1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1989, 1990-1992, 1995, 1996, 1998, 2000
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
24 #include "gdb_string.h"
25 #include "event-top.h"
38 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
49 #include "expression.h"
53 #include <readline/readline.h>
56 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
58 /* readline defines this. */
61 void (*error_begin_hook) PARAMS ((void));
63 /* Holds the last error message issued by gdb */
65 static struct ui_file *gdb_lasterr;
67 /* Prototypes for local functions */
69 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
72 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
74 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
75 static void malloc_botch PARAMS ((void));
79 prompt_for_continue PARAMS ((void));
82 set_width_command PARAMS ((char *, int, struct cmd_list_element *));
85 set_width PARAMS ((void));
87 /* Chain of cleanup actions established with make_cleanup,
88 to be executed if an error happens. */
90 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
91 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
92 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
93 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
94 /* cleaned up on each error from within an execution command */
95 static struct cleanup *exec_error_cleanup_chain;
97 /* Pointer to what is left to do for an execution command after the
98 target stops. Used only in asynchronous mode, by targets that
99 support async execution. The finish and until commands use it. So
100 does the target extended-remote command. */
101 struct continuation *cmd_continuation;
102 struct continuation *intermediate_continuation;
104 /* Nonzero if we have job control. */
108 /* Nonzero means a quit has been requested. */
112 /* Nonzero means quit immediately if Control-C is typed now, rather
113 than waiting until QUIT is executed. Be careful in setting this;
114 code which executes with immediate_quit set has to be very careful
115 about being able to deal with being interrupted at any time. It is
116 almost always better to use QUIT; the only exception I can think of
117 is being able to quit out of a system call (using EINTR loses if
118 the SIGINT happens between the previous QUIT and the system call).
119 To immediately quit in the case in which a SIGINT happens between
120 the previous QUIT and setting immediate_quit (desirable anytime we
121 expect to block), call QUIT after setting immediate_quit. */
125 /* Nonzero means that encoded C++ names should be printed out in their
126 C++ form rather than raw. */
130 /* Nonzero means that encoded C++ names should be printed out in their
131 C++ form even in assembler language displays. If this is set, but
132 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
134 int asm_demangle = 0;
136 /* Nonzero means that strings with character values >0x7F should be printed
137 as octal escapes. Zero means just print the value (e.g. it's an
138 international character, and the terminal or window can cope.) */
140 int sevenbit_strings = 0;
142 /* String to be printed before error messages, if any. */
144 char *error_pre_print;
146 /* String to be printed before quit messages, if any. */
148 char *quit_pre_print;
150 /* String to be printed before warning messages, if any. */
152 char *warning_pre_print = "\nwarning: ";
154 int pagination_enabled = 1;
157 /* Add a new cleanup to the cleanup_chain,
158 and return the previous chain pointer
159 to be passed later to do_cleanups or discard_cleanups.
160 Args are FUNCTION to clean up with, and ARG to pass to it. */
163 make_cleanup (make_cleanup_ftype *function, void *arg)
165 return make_my_cleanup (&cleanup_chain, function, arg);
169 make_final_cleanup (make_cleanup_ftype *function, void *arg)
171 return make_my_cleanup (&final_cleanup_chain, function, arg);
175 make_run_cleanup (make_cleanup_ftype *function, void *arg)
177 return make_my_cleanup (&run_cleanup_chain, function, arg);
181 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
183 return make_my_cleanup (&exec_cleanup_chain, function, arg);
187 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
189 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
196 freeargv ((char **) arg);
200 make_cleanup_freeargv (arg)
203 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
207 do_ui_file_delete (void *arg)
209 ui_file_delete (arg);
213 make_cleanup_ui_file_delete (struct ui_file *arg)
215 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
219 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
222 register struct cleanup *new
223 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
224 register struct cleanup *old_chain = *pmy_chain;
226 new->next = *pmy_chain;
227 new->function = function;
234 /* Discard cleanups and do the actions they describe
235 until we get back to the point OLD_CHAIN in the cleanup_chain. */
238 do_cleanups (old_chain)
239 register struct cleanup *old_chain;
241 do_my_cleanups (&cleanup_chain, old_chain);
245 do_final_cleanups (old_chain)
246 register struct cleanup *old_chain;
248 do_my_cleanups (&final_cleanup_chain, old_chain);
252 do_run_cleanups (old_chain)
253 register struct cleanup *old_chain;
255 do_my_cleanups (&run_cleanup_chain, old_chain);
259 do_exec_cleanups (old_chain)
260 register struct cleanup *old_chain;
262 do_my_cleanups (&exec_cleanup_chain, old_chain);
266 do_exec_error_cleanups (old_chain)
267 register struct cleanup *old_chain;
269 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
273 do_my_cleanups (pmy_chain, old_chain)
274 register struct cleanup **pmy_chain;
275 register struct cleanup *old_chain;
277 register struct cleanup *ptr;
278 while ((ptr = *pmy_chain) != old_chain)
280 *pmy_chain = ptr->next; /* Do this first incase recursion */
281 (*ptr->function) (ptr->arg);
286 /* Discard cleanups, not doing the actions they describe,
287 until we get back to the point OLD_CHAIN in the cleanup_chain. */
290 discard_cleanups (old_chain)
291 register struct cleanup *old_chain;
293 discard_my_cleanups (&cleanup_chain, old_chain);
297 discard_final_cleanups (old_chain)
298 register struct cleanup *old_chain;
300 discard_my_cleanups (&final_cleanup_chain, old_chain);
304 discard_exec_error_cleanups (old_chain)
305 register struct cleanup *old_chain;
307 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
311 discard_my_cleanups (pmy_chain, old_chain)
312 register struct cleanup **pmy_chain;
313 register struct cleanup *old_chain;
315 register struct cleanup *ptr;
316 while ((ptr = *pmy_chain) != old_chain)
318 *pmy_chain = ptr->next;
323 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
327 return save_my_cleanups (&cleanup_chain);
331 save_final_cleanups ()
333 return save_my_cleanups (&final_cleanup_chain);
337 save_my_cleanups (pmy_chain)
338 struct cleanup **pmy_chain;
340 struct cleanup *old_chain = *pmy_chain;
346 /* Restore the cleanup chain from a previously saved chain. */
348 restore_cleanups (chain)
349 struct cleanup *chain;
351 restore_my_cleanups (&cleanup_chain, chain);
355 restore_final_cleanups (chain)
356 struct cleanup *chain;
358 restore_my_cleanups (&final_cleanup_chain, chain);
362 restore_my_cleanups (pmy_chain, chain)
363 struct cleanup **pmy_chain;
364 struct cleanup *chain;
369 /* This function is useful for cleanups.
373 old_chain = make_cleanup (free_current_contents, &foo);
375 to arrange to free the object thus allocated. */
378 free_current_contents (void *ptr)
380 void **location = ptr;
381 if (*location != NULL)
385 /* Provide a known function that does nothing, to use as a base for
386 for a possibly long chain of cleanups. This is useful where we
387 use the cleanup chain for handling normal cleanups as well as dealing
388 with cleanups that need to be done as a result of a call to error().
389 In such cases, we may not be certain where the first cleanup is, unless
390 we have a do-nothing one to always use as the base. */
394 null_cleanup (void *arg)
398 /* Add a continuation to the continuation list, the gloabl list
399 cmd_continuation. The new continuation will be added at the front.*/
401 add_continuation (continuation_hook, arg_list)
402 void (*continuation_hook) PARAMS ((struct continuation_arg *));
403 struct continuation_arg *arg_list;
405 struct continuation *continuation_ptr;
407 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
408 continuation_ptr->continuation_hook = continuation_hook;
409 continuation_ptr->arg_list = arg_list;
410 continuation_ptr->next = cmd_continuation;
411 cmd_continuation = continuation_ptr;
414 /* Walk down the cmd_continuation list, and execute all the
415 continuations. There is a problem though. In some cases new
416 continuations may be added while we are in the middle of this
417 loop. If this happens they will be added in the front, and done
418 before we have a chance of exhausting those that were already
419 there. We need to then save the beginning of the list in a pointer
420 and do the continuations from there on, instead of using the
421 global beginning of list as our iteration pointer.*/
423 do_all_continuations ()
425 struct continuation *continuation_ptr;
426 struct continuation *saved_continuation;
428 /* Copy the list header into another pointer, and set the global
429 list header to null, so that the global list can change as a side
430 effect of invoking the continuations and the processing of
431 the preexisting continuations will not be affected. */
432 continuation_ptr = cmd_continuation;
433 cmd_continuation = NULL;
435 /* Work now on the list we have set aside. */
436 while (continuation_ptr)
438 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
439 saved_continuation = continuation_ptr;
440 continuation_ptr = continuation_ptr->next;
441 free (saved_continuation);
445 /* Walk down the cmd_continuation list, and get rid of all the
448 discard_all_continuations ()
450 struct continuation *continuation_ptr;
452 while (cmd_continuation)
454 continuation_ptr = cmd_continuation;
455 cmd_continuation = continuation_ptr->next;
456 free (continuation_ptr);
460 /* Add a continuation to the continuation list, the global list
461 intermediate_continuation. The new continuation will be added at the front.*/
463 add_intermediate_continuation (continuation_hook, arg_list)
464 void (*continuation_hook) PARAMS ((struct continuation_arg *));
465 struct continuation_arg *arg_list;
467 struct continuation *continuation_ptr;
469 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
470 continuation_ptr->continuation_hook = continuation_hook;
471 continuation_ptr->arg_list = arg_list;
472 continuation_ptr->next = intermediate_continuation;
473 intermediate_continuation = continuation_ptr;
476 /* Walk down the cmd_continuation list, and execute all the
477 continuations. There is a problem though. In some cases new
478 continuations may be added while we are in the middle of this
479 loop. If this happens they will be added in the front, and done
480 before we have a chance of exhausting those that were already
481 there. We need to then save the beginning of the list in a pointer
482 and do the continuations from there on, instead of using the
483 global beginning of list as our iteration pointer.*/
485 do_all_intermediate_continuations ()
487 struct continuation *continuation_ptr;
488 struct continuation *saved_continuation;
490 /* Copy the list header into another pointer, and set the global
491 list header to null, so that the global list can change as a side
492 effect of invoking the continuations and the processing of
493 the preexisting continuations will not be affected. */
494 continuation_ptr = intermediate_continuation;
495 intermediate_continuation = NULL;
497 /* Work now on the list we have set aside. */
498 while (continuation_ptr)
500 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
501 saved_continuation = continuation_ptr;
502 continuation_ptr = continuation_ptr->next;
503 free (saved_continuation);
507 /* Walk down the cmd_continuation list, and get rid of all the
510 discard_all_intermediate_continuations ()
512 struct continuation *continuation_ptr;
514 while (intermediate_continuation)
516 continuation_ptr = intermediate_continuation;
517 intermediate_continuation = continuation_ptr->next;
518 free (continuation_ptr);
524 /* Print a warning message. Way to use this is to call warning_begin,
525 output the warning message (use unfiltered output to gdb_stderr),
526 ending in a newline. There is not currently a warning_end that you
527 call afterwards, but such a thing might be added if it is useful
528 for a GUI to separate warning messages from other output.
530 FIXME: Why do warnings use unfiltered output and errors filtered?
531 Is this anything other than a historical accident? */
536 target_terminal_ours ();
537 wrap_here (""); /* Force out any buffered output */
538 gdb_flush (gdb_stdout);
539 if (warning_pre_print)
540 fprintf_unfiltered (gdb_stderr, warning_pre_print);
543 /* Print a warning message.
544 The first argument STRING is the warning message, used as a fprintf string,
545 and the remaining args are passed as arguments to it.
546 The primary difference between warnings and errors is that a warning
547 does not force the return to command level. */
550 warning (const char *string,...)
553 va_start (args, string);
555 (*warning_hook) (string, args);
559 vfprintf_unfiltered (gdb_stderr, string, args);
560 fprintf_unfiltered (gdb_stderr, "\n");
565 /* Start the printing of an error message. Way to use this is to call
566 this, output the error message (use filtered output to gdb_stderr
567 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
568 in a newline, and then call return_to_top_level (RETURN_ERROR).
569 error() provides a convenient way to do this for the special case
570 that the error message can be formatted with a single printf call,
571 but this is more general. */
575 if (error_begin_hook)
578 target_terminal_ours ();
579 wrap_here (""); /* Force out any buffered output */
580 gdb_flush (gdb_stdout);
582 annotate_error_begin ();
585 fprintf_filtered (gdb_stderr, error_pre_print);
588 /* Print an error message and return to command level.
589 The first argument STRING is the error message, used as a fprintf string,
590 and the remaining args are passed as arguments to it. */
593 verror (const char *string, va_list args)
596 struct cleanup *err_string_cleanup;
597 /* FIXME: cagney/1999-11-10: All error calls should come here.
598 Unfortunatly some code uses the sequence: error_begin(); print
599 error message; return_to_top_level. That code should be
602 /* NOTE: It's tempting to just do the following...
603 vfprintf_filtered (gdb_stderr, string, args);
604 and then follow with a similar looking statement to cause the message
605 to also go to gdb_lasterr. But if we do this, we'll be traversing the
606 va_list twice which works on some platforms and fails miserably on
608 /* Save it as the last error */
609 ui_file_rewind (gdb_lasterr);
610 vfprintf_filtered (gdb_lasterr, string, args);
611 /* Retrieve the last error and print it to gdb_stderr */
612 err_string = error_last_message ();
613 err_string_cleanup = make_cleanup (free, err_string);
614 fputs_filtered (err_string, gdb_stderr);
615 fprintf_filtered (gdb_stderr, "\n");
616 do_cleanups (err_string_cleanup);
617 return_to_top_level (RETURN_ERROR);
621 error (const char *string,...)
624 va_start (args, string);
625 verror (string, args);
630 error_stream (struct ui_file *stream)
633 char *msg = ui_file_xstrdup (stream, &size);
634 make_cleanup (free, msg);
638 /* Get the last error message issued by gdb */
641 error_last_message (void)
644 return ui_file_xstrdup (gdb_lasterr, &len);
647 /* This is to be called by main() at the very beginning */
652 gdb_lasterr = mem_fileopen ();
655 /* Print a message reporting an internal error. Ask the user if they
656 want to continue, dump core, or just exit. */
659 internal_verror (const char *fmt, va_list ap)
661 static char msg[] = "Internal GDB error: recursive internal error.\n";
662 static int dejavu = 0;
666 /* don't allow infinite error recursion. */
674 fputs_unfiltered (msg, gdb_stderr);
678 write (STDERR_FILENO, msg, sizeof (msg));
682 /* Try to get the message out */
683 target_terminal_ours ();
684 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
685 vfprintf_unfiltered (gdb_stderr, fmt, ap);
686 fputs_unfiltered ("\n", gdb_stderr);
688 /* Default (no case) is to quit GDB. When in batch mode this
689 lessens the likelhood of GDB going into an infinate loop. */
690 continue_p = query ("\
691 An internal GDB error was detected. This may make make further\n\
692 debugging unreliable. Continue this debugging session? ");
694 /* Default (no case) is to not dump core. Lessen the chance of GDB
695 leaving random core files around. */
696 dump_core_p = query ("\
697 Create a core file containing the current state of GDB? ");
716 return_to_top_level (RETURN_ERROR);
720 internal_error (char *string, ...)
723 va_start (ap, string);
725 internal_verror (string, ap);
729 /* The strerror() function can return NULL for errno values that are
730 out of range. Provide a "safe" version that always returns a
734 safe_strerror (errnum)
740 if ((msg = strerror (errnum)) == NULL)
742 sprintf (buf, "(undocumented errno %d)", errnum);
748 /* The strsignal() function can return NULL for signal values that are
749 out of range. Provide a "safe" version that always returns a
753 safe_strsignal (signo)
759 if ((msg = strsignal (signo)) == NULL)
761 sprintf (buf, "(undocumented signal %d)", signo);
768 /* Print the system error message for errno, and also mention STRING
769 as the file name for which the error was encountered.
770 Then return to command level. */
773 perror_with_name (string)
779 err = safe_strerror (errno);
780 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
781 strcpy (combined, string);
782 strcat (combined, ": ");
783 strcat (combined, err);
785 /* I understand setting these is a matter of taste. Still, some people
786 may clear errno but not know about bfd_error. Doing this here is not
788 bfd_set_error (bfd_error_no_error);
791 error ("%s.", combined);
794 /* Print the system error message for ERRCODE, and also mention STRING
795 as the file name for which the error was encountered. */
798 print_sys_errmsg (string, errcode)
805 err = safe_strerror (errcode);
806 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
807 strcpy (combined, string);
808 strcat (combined, ": ");
809 strcat (combined, err);
811 /* We want anything which was printed on stdout to come out first, before
813 gdb_flush (gdb_stdout);
814 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
817 /* Control C eventually causes this to be called, at a convenient time. */
822 serial_t gdb_stdout_serial = serial_fdopen (1);
824 target_terminal_ours ();
826 /* We want all output to appear now, before we print "Quit". We
827 have 3 levels of buffering we have to flush (it's possible that
828 some of these should be changed to flush the lower-level ones
831 /* 1. The _filtered buffer. */
832 wrap_here ((char *) 0);
834 /* 2. The stdio buffer. */
835 gdb_flush (gdb_stdout);
836 gdb_flush (gdb_stderr);
838 /* 3. The system-level buffer. */
839 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
840 SERIAL_UN_FDOPEN (gdb_stdout_serial);
842 annotate_error_begin ();
844 /* Don't use *_filtered; we don't want to prompt the user to continue. */
846 fprintf_unfiltered (gdb_stderr, quit_pre_print);
849 /* No steenking SIGINT will ever be coming our way when the
850 program is resumed. Don't lie. */
851 fprintf_unfiltered (gdb_stderr, "Quit\n");
854 /* If there is no terminal switching for this target, then we can't
855 possibly get screwed by the lack of job control. */
856 || current_target.to_terminal_ours == NULL)
857 fprintf_unfiltered (gdb_stderr, "Quit\n");
859 fprintf_unfiltered (gdb_stderr,
860 "Quit (expect signal SIGINT when the program is resumed)\n");
862 return_to_top_level (RETURN_QUIT);
866 #if defined(_MSC_VER) /* should test for wingdb instead? */
869 * Windows translates all keyboard and mouse events
870 * into a message which is appended to the message
871 * queue for the process.
877 int k = win32pollquit ();
884 #else /* !defined(_MSC_VER) */
889 /* Done by signals */
892 #endif /* !defined(_MSC_VER) */
894 /* Control C comes here */
900 /* Restore the signal handler. Harmless with BSD-style signals, needed
901 for System V-style signals. So just always do it, rather than worrying
902 about USG defines and stuff like that. */
903 signal (signo, request_quit);
913 /* Memory management stuff (malloc friends). */
915 /* Make a substitute size_t for non-ANSI compilers. */
917 #ifndef HAVE_STDDEF_H
919 #define size_t unsigned int
923 #if !defined (USE_MMALLOC)
926 mcalloc (PTR md, size_t number, size_t size)
928 return calloc (number, size);
936 return malloc (size);
940 mrealloc (md, ptr, size)
945 if (ptr == 0) /* Guard against old realloc's */
946 return malloc (size);
948 return realloc (ptr, size);
959 #endif /* USE_MMALLOC */
961 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
964 init_malloc (void *md)
968 #else /* Have mmalloc and want corruption checking */
973 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
977 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
978 by MD, to detect memory corruption. Note that MD may be NULL to specify
979 the default heap that grows via sbrk.
981 Note that for freshly created regions, we must call mmcheckf prior to any
982 mallocs in the region. Otherwise, any region which was allocated prior to
983 installing the checking hooks, which is later reallocated or freed, will
984 fail the checks! The mmcheck function only allows initial hooks to be
985 installed before the first mmalloc. However, anytime after we have called
986 mmcheck the first time to install the checking hooks, we can call it again
987 to update the function pointer to the memory corruption handler.
989 Returns zero on failure, non-zero on success. */
991 #ifndef MMCHECK_FORCE
992 #define MMCHECK_FORCE 0
996 init_malloc (void *md)
998 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
1000 /* Don't use warning(), which relies on current_target being set
1001 to something other than dummy_target, until after
1002 initialize_all_files(). */
1005 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1007 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1013 #endif /* Have mmalloc and want corruption checking */
1015 /* Called when a memory allocation fails, with the number of bytes of
1016 memory requested in SIZE. */
1024 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
1028 internal_error ("virtual memory exhausted.");
1032 /* Like mmalloc but get error if no storage available, and protect against
1033 the caller wanting to allocate zero bytes. Whether to return NULL for
1034 a zero byte request, or translate the request into a request for one
1035 byte of zero'd storage, is a religious issue. */
1048 else if ((val = mmalloc (md, size)) == NULL)
1055 /* Like mrealloc but get error if no storage available. */
1058 xmrealloc (md, ptr, size)
1067 val = mrealloc (md, ptr, size);
1071 val = mmalloc (md, size);
1080 /* Like malloc but get error if no storage available, and protect against
1081 the caller wanting to allocate zero bytes. */
1087 return (xmmalloc ((PTR) NULL, size));
1090 /* Like calloc but get error if no storage available */
1093 xcalloc (size_t number, size_t size)
1095 void *mem = mcalloc (NULL, number, size);
1097 nomem (number * size);
1101 /* Like mrealloc but get error if no storage available. */
1104 xrealloc (ptr, size)
1108 return (xmrealloc ((PTR) NULL, ptr, size));
1112 /* My replacement for the read system call.
1113 Used like `read' but keeps going if `read' returns too soon. */
1116 myread (desc, addr, len)
1126 val = read (desc, addr, len);
1130 return orglen - len;
1137 /* Make a copy of the string at PTR with SIZE characters
1138 (and add a null character at the end in the copy).
1139 Uses malloc to get the space. Returns the address of the copy. */
1142 savestring (ptr, size)
1146 register char *p = (char *) xmalloc (size + 1);
1147 memcpy (p, ptr, size);
1153 msavestring (void *md, const char *ptr, int size)
1155 register char *p = (char *) xmmalloc (md, size + 1);
1156 memcpy (p, ptr, size);
1161 /* The "const" is so it compiles under DGUX (which prototypes strsave
1162 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1163 Doesn't real strsave return NULL if out of memory? */
1168 return savestring (ptr, strlen (ptr));
1172 mstrsave (void *md, const char *ptr)
1174 return (msavestring (md, ptr, strlen (ptr)));
1178 print_spaces (n, file)
1180 register struct ui_file *file;
1182 fputs_unfiltered (n_spaces (n), file);
1185 /* Print a host address. */
1188 gdb_print_host_address (void *addr, struct ui_file *stream)
1191 /* We could use the %p conversion specifier to fprintf if we had any
1192 way of knowing whether this host supports it. But the following
1193 should work on the Alpha and on 32 bit machines. */
1195 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1198 /* Ask user a y-or-n question and return 1 iff answer is yes.
1199 Takes three args which are given to printf to print the question.
1200 The first, a control string, should end in "? ".
1201 It should not say how to answer, because we do that. */
1205 query (char *ctlstr,...)
1208 register int answer;
1212 va_start (args, ctlstr);
1216 return query_hook (ctlstr, args);
1219 /* Automatically answer "yes" if input is not from a terminal. */
1220 if (!input_from_terminal_p ())
1223 /* FIXME Automatically answer "yes" if called from MacGDB. */
1230 wrap_here (""); /* Flush any buffered output */
1231 gdb_flush (gdb_stdout);
1233 if (annotation_level > 1)
1234 printf_filtered ("\n\032\032pre-query\n");
1236 vfprintf_filtered (gdb_stdout, ctlstr, args);
1237 printf_filtered ("(y or n) ");
1239 if (annotation_level > 1)
1240 printf_filtered ("\n\032\032query\n");
1243 /* If not in MacGDB, move to a new line so the entered line doesn't
1244 have a prompt on the front of it. */
1246 fputs_unfiltered ("\n", gdb_stdout);
1250 gdb_flush (gdb_stdout);
1253 if (!tui_version || cmdWin == tuiWinWithFocus ())
1255 answer = fgetc (stdin);
1258 answer = (unsigned char) tuiBufferGetc ();
1261 clearerr (stdin); /* in case of C-d */
1262 if (answer == EOF) /* C-d */
1267 /* Eat rest of input line, to EOF or newline */
1268 if ((answer != '\n') || (tui_version && answer != '\r'))
1272 if (!tui_version || cmdWin == tuiWinWithFocus ())
1274 ans2 = fgetc (stdin);
1277 ans2 = (unsigned char) tuiBufferGetc ();
1281 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1282 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
1296 printf_filtered ("Please answer y or n.\n");
1299 if (annotation_level > 1)
1300 printf_filtered ("\n\032\032post-query\n");
1305 /* Parse a C escape sequence. STRING_PTR points to a variable
1306 containing a pointer to the string to parse. That pointer
1307 should point to the character after the \. That pointer
1308 is updated past the characters we use. The value of the
1309 escape sequence is returned.
1311 A negative value means the sequence \ newline was seen,
1312 which is supposed to be equivalent to nothing at all.
1314 If \ is followed by a null character, we return a negative
1315 value and leave the string pointer pointing at the null character.
1317 If \ is followed by 000, we return 0 and leave the string pointer
1318 after the zeros. A value of 0 does not mean end of string. */
1321 parse_escape (string_ptr)
1324 register int c = *(*string_ptr)++;
1328 return 007; /* Bell (alert) char */
1331 case 'e': /* Escape character */
1349 c = *(*string_ptr)++;
1351 c = parse_escape (string_ptr);
1354 return (c & 0200) | (c & 037);
1365 register int i = c - '0';
1366 register int count = 0;
1369 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1387 /* Print the character C on STREAM as part of the contents of a literal
1388 string whose delimiter is QUOTER. Note that this routine should only
1389 be call for printing things which are independent of the language
1390 of the program being debugged. */
1392 static void printchar (int c, void (*do_fputs) (const char *, struct ui_file*), void (*do_fprintf) (struct ui_file*, const char *, ...), struct ui_file *stream, int quoter);
1395 printchar (c, do_fputs, do_fprintf, stream, quoter)
1397 void (*do_fputs) PARAMS ((const char *, struct ui_file*));
1398 void (*do_fprintf) PARAMS ((struct ui_file*, const char *, ...));
1399 struct ui_file *stream;
1403 c &= 0xFF; /* Avoid sign bit follies */
1405 if (c < 0x20 || /* Low control chars */
1406 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1407 (sevenbit_strings && c >= 0x80))
1408 { /* high order bit set */
1412 do_fputs ("\\n", stream);
1415 do_fputs ("\\b", stream);
1418 do_fputs ("\\t", stream);
1421 do_fputs ("\\f", stream);
1424 do_fputs ("\\r", stream);
1427 do_fputs ("\\e", stream);
1430 do_fputs ("\\a", stream);
1433 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1439 if (c == '\\' || c == quoter)
1440 do_fputs ("\\", stream);
1441 do_fprintf (stream, "%c", c);
1445 /* Print the character C on STREAM as part of the contents of a
1446 literal string whose delimiter is QUOTER. Note that these routines
1447 should only be call for printing things which are independent of
1448 the language of the program being debugged. */
1451 fputstr_filtered (str, quoter, stream)
1454 struct ui_file *stream;
1457 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1461 fputstr_unfiltered (str, quoter, stream)
1464 struct ui_file *stream;
1467 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1471 fputstrn_unfiltered (str, n, quoter, stream)
1475 struct ui_file *stream;
1478 for (i = 0; i < n; i++)
1479 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1484 /* Number of lines per page or UINT_MAX if paging is disabled. */
1485 static unsigned int lines_per_page;
1486 /* Number of chars per line or UNIT_MAX if line folding is disabled. */
1487 static unsigned int chars_per_line;
1488 /* Current count of lines printed on this page, chars on this line. */
1489 static unsigned int lines_printed, chars_printed;
1491 /* Buffer and start column of buffered text, for doing smarter word-
1492 wrapping. When someone calls wrap_here(), we start buffering output
1493 that comes through fputs_filtered(). If we see a newline, we just
1494 spit it out and forget about the wrap_here(). If we see another
1495 wrap_here(), we spit it out and remember the newer one. If we see
1496 the end of the line, we spit out a newline, the indent, and then
1497 the buffered output. */
1499 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1500 are waiting to be output (they have already been counted in chars_printed).
1501 When wrap_buffer[0] is null, the buffer is empty. */
1502 static char *wrap_buffer;
1504 /* Pointer in wrap_buffer to the next character to fill. */
1505 static char *wrap_pointer;
1507 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1509 static char *wrap_indent;
1511 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1512 is not in effect. */
1513 static int wrap_column;
1516 /* Inialize the lines and chars per page */
1521 if (tui_version && m_winPtrNotNull (cmdWin))
1523 lines_per_page = cmdWin->generic.height;
1524 chars_per_line = cmdWin->generic.width;
1529 /* These defaults will be used if we are unable to get the correct
1530 values from termcap. */
1531 #if defined(__GO32__)
1532 lines_per_page = ScreenRows ();
1533 chars_per_line = ScreenCols ();
1535 lines_per_page = 24;
1536 chars_per_line = 80;
1538 #if !defined (MPW) && !defined (_WIN32)
1539 /* No termcap under MPW, although might be cool to do something
1540 by looking at worksheet or console window sizes. */
1541 /* Initialize the screen height and width from termcap. */
1543 char *termtype = getenv ("TERM");
1545 /* Positive means success, nonpositive means failure. */
1548 /* 2048 is large enough for all known terminals, according to the
1549 GNU termcap manual. */
1550 char term_buffer[2048];
1554 status = tgetent (term_buffer, termtype);
1558 int running_in_emacs = getenv ("EMACS") != NULL;
1560 val = tgetnum ("li");
1561 if (val >= 0 && !running_in_emacs)
1562 lines_per_page = val;
1564 /* The number of lines per page is not mentioned
1565 in the terminal description. This probably means
1566 that paging is not useful (e.g. emacs shell window),
1567 so disable paging. */
1568 lines_per_page = UINT_MAX;
1570 val = tgetnum ("co");
1572 chars_per_line = val;
1578 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1580 /* If there is a better way to determine the window size, use it. */
1581 SIGWINCH_HANDLER (SIGWINCH);
1584 /* If the output is not a terminal, don't paginate it. */
1585 if (!ui_file_isatty (gdb_stdout))
1586 lines_per_page = UINT_MAX;
1587 } /* the command_line_version */
1594 if (chars_per_line == 0)
1599 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1600 wrap_buffer[0] = '\0';
1603 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1604 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1609 set_width_command (args, from_tty, c)
1612 struct cmd_list_element *c;
1617 /* Wait, so the user can read what's on the screen. Prompt the user
1618 to continue by pressing RETURN. */
1621 prompt_for_continue ()
1624 char cont_prompt[120];
1626 if (annotation_level > 1)
1627 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1629 strcpy (cont_prompt,
1630 "---Type <return> to continue, or q <return> to quit---");
1631 if (annotation_level > 1)
1632 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1634 /* We must do this *before* we call gdb_readline, else it will eventually
1635 call us -- thinking that we're trying to print beyond the end of the
1637 reinitialize_more_filter ();
1640 /* On a real operating system, the user can quit with SIGINT.
1643 'q' is provided on all systems so users don't have to change habits
1644 from system to system, and because telling them what to do in
1645 the prompt is more user-friendly than expecting them to think of
1647 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1648 whereas control-C to gdb_readline will cause the user to get dumped
1650 ignore = readline (cont_prompt);
1652 if (annotation_level > 1)
1653 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1658 while (*p == ' ' || *p == '\t')
1663 request_quit (SIGINT);
1665 async_request_quit (0);
1671 /* Now we have to do this again, so that GDB will know that it doesn't
1672 need to save the ---Type <return>--- line at the top of the screen. */
1673 reinitialize_more_filter ();
1675 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1678 /* Reinitialize filter; ie. tell it to reset to original values. */
1681 reinitialize_more_filter ()
1687 /* Indicate that if the next sequence of characters overflows the line,
1688 a newline should be inserted here rather than when it hits the end.
1689 If INDENT is non-null, it is a string to be printed to indent the
1690 wrapped part on the next line. INDENT must remain accessible until
1691 the next call to wrap_here() or until a newline is printed through
1694 If the line is already overfull, we immediately print a newline and
1695 the indentation, and disable further wrapping.
1697 If we don't know the width of lines, but we know the page height,
1698 we must not wrap words, but should still keep track of newlines
1699 that were explicitly printed.
1701 INDENT should not contain tabs, as that will mess up the char count
1702 on the next line. FIXME.
1704 This routine is guaranteed to force out any output which has been
1705 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1706 used to force out output from the wrap_buffer. */
1712 /* This should have been allocated, but be paranoid anyway. */
1718 *wrap_pointer = '\0';
1719 fputs_unfiltered (wrap_buffer, gdb_stdout);
1721 wrap_pointer = wrap_buffer;
1722 wrap_buffer[0] = '\0';
1723 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1727 else if (chars_printed >= chars_per_line)
1729 puts_filtered ("\n");
1731 puts_filtered (indent);
1736 wrap_column = chars_printed;
1740 wrap_indent = indent;
1744 /* Ensure that whatever gets printed next, using the filtered output
1745 commands, starts at the beginning of the line. I.E. if there is
1746 any pending output for the current line, flush it and start a new
1747 line. Otherwise do nothing. */
1752 if (chars_printed > 0)
1754 puts_filtered ("\n");
1759 /* Like fputs but if FILTER is true, pause after every screenful.
1761 Regardless of FILTER can wrap at points other than the final
1762 character of a line.
1764 Unlike fputs, fputs_maybe_filtered does not return a value.
1765 It is OK for LINEBUFFER to be NULL, in which case just don't print
1768 Note that a longjmp to top level may occur in this routine (only if
1769 FILTER is true) (since prompt_for_continue may do so) so this
1770 routine should not be called when cleanups are not in place. */
1773 fputs_maybe_filtered (linebuffer, stream, filter)
1774 const char *linebuffer;
1775 struct ui_file *stream;
1778 const char *lineptr;
1780 if (linebuffer == 0)
1783 /* Don't do any filtering if it is disabled. */
1784 if ((stream != gdb_stdout) || !pagination_enabled
1785 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1787 fputs_unfiltered (linebuffer, stream);
1791 /* Go through and output each character. Show line extension
1792 when this is necessary; prompt user for new page when this is
1795 lineptr = linebuffer;
1798 /* Possible new page. */
1800 (lines_printed >= lines_per_page - 1))
1801 prompt_for_continue ();
1803 while (*lineptr && *lineptr != '\n')
1805 /* Print a single line. */
1806 if (*lineptr == '\t')
1809 *wrap_pointer++ = '\t';
1811 fputc_unfiltered ('\t', stream);
1812 /* Shifting right by 3 produces the number of tab stops
1813 we have already passed, and then adding one and
1814 shifting left 3 advances to the next tab stop. */
1815 chars_printed = ((chars_printed >> 3) + 1) << 3;
1821 *wrap_pointer++ = *lineptr;
1823 fputc_unfiltered (*lineptr, stream);
1828 if (chars_printed >= chars_per_line)
1830 unsigned int save_chars = chars_printed;
1834 /* If we aren't actually wrapping, don't output newline --
1835 if chars_per_line is right, we probably just overflowed
1836 anyway; if it's wrong, let us keep going. */
1838 fputc_unfiltered ('\n', stream);
1840 /* Possible new page. */
1841 if (lines_printed >= lines_per_page - 1)
1842 prompt_for_continue ();
1844 /* Now output indentation and wrapped string */
1847 fputs_unfiltered (wrap_indent, stream);
1848 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1849 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1850 /* FIXME, this strlen is what prevents wrap_indent from
1851 containing tabs. However, if we recurse to print it
1852 and count its chars, we risk trouble if wrap_indent is
1853 longer than (the user settable) chars_per_line.
1854 Note also that this can set chars_printed > chars_per_line
1855 if we are printing a long string. */
1856 chars_printed = strlen (wrap_indent)
1857 + (save_chars - wrap_column);
1858 wrap_pointer = wrap_buffer; /* Reset buffer */
1859 wrap_buffer[0] = '\0';
1860 wrap_column = 0; /* And disable fancy wrap */
1865 if (*lineptr == '\n')
1868 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1870 fputc_unfiltered ('\n', stream);
1877 fputs_filtered (linebuffer, stream)
1878 const char *linebuffer;
1879 struct ui_file *stream;
1881 fputs_maybe_filtered (linebuffer, stream, 1);
1885 putchar_unfiltered (c)
1889 ui_file_write (gdb_stdout, &buf, 1);
1894 fputc_unfiltered (c, stream)
1896 struct ui_file *stream;
1899 ui_file_write (stream, &buf, 1);
1904 fputc_filtered (c, stream)
1906 struct ui_file *stream;
1912 fputs_filtered (buf, stream);
1916 /* puts_debug is like fputs_unfiltered, except it prints special
1917 characters in printable fashion. */
1920 puts_debug (prefix, string, suffix)
1927 /* Print prefix and suffix after each line. */
1928 static int new_line = 1;
1929 static int return_p = 0;
1930 static char *prev_prefix = "";
1931 static char *prev_suffix = "";
1933 if (*string == '\n')
1936 /* If the prefix is changing, print the previous suffix, a new line,
1937 and the new prefix. */
1938 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1940 fputs_unfiltered (prev_suffix, gdb_stdlog);
1941 fputs_unfiltered ("\n", gdb_stdlog);
1942 fputs_unfiltered (prefix, gdb_stdlog);
1945 /* Print prefix if we printed a newline during the previous call. */
1949 fputs_unfiltered (prefix, gdb_stdlog);
1952 prev_prefix = prefix;
1953 prev_suffix = suffix;
1955 /* Output characters in a printable format. */
1956 while ((ch = *string++) != '\0')
1962 fputc_unfiltered (ch, gdb_stdlog);
1965 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1969 fputs_unfiltered ("\\\\", gdb_stdlog);
1972 fputs_unfiltered ("\\b", gdb_stdlog);
1975 fputs_unfiltered ("\\f", gdb_stdlog);
1979 fputs_unfiltered ("\\n", gdb_stdlog);
1982 fputs_unfiltered ("\\r", gdb_stdlog);
1985 fputs_unfiltered ("\\t", gdb_stdlog);
1988 fputs_unfiltered ("\\v", gdb_stdlog);
1992 return_p = ch == '\r';
1995 /* Print suffix if we printed a newline. */
1998 fputs_unfiltered (suffix, gdb_stdlog);
1999 fputs_unfiltered ("\n", gdb_stdlog);
2004 /* Print a variable number of ARGS using format FORMAT. If this
2005 information is going to put the amount written (since the last call
2006 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2007 call prompt_for_continue to get the users permision to continue.
2009 Unlike fprintf, this function does not return a value.
2011 We implement three variants, vfprintf (takes a vararg list and stream),
2012 fprintf (takes a stream to write on), and printf (the usual).
2014 Note also that a longjmp to top level may occur in this routine
2015 (since prompt_for_continue may do so) so this routine should not be
2016 called when cleanups are not in place. */
2019 vfprintf_maybe_filtered (stream, format, args, filter)
2020 struct ui_file *stream;
2026 struct cleanup *old_cleanups;
2028 vasprintf (&linebuffer, format, args);
2029 if (linebuffer == NULL)
2031 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2034 old_cleanups = make_cleanup (free, linebuffer);
2035 fputs_maybe_filtered (linebuffer, stream, filter);
2036 do_cleanups (old_cleanups);
2041 vfprintf_filtered (stream, format, args)
2042 struct ui_file *stream;
2046 vfprintf_maybe_filtered (stream, format, args, 1);
2050 vfprintf_unfiltered (stream, format, args)
2051 struct ui_file *stream;
2056 struct cleanup *old_cleanups;
2058 vasprintf (&linebuffer, format, args);
2059 if (linebuffer == NULL)
2061 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2064 old_cleanups = make_cleanup (free, linebuffer);
2065 fputs_unfiltered (linebuffer, stream);
2066 do_cleanups (old_cleanups);
2070 vprintf_filtered (format, args)
2074 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2078 vprintf_unfiltered (format, args)
2082 vfprintf_unfiltered (gdb_stdout, format, args);
2086 fprintf_filtered (struct ui_file * stream, const char *format,...)
2089 va_start (args, format);
2090 vfprintf_filtered (stream, format, args);
2095 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2098 va_start (args, format);
2099 vfprintf_unfiltered (stream, format, args);
2103 /* Like fprintf_filtered, but prints its result indented.
2104 Called as fprintfi_filtered (spaces, stream, format, ...); */
2107 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2110 va_start (args, format);
2111 print_spaces_filtered (spaces, stream);
2113 vfprintf_filtered (stream, format, args);
2119 printf_filtered (const char *format,...)
2122 va_start (args, format);
2123 vfprintf_filtered (gdb_stdout, format, args);
2129 printf_unfiltered (const char *format,...)
2132 va_start (args, format);
2133 vfprintf_unfiltered (gdb_stdout, format, args);
2137 /* Like printf_filtered, but prints it's result indented.
2138 Called as printfi_filtered (spaces, format, ...); */
2141 printfi_filtered (int spaces, const char *format,...)
2144 va_start (args, format);
2145 print_spaces_filtered (spaces, gdb_stdout);
2146 vfprintf_filtered (gdb_stdout, format, args);
2150 /* Easy -- but watch out!
2152 This routine is *not* a replacement for puts()! puts() appends a newline.
2153 This one doesn't, and had better not! */
2156 puts_filtered (string)
2159 fputs_filtered (string, gdb_stdout);
2163 puts_unfiltered (string)
2166 fputs_unfiltered (string, gdb_stdout);
2169 /* Return a pointer to N spaces and a null. The pointer is good
2170 until the next call to here. */
2176 static char *spaces = 0;
2177 static int max_spaces = -1;
2183 spaces = (char *) xmalloc (n + 1);
2184 for (t = spaces + n; t != spaces;)
2190 return spaces + max_spaces - n;
2193 /* Print N spaces. */
2195 print_spaces_filtered (n, stream)
2197 struct ui_file *stream;
2199 fputs_filtered (n_spaces (n), stream);
2202 /* C++ demangler stuff. */
2204 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2205 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2206 If the name is not mangled, or the language for the name is unknown, or
2207 demangling is off, the name is printed in its "raw" form. */
2210 fprintf_symbol_filtered (stream, name, lang, arg_mode)
2211 struct ui_file *stream;
2220 /* If user wants to see raw output, no problem. */
2223 fputs_filtered (name, stream);
2229 case language_cplus:
2230 demangled = cplus_demangle (name, arg_mode);
2233 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2235 case language_chill:
2236 demangled = chill_demangle (name);
2242 fputs_filtered (demangled ? demangled : name, stream);
2243 if (demangled != NULL)
2251 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2252 differences in whitespace. Returns 0 if they match, non-zero if they
2253 don't (slightly different than strcmp()'s range of return values).
2255 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2256 This "feature" is useful when searching for matching C++ function names
2257 (such as if the user types 'break FOO', where FOO is a mangled C++
2261 strcmp_iw (string1, string2)
2262 const char *string1;
2263 const char *string2;
2265 while ((*string1 != '\0') && (*string2 != '\0'))
2267 while (isspace (*string1))
2271 while (isspace (*string2))
2275 if (*string1 != *string2)
2279 if (*string1 != '\0')
2285 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2291 ** Answer whether string_to_compare is a full or partial match to
2292 ** template_string. The partial match must be in sequence starting
2296 subset_compare (string_to_compare, template_string)
2297 char *string_to_compare;
2298 char *template_string;
2301 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2302 strlen (string_to_compare) <= strlen (template_string))
2303 match = (strncmp (template_string,
2305 strlen (string_to_compare)) == 0);
2312 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2314 pagination_on_command (arg, from_tty)
2318 pagination_enabled = 1;
2321 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2323 pagination_off_command (arg, from_tty)
2327 pagination_enabled = 0;
2334 struct cmd_list_element *c;
2336 c = add_set_cmd ("width", class_support, var_uinteger,
2337 (char *) &chars_per_line,
2338 "Set number of characters gdb thinks are in a line.",
2340 add_show_from_set (c, &showlist);
2341 c->function.sfunc = set_width_command;
2344 (add_set_cmd ("height", class_support,
2345 var_uinteger, (char *) &lines_per_page,
2346 "Set number of lines gdb thinks are in a page.", &setlist),
2351 /* If the output is not a terminal, don't paginate it. */
2352 if (!ui_file_isatty (gdb_stdout))
2353 lines_per_page = UINT_MAX;
2355 set_width_command ((char *) NULL, 0, c);
2358 (add_set_cmd ("demangle", class_support, var_boolean,
2360 "Set demangling of encoded C++ names when displaying symbols.",
2365 (add_set_cmd ("pagination", class_support,
2366 var_boolean, (char *) &pagination_enabled,
2367 "Set state of pagination.", &setlist),
2372 add_com ("am", class_support, pagination_on_command,
2373 "Enable pagination");
2374 add_com ("sm", class_support, pagination_off_command,
2375 "Disable pagination");
2379 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2380 (char *) &sevenbit_strings,
2381 "Set printing of 8-bit characters in strings as \\nnn.",
2386 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2387 (char *) &asm_demangle,
2388 "Set demangling of C++ names in disassembly listings.",
2393 /* Machine specific function to handle SIGWINCH signal. */
2395 #ifdef SIGWINCH_HANDLER_BODY
2396 SIGWINCH_HANDLER_BODY
2399 /* Support for converting target fp numbers into host DOUBLEST format. */
2401 /* XXX - This code should really be in libiberty/floatformat.c, however
2402 configuration issues with libiberty made this very difficult to do in the
2405 #include "floatformat.h"
2406 #include <math.h> /* ldexp */
2408 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2409 going to bother with trying to muck around with whether it is defined in
2410 a system header, what we do if not, etc. */
2411 #define FLOATFORMAT_CHAR_BIT 8
2413 static unsigned long get_field PARAMS ((unsigned char *,
2414 enum floatformat_byteorders,
2419 /* Extract a field which starts at START and is LEN bytes long. DATA and
2420 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2421 static unsigned long
2422 get_field (data, order, total_len, start, len)
2423 unsigned char *data;
2424 enum floatformat_byteorders order;
2425 unsigned int total_len;
2429 unsigned long result;
2430 unsigned int cur_byte;
2433 /* Start at the least significant part of the field. */
2434 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2436 /* We start counting from the other end (i.e, from the high bytes
2437 rather than the low bytes). As such, we need to be concerned
2438 with what happens if bit 0 doesn't start on a byte boundary.
2439 I.e, we need to properly handle the case where total_len is
2440 not evenly divisible by 8. So we compute ``excess'' which
2441 represents the number of bits from the end of our starting
2442 byte needed to get to bit 0. */
2443 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2444 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2445 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2446 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2447 - FLOATFORMAT_CHAR_BIT;
2451 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2453 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2455 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2456 result = *(data + cur_byte) >> (-cur_bitshift);
2459 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2460 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2465 /* Move towards the most significant part of the field. */
2466 while (cur_bitshift < len)
2468 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
2469 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2470 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2475 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2476 /* Mask out bits which are not part of the field */
2477 result &= ((1UL << len) - 1);
2481 /* Convert from FMT to a DOUBLEST.
2482 FROM is the address of the extended float.
2483 Store the DOUBLEST in *TO. */
2486 floatformat_to_doublest (fmt, from, to)
2487 const struct floatformat *fmt;
2491 unsigned char *ufrom = (unsigned char *) from;
2495 unsigned int mant_bits, mant_off;
2497 int special_exponent; /* It's a NaN, denorm or zero */
2499 /* If the mantissa bits are not contiguous from one end of the
2500 mantissa to the other, we need to make a private copy of the
2501 source bytes that is in the right order since the unpacking
2502 algorithm assumes that the bits are contiguous.
2504 Swap the bytes individually rather than accessing them through
2505 "long *" since we have no guarantee that they start on a long
2506 alignment, and also sizeof(long) for the host could be different
2507 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2508 for the target is 4. */
2510 if (fmt->byteorder == floatformat_littlebyte_bigword)
2512 static unsigned char *newfrom;
2513 unsigned char *swapin, *swapout;
2516 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
2519 if (newfrom == NULL)
2521 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
2526 while (longswaps-- > 0)
2528 /* This is ugly, but efficient */
2529 *swapout++ = swapin[4];
2530 *swapout++ = swapin[5];
2531 *swapout++ = swapin[6];
2532 *swapout++ = swapin[7];
2533 *swapout++ = swapin[0];
2534 *swapout++ = swapin[1];
2535 *swapout++ = swapin[2];
2536 *swapout++ = swapin[3];
2541 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2542 fmt->exp_start, fmt->exp_len);
2543 /* Note that if exponent indicates a NaN, we can't really do anything useful
2544 (not knowing if the host has NaN's, or how to build one). So it will
2545 end up as an infinity or something close; that is OK. */
2547 mant_bits_left = fmt->man_len;
2548 mant_off = fmt->man_start;
2551 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2553 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2554 we don't check for zero as the exponent doesn't matter. */
2555 if (!special_exponent)
2556 exponent -= fmt->exp_bias;
2557 else if (exponent == 0)
2558 exponent = 1 - fmt->exp_bias;
2560 /* Build the result algebraically. Might go infinite, underflow, etc;
2563 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2564 increment the exponent by one to account for the integer bit. */
2566 if (!special_exponent)
2568 if (fmt->intbit == floatformat_intbit_no)
2569 dto = ldexp (1.0, exponent);
2574 while (mant_bits_left > 0)
2576 mant_bits = min (mant_bits_left, 32);
2578 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2579 mant_off, mant_bits);
2581 dto += ldexp ((double) mant, exponent - mant_bits);
2582 exponent -= mant_bits;
2583 mant_off += mant_bits;
2584 mant_bits_left -= mant_bits;
2587 /* Negate it if negative. */
2588 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2593 static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2599 /* Set a field which starts at START and is LEN bytes long. DATA and
2600 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2602 put_field (data, order, total_len, start, len, stuff_to_put)
2603 unsigned char *data;
2604 enum floatformat_byteorders order;
2605 unsigned int total_len;
2608 unsigned long stuff_to_put;
2610 unsigned int cur_byte;
2613 /* Start at the least significant part of the field. */
2614 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2616 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2617 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2618 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2619 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2620 - FLOATFORMAT_CHAR_BIT;
2624 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2626 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2628 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2630 *(data + cur_byte) &=
2631 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2632 << (-cur_bitshift));
2633 *(data + cur_byte) |=
2634 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2636 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2637 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2642 /* Move towards the most significant part of the field. */
2643 while (cur_bitshift < len)
2645 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2647 /* This is the last byte. */
2648 *(data + cur_byte) &=
2649 ~((1 << (len - cur_bitshift)) - 1);
2650 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2653 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2654 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2655 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2656 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2663 #ifdef HAVE_LONG_DOUBLE
2664 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2665 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2666 frexp, but operates on the long double data type. */
2668 static long double ldfrexp PARAMS ((long double value, int *eptr));
2671 ldfrexp (value, eptr)
2678 /* Unfortunately, there are no portable functions for extracting the exponent
2679 of a long double, so we have to do it iteratively by multiplying or dividing
2680 by two until the fraction is between 0.5 and 1.0. */
2688 if (value >= tmp) /* Value >= 1.0 */
2689 while (value >= tmp)
2694 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2708 #endif /* HAVE_LONG_DOUBLE */
2711 /* The converse: convert the DOUBLEST *FROM to an extended float
2712 and store where TO points. Neither FROM nor TO have any alignment
2716 floatformat_from_doublest (fmt, from, to)
2717 CONST struct floatformat *fmt;
2724 unsigned int mant_bits, mant_off;
2726 unsigned char *uto = (unsigned char *) to;
2728 memcpy (&dfrom, from, sizeof (dfrom));
2729 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2730 / FLOATFORMAT_CHAR_BIT);
2732 return; /* Result is zero */
2733 if (dfrom != dfrom) /* Result is NaN */
2736 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2737 fmt->exp_len, fmt->exp_nan);
2738 /* Be sure it's not infinity, but NaN value is irrel */
2739 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2744 /* If negative, set the sign bit. */
2747 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2751 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2753 /* Infinity exponent is same as NaN's. */
2754 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2755 fmt->exp_len, fmt->exp_nan);
2756 /* Infinity mantissa is all zeroes. */
2757 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2762 #ifdef HAVE_LONG_DOUBLE
2763 mant = ldfrexp (dfrom, &exponent);
2765 mant = frexp (dfrom, &exponent);
2768 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2769 exponent + fmt->exp_bias - 1);
2771 mant_bits_left = fmt->man_len;
2772 mant_off = fmt->man_start;
2773 while (mant_bits_left > 0)
2775 unsigned long mant_long;
2776 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2778 mant *= 4294967296.0;
2779 mant_long = ((unsigned long) mant) & 0xffffffffL;
2782 /* If the integer bit is implicit, then we need to discard it.
2783 If we are discarding a zero, we should be (but are not) creating
2784 a denormalized number which means adjusting the exponent
2786 if (mant_bits_left == fmt->man_len
2787 && fmt->intbit == floatformat_intbit_no)
2790 mant_long &= 0xffffffffL;
2796 /* The bits we want are in the most significant MANT_BITS bits of
2797 mant_long. Move them to the least significant. */
2798 mant_long >>= 32 - mant_bits;
2801 put_field (uto, fmt->byteorder, fmt->totalsize,
2802 mant_off, mant_bits, mant_long);
2803 mant_off += mant_bits;
2804 mant_bits_left -= mant_bits;
2806 if (fmt->byteorder == floatformat_littlebyte_bigword)
2809 unsigned char *swaplow = uto;
2810 unsigned char *swaphigh = uto + 4;
2813 for (count = 0; count < 4; count++)
2816 *swaplow++ = *swaphigh;
2822 /* temporary storage using circular buffer */
2828 static char buf[NUMCELLS][CELLSIZE];
2829 static int cell = 0;
2830 if (++cell >= NUMCELLS)
2835 /* print routines to handle variable size regs, etc.
2837 FIXME: Note that t_addr is a bfd_vma, which is currently either an
2838 unsigned long or unsigned long long, determined at configure time.
2839 If t_addr is an unsigned long long and sizeof (unsigned long long)
2840 is greater than sizeof (unsigned long), then I believe this code will
2841 probably lose, at least for little endian machines. I believe that
2842 it would also be better to eliminate the switch on the absolute size
2843 of t_addr and replace it with a sequence of if statements that compare
2844 sizeof t_addr with sizeof the various types and do the right thing,
2845 which includes knowing whether or not the host supports long long.
2853 return (TARGET_PTR_BIT / 8 * 2);
2857 /* eliminate warning from compiler on 32-bit systems */
2858 static int thirty_two = 32;
2861 paddr (CORE_ADDR addr)
2863 char *paddr_str = get_cell ();
2864 switch (TARGET_PTR_BIT / 8)
2867 sprintf (paddr_str, "%08lx%08lx",
2868 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
2871 sprintf (paddr_str, "%08lx", (unsigned long) addr);
2874 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
2877 sprintf (paddr_str, "%lx", (unsigned long) addr);
2883 paddr_nz (CORE_ADDR addr)
2885 char *paddr_str = get_cell ();
2886 switch (TARGET_PTR_BIT / 8)
2890 unsigned long high = (unsigned long) (addr >> thirty_two);
2892 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
2894 sprintf (paddr_str, "%lx%08lx",
2895 high, (unsigned long) (addr & 0xffffffff));
2899 sprintf (paddr_str, "%lx", (unsigned long) addr);
2902 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
2905 sprintf (paddr_str, "%lx", (unsigned long) addr);
2911 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2913 /* steal code from valprint.c:print_decimal(). Should this worry
2914 about the real size of addr as the above does? */
2915 unsigned long temp[3];
2919 temp[i] = addr % (1000 * 1000 * 1000);
2920 addr /= (1000 * 1000 * 1000);
2923 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2927 sprintf (paddr_str, "%s%lu",
2931 sprintf (paddr_str, "%s%lu%09lu",
2932 sign, temp[1], temp[0]);
2935 sprintf (paddr_str, "%s%lu%09lu%09lu",
2936 sign, temp[2], temp[1], temp[0]);
2944 paddr_u (CORE_ADDR addr)
2946 char *paddr_str = get_cell ();
2947 decimal2str (paddr_str, "", addr);
2952 paddr_d (LONGEST addr)
2954 char *paddr_str = get_cell ();
2956 decimal2str (paddr_str, "-", -addr);
2958 decimal2str (paddr_str, "", addr);
2966 char *preg_str = get_cell ();
2967 switch (sizeof (t_reg))
2970 sprintf (preg_str, "%08lx%08lx",
2971 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
2974 sprintf (preg_str, "%08lx", (unsigned long) reg);
2977 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
2980 sprintf (preg_str, "%lx", (unsigned long) reg);
2989 char *preg_str = get_cell ();
2990 switch (sizeof (t_reg))
2994 unsigned long high = (unsigned long) (reg >> thirty_two);
2996 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
2998 sprintf (preg_str, "%lx%08lx",
2999 high, (unsigned long) (reg & 0xffffffff));
3003 sprintf (preg_str, "%lx", (unsigned long) reg);
3006 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
3009 sprintf (preg_str, "%lx", (unsigned long) reg);
3014 /* Helper functions for INNER_THAN */
3016 core_addr_lessthan (lhs, rhs)
3024 core_addr_greaterthan (lhs, rhs)