1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
32 #include "arch-utils.h"
36 #include "parser-defs.h"
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
44 #include "solib-svr4.h"
47 /* If the kernel has to deliver a signal, it pushes a sigcontext
48 structure on the stack and then calls the signal handler, passing
49 the address of the sigcontext in an argument register. Usually
50 the signal handler doesn't save this register, so we have to
51 access the sigcontext structure via an offset from the signal handler
53 The following constants were determined by experimentation on AIX 3.2. */
54 #define SIG_FRAME_PC_OFFSET 96
55 #define SIG_FRAME_LR_OFFSET 108
56 #define SIG_FRAME_FP_OFFSET 284
58 /* To be used by skip_prologue. */
60 struct rs6000_framedata
62 int offset; /* total size of frame --- the distance
63 by which we decrement sp to allocate
65 int saved_gpr; /* smallest # of saved gpr */
66 int saved_fpr; /* smallest # of saved fpr */
67 int saved_vr; /* smallest # of saved vr */
68 int alloca_reg; /* alloca register number (frame ptr) */
69 char frameless; /* true if frameless functions. */
70 char nosavedpc; /* true if pc not saved. */
71 int gpr_offset; /* offset of saved gprs from prev sp */
72 int fpr_offset; /* offset of saved fprs from prev sp */
73 int vr_offset; /* offset of saved vrs from prev sp */
74 int lr_offset; /* offset of saved lr */
75 int cr_offset; /* offset of saved cr */
76 int vrsave_offset; /* offset of saved vrsave register */
79 /* Description of a single register. */
83 char *name; /* name of register */
84 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
85 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
86 unsigned char fpr; /* whether register is floating-point */
89 /* Return the current architecture's gdbarch_tdep structure. */
91 #define TDEP gdbarch_tdep (current_gdbarch)
93 /* Breakpoint shadows for the single step instructions will be kept here. */
95 static struct sstep_breaks
97 /* Address, or 0 if this is not in use. */
99 /* Shadow contents. */
104 /* Hook for determining the TOC address when calling functions in the
105 inferior under AIX. The initialization code in rs6000-nat.c sets
106 this hook to point to find_toc_address. */
108 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
110 /* Hook to set the current architecture when starting a child process.
111 rs6000-nat.c sets this. */
113 void (*rs6000_set_host_arch_hook) (int) = NULL;
115 /* Static function prototypes */
117 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
119 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
120 struct rs6000_framedata *);
121 static void frame_get_saved_regs (struct frame_info * fi,
122 struct rs6000_framedata * fdatap);
123 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
125 /* Read a LEN-byte address from debugged memory address MEMADDR. */
128 read_memory_addr (CORE_ADDR memaddr, int len)
130 return read_memory_unsigned_integer (memaddr, len);
134 rs6000_skip_prologue (CORE_ADDR pc)
136 struct rs6000_framedata frame;
137 pc = skip_prologue (pc, 0, &frame);
142 /* Fill in fi->saved_regs */
144 struct frame_extra_info
146 /* Functions calling alloca() change the value of the stack
147 pointer. We need to use initial stack pointer (which is saved in
148 r31 by gcc) in such cases. If a compiler emits traceback table,
149 then we should use the alloca register specified in traceback
151 CORE_ADDR initial_sp; /* initial stack pointer. */
155 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
157 fi->extra_info = (struct frame_extra_info *)
158 frame_obstack_alloc (sizeof (struct frame_extra_info));
159 fi->extra_info->initial_sp = 0;
160 if (fi->next != (CORE_ADDR) 0
161 && fi->pc < TEXT_SEGMENT_BASE)
162 /* We're in get_prev_frame */
163 /* and this is a special signal frame. */
164 /* (fi->pc will be some low address in the kernel, */
165 /* to which the signal handler returns). */
166 fi->signal_handler_caller = 1;
169 /* Put here the code to store, into a struct frame_saved_regs,
170 the addresses of the saved registers of frame described by FRAME_INFO.
171 This includes special registers such as pc and fp saved in special
172 ways in the stack frame. sp is even more special:
173 the address we return for it IS the sp for the next frame. */
175 /* In this implementation for RS/6000, we do *not* save sp. I am
176 not sure if it will be needed. The following function takes care of gpr's
180 rs6000_frame_init_saved_regs (struct frame_info *fi)
182 frame_get_saved_regs (fi, NULL);
186 rs6000_frame_args_address (struct frame_info *fi)
188 if (fi->extra_info->initial_sp != 0)
189 return fi->extra_info->initial_sp;
191 return frame_initial_stack_address (fi);
194 /* Immediately after a function call, return the saved pc.
195 Can't go through the frames for this because on some machines
196 the new frame is not set up until the new function executes
197 some instructions. */
200 rs6000_saved_pc_after_call (struct frame_info *fi)
202 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
205 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
208 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
215 absolute = (int) ((instr >> 1) & 1);
220 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
224 dest = pc + immediate;
228 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
232 dest = pc + immediate;
236 ext_op = (instr >> 1) & 0x3ff;
238 if (ext_op == 16) /* br conditional register */
240 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
242 /* If we are about to return from a signal handler, dest is
243 something like 0x3c90. The current frame is a signal handler
244 caller frame, upon completion of the sigreturn system call
245 execution will return to the saved PC in the frame. */
246 if (dest < TEXT_SEGMENT_BASE)
248 struct frame_info *fi;
250 fi = get_current_frame ();
252 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
257 else if (ext_op == 528) /* br cond to count reg */
259 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
261 /* If we are about to execute a system call, dest is something
262 like 0x22fc or 0x3b00. Upon completion the system call
263 will return to the address in the link register. */
264 if (dest < TEXT_SEGMENT_BASE)
265 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
274 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
278 /* Sequence of bytes for breakpoint instruction. */
280 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
281 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
283 static unsigned char *
284 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
286 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
287 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
289 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
290 return big_breakpoint;
292 return little_breakpoint;
296 /* AIX does not support PT_STEP. Simulate it. */
299 rs6000_software_single_step (enum target_signal signal,
300 int insert_breakpoints_p)
302 #define INSNLEN(OPCODE) 4
304 static char le_breakp[] = LITTLE_BREAKPOINT;
305 static char be_breakp[] = BIG_BREAKPOINT;
306 char *breakp = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? be_breakp : le_breakp;
312 if (insert_breakpoints_p)
317 insn = read_memory_integer (loc, 4);
319 breaks[0] = loc + INSNLEN (insn);
321 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
323 /* Don't put two breakpoints on the same address. */
324 if (breaks[1] == breaks[0])
327 stepBreaks[1].address = 0;
329 for (ii = 0; ii < 2; ++ii)
332 /* ignore invalid breakpoint. */
333 if (breaks[ii] == -1)
336 read_memory (breaks[ii], stepBreaks[ii].data, 4);
338 write_memory (breaks[ii], breakp, 4);
339 stepBreaks[ii].address = breaks[ii];
346 /* remove step breakpoints. */
347 for (ii = 0; ii < 2; ++ii)
348 if (stepBreaks[ii].address != 0)
350 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
353 errno = 0; /* FIXME, don't ignore errors! */
354 /* What errors? {read,write}_memory call error(). */
358 /* return pc value after skipping a function prologue and also return
359 information about a function frame.
361 in struct rs6000_framedata fdata:
362 - frameless is TRUE, if function does not have a frame.
363 - nosavedpc is TRUE, if function does not save %pc value in its frame.
364 - offset is the initial size of this stack frame --- the amount by
365 which we decrement the sp to allocate the frame.
366 - saved_gpr is the number of the first saved gpr.
367 - saved_fpr is the number of the first saved fpr.
368 - saved_vr is the number of the first saved vr.
369 - alloca_reg is the number of the register used for alloca() handling.
371 - gpr_offset is the offset of the first saved gpr from the previous frame.
372 - fpr_offset is the offset of the first saved fpr from the previous frame.
373 - vr_offset is the offset of the first saved vr from the previous frame.
374 - lr_offset is the offset of the saved lr
375 - cr_offset is the offset of the saved cr
376 - vrsave_offset is the offset of the saved vrsave register
379 #define SIGNED_SHORT(x) \
380 ((sizeof (short) == 2) \
381 ? ((int)(short)(x)) \
382 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
384 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
386 /* Limit the number of skipped non-prologue instructions, as the examining
387 of the prologue is expensive. */
388 static int max_skip_non_prologue_insns = 10;
390 /* Given PC representing the starting address of a function, and
391 LIM_PC which is the (sloppy) limit to which to scan when looking
392 for a prologue, attempt to further refine this limit by using
393 the line data in the symbol table. If successful, a better guess
394 on where the prologue ends is returned, otherwise the previous
395 value of lim_pc is returned. */
397 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
399 struct symtab_and_line prologue_sal;
401 prologue_sal = find_pc_line (pc, 0);
402 if (prologue_sal.line != 0)
405 CORE_ADDR addr = prologue_sal.end;
407 /* Handle the case in which compiler's optimizer/scheduler
408 has moved instructions into the prologue. We scan ahead
409 in the function looking for address ranges whose corresponding
410 line number is less than or equal to the first one that we
411 found for the function. (It can be less than when the
412 scheduler puts a body instruction before the first prologue
414 for (i = 2 * max_skip_non_prologue_insns;
415 i > 0 && (lim_pc == 0 || addr < lim_pc);
418 struct symtab_and_line sal;
420 sal = find_pc_line (addr, 0);
423 if (sal.line <= prologue_sal.line
424 && sal.symtab == prologue_sal.symtab)
431 if (lim_pc == 0 || prologue_sal.end < lim_pc)
432 lim_pc = prologue_sal.end;
439 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
441 CORE_ADDR orig_pc = pc;
442 CORE_ADDR last_prologue_pc = pc;
443 CORE_ADDR li_found_pc = 0;
447 long vr_saved_offset = 0;
454 int minimal_toc_loaded = 0;
455 int prev_insn_was_prologue_insn = 1;
456 int num_skip_non_prologue_insns = 0;
458 /* Attempt to find the end of the prologue when no limit is specified.
459 Note that refine_prologue_limit() has been written so that it may
460 be used to "refine" the limits of non-zero PC values too, but this
461 is only safe if we 1) trust the line information provided by the
462 compiler and 2) iterate enough to actually find the end of the
465 It may become a good idea at some point (for both performance and
466 accuracy) to unconditionally call refine_prologue_limit(). But,
467 until we can make a clear determination that this is beneficial,
468 we'll play it safe and only use it to obtain a limit when none
469 has been specified. */
471 lim_pc = refine_prologue_limit (pc, lim_pc);
473 memset (fdata, 0, sizeof (struct rs6000_framedata));
474 fdata->saved_gpr = -1;
475 fdata->saved_fpr = -1;
476 fdata->saved_vr = -1;
477 fdata->alloca_reg = -1;
478 fdata->frameless = 1;
479 fdata->nosavedpc = 1;
483 /* Sometimes it isn't clear if an instruction is a prologue
484 instruction or not. When we encounter one of these ambiguous
485 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
486 Otherwise, we'll assume that it really is a prologue instruction. */
487 if (prev_insn_was_prologue_insn)
488 last_prologue_pc = pc;
490 /* Stop scanning if we've hit the limit. */
491 if (lim_pc != 0 && pc >= lim_pc)
494 prev_insn_was_prologue_insn = 1;
496 /* Fetch the instruction and convert it to an integer. */
497 if (target_read_memory (pc, buf, 4))
499 op = extract_signed_integer (buf, 4);
501 if ((op & 0xfc1fffff) == 0x7c0802a6)
503 lr_reg = (op & 0x03e00000) | 0x90010000;
507 else if ((op & 0xfc1fffff) == 0x7c000026)
509 cr_reg = (op & 0x03e00000) | 0x90010000;
513 else if ((op & 0xfc1f0000) == 0xd8010000)
514 { /* stfd Rx,NUM(r1) */
515 reg = GET_SRC_REG (op);
516 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
518 fdata->saved_fpr = reg;
519 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
524 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
525 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
526 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
527 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
530 reg = GET_SRC_REG (op);
531 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
533 fdata->saved_gpr = reg;
534 if ((op & 0xfc1f0003) == 0xf8010000)
536 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
541 else if ((op & 0xffff0000) == 0x60000000)
544 /* Allow nops in the prologue, but do not consider them to
545 be part of the prologue unless followed by other prologue
547 prev_insn_was_prologue_insn = 0;
551 else if ((op & 0xffff0000) == 0x3c000000)
552 { /* addis 0,0,NUM, used
554 fdata->offset = (op & 0x0000ffff) << 16;
555 fdata->frameless = 0;
559 else if ((op & 0xffff0000) == 0x60000000)
560 { /* ori 0,0,NUM, 2nd ha
561 lf of >= 32k frames */
562 fdata->offset |= (op & 0x0000ffff);
563 fdata->frameless = 0;
567 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
570 fdata->lr_offset = SIGNED_SHORT (op) + offset;
571 fdata->nosavedpc = 0;
576 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
579 fdata->cr_offset = SIGNED_SHORT (op) + offset;
584 else if (op == 0x48000005)
590 else if (op == 0x48000004)
595 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
596 in V.4 -mminimal-toc */
597 (op & 0xffff0000) == 0x3bde0000)
598 { /* addi 30,30,foo@l */
602 else if ((op & 0xfc000001) == 0x48000001)
606 fdata->frameless = 0;
607 /* Don't skip over the subroutine call if it is not within
608 the first three instructions of the prologue. */
609 if ((pc - orig_pc) > 8)
612 op = read_memory_integer (pc + 4, 4);
614 /* At this point, make sure this is not a trampoline
615 function (a function that simply calls another functions,
616 and nothing else). If the next is not a nop, this branch
617 was part of the function prologue. */
619 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
620 break; /* don't skip over
624 /* update stack pointer */
626 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
627 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
629 fdata->frameless = 0;
630 if ((op & 0xffff0003) == 0xf8210001)
632 fdata->offset = SIGNED_SHORT (op);
633 offset = fdata->offset;
637 else if (op == 0x7c21016e)
639 fdata->frameless = 0;
640 offset = fdata->offset;
643 /* Load up minimal toc pointer */
645 else if ((op >> 22) == 0x20f
646 && !minimal_toc_loaded)
647 { /* l r31,... or l r30,... */
648 minimal_toc_loaded = 1;
651 /* move parameters from argument registers to local variable
654 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
655 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
656 (((op >> 21) & 31) <= 10) &&
657 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
661 /* store parameters in stack */
663 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
664 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
665 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
669 /* store parameters in stack via frame pointer */
672 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
673 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
674 (op & 0xfc1f0000) == 0xfc1f0000))
675 { /* frsp, fp?,NUM(r1) */
678 /* Set up frame pointer */
680 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
683 fdata->frameless = 0;
685 fdata->alloca_reg = 31;
688 /* Another way to set up the frame pointer. */
690 else if ((op & 0xfc1fffff) == 0x38010000)
691 { /* addi rX, r1, 0x0 */
692 fdata->frameless = 0;
694 fdata->alloca_reg = (op & ~0x38010000) >> 21;
697 /* AltiVec related instructions. */
698 /* Store the vrsave register (spr 256) in another register for
699 later manipulation, or load a register into the vrsave
700 register. 2 instructions are used: mfvrsave and
701 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
702 and mtspr SPR256, Rn. */
703 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
704 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
705 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
707 vrsave_reg = GET_SRC_REG (op);
710 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
714 /* Store the register where vrsave was saved to onto the stack:
715 rS is the register where vrsave was stored in a previous
717 /* 100100 sssss 00001 dddddddd dddddddd */
718 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
720 if (vrsave_reg == GET_SRC_REG (op))
722 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
727 /* Compute the new value of vrsave, by modifying the register
728 where vrsave was saved to. */
729 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
730 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
734 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
735 in a pair of insns to save the vector registers on the
737 /* 001110 00000 00000 iiii iiii iiii iiii */
738 else if ((op & 0xffff0000) == 0x38000000) /* li r0, SIMM */
741 vr_saved_offset = SIGNED_SHORT (op);
743 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
744 /* 011111 sssss 11111 00000 00111001110 */
745 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
747 if (pc == (li_found_pc + 4))
749 vr_reg = GET_SRC_REG (op);
750 /* If this is the first vector reg to be saved, or if
751 it has a lower number than others previously seen,
752 reupdate the frame info. */
753 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
755 fdata->saved_vr = vr_reg;
756 fdata->vr_offset = vr_saved_offset + offset;
758 vr_saved_offset = -1;
763 /* End AltiVec related instructions. */
766 /* Not a recognized prologue instruction.
767 Handle optimizer code motions into the prologue by continuing
768 the search if we have no valid frame yet or if the return
769 address is not yet saved in the frame. */
770 if (fdata->frameless == 0
771 && (lr_reg == -1 || fdata->nosavedpc == 0))
774 if (op == 0x4e800020 /* blr */
775 || op == 0x4e800420) /* bctr */
776 /* Do not scan past epilogue in frameless functions or
779 if ((op & 0xf4000000) == 0x40000000) /* bxx */
780 /* Never skip branches. */
783 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
784 /* Do not scan too many insns, scanning insns is expensive with
788 /* Continue scanning. */
789 prev_insn_was_prologue_insn = 0;
795 /* I have problems with skipping over __main() that I need to address
796 * sometime. Previously, I used to use misc_function_vector which
797 * didn't work as well as I wanted to be. -MGO */
799 /* If the first thing after skipping a prolog is a branch to a function,
800 this might be a call to an initializer in main(), introduced by gcc2.
801 We'd like to skip over it as well. Fortunately, xlc does some extra
802 work before calling a function right after a prologue, thus we can
803 single out such gcc2 behaviour. */
806 if ((op & 0xfc000001) == 0x48000001)
807 { /* bl foo, an initializer function? */
808 op = read_memory_integer (pc + 4, 4);
810 if (op == 0x4def7b82)
811 { /* cror 0xf, 0xf, 0xf (nop) */
813 /* check and see if we are in main. If so, skip over this initializer
816 tmp = find_pc_misc_function (pc);
817 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
823 fdata->offset = -fdata->offset;
824 return last_prologue_pc;
828 /*************************************************************************
829 Support for creating pushing a dummy frame into the stack, and popping
831 *************************************************************************/
834 /* Pop the innermost frame, go back to the caller. */
837 rs6000_pop_frame (void)
839 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
840 struct rs6000_framedata fdata;
841 struct frame_info *frame = get_current_frame ();
845 sp = FRAME_FP (frame);
847 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
849 generic_pop_dummy_frame ();
850 flush_cached_frames ();
854 /* Make sure that all registers are valid. */
855 read_register_bytes (0, NULL, REGISTER_BYTES);
857 /* figure out previous %pc value. If the function is frameless, it is
858 still in the link register, otherwise walk the frames and retrieve the
859 saved %pc value in the previous frame. */
861 addr = get_pc_function_start (frame->pc);
862 (void) skip_prologue (addr, frame->pc, &fdata);
864 wordsize = TDEP->wordsize;
868 prev_sp = read_memory_addr (sp, wordsize);
869 if (fdata.lr_offset == 0)
870 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
872 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
874 /* reset %pc value. */
875 write_register (PC_REGNUM, lr);
877 /* reset register values if any was saved earlier. */
879 if (fdata.saved_gpr != -1)
881 addr = prev_sp + fdata.gpr_offset;
882 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
884 read_memory (addr, ®isters[REGISTER_BYTE (ii)], wordsize);
889 if (fdata.saved_fpr != -1)
891 addr = prev_sp + fdata.fpr_offset;
892 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
894 read_memory (addr, ®isters[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
899 write_register (SP_REGNUM, prev_sp);
900 target_store_registers (-1);
901 flush_cached_frames ();
904 /* Fixup the call sequence of a dummy function, with the real function
905 address. Its arguments will be passed by gdb. */
908 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
909 int nargs, struct value **args, struct type *type,
913 CORE_ADDR target_addr;
915 if (rs6000_find_toc_address_hook != NULL)
917 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
918 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
923 /* Pass the arguments in either registers, or in the stack. In RS/6000,
924 the first eight words of the argument list (that might be less than
925 eight parameters if some parameters occupy more than one word) are
926 passed in r3..r10 registers. float and double parameters are
927 passed in fpr's, in addition to that. Rest of the parameters if any
928 are passed in user stack. There might be cases in which half of the
929 parameter is copied into registers, the other half is pushed into
932 Stack must be aligned on 64-bit boundaries when synthesizing
935 If the function is returning a structure, then the return address is passed
936 in r3, then the first 7 words of the parameters can be passed in registers,
940 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
941 int struct_return, CORE_ADDR struct_addr)
945 int argno; /* current argument number */
946 int argbytes; /* current argument byte */
948 int f_argno = 0; /* current floating point argno */
949 int wordsize = TDEP->wordsize;
951 struct value *arg = 0;
956 /* The first eight words of ther arguments are passed in registers. Copy
959 If the function is returning a `struct', then the first word (which
960 will be passed in r3) is used for struct return address. In that
961 case we should advance one word and start from r4 register to copy
964 ii = struct_return ? 1 : 0;
967 effectively indirect call... gcc does...
969 return_val example( float, int);
972 float in fp0, int in r3
973 offset of stack on overflow 8/16
974 for varargs, must go by type.
976 float in r3&r4, int in r5
977 offset of stack on overflow different
979 return in r3 or f0. If no float, must study how gcc emulates floats;
980 pay attention to arg promotion.
981 User may have to cast\args to handle promotion correctly
982 since gdb won't know if prototype supplied or not.
985 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
987 int reg_size = REGISTER_RAW_SIZE (ii + 3);
990 type = check_typedef (VALUE_TYPE (arg));
991 len = TYPE_LENGTH (type);
993 if (TYPE_CODE (type) == TYPE_CODE_FLT)
996 /* floating point arguments are passed in fpr's, as well as gpr's.
997 There are 13 fpr's reserved for passing parameters. At this point
998 there is no way we would run out of them. */
1002 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1004 memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1005 VALUE_CONTENTS (arg),
1013 /* Argument takes more than one register. */
1014 while (argbytes < len)
1016 memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size);
1017 memcpy (®isters[REGISTER_BYTE (ii + 3)],
1018 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1019 (len - argbytes) > reg_size
1020 ? reg_size : len - argbytes);
1021 ++ii, argbytes += reg_size;
1024 goto ran_out_of_registers_for_arguments;
1030 { /* Argument can fit in one register. No problem. */
1031 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1032 memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size);
1033 memcpy ((char *)®isters[REGISTER_BYTE (ii + 3)] + adj,
1034 VALUE_CONTENTS (arg), len);
1039 ran_out_of_registers_for_arguments:
1041 saved_sp = read_sp ();
1042 #ifndef ELF_OBJECT_FORMAT
1043 /* location for 8 parameters are always reserved. */
1046 /* another six words for back chain, TOC register, link register, etc. */
1049 /* stack pointer must be quadword aligned */
1053 /* if there are more arguments, allocate space for them in
1054 the stack, then push them starting from the ninth one. */
1056 if ((argno < nargs) || argbytes)
1062 space += ((len - argbytes + 3) & -4);
1068 for (; jj < nargs; ++jj)
1070 struct value *val = args[jj];
1071 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1074 /* add location required for the rest of the parameters */
1075 space = (space + 15) & -16;
1078 /* This is another instance we need to be concerned about securing our
1079 stack space. If we write anything underneath %sp (r1), we might conflict
1080 with the kernel who thinks he is free to use this area. So, update %sp
1081 first before doing anything else. */
1083 write_register (SP_REGNUM, sp);
1085 /* if the last argument copied into the registers didn't fit there
1086 completely, push the rest of it into stack. */
1090 write_memory (sp + 24 + (ii * 4),
1091 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1094 ii += ((len - argbytes + 3) & -4) / 4;
1097 /* push the rest of the arguments into stack. */
1098 for (; argno < nargs; ++argno)
1102 type = check_typedef (VALUE_TYPE (arg));
1103 len = TYPE_LENGTH (type);
1106 /* float types should be passed in fpr's, as well as in the stack. */
1107 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1112 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1114 memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1115 VALUE_CONTENTS (arg),
1120 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1121 ii += ((len + 3) & -4) / 4;
1125 /* Secure stack areas first, before doing anything else. */
1126 write_register (SP_REGNUM, sp);
1128 /* set back chain properly */
1129 store_address (tmp_buffer, 4, saved_sp);
1130 write_memory (sp, tmp_buffer, 4);
1132 target_store_registers (-1);
1136 /* Function: ppc_push_return_address (pc, sp)
1137 Set up the return address for the inferior function call. */
1140 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1142 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1143 CALL_DUMMY_ADDRESS ());
1147 /* Extract a function return value of type TYPE from raw register array
1148 REGBUF, and copy that return value into VALBUF in virtual format. */
1151 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1155 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1160 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1161 We need to truncate the return value into float size (4 byte) if
1164 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1166 ®buf[REGISTER_BYTE (FP0_REGNUM + 1)],
1167 TYPE_LENGTH (valtype));
1170 memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1172 memcpy (valbuf, &ff, sizeof (float));
1177 /* return value is copied starting from r3. */
1178 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1179 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1180 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1183 regbuf + REGISTER_BYTE (3) + offset,
1184 TYPE_LENGTH (valtype));
1188 /* Keep structure return address in this variable.
1189 FIXME: This is a horrid kludge which should not be allowed to continue
1190 living. This only allows a single nested call to a structure-returning
1193 static CORE_ADDR rs6000_struct_return_address;
1195 /* Return whether handle_inferior_event() should proceed through code
1196 starting at PC in function NAME when stepping.
1198 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1199 handle memory references that are too distant to fit in instructions
1200 generated by the compiler. For example, if 'foo' in the following
1205 is greater than 32767, the linker might replace the lwz with a branch to
1206 somewhere in @FIX1 that does the load in 2 instructions and then branches
1207 back to where execution should continue.
1209 GDB should silently step over @FIX code, just like AIX dbx does.
1210 Unfortunately, the linker uses the "b" instruction for the branches,
1211 meaning that the link register doesn't get set. Therefore, GDB's usual
1212 step_over_function() mechanism won't work.
1214 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1215 in handle_inferior_event() to skip past @FIX code. */
1218 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1220 return name && !strncmp (name, "@FIX", 4);
1223 /* Skip code that the user doesn't want to see when stepping:
1225 1. Indirect function calls use a piece of trampoline code to do context
1226 switching, i.e. to set the new TOC table. Skip such code if we are on
1227 its first instruction (as when we have single-stepped to here).
1229 2. Skip shared library trampoline code (which is different from
1230 indirect function call trampolines).
1232 3. Skip bigtoc fixup code.
1234 Result is desired PC to step until, or NULL if we are not in
1235 code that should be skipped. */
1238 rs6000_skip_trampoline_code (CORE_ADDR pc)
1240 register unsigned int ii, op;
1242 CORE_ADDR solib_target_pc;
1243 struct minimal_symbol *msymbol;
1245 static unsigned trampoline_code[] =
1247 0x800b0000, /* l r0,0x0(r11) */
1248 0x90410014, /* st r2,0x14(r1) */
1249 0x7c0903a6, /* mtctr r0 */
1250 0x804b0004, /* l r2,0x4(r11) */
1251 0x816b0008, /* l r11,0x8(r11) */
1252 0x4e800420, /* bctr */
1253 0x4e800020, /* br */
1257 /* Check for bigtoc fixup code. */
1258 msymbol = lookup_minimal_symbol_by_pc (pc);
1259 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1261 /* Double-check that the third instruction from PC is relative "b". */
1262 op = read_memory_integer (pc + 8, 4);
1263 if ((op & 0xfc000003) == 0x48000000)
1265 /* Extract bits 6-29 as a signed 24-bit relative word address and
1266 add it to the containing PC. */
1267 rel = ((int)(op << 6) >> 6);
1268 return pc + 8 + rel;
1272 /* If pc is in a shared library trampoline, return its target. */
1273 solib_target_pc = find_solib_trampoline_target (pc);
1274 if (solib_target_pc)
1275 return solib_target_pc;
1277 for (ii = 0; trampoline_code[ii]; ++ii)
1279 op = read_memory_integer (pc + (ii * 4), 4);
1280 if (op != trampoline_code[ii])
1283 ii = read_register (11); /* r11 holds destination addr */
1284 pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
1288 /* Determines whether the function FI has a frame on the stack or not. */
1291 rs6000_frameless_function_invocation (struct frame_info *fi)
1293 CORE_ADDR func_start;
1294 struct rs6000_framedata fdata;
1296 /* Don't even think about framelessness except on the innermost frame
1297 or if the function was interrupted by a signal. */
1298 if (fi->next != NULL && !fi->next->signal_handler_caller)
1301 func_start = get_pc_function_start (fi->pc);
1303 /* If we failed to find the start of the function, it is a mistake
1304 to inspect the instructions. */
1308 /* A frame with a zero PC is usually created by dereferencing a NULL
1309 function pointer, normally causing an immediate core dump of the
1310 inferior. Mark function as frameless, as the inferior has no chance
1311 of setting up a stack frame. */
1318 (void) skip_prologue (func_start, fi->pc, &fdata);
1319 return fdata.frameless;
1322 /* Return the PC saved in a frame */
1325 rs6000_frame_saved_pc (struct frame_info *fi)
1327 CORE_ADDR func_start;
1328 struct rs6000_framedata fdata;
1329 int wordsize = TDEP->wordsize;
1331 if (fi->signal_handler_caller)
1332 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1334 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1335 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1337 func_start = get_pc_function_start (fi->pc);
1339 /* If we failed to find the start of the function, it is a mistake
1340 to inspect the instructions. */
1344 (void) skip_prologue (func_start, fi->pc, &fdata);
1346 if (fdata.lr_offset == 0 && fi->next != NULL)
1348 if (fi->next->signal_handler_caller)
1349 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1352 return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
1356 if (fdata.lr_offset == 0)
1357 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1359 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1362 /* If saved registers of frame FI are not known yet, read and cache them.
1363 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1364 in which case the framedata are read. */
1367 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1369 CORE_ADDR frame_addr;
1370 struct rs6000_framedata work_fdata;
1371 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1372 int wordsize = tdep->wordsize;
1379 fdatap = &work_fdata;
1380 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1383 frame_saved_regs_zalloc (fi);
1385 /* If there were any saved registers, figure out parent's stack
1387 /* The following is true only if the frame doesn't have a call to
1390 if (fdatap->saved_fpr == 0
1391 && fdatap->saved_gpr == 0
1392 && fdatap->saved_vr == 0
1393 && fdatap->lr_offset == 0
1394 && fdatap->cr_offset == 0
1395 && fdatap->vr_offset == 0)
1397 else if (fi->prev && fi->prev->frame)
1398 frame_addr = fi->prev->frame;
1400 frame_addr = read_memory_addr (fi->frame, wordsize);
1402 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1403 All fpr's from saved_fpr to fp31 are saved. */
1405 if (fdatap->saved_fpr >= 0)
1408 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1409 for (i = fdatap->saved_fpr; i < 32; i++)
1411 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1416 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1417 All gpr's from saved_gpr to gpr31 are saved. */
1419 if (fdatap->saved_gpr >= 0)
1422 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1423 for (i = fdatap->saved_gpr; i < 32; i++)
1425 fi->saved_regs[i] = gpr_addr;
1426 gpr_addr += wordsize;
1430 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1431 All vr's from saved_vr to vr31 are saved. */
1432 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1434 if (fdatap->saved_vr >= 0)
1437 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1438 for (i = fdatap->saved_vr; i < 32; i++)
1440 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1441 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1446 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1448 if (fdatap->cr_offset != 0)
1449 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1451 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1453 if (fdatap->lr_offset != 0)
1454 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1456 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1458 if (fdatap->vrsave_offset != 0)
1459 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1462 /* Return the address of a frame. This is the inital %sp value when the frame
1463 was first allocated. For functions calling alloca(), it might be saved in
1464 an alloca register. */
1467 frame_initial_stack_address (struct frame_info *fi)
1470 struct rs6000_framedata fdata;
1471 struct frame_info *callee_fi;
1473 /* if the initial stack pointer (frame address) of this frame is known,
1476 if (fi->extra_info->initial_sp)
1477 return fi->extra_info->initial_sp;
1479 /* find out if this function is using an alloca register.. */
1481 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1483 /* if saved registers of this frame are not known yet, read and cache them. */
1485 if (!fi->saved_regs)
1486 frame_get_saved_regs (fi, &fdata);
1488 /* If no alloca register used, then fi->frame is the value of the %sp for
1489 this frame, and it is good enough. */
1491 if (fdata.alloca_reg < 0)
1493 fi->extra_info->initial_sp = fi->frame;
1494 return fi->extra_info->initial_sp;
1497 /* This function has an alloca register. If this is the top-most frame
1498 (with the lowest address), the value in alloca register is good. */
1501 return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1503 /* Otherwise, this is a caller frame. Callee has usually already saved
1504 registers, but there are exceptions (such as when the callee
1505 has no parameters). Find the address in which caller's alloca
1506 register is saved. */
1508 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
1511 if (!callee_fi->saved_regs)
1512 frame_get_saved_regs (callee_fi, NULL);
1514 /* this is the address in which alloca register is saved. */
1516 tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
1519 fi->extra_info->initial_sp =
1520 read_memory_addr (tmpaddr, TDEP->wordsize);
1521 return fi->extra_info->initial_sp;
1524 /* Go look into deeper levels of the frame chain to see if any one of
1525 the callees has saved alloca register. */
1528 /* If alloca register was not saved, by the callee (or any of its callees)
1529 then the value in the register is still good. */
1531 fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1532 return fi->extra_info->initial_sp;
1535 /* Describe the pointer in each stack frame to the previous stack frame
1538 /* FRAME_CHAIN takes a frame's nominal address
1539 and produces the frame's chain-pointer. */
1541 /* In the case of the RS/6000, the frame's nominal address
1542 is the address of a 4-byte word containing the calling frame's address. */
1545 rs6000_frame_chain (struct frame_info *thisframe)
1547 CORE_ADDR fp, fpp, lr;
1548 int wordsize = TDEP->wordsize;
1550 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1551 return thisframe->frame; /* dummy frame same as caller's frame */
1553 if (inside_entry_file (thisframe->pc) ||
1554 thisframe->pc == entry_point_address ())
1557 if (thisframe->signal_handler_caller)
1558 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1560 else if (thisframe->next != NULL
1561 && thisframe->next->signal_handler_caller
1562 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1563 /* A frameless function interrupted by a signal did not change the
1565 fp = FRAME_FP (thisframe);
1567 fp = read_memory_addr ((thisframe)->frame, wordsize);
1569 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1570 if (lr == entry_point_address ())
1571 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1572 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1578 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1579 isn't available with that word size, return 0. */
1582 regsize (const struct reg *reg, int wordsize)
1584 return wordsize == 8 ? reg->sz64 : reg->sz32;
1587 /* Return the name of register number N, or null if no such register exists
1588 in the current architecture. */
1591 rs6000_register_name (int n)
1593 struct gdbarch_tdep *tdep = TDEP;
1594 const struct reg *reg = tdep->regs + n;
1596 if (!regsize (reg, tdep->wordsize))
1601 /* Index within `registers' of the first byte of the space for
1605 rs6000_register_byte (int n)
1607 return TDEP->regoff[n];
1610 /* Return the number of bytes of storage in the actual machine representation
1611 for register N if that register is available, else return 0. */
1614 rs6000_register_raw_size (int n)
1616 struct gdbarch_tdep *tdep = TDEP;
1617 const struct reg *reg = tdep->regs + n;
1618 return regsize (reg, tdep->wordsize);
1621 /* Return the GDB type object for the "standard" data type
1622 of data in register N. */
1624 static struct type *
1625 rs6000_register_virtual_type (int n)
1627 struct gdbarch_tdep *tdep = TDEP;
1628 const struct reg *reg = tdep->regs + n;
1631 return builtin_type_double;
1634 int size = regsize (reg, tdep->wordsize);
1638 return builtin_type_int64;
1641 return builtin_type_vec128;
1644 return builtin_type_int32;
1650 /* For the PowerPC, it appears that the debug info marks float parameters as
1651 floats regardless of whether the function is prototyped, but the actual
1652 values are always passed in as doubles. Tell gdb to always assume that
1653 floats are passed as doubles and then converted in the callee. */
1656 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1661 /* Return whether register N requires conversion when moving from raw format
1664 The register format for RS/6000 floating point registers is always
1665 double, we need a conversion if the memory format is float. */
1668 rs6000_register_convertible (int n)
1670 const struct reg *reg = TDEP->regs + n;
1674 /* Convert data from raw format for register N in buffer FROM
1675 to virtual format with type TYPE in buffer TO. */
1678 rs6000_register_convert_to_virtual (int n, struct type *type,
1679 char *from, char *to)
1681 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1683 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1684 store_floating (to, TYPE_LENGTH (type), val);
1687 memcpy (to, from, REGISTER_RAW_SIZE (n));
1690 /* Convert data from virtual format with type TYPE in buffer FROM
1691 to raw format for register N in buffer TO. */
1694 rs6000_register_convert_to_raw (struct type *type, int n,
1695 char *from, char *to)
1697 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1699 double val = extract_floating (from, TYPE_LENGTH (type));
1700 store_floating (to, REGISTER_RAW_SIZE (n), val);
1703 memcpy (to, from, REGISTER_RAW_SIZE (n));
1707 altivec_register_p (int regno)
1709 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1710 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
1713 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
1717 rs6000_do_altivec_registers (int regnum)
1720 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1721 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1722 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1724 for (i = tdep->ppc_vr0_regnum; i <= tdep->ppc_vrsave_regnum; i++)
1726 /* If we want just one reg, check that this is the one we want. */
1727 if (regnum != -1 && i != regnum)
1730 /* If the register name is empty, it is undefined for this
1731 processor, so don't display anything. */
1732 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1735 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1736 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1738 /* Get the data in raw format. */
1739 if (read_relative_register_raw_bytes (i, raw_buffer))
1741 printf_filtered ("*value not available*\n");
1745 /* Convert raw data to virtual format if necessary. */
1746 if (REGISTER_CONVERTIBLE (i))
1747 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1748 raw_buffer, virtual_buffer);
1750 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1752 /* Print as integer in hex only. */
1753 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1754 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1755 printf_filtered ("\n");
1760 rs6000_altivec_registers_info (char *addr_exp, int from_tty)
1762 int regnum, numregs;
1765 if (!target_has_registers)
1766 error ("The program has no registers now.");
1767 if (selected_frame == NULL)
1768 error ("No selected frame.");
1772 rs6000_do_altivec_registers (-1);
1776 numregs = NUM_REGS + NUM_PSEUDO_REGS;
1779 if (addr_exp[0] == '$')
1782 while (*end != '\0' && *end != ' ' && *end != '\t')
1785 regnum = target_map_name_to_register (addr_exp, end - addr_exp);
1789 if (*addr_exp >= '0' && *addr_exp <= '9')
1790 regnum = atoi (addr_exp); /* Take a number */
1791 if (regnum >= numregs) /* Bad name, or bad number */
1792 error ("%.*s: invalid register", end - addr_exp, addr_exp);
1795 rs6000_do_altivec_registers (regnum);
1798 while (*addr_exp == ' ' || *addr_exp == '\t')
1801 while (*addr_exp != '\0');
1805 rs6000_do_registers_info (int regnum, int fpregs)
1808 int numregs = NUM_REGS + NUM_PSEUDO_REGS;
1809 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1810 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1812 for (i = 0; i < numregs; i++)
1814 /* Decide between printing all regs, nonfloat regs, or specific reg. */
1817 if ((TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
1818 || (altivec_register_p (i) && !fpregs))
1827 /* If the register name is empty, it is undefined for this
1828 processor, so don't display anything. */
1829 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1832 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1833 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1835 /* Get the data in raw format. */
1836 if (read_relative_register_raw_bytes (i, raw_buffer))
1838 printf_filtered ("*value not available*\n");
1842 /* Convert raw data to virtual format if necessary. */
1843 if (REGISTER_CONVERTIBLE (i))
1844 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1845 raw_buffer, virtual_buffer);
1847 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1849 /* If virtual format is floating, print it that way, and in raw hex. */
1850 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
1854 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1855 gdb_stdout, 0, 1, 0, Val_pretty_default);
1857 printf_filtered ("\t(raw 0x");
1858 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
1860 register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
1861 : REGISTER_RAW_SIZE (i) - 1 - j;
1862 printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
1864 printf_filtered (")");
1868 /* Print as integer in hex and in decimal. */
1869 if (!altivec_register_p (i))
1871 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1872 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1873 printf_filtered ("\t");
1874 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1875 gdb_stdout, 0, 1, 0, Val_pretty_default);
1878 /* Print as integer in hex only. */
1879 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1880 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1882 printf_filtered ("\n");
1886 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1889 rs6000_stab_reg_to_regnum (int num)
1895 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1898 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1901 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1904 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1913 /* Store the address of the place in which to copy the structure the
1914 subroutine will return. This is called from call_function.
1916 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1917 In function return, callee is not responsible of returning this address
1918 back. Since gdb needs to find it, we will store in a designated variable
1919 `rs6000_struct_return_address'. */
1922 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1924 write_register (3, addr);
1925 rs6000_struct_return_address = addr;
1928 /* Write into appropriate registers a function return value
1929 of type TYPE, given in virtual format. */
1932 rs6000_store_return_value (struct type *type, char *valbuf)
1934 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1936 /* Floating point values are returned starting from FPR1 and up.
1937 Say a double_double_double type could be returned in
1938 FPR1/FPR2/FPR3 triple. */
1940 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1941 TYPE_LENGTH (type));
1943 /* Everything else is returned in GPR3 and up. */
1944 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1945 valbuf, TYPE_LENGTH (type));
1948 /* Extract from an array REGBUF containing the (raw) register state
1949 the address in which a function should return its structure value,
1950 as a CORE_ADDR (or an expression that can be used as one). */
1953 rs6000_extract_struct_value_address (char *regbuf)
1955 return rs6000_struct_return_address;
1958 /* Return whether PC is in a dummy function call.
1960 FIXME: This just checks for the end of the stack, which is broken
1961 for things like stepping through gcc nested function stubs. */
1964 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1966 return sp < pc && pc < fp;
1969 /* Hook called when a new child process is started. */
1972 rs6000_create_inferior (int pid)
1974 if (rs6000_set_host_arch_hook)
1975 rs6000_set_host_arch_hook (pid);
1978 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1980 Usually a function pointer's representation is simply the address
1981 of the function. On the RS/6000 however, a function pointer is
1982 represented by a pointer to a TOC entry. This TOC entry contains
1983 three words, the first word is the address of the function, the
1984 second word is the TOC pointer (r2), and the third word is the
1985 static chain value. Throughout GDB it is currently assumed that a
1986 function pointer contains the address of the function, which is not
1987 easy to fix. In addition, the conversion of a function address to
1988 a function pointer would require allocation of a TOC entry in the
1989 inferior's memory space, with all its drawbacks. To be able to
1990 call C++ virtual methods in the inferior (which are called via
1991 function pointers), find_function_addr uses this function to get the
1992 function address from a function pointer. */
1994 /* Return real function address if ADDR (a function pointer) is in the data
1995 space and is therefore a special function pointer. */
1998 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2000 struct obj_section *s;
2002 s = find_pc_section (addr);
2003 if (s && s->the_bfd_section->flags & SEC_CODE)
2006 /* ADDR is in the data space, so it's a special function pointer. */
2007 return read_memory_addr (addr, TDEP->wordsize);
2011 /* Handling the various POWER/PowerPC variants. */
2014 /* The arrays here called registers_MUMBLE hold information about available
2017 For each family of PPC variants, I've tried to isolate out the
2018 common registers and put them up front, so that as long as you get
2019 the general family right, GDB will correctly identify the registers
2020 common to that family. The common register sets are:
2022 For the 60x family: hid0 hid1 iabr dabr pir
2024 For the 505 and 860 family: eie eid nri
2026 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2027 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2030 Most of these register groups aren't anything formal. I arrived at
2031 them by looking at the registers that occurred in more than one
2034 /* Convenience macros for populating register arrays. */
2036 /* Within another macro, convert S to a string. */
2040 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2041 and 64 bits on 64-bit systems. */
2042 #define R(name) { STR(name), 4, 8, 0 }
2044 /* Return a struct reg defining register NAME that's 32 bits on all
2046 #define R4(name) { STR(name), 4, 4, 0 }
2048 /* Return a struct reg defining register NAME that's 64 bits on all
2050 #define R8(name) { STR(name), 8, 8, 0 }
2052 /* Return a struct reg defining register NAME that's 128 bits on all
2054 #define R16(name) { STR(name), 16, 16, 0 }
2056 /* Return a struct reg defining floating-point register NAME. */
2057 #define F(name) { STR(name), 8, 8, 1 }
2059 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2060 systems and that doesn't exist on 64-bit systems. */
2061 #define R32(name) { STR(name), 4, 0, 0 }
2063 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2064 systems and that doesn't exist on 32-bit systems. */
2065 #define R64(name) { STR(name), 0, 8, 0 }
2067 /* Return a struct reg placeholder for a register that doesn't exist. */
2068 #define R0 { 0, 0, 0, 0 }
2070 /* UISA registers common across all architectures, including POWER. */
2072 #define COMMON_UISA_REGS \
2073 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2074 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2075 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2076 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2077 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2078 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2079 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2080 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2081 /* 64 */ R(pc), R(ps)
2083 /* UISA-level SPRs for PowerPC. */
2084 #define PPC_UISA_SPRS \
2085 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2087 /* Segment registers, for PowerPC. */
2088 #define PPC_SEGMENT_REGS \
2089 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2090 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2091 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2092 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2094 /* OEA SPRs for PowerPC. */
2095 #define PPC_OEA_SPRS \
2097 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2098 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2099 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2100 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2101 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2102 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2103 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2104 /* 116 */ R4(dec), R(dabr), R4(ear)
2106 /* AltiVec registers */
2107 #define PPC_ALTIVEC_REGS \
2108 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2109 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2110 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2111 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2112 /*151*/R4(vscr), R4(vrsave)
2114 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2115 user-level SPR's. */
2116 static const struct reg registers_power[] =
2119 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
2122 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2123 view of the PowerPC. */
2124 static const struct reg registers_powerpc[] =
2131 /* IBM PowerPC 403. */
2132 static const struct reg registers_403[] =
2138 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2139 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2140 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2141 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2142 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2143 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2146 /* IBM PowerPC 403GC. */
2147 static const struct reg registers_403GC[] =
2153 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2154 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2155 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2156 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2157 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2158 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2159 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2160 /* 147 */ R(tbhu), R(tblu)
2163 /* Motorola PowerPC 505. */
2164 static const struct reg registers_505[] =
2170 /* 119 */ R(eie), R(eid), R(nri)
2173 /* Motorola PowerPC 860 or 850. */
2174 static const struct reg registers_860[] =
2180 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2181 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2182 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2183 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2184 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2185 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2186 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2187 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2188 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2189 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2190 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2191 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2194 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2195 for reading and writing RTCU and RTCL. However, how one reads and writes a
2196 register is the stub's problem. */
2197 static const struct reg registers_601[] =
2203 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2204 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2207 /* Motorola PowerPC 602. */
2208 static const struct reg registers_602[] =
2214 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2215 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2216 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2219 /* Motorola/IBM PowerPC 603 or 603e. */
2220 static const struct reg registers_603[] =
2226 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2227 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2228 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2231 /* Motorola PowerPC 604 or 604e. */
2232 static const struct reg registers_604[] =
2238 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2239 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2240 /* 127 */ R(sia), R(sda)
2243 /* Motorola/IBM PowerPC 750 or 740. */
2244 static const struct reg registers_750[] =
2250 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2251 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2252 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2253 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2254 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2255 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2259 /* Motorola PowerPC 7400. */
2260 static const struct reg registers_7400[] =
2262 /* gpr0-gpr31, fpr0-fpr31 */
2264 /* ctr, xre, lr, cr */
2269 /* vr0-vr31, vrsave, vscr */
2271 /* FIXME? Add more registers? */
2274 /* Information about a particular processor variant. */
2278 /* Name of this variant. */
2281 /* English description of the variant. */
2284 /* bfd_arch_info.arch corresponding to variant. */
2285 enum bfd_architecture arch;
2287 /* bfd_arch_info.mach corresponding to variant. */
2290 /* Table of register names; registers[R] is the name of the register
2293 const struct reg *regs;
2296 #define num_registers(list) (sizeof (list) / sizeof((list)[0]))
2299 /* Information in this table comes from the following web sites:
2300 IBM: http://www.chips.ibm.com:80/products/embedded/
2301 Motorola: http://www.mot.com/SPS/PowerPC/
2303 I'm sure I've got some of the variant descriptions not quite right.
2304 Please report any inaccuracies you find to GDB's maintainer.
2306 If you add entries to this table, please be sure to allow the new
2307 value as an argument to the --with-cpu flag, in configure.in. */
2309 static const struct variant variants[] =
2311 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2312 bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
2313 {"power", "POWER user-level", bfd_arch_rs6000,
2314 bfd_mach_rs6k, num_registers (registers_power), registers_power},
2315 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2316 bfd_mach_ppc_403, num_registers (registers_403), registers_403},
2317 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2318 bfd_mach_ppc_601, num_registers (registers_601), registers_601},
2319 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2320 bfd_mach_ppc_602, num_registers (registers_602), registers_602},
2321 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2322 bfd_mach_ppc_603, num_registers (registers_603), registers_603},
2323 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2324 604, num_registers (registers_604), registers_604},
2325 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2326 bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
2327 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2328 bfd_mach_ppc_505, num_registers (registers_505), registers_505},
2329 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2330 bfd_mach_ppc_860, num_registers (registers_860), registers_860},
2331 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2332 bfd_mach_ppc_750, num_registers (registers_750), registers_750},
2333 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2334 bfd_mach_ppc_7400, num_registers (registers_7400), registers_7400},
2336 /* FIXME: I haven't checked the register sets of the following. */
2337 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2338 bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
2339 {"a35", "PowerPC A35", bfd_arch_powerpc,
2340 bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
2341 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2342 bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
2343 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2344 bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
2345 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2346 bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
2351 #undef num_registers
2353 /* Return the variant corresponding to architecture ARCH and machine number
2354 MACH. If no such variant exists, return null. */
2356 static const struct variant *
2357 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2359 const struct variant *v;
2361 for (v = variants; v->name; v++)
2362 if (arch == v->arch && mach == v->mach)
2372 process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2374 int *os_ident_ptr = obj;
2376 unsigned int sectsize;
2378 name = bfd_get_section_name (abfd, sect);
2379 sectsize = bfd_section_size (abfd, sect);
2380 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2382 unsigned int name_length, data_length, note_type;
2383 char *note = alloca (sectsize);
2385 bfd_get_section_contents (abfd, sect, note,
2386 (file_ptr) 0, (bfd_size_type) sectsize);
2388 name_length = bfd_h_get_32 (abfd, note);
2389 data_length = bfd_h_get_32 (abfd, note + 4);
2390 note_type = bfd_h_get_32 (abfd, note + 8);
2392 if (name_length == 4 && data_length == 16 && note_type == 1
2393 && strcmp (note + 12, "GNU") == 0)
2395 int os_number = bfd_h_get_32 (abfd, note + 16);
2397 /* The case numbers are from abi-tags in glibc */
2401 *os_ident_ptr = ELFOSABI_LINUX;
2404 *os_ident_ptr = ELFOSABI_HURD;
2407 *os_ident_ptr = ELFOSABI_SOLARIS;
2410 internal_error (__FILE__, __LINE__,
2411 "process_note_abi_sections: unknown OS number %d",
2419 /* Return one of the ELFOSABI_ constants for BFDs representing ELF
2420 executables. If it's not an ELF executable or if the OS/ABI couldn't
2421 be determined, simply return -1. */
2424 get_elfosabi (bfd *abfd)
2428 if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2430 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2432 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2433 that we're on a SYSV system. However, GNU/Linux uses a note section
2434 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2435 have to check the note sections too. */
2438 bfd_map_over_sections (abfd,
2439 process_note_abi_tag_sections,
2449 /* Initialize the current architecture based on INFO. If possible, re-use an
2450 architecture from ARCHES, which is a list of architectures already created
2451 during this debugging session.
2453 Called e.g. at program startup, when reading a core file, and when reading
2456 static struct gdbarch *
2457 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2459 struct gdbarch *gdbarch;
2460 struct gdbarch_tdep *tdep;
2461 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2463 const struct variant *v;
2464 enum bfd_architecture arch;
2467 int osabi, sysv_abi;
2469 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2470 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2472 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2473 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2475 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2477 osabi = get_elfosabi (info.abfd);
2479 /* Check word size. If INFO is from a binary file, infer it from
2480 that, else choose a likely default. */
2481 if (from_xcoff_exec)
2483 if (xcoff_data (info.abfd)->xcoff64)
2488 else if (from_elf_exec)
2490 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2500 /* Find a candidate among extant architectures. */
2501 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2503 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2505 /* Word size in the various PowerPC bfd_arch_info structs isn't
2506 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2507 separate word size check. */
2508 tdep = gdbarch_tdep (arches->gdbarch);
2509 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2510 return arches->gdbarch;
2513 /* None found, create a new architecture from INFO, whose bfd_arch_info
2514 validity depends on the source:
2515 - executable useless
2516 - rs6000_host_arch() good
2518 - "set arch" trust blindly
2519 - GDB startup useless but harmless */
2521 if (!from_xcoff_exec)
2523 arch = info.bfd_arch_info->arch;
2524 mach = info.bfd_arch_info->mach;
2528 arch = bfd_arch_powerpc;
2530 bfd_default_set_arch_mach (&abfd, arch, mach);
2531 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2533 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2534 tdep->wordsize = wordsize;
2535 tdep->osabi = osabi;
2536 gdbarch = gdbarch_alloc (&info, tdep);
2537 power = arch == bfd_arch_rs6000;
2539 /* Select instruction printer. */
2540 tm_print_insn = arch == power ? print_insn_rs6000 :
2541 info.byte_order == BFD_ENDIAN_BIG ? print_insn_big_powerpc :
2542 print_insn_little_powerpc;
2544 /* Choose variant. */
2545 v = find_variant_by_arch (arch, mach);
2549 tdep->regs = v->regs;
2551 tdep->ppc_gp0_regnum = 0;
2552 tdep->ppc_gplast_regnum = 31;
2553 tdep->ppc_toc_regnum = 2;
2554 tdep->ppc_ps_regnum = 65;
2555 tdep->ppc_cr_regnum = 66;
2556 tdep->ppc_lr_regnum = 67;
2557 tdep->ppc_ctr_regnum = 68;
2558 tdep->ppc_xer_regnum = 69;
2559 if (v->mach == bfd_mach_ppc_601)
2560 tdep->ppc_mq_regnum = 124;
2562 tdep->ppc_mq_regnum = 70;
2564 if (v->arch == bfd_arch_powerpc)
2568 tdep->ppc_vr0_regnum = 71;
2569 tdep->ppc_vrsave_regnum = 104;
2571 case bfd_mach_ppc_7400:
2572 tdep->ppc_vr0_regnum = 119;
2573 tdep->ppc_vrsave_regnum = 153;
2576 tdep->ppc_vr0_regnum = -1;
2577 tdep->ppc_vrsave_regnum = -1;
2581 /* Calculate byte offsets in raw register array. */
2582 tdep->regoff = xmalloc (v->nregs * sizeof (int));
2583 for (i = off = 0; i < v->nregs; i++)
2585 tdep->regoff[i] = off;
2586 off += regsize (v->regs + i, wordsize);
2589 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2590 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2591 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2592 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2593 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2595 set_gdbarch_num_regs (gdbarch, v->nregs);
2596 set_gdbarch_sp_regnum (gdbarch, 1);
2597 set_gdbarch_fp_regnum (gdbarch, 1);
2598 set_gdbarch_pc_regnum (gdbarch, 64);
2599 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2600 set_gdbarch_register_size (gdbarch, wordsize);
2601 set_gdbarch_register_bytes (gdbarch, off);
2602 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2603 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2604 set_gdbarch_max_register_raw_size (gdbarch, 16);
2605 set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size);
2606 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2607 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2608 set_gdbarch_do_registers_info (gdbarch, rs6000_do_registers_info);
2610 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2611 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2612 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2613 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2614 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2615 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2616 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2617 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2618 set_gdbarch_char_signed (gdbarch, 0);
2620 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2621 set_gdbarch_call_dummy_length (gdbarch, 0);
2622 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2623 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2624 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2625 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2626 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2627 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2628 set_gdbarch_call_dummy_p (gdbarch, 1);
2629 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2630 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2631 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2632 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2633 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2634 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2635 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2636 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2638 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2639 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2640 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2641 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2643 set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
2646 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2648 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2650 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2651 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2652 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2653 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2655 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2656 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2657 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2658 set_gdbarch_function_start_offset (gdbarch, 0);
2659 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2661 /* Not sure on this. FIXMEmgo */
2662 set_gdbarch_frame_args_skip (gdbarch, 8);
2664 /* Until November 2001, gcc was not complying to the SYSV ABI for
2665 returning structures less than or equal to 8 bytes in size. It was
2666 returning everything in memory. When this was corrected, it wasn't
2667 fixed for native platforms. */
2670 if (osabi == ELFOSABI_LINUX
2671 || osabi == ELFOSABI_NETBSD
2672 || osabi == ELFOSABI_FREEBSD)
2673 set_gdbarch_use_struct_convention (gdbarch,
2674 generic_use_struct_convention);
2676 set_gdbarch_use_struct_convention (gdbarch,
2677 ppc_sysv_abi_use_struct_convention);
2681 set_gdbarch_use_struct_convention (gdbarch,
2682 generic_use_struct_convention);
2685 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2686 if (osabi == ELFOSABI_LINUX)
2688 set_gdbarch_frameless_function_invocation (gdbarch,
2689 ppc_linux_frameless_function_invocation);
2690 set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
2691 set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
2693 set_gdbarch_frame_init_saved_regs (gdbarch,
2694 ppc_linux_frame_init_saved_regs);
2695 set_gdbarch_init_extra_frame_info (gdbarch,
2696 ppc_linux_init_extra_frame_info);
2698 set_gdbarch_memory_remove_breakpoint (gdbarch,
2699 ppc_linux_memory_remove_breakpoint);
2700 set_solib_svr4_fetch_link_map_offsets
2701 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
2705 set_gdbarch_frameless_function_invocation (gdbarch,
2706 rs6000_frameless_function_invocation);
2707 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2708 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2710 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2711 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2713 /* Handle RS/6000 function pointers. */
2714 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2715 rs6000_convert_from_func_ptr_addr);
2717 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2718 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2719 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2721 /* We can't tell how many args there are
2722 now that the C compiler delays popping them. */
2723 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2728 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2731 rs6000_info_powerpc_command (char *args, int from_tty)
2733 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2736 /* Initialization code. */
2739 _initialize_rs6000_tdep (void)
2741 register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
2742 register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
2744 /* Add root prefix command for "info powerpc" commands */
2745 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2746 "Various POWERPC info specific commands.",
2747 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2749 add_cmd ("altivec", class_info, rs6000_altivec_registers_info,
2750 "Display the contents of the AltiVec registers.",
2751 &info_powerpc_cmdlist);