBOL_TYPE (sym));
1403 /* Lookup a template type named "template NAME<TYPE>",
1404 visible in lexical block BLOCK. */
1407 lookup_template_type (char *name, struct type *type,
1408 const struct block *block)
1411 char *nam = (char *)
1412 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1416 strcat (nam, TYPE_NAME (type));
1417 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1419 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1423 error (_("No template type named %s."), name);
1425 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1427 error (_("This context has class, union or enum %s, not a struct."),
1430 return (SYMBOL_TYPE (sym));
1433 /* Given a type TYPE, lookup the type of the component of type named
1436 TYPE can be either a struct or union, or a pointer or reference to
1437 a struct or union. If it is a pointer or reference, its target
1438 type is automatically used. Thus '.' and '->' are interchangable,
1439 as specified for the definitions of the expression element types
1440 STRUCTOP_STRUCT and STRUCTOP_PTR.
1442 If NOERR is nonzero, return zero if NAME is not suitably defined.
1443 If NAME is the name of a baseclass type, return that type. */
1446 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1453 CHECK_TYPEDEF (type);
1454 if (TYPE_CODE (type) != TYPE_CODE_PTR
1455 && TYPE_CODE (type) != TYPE_CODE_REF)
1457 type = TYPE_TARGET_TYPE (type);
1460 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1461 && TYPE_CODE (type) != TYPE_CODE_UNION)
1463 typename = type_to_string (type);
1464 make_cleanup (xfree, typename);
1465 error (_("Type %s is not a structure or union type."), typename);
1469 /* FIXME: This change put in by Michael seems incorrect for the case
1470 where the structure tag name is the same as the member name.
1471 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1472 foo; } bell;" Disabled by fnf. */
1476 typename = type_name_no_tag (type);
1477 if (typename != NULL && strcmp (typename, name) == 0)
1482 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1484 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1486 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1488 return TYPE_FIELD_TYPE (type, i);
1490 else if (!t_field_name || *t_field_name == '\0')
1492 struct type *subtype
1493 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1495 if (subtype != NULL)
1500 /* OK, it's not in this class. Recursively check the baseclasses. */
1501 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1505 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1517 typename = type_to_string (type);
1518 make_cleanup (xfree, typename);
1519 error (_("Type %s has no component named %s."), typename, name);
1522 /* Store in *MAX the largest number representable by unsigned integer type
1526 get_unsigned_type_max (struct type *type, ULONGEST *max)
1530 CHECK_TYPEDEF (type);
1531 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1532 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1534 /* Written this way to avoid overflow. */
1535 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1536 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1539 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1540 signed integer type TYPE. */
1543 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1547 CHECK_TYPEDEF (type);
1548 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1549 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1551 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1552 *min = -((ULONGEST) 1 << (n - 1));
1553 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1556 /* Lookup the vptr basetype/fieldno values for TYPE.
1557 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1558 vptr_fieldno. Also, if found and basetype is from the same objfile,
1560 If not found, return -1 and ignore BASETYPEP.
1561 Callers should be aware that in some cases (for example,
1562 the type or one of its baseclasses is a stub type and we are
1563 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1564 this function will not be able to find the
1565 virtual function table pointer, and vptr_fieldno will remain -1 and
1566 vptr_basetype will remain NULL or incomplete. */
1569 get_vptr_fieldno (struct type *type, struct type **basetypep)
1571 CHECK_TYPEDEF (type);
1573 if (TYPE_VPTR_FIELDNO (type) < 0)
1577 /* We must start at zero in case the first (and only) baseclass
1578 is virtual (and hence we cannot share the table pointer). */
1579 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1581 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1583 struct type *basetype;
1585 fieldno = get_vptr_fieldno (baseclass, &basetype);
1588 /* If the type comes from a different objfile we can't cache
1589 it, it may have a different lifetime. PR 2384 */
1590 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1592 TYPE_VPTR_FIELDNO (type) = fieldno;
1593 TYPE_VPTR_BASETYPE (type) = basetype;
1596 *basetypep = basetype;
1607 *basetypep = TYPE_VPTR_BASETYPE (type);
1608 return TYPE_VPTR_FIELDNO (type);
1613 stub_noname_complaint (void)
1615 complaint (&symfile_complaints, _("stub type has NULL name"));
1618 /* Worker for is_dynamic_type. */
1621 is_dynamic_type_internal (struct type *type, int top_level)
1623 type = check_typedef (type);
1625 /* We only want to recognize references at the outermost level. */
1626 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1627 type = check_typedef (TYPE_TARGET_TYPE (type));
1629 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1630 dynamic, even if the type itself is statically defined.
1631 From a user's point of view, this may appear counter-intuitive;
1632 but it makes sense in this context, because the point is to determine
1633 whether any part of the type needs to be resolved before it can
1635 if (TYPE_DATA_LOCATION (type) != NULL
1636 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1637 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1640 switch (TYPE_CODE (type))
1642 case TYPE_CODE_RANGE:
1643 return !has_static_range (TYPE_RANGE_DATA (type));
1645 case TYPE_CODE_ARRAY:
1647 gdb_assert (TYPE_NFIELDS (type) == 1);
1649 /* The array is dynamic if either the bounds are dynamic,
1650 or the elements it contains have a dynamic contents. */
1651 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1653 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1656 case TYPE_CODE_STRUCT:
1657 case TYPE_CODE_UNION:
1661 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1662 if (!field_is_static (&TYPE_FIELD (type, i))
1663 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1672 /* See gdbtypes.h. */
1675 is_dynamic_type (struct type *type)
1677 return is_dynamic_type_internal (type, 1);
1680 static struct type *resolve_dynamic_type_internal (struct type *type,
1684 /* Given a dynamic range type (dyn_range_type) and address,
1685 return a static version of that type. */
1687 static struct type *
1688 resolve_dynamic_range (struct type *dyn_range_type, CORE_ADDR addr)
1691 struct type *static_range_type;
1692 const struct dynamic_prop *prop;
1693 const struct dwarf2_locexpr_baton *baton;
1694 struct dynamic_prop low_bound, high_bound;
1696 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1698 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1699 if (dwarf2_evaluate_property (prop, addr, &value))
1701 low_bound.kind = PROP_CONST;
1702 low_bound.data.const_val = value;
1706 low_bound.kind = PROP_UNDEFINED;
1707 low_bound.data.const_val = 0;
1710 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1711 if (dwarf2_evaluate_property (prop, addr, &value))
1713 high_bound.kind = PROP_CONST;
1714 high_bound.data.const_val = value;
1716 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1717 high_bound.data.const_val
1718 = low_bound.data.const_val + high_bound.data.const_val - 1;
1722 high_bound.kind = PROP_UNDEFINED;
1723 high_bound.data.const_val = 0;
1726 static_range_type = create_range_type (copy_type (dyn_range_type),
1727 TYPE_TARGET_TYPE (dyn_range_type),
1728 &low_bound, &high_bound);
1729 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1730 return static_range_type;
1733 /* Resolves dynamic bound values of an array type TYPE to static ones.
1734 ADDRESS might be needed to resolve the subrange bounds, it is the location
1735 of the associated array. */
1737 static struct type *
1738 resolve_dynamic_array (struct type *type, CORE_ADDR addr)
1741 struct type *elt_type;
1742 struct type *range_type;
1743 struct type *ary_dim;
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1748 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1749 range_type = resolve_dynamic_range (range_type, addr);
1751 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1753 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1754 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr);
1756 elt_type = TYPE_TARGET_TYPE (type);
1758 return create_array_type (copy_type (type),
1763 /* Resolve dynamic bounds of members of the union TYPE to static
1766 static struct type *
1767 resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1769 struct type *resolved_type;
1771 unsigned int max_len = 0;
1773 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1775 resolved_type = copy_type (type);
1776 TYPE_FIELDS (resolved_type)
1777 = TYPE_ALLOC (resolved_type,
1778 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1779 memcpy (TYPE_FIELDS (resolved_type),
1781 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1782 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1786 if (field_is_static (&TYPE_FIELD (type, i)))
1789 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1791 TYPE_FIELD_TYPE (resolved_type, i) = t;
1792 if (TYPE_LENGTH (t) > max_len)
1793 max_len = TYPE_LENGTH (t);
1796 TYPE_LENGTH (resolved_type) = max_len;
1797 return resolved_type;
1800 /* Resolve dynamic bounds of members of the struct TYPE to static
1803 static struct type *
1804 resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1806 struct type *resolved_type;
1808 unsigned resolved_type_bit_length = 0;
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1811 gdb_assert (TYPE_NFIELDS (type) > 0);
1813 resolved_type = copy_type (type);
1814 TYPE_FIELDS (resolved_type)
1815 = TYPE_ALLOC (resolved_type,
1816 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1817 memcpy (TYPE_FIELDS (resolved_type),
1819 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1820 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1822 unsigned new_bit_length;
1824 if (field_is_static (&TYPE_FIELD (type, i)))
1827 TYPE_FIELD_TYPE (resolved_type, i)
1828 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1831 /* As we know this field is not a static field, the field's
1832 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1833 this is the case, but only trigger a simple error rather
1834 than an internal error if that fails. While failing
1835 that verification indicates a bug in our code, the error
1836 is not severe enough to suggest to the user he stops
1837 his debugging session because of it. */
1838 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
1839 error (_("Cannot determine struct field location"
1840 " (invalid location kind)"));
1841 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1842 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1843 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1845 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1848 /* Normally, we would use the position and size of the last field
1849 to determine the size of the enclosing structure. But GCC seems
1850 to be encoding the position of some fields incorrectly when
1851 the struct contains a dynamic field that is not placed last.
1852 So we compute the struct size based on the field that has
1853 the highest position + size - probably the best we can do. */
1854 if (new_bit_length > resolved_type_bit_length)
1855 resolved_type_bit_length = new_bit_length;
1858 TYPE_LENGTH (resolved_type)
1859 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1861 return resolved_type;
1864 /* Worker for resolved_dynamic_type. */
1866 static struct type *
1867 resolve_dynamic_type_internal (struct type *type, CORE_ADDR addr,
1870 struct type *real_type = check_typedef (type);
1871 struct type *resolved_type = type;
1872 const struct dynamic_prop *prop;
1875 if (!is_dynamic_type_internal (real_type, top_level))
1878 switch (TYPE_CODE (type))
1880 case TYPE_CODE_TYPEDEF:
1881 resolved_type = copy_type (type);
1882 TYPE_TARGET_TYPE (resolved_type)
1883 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr,
1889 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1891 resolved_type = copy_type (type);
1892 TYPE_TARGET_TYPE (resolved_type)
1893 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
1894 target_addr, top_level);
1898 case TYPE_CODE_ARRAY:
1899 resolved_type = resolve_dynamic_array (type, addr);
1902 case TYPE_CODE_RANGE:
1903 resolved_type = resolve_dynamic_range (type, addr);
1906 case TYPE_CODE_UNION:
1907 resolved_type = resolve_dynamic_union (type, addr);
1910 case TYPE_CODE_STRUCT:
1911 resolved_type = resolve_dynamic_struct (type, addr);
1915 /* Resolve data_location attribute. */
1916 prop = TYPE_DATA_LOCATION (resolved_type);
1917 if (dwarf2_evaluate_property (prop, addr, &value))
1919 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
1920 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
1923 TYPE_DATA_LOCATION (resolved_type) = NULL;
1925 return resolved_type;
1928 /* See gdbtypes.h */
1931 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1933 return resolve_dynamic_type_internal (type, addr, 1);
1936 /* Find the real type of TYPE. This function returns the real type,
1937 after removing all layers of typedefs, and completing opaque or stub
1938 types. Completion changes the TYPE argument, but stripping of
1941 Instance flags (e.g. const/volatile) are preserved as typedefs are
1942 stripped. If necessary a new qualified form of the underlying type
1945 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1946 not been computed and we're either in the middle of reading symbols, or
1947 there was no name for the typedef in the debug info.
1949 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1950 QUITs in the symbol reading code can also throw.
1951 Thus this function can throw an exception.
1953 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1956 If this is a stubbed struct (i.e. declared as struct foo *), see if
1957 we can find a full definition in some other file. If so, copy this
1958 definition, so we can use it in future. There used to be a comment
1959 (but not any code) that if we don't find a full definition, we'd
1960 set a flag so we don't spend time in the future checking the same
1961 type. That would be a mistake, though--we might load in more
1962 symbols which contain a full definition for the type. */
1965 check_typedef (struct type *type)
1967 struct type *orig_type = type;
1968 /* While we're removing typedefs, we don't want to lose qualifiers.
1969 E.g., const/volatile. */
1970 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1974 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1976 if (!TYPE_TARGET_TYPE (type))
1981 /* It is dangerous to call lookup_symbol if we are currently
1982 reading a symtab. Infinite recursion is one danger. */
1983 if (currently_reading_symtab)
1984 return make_qualified_type (type, instance_flags, NULL);
1986 name = type_name_no_tag (type);
1987 /* FIXME: shouldn't we separately check the TYPE_NAME and
1988 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1989 VAR_DOMAIN as appropriate? (this code was written before
1990 TYPE_NAME and TYPE_TAG_NAME were separate). */
1993 stub_noname_complaint ();
1994 return make_qualified_type (type, instance_flags, NULL);
1996 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1998 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1999 else /* TYPE_CODE_UNDEF */
2000 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2002 type = TYPE_TARGET_TYPE (type);
2004 /* Preserve the instance flags as we traverse down the typedef chain.
2006 Handling address spaces/classes is nasty, what do we do if there's a
2008 E.g., what if an outer typedef marks the type as class_1 and an inner
2009 typedef marks the type as class_2?
2010 This is the wrong place to do such error checking. We leave it to
2011 the code that created the typedef in the first place to flag the
2012 error. We just pick the outer address space (akin to letting the
2013 outer cast in a chain of casting win), instead of assuming
2014 "it can't happen". */
2016 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2017 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2018 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2019 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2021 /* Treat code vs data spaces and address classes separately. */
2022 if ((instance_flags & ALL_SPACES) != 0)
2023 new_instance_flags &= ~ALL_SPACES;
2024 if ((instance_flags & ALL_CLASSES) != 0)
2025 new_instance_flags &= ~ALL_CLASSES;
2027 instance_flags |= new_instance_flags;
2031 /* If this is a struct/class/union with no fields, then check
2032 whether a full definition exists somewhere else. This is for
2033 systems where a type definition with no fields is issued for such
2034 types, instead of identifying them as stub types in the first
2037 if (TYPE_IS_OPAQUE (type)
2038 && opaque_type_resolution
2039 && !currently_reading_symtab)
2041 const char *name = type_name_no_tag (type);
2042 struct type *newtype;
2046 stub_noname_complaint ();
2047 return make_qualified_type (type, instance_flags, NULL);
2049 newtype = lookup_transparent_type (name);
2053 /* If the resolved type and the stub are in the same
2054 objfile, then replace the stub type with the real deal.
2055 But if they're in separate objfiles, leave the stub
2056 alone; we'll just look up the transparent type every time
2057 we call check_typedef. We can't create pointers between
2058 types allocated to different objfiles, since they may
2059 have different lifetimes. Trying to copy NEWTYPE over to
2060 TYPE's objfile is pointless, too, since you'll have to
2061 move over any other types NEWTYPE refers to, which could
2062 be an unbounded amount of stuff. */
2063 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2064 type = make_qualified_type (newtype,
2065 TYPE_INSTANCE_FLAGS (type),
2071 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2073 else if (TYPE_STUB (type) && !currently_reading_symtab)
2075 const char *name = type_name_no_tag (type);
2076 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2077 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2078 as appropriate? (this code was written before TYPE_NAME and
2079 TYPE_TAG_NAME were separate). */
2084 stub_noname_complaint ();
2085 return make_qualified_type (type, instance_flags, NULL);
2087 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2090 /* Same as above for opaque types, we can replace the stub
2091 with the complete type only if they are in the same
2093 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2094 type = make_qualified_type (SYMBOL_TYPE (sym),
2095 TYPE_INSTANCE_FLAGS (type),
2098 type = SYMBOL_TYPE (sym);
2102 if (TYPE_TARGET_STUB (type))
2104 struct type *range_type;
2105 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2107 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2109 /* Nothing we can do. */
2111 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2113 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2114 TYPE_TARGET_STUB (type) = 0;
2118 type = make_qualified_type (type, instance_flags, NULL);
2120 /* Cache TYPE_LENGTH for future use. */
2121 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2126 /* Parse a type expression in the string [P..P+LENGTH). If an error
2127 occurs, silently return a void type. */
2129 static struct type *
2130 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2132 struct ui_file *saved_gdb_stderr;
2133 struct type *type = NULL; /* Initialize to keep gcc happy. */
2134 volatile struct gdb_exception except;
2136 /* Suppress error messages. */
2137 saved_gdb_stderr = gdb_stderr;
2138 gdb_stderr = ui_file_new ();
2140 /* Call parse_and_eval_type() without fear of longjmp()s. */
2141 TRY_CATCH (except, RETURN_MASK_ERROR)
2143 type = parse_and_eval_type (p, length);
2146 if (except.reason < 0)
2147 type = builtin_type (gdbarch)->builtin_void;
2149 /* Stop suppressing error messages. */
2150 ui_file_delete (gdb_stderr);
2151 gdb_stderr = saved_gdb_stderr;
2156 /* Ugly hack to convert method stubs into method types.
2158 He ain't kiddin'. This demangles the name of the method into a
2159 string including argument types, parses out each argument type,
2160 generates a string casting a zero to that type, evaluates the
2161 string, and stuffs the resulting type into an argtype vector!!!
2162 Then it knows the type of the whole function (including argument
2163 types for overloading), which info used to be in the stab's but was
2164 removed to hack back the space required for them. */
2167 check_stub_method (struct type *type, int method_id, int signature_id)
2169 struct gdbarch *gdbarch = get_type_arch (type);
2171 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2172 char *demangled_name = gdb_demangle (mangled_name,
2173 DMGL_PARAMS | DMGL_ANSI);
2174 char *argtypetext, *p;
2175 int depth = 0, argcount = 1;
2176 struct field *argtypes;
2179 /* Make sure we got back a function string that we can use. */
2181 p = strchr (demangled_name, '(');
2185 if (demangled_name == NULL || p == NULL)
2186 error (_("Internal: Cannot demangle mangled name `%s'."),
2189 /* Now, read in the parameters that define this type. */
2194 if (*p == '(' || *p == '<')
2198 else if (*p == ')' || *p == '>')
2202 else if (*p == ',' && depth == 0)
2210 /* If we read one argument and it was ``void'', don't count it. */
2211 if (strncmp (argtypetext, "(void)", 6) == 0)
2214 /* We need one extra slot, for the THIS pointer. */
2216 argtypes = (struct field *)
2217 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2220 /* Add THIS pointer for non-static methods. */
2221 f = TYPE_FN_FIELDLIST1 (type, method_id);
2222 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2226 argtypes[0].type = lookup_pointer_type (type);
2230 if (*p != ')') /* () means no args, skip while. */
2235 if (depth <= 0 && (*p == ',' || *p == ')'))
2237 /* Avoid parsing of ellipsis, they will be handled below.
2238 Also avoid ``void'' as above. */
2239 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2240 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2242 argtypes[argcount].type =
2243 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2246 argtypetext = p + 1;
2249 if (*p == '(' || *p == '<')
2253 else if (*p == ')' || *p == '>')
2262 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2264 /* Now update the old "stub" type into a real type. */
2265 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2266 TYPE_DOMAIN_TYPE (mtype) = type;
2267 TYPE_FIELDS (mtype) = argtypes;
2268 TYPE_NFIELDS (mtype) = argcount;
2269 TYPE_STUB (mtype) = 0;
2270 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2272 TYPE_VARARGS (mtype) = 1;
2274 xfree (demangled_name);
2277 /* This is the external interface to check_stub_method, above. This
2278 function unstubs all of the signatures for TYPE's METHOD_ID method
2279 name. After calling this function TYPE_FN_FIELD_STUB will be
2280 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2283 This function unfortunately can not die until stabs do. */
2286 check_stub_method_group (struct type *type, int method_id)
2288 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2289 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2290 int j, found_stub = 0;
2292 for (j = 0; j < len; j++)
2293 if (TYPE_FN_FIELD_STUB (f, j))
2296 check_stub_method (type, method_id, j);
2299 /* GNU v3 methods with incorrect names were corrected when we read
2300 in type information, because it was cheaper to do it then. The
2301 only GNU v2 methods with incorrect method names are operators and
2302 destructors; destructors were also corrected when we read in type
2305 Therefore the only thing we need to handle here are v2 operator
2307 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2310 char dem_opname[256];
2312 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2314 dem_opname, DMGL_ANSI);
2316 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2320 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2324 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2325 const struct cplus_struct_type cplus_struct_default = { };
2328 allocate_cplus_struct_type (struct type *type)
2330 if (HAVE_CPLUS_STRUCT (type))
2331 /* Structure was already allocated. Nothing more to do. */
2334 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2335 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2336 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2337 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2340 const struct gnat_aux_type gnat_aux_default =
2343 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2344 and allocate the associated gnat-specific data. The gnat-specific
2345 data is also initialized to gnat_aux_default. */
2348 allocate_gnat_aux_type (struct type *type)
2350 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2351 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2352 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2353 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2356 /* Helper function to initialize the standard scalar types.
2358 If NAME is non-NULL, then it is used to initialize the type name.
2359 Note that NAME is not copied; it is required to have a lifetime at
2360 least as long as OBJFILE. */
2363 init_type (enum type_code code, int length, int flags,
2364 const char *name, struct objfile *objfile)
2368 type = alloc_type (objfile);
2369 TYPE_CODE (type) = code;
2370 TYPE_LENGTH (type) = length;
2372 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2373 if (flags & TYPE_FLAG_UNSIGNED)
2374 TYPE_UNSIGNED (type) = 1;
2375 if (flags & TYPE_FLAG_NOSIGN)
2376 TYPE_NOSIGN (type) = 1;
2377 if (flags & TYPE_FLAG_STUB)
2378 TYPE_STUB (type) = 1;
2379 if (flags & TYPE_FLAG_TARGET_STUB)
2380 TYPE_TARGET_STUB (type) = 1;
2381 if (flags & TYPE_FLAG_STATIC)
2382 TYPE_STATIC (type) = 1;
2383 if (flags & TYPE_FLAG_PROTOTYPED)
2384 TYPE_PROTOTYPED (type) = 1;
2385 if (flags & TYPE_FLAG_INCOMPLETE)
2386 TYPE_INCOMPLETE (type) = 1;
2387 if (flags & TYPE_FLAG_VARARGS)
2388 TYPE_VARARGS (type) = 1;
2389 if (flags & TYPE_FLAG_VECTOR)
2390 TYPE_VECTOR (type) = 1;
2391 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2392 TYPE_STUB_SUPPORTED (type) = 1;
2393 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2394 TYPE_FIXED_INSTANCE (type) = 1;
2395 if (flags & TYPE_FLAG_GNU_IFUNC)
2396 TYPE_GNU_IFUNC (type) = 1;
2398 TYPE_NAME (type) = name;
2402 if (name && strcmp (name, "char") == 0)
2403 TYPE_NOSIGN (type) = 1;
2407 case TYPE_CODE_STRUCT:
2408 case TYPE_CODE_UNION:
2409 case TYPE_CODE_NAMESPACE:
2410 INIT_CPLUS_SPECIFIC (type);
2413 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2415 case TYPE_CODE_FUNC:
2416 INIT_FUNC_SPECIFIC (type);
2422 /* Queries on types. */
2425 can_dereference (struct type *t)
2427 /* FIXME: Should we return true for references as well as
2432 && TYPE_CODE (t) == TYPE_CODE_PTR
2433 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2437 is_integral_type (struct type *t)
2442 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2443 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2444 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2445 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2446 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2447 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2450 /* Return true if TYPE is scalar. */
2453 is_scalar_type (struct type *type)
2455 CHECK_TYPEDEF (type);
2457 switch (TYPE_CODE (type))
2459 case TYPE_CODE_ARRAY:
2460 case TYPE_CODE_STRUCT:
2461 case TYPE_CODE_UNION:
2463 case TYPE_CODE_STRING:
2470 /* Return true if T is scalar, or a composite type which in practice has
2471 the memory layout of a scalar type. E.g., an array or struct with only
2472 one scalar element inside it, or a union with only scalar elements. */
2475 is_scalar_type_recursive (struct type *t)
2479 if (is_scalar_type (t))
2481 /* Are we dealing with an array or string of known dimensions? */
2482 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2483 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2484 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2486 LONGEST low_bound, high_bound;
2487 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2489 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2491 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2493 /* Are we dealing with a struct with one element? */
2494 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2495 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2496 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2498 int i, n = TYPE_NFIELDS (t);
2500 /* If all elements of the union are scalar, then the union is scalar. */
2501 for (i = 0; i < n; i++)
2502 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2511 /* A helper function which returns true if types A and B represent the
2512 "same" class type. This is true if the types have the same main
2513 type, or the same name. */
2516 class_types_same_p (const struct type *a, const struct type *b)
2518 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2519 || (TYPE_NAME (a) && TYPE_NAME (b)
2520 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2523 /* If BASE is an ancestor of DCLASS return the distance between them.
2524 otherwise return -1;
2528 class B: public A {};
2529 class C: public B {};
2532 distance_to_ancestor (A, A, 0) = 0
2533 distance_to_ancestor (A, B, 0) = 1
2534 distance_to_ancestor (A, C, 0) = 2
2535 distance_to_ancestor (A, D, 0) = 3
2537 If PUBLIC is 1 then only public ancestors are considered,
2538 and the function returns the distance only if BASE is a public ancestor
2542 distance_to_ancestor (A, D, 1) = -1. */
2545 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2550 CHECK_TYPEDEF (base);
2551 CHECK_TYPEDEF (dclass);
2553 if (class_types_same_p (base, dclass))
2556 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2558 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2561 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2569 /* Check whether BASE is an ancestor or base class or DCLASS
2570 Return 1 if so, and 0 if not.
2571 Note: If BASE and DCLASS are of the same type, this function
2572 will return 1. So for some class A, is_ancestor (A, A) will
2576 is_ancestor (struct type *base, struct type *dclass)
2578 return distance_to_ancestor (base, dclass, 0) >= 0;
2581 /* Like is_ancestor, but only returns true when BASE is a public
2582 ancestor of DCLASS. */
2585 is_public_ancestor (struct type *base, struct type *dclass)
2587 return distance_to_ancestor (base, dclass, 1) >= 0;
2590 /* A helper function for is_unique_ancestor. */
2593 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2595 const gdb_byte *valaddr, int embedded_offset,
2596 CORE_ADDR address, struct value *val)
2600 CHECK_TYPEDEF (base);
2601 CHECK_TYPEDEF (dclass);
2603 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2608 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2610 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2613 if (class_types_same_p (base, iter))
2615 /* If this is the first subclass, set *OFFSET and set count
2616 to 1. Otherwise, if this is at the same offset as
2617 previous instances, do nothing. Otherwise, increment
2621 *offset = this_offset;
2624 else if (this_offset == *offset)
2632 count += is_unique_ancestor_worker (base, iter, offset,
2634 embedded_offset + this_offset,
2641 /* Like is_ancestor, but only returns true if BASE is a unique base
2642 class of the type of VAL. */
2645 is_unique_ancestor (struct type *base, struct value *val)
2649 return is_unique_ancestor_worker (base, value_type (val), &offset,
2650 value_contents_for_printing (val),
2651 value_embedded_offset (val),
2652 value_address (val), val) == 1;
2656 /* Overload resolution. */
2658 /* Return the sum of the rank of A with the rank of B. */
2661 sum_ranks (struct rank a, struct rank b)
2664 c.rank = a.rank + b.rank;
2665 c.subrank = a.subrank + b.subrank;
2669 /* Compare rank A and B and return:
2671 1 if a is better than b
2672 -1 if b is better than a. */
2675 compare_ranks (struct rank a, struct rank b)
2677 if (a.rank == b.rank)
2679 if (a.subrank == b.subrank)
2681 if (a.subrank < b.subrank)
2683 if (a.subrank > b.subrank)
2687 if (a.rank < b.rank)
2690 /* a.rank > b.rank */
2694 /* Functions for overload resolution begin here. */
2696 /* Compare two badness vectors A and B and return the result.
2697 0 => A and B are identical
2698 1 => A and B are incomparable
2699 2 => A is better than B
2700 3 => A is worse than B */
2703 compare_badness (struct badness_vector *a, struct badness_vector *b)
2707 short found_pos = 0; /* any positives in c? */
2708 short found_neg = 0; /* any negatives in c? */
2710 /* differing lengths => incomparable */
2711 if (a->length != b->length)
2714 /* Subtract b from a */
2715 for (i = 0; i < a->length; i++)
2717 tmp = compare_ranks (b->rank[i], a->rank[i]);
2727 return 1; /* incomparable */
2729 return 3; /* A > B */
2735 return 2; /* A < B */
2737 return 0; /* A == B */
2741 /* Rank a function by comparing its parameter types (PARMS, length
2742 NPARMS), to the types of an argument list (ARGS, length NARGS).
2743 Return a pointer to a badness vector. This has NARGS + 1
2746 struct badness_vector *
2747 rank_function (struct type **parms, int nparms,
2748 struct value **args, int nargs)
2751 struct badness_vector *bv;
2752 int min_len = nparms < nargs ? nparms : nargs;
2754 bv = xmalloc (sizeof (struct badness_vector));
2755 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2756 bv->rank = XNEWVEC (struct rank, nargs + 1);
2758 /* First compare the lengths of the supplied lists.
2759 If there is a mismatch, set it to a high value. */
2761 /* pai/1997-06-03 FIXME: when we have debug info about default
2762 arguments and ellipsis parameter lists, we should consider those
2763 and rank the length-match more finely. */
2765 LENGTH_MATCH (bv) = (nargs != nparms)
2766 ? LENGTH_MISMATCH_BADNESS
2767 : EXACT_MATCH_BADNESS;
2769 /* Now rank all the parameters of the candidate function. */
2770 for (i = 1; i <= min_len; i++)
2771 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2774 /* If more arguments than parameters, add dummy entries. */
2775 for (i = min_len + 1; i <= nargs; i++)
2776 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2781 /* Compare the names of two integer types, assuming that any sign
2782 qualifiers have been checked already. We do it this way because
2783 there may be an "int" in the name of one of the types. */
2786 integer_types_same_name_p (const char *first, const char *second)
2788 int first_p, second_p;
2790 /* If both are shorts, return 1; if neither is a short, keep
2792 first_p = (strstr (first, "short") != NULL);
2793 second_p = (strstr (second, "short") != NULL);
2794 if (first_p && second_p)
2796 if (first_p || second_p)
2799 /* Likewise for long. */
2800 first_p = (strstr (first, "long") != NULL);
2801 second_p = (strstr (second, "long") != NULL);
2802 if (first_p && second_p)
2804 if (first_p || second_p)
2807 /* Likewise for char. */
2808 first_p = (strstr (first, "char") != NULL);
2809 second_p = (strstr (second, "char") != NULL);
2810 if (first_p && second_p)
2812 if (first_p || second_p)
2815 /* They must both be ints. */
2819 /* Compares type A to type B returns 1 if the represent the same type
2823 types_equal (struct type *a, struct type *b)
2825 /* Identical type pointers. */
2826 /* However, this still doesn't catch all cases of same type for b
2827 and a. The reason is that builtin types are different from
2828 the same ones constructed from the object. */
2832 /* Resolve typedefs */
2833 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2834 a = check_typedef (a);
2835 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2836 b = check_typedef (b);
2838 /* If after resolving typedefs a and b are not of the same type
2839 code then they are not equal. */
2840 if (TYPE_CODE (a) != TYPE_CODE (b))
2843 /* If a and b are both pointers types or both reference types then
2844 they are equal of the same type iff the objects they refer to are
2845 of the same type. */
2846 if (TYPE_CODE (a) == TYPE_CODE_PTR
2847 || TYPE_CODE (a) == TYPE_CODE_REF)
2848 return types_equal (TYPE_TARGET_TYPE (a),
2849 TYPE_TARGET_TYPE (b));
2851 /* Well, damnit, if the names are exactly the same, I'll say they
2852 are exactly the same. This happens when we generate method
2853 stubs. The types won't point to the same address, but they
2854 really are the same. */
2856 if (TYPE_NAME (a) && TYPE_NAME (b)
2857 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2860 /* Check if identical after resolving typedefs. */
2864 /* Two function types are equal if their argument and return types
2866 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2870 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2873 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2876 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2877 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2886 /* Deep comparison of types. */
2888 /* An entry in the type-equality bcache. */
2890 typedef struct type_equality_entry
2892 struct type *type1, *type2;
2893 } type_equality_entry_d;
2895 DEF_VEC_O (type_equality_entry_d);
2897 /* A helper function to compare two strings. Returns 1 if they are
2898 the same, 0 otherwise. Handles NULLs properly. */
2901 compare_maybe_null_strings (const char *s, const char *t)
2903 if (s == NULL && t != NULL)
2905 else if (s != NULL && t == NULL)
2907 else if (s == NULL && t== NULL)
2909 return strcmp (s, t) == 0;
2912 /* A helper function for check_types_worklist that checks two types for
2913 "deep" equality. Returns non-zero if the types are considered the
2914 same, zero otherwise. */
2917 check_types_equal (struct type *type1, struct type *type2,
2918 VEC (type_equality_entry_d) **worklist)
2920 CHECK_TYPEDEF (type1);
2921 CHECK_TYPEDEF (type2);
2926 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2927 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2928 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2929 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2930 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2931 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2932 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2933 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2934 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2937 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2938 TYPE_TAG_NAME (type2)))
2940 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2943 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2945 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2946 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2953 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2955 const struct field *field1 = &TYPE_FIELD (type1, i);
2956 const struct field *field2 = &TYPE_FIELD (type2, i);
2957 struct type_equality_entry entry;
2959 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2960 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2961 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2963 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2964 FIELD_NAME (*field2)))
2966 switch (FIELD_LOC_KIND (*field1))
2968 case FIELD_LOC_KIND_BITPOS:
2969 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2972 case FIELD_LOC_KIND_ENUMVAL:
2973 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2976 case FIELD_LOC_KIND_PHYSADDR:
2977 if (FIELD_STATIC_PHYSADDR (*field1)
2978 != FIELD_STATIC_PHYSADDR (*field2))
2981 case FIELD_LOC_KIND_PHYSNAME:
2982 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2983 FIELD_STATIC_PHYSNAME (*field2)))
2986 case FIELD_LOC_KIND_DWARF_BLOCK:
2988 struct dwarf2_locexpr_baton *block1, *block2;
2990 block1 = FIELD_DWARF_BLOCK (*field1);
2991 block2 = FIELD_DWARF_BLOCK (*field2);
2992 if (block1->per_cu != block2->per_cu
2993 || block1->size != block2->size
2994 || memcmp (block1->data, block2->data, block1->size) != 0)
2999 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3000 "%d by check_types_equal"),
3001 FIELD_LOC_KIND (*field1));
3004 entry.type1 = FIELD_TYPE (*field1);
3005 entry.type2 = FIELD_TYPE (*field2);
3006 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3010 if (TYPE_TARGET_TYPE (type1) != NULL)
3012 struct type_equality_entry entry;
3014 if (TYPE_TARGET_TYPE (type2) == NULL)
3017 entry.type1 = TYPE_TARGET_TYPE (type1);
3018 entry.type2 = TYPE_TARGET_TYPE (type2);
3019 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3021 else if (TYPE_TARGET_TYPE (type2) != NULL)
3027 /* Check types on a worklist for equality. Returns zero if any pair
3028 is not equal, non-zero if they are all considered equal. */
3031 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3032 struct bcache *cache)
3034 while (!VEC_empty (type_equality_entry_d, *worklist))
3036 struct type_equality_entry entry;
3039 entry = *VEC_last (type_equality_entry_d, *worklist);
3040 VEC_pop (type_equality_entry_d, *worklist);
3042 /* If the type pair has already been visited, we know it is
3044 bcache_full (&entry, sizeof (entry), cache, &added);
3048 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3055 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3056 "deep comparison". Otherwise return zero. */
3059 types_deeply_equal (struct type *type1, struct type *type2)
3061 volatile struct gdb_exception except;
3063 struct bcache *cache;
3064 VEC (type_equality_entry_d) *worklist = NULL;
3065 struct type_equality_entry entry;
3067 gdb_assert (type1 != NULL && type2 != NULL);
3069 /* Early exit for the simple case. */
3073 cache = bcache_xmalloc (NULL, NULL);
3075 entry.type1 = type1;
3076 entry.type2 = type2;
3077 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3079 TRY_CATCH (except, RETURN_MASK_ALL)
3081 result = check_types_worklist (&worklist, cache);
3083 /* check_types_worklist calls several nested helper functions,
3084 some of which can raise a GDB Exception, so we just check
3085 and rethrow here. If there is a GDB exception, a comparison
3086 is not capable (or trusted), so exit. */
3087 bcache_xfree (cache);
3088 VEC_free (type_equality_entry_d, worklist);
3089 /* Rethrow if there was a problem. */
3090 if (except.reason < 0)
3091 throw_exception (except);
3096 /* Compare one type (PARM) for compatibility with another (ARG).
3097 * PARM is intended to be the parameter type of a function; and
3098 * ARG is the supplied argument's type. This function tests if
3099 * the latter can be converted to the former.
3100 * VALUE is the argument's value or NULL if none (or called recursively)
3102 * Return 0 if they are identical types;
3103 * Otherwise, return an integer which corresponds to how compatible
3104 * PARM is to ARG. The higher the return value, the worse the match.
3105 * Generally the "bad" conversions are all uniformly assigned a 100. */
3108 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3110 struct rank rank = {0,0};
3112 if (types_equal (parm, arg))
3113 return EXACT_MATCH_BADNESS;
3115 /* Resolve typedefs */
3116 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3117 parm = check_typedef (parm);
3118 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3119 arg = check_typedef (arg);
3121 /* See through references, since we can almost make non-references
3123 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3124 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3125 REFERENCE_CONVERSION_BADNESS));
3126 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3127 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3128 REFERENCE_CONVERSION_BADNESS));
3130 /* Debugging only. */
3131 fprintf_filtered (gdb_stderr,
3132 "------ Arg is %s [%d], parm is %s [%d]\n",
3133 TYPE_NAME (arg), TYPE_CODE (arg),
3134 TYPE_NAME (parm), TYPE_CODE (parm));
3136 /* x -> y means arg of type x being supplied for parameter of type y. */
3138 switch (TYPE_CODE (parm))
3141 switch (TYPE_CODE (arg))
3145 /* Allowed pointer conversions are:
3146 (a) pointer to void-pointer conversion. */
3147 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3148 return VOID_PTR_CONVERSION_BADNESS;
3150 /* (b) pointer to ancestor-pointer conversion. */
3151 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3152 TYPE_TARGET_TYPE (arg),
3154 if (rank.subrank >= 0)
3155 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3157 return INCOMPATIBLE_TYPE_BADNESS;
3158 case TYPE_CODE_ARRAY:
3159 if (types_equal (TYPE_TARGET_TYPE (parm),
3160 TYPE_TARGET_TYPE (arg)))
3161 return EXACT_MATCH_BADNESS;
3162 return INCOMPATIBLE_TYPE_BADNESS;
3163 case TYPE_CODE_FUNC:
3164 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3166 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3168 if (value_as_long (value) == 0)
3170 /* Null pointer conversion: allow it to be cast to a pointer.
3171 [4.10.1 of C++ standard draft n3290] */
3172 return NULL_POINTER_CONVERSION_BADNESS;
3176 /* If type checking is disabled, allow the conversion. */
3177 if (!strict_type_checking)
3178 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3182 case TYPE_CODE_ENUM:
3183 case TYPE_CODE_FLAGS:
3184 case TYPE_CODE_CHAR:
3185 case TYPE_CODE_RANGE:
3186 case TYPE_CODE_BOOL:
3188 return INCOMPATIBLE_TYPE_BADNESS;
3190 case TYPE_CODE_ARRAY:
3191 switch (TYPE_CODE (arg))
3194 case TYPE_CODE_ARRAY:
3195 return rank_one_type (TYPE_TARGET_TYPE (parm),
3196 TYPE_TARGET_TYPE (arg), NULL);
3198 return INCOMPATIBLE_TYPE_BADNESS;
3200 case TYPE_CODE_FUNC:
3201 switch (TYPE_CODE (arg))
3203 case TYPE_CODE_PTR: /* funcptr -> func */
3204 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3206 return INCOMPATIBLE_TYPE_BADNESS;
3209 switch (TYPE_CODE (arg))
3212 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3214 /* Deal with signed, unsigned, and plain chars and
3215 signed and unsigned ints. */
3216 if (TYPE_NOSIGN (parm))
3218 /* This case only for character types. */
3219 if (TYPE_NOSIGN (arg))
3220 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3221 else /* signed/unsigned char -> plain char */
3222 return INTEGER_CONVERSION_BADNESS;
3224 else if (TYPE_UNSIGNED (parm))
3226 if (TYPE_UNSIGNED (arg))
3228 /* unsigned int -> unsigned int, or
3229 unsigned long -> unsigned long */
3230 if (integer_types_same_name_p (TYPE_NAME (parm),
3232 return EXACT_MATCH_BADNESS;
3233 else if (integer_types_same_name_p (TYPE_NAME (arg),
3235 && integer_types_same_name_p (TYPE_NAME (parm),
3237 /* unsigned int -> unsigned long */
3238 return INTEGER_PROMOTION_BADNESS;
3240 /* unsigned long -> unsigned int */
3241 return INTEGER_CONVERSION_BADNESS;
3245 if (integer_types_same_name_p (TYPE_NAME (arg),
3247 && integer_types_same_name_p (TYPE_NAME (parm),
3249 /* signed long -> unsigned int */
3250 return INTEGER_CONVERSION_BADNESS;
3252 /* signed int/long -> unsigned int/long */
3253 return INTEGER_CONVERSION_BADNESS;
3256 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3258 if (integer_types_same_name_p (TYPE_NAME (parm),
3260 return EXACT_MATCH_BADNESS;
3261 else if (integer_types_same_name_p (TYPE_NAME (arg),
3263 && integer_types_same_name_p (TYPE_NAME (parm),
3265 return INTEGER_PROMOTION_BADNESS;
3267 return INTEGER_CONVERSION_BADNESS;
3270 return INTEGER_CONVERSION_BADNESS;
3272 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3273 return INTEGER_PROMOTION_BADNESS;
3275 return INTEGER_CONVERSION_BADNESS;
3276 case TYPE_CODE_ENUM:
3277 case TYPE_CODE_FLAGS:
3278 case TYPE_CODE_CHAR:
3279 case TYPE_CODE_RANGE:
3280 case TYPE_CODE_BOOL:
3281 if (TYPE_DECLARED_CLASS (arg))
3282 return INCOMPATIBLE_TYPE_BADNESS;
3283 return INTEGER_PROMOTION_BADNESS;
3285 return INT_FLOAT_CONVERSION_BADNESS;
3287 return NS_POINTER_CONVERSION_BADNESS;
3289 return INCOMPATIBLE_TYPE_BADNESS;
3292 case TYPE_CODE_ENUM:
3293 switch (TYPE_CODE (arg))
3296 case TYPE_CODE_CHAR:
3297 case TYPE_CODE_RANGE:
3298 case TYPE_CODE_BOOL:
3299 case TYPE_CODE_ENUM:
3300 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3301 return INCOMPATIBLE_TYPE_BADNESS;
3302 return INTEGER_CONVERSION_BADNESS;
3304 return INT_FLOAT_CONVERSION_BADNESS;
3306 return INCOMPATIBLE_TYPE_BADNESS;
3309 case TYPE_CODE_CHAR:
3310 switch (TYPE_CODE (arg))
3312 case TYPE_CODE_RANGE:
3313 case TYPE_CODE_BOOL:
3314 case TYPE_CODE_ENUM:
3315 if (TYPE_DECLARED_CLASS (arg))
3316 return INCOMPATIBLE_TYPE_BADNESS;
3317 return INTEGER_CONVERSION_BADNESS;
3319 return INT_FLOAT_CONVERSION_BADNESS;
3321 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3322 return INTEGER_CONVERSION_BADNESS;
3323 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3324 return INTEGER_PROMOTION_BADNESS;
3325 /* >>> !! else fall through !! <<< */
3326 case TYPE_CODE_CHAR:
3327 /* Deal with signed, unsigned, and plain chars for C++ and
3328 with int cases falling through from previous case. */
3329 if (TYPE_NOSIGN (parm))
3331 if (TYPE_NOSIGN (arg))
3332 return EXACT_MATCH_BADNESS;
3334 return INTEGER_CONVERSION_BADNESS;
3336 else if (TYPE_UNSIGNED (parm))
3338 if (TYPE_UNSIGNED (arg))
3339 return EXACT_MATCH_BADNESS;
3341 return INTEGER_PROMOTION_BADNESS;
3343 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3344 return EXACT_MATCH_BADNESS;
3346 return INTEGER_CONVERSION_BADNESS;
3348 return INCOMPATIBLE_TYPE_BADNESS;
3351 case TYPE_CODE_RANGE:
3352 switch (TYPE_CODE (arg))
3355 case TYPE_CODE_CHAR:
3356 case TYPE_CODE_RANGE:
3357 case TYPE_CODE_BOOL:
3358 case TYPE_CODE_ENUM:
3359 return INTEGER_CONVERSION_BADNESS;
3361 return INT_FLOAT_CONVERSION_BADNESS;
3363 return INCOMPATIBLE_TYPE_BADNESS;
3366 case TYPE_CODE_BOOL:
3367 switch (TYPE_CODE (arg))
3369 /* n3290 draft, section 4.12.1 (conv.bool):
3371 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3372 pointer to member type can be converted to a prvalue of type
3373 bool. A zero value, null pointer value, or null member pointer
3374 value is converted to false; any other value is converted to
3375 true. A prvalue of type std::nullptr_t can be converted to a
3376 prvalue of type bool; the resulting value is false." */
3378 case TYPE_CODE_CHAR:
3379 case TYPE_CODE_ENUM:
3381 case TYPE_CODE_MEMBERPTR:
3383 return BOOL_CONVERSION_BADNESS;
3384 case TYPE_CODE_RANGE:
3385 return INCOMPATIBLE_TYPE_BADNESS;
3386 case TYPE_CODE_BOOL:
3387 return EXACT_MATCH_BADNESS;
3389 return INCOMPATIBLE_TYPE_BADNESS;
3393 switch (TYPE_CODE (arg))
3396 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3397 return FLOAT_PROMOTION_BADNESS;
3398 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3399 return EXACT_MATCH_BADNESS;
3401 return FLOAT_CONVERSION_BADNESS;
3403 case TYPE_CODE_BOOL:
3404 case TYPE_CODE_ENUM:
3405 case TYPE_CODE_RANGE:
3406 case TYPE_CODE_CHAR:
3407 return INT_FLOAT_CONVERSION_BADNESS;
3409 return INCOMPATIBLE_TYPE_BADNESS;
3412 case TYPE_CODE_COMPLEX:
3413 switch (TYPE_CODE (arg))
3414 { /* Strictly not needed for C++, but... */
3416 return FLOAT_PROMOTION_BADNESS;
3417 case TYPE_CODE_COMPLEX:
3418 return EXACT_MATCH_BADNESS;
3420 return INCOMPATIBLE_TYPE_BADNESS;
3423 case TYPE_CODE_STRUCT:
3424 switch (TYPE_CODE (arg))
3426 case TYPE_CODE_STRUCT:
3427 /* Check for derivation */
3428 rank.subrank = distance_to_ancestor (parm, arg, 0);
3429 if (rank.subrank >= 0)
3430 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3431 /* else fall through */
3433 return INCOMPATIBLE_TYPE_BADNESS;
3436 case TYPE_CODE_UNION:
3437 switch (TYPE_CODE (arg))
3439 case TYPE_CODE_UNION:
3441 return INCOMPATIBLE_TYPE_BADNESS;
3444 case TYPE_CODE_MEMBERPTR:
3445 switch (TYPE_CODE (arg))
3448 return INCOMPATIBLE_TYPE_BADNESS;
3451 case TYPE_CODE_METHOD:
3452 switch (TYPE_CODE (arg))
3456 return INCOMPATIBLE_TYPE_BADNESS;
3460 switch (TYPE_CODE (arg))
3464 return INCOMPATIBLE_TYPE_BADNESS;
3469 switch (TYPE_CODE (arg))
3473 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3474 TYPE_FIELD_TYPE (arg, 0), NULL);
3476 return INCOMPATIBLE_TYPE_BADNESS;
3479 case TYPE_CODE_VOID:
3481 return INCOMPATIBLE_TYPE_BADNESS;
3482 } /* switch (TYPE_CODE (arg)) */
3485 /* End of functions for overload resolution. */
3487 /* Routines to pretty-print types. */
3490 print_bit_vector (B_TYPE *bits, int nbits)
3494 for (bitno = 0; bitno < nbits; bitno++)
3496 if ((bitno % 8) == 0)
3498 puts_filtered (" ");
3500 if (B_TST (bits, bitno))
3501 printf_filtered (("1"));
3503 printf_filtered (("0"));
3507 /* Note the first arg should be the "this" pointer, we may not want to
3508 include it since we may get into a infinitely recursive
3512 print_arg_types (struct field *args, int nargs, int spaces)
3518 for (i = 0; i < nargs; i++)
3519 recursive_dump_type (args[i].type, spaces + 2);
3524 field_is_static (struct field *f)
3526 /* "static" fields are the fields whose location is not relative
3527 to the address of the enclosing struct. It would be nice to
3528 have a dedicated flag that would be set for static fields when
3529 the type is being created. But in practice, checking the field
3530 loc_kind should give us an accurate answer. */
3531 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3532 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3536 dump_fn_fieldlists (struct type *type, int spaces)
3542 printfi_filtered (spaces, "fn_fieldlists ");
3543 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3544 printf_filtered ("\n");
3545 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3547 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3548 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3550 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3551 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3553 printf_filtered (_(") length %d\n"),
3554 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3555 for (overload_idx = 0;
3556 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3559 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3561 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3562 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3564 printf_filtered (")\n");
3565 printfi_filtered (spaces + 8, "type ");
3566 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3568 printf_filtered ("\n");
3570 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3573 printfi_filtered (spaces + 8, "args ");
3574 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3576 printf_filtered ("\n");
3578 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3579 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3582 printfi_filtered (spaces + 8, "fcontext ");
3583 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3585 printf_filtered ("\n");
3587 printfi_filtered (spaces + 8, "is_const %d\n",
3588 TYPE_FN_FIELD_CONST (f, overload_idx));
3589 printfi_filtered (spaces + 8, "is_volatile %d\n",
3590 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3591 printfi_filtered (spaces + 8, "is_private %d\n",
3592 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3593 printfi_filtered (spaces + 8, "is_protected %d\n",
3594 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3595 printfi_filtered (spaces + 8, "is_stub %d\n",
3596 TYPE_FN_FIELD_STUB (f, overload_idx));
3597 printfi_filtered (spaces + 8, "voffset %u\n",
3598 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3604 print_cplus_stuff (struct type *type, int spaces)
3606 printfi_filtered (spaces, "n_baseclasses %d\n",
3607 TYPE_N_BASECLASSES (type));
3608 printfi_filtered (spaces, "nfn_fields %d\n",
3609 TYPE_NFN_FIELDS (type));
3610 if (TYPE_N_BASECLASSES (type) > 0)
3612 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3613 TYPE_N_BASECLASSES (type));
3614 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3616 printf_filtered (")");
3618 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3619 TYPE_N_BASECLASSES (type));
3620 puts_filtered ("\n");
3622 if (TYPE_NFIELDS (type) > 0)
3624 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3626 printfi_filtered (spaces,
3627 "private_field_bits (%d bits at *",
3628 TYPE_NFIELDS (type));
3629 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3631 printf_filtered (")");
3632 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3633 TYPE_NFIELDS (type));
3634 puts_filtered ("\n");
3636 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3638 printfi_filtered (spaces,
3639 "protected_field_bits (%d bits at *",
3640 TYPE_NFIELDS (type));
3641 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3643 printf_filtered (")");
3644 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3645 TYPE_NFIELDS (type));
3646 puts_filtered ("\n");
3649 if (TYPE_NFN_FIELDS (type) > 0)
3651 dump_fn_fieldlists (type, spaces);
3655 /* Print the contents of the TYPE's type_specific union, assuming that
3656 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3659 print_gnat_stuff (struct type *type, int spaces)
3661 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3663 recursive_dump_type (descriptive_type, spaces + 2);
3666 static struct obstack dont_print_type_obstack;
3669 recursive_dump_type (struct type *type, int spaces)
3674 obstack_begin (&dont_print_type_obstack, 0);
3676 if (TYPE_NFIELDS (type) > 0
3677 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3679 struct type **first_dont_print
3680 = (struct type **) obstack_base (&dont_print_type_obstack);
3682 int i = (struct type **)
3683 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3687 if (type == first_dont_print[i])
3689 printfi_filtered (spaces, "type node ");
3690 gdb_print_host_address (type, gdb_stdout);
3691 printf_filtered (_(" <same as already seen type>\n"));
3696 obstack_ptr_grow (&dont_print_type_obstack, type);
3699 printfi_filtered (spaces, "type node ");
3700 gdb_print_host_address (type, gdb_stdout);
3701 printf_filtered ("\n");
3702 printfi_filtered (spaces, "name '%s' (",
3703 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3704 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3705 printf_filtered (")\n");
3706 printfi_filtered (spaces, "tagname '%s' (",
3707 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3708 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3709 printf_filtered (")\n");
3710 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3711 switch (TYPE_CODE (type))
3713 case TYPE_CODE_UNDEF:
3714 printf_filtered ("(TYPE_CODE_UNDEF)");
3717 printf_filtered ("(TYPE_CODE_PTR)");
3719 case TYPE_CODE_ARRAY:
3720 printf_filtered ("(TYPE_CODE_ARRAY)");
3722 case TYPE_CODE_STRUCT:
3723 printf_filtered ("(TYPE_CODE_STRUCT)");
3725 case TYPE_CODE_UNION:
3726 printf_filtered ("(TYPE_CODE_UNION)");
3728 case TYPE_CODE_ENUM:
3729 printf_filtered ("(TYPE_CODE_ENUM)");
3731 case TYPE_CODE_FLAGS:
3732 printf_filtered ("(TYPE_CODE_FLAGS)");
3734 case TYPE_CODE_FUNC:
3735 printf_filtered ("(TYPE_CODE_FUNC)");
3738 printf_filtered ("(TYPE_CODE_INT)");
3741 printf_filtered ("(TYPE_CODE_FLT)");
3743 case TYPE_CODE_VOID:
3744 printf_filtered ("(TYPE_CODE_VOID)");
3747 printf_filtered ("(TYPE_CODE_SET)");
3749 case TYPE_CODE_RANGE:
3750 printf_filtered ("(TYPE_CODE_RANGE)");
3752 case TYPE_CODE_STRING:
3753 printf_filtered ("(TYPE_CODE_STRING)");
3755 case TYPE_CODE_ERROR:
3756 printf_filtered ("(TYPE_CODE_ERROR)");
3758 case TYPE_CODE_MEMBERPTR:
3759 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3761 case TYPE_CODE_METHODPTR:
3762 printf_filtered ("(TYPE_CODE_METHODPTR)");
3764 case TYPE_CODE_METHOD:
3765 printf_filtered ("(TYPE_CODE_METHOD)");
3768 printf_filtered ("(TYPE_CODE_REF)");
3770 case TYPE_CODE_CHAR:
3771 printf_filtered ("(TYPE_CODE_CHAR)");
3773 case TYPE_CODE_BOOL:
3774 printf_filtered ("(TYPE_CODE_BOOL)");
3776 case TYPE_CODE_COMPLEX:
3777 printf_filtered ("(TYPE_CODE_COMPLEX)");
3779 case TYPE_CODE_TYPEDEF:
3780 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3782 case TYPE_CODE_NAMESPACE:
3783 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3786 printf_filtered ("(UNKNOWN TYPE CODE)");
3789 puts_filtered ("\n");
3790 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3791 if (TYPE_OBJFILE_OWNED (type))
3793 printfi_filtered (spaces, "objfile ");
3794 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3798 printfi_filtered (spaces, "gdbarch ");
3799 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3801 printf_filtered ("\n");
3802 printfi_filtered (spaces, "target_type ");
3803 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3804 printf_filtered ("\n");
3805 if (TYPE_TARGET_TYPE (type) != NULL)
3807 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3809 printfi_filtered (spaces, "pointer_type ");
3810 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3811 printf_filtered ("\n");
3812 printfi_filtered (spaces, "reference_type ");
3813 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3814 printf_filtered ("\n");
3815 printfi_filtered (spaces, "type_chain ");
3816 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3817 printf_filtered ("\n");
3818 printfi_filtered (spaces, "instance_flags 0x%x",
3819 TYPE_INSTANCE_FLAGS (type));
3820 if (TYPE_CONST (type))
3822 puts_filtered (" TYPE_FLAG_CONST");
3824 if (TYPE_VOLATILE (type))
3826 puts_filtered (" TYPE_FLAG_VOLATILE");
3828 if (TYPE_CODE_SPACE (type))
3830 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3832 if (TYPE_DATA_SPACE (type))
3834 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3836 if (TYPE_ADDRESS_CLASS_1 (type))
3838 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3840 if (TYPE_ADDRESS_CLASS_2 (type))
3842 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3844 if (TYPE_RESTRICT (type))
3846 puts_filtered (" TYPE_FLAG_RESTRICT");
3848 puts_filtered ("\n");
3850 printfi_filtered (spaces, "flags");
3851 if (TYPE_UNSIGNED (type))
3853 puts_filtered (" TYPE_FLAG_UNSIGNED");
3855 if (TYPE_NOSIGN (type))
3857 puts_filtered (" TYPE_FLAG_NOSIGN");
3859 if (TYPE_STUB (type))
3861 puts_filtered (" TYPE_FLAG_STUB");
3863 if (TYPE_TARGET_STUB (type))
3865 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3867 if (TYPE_STATIC (type))
3869 puts_filtered (" TYPE_FLAG_STATIC");
3871 if (TYPE_PROTOTYPED (type))
3873 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3875 if (TYPE_INCOMPLETE (type))
3877 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3879 if (TYPE_VARARGS (type))
3881 puts_filtered (" TYPE_FLAG_VARARGS");
3883 /* This is used for things like AltiVec registers on ppc. Gcc emits
3884 an attribute for the array type, which tells whether or not we
3885 have a vector, instead of a regular array. */
3886 if (TYPE_VECTOR (type))
3888 puts_filtered (" TYPE_FLAG_VECTOR");
3890 if (TYPE_FIXED_INSTANCE (type))
3892 puts_filtered (" TYPE_FIXED_INSTANCE");
3894 if (TYPE_STUB_SUPPORTED (type))
3896 puts_filtered (" TYPE_STUB_SUPPORTED");
3898 if (TYPE_NOTTEXT (type))
3900 puts_filtered (" TYPE_NOTTEXT");
3902 puts_filtered ("\n");
3903 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3904 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3905 puts_filtered ("\n");
3906 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3908 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3909 printfi_filtered (spaces + 2,
3910 "[%d] enumval %s type ",
3911 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3913 printfi_filtered (spaces + 2,
3914 "[%d] bitpos %d bitsize %d type ",
3915 idx, TYPE_FIELD_BITPOS (type, idx),
3916 TYPE_FIELD_BITSIZE (type, idx));
3917 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3918 printf_filtered (" name '%s' (",
3919 TYPE_FIELD_NAME (type, idx) != NULL
3920 ? TYPE_FIELD_NAME (type, idx)
3922 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3923 printf_filtered (")\n");
3924 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3926 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3929 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3931 printfi_filtered (spaces, "low %s%s high %s%s\n",
3932 plongest (TYPE_LOW_BOUND (type)),
3933 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3934 plongest (TYPE_HIGH_BOUND (type)),
3935 TYPE_HIGH_BOUND_UNDEFINED (type)
3936 ? " (undefined)" : "");
3938 printfi_filtered (spaces, "vptr_basetype ");
3939 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3940 puts_filtered ("\n");
3941 if (TYPE_VPTR_BASETYPE (type) != NULL)
3943 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3945 printfi_filtered (spaces, "vptr_fieldno %d\n",
3946 TYPE_VPTR_FIELDNO (type));
3948 switch (TYPE_SPECIFIC_FIELD (type))
3950 case TYPE_SPECIFIC_CPLUS_STUFF:
3951 printfi_filtered (spaces, "cplus_stuff ");
3952 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3954 puts_filtered ("\n");
3955 print_cplus_stuff (type, spaces);
3958 case TYPE_SPECIFIC_GNAT_STUFF:
3959 printfi_filtered (spaces, "gnat_stuff ");
3960 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3961 puts_filtered ("\n");
3962 print_gnat_stuff (type, spaces);
3965 case TYPE_SPECIFIC_FLOATFORMAT:
3966 printfi_filtered (spaces, "floatformat ");
3967 if (TYPE_FLOATFORMAT (type) == NULL)
3968 puts_filtered ("(null)");
3971 puts_filtered ("{ ");
3972 if (TYPE_FLOATFORMAT (type)[0] == NULL
3973 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3974 puts_filtered ("(null)");
3976 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3978 puts_filtered (", ");
3979 if (TYPE_FLOATFORMAT (type)[1] == NULL
3980 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3981 puts_filtered ("(null)");
3983 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3985 puts_filtered (" }");
3987 puts_filtered ("\n");
3990 case TYPE_SPECIFIC_FUNC:
3991 printfi_filtered (spaces, "calling_convention %d\n",
3992 TYPE_CALLING_CONVENTION (type));
3993 /* tail_call_list is not printed. */
3998 obstack_free (&dont_print_type_obstack, NULL);
4001 /* Trivial helpers for the libiberty hash table, for mapping one
4006 struct type *old, *new;
4010 type_pair_hash (const void *item)
4012 const struct type_pair *pair = item;
4014 return htab_hash_pointer (pair->old);
4018 type_pair_eq (const void *item_lhs, const void *item_rhs)
4020 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4022 return lhs->old == rhs->old;
4025 /* Allocate the hash table used by copy_type_recursive to walk
4026 types without duplicates. We use OBJFILE's obstack, because
4027 OBJFILE is about to be deleted. */
4030 create_copied_types_hash (struct objfile *objfile)
4032 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4033 NULL, &objfile->objfile_obstack,
4034 hashtab_obstack_allocate,
4035 dummy_obstack_deallocate);
4038 /* Recursively copy (deep copy) TYPE, if it is associated with
4039 OBJFILE. Return a new type allocated using malloc, a saved type if
4040 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4041 not associated with OBJFILE. */
4044 copy_type_recursive (struct objfile *objfile,
4046 htab_t copied_types)
4048 struct type_pair *stored, pair;
4050 struct type *new_type;
4052 if (! TYPE_OBJFILE_OWNED (type))
4055 /* This type shouldn't be pointing to any types in other objfiles;
4056 if it did, the type might disappear unexpectedly. */
4057 gdb_assert (TYPE_OBJFILE (type) == objfile);
4060 slot = htab_find_slot (copied_types, &pair, INSERT);
4062 return ((struct type_pair *) *slot)->new;
4064 new_type = alloc_type_arch (get_type_arch (type));
4066 /* We must add the new type to the hash table immediately, in case
4067 we encounter this type again during a recursive call below. */
4069 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4071 stored->new = new_type;
4074 /* Copy the common fields of types. For the main type, we simply
4075 copy the entire thing and then update specific fields as needed. */
4076 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4077 TYPE_OBJFILE_OWNED (new_type) = 0;
4078 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4080 if (TYPE_NAME (type))
4081 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4082 if (TYPE_TAG_NAME (type))
4083 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4085 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4086 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4088 /* Copy the fields. */
4089 if (TYPE_NFIELDS (type))
4093 nfields = TYPE_NFIELDS (type);
4094 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4095 for (i = 0; i < nfields; i++)
4097 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4098 TYPE_FIELD_ARTIFICIAL (type, i);
4099 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4100 if (TYPE_FIELD_TYPE (type, i))
4101 TYPE_FIELD_TYPE (new_type, i)
4102 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4104 if (TYPE_FIELD_NAME (type, i))
4105 TYPE_FIELD_NAME (new_type, i) =
4106 xstrdup (TYPE_FIELD_NAME (type, i));
4107 switch (TYPE_FIELD_LOC_KIND (type, i))
4109 case FIELD_LOC_KIND_BITPOS:
4110 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4111 TYPE_FIELD_BITPOS (type, i));
4113 case FIELD_LOC_KIND_ENUMVAL:
4114 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4115 TYPE_FIELD_ENUMVAL (type, i));
4117 case FIELD_LOC_KIND_PHYSADDR:
4118 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4119 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4121 case FIELD_LOC_KIND_PHYSNAME:
4122 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4123 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4127 internal_error (__FILE__, __LINE__,
4128 _("Unexpected type field location kind: %d"),
4129 TYPE_FIELD_LOC_KIND (type, i));
4134 /* For range types, copy the bounds information. */
4135 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4137 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4138 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4141 /* Copy the data location information. */
4142 if (TYPE_DATA_LOCATION (type) != NULL)
4144 TYPE_DATA_LOCATION (new_type)
4145 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4146 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4147 sizeof (struct dynamic_prop));
4150 /* Copy pointers to other types. */
4151 if (TYPE_TARGET_TYPE (type))
4152 TYPE_TARGET_TYPE (new_type) =
4153 copy_type_recursive (objfile,
4154 TYPE_TARGET_TYPE (type),
4156 if (TYPE_VPTR_BASETYPE (type))
4157 TYPE_VPTR_BASETYPE (new_type) =
4158 copy_type_recursive (objfile,
4159 TYPE_VPTR_BASETYPE (type),
4161 /* Maybe copy the type_specific bits.
4163 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4164 base classes and methods. There's no fundamental reason why we
4165 can't, but at the moment it is not needed. */
4167 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4168 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4169 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4170 || TYPE_CODE (type) == TYPE_CODE_UNION
4171 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4172 INIT_CPLUS_SPECIFIC (new_type);
4177 /* Make a copy of the given TYPE, except that the pointer & reference
4178 types are not preserved.
4180 This function assumes that the given type has an associated objfile.
4181 This objfile is used to allocate the new type. */
4184 copy_type (const struct type *type)
4186 struct type *new_type;
4188 gdb_assert (TYPE_OBJFILE_OWNED (type));
4190 new_type = alloc_type_copy (type);
4191 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4192 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4193 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4194 sizeof (struct main_type));
4195 if (TYPE_DATA_LOCATION (type) != NULL)
4197 TYPE_DATA_LOCATION (new_type)
4198 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4199 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4200 sizeof (struct dynamic_prop));
4206 /* Helper functions to initialize architecture-specific types. */
4208 /* Allocate a type structure associated with GDBARCH and set its
4209 CODE, LENGTH, and NAME fields. */
4212 arch_type (struct gdbarch *gdbarch,
4213 enum type_code code, int length, char *name)
4217 type = alloc_type_arch (gdbarch);
4218 TYPE_CODE (type) = code;
4219 TYPE_LENGTH (type) = length;
4222 TYPE_NAME (type) = xstrdup (name);
4227 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4228 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4229 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4232 arch_integer_type (struct gdbarch *gdbarch,
4233 int bit, int unsigned_p, char *name)
4237 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4239 TYPE_UNSIGNED (t) = 1;
4240 if (name && strcmp (name, "char") == 0)
4241 TYPE_NOSIGN (t) = 1;
4246 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4247 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4248 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4251 arch_character_type (struct gdbarch *gdbarch,
4252 int bit, int unsigned_p, char *name)
4256 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4258 TYPE_UNSIGNED (t) = 1;
4263 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4264 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4265 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4268 arch_boolean_type (struct gdbarch *gdbarch,
4269 int bit, int unsigned_p, char *name)
4273 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4275 TYPE_UNSIGNED (t) = 1;
4280 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4281 BIT is the type size in bits; if BIT equals -1, the size is
4282 determined by the floatformat. NAME is the type name. Set the
4283 TYPE_FLOATFORMAT from FLOATFORMATS. */
4286 arch_float_type (struct gdbarch *gdbarch,
4287 int bit, char *name, const struct floatformat **floatformats)
4293 gdb_assert (floatformats != NULL);
4294 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4295 bit = floatformats[0]->totalsize;
4297 gdb_assert (bit >= 0);
4299 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4300 TYPE_FLOATFORMAT (t) = floatformats;
4304 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4305 NAME is the type name. TARGET_TYPE is the component float type. */
4308 arch_complex_type (struct gdbarch *gdbarch,
4309 char *name, struct type *target_type)
4313 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4314 2 * TYPE_LENGTH (target_type), name);
4315 TYPE_TARGET_TYPE (t) = target_type;
4319 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4320 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4323 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4325 int nfields = length * TARGET_CHAR_BIT;
4328 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4329 TYPE_UNSIGNED (type) = 1;
4330 TYPE_NFIELDS (type) = nfields;
4331 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4336 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4337 position BITPOS is called NAME. */
4340 append_flags_type_flag (struct type *type, int bitpos, char *name)
4342 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4343 gdb_assert (bitpos < TYPE_NFIELDS (type));
4344 gdb_assert (bitpos >= 0);
4348 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4349 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4353 /* Don't show this field to the user. */
4354 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4358 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4359 specified by CODE) associated with GDBARCH. NAME is the type name. */
4362 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4366 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4367 t = arch_type (gdbarch, code, 0, NULL);
4368 TYPE_TAG_NAME (t) = name;
4369 INIT_CPLUS_SPECIFIC (t);
4373 /* Add new field with name NAME and type FIELD to composite type T.
4374 Do not set the field's position or adjust the type's length;
4375 the caller should do so. Return the new field. */
4378 append_composite_type_field_raw (struct type *t, char *name,
4383 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4384 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4385 sizeof (struct field) * TYPE_NFIELDS (t));
4386 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4387 memset (f, 0, sizeof f[0]);
4388 FIELD_TYPE (f[0]) = field;
4389 FIELD_NAME (f[0]) = name;
4393 /* Add new field with name NAME and type FIELD to composite type T.
4394 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4397 append_composite_type_field_aligned (struct type *t, char *name,
4398 struct type *field, int alignment)
4400 struct field *f = append_composite_type_field_raw (t, name, field);
4402 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4404 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4405 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4407 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4409 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4410 if (TYPE_NFIELDS (t) > 1)
4412 SET_FIELD_BITPOS (f[0],
4413 (FIELD_BITPOS (f[-1])
4414 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4415 * TARGET_CHAR_BIT)));
4421 alignment *= TARGET_CHAR_BIT;
4422 left = FIELD_BITPOS (f[0]) % alignment;
4426 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4427 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4434 /* Add new field with name NAME and type FIELD to composite type T. */
4437 append_composite_type_field (struct type *t, char *name,
4440 append_composite_type_field_aligned (t, name, field, 0);
4443 static struct gdbarch_data *gdbtypes_data;
4445 const struct builtin_type *
4446 builtin_type (struct gdbarch *gdbarch)
4448 return gdbarch_data (gdbarch, gdbtypes_data);
4452 gdbtypes_post_init (struct gdbarch *gdbarch)
4454 struct builtin_type *builtin_type
4455 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4458 builtin_type->builtin_void
4459 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4460 builtin_type->builtin_char
4461 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4462 !gdbarch_char_signed (gdbarch), "char");
4463 builtin_type->builtin_signed_char
4464 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4466 builtin_type->builtin_unsigned_char
4467 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4468 1, "unsigned char");
4469 builtin_type->builtin_short
4470 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4472 builtin_type->builtin_unsigned_short
4473 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4474 1, "unsigned short");
4475 builtin_type->builtin_int
4476 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4478 builtin_type->builtin_unsigned_int
4479 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4481 builtin_type->builtin_long
4482 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4484 builtin_type->builtin_unsigned_long
4485 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4486 1, "unsigned long");
4487 builtin_type->builtin_long_long
4488 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4490 builtin_type->builtin_unsigned_long_long
4491 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4492 1, "unsigned long long");
4493 builtin_type->builtin_float
4494 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4495 "float", gdbarch_float_format (gdbarch));
4496 builtin_type->builtin_double
4497 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4498 "double", gdbarch_double_format (gdbarch));
4499 builtin_type->builtin_long_double
4500 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4501 "long double", gdbarch_long_double_format (gdbarch));
4502 builtin_type->builtin_complex
4503 = arch_complex_type (gdbarch, "complex",
4504 builtin_type->builtin_float);
4505 builtin_type->builtin_double_complex
4506 = arch_complex_type (gdbarch, "double complex",
4507 builtin_type->builtin_double);
4508 builtin_type->builtin_string
4509 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4510 builtin_type->builtin_bool
4511 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4513 /* The following three are about decimal floating point types, which
4514 are 32-bits, 64-bits and 128-bits respectively. */
4515 builtin_type->builtin_decfloat
4516 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4517 builtin_type->builtin_decdouble
4518 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4519 builtin_type->builtin_declong
4520 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4522 /* "True" character types. */
4523 builtin_type->builtin_true_char
4524 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4525 builtin_type->builtin_true_unsigned_char
4526 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4528 /* Fixed-size integer types. */
4529 builtin_type->builtin_int0
4530 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4531 builtin_type->builtin_int8
4532 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4533 builtin_type->builtin_uint8
4534 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4535 builtin_type->builtin_int16
4536 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4537 builtin_type->builtin_uint16
4538 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4539 builtin_type->builtin_int32
4540 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4541 builtin_type->builtin_uint32
4542 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4543 builtin_type->builtin_int64
4544 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4545 builtin_type->builtin_uint64
4546 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4547 builtin_type->builtin_int128
4548 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4549 builtin_type->builtin_uint128
4550 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4551 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4552 TYPE_INSTANCE_FLAG_NOTTEXT;
4553 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4554 TYPE_INSTANCE_FLAG_NOTTEXT;
4556 /* Wide character types. */
4557 builtin_type->builtin_char16
4558 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4559 builtin_type->builtin_char32
4560 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4563 /* Default data/code pointer types. */
4564 builtin_type->builtin_data_ptr
4565 = lookup_pointer_type (builtin_type->builtin_void);
4566 builtin_type->builtin_func_ptr
4567 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4568 builtin_type->builtin_func_func
4569 = lookup_function_type (builtin_type->builtin_func_ptr);
4571 /* This type represents a GDB internal function. */
4572 builtin_type->internal_fn
4573 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4574 "<internal function>");
4576 /* This type represents an xmethod. */
4577 builtin_type->xmethod
4578 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4580 return builtin_type;
4583 /* This set of objfile-based types is intended to be used by symbol
4584 readers as basic types. */
4586 static const struct objfile_data *objfile_type_data;
4588 const struct objfile_type *
4589 objfile_type (struct objfile *objfile)
4591 struct gdbarch *gdbarch;
4592 struct objfile_type *objfile_type
4593 = objfile_data (objfile, objfile_type_data);
4596 return objfile_type;
4598 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4599 1, struct objfile_type);
4601 /* Use the objfile architecture to determine basic type properties. */
4602 gdbarch = get_objfile_arch (objfile);
4605 objfile_type->builtin_void
4606 = init_type (TYPE_CODE_VOID, 1,
4610 objfile_type->builtin_char
4611 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4613 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4615 objfile_type->builtin_signed_char
4616 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4618 "signed char", objfile);
4619 objfile_type->builtin_unsigned_char
4620 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4622 "unsigned char", objfile);
4623 objfile_type->builtin_short
4624 = init_type (TYPE_CODE_INT,
4625 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4626 0, "short", objfile);
4627 objfile_type->builtin_unsigned_short
4628 = init_type (TYPE_CODE_INT,
4629 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4630 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4631 objfile_type->builtin_int
4632 = init_type (TYPE_CODE_INT,
4633 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4635 objfile_type->builtin_unsigned_int
4636 = init_type (TYPE_CODE_INT,
4637 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4638 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4639 objfile_type->builtin_long
4640 = init_type (TYPE_CODE_INT,
4641 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4642 0, "long", objfile);
4643 objfile_type->builtin_unsigned_long
4644 = init_type (TYPE_CODE_INT,
4645 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4646 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4647 objfile_type->builtin_long_long
4648 = init_type (TYPE_CODE_INT,
4649 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4650 0, "long long", objfile);
4651 objfile_type->builtin_unsigned_long_long
4652 = init_type (TYPE_CODE_INT,
4653 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4654 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4656 objfile_type->builtin_float
4657 = init_type (TYPE_CODE_FLT,
4658 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4659 0, "float", objfile);
4660 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4661 = gdbarch_float_format (gdbarch);
4662 objfile_type->builtin_double
4663 = init_type (TYPE_CODE_FLT,
4664 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4665 0, "double", objfile);
4666 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4667 = gdbarch_double_format (gdbarch);
4668 objfile_type->builtin_long_double
4669 = init_type (TYPE_CODE_FLT,
4670 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4671 0, "long double", objfile);
4672 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4673 = gdbarch_long_double_format (gdbarch);
4675 /* This type represents a type that was unrecognized in symbol read-in. */
4676 objfile_type->builtin_error
4677 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4679 /* The following set of types is used for symbols with no
4680 debug information. */
4681 objfile_type->nodebug_text_symbol
4682 = init_type (TYPE_CODE_FUNC, 1, 0,
4683 "<text variable, no debug info>", objfile);
4684 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4685 = objfile_type->builtin_int;
4686 objfile_type->nodebug_text_gnu_ifunc_symbol
4687 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4688 "<text gnu-indirect-function variable, no debug info>",
4690 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4691 = objfile_type->nodebug_text_symbol;
4692 objfile_type->nodebug_got_plt_symbol
4693 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4694 "<text from jump slot in .got.plt, no debug info>",
4696 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4697 = objfile_type->nodebug_text_symbol;
4698 objfile_type->nodebug_data_symbol
4699 = init_type (TYPE_CODE_INT,
4700 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4701 "<data variable, no debug info>", objfile);
4702 objfile_type->nodebug_unknown_symbol
4703 = init_type (TYPE_CODE_INT, 1, 0,
4704 "<variable (not text or data), no debug info>", objfile);
4705 objfile_type->nodebug_tls_symbol
4706 = init_type (TYPE_CODE_INT,
4707 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4708 "<thread local variable, no debug info>", objfile);
4710 /* NOTE: on some targets, addresses and pointers are not necessarily
4714 - gdb's `struct type' always describes the target's
4716 - gdb's `struct value' objects should always hold values in
4718 - gdb's CORE_ADDR values are addresses in the unified virtual
4719 address space that the assembler and linker work with. Thus,
4720 since target_read_memory takes a CORE_ADDR as an argument, it
4721 can access any memory on the target, even if the processor has
4722 separate code and data address spaces.
4724 In this context, objfile_type->builtin_core_addr is a bit odd:
4725 it's a target type for a value the target will never see. It's
4726 only used to hold the values of (typeless) linker symbols, which
4727 are indeed in the unified virtual address space. */
4729 objfile_type->builtin_core_addr
4730 = init_type (TYPE_CODE_INT,
4731 gdbarch_addr_bit (gdbarch) / 8,
4732 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4734 set_objfile_data (objfile, objfile_type_data, objfile_type);
4735 return objfile_type;
4738 extern initialize_file_ftype _initialize_gdbtypes;
4741 _initialize_gdbtypes (void)
4743 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4744 objfile_type_data = register_objfile_data ();
4746 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4747 _("Set debugging of C++ overloading."),
4748 _("Show debugging of C++ overloading."),
4749 _("When enabled, ranking of the "
4750 "functions is displayed."),
4752 show_overload_debug,
4753 &setdebuglist, &showdebuglist);
4755 /* Add user knob for controlling resolution of opaque types. */
4756 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4757 &opaque_type_resolution,
4758 _("Set resolution of opaque struct/class/union"
4759 " types (if set before loading symbols)."),
4760 _("Show resolution of opaque struct/class/union"
4761 " types (if set before loading symbols)."),
4763 show_opaque_type_resolution,
4764 &setlist, &showlist);
4766 /* Add an option to permit non-strict type checking. */
4767 add_setshow_boolean_cmd ("type", class_support,
4768 &strict_type_checking,
4769 _("Set strict type checking."),
4770 _("Show strict type checking."),
4772 show_strict_type_checking,
4773 &setchecklist, &showchecklist);