1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h" // for unlink_if_ordinary()
34 #include "parameters.h"
41 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
43 # define MAP_ANONYMOUS MAP_ANON
49 // Output_data variables.
51 bool Output_data::allocated_sizes_are_fixed;
53 // Output_data methods.
55 Output_data::~Output_data()
59 // Return the default alignment for the target size.
62 Output_data::default_alignment()
64 return Output_data::default_alignment_for_size(parameters->get_size());
67 // Return the default alignment for a size--32 or 64.
70 Output_data::default_alignment_for_size(int size)
80 // Output_section_header methods. This currently assumes that the
81 // segment and section lists are complete at construction time.
83 Output_section_headers::Output_section_headers(
85 const Layout::Segment_list* segment_list,
86 const Layout::Section_list* unattached_section_list,
87 const Stringpool* secnamepool)
89 segment_list_(segment_list),
90 unattached_section_list_(unattached_section_list),
91 secnamepool_(secnamepool)
93 // Count all the sections. Start with 1 for the null section.
95 for (Layout::Segment_list::const_iterator p = segment_list->begin();
96 p != segment_list->end();
98 if ((*p)->type() == elfcpp::PT_LOAD)
99 count += (*p)->output_section_count();
100 count += unattached_section_list->size();
102 const int size = parameters->get_size();
105 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
107 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
111 this->set_data_size(count * shdr_size);
114 // Write out the section headers.
117 Output_section_headers::do_write(Output_file* of)
119 if (parameters->get_size() == 32)
121 if (parameters->is_big_endian())
123 #ifdef HAVE_TARGET_32_BIG
124 this->do_sized_write<32, true>(of);
131 #ifdef HAVE_TARGET_32_LITTLE
132 this->do_sized_write<32, false>(of);
138 else if (parameters->get_size() == 64)
140 if (parameters->is_big_endian())
142 #ifdef HAVE_TARGET_64_BIG
143 this->do_sized_write<64, true>(of);
150 #ifdef HAVE_TARGET_64_LITTLE
151 this->do_sized_write<64, false>(of);
161 template<int size, bool big_endian>
163 Output_section_headers::do_sized_write(Output_file* of)
165 off_t all_shdrs_size = this->data_size();
166 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
168 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
169 unsigned char* v = view;
172 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
173 oshdr.put_sh_name(0);
174 oshdr.put_sh_type(elfcpp::SHT_NULL);
175 oshdr.put_sh_flags(0);
176 oshdr.put_sh_addr(0);
177 oshdr.put_sh_offset(0);
178 oshdr.put_sh_size(0);
179 oshdr.put_sh_link(0);
180 oshdr.put_sh_info(0);
181 oshdr.put_sh_addralign(0);
182 oshdr.put_sh_entsize(0);
188 for (Layout::Segment_list::const_iterator p = this->segment_list_->begin();
189 p != this->segment_list_->end();
191 v = (*p)->write_section_headers SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
192 this->layout_, this->secnamepool_, v, &shndx
193 SELECT_SIZE_ENDIAN(size, big_endian));
194 for (Layout::Section_list::const_iterator p =
195 this->unattached_section_list_->begin();
196 p != this->unattached_section_list_->end();
199 gold_assert(shndx == (*p)->out_shndx());
200 elfcpp::Shdr_write<size, big_endian> oshdr(v);
201 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
206 of->write_output_view(this->offset(), all_shdrs_size, view);
209 // Output_segment_header methods.
211 Output_segment_headers::Output_segment_headers(
212 const Layout::Segment_list& segment_list)
213 : segment_list_(segment_list)
215 const int size = parameters->get_size();
218 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
220 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
224 this->set_data_size(segment_list.size() * phdr_size);
228 Output_segment_headers::do_write(Output_file* of)
230 if (parameters->get_size() == 32)
232 if (parameters->is_big_endian())
234 #ifdef HAVE_TARGET_32_BIG
235 this->do_sized_write<32, true>(of);
242 #ifdef HAVE_TARGET_32_LITTLE
243 this->do_sized_write<32, false>(of);
249 else if (parameters->get_size() == 64)
251 if (parameters->is_big_endian())
253 #ifdef HAVE_TARGET_64_BIG
254 this->do_sized_write<64, true>(of);
261 #ifdef HAVE_TARGET_64_LITTLE
262 this->do_sized_write<64, false>(of);
272 template<int size, bool big_endian>
274 Output_segment_headers::do_sized_write(Output_file* of)
276 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
277 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
278 unsigned char* view = of->get_output_view(this->offset(),
280 unsigned char* v = view;
281 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
282 p != this->segment_list_.end();
285 elfcpp::Phdr_write<size, big_endian> ophdr(v);
286 (*p)->write_header(&ophdr);
290 of->write_output_view(this->offset(), all_phdrs_size, view);
293 // Output_file_header methods.
295 Output_file_header::Output_file_header(const Target* target,
296 const Symbol_table* symtab,
297 const Output_segment_headers* osh)
300 segment_header_(osh),
301 section_header_(NULL),
304 const int size = parameters->get_size();
307 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
309 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
313 this->set_data_size(ehdr_size);
316 // Set the section table information for a file header.
319 Output_file_header::set_section_info(const Output_section_headers* shdrs,
320 const Output_section* shstrtab)
322 this->section_header_ = shdrs;
323 this->shstrtab_ = shstrtab;
326 // Write out the file header.
329 Output_file_header::do_write(Output_file* of)
331 gold_assert(this->offset() == 0);
333 if (parameters->get_size() == 32)
335 if (parameters->is_big_endian())
337 #ifdef HAVE_TARGET_32_BIG
338 this->do_sized_write<32, true>(of);
345 #ifdef HAVE_TARGET_32_LITTLE
346 this->do_sized_write<32, false>(of);
352 else if (parameters->get_size() == 64)
354 if (parameters->is_big_endian())
356 #ifdef HAVE_TARGET_64_BIG
357 this->do_sized_write<64, true>(of);
364 #ifdef HAVE_TARGET_64_LITTLE
365 this->do_sized_write<64, false>(of);
375 // Write out the file header with appropriate size and endianess.
377 template<int size, bool big_endian>
379 Output_file_header::do_sized_write(Output_file* of)
381 gold_assert(this->offset() == 0);
383 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
384 unsigned char* view = of->get_output_view(0, ehdr_size);
385 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
387 unsigned char e_ident[elfcpp::EI_NIDENT];
388 memset(e_ident, 0, elfcpp::EI_NIDENT);
389 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
390 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
391 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
392 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
394 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
396 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
399 e_ident[elfcpp::EI_DATA] = (big_endian
400 ? elfcpp::ELFDATA2MSB
401 : elfcpp::ELFDATA2LSB);
402 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
403 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
404 oehdr.put_e_ident(e_ident);
407 if (parameters->output_is_object())
408 e_type = elfcpp::ET_REL;
409 else if (parameters->output_is_shared())
410 e_type = elfcpp::ET_DYN;
412 e_type = elfcpp::ET_EXEC;
413 oehdr.put_e_type(e_type);
415 oehdr.put_e_machine(this->target_->machine_code());
416 oehdr.put_e_version(elfcpp::EV_CURRENT);
418 // FIXME: Need to support -e, and target specific entry symbol.
419 Symbol* sym = this->symtab_->lookup("_start");
420 typename Sized_symbol<size>::Value_type v;
425 Sized_symbol<size>* ssym;
426 ssym = this->symtab_->get_sized_symbol SELECT_SIZE_NAME(size) (
427 sym SELECT_SIZE(size));
430 oehdr.put_e_entry(v);
432 oehdr.put_e_phoff(this->segment_header_->offset());
433 oehdr.put_e_shoff(this->section_header_->offset());
435 // FIXME: The target needs to set the flags.
436 oehdr.put_e_flags(0);
438 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
439 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
440 oehdr.put_e_phnum(this->segment_header_->data_size()
441 / elfcpp::Elf_sizes<size>::phdr_size);
442 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
443 oehdr.put_e_shnum(this->section_header_->data_size()
444 / elfcpp::Elf_sizes<size>::shdr_size);
445 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
447 of->write_output_view(0, ehdr_size, view);
450 // Output_data_const methods.
453 Output_data_const::do_write(Output_file* of)
455 of->write(this->offset(), this->data_.data(), this->data_.size());
458 // Output_data_const_buffer methods.
461 Output_data_const_buffer::do_write(Output_file* of)
463 of->write(this->offset(), this->p_, this->data_size());
466 // Output_section_data methods.
468 // Record the output section, and set the entry size and such.
471 Output_section_data::set_output_section(Output_section* os)
473 gold_assert(this->output_section_ == NULL);
474 this->output_section_ = os;
475 this->do_adjust_output_section(os);
478 // Return the section index of the output section.
481 Output_section_data::do_out_shndx() const
483 gold_assert(this->output_section_ != NULL);
484 return this->output_section_->out_shndx();
487 // Output_data_strtab methods.
489 // Set the final data size.
492 Output_data_strtab::set_final_data_size()
494 this->strtab_->set_string_offsets();
495 this->set_data_size(this->strtab_->get_strtab_size());
498 // Write out a string table.
501 Output_data_strtab::do_write(Output_file* of)
503 this->strtab_->write(of, this->offset());
506 // Output_reloc methods.
508 // Get the symbol index of a relocation.
510 template<bool dynamic, int size, bool big_endian>
512 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
516 switch (this->local_sym_index_)
522 if (this->u1_.gsym == NULL)
525 index = this->u1_.gsym->dynsym_index();
527 index = this->u1_.gsym->symtab_index();
532 index = this->u1_.os->dynsym_index();
534 index = this->u1_.os->symtab_index();
538 // Relocations without symbols use a symbol index of 0.
545 // FIXME: It seems that some targets may need to generate
546 // dynamic relocations against local symbols for some
547 // reasons. This will have to be addressed at some point.
551 index = this->u1_.relobj->symtab_index(this->local_sym_index_);
554 gold_assert(index != -1U);
558 // Write out the offset and info fields of a Rel or Rela relocation
561 template<bool dynamic, int size, bool big_endian>
562 template<typename Write_rel>
564 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
567 Address address = this->address_;
568 if (this->shndx_ != INVALID_CODE)
571 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
573 gold_assert(os != NULL);
575 address += os->address() + off;
578 address = os->output_address(this->u2_.relobj, this->shndx_,
580 gold_assert(address != -1U);
583 else if (this->u2_.od != NULL)
584 address += this->u2_.od->address();
585 wr->put_r_offset(address);
586 wr->put_r_info(elfcpp::elf_r_info<size>(this->get_symbol_index(),
590 // Write out a Rel relocation.
592 template<bool dynamic, int size, bool big_endian>
594 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
595 unsigned char* pov) const
597 elfcpp::Rel_write<size, big_endian> orel(pov);
598 this->write_rel(&orel);
601 // Write out a Rela relocation.
603 template<bool dynamic, int size, bool big_endian>
605 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
606 unsigned char* pov) const
608 elfcpp::Rela_write<size, big_endian> orel(pov);
609 this->rel_.write_rel(&orel);
610 orel.put_r_addend(this->addend_);
613 // Output_data_reloc_base methods.
615 // Adjust the output section.
617 template<int sh_type, bool dynamic, int size, bool big_endian>
619 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
620 ::do_adjust_output_section(Output_section* os)
622 if (sh_type == elfcpp::SHT_REL)
623 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
624 else if (sh_type == elfcpp::SHT_RELA)
625 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
629 os->set_should_link_to_dynsym();
631 os->set_should_link_to_symtab();
634 // Write out relocation data.
636 template<int sh_type, bool dynamic, int size, bool big_endian>
638 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
641 const off_t off = this->offset();
642 const off_t oview_size = this->data_size();
643 unsigned char* const oview = of->get_output_view(off, oview_size);
645 unsigned char* pov = oview;
646 for (typename Relocs::const_iterator p = this->relocs_.begin();
647 p != this->relocs_.end();
654 gold_assert(pov - oview == oview_size);
656 of->write_output_view(off, oview_size, oview);
658 // We no longer need the relocation entries.
659 this->relocs_.clear();
662 // Output_data_got::Got_entry methods.
664 // Write out the entry.
666 template<int size, bool big_endian>
668 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
672 switch (this->local_sym_index_)
676 Symbol* gsym = this->u_.gsym;
678 // If the symbol is resolved locally, we need to write out its
679 // value. Otherwise we just write zero. The target code is
680 // responsible for creating a relocation entry to fill in the
681 // value at runtime. For non-preemptible symbols in a shared
682 // library, the target will need to record whether or not the
683 // value should be written (e.g., it may use a RELATIVE
685 if (gsym->final_value_is_known() || gsym->needs_value_in_got())
687 Sized_symbol<size>* sgsym;
688 // This cast is a bit ugly. We don't want to put a
689 // virtual method in Symbol, because we want Symbol to be
690 // as small as possible.
691 sgsym = static_cast<Sized_symbol<size>*>(gsym);
692 val = sgsym->value();
698 val = this->u_.constant;
702 val = this->u_.object->local_symbol_value(this->local_sym_index_);
706 elfcpp::Swap<size, big_endian>::writeval(pov, val);
709 // Output_data_got methods.
711 // Add an entry for a global symbol to the GOT. This returns true if
712 // this is a new GOT entry, false if the symbol already had a GOT
715 template<int size, bool big_endian>
717 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
719 if (gsym->has_got_offset())
722 this->entries_.push_back(Got_entry(gsym));
723 this->set_got_size();
724 gsym->set_got_offset(this->last_got_offset());
728 // Add an entry for a local symbol to the GOT. This returns true if
729 // this is a new GOT entry, false if the symbol already has a GOT
732 template<int size, bool big_endian>
734 Output_data_got<size, big_endian>::add_local(
735 Sized_relobj<size, big_endian>* object,
738 if (object->local_has_got_offset(symndx))
741 this->entries_.push_back(Got_entry(object, symndx));
742 this->set_got_size();
743 object->set_local_got_offset(symndx, this->last_got_offset());
747 // Add an entry (or a pair of entries) for a global TLS symbol to the GOT.
748 // In a pair of entries, the first value in the pair will be used for the
749 // module index, and the second value will be used for the dtv-relative
750 // offset. This returns true if this is a new GOT entry, false if the symbol
751 // already has a GOT entry.
753 template<int size, bool big_endian>
755 Output_data_got<size, big_endian>::add_global_tls(Symbol* gsym,
758 if (gsym->has_tls_got_offset(need_pair))
761 this->entries_.push_back(Got_entry(gsym));
762 gsym->set_tls_got_offset(this->last_got_offset(), need_pair);
764 this->entries_.push_back(Got_entry(gsym));
765 this->set_got_size();
769 // Add an entry (or a pair of entries) for a local TLS symbol to the GOT.
770 // In a pair of entries, the first value in the pair will be used for the
771 // module index, and the second value will be used for the dtv-relative
772 // offset. This returns true if this is a new GOT entry, false if the symbol
773 // already has a GOT entry.
775 template<int size, bool big_endian>
777 Output_data_got<size, big_endian>::add_local_tls(
778 Sized_relobj<size, big_endian>* object,
782 if (object->local_has_tls_got_offset(symndx, need_pair))
785 this->entries_.push_back(Got_entry(object, symndx));
786 object->set_local_tls_got_offset(symndx, this->last_got_offset(), need_pair);
788 this->entries_.push_back(Got_entry(object, symndx));
789 this->set_got_size();
793 // Write out the GOT.
795 template<int size, bool big_endian>
797 Output_data_got<size, big_endian>::do_write(Output_file* of)
799 const int add = size / 8;
801 const off_t off = this->offset();
802 const off_t oview_size = this->data_size();
803 unsigned char* const oview = of->get_output_view(off, oview_size);
805 unsigned char* pov = oview;
806 for (typename Got_entries::const_iterator p = this->entries_.begin();
807 p != this->entries_.end();
814 gold_assert(pov - oview == oview_size);
816 of->write_output_view(off, oview_size, oview);
818 // We no longer need the GOT entries.
819 this->entries_.clear();
822 // Output_data_dynamic::Dynamic_entry methods.
824 // Write out the entry.
826 template<int size, bool big_endian>
828 Output_data_dynamic::Dynamic_entry::write(
830 const Stringpool* pool
831 ACCEPT_SIZE_ENDIAN) const
833 typename elfcpp::Elf_types<size>::Elf_WXword val;
834 switch (this->classification_)
840 case DYNAMIC_SECTION_ADDRESS:
841 val = this->u_.od->address();
844 case DYNAMIC_SECTION_SIZE:
845 val = this->u_.od->data_size();
850 const Sized_symbol<size>* s =
851 static_cast<const Sized_symbol<size>*>(this->u_.sym);
857 val = pool->get_offset(this->u_.str);
864 elfcpp::Dyn_write<size, big_endian> dw(pov);
865 dw.put_d_tag(this->tag_);
869 // Output_data_dynamic methods.
871 // Adjust the output section to set the entry size.
874 Output_data_dynamic::do_adjust_output_section(Output_section* os)
876 if (parameters->get_size() == 32)
877 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
878 else if (parameters->get_size() == 64)
879 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
884 // Set the final data size.
887 Output_data_dynamic::set_final_data_size()
889 // Add the terminating entry.
890 this->add_constant(elfcpp::DT_NULL, 0);
893 if (parameters->get_size() == 32)
894 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
895 else if (parameters->get_size() == 64)
896 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
899 this->set_data_size(this->entries_.size() * dyn_size);
902 // Write out the dynamic entries.
905 Output_data_dynamic::do_write(Output_file* of)
907 if (parameters->get_size() == 32)
909 if (parameters->is_big_endian())
911 #ifdef HAVE_TARGET_32_BIG
912 this->sized_write<32, true>(of);
919 #ifdef HAVE_TARGET_32_LITTLE
920 this->sized_write<32, false>(of);
926 else if (parameters->get_size() == 64)
928 if (parameters->is_big_endian())
930 #ifdef HAVE_TARGET_64_BIG
931 this->sized_write<64, true>(of);
938 #ifdef HAVE_TARGET_64_LITTLE
939 this->sized_write<64, false>(of);
949 template<int size, bool big_endian>
951 Output_data_dynamic::sized_write(Output_file* of)
953 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
955 const off_t offset = this->offset();
956 const off_t oview_size = this->data_size();
957 unsigned char* const oview = of->get_output_view(offset, oview_size);
959 unsigned char* pov = oview;
960 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
961 p != this->entries_.end();
964 p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
965 pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
969 gold_assert(pov - oview == oview_size);
971 of->write_output_view(offset, oview_size, oview);
973 // We no longer need the dynamic entries.
974 this->entries_.clear();
977 // Output_section::Input_section methods.
979 // Return the data size. For an input section we store the size here.
980 // For an Output_section_data, we have to ask it for the size.
983 Output_section::Input_section::data_size() const
985 if (this->is_input_section())
986 return this->u1_.data_size;
988 return this->u2_.posd->data_size();
991 // Set the address and file offset.
994 Output_section::Input_section::set_address_and_file_offset(
997 off_t section_file_offset)
999 if (this->is_input_section())
1000 this->u2_.object->set_section_offset(this->shndx_,
1001 file_offset - section_file_offset);
1003 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1006 // Finalize the data size.
1009 Output_section::Input_section::finalize_data_size()
1011 if (!this->is_input_section())
1012 this->u2_.posd->finalize_data_size();
1015 // Try to turn an input offset into an output offset.
1018 Output_section::Input_section::output_offset(const Relobj* object,
1021 off_t *poutput) const
1023 if (!this->is_input_section())
1024 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1027 if (this->shndx_ != shndx || this->u2_.object != object)
1029 off_t output_offset;
1030 Output_section* os = object->output_section(shndx, &output_offset);
1031 gold_assert(os != NULL);
1032 gold_assert(output_offset != -1);
1033 *poutput = output_offset + offset;
1038 // Write out the data. We don't have to do anything for an input
1039 // section--they are handled via Object::relocate--but this is where
1040 // we write out the data for an Output_section_data.
1043 Output_section::Input_section::write(Output_file* of)
1045 if (!this->is_input_section())
1046 this->u2_.posd->write(of);
1049 // Write the data to a buffer. As for write(), we don't have to do
1050 // anything for an input section.
1053 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1055 if (!this->is_input_section())
1056 this->u2_.posd->write_to_buffer(buffer);
1059 // Output_section methods.
1061 // Construct an Output_section. NAME will point into a Stringpool.
1063 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1064 elfcpp::Elf_Xword flags)
1068 link_section_(NULL),
1070 info_section_(NULL),
1078 first_input_offset_(0),
1080 postprocessing_buffer_(NULL),
1081 needs_symtab_index_(false),
1082 needs_dynsym_index_(false),
1083 should_link_to_symtab_(false),
1084 should_link_to_dynsym_(false),
1085 after_input_sections_(false),
1086 requires_postprocessing_(false)
1088 // An unallocated section has no address. Forcing this means that
1089 // we don't need special treatment for symbols defined in debug
1091 if ((flags & elfcpp::SHF_ALLOC) == 0)
1092 this->set_address(0);
1095 Output_section::~Output_section()
1099 // Set the entry size.
1102 Output_section::set_entsize(uint64_t v)
1104 if (this->entsize_ == 0)
1107 gold_assert(this->entsize_ == v);
1110 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1111 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1112 // relocation section which applies to this section, or 0 if none, or
1113 // -1U if more than one. Return the offset of the input section
1114 // within the output section. Return -1 if the input section will
1115 // receive special handling. In the normal case we don't always keep
1116 // track of input sections for an Output_section. Instead, each
1117 // Object keeps track of the Output_section for each of its input
1120 template<int size, bool big_endian>
1122 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1124 const char* secname,
1125 const elfcpp::Shdr<size, big_endian>& shdr,
1126 unsigned int reloc_shndx)
1128 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1129 if ((addralign & (addralign - 1)) != 0)
1131 object->error(_("invalid alignment %lu for section \"%s\""),
1132 static_cast<unsigned long>(addralign), secname);
1136 if (addralign > this->addralign_)
1137 this->addralign_ = addralign;
1139 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1140 uint64_t entsize = shdr.get_sh_entsize();
1142 // .debug_str is a mergeable string section, but is not always so
1143 // marked by compilers. Mark manually here so we can optimize.
1144 if (strcmp(secname, ".debug_str") == 0)
1146 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1150 // If this is a SHF_MERGE section, we pass all the input sections to
1151 // a Output_data_merge. We don't try to handle relocations for such
1153 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1154 && reloc_shndx == 0)
1156 if (this->add_merge_input_section(object, shndx, sh_flags,
1157 entsize, addralign))
1159 // Tell the relocation routines that they need to call the
1160 // output_offset method to determine the final address.
1165 off_t offset_in_section = this->current_data_size_for_child();
1166 off_t aligned_offset_in_section = align_address(offset_in_section,
1169 if (aligned_offset_in_section > offset_in_section
1170 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1171 && object->target()->has_code_fill())
1173 // We need to add some fill data. Using fill_list_ when
1174 // possible is an optimization, since we will often have fill
1175 // sections without input sections.
1176 off_t fill_len = aligned_offset_in_section - offset_in_section;
1177 if (this->input_sections_.empty())
1178 this->fills_.push_back(Fill(offset_in_section, fill_len));
1181 // FIXME: When relaxing, the size needs to adjust to
1182 // maintain a constant alignment.
1183 std::string fill_data(object->target()->code_fill(fill_len));
1184 Output_data_const* odc = new Output_data_const(fill_data, 1);
1185 this->input_sections_.push_back(Input_section(odc));
1189 this->set_current_data_size_for_child(aligned_offset_in_section
1190 + shdr.get_sh_size());
1192 // We need to keep track of this section if we are already keeping
1193 // track of sections, or if we are relaxing. FIXME: Add test for
1195 if (!this->input_sections_.empty())
1196 this->input_sections_.push_back(Input_section(object, shndx,
1200 return aligned_offset_in_section;
1203 // Add arbitrary data to an output section.
1206 Output_section::add_output_section_data(Output_section_data* posd)
1208 Input_section inp(posd);
1209 this->add_output_section_data(&inp);
1212 // Add arbitrary data to an output section by Input_section.
1215 Output_section::add_output_section_data(Input_section* inp)
1217 if (this->input_sections_.empty())
1218 this->first_input_offset_ = this->current_data_size_for_child();
1220 this->input_sections_.push_back(*inp);
1222 uint64_t addralign = inp->addralign();
1223 if (addralign > this->addralign_)
1224 this->addralign_ = addralign;
1226 inp->set_output_section(this);
1229 // Add a merge section to an output section.
1232 Output_section::add_output_merge_section(Output_section_data* posd,
1233 bool is_string, uint64_t entsize)
1235 Input_section inp(posd, is_string, entsize);
1236 this->add_output_section_data(&inp);
1239 // Add an input section to a SHF_MERGE section.
1242 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1243 uint64_t flags, uint64_t entsize,
1246 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1248 // We only merge strings if the alignment is not more than the
1249 // character size. This could be handled, but it's unusual.
1250 if (is_string && addralign > entsize)
1253 Input_section_list::iterator p;
1254 for (p = this->input_sections_.begin();
1255 p != this->input_sections_.end();
1257 if (p->is_merge_section(is_string, entsize, addralign))
1259 p->add_input_section(object, shndx);
1263 // We handle the actual constant merging in Output_merge_data or
1264 // Output_merge_string_data.
1265 Output_section_data* posd;
1267 posd = new Output_merge_data(entsize, addralign);
1273 posd = new Output_merge_string<char>(addralign);
1276 posd = new Output_merge_string<uint16_t>(addralign);
1279 posd = new Output_merge_string<uint32_t>(addralign);
1286 this->add_output_merge_section(posd, is_string, entsize);
1287 posd->add_input_section(object, shndx);
1292 // Given an address OFFSET relative to the start of input section
1293 // SHNDX in OBJECT, return whether this address is being included in
1294 // the final link. This should only be called if SHNDX in OBJECT has
1295 // a special mapping.
1298 Output_section::is_input_address_mapped(const Relobj* object,
1302 gold_assert(object->is_section_specially_mapped(shndx));
1304 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1305 p != this->input_sections_.end();
1308 off_t output_offset;
1309 if (p->output_offset(object, shndx, offset, &output_offset))
1310 return output_offset != -1;
1313 // By default we assume that the address is mapped. This should
1314 // only be called after we have passed all sections to Layout. At
1315 // that point we should know what we are discarding.
1319 // Given an address OFFSET relative to the start of input section
1320 // SHNDX in object OBJECT, return the output offset relative to the
1321 // start of the section. This should only be called if SHNDX in
1322 // OBJECT has a special mapping.
1325 Output_section::output_offset(const Relobj* object, unsigned int shndx,
1328 gold_assert(object->is_section_specially_mapped(shndx));
1329 // This can only be called meaningfully when layout is complete.
1330 gold_assert(Output_data::is_layout_complete());
1332 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1333 p != this->input_sections_.end();
1336 off_t output_offset;
1337 if (p->output_offset(object, shndx, offset, &output_offset))
1338 return output_offset;
1343 // Return the output virtual address of OFFSET relative to the start
1344 // of input section SHNDX in object OBJECT.
1347 Output_section::output_address(const Relobj* object, unsigned int shndx,
1350 gold_assert(object->is_section_specially_mapped(shndx));
1351 // This can only be called meaningfully when layout is complete.
1352 gold_assert(Output_data::is_layout_complete());
1354 uint64_t addr = this->address() + this->first_input_offset_;
1355 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1356 p != this->input_sections_.end();
1359 addr = align_address(addr, p->addralign());
1360 off_t output_offset;
1361 if (p->output_offset(object, shndx, offset, &output_offset))
1363 if (output_offset == -1)
1365 return addr + output_offset;
1367 addr += p->data_size();
1370 // If we get here, it means that we don't know the mapping for this
1371 // input section. This might happen in principle if
1372 // add_input_section were called before add_output_section_data.
1373 // But it should never actually happen.
1378 // Set the data size of an Output_section. This is where we handle
1379 // setting the addresses of any Output_section_data objects.
1382 Output_section::set_final_data_size()
1384 if (this->input_sections_.empty())
1386 this->set_data_size(this->current_data_size_for_child());
1390 uint64_t address = this->address();
1391 off_t startoff = this->offset();
1392 off_t off = startoff + this->first_input_offset_;
1393 for (Input_section_list::iterator p = this->input_sections_.begin();
1394 p != this->input_sections_.end();
1397 off = align_address(off, p->addralign());
1398 p->set_address_and_file_offset(address + (off - startoff), off,
1400 off += p->data_size();
1403 this->set_data_size(off - startoff);
1406 // Write the section header to *OSHDR.
1408 template<int size, bool big_endian>
1410 Output_section::write_header(const Layout* layout,
1411 const Stringpool* secnamepool,
1412 elfcpp::Shdr_write<size, big_endian>* oshdr) const
1414 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1415 oshdr->put_sh_type(this->type_);
1416 oshdr->put_sh_flags(this->flags_);
1417 oshdr->put_sh_addr(this->address());
1418 oshdr->put_sh_offset(this->offset());
1419 oshdr->put_sh_size(this->data_size());
1420 if (this->link_section_ != NULL)
1421 oshdr->put_sh_link(this->link_section_->out_shndx());
1422 else if (this->should_link_to_symtab_)
1423 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
1424 else if (this->should_link_to_dynsym_)
1425 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
1427 oshdr->put_sh_link(this->link_);
1428 if (this->info_section_ != NULL)
1429 oshdr->put_sh_info(this->info_section_->out_shndx());
1431 oshdr->put_sh_info(this->info_);
1432 oshdr->put_sh_addralign(this->addralign_);
1433 oshdr->put_sh_entsize(this->entsize_);
1436 // Write out the data. For input sections the data is written out by
1437 // Object::relocate, but we have to handle Output_section_data objects
1441 Output_section::do_write(Output_file* of)
1443 gold_assert(!this->requires_postprocessing());
1445 off_t output_section_file_offset = this->offset();
1446 for (Fill_list::iterator p = this->fills_.begin();
1447 p != this->fills_.end();
1450 std::string fill_data(of->target()->code_fill(p->length()));
1451 of->write(output_section_file_offset + p->section_offset(),
1452 fill_data.data(), fill_data.size());
1455 for (Input_section_list::iterator p = this->input_sections_.begin();
1456 p != this->input_sections_.end();
1461 // If a section requires postprocessing, create the buffer to use.
1464 Output_section::create_postprocessing_buffer()
1466 gold_assert(this->requires_postprocessing());
1467 gold_assert(this->postprocessing_buffer_ == NULL);
1469 if (!this->input_sections_.empty())
1471 off_t off = this->first_input_offset_;
1472 for (Input_section_list::iterator p = this->input_sections_.begin();
1473 p != this->input_sections_.end();
1476 off = align_address(off, p->addralign());
1477 p->finalize_data_size();
1478 off += p->data_size();
1480 this->set_current_data_size_for_child(off);
1483 off_t buffer_size = this->current_data_size_for_child();
1484 this->postprocessing_buffer_ = new unsigned char[buffer_size];
1487 // Write all the data of an Output_section into the postprocessing
1488 // buffer. This is used for sections which require postprocessing,
1489 // such as compression. Input sections are handled by
1490 // Object::Relocate.
1493 Output_section::write_to_postprocessing_buffer()
1495 gold_assert(this->requires_postprocessing());
1497 Target* target = parameters->target();
1498 unsigned char* buffer = this->postprocessing_buffer();
1499 for (Fill_list::iterator p = this->fills_.begin();
1500 p != this->fills_.end();
1503 std::string fill_data(target->code_fill(p->length()));
1504 memcpy(buffer + p->section_offset(), fill_data.data(), fill_data.size());
1507 off_t off = this->first_input_offset_;
1508 for (Input_section_list::iterator p = this->input_sections_.begin();
1509 p != this->input_sections_.end();
1512 off = align_address(off, p->addralign());
1513 p->write_to_buffer(buffer + off);
1514 off += p->data_size();
1518 // Output segment methods.
1520 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
1531 is_align_known_(false)
1535 // Add an Output_section to an Output_segment.
1538 Output_segment::add_output_section(Output_section* os,
1539 elfcpp::Elf_Word seg_flags,
1542 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1543 gold_assert(!this->is_align_known_);
1545 // Update the segment flags.
1546 this->flags_ |= seg_flags;
1548 Output_segment::Output_data_list* pdl;
1549 if (os->type() == elfcpp::SHT_NOBITS)
1550 pdl = &this->output_bss_;
1552 pdl = &this->output_data_;
1554 // So that PT_NOTE segments will work correctly, we need to ensure
1555 // that all SHT_NOTE sections are adjacent. This will normally
1556 // happen automatically, because all the SHT_NOTE input sections
1557 // will wind up in the same output section. However, it is possible
1558 // for multiple SHT_NOTE input sections to have different section
1559 // flags, and thus be in different output sections, but for the
1560 // different section flags to map into the same segment flags and
1561 // thus the same output segment.
1563 // Note that while there may be many input sections in an output
1564 // section, there are normally only a few output sections in an
1565 // output segment. This loop is expected to be fast.
1567 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
1569 Output_segment::Output_data_list::iterator p = pdl->end();
1573 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
1575 // We don't worry about the FRONT parameter.
1581 while (p != pdl->begin());
1584 // Similarly, so that PT_TLS segments will work, we need to group
1585 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
1586 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
1587 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
1588 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
1589 // and the PT_TLS segment -- we do this grouping only for the
1591 if (this->type_ != elfcpp::PT_TLS
1592 && (os->flags() & elfcpp::SHF_TLS) != 0
1593 && !this->output_data_.empty())
1595 pdl = &this->output_data_;
1596 bool nobits = os->type() == elfcpp::SHT_NOBITS;
1597 bool sawtls = false;
1598 Output_segment::Output_data_list::iterator p = pdl->end();
1603 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
1606 // Put a NOBITS section after the first TLS section.
1607 // But a PROGBITS section after the first TLS/PROGBITS
1609 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
1613 // If we've gone past the TLS sections, but we've seen a
1614 // TLS section, then we need to insert this section now.
1620 // We don't worry about the FRONT parameter.
1626 while (p != pdl->begin());
1628 // There are no TLS sections yet; put this one at the requested
1629 // location in the section list.
1633 pdl->push_front(os);
1638 // Add an Output_data (which is not an Output_section) to the start of
1642 Output_segment::add_initial_output_data(Output_data* od)
1644 gold_assert(!this->is_align_known_);
1645 this->output_data_.push_front(od);
1648 // Return the maximum alignment of the Output_data in Output_segment.
1649 // Once we compute this, we prohibit new sections from being added.
1652 Output_segment::addralign()
1654 if (!this->is_align_known_)
1658 addralign = Output_segment::maximum_alignment(&this->output_data_);
1659 if (addralign > this->align_)
1660 this->align_ = addralign;
1662 addralign = Output_segment::maximum_alignment(&this->output_bss_);
1663 if (addralign > this->align_)
1664 this->align_ = addralign;
1666 this->is_align_known_ = true;
1669 return this->align_;
1672 // Return the maximum alignment of a list of Output_data.
1675 Output_segment::maximum_alignment(const Output_data_list* pdl)
1678 for (Output_data_list::const_iterator p = pdl->begin();
1682 uint64_t addralign = (*p)->addralign();
1683 if (addralign > ret)
1689 // Return the number of dynamic relocs applied to this segment.
1692 Output_segment::dynamic_reloc_count() const
1694 return (this->dynamic_reloc_count_list(&this->output_data_)
1695 + this->dynamic_reloc_count_list(&this->output_bss_));
1698 // Return the number of dynamic relocs applied to an Output_data_list.
1701 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
1703 unsigned int count = 0;
1704 for (Output_data_list::const_iterator p = pdl->begin();
1707 count += (*p)->dynamic_reloc_count();
1711 // Set the section addresses for an Output_segment. ADDR is the
1712 // address and *POFF is the file offset. Set the section indexes
1713 // starting with *PSHNDX. Return the address of the immediately
1714 // following segment. Update *POFF and *PSHNDX.
1717 Output_segment::set_section_addresses(uint64_t addr, off_t* poff,
1718 unsigned int* pshndx)
1720 gold_assert(this->type_ == elfcpp::PT_LOAD);
1722 this->vaddr_ = addr;
1723 this->paddr_ = addr;
1725 off_t orig_off = *poff;
1726 this->offset_ = orig_off;
1728 *poff = align_address(*poff, this->addralign());
1730 addr = this->set_section_list_addresses(&this->output_data_, addr, poff,
1732 this->filesz_ = *poff - orig_off;
1736 uint64_t ret = this->set_section_list_addresses(&this->output_bss_, addr,
1738 this->memsz_ = *poff - orig_off;
1740 // Ignore the file offset adjustments made by the BSS Output_data
1747 // Set the addresses and file offsets in a list of Output_data
1751 Output_segment::set_section_list_addresses(Output_data_list* pdl,
1752 uint64_t addr, off_t* poff,
1753 unsigned int* pshndx)
1755 off_t startoff = *poff;
1757 off_t off = startoff;
1758 for (Output_data_list::iterator p = pdl->begin();
1762 off = align_address(off, (*p)->addralign());
1763 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
1765 // Unless this is a PT_TLS segment, we want to ignore the size
1766 // of a SHF_TLS/SHT_NOBITS section. Such a section does not
1767 // affect the size of a PT_LOAD segment.
1768 if (this->type_ == elfcpp::PT_TLS
1769 || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
1770 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
1771 off += (*p)->data_size();
1773 if ((*p)->is_section())
1775 (*p)->set_out_shndx(*pshndx);
1781 return addr + (off - startoff);
1784 // For a non-PT_LOAD segment, set the offset from the sections, if
1788 Output_segment::set_offset()
1790 gold_assert(this->type_ != elfcpp::PT_LOAD);
1792 if (this->output_data_.empty() && this->output_bss_.empty())
1803 const Output_data* first;
1804 if (this->output_data_.empty())
1805 first = this->output_bss_.front();
1807 first = this->output_data_.front();
1808 this->vaddr_ = first->address();
1809 this->paddr_ = this->vaddr_;
1810 this->offset_ = first->offset();
1812 if (this->output_data_.empty())
1816 const Output_data* last_data = this->output_data_.back();
1817 this->filesz_ = (last_data->address()
1818 + last_data->data_size()
1822 const Output_data* last;
1823 if (this->output_bss_.empty())
1824 last = this->output_data_.back();
1826 last = this->output_bss_.back();
1827 this->memsz_ = (last->address()
1832 // Return the number of Output_sections in an Output_segment.
1835 Output_segment::output_section_count() const
1837 return (this->output_section_count_list(&this->output_data_)
1838 + this->output_section_count_list(&this->output_bss_));
1841 // Return the number of Output_sections in an Output_data_list.
1844 Output_segment::output_section_count_list(const Output_data_list* pdl) const
1846 unsigned int count = 0;
1847 for (Output_data_list::const_iterator p = pdl->begin();
1851 if ((*p)->is_section())
1857 // Write the segment data into *OPHDR.
1859 template<int size, bool big_endian>
1861 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
1863 ophdr->put_p_type(this->type_);
1864 ophdr->put_p_offset(this->offset_);
1865 ophdr->put_p_vaddr(this->vaddr_);
1866 ophdr->put_p_paddr(this->paddr_);
1867 ophdr->put_p_filesz(this->filesz_);
1868 ophdr->put_p_memsz(this->memsz_);
1869 ophdr->put_p_flags(this->flags_);
1870 ophdr->put_p_align(this->addralign());
1873 // Write the section headers into V.
1875 template<int size, bool big_endian>
1877 Output_segment::write_section_headers(const Layout* layout,
1878 const Stringpool* secnamepool,
1880 unsigned int *pshndx
1881 ACCEPT_SIZE_ENDIAN) const
1883 // Every section that is attached to a segment must be attached to a
1884 // PT_LOAD segment, so we only write out section headers for PT_LOAD
1886 if (this->type_ != elfcpp::PT_LOAD)
1889 v = this->write_section_headers_list
1890 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1891 layout, secnamepool, &this->output_data_, v, pshndx
1892 SELECT_SIZE_ENDIAN(size, big_endian));
1893 v = this->write_section_headers_list
1894 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1895 layout, secnamepool, &this->output_bss_, v, pshndx
1896 SELECT_SIZE_ENDIAN(size, big_endian));
1900 template<int size, bool big_endian>
1902 Output_segment::write_section_headers_list(const Layout* layout,
1903 const Stringpool* secnamepool,
1904 const Output_data_list* pdl,
1906 unsigned int* pshndx
1907 ACCEPT_SIZE_ENDIAN) const
1909 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1910 for (Output_data_list::const_iterator p = pdl->begin();
1914 if ((*p)->is_section())
1916 const Output_section* ps = static_cast<const Output_section*>(*p);
1917 gold_assert(*pshndx == ps->out_shndx());
1918 elfcpp::Shdr_write<size, big_endian> oshdr(v);
1919 ps->write_header(layout, secnamepool, &oshdr);
1927 // Output_file methods.
1929 Output_file::Output_file(const General_options& options, Target* target)
1930 : options_(options),
1932 name_(options.output_file_name()),
1936 map_is_anonymous_(false)
1940 // Open the output file.
1943 Output_file::open(off_t file_size)
1945 this->file_size_ = file_size;
1947 // Unlink the file first; otherwise the open() may fail if the file
1948 // is busy (e.g. it's an executable that's currently being executed).
1950 // However, the linker may be part of a system where a zero-length
1951 // file is created for it to write to, with tight permissions (gcc
1952 // 2.95 did something like this). Unlinking the file would work
1953 // around those permission controls, so we only unlink if the file
1954 // has a non-zero size. We also unlink only regular files to avoid
1955 // trouble with directories/etc.
1957 // If we fail, continue; this command is merely a best-effort attempt
1958 // to improve the odds for open().
1960 // We let the name "-" mean "stdout"
1961 if (strcmp(this->name_, "-") == 0)
1962 this->o_ = STDOUT_FILENO;
1966 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
1967 unlink_if_ordinary(this->name_);
1969 int mode = parameters->output_is_object() ? 0666 : 0777;
1970 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
1972 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
1979 // Resize the output file.
1982 Output_file::resize(off_t file_size)
1984 // If the mmap is mapping an anonymous memory buffer, this is easy:
1985 // just mremap to the new size. If it's mapping to a file, we want
1986 // to unmap to flush to the file, then remap after growing the file.
1987 if (this->map_is_anonymous_)
1989 void* base = ::mremap(this->base_, this->file_size_, file_size,
1991 if (base == MAP_FAILED)
1992 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
1993 this->base_ = static_cast<unsigned char*>(base);
1994 this->file_size_ = file_size;
1999 this->file_size_ = file_size;
2004 // Map the file into memory.
2009 const int o = this->o_;
2011 // If the output file is not a regular file, don't try to mmap it;
2012 // instead, we'll mmap a block of memory (an anonymous buffer), and
2013 // then later write the buffer to the file.
2015 struct stat statbuf;
2016 if (o == STDOUT_FILENO || o == STDERR_FILENO
2017 || ::fstat(o, &statbuf) != 0
2018 || !S_ISREG(statbuf.st_mode))
2020 this->map_is_anonymous_ = true;
2021 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2022 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2026 // Write out one byte to make the file the right size.
2027 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
2028 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
2030 if (::write(o, &b, 1) != 1)
2031 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
2033 // Map the file into memory.
2034 this->map_is_anonymous_ = false;
2035 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2038 if (base == MAP_FAILED)
2039 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
2040 this->base_ = static_cast<unsigned char*>(base);
2043 // Unmap the file from memory.
2046 Output_file::unmap()
2048 if (::munmap(this->base_, this->file_size_) < 0)
2049 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
2053 // Close the output file.
2056 Output_file::close()
2058 // If the map isn't file-backed, we need to write it now.
2059 if (this->map_is_anonymous_)
2061 size_t bytes_to_write = this->file_size_;
2062 while (bytes_to_write > 0)
2064 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
2065 if (bytes_written == 0)
2066 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
2067 else if (bytes_written < 0)
2068 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
2070 bytes_to_write -= bytes_written;
2075 // We don't close stdout or stderr
2076 if (this->o_ != STDOUT_FILENO && this->o_ != STDERR_FILENO)
2077 if (::close(this->o_) < 0)
2078 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
2082 // Instantiate the templates we need. We could use the configure
2083 // script to restrict this to only the ones for implemented targets.
2085 #ifdef HAVE_TARGET_32_LITTLE
2088 Output_section::add_input_section<32, false>(
2089 Sized_relobj<32, false>* object,
2091 const char* secname,
2092 const elfcpp::Shdr<32, false>& shdr,
2093 unsigned int reloc_shndx);
2096 #ifdef HAVE_TARGET_32_BIG
2099 Output_section::add_input_section<32, true>(
2100 Sized_relobj<32, true>* object,
2102 const char* secname,
2103 const elfcpp::Shdr<32, true>& shdr,
2104 unsigned int reloc_shndx);
2107 #ifdef HAVE_TARGET_64_LITTLE
2110 Output_section::add_input_section<64, false>(
2111 Sized_relobj<64, false>* object,
2113 const char* secname,
2114 const elfcpp::Shdr<64, false>& shdr,
2115 unsigned int reloc_shndx);
2118 #ifdef HAVE_TARGET_64_BIG
2121 Output_section::add_input_section<64, true>(
2122 Sized_relobj<64, true>* object,
2124 const char* secname,
2125 const elfcpp::Shdr<64, true>& shdr,
2126 unsigned int reloc_shndx);
2129 #ifdef HAVE_TARGET_32_LITTLE
2131 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
2134 #ifdef HAVE_TARGET_32_BIG
2136 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
2139 #ifdef HAVE_TARGET_64_LITTLE
2141 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
2144 #ifdef HAVE_TARGET_64_BIG
2146 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
2149 #ifdef HAVE_TARGET_32_LITTLE
2151 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
2154 #ifdef HAVE_TARGET_32_BIG
2156 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
2159 #ifdef HAVE_TARGET_64_LITTLE
2161 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
2164 #ifdef HAVE_TARGET_64_BIG
2166 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
2169 #ifdef HAVE_TARGET_32_LITTLE
2171 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
2174 #ifdef HAVE_TARGET_32_BIG
2176 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
2179 #ifdef HAVE_TARGET_64_LITTLE
2181 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
2184 #ifdef HAVE_TARGET_64_BIG
2186 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
2189 #ifdef HAVE_TARGET_32_LITTLE
2191 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
2194 #ifdef HAVE_TARGET_32_BIG
2196 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
2199 #ifdef HAVE_TARGET_64_LITTLE
2201 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
2204 #ifdef HAVE_TARGET_64_BIG
2206 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
2209 #ifdef HAVE_TARGET_32_LITTLE
2211 class Output_data_got<32, false>;
2214 #ifdef HAVE_TARGET_32_BIG
2216 class Output_data_got<32, true>;
2219 #ifdef HAVE_TARGET_64_LITTLE
2221 class Output_data_got<64, false>;
2224 #ifdef HAVE_TARGET_64_BIG
2226 class Output_data_got<64, true>;
2229 } // End namespace gold.