1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
32 /* Local function prototypes. */
35 value_headof PARAMS ((value, struct type *, struct type *));
38 show_values PARAMS ((char *, int));
41 show_convenience PARAMS ((char *, int));
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
49 #define VALUE_HISTORY_CHUNK 60
51 struct value_history_chunk
53 struct value_history_chunk *next;
54 value values[VALUE_HISTORY_CHUNK];
57 /* Chain of chunks now in use. */
59 static struct value_history_chunk *value_history_chain;
61 static int value_history_count; /* Abs number of last entry stored */
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
67 static value all_values;
69 /* Allocate a value that has the correct length for type TYPE. */
77 check_stub_type (type);
79 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
93 VALUE_OPTIMIZED_OUT (val) = 0;
97 /* Allocate a value that has the correct length
98 for COUNT repetitions type TYPE. */
101 allocate_repeat_value (type, count)
107 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
137 value_free_to_mark (mark)
142 for (val = all_values; val && val != mark; val = next)
144 next = VALUE_NEXT (val);
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
156 register value val, next;
158 for (val = all_values; val; val = next)
160 next = VALUE_NEXT (val);
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
176 if (all_values == val)
178 all_values = val->next;
182 for (v = all_values; v; v = v->next)
192 /* Return a copy of the value ARG.
193 It contains the same contents, for same memory address,
194 but it's a different block of storage. */
201 register struct type *type = VALUE_TYPE (arg);
202 if (VALUE_REPEATED (arg))
203 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
205 val = allocate_value (type);
206 VALUE_LVAL (val) = VALUE_LVAL (arg);
207 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
208 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
209 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
210 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
211 VALUE_REGNO (val) = VALUE_REGNO (arg);
212 VALUE_LAZY (val) = VALUE_LAZY (arg);
213 if (!VALUE_LAZY (val))
215 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
216 TYPE_LENGTH (VALUE_TYPE (arg))
217 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
222 /* Access to the value history. */
224 /* Record a new value in the value history.
225 Returns the absolute history index of the entry.
226 Result of -1 indicates the value was not saved; otherwise it is the
227 value history index of this new item. */
230 record_latest_value (val)
235 /* Check error now if about to store an invalid float. We return -1
236 to the caller, but allow them to continue, e.g. to print it as "Nan". */
237 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
239 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
240 if (i) return -1; /* Indicate value not saved in history */
243 /* Here we treat value_history_count as origin-zero
244 and applying to the value being stored now. */
246 i = value_history_count % VALUE_HISTORY_CHUNK;
249 register struct value_history_chunk *new
250 = (struct value_history_chunk *)
251 xmalloc (sizeof (struct value_history_chunk));
252 memset (new->values, 0, sizeof new->values);
253 new->next = value_history_chain;
254 value_history_chain = new;
257 value_history_chain->values[i] = val;
259 /* We don't want this value to have anything to do with the inferior anymore.
260 In particular, "set $1 = 50" should not affect the variable from which
261 the value was taken, and fast watchpoints should be able to assume that
262 a value on the value history never changes. */
263 if (VALUE_LAZY (val))
264 value_fetch_lazy (val);
265 VALUE_LVAL (val) = not_lval;
268 /* Now we regard value_history_count as origin-one
269 and applying to the value just stored. */
271 return ++value_history_count;
274 /* Return a copy of the value in the history with sequence number NUM. */
277 access_value_history (num)
280 register struct value_history_chunk *chunk;
282 register int absnum = num;
285 absnum += value_history_count;
290 error ("The history is empty.");
292 error ("There is only one value in the history.");
294 error ("History does not go back to $$%d.", -num);
296 if (absnum > value_history_count)
297 error ("History has not yet reached $%d.", absnum);
301 /* Now absnum is always absolute and origin zero. */
303 chunk = value_history_chain;
304 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
308 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
311 /* Clear the value history entirely.
312 Must be done when new symbol tables are loaded,
313 because the type pointers become invalid. */
316 clear_value_history ()
318 register struct value_history_chunk *next;
322 while (value_history_chain)
324 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
325 if ((val = value_history_chain->values[i]) != NULL)
327 next = value_history_chain->next;
328 free ((PTR)value_history_chain);
329 value_history_chain = next;
331 value_history_count = 0;
335 show_values (num_exp, from_tty)
345 /* "info history +" should print from the stored position.
346 "info history <exp>" should print around value number <exp>. */
347 if (num_exp[0] != '+' || num_exp[1] != '\0')
348 num = parse_and_eval_address (num_exp) - 5;
352 /* "info history" means print the last 10 values. */
353 num = value_history_count - 9;
359 for (i = num; i < num + 10 && i <= value_history_count; i++)
361 val = access_value_history (i);
362 printf_filtered ("$%d = ", i);
363 value_print (val, gdb_stdout, 0, Val_pretty_default);
364 printf_filtered ("\n");
367 /* The next "info history +" should start after what we just printed. */
370 /* Hitting just return after this command should do the same thing as
371 "info history +". If num_exp is null, this is unnecessary, since
372 "info history +" is not useful after "info history". */
373 if (from_tty && num_exp)
380 /* Internal variables. These are variables within the debugger
381 that hold values assigned by debugger commands.
382 The user refers to them with a '$' prefix
383 that does not appear in the variable names stored internally. */
385 static struct internalvar *internalvars;
387 /* Look up an internal variable with name NAME. NAME should not
388 normally include a dollar sign.
390 If the specified internal variable does not exist,
391 one is created, with a void value. */
394 lookup_internalvar (name)
397 register struct internalvar *var;
399 for (var = internalvars; var; var = var->next)
400 if (STREQ (var->name, name))
403 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
404 var->name = concat (name, NULL);
405 var->value = allocate_value (builtin_type_void);
406 release_value (var->value);
407 var->next = internalvars;
413 value_of_internalvar (var)
414 struct internalvar *var;
418 #ifdef IS_TRAPPED_INTERNALVAR
419 if (IS_TRAPPED_INTERNALVAR (var->name))
420 return VALUE_OF_TRAPPED_INTERNALVAR (var);
423 val = value_copy (var->value);
424 if (VALUE_LAZY (val))
425 value_fetch_lazy (val);
426 VALUE_LVAL (val) = lval_internalvar;
427 VALUE_INTERNALVAR (val) = var;
432 set_internalvar_component (var, offset, bitpos, bitsize, newval)
433 struct internalvar *var;
434 int offset, bitpos, bitsize;
437 register char *addr = VALUE_CONTENTS (var->value) + offset;
439 #ifdef IS_TRAPPED_INTERNALVAR
440 if (IS_TRAPPED_INTERNALVAR (var->name))
441 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
445 modify_field (addr, value_as_long (newval),
448 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
452 set_internalvar (var, val)
453 struct internalvar *var;
456 #ifdef IS_TRAPPED_INTERNALVAR
457 if (IS_TRAPPED_INTERNALVAR (var->name))
458 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
461 free ((PTR)var->value);
462 var->value = value_copy (val);
463 /* Force the value to be fetched from the target now, to avoid problems
464 later when this internalvar is referenced and the target is gone or
466 if (VALUE_LAZY (var->value))
467 value_fetch_lazy (var->value);
468 release_value (var->value);
472 internalvar_name (var)
473 struct internalvar *var;
478 /* Free all internalvars. Done when new symtabs are loaded,
479 because that makes the values invalid. */
482 clear_internalvars ()
484 register struct internalvar *var;
489 internalvars = var->next;
490 free ((PTR)var->name);
491 free ((PTR)var->value);
497 show_convenience (ignore, from_tty)
501 register struct internalvar *var;
504 for (var = internalvars; var; var = var->next)
506 #ifdef IS_TRAPPED_INTERNALVAR
507 if (IS_TRAPPED_INTERNALVAR (var->name))
514 printf_filtered ("$%s = ", var->name);
515 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
516 printf_filtered ("\n");
519 printf_unfiltered ("No debugger convenience variables now defined.\n\
520 Convenience variables have names starting with \"$\";\n\
521 use \"set\" as in \"set $foo = 5\" to define them.\n");
524 /* Extract a value as a C number (either long or double).
525 Knows how to convert fixed values to double, or
526 floating values to long.
527 Does not deallocate the value. */
533 /* This coerces arrays and functions, which is necessary (e.g.
534 in disassemble_command). It also dereferences references, which
535 I suspect is the most logical thing to do. */
536 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
538 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
542 value_as_double (val)
548 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
550 error ("Invalid floating value found in program.");
553 /* Extract a value as a C pointer.
554 Does not deallocate the value. */
556 value_as_pointer (val)
559 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
560 whether we want this to be true eventually. */
562 /* ADDR_BITS_REMOVE is wrong if we are being called for a
563 non-address (e.g. argument to "signal", "info break", etc.), or
564 for pointers to char, in which the low bits *are* significant. */
565 return ADDR_BITS_REMOVE(value_as_long (val));
567 return value_as_long (val);
571 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
572 as a long, or as a double, assuming the raw data is described
573 by type TYPE. Knows how to convert different sizes of values
574 and can convert between fixed and floating point. We don't assume
575 any alignment for the raw data. Return value is in host byte order.
577 If you want functions and arrays to be coerced to pointers, and
578 references to be dereferenced, call value_as_long() instead.
580 C++: It is assumed that the front-end has taken care of
581 all matters concerning pointers to members. A pointer
582 to member which reaches here is considered to be equivalent
583 to an INT (or some size). After all, it is only an offset. */
585 /* FIXME: This should be rewritten as a switch statement for speed and
586 ease of comprehension. */
589 unpack_long (type, valaddr)
593 register enum type_code code = TYPE_CODE (type);
594 register int len = TYPE_LENGTH (type);
595 register int nosign = TYPE_UNSIGNED (type);
604 return extract_unsigned_integer (valaddr, len);
606 return extract_signed_integer (valaddr, len);
609 return extract_floating (valaddr, len);
613 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
614 whether we want this to be true eventually. */
615 return extract_address (valaddr, len);
617 case TYPE_CODE_MEMBER:
618 error ("not implemented: member types in unpack_long");
621 error ("Value can't be converted to integer.");
623 return 0; /* Placate lint. */
626 /* Return a double value from the specified type and address.
627 INVP points to an int which is set to 0 for valid value,
628 1 for invalid value (bad float format). In either case,
629 the returned double is OK to use. Argument is in target
630 format, result is in host format. */
633 unpack_double (type, valaddr, invp)
638 register enum type_code code = TYPE_CODE (type);
639 register int len = TYPE_LENGTH (type);
640 register int nosign = TYPE_UNSIGNED (type);
642 *invp = 0; /* Assume valid. */
643 if (code == TYPE_CODE_FLT)
645 if (INVALID_FLOAT (valaddr, len))
648 return 1.234567891011121314;
650 return extract_floating (valaddr, len);
654 /* Unsigned -- be sure we compensate for signed LONGEST. */
655 return (unsigned LONGEST) unpack_long (type, valaddr);
659 /* Signed -- we are OK with unpack_long. */
660 return unpack_long (type, valaddr);
664 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
665 as a CORE_ADDR, assuming the raw data is described by type TYPE.
666 We don't assume any alignment for the raw data. Return value is in
669 If you want functions and arrays to be coerced to pointers, and
670 references to be dereferenced, call value_as_pointer() instead.
672 C++: It is assumed that the front-end has taken care of
673 all matters concerning pointers to members. A pointer
674 to member which reaches here is considered to be equivalent
675 to an INT (or some size). After all, it is only an offset. */
678 unpack_pointer (type, valaddr)
682 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
683 whether we want this to be true eventually. */
684 return unpack_long (type, valaddr);
687 /* Given a value ARG1 (offset by OFFSET bytes)
688 of a struct or union type ARG_TYPE,
689 extract and return the value of one of its fields.
690 FIELDNO says which field.
692 For C++, must also be able to return values from static fields */
695 value_primitive_field (arg1, offset, fieldno, arg_type)
698 register int fieldno;
699 register struct type *arg_type;
702 register struct type *type;
704 check_stub_type (arg_type);
705 type = TYPE_FIELD_TYPE (arg_type, fieldno);
707 /* Handle packed fields */
709 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
710 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
712 v = value_from_longest (type,
713 unpack_field_as_long (arg_type,
714 VALUE_CONTENTS (arg1),
716 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
717 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
721 v = allocate_value (type);
722 if (VALUE_LAZY (arg1))
725 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
728 VALUE_LVAL (v) = VALUE_LVAL (arg1);
729 if (VALUE_LVAL (arg1) == lval_internalvar)
730 VALUE_LVAL (v) = lval_internalvar_component;
731 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
732 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
736 /* Given a value ARG1 of a struct or union type,
737 extract and return the value of one of its fields.
738 FIELDNO says which field.
740 For C++, must also be able to return values from static fields */
743 value_field (arg1, fieldno)
745 register int fieldno;
747 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
750 /* Return a non-virtual function as a value.
751 F is the list of member functions which contains the desired method.
752 J is an index into F which provides the desired method. */
755 value_fn_field (arg1p, f, j, type, offset)
763 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
766 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
767 0, VAR_NAMESPACE, 0, NULL);
771 error ("Internal error: could not find physical method named %s",
772 TYPE_FN_FIELD_PHYSNAME (f, j));
775 v = allocate_value (ftype);
776 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
777 VALUE_TYPE (v) = ftype;
781 if (type != VALUE_TYPE (*arg1p))
782 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
783 value_addr (*arg1p)));
785 /* Move the `this' pointer according to the offset.
786 VALUE_OFFSET (*arg1p) += offset;
793 /* Return a virtual function as a value.
794 ARG1 is the object which provides the virtual function
795 table pointer. *ARG1P is side-effected in calling this function.
796 F is the list of member functions which contains the desired virtual
798 J is an index into F which provides the desired virtual function.
800 TYPE is the type in which F is located. */
802 value_virtual_fn_field (arg1p, f, j, type, offset)
810 /* First, get the virtual function table pointer. That comes
811 with a strange type, so cast it to type `pointer to long' (which
812 should serve just fine as a function type). Then, index into
813 the table, and convert final value to appropriate function type. */
814 value entry, vfn, vtbl;
815 value vi = value_from_longest (builtin_type_int,
816 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
817 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
818 struct type *context;
819 if (fcontext == NULL)
820 /* We don't have an fcontext (e.g. the program was compiled with
821 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
822 This won't work right for multiple inheritance, but at least we
823 should do as well as GDB 3.x did. */
824 fcontext = TYPE_VPTR_BASETYPE (type);
825 context = lookup_pointer_type (fcontext);
826 /* Now context is a pointer to the basetype containing the vtbl. */
827 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
828 arg1 = value_ind (value_cast (context, value_addr (arg1)));
830 context = VALUE_TYPE (arg1);
831 /* Now context is the basetype containing the vtbl. */
833 /* This type may have been defined before its virtual function table
834 was. If so, fill in the virtual function table entry for the
836 if (TYPE_VPTR_FIELDNO (context) < 0)
837 fill_in_vptr_fieldno (context);
839 /* The virtual function table is now an array of structures
840 which have the form { int16 offset, delta; void *pfn; }. */
841 vtbl = value_ind (value_primitive_field (arg1, 0,
842 TYPE_VPTR_FIELDNO (context),
843 TYPE_VPTR_BASETYPE (context)));
845 /* Index into the virtual function table. This is hard-coded because
846 looking up a field is not cheap, and it may be important to save
847 time, e.g. if the user has set a conditional breakpoint calling
848 a virtual function. */
849 entry = value_subscript (vtbl, vi);
851 /* Move the `this' pointer according to the virtual function table. */
852 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0))/* + offset*/;
854 if (! VALUE_LAZY (arg1))
856 VALUE_LAZY (arg1) = 1;
857 value_fetch_lazy (arg1);
860 vfn = value_field (entry, 2);
861 /* Reinstantiate the function pointer with the correct type. */
862 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
868 /* ARG is a pointer to an object we know to be at least
869 a DTYPE. BTYPE is the most derived basetype that has
870 already been searched (and need not be searched again).
871 After looking at the vtables between BTYPE and DTYPE,
872 return the most derived type we find. The caller must
873 be satisfied when the return value == DTYPE.
875 FIXME-tiemann: should work with dossier entries as well. */
878 value_headof (in_arg, btype, dtype)
880 struct type *btype, *dtype;
882 /* First collect the vtables we must look at for this object. */
883 /* FIXME-tiemann: right now, just look at top-most vtable. */
884 value arg, vtbl, entry, best_entry = 0;
886 int offset, best_offset = 0;
888 CORE_ADDR pc_for_sym;
889 char *demangled_name;
890 struct minimal_symbol *msymbol;
892 btype = TYPE_VPTR_BASETYPE (dtype);
893 check_stub_type (btype);
896 arg = value_cast (lookup_pointer_type (btype), arg);
897 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
899 /* Check that VTBL looks like it points to a virtual function table. */
900 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
902 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
904 /* If we expected to find a vtable, but did not, let the user
905 know that we aren't happy, but don't throw an error.
906 FIXME: there has to be a better way to do this. */
907 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
908 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
909 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
910 VALUE_TYPE (in_arg) = error_type;
914 /* Now search through the virtual function table. */
915 entry = value_ind (vtbl);
916 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
917 for (i = 1; i <= nelems; i++)
919 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
921 offset = longest_to_int (value_as_long (value_field (entry, 0)));
922 /* If we use '<=' we can handle single inheritance
923 * where all offsets are zero - just use the first entry found. */
924 if (offset <= best_offset)
926 best_offset = offset;
930 /* Move the pointer according to BEST_ENTRY's offset, and figure
931 out what type we should return as the new pointer. */
934 /* An alternative method (which should no longer be necessary).
935 * But we leave it in for future use, when we will hopefully
936 * have optimizes the vtable to use thunks instead of offsets. */
937 /* Use the name of vtable itself to extract a base type. */
938 demangled_name += 4; /* Skip _vt$ prefix. */
942 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
943 sym = find_pc_function (pc_for_sym);
944 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
945 *(strchr (demangled_name, ':')) = '\0';
947 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
949 error ("could not find type declaration for `%s'", demangled_name);
952 free (demangled_name);
953 arg = value_add (value_cast (builtin_type_int, arg),
954 value_field (best_entry, 0));
957 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
961 /* ARG is a pointer object of type TYPE. If TYPE has virtual
962 function tables, probe ARG's tables (including the vtables
963 of its baseclasses) to figure out the most derived type that ARG
964 could actually be a pointer to. */
967 value_from_vtable_info (arg, type)
971 /* Take care of preliminaries. */
972 if (TYPE_VPTR_FIELDNO (type) < 0)
973 fill_in_vptr_fieldno (type);
974 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
977 return value_headof (arg, 0, type);
980 /* Return true if the INDEXth field of TYPE is a virtual baseclass
981 pointer which is for the base class whose type is BASECLASS. */
984 vb_match (type, index, basetype)
987 struct type *basetype;
989 struct type *fieldtype;
990 char *name = TYPE_FIELD_NAME (type, index);
991 char *field_class_name = NULL;
995 /* gcc 2.4 uses _vb$. */
996 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
997 field_class_name = name + 4;
998 /* gcc 2.5 will use __vb_. */
999 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1000 field_class_name = name + 5;
1002 if (field_class_name == NULL)
1003 /* This field is not a virtual base class pointer. */
1006 /* It's a virtual baseclass pointer, now we just need to find out whether
1007 it is for this baseclass. */
1008 fieldtype = TYPE_FIELD_TYPE (type, index);
1009 if (fieldtype == NULL
1010 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1011 /* "Can't happen". */
1014 /* What we check for is that either the types are equal (needed for
1015 nameless types) or have the same name. This is ugly, and a more
1016 elegant solution should be devised (which would probably just push
1017 the ugliness into symbol reading unless we change the stabs format). */
1018 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1021 if (TYPE_NAME (basetype) != NULL
1022 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1023 && STREQ (TYPE_NAME (basetype),
1024 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1029 /* Compute the offset of the baseclass which is
1030 the INDEXth baseclass of class TYPE, for a value ARG,
1031 wih extra offset of OFFSET.
1032 The result is the offste of the baseclass value relative
1033 to (the address of)(ARG) + OFFSET.
1035 -1 is returned on error. */
1038 baseclass_offset (type, index, arg, offset)
1044 struct type *basetype = TYPE_BASECLASS (type, index);
1046 if (BASETYPE_VIA_VIRTUAL (type, index))
1048 /* Must hunt for the pointer to this virtual baseclass. */
1049 register int i, len = TYPE_NFIELDS (type);
1050 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1052 /* First look for the virtual baseclass pointer
1054 for (i = n_baseclasses; i < len; i++)
1056 if (vb_match (type, i, basetype))
1059 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1060 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1062 + (TYPE_FIELD_BITPOS (type, i) / 8));
1064 if (VALUE_LVAL (arg) != lval_memory)
1068 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1071 /* Not in the fields, so try looking through the baseclasses. */
1072 for (i = index+1; i < n_baseclasses; i++)
1075 baseclass_offset (type, i, arg, offset);
1083 /* Baseclass is easily computed. */
1084 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1087 /* Compute the address of the baseclass which is
1088 the INDEXth baseclass of class TYPE. The TYPE base
1089 of the object is at VALADDR.
1091 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1092 or 0 if no error. In that case the return value is not the address
1093 of the baseclasss, but the address which could not be read
1096 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1099 baseclass_addr (type, index, valaddr, valuep, errp)
1106 struct type *basetype = TYPE_BASECLASS (type, index);
1111 if (BASETYPE_VIA_VIRTUAL (type, index))
1113 /* Must hunt for the pointer to this virtual baseclass. */
1114 register int i, len = TYPE_NFIELDS (type);
1115 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1117 /* First look for the virtual baseclass pointer
1119 for (i = n_baseclasses; i < len; i++)
1121 if (vb_match (type, i, basetype))
1123 value val = allocate_value (basetype);
1128 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1129 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1131 status = target_read_memory (addr,
1132 VALUE_CONTENTS_RAW (val),
1133 TYPE_LENGTH (basetype));
1134 VALUE_LVAL (val) = lval_memory;
1135 VALUE_ADDRESS (val) = addr;
1141 release_value (val);
1145 return (char *)addr;
1151 return (char *) VALUE_CONTENTS (val);
1155 /* Not in the fields, so try looking through the baseclasses. */
1156 for (i = index+1; i < n_baseclasses; i++)
1160 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1170 /* Baseclass is easily computed. */
1173 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1176 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1179 Extracting bits depends on endianness of the machine. Compute the
1180 number of least significant bits to discard. For big endian machines,
1181 we compute the total number of bits in the anonymous object, subtract
1182 off the bit count from the MSB of the object to the MSB of the
1183 bitfield, then the size of the bitfield, which leaves the LSB discard
1184 count. For little endian machines, the discard count is simply the
1185 number of bits from the LSB of the anonymous object to the LSB of the
1188 If the field is signed, we also do sign extension. */
1191 unpack_field_as_long (type, valaddr, fieldno)
1196 unsigned LONGEST val;
1197 unsigned LONGEST valmask;
1198 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1199 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1202 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1204 /* Extract bits. See comment above. */
1207 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1209 lsbcount = (bitpos % 8);
1213 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1214 If the field is signed, and is negative, then sign extend. */
1216 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1218 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1220 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1222 if (val & (valmask ^ (valmask >> 1)))
1231 /* Modify the value of a bitfield. ADDR points to a block of memory in
1232 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1233 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1234 indicate which bits (in target bit order) comprise the bitfield. */
1237 modify_field (addr, fieldval, bitpos, bitsize)
1240 int bitpos, bitsize;
1244 /* Reject values too big to fit in the field in question,
1245 otherwise adjoining fields may be corrupted. */
1246 if (bitsize < (8 * sizeof (fieldval))
1247 && 0 != (fieldval & ~((1<<bitsize)-1)))
1249 /* FIXME: would like to include fieldval in the message, but
1250 we don't have a sprintf_longest. */
1251 error ("Value does not fit in %d bits.", bitsize);
1254 oword = extract_signed_integer (addr, sizeof oword);
1256 /* Shifting for bit field depends on endianness of the target machine. */
1258 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1261 /* Mask out old value, while avoiding shifts >= size of oword */
1262 if (bitsize < 8 * sizeof (oword))
1263 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1265 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1266 oword |= fieldval << bitpos;
1268 store_signed_integer (addr, sizeof oword, oword);
1271 /* Convert C numbers into newly allocated values */
1274 value_from_longest (type, num)
1276 register LONGEST num;
1278 register value val = allocate_value (type);
1279 register enum type_code code = TYPE_CODE (type);
1280 register int len = TYPE_LENGTH (type);
1285 case TYPE_CODE_CHAR:
1286 case TYPE_CODE_ENUM:
1287 case TYPE_CODE_BOOL:
1288 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1293 /* This assumes that all pointers of a given length
1294 have the same form. */
1295 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1299 error ("Unexpected type encountered for integer constant.");
1305 value_from_double (type, num)
1309 register value val = allocate_value (type);
1310 register enum type_code code = TYPE_CODE (type);
1311 register int len = TYPE_LENGTH (type);
1313 if (code == TYPE_CODE_FLT)
1315 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1318 error ("Unexpected type encountered for floating constant.");
1323 /* Deal with the value that is "about to be returned". */
1325 /* Return the value that a function returning now
1326 would be returning to its caller, assuming its type is VALTYPE.
1327 RETBUF is where we look for what ought to be the contents
1328 of the registers (in raw form). This is because it is often
1329 desirable to restore old values to those registers
1330 after saving the contents of interest, and then call
1331 this function using the saved values.
1332 struct_return is non-zero when the function in question is
1333 using the structure return conventions on the machine in question;
1334 0 when it is using the value returning conventions (this often
1335 means returning pointer to where structure is vs. returning value). */
1338 value_being_returned (valtype, retbuf, struct_return)
1339 register struct type *valtype;
1340 char retbuf[REGISTER_BYTES];
1347 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1348 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1349 if (struct_return) {
1350 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1352 error ("Function return value unknown");
1353 return value_at (valtype, addr);
1357 val = allocate_value (valtype);
1358 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1363 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1364 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1365 and TYPE is the type (which is known to be struct, union or array).
1367 On most machines, the struct convention is used unless we are
1368 using gcc and the type is of a special size. */
1369 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1370 native compiler. GCC 2.3.3 was the last release that did it the
1371 old way. Since gcc2_compiled was not changed, we have no
1372 way to correctly win in all cases, so we just do the right thing
1373 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1374 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1375 would cause more chaos than dealing with some struct returns being
1377 #if !defined (USE_STRUCT_CONVENTION)
1378 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1379 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1380 || TYPE_LENGTH (value_type) == 2 \
1381 || TYPE_LENGTH (value_type) == 4 \
1382 || TYPE_LENGTH (value_type) == 8 \
1387 /* Return true if the function specified is using the structure returning
1388 convention on this machine to return arguments, or 0 if it is using
1389 the value returning convention. FUNCTION is the value representing
1390 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1391 is the type returned by the function. GCC_P is nonzero if compiled
1395 using_struct_return (function, funcaddr, value_type, gcc_p)
1398 struct type *value_type;
1402 register enum type_code code = TYPE_CODE (value_type);
1404 if (code == TYPE_CODE_ERROR)
1405 error ("Function return type unknown.");
1407 if (code == TYPE_CODE_STRUCT ||
1408 code == TYPE_CODE_UNION ||
1409 code == TYPE_CODE_ARRAY)
1410 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1415 /* Store VAL so it will be returned if a function returns now.
1416 Does not verify that VAL's type matches what the current
1417 function wants to return. */
1420 set_return_value (val)
1423 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1427 if (code == TYPE_CODE_ERROR)
1428 error ("Function return type unknown.");
1430 if ( code == TYPE_CODE_STRUCT
1431 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1432 error ("GDB does not support specifying a struct or union return value.");
1434 /* FIXME, this is bogus. We don't know what the return conventions
1435 are, or how values should be promoted.... */
1436 if (code == TYPE_CODE_FLT)
1438 dbuf = value_as_double (val);
1440 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1444 lbuf = value_as_long (val);
1445 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1450 _initialize_values ()
1452 add_cmd ("convenience", no_class, show_convenience,
1453 "Debugger convenience (\"$foo\") variables.\n\
1454 These variables are created when you assign them values;\n\
1455 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1456 A few convenience variables are given values automatically:\n\
1457 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1458 \"$__\" holds the contents of the last address examined with \"x\".",
1461 add_cmd ("values", no_class, show_values,
1462 "Elements of value history around item number IDX (or last ten).",