3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
9 # This file is part of GDB.
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 # Make certain that the script is running in an internationalized
28 LC_ALL=c ; export LC_ALL
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
39 echo "${file} unchanged" 1>&2
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
46 # Format of the input table
47 read="class macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print garbage_at_eol"
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\${${r}}\" = \"\ \"
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
98 # Provide a UCASE version of function (for when there isn't MACRO)
100 elif test "${macro}" = "${FUNCTION}"
102 echo "${function}: Specify = for macro field" 1>&2
107 # Check that macro definition wasn't supplied for multi-arch
110 if test "${macro}" != ""
112 echo "${macro}: Multi-arch yet macro" 1>&2
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
126 case "${invalid_p}" in
128 if test -n "${predefault}"
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
137 predicate="gdbarch->${function} != NULL"
141 echo "Predicate function ${function} with invalid_p." 1>&2
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
155 if [ -n "${postdefault}" ]
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
160 fallbackdefault="${predefault}"
165 #NOT YET: See gdbarch.log for basic verification of
180 fallback_default_p ()
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
186 class_is_variable_p ()
194 class_is_function_p ()
197 *f* | *F* | *m* | *M* ) true ;;
202 class_is_multiarch_p ()
210 class_is_predicate_p ()
213 *F* | *V* | *M* ) true ;;
227 # dump out/verify the doco
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
258 # For functions, the return type; for variables, the data type
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
281 # Any GCC attributes that should be attached to the function
282 # declaration. At present this field is unused.
286 # To help with the GDB startup a static gdbarch object is
287 # created. STATICDEFAULT is the value to insert into that
288 # static gdbarch object. Since this a static object only
289 # simple expressions can be used.
291 # If STATICDEFAULT is empty, zero is used.
295 # An initial value to assign to MEMBER of the freshly
296 # malloc()ed gdbarch object. After initialization, the
297 # freshly malloc()ed object is passed to the target
298 # architecture code for further updates.
300 # If PREDEFAULT is empty, zero is used.
302 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
303 # INVALID_P are specified, PREDEFAULT will be used as the
304 # default for the non- multi-arch target.
306 # A zero PREDEFAULT function will force the fallback to call
309 # Variable declarations can refer to ``gdbarch'' which will
310 # contain the current architecture. Care should be taken.
314 # A value to assign to MEMBER of the new gdbarch object should
315 # the target architecture code fail to change the PREDEFAULT
318 # If POSTDEFAULT is empty, no post update is performed.
320 # If both INVALID_P and POSTDEFAULT are non-empty then
321 # INVALID_P will be used to determine if MEMBER should be
322 # changed to POSTDEFAULT.
324 # If a non-empty POSTDEFAULT and a zero INVALID_P are
325 # specified, POSTDEFAULT will be used as the default for the
326 # non- multi-arch target (regardless of the value of
329 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
331 # Variable declarations can refer to ``current_gdbarch'' which
332 # will contain the current architecture. Care should be
337 # A predicate equation that validates MEMBER. Non-zero is
338 # returned if the code creating the new architecture failed to
339 # initialize MEMBER or the initialized the member is invalid.
340 # If POSTDEFAULT is non-empty then MEMBER will be updated to
341 # that value. If POSTDEFAULT is empty then internal_error()
344 # If INVALID_P is empty, a check that MEMBER is no longer
345 # equal to PREDEFAULT is used.
347 # The expression ``0'' disables the INVALID_P check making
348 # PREDEFAULT a legitimate value.
350 # See also PREDEFAULT and POSTDEFAULT.
354 # printf style format string that can be used to print out the
355 # MEMBER. Sometimes "%s" is useful. For functions, this is
356 # ignored and the function address is printed.
358 # If FMT is empty, ``%ld'' is used.
362 # An optional equation that casts MEMBER to a value suitable
363 # for formatting by FMT.
365 # If PRINT is empty, ``(long)'' is used.
367 garbage_at_eol ) : ;;
369 # Catches stray fields.
372 echo "Bad field ${field}"
380 # See below (DOCO) for description of each field
382 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name
384 i:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
386 i:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
387 # Number of bits in a char or unsigned char for the target machine.
388 # Just like CHAR_BIT in <limits.h> but describes the target machine.
389 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
391 # Number of bits in a short or unsigned short for the target machine.
392 v:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
393 # Number of bits in an int or unsigned int for the target machine.
394 v:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
395 # Number of bits in a long or unsigned long for the target machine.
396 v:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
397 # Number of bits in a long long or unsigned long long for the target
399 v:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
401 # The ABI default bit-size and format for "float", "double", and "long
402 # double". These bit/format pairs should eventually be combined into
403 # a single object. For the moment, just initialize them as a pair.
405 v:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
406 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:pformat (current_gdbarch->float_format)
407 v:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
408 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:pformat (current_gdbarch->double_format)
409 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
410 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:pformat (current_gdbarch->long_double_format)
412 # For most targets, a pointer on the target and its representation as an
413 # address in GDB have the same size and "look the same". For such a
414 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
415 # / addr_bit will be set from it.
417 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
418 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
420 # ptr_bit is the size of a pointer on the target
421 v:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
422 # addr_bit is the size of a target address as represented in gdb
423 v:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
424 # Number of bits in a BFD_VMA for the target object file format.
425 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
427 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
428 v:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
430 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
431 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
432 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
433 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
434 # Function for getting target's idea of a frame pointer. FIXME: GDB's
435 # whole scheme for dealing with "frames" and "frame pointers" needs a
437 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
439 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
440 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
442 v:=:int:num_regs::::0:-1
443 # This macro gives the number of pseudo-registers that live in the
444 # register namespace but do not get fetched or stored on the target.
445 # These pseudo-registers may be aliases for other registers,
446 # combinations of other registers, or they may be computed by GDB.
447 v:=:int:num_pseudo_regs::::0:0::0:::
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
452 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
453 v:=:int:sp_regnum::::-1:-1::0
454 v:=:int:pc_regnum::::-1:-1::0
455 v:=:int:ps_regnum::::-1:-1::0
456 v:=:int:fp0_regnum::::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
462 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
463 # Convert from an sdb register number to an internal gdb register number.
464 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
465 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
466 f:=:const char *:register_name:int regnr:regnr
468 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
469 M::struct type *:register_type:int reg_nr:reg_nr
470 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
471 # register offsets computed using just REGISTER_TYPE, this can be
472 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
473 # function with predicate has a valid (callable) initial value. As a
474 # consequence, even when the predicate is false, the corresponding
475 # function works. This simplifies the migration process - old code,
476 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
477 F:=:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
479 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
480 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
481 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
482 # DEPRECATED_FP_REGNUM.
483 v:=:int:deprecated_fp_regnum::::-1:-1::0
485 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
486 # replacement for DEPRECATED_PUSH_ARGUMENTS.
487 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
488 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
489 F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
490 # DEPRECATED_REGISTER_SIZE can be deleted.
491 v:=:int:deprecated_register_size
492 v:=:int:call_dummy_location:::::AT_ENTRY_POINT::0
493 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
495 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
496 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
497 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
498 # MAP a GDB RAW register number onto a simulator register number. See
499 # also include/...-sim.h.
500 f:=:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
501 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
502 f:=:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
503 f:=:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
504 # setjmp/longjmp support.
505 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
507 v:=:int:believe_pcc_promotion:::::::
509 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type::0:generic_convert_register_p::0
510 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0
511 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0
513 f:=:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
514 f:=:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
515 F:=:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
517 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
518 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
520 # It has been suggested that this, well actually its predecessor,
521 # should take the type/value of the function to be called and not the
522 # return type. This is left as an exercise for the reader.
524 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
525 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
526 # (via legacy_return_value), when a small struct is involved.
528 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf:::legacy_return_value
530 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
531 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
532 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
535 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
536 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
537 f:=:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
538 f:=:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
539 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
541 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
542 # ABI suitable for the implementation of a robust extract
543 # struct-convention return-value address method (the sparc saves the
544 # address in the callers frame). All the other cases so far examined,
545 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
546 # erreneous - the code was incorrectly assuming that the return-value
547 # address, stored in a register, was preserved across the entire
550 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
551 # the ABIs that are still to be analyzed - perhaps this should simply
552 # be deleted. The commented out extract_returned_value_address method
553 # is provided as a starting point for the 32-bit SPARC. It, or
554 # something like it, along with changes to both infcmd.c and stack.c
555 # will be needed for that case to work. NB: It is passed the callers
556 # frame since it is only after the callee has returned that this
559 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
560 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
563 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
564 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
565 f:=:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
566 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
567 f:=:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
568 f:=:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
569 v:=:CORE_ADDR:decr_pc_after_break::::0:::0
571 # A function can be addressed by either it's "pointer" (possibly a
572 # descriptor address) or "entry point" (first executable instruction).
573 # The method "convert_from_func_ptr_addr" converting the former to the
574 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
575 # a simplified subset of that functionality - the function's address
576 # corresponds to the "function pointer" and the function's start
577 # corresponds to the "function entry point" - and hence is redundant.
579 v:=:CORE_ADDR:deprecated_function_start_offset::::0:::0
581 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
583 v:=:CORE_ADDR:frame_args_skip::::0:::0
584 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
585 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
586 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
587 # frame-base. Enable frame-base before frame-unwind.
588 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
589 F:=:int:frame_num_args:struct frame_info *frame:frame
591 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
592 # to frame_align and the requirement that methods such as
593 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
595 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
596 M::CORE_ADDR:frame_align:CORE_ADDR address:address
597 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
598 # stabs_argument_has_addr.
599 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
600 m::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
601 v:=:int:frame_red_zone_size
603 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
604 # On some machines there are bits in addresses which are not really
605 # part of the address, but are used by the kernel, the hardware, etc.
606 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
607 # we get a "real" address such as one would find in a symbol table.
608 # This is used only for addresses of instructions, and even then I'm
609 # not sure it's used in all contexts. It exists to deal with there
610 # being a few stray bits in the PC which would mislead us, not as some
611 # sort of generic thing to handle alignment or segmentation (it's
612 # possible it should be in TARGET_READ_PC instead).
613 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
614 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
616 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
617 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
618 # the target needs software single step. An ISA method to implement it.
620 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
621 # using the breakpoint system instead of blatting memory directly (as with rs6000).
623 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
624 # single step. If not, then implement single step using breakpoints.
625 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
626 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
627 # disassembler. Perhaps objdump can handle it?
628 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
629 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
632 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
633 # evaluates non-zero, this is the address where the debugger will place
634 # a step-resume breakpoint to get us past the dynamic linker.
635 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
636 # For SVR4 shared libraries, each call goes through a small piece of
637 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
638 # to nonzero if we are currently stopped in one of these.
639 f:=:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
641 # Some systems also have trampoline code for returning from shared libs.
642 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
644 # A target might have problems with watchpoints as soon as the stack
645 # frame of the current function has been destroyed. This mostly happens
646 # as the first action in a funtion's epilogue. in_function_epilogue_p()
647 # is defined to return a non-zero value if either the given addr is one
648 # instruction after the stack destroying instruction up to the trailing
649 # return instruction or if we can figure out that the stack frame has
650 # already been invalidated regardless of the value of addr. Targets
651 # which don't suffer from that problem could just let this functionality
653 m::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
654 # Given a vector of command-line arguments, return a newly allocated
655 # string which, when passed to the create_inferior function, will be
656 # parsed (on Unix systems, by the shell) to yield the same vector.
657 # This function should call error() if the argument vector is not
658 # representable for this target or if this target does not support
659 # command-line arguments.
660 # ARGC is the number of elements in the vector.
661 # ARGV is an array of strings, one per argument.
662 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
663 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
664 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
665 v:=:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
666 v:=:int:cannot_step_breakpoint::::0:0::0
667 v:=:int:have_nonsteppable_watchpoint::::0:0::0
668 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
669 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
670 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
671 # Is a register in a group
672 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
673 # Fetch the pointer to the ith function argument.
674 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
676 # Return the appropriate register set for a core file section with
677 # name SECT_NAME and size SECT_SIZE.
678 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
685 exec > new-gdbarch.log
686 function_list | while do_read
689 ${class} ${returntype} ${function} ($formal)${attrib}
693 eval echo \"\ \ \ \ ${r}=\${${r}}\"
695 if class_is_predicate_p && fallback_default_p
697 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
701 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
703 echo "Error: postdefault is useless when invalid_p=0" 1>&2
707 if class_is_multiarch_p
709 if class_is_predicate_p ; then :
710 elif test "x${predefault}" = "x"
712 echo "Error: pure multi-arch function must have a predefault" 1>&2
721 compare_new gdbarch.log
727 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
729 /* Dynamic architecture support for GDB, the GNU debugger.
731 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
732 Software Foundation, Inc.
734 This file is part of GDB.
736 This program is free software; you can redistribute it and/or modify
737 it under the terms of the GNU General Public License as published by
738 the Free Software Foundation; either version 2 of the License, or
739 (at your option) any later version.
741 This program is distributed in the hope that it will be useful,
742 but WITHOUT ANY WARRANTY; without even the implied warranty of
743 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
744 GNU General Public License for more details.
746 You should have received a copy of the GNU General Public License
747 along with this program; if not, write to the Free Software
748 Foundation, Inc., 59 Temple Place - Suite 330,
749 Boston, MA 02111-1307, USA. */
751 /* This file was created with the aid of \`\`gdbarch.sh''.
753 The Bourne shell script \`\`gdbarch.sh'' creates the files
754 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
755 against the existing \`\`gdbarch.[hc]''. Any differences found
758 If editing this file, please also run gdbarch.sh and merge any
759 changes into that script. Conversely, when making sweeping changes
760 to this file, modifying gdbarch.sh and using its output may prove
781 struct minimal_symbol;
785 struct disassemble_info;
789 extern struct gdbarch *current_gdbarch;
791 /* If any of the following are defined, the target wasn't correctly
794 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
795 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
802 printf "/* The following are pre-initialized by GDBARCH. */\n"
803 function_list | while do_read
808 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
809 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
810 if test -n "${macro}"
812 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
813 printf "#error \"Non multi-arch definition of ${macro}\"\n"
815 printf "#if !defined (${macro})\n"
816 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
825 printf "/* The following are initialized by the target dependent code. */\n"
826 function_list | while do_read
828 if [ -n "${comment}" ]
830 echo "${comment}" | sed \
836 if class_is_predicate_p
838 if test -n "${macro}"
841 printf "#if defined (${macro})\n"
842 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
843 printf "#if !defined (${macro}_P)\n"
844 printf "#define ${macro}_P() (1)\n"
849 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
850 if test -n "${macro}"
852 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
853 printf "#error \"Non multi-arch definition of ${macro}\"\n"
855 printf "#if !defined (${macro}_P)\n"
856 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
860 if class_is_variable_p
863 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
864 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
865 if test -n "${macro}"
867 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
868 printf "#error \"Non multi-arch definition of ${macro}\"\n"
870 printf "#if !defined (${macro})\n"
871 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
875 if class_is_function_p
878 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
880 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
881 elif class_is_multiarch_p
883 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
885 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
887 if [ "x${formal}" = "xvoid" ]
889 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
891 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
893 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
894 if test -n "${macro}"
896 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
897 printf "#error \"Non multi-arch definition of ${macro}\"\n"
899 if [ "x${actual}" = "x" ]
901 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
902 elif [ "x${actual}" = "x-" ]
904 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
906 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
908 printf "#if !defined (${macro})\n"
909 if [ "x${actual}" = "x" ]
911 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
912 elif [ "x${actual}" = "x-" ]
914 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
916 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
926 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
929 /* Mechanism for co-ordinating the selection of a specific
932 GDB targets (*-tdep.c) can register an interest in a specific
933 architecture. Other GDB components can register a need to maintain
934 per-architecture data.
936 The mechanisms below ensures that there is only a loose connection
937 between the set-architecture command and the various GDB
938 components. Each component can independently register their need
939 to maintain architecture specific data with gdbarch.
943 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
946 The more traditional mega-struct containing architecture specific
947 data for all the various GDB components was also considered. Since
948 GDB is built from a variable number of (fairly independent)
949 components it was determined that the global aproach was not
953 /* Register a new architectural family with GDB.
955 Register support for the specified ARCHITECTURE with GDB. When
956 gdbarch determines that the specified architecture has been
957 selected, the corresponding INIT function is called.
961 The INIT function takes two parameters: INFO which contains the
962 information available to gdbarch about the (possibly new)
963 architecture; ARCHES which is a list of the previously created
964 \`\`struct gdbarch'' for this architecture.
966 The INFO parameter is, as far as possible, be pre-initialized with
967 information obtained from INFO.ABFD or the previously selected
970 The ARCHES parameter is a linked list (sorted most recently used)
971 of all the previously created architures for this architecture
972 family. The (possibly NULL) ARCHES->gdbarch can used to access
973 values from the previously selected architecture for this
974 architecture family. The global \`\`current_gdbarch'' shall not be
977 The INIT function shall return any of: NULL - indicating that it
978 doesn't recognize the selected architecture; an existing \`\`struct
979 gdbarch'' from the ARCHES list - indicating that the new
980 architecture is just a synonym for an earlier architecture (see
981 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
982 - that describes the selected architecture (see gdbarch_alloc()).
984 The DUMP_TDEP function shall print out all target specific values.
985 Care should be taken to ensure that the function works in both the
986 multi-arch and non- multi-arch cases. */
990 struct gdbarch *gdbarch;
991 struct gdbarch_list *next;
996 /* Use default: NULL (ZERO). */
997 const struct bfd_arch_info *bfd_arch_info;
999 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1002 /* Use default: NULL (ZERO). */
1005 /* Use default: NULL (ZERO). */
1006 struct gdbarch_tdep_info *tdep_info;
1008 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1009 enum gdb_osabi osabi;
1012 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1013 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1015 /* DEPRECATED - use gdbarch_register() */
1016 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1018 extern void gdbarch_register (enum bfd_architecture architecture,
1019 gdbarch_init_ftype *,
1020 gdbarch_dump_tdep_ftype *);
1023 /* Return a freshly allocated, NULL terminated, array of the valid
1024 architecture names. Since architectures are registered during the
1025 _initialize phase this function only returns useful information
1026 once initialization has been completed. */
1028 extern const char **gdbarch_printable_names (void);
1031 /* Helper function. Search the list of ARCHES for a GDBARCH that
1032 matches the information provided by INFO. */
1034 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1037 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1038 basic initialization using values obtained from the INFO andTDEP
1039 parameters. set_gdbarch_*() functions are called to complete the
1040 initialization of the object. */
1042 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1045 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1046 It is assumed that the caller freeds the \`\`struct
1049 extern void gdbarch_free (struct gdbarch *);
1052 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1053 obstack. The memory is freed when the corresponding architecture
1056 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1057 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1058 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1061 /* Helper function. Force an update of the current architecture.
1063 The actual architecture selected is determined by INFO, \`\`(gdb) set
1064 architecture'' et.al., the existing architecture and BFD's default
1065 architecture. INFO should be initialized to zero and then selected
1066 fields should be updated.
1068 Returns non-zero if the update succeeds */
1070 extern int gdbarch_update_p (struct gdbarch_info info);
1073 /* Helper function. Find an architecture matching info.
1075 INFO should be initialized using gdbarch_info_init, relevant fields
1076 set, and then finished using gdbarch_info_fill.
1078 Returns the corresponding architecture, or NULL if no matching
1079 architecture was found. "current_gdbarch" is not updated. */
1081 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1084 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1086 FIXME: kettenis/20031124: Of the functions that follow, only
1087 gdbarch_from_bfd is supposed to survive. The others will
1088 dissappear since in the future GDB will (hopefully) be truly
1089 multi-arch. However, for now we're still stuck with the concept of
1090 a single active architecture. */
1092 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1095 /* Register per-architecture data-pointer.
1097 Reserve space for a per-architecture data-pointer. An identifier
1098 for the reserved data-pointer is returned. That identifer should
1099 be saved in a local static variable.
1101 Memory for the per-architecture data shall be allocated using
1102 gdbarch_obstack_zalloc. That memory will be deleted when the
1103 corresponding architecture object is deleted.
1105 When a previously created architecture is re-selected, the
1106 per-architecture data-pointer for that previous architecture is
1107 restored. INIT() is not re-called.
1109 Multiple registrarants for any architecture are allowed (and
1110 strongly encouraged). */
1112 struct gdbarch_data;
1114 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1115 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1116 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1117 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1118 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1119 struct gdbarch_data *data,
1122 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1126 /* Register per-architecture memory region.
1128 Provide a memory-region swap mechanism. Per-architecture memory
1129 region are created. These memory regions are swapped whenever the
1130 architecture is changed. For a new architecture, the memory region
1131 is initialized with zero (0) and the INIT function is called.
1133 Memory regions are swapped / initialized in the order that they are
1134 registered. NULL DATA and/or INIT values can be specified.
1136 New code should use gdbarch_data_register_*(). */
1138 typedef void (gdbarch_swap_ftype) (void);
1139 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1140 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1144 /* Set the dynamic target-system-dependent parameters (architecture,
1145 byte-order, ...) using information found in the BFD */
1147 extern void set_gdbarch_from_file (bfd *);
1150 /* Initialize the current architecture to the "first" one we find on
1153 extern void initialize_current_architecture (void);
1155 /* gdbarch trace variable */
1156 extern int gdbarch_debug;
1158 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1163 #../move-if-change new-gdbarch.h gdbarch.h
1164 compare_new gdbarch.h
1171 exec > new-gdbarch.c
1176 #include "arch-utils.h"
1179 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1182 #include "floatformat.h"
1184 #include "gdb_assert.h"
1185 #include "gdb_string.h"
1186 #include "gdb-events.h"
1187 #include "reggroups.h"
1189 #include "gdb_obstack.h"
1191 /* Static function declarations */
1193 static void alloc_gdbarch_data (struct gdbarch *);
1195 /* Non-zero if we want to trace architecture code. */
1197 #ifndef GDBARCH_DEBUG
1198 #define GDBARCH_DEBUG 0
1200 int gdbarch_debug = GDBARCH_DEBUG;
1203 pformat (const struct floatformat *format)
1208 return format->name;
1213 # gdbarch open the gdbarch object
1215 printf "/* Maintain the struct gdbarch object */\n"
1217 printf "struct gdbarch\n"
1219 printf " /* Has this architecture been fully initialized? */\n"
1220 printf " int initialized_p;\n"
1222 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1223 printf " struct obstack *obstack;\n"
1225 printf " /* basic architectural information */\n"
1226 function_list | while do_read
1230 printf " ${returntype} ${function};\n"
1234 printf " /* target specific vector. */\n"
1235 printf " struct gdbarch_tdep *tdep;\n"
1236 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1238 printf " /* per-architecture data-pointers */\n"
1239 printf " unsigned nr_data;\n"
1240 printf " void **data;\n"
1242 printf " /* per-architecture swap-regions */\n"
1243 printf " struct gdbarch_swap *swap;\n"
1246 /* Multi-arch values.
1248 When extending this structure you must:
1250 Add the field below.
1252 Declare set/get functions and define the corresponding
1255 gdbarch_alloc(): If zero/NULL is not a suitable default,
1256 initialize the new field.
1258 verify_gdbarch(): Confirm that the target updated the field
1261 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1264 \`\`startup_gdbarch()'': Append an initial value to the static
1265 variable (base values on the host's c-type system).
1267 get_gdbarch(): Implement the set/get functions (probably using
1268 the macro's as shortcuts).
1273 function_list | while do_read
1275 if class_is_variable_p
1277 printf " ${returntype} ${function};\n"
1278 elif class_is_function_p
1280 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1285 # A pre-initialized vector
1289 /* The default architecture uses host values (for want of a better
1293 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1295 printf "struct gdbarch startup_gdbarch =\n"
1297 printf " 1, /* Always initialized. */\n"
1298 printf " NULL, /* The obstack. */\n"
1299 printf " /* basic architecture information */\n"
1300 function_list | while do_read
1304 printf " ${staticdefault}, /* ${function} */\n"
1308 /* target specific vector and its dump routine */
1310 /*per-architecture data-pointers and swap regions */
1312 /* Multi-arch values */
1314 function_list | while do_read
1316 if class_is_function_p || class_is_variable_p
1318 printf " ${staticdefault}, /* ${function} */\n"
1322 /* startup_gdbarch() */
1325 struct gdbarch *current_gdbarch = &startup_gdbarch;
1328 # Create a new gdbarch struct
1331 /* Create a new \`\`struct gdbarch'' based on information provided by
1332 \`\`struct gdbarch_info''. */
1337 gdbarch_alloc (const struct gdbarch_info *info,
1338 struct gdbarch_tdep *tdep)
1340 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1341 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1342 the current local architecture and not the previous global
1343 architecture. This ensures that the new architectures initial
1344 values are not influenced by the previous architecture. Once
1345 everything is parameterised with gdbarch, this will go away. */
1346 struct gdbarch *current_gdbarch;
1348 /* Create an obstack for allocating all the per-architecture memory,
1349 then use that to allocate the architecture vector. */
1350 struct obstack *obstack = XMALLOC (struct obstack);
1351 obstack_init (obstack);
1352 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1353 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1354 current_gdbarch->obstack = obstack;
1356 alloc_gdbarch_data (current_gdbarch);
1358 current_gdbarch->tdep = tdep;
1361 function_list | while do_read
1365 printf " current_gdbarch->${function} = info->${function};\n"
1369 printf " /* Force the explicit initialization of these. */\n"
1370 function_list | while do_read
1372 if class_is_function_p || class_is_variable_p
1374 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1376 printf " current_gdbarch->${function} = ${predefault};\n"
1381 /* gdbarch_alloc() */
1383 return current_gdbarch;
1387 # Free a gdbarch struct.
1391 /* Allocate extra space using the per-architecture obstack. */
1394 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1396 void *data = obstack_alloc (arch->obstack, size);
1397 memset (data, 0, size);
1402 /* Free a gdbarch struct. This should never happen in normal
1403 operation --- once you've created a gdbarch, you keep it around.
1404 However, if an architecture's init function encounters an error
1405 building the structure, it may need to clean up a partially
1406 constructed gdbarch. */
1409 gdbarch_free (struct gdbarch *arch)
1411 struct obstack *obstack;
1412 gdb_assert (arch != NULL);
1413 gdb_assert (!arch->initialized_p);
1414 obstack = arch->obstack;
1415 obstack_free (obstack, 0); /* Includes the ARCH. */
1420 # verify a new architecture
1424 /* Ensure that all values in a GDBARCH are reasonable. */
1426 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1427 just happens to match the global variable \`\`current_gdbarch''. That
1428 way macros refering to that variable get the local and not the global
1429 version - ulgh. Once everything is parameterised with gdbarch, this
1433 verify_gdbarch (struct gdbarch *current_gdbarch)
1435 struct ui_file *log;
1436 struct cleanup *cleanups;
1439 log = mem_fileopen ();
1440 cleanups = make_cleanup_ui_file_delete (log);
1442 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1443 fprintf_unfiltered (log, "\n\tbyte-order");
1444 if (current_gdbarch->bfd_arch_info == NULL)
1445 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1446 /* Check those that need to be defined for the given multi-arch level. */
1448 function_list | while do_read
1450 if class_is_function_p || class_is_variable_p
1452 if [ "x${invalid_p}" = "x0" ]
1454 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1455 elif class_is_predicate_p
1457 printf " /* Skip verify of ${function}, has predicate */\n"
1458 # FIXME: See do_read for potential simplification
1459 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1461 printf " if (${invalid_p})\n"
1462 printf " current_gdbarch->${function} = ${postdefault};\n"
1463 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1465 printf " if (current_gdbarch->${function} == ${predefault})\n"
1466 printf " current_gdbarch->${function} = ${postdefault};\n"
1467 elif [ -n "${postdefault}" ]
1469 printf " if (current_gdbarch->${function} == 0)\n"
1470 printf " current_gdbarch->${function} = ${postdefault};\n"
1471 elif [ -n "${invalid_p}" ]
1473 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1474 printf " && (${invalid_p}))\n"
1475 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1476 elif [ -n "${predefault}" ]
1478 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1479 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1480 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1485 buf = ui_file_xstrdup (log, &dummy);
1486 make_cleanup (xfree, buf);
1487 if (strlen (buf) > 0)
1488 internal_error (__FILE__, __LINE__,
1489 "verify_gdbarch: the following are invalid ...%s",
1491 do_cleanups (cleanups);
1495 # dump the structure
1499 /* Print out the details of the current architecture. */
1501 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1502 just happens to match the global variable \`\`current_gdbarch''. That
1503 way macros refering to that variable get the local and not the global
1504 version - ulgh. Once everything is parameterised with gdbarch, this
1508 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1510 fprintf_unfiltered (file,
1511 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1514 function_list | sort -t: -k 4 | while do_read
1516 # First the predicate
1517 if class_is_predicate_p
1519 if test -n "${macro}"
1521 printf "#ifdef ${macro}_P\n"
1522 printf " fprintf_unfiltered (file,\n"
1523 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1524 printf " \"${macro}_P()\",\n"
1525 printf " XSTRING (${macro}_P ()));\n"
1528 printf " fprintf_unfiltered (file,\n"
1529 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1530 printf " gdbarch_${function}_p (current_gdbarch));\n"
1532 # Print the macro definition.
1533 if test -n "${macro}"
1535 printf "#ifdef ${macro}\n"
1536 if class_is_function_p
1538 printf " fprintf_unfiltered (file,\n"
1539 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1540 printf " \"${macro}(${actual})\",\n"
1541 printf " XSTRING (${macro} (${actual})));\n"
1543 printf " fprintf_unfiltered (file,\n"
1544 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1545 printf " XSTRING (${macro}));\n"
1549 # Print the corresponding value.
1550 if class_is_function_p
1552 printf " fprintf_unfiltered (file,\n"
1553 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1554 printf " (long) current_gdbarch->${function});\n"
1557 case "${fmt}:${print}:${returntype}" in
1560 print="paddr_nz (current_gdbarch->${function})"
1564 print="paddr_d (current_gdbarch->${function})"
1567 test "${fmt}" || fmt="%ld"
1568 test "${print}" || print="(long) (current_gdbarch->${function})"
1571 printf " fprintf_unfiltered (file,\n"
1572 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1573 printf " ${print});\n"
1577 if (current_gdbarch->dump_tdep != NULL)
1578 current_gdbarch->dump_tdep (current_gdbarch, file);
1586 struct gdbarch_tdep *
1587 gdbarch_tdep (struct gdbarch *gdbarch)
1589 if (gdbarch_debug >= 2)
1590 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1591 return gdbarch->tdep;
1595 function_list | while do_read
1597 if class_is_predicate_p
1601 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1603 printf " gdb_assert (gdbarch != NULL);\n"
1604 printf " return ${predicate};\n"
1607 if class_is_function_p
1610 printf "${returntype}\n"
1611 if [ "x${formal}" = "xvoid" ]
1613 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1615 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1618 printf " gdb_assert (gdbarch != NULL);\n"
1619 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1620 if class_is_predicate_p && test -n "${predefault}"
1622 # Allow a call to a function with a predicate.
1623 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1625 printf " if (gdbarch_debug >= 2)\n"
1626 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1627 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1629 if class_is_multiarch_p
1636 if class_is_multiarch_p
1638 params="gdbarch, ${actual}"
1643 if [ "x${returntype}" = "xvoid" ]
1645 printf " gdbarch->${function} (${params});\n"
1647 printf " return gdbarch->${function} (${params});\n"
1652 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1653 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1655 printf " gdbarch->${function} = ${function};\n"
1657 elif class_is_variable_p
1660 printf "${returntype}\n"
1661 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1663 printf " gdb_assert (gdbarch != NULL);\n"
1664 if [ "x${invalid_p}" = "x0" ]
1666 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1667 elif [ -n "${invalid_p}" ]
1669 printf " /* Check variable is valid. */\n"
1670 printf " gdb_assert (!(${invalid_p}));\n"
1671 elif [ -n "${predefault}" ]
1673 printf " /* Check variable changed from pre-default. */\n"
1674 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1676 printf " if (gdbarch_debug >= 2)\n"
1677 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1678 printf " return gdbarch->${function};\n"
1682 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1683 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1685 printf " gdbarch->${function} = ${function};\n"
1687 elif class_is_info_p
1690 printf "${returntype}\n"
1691 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1693 printf " gdb_assert (gdbarch != NULL);\n"
1694 printf " if (gdbarch_debug >= 2)\n"
1695 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1696 printf " return gdbarch->${function};\n"
1701 # All the trailing guff
1705 /* Keep a registry of per-architecture data-pointers required by GDB
1712 gdbarch_data_pre_init_ftype *pre_init;
1713 gdbarch_data_post_init_ftype *post_init;
1716 struct gdbarch_data_registration
1718 struct gdbarch_data *data;
1719 struct gdbarch_data_registration *next;
1722 struct gdbarch_data_registry
1725 struct gdbarch_data_registration *registrations;
1728 struct gdbarch_data_registry gdbarch_data_registry =
1733 static struct gdbarch_data *
1734 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1735 gdbarch_data_post_init_ftype *post_init)
1737 struct gdbarch_data_registration **curr;
1738 /* Append the new registraration. */
1739 for (curr = &gdbarch_data_registry.registrations;
1741 curr = &(*curr)->next);
1742 (*curr) = XMALLOC (struct gdbarch_data_registration);
1743 (*curr)->next = NULL;
1744 (*curr)->data = XMALLOC (struct gdbarch_data);
1745 (*curr)->data->index = gdbarch_data_registry.nr++;
1746 (*curr)->data->pre_init = pre_init;
1747 (*curr)->data->post_init = post_init;
1748 (*curr)->data->init_p = 1;
1749 return (*curr)->data;
1752 struct gdbarch_data *
1753 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1755 return gdbarch_data_register (pre_init, NULL);
1758 struct gdbarch_data *
1759 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1761 return gdbarch_data_register (NULL, post_init);
1764 /* Create/delete the gdbarch data vector. */
1767 alloc_gdbarch_data (struct gdbarch *gdbarch)
1769 gdb_assert (gdbarch->data == NULL);
1770 gdbarch->nr_data = gdbarch_data_registry.nr;
1771 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1774 /* Initialize the current value of the specified per-architecture
1778 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1779 struct gdbarch_data *data,
1782 gdb_assert (data->index < gdbarch->nr_data);
1783 gdb_assert (gdbarch->data[data->index] == NULL);
1784 gdb_assert (data->pre_init == NULL);
1785 gdbarch->data[data->index] = pointer;
1788 /* Return the current value of the specified per-architecture
1792 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1794 gdb_assert (data->index < gdbarch->nr_data);
1795 if (gdbarch->data[data->index] == NULL)
1797 /* The data-pointer isn't initialized, call init() to get a
1799 if (data->pre_init != NULL)
1800 /* Mid architecture creation: pass just the obstack, and not
1801 the entire architecture, as that way it isn't possible for
1802 pre-init code to refer to undefined architecture
1804 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1805 else if (gdbarch->initialized_p
1806 && data->post_init != NULL)
1807 /* Post architecture creation: pass the entire architecture
1808 (as all fields are valid), but be careful to also detect
1809 recursive references. */
1811 gdb_assert (data->init_p);
1813 gdbarch->data[data->index] = data->post_init (gdbarch);
1817 /* The architecture initialization hasn't completed - punt -
1818 hope that the caller knows what they are doing. Once
1819 deprecated_set_gdbarch_data has been initialized, this can be
1820 changed to an internal error. */
1822 gdb_assert (gdbarch->data[data->index] != NULL);
1824 return gdbarch->data[data->index];
1829 /* Keep a registry of swapped data required by GDB modules. */
1834 struct gdbarch_swap_registration *source;
1835 struct gdbarch_swap *next;
1838 struct gdbarch_swap_registration
1841 unsigned long sizeof_data;
1842 gdbarch_swap_ftype *init;
1843 struct gdbarch_swap_registration *next;
1846 struct gdbarch_swap_registry
1849 struct gdbarch_swap_registration *registrations;
1852 struct gdbarch_swap_registry gdbarch_swap_registry =
1858 deprecated_register_gdbarch_swap (void *data,
1859 unsigned long sizeof_data,
1860 gdbarch_swap_ftype *init)
1862 struct gdbarch_swap_registration **rego;
1863 for (rego = &gdbarch_swap_registry.registrations;
1865 rego = &(*rego)->next);
1866 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1867 (*rego)->next = NULL;
1868 (*rego)->init = init;
1869 (*rego)->data = data;
1870 (*rego)->sizeof_data = sizeof_data;
1874 current_gdbarch_swap_init_hack (void)
1876 struct gdbarch_swap_registration *rego;
1877 struct gdbarch_swap **curr = ¤t_gdbarch->swap;
1878 for (rego = gdbarch_swap_registry.registrations;
1882 if (rego->data != NULL)
1884 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1885 struct gdbarch_swap);
1886 (*curr)->source = rego;
1887 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1889 (*curr)->next = NULL;
1890 curr = &(*curr)->next;
1892 if (rego->init != NULL)
1897 static struct gdbarch *
1898 current_gdbarch_swap_out_hack (void)
1900 struct gdbarch *old_gdbarch = current_gdbarch;
1901 struct gdbarch_swap *curr;
1903 gdb_assert (old_gdbarch != NULL);
1904 for (curr = old_gdbarch->swap;
1908 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1909 memset (curr->source->data, 0, curr->source->sizeof_data);
1911 current_gdbarch = NULL;
1916 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1918 struct gdbarch_swap *curr;
1920 gdb_assert (current_gdbarch == NULL);
1921 for (curr = new_gdbarch->swap;
1924 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1925 current_gdbarch = new_gdbarch;
1929 /* Keep a registry of the architectures known by GDB. */
1931 struct gdbarch_registration
1933 enum bfd_architecture bfd_architecture;
1934 gdbarch_init_ftype *init;
1935 gdbarch_dump_tdep_ftype *dump_tdep;
1936 struct gdbarch_list *arches;
1937 struct gdbarch_registration *next;
1940 static struct gdbarch_registration *gdbarch_registry = NULL;
1943 append_name (const char ***buf, int *nr, const char *name)
1945 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1951 gdbarch_printable_names (void)
1953 /* Accumulate a list of names based on the registed list of
1955 enum bfd_architecture a;
1957 const char **arches = NULL;
1958 struct gdbarch_registration *rego;
1959 for (rego = gdbarch_registry;
1963 const struct bfd_arch_info *ap;
1964 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1966 internal_error (__FILE__, __LINE__,
1967 "gdbarch_architecture_names: multi-arch unknown");
1970 append_name (&arches, &nr_arches, ap->printable_name);
1975 append_name (&arches, &nr_arches, NULL);
1981 gdbarch_register (enum bfd_architecture bfd_architecture,
1982 gdbarch_init_ftype *init,
1983 gdbarch_dump_tdep_ftype *dump_tdep)
1985 struct gdbarch_registration **curr;
1986 const struct bfd_arch_info *bfd_arch_info;
1987 /* Check that BFD recognizes this architecture */
1988 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1989 if (bfd_arch_info == NULL)
1991 internal_error (__FILE__, __LINE__,
1992 "gdbarch: Attempt to register unknown architecture (%d)",
1995 /* Check that we haven't seen this architecture before */
1996 for (curr = &gdbarch_registry;
1998 curr = &(*curr)->next)
2000 if (bfd_architecture == (*curr)->bfd_architecture)
2001 internal_error (__FILE__, __LINE__,
2002 "gdbarch: Duplicate registraration of architecture (%s)",
2003 bfd_arch_info->printable_name);
2007 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2008 bfd_arch_info->printable_name,
2011 (*curr) = XMALLOC (struct gdbarch_registration);
2012 (*curr)->bfd_architecture = bfd_architecture;
2013 (*curr)->init = init;
2014 (*curr)->dump_tdep = dump_tdep;
2015 (*curr)->arches = NULL;
2016 (*curr)->next = NULL;
2020 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2021 gdbarch_init_ftype *init)
2023 gdbarch_register (bfd_architecture, init, NULL);
2027 /* Look for an architecture using gdbarch_info. Base search on only
2028 BFD_ARCH_INFO and BYTE_ORDER. */
2030 struct gdbarch_list *
2031 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2032 const struct gdbarch_info *info)
2034 for (; arches != NULL; arches = arches->next)
2036 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2038 if (info->byte_order != arches->gdbarch->byte_order)
2040 if (info->osabi != arches->gdbarch->osabi)
2048 /* Find an architecture that matches the specified INFO. Create a new
2049 architecture if needed. Return that new architecture. Assumes
2050 that there is no current architecture. */
2052 static struct gdbarch *
2053 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2055 struct gdbarch *new_gdbarch;
2056 struct gdbarch_registration *rego;
2058 /* The existing architecture has been swapped out - all this code
2059 works from a clean slate. */
2060 gdb_assert (current_gdbarch == NULL);
2062 /* Fill in missing parts of the INFO struct using a number of
2063 sources: "set ..."; INFOabfd supplied; and the existing
2065 gdbarch_info_fill (old_gdbarch, &info);
2067 /* Must have found some sort of architecture. */
2068 gdb_assert (info.bfd_arch_info != NULL);
2072 fprintf_unfiltered (gdb_stdlog,
2073 "find_arch_by_info: info.bfd_arch_info %s\n",
2074 (info.bfd_arch_info != NULL
2075 ? info.bfd_arch_info->printable_name
2077 fprintf_unfiltered (gdb_stdlog,
2078 "find_arch_by_info: info.byte_order %d (%s)\n",
2080 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2081 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2083 fprintf_unfiltered (gdb_stdlog,
2084 "find_arch_by_info: info.osabi %d (%s)\n",
2085 info.osabi, gdbarch_osabi_name (info.osabi));
2086 fprintf_unfiltered (gdb_stdlog,
2087 "find_arch_by_info: info.abfd 0x%lx\n",
2089 fprintf_unfiltered (gdb_stdlog,
2090 "find_arch_by_info: info.tdep_info 0x%lx\n",
2091 (long) info.tdep_info);
2094 /* Find the tdep code that knows about this architecture. */
2095 for (rego = gdbarch_registry;
2098 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2103 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2104 "No matching architecture\n");
2108 /* Ask the tdep code for an architecture that matches "info". */
2109 new_gdbarch = rego->init (info, rego->arches);
2111 /* Did the tdep code like it? No. Reject the change and revert to
2112 the old architecture. */
2113 if (new_gdbarch == NULL)
2116 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2117 "Target rejected architecture\n");
2121 /* Is this a pre-existing architecture (as determined by already
2122 being initialized)? Move it to the front of the architecture
2123 list (keeping the list sorted Most Recently Used). */
2124 if (new_gdbarch->initialized_p)
2126 struct gdbarch_list **list;
2127 struct gdbarch_list *this;
2129 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2130 "Previous architecture 0x%08lx (%s) selected\n",
2132 new_gdbarch->bfd_arch_info->printable_name);
2133 /* Find the existing arch in the list. */
2134 for (list = ®o->arches;
2135 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2136 list = &(*list)->next);
2137 /* It had better be in the list of architectures. */
2138 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2141 (*list) = this->next;
2142 /* Insert THIS at the front. */
2143 this->next = rego->arches;
2144 rego->arches = this;
2149 /* It's a new architecture. */
2151 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2152 "New architecture 0x%08lx (%s) selected\n",
2154 new_gdbarch->bfd_arch_info->printable_name);
2156 /* Insert the new architecture into the front of the architecture
2157 list (keep the list sorted Most Recently Used). */
2159 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2160 this->next = rego->arches;
2161 this->gdbarch = new_gdbarch;
2162 rego->arches = this;
2165 /* Check that the newly installed architecture is valid. Plug in
2166 any post init values. */
2167 new_gdbarch->dump_tdep = rego->dump_tdep;
2168 verify_gdbarch (new_gdbarch);
2169 new_gdbarch->initialized_p = 1;
2171 /* Initialize any per-architecture swap areas. This phase requires
2172 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2173 swap the entire architecture out. */
2174 current_gdbarch = new_gdbarch;
2175 current_gdbarch_swap_init_hack ();
2176 current_gdbarch_swap_out_hack ();
2179 gdbarch_dump (new_gdbarch, gdb_stdlog);
2185 gdbarch_find_by_info (struct gdbarch_info info)
2187 /* Save the previously selected architecture, setting the global to
2188 NULL. This stops things like gdbarch->init() trying to use the
2189 previous architecture's configuration. The previous architecture
2190 may not even be of the same architecture family. The most recent
2191 architecture of the same family is found at the head of the
2192 rego->arches list. */
2193 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2195 /* Find the specified architecture. */
2196 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2198 /* Restore the existing architecture. */
2199 gdb_assert (current_gdbarch == NULL);
2200 current_gdbarch_swap_in_hack (old_gdbarch);
2205 /* Make the specified architecture current, swapping the existing one
2209 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2211 gdb_assert (new_gdbarch != NULL);
2212 gdb_assert (current_gdbarch != NULL);
2213 gdb_assert (new_gdbarch->initialized_p);
2214 current_gdbarch_swap_out_hack ();
2215 current_gdbarch_swap_in_hack (new_gdbarch);
2216 architecture_changed_event ();
2219 extern void _initialize_gdbarch (void);
2222 _initialize_gdbarch (void)
2224 struct cmd_list_element *c;
2226 deprecated_add_show_from_set
2227 (add_set_cmd ("arch",
2230 (char *)&gdbarch_debug,
2231 "Set architecture debugging.\\n\\
2232 When non-zero, architecture debugging is enabled.", &setdebuglist),
2234 c = add_set_cmd ("archdebug",
2237 (char *)&gdbarch_debug,
2238 "Set architecture debugging.\\n\\
2239 When non-zero, architecture debugging is enabled.", &setlist);
2241 deprecate_cmd (c, "set debug arch");
2242 deprecate_cmd (deprecated_add_show_from_set (c, &showlist), "show debug arch");
2248 #../move-if-change new-gdbarch.c gdbarch.c
2249 compare_new gdbarch.c