1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
24 #include "libiberty.h"
27 #include "elf-vxworks.h"
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
62 static struct elf_backend_data elf32_arm_vxworks_bed;
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
68 static reloc_howto_type elf32_arm_howto_table_1[] =
71 HOWTO (R_ARM_NONE, /* type */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
75 FALSE, /* pc_relative */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
83 FALSE), /* pcrel_offset */
85 HOWTO (R_ARM_PC24, /* type */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
89 TRUE, /* pc_relative */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
100 HOWTO (R_ARM_ABS32, /* type */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
104 FALSE, /* pc_relative */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
119 TRUE, /* pc_relative */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
134 TRUE, /* pc_relative */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
149 FALSE, /* pc_relative */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
164 FALSE, /* pc_relative */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
174 HOWTO (R_ARM_THM_ABS5, /* type */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
178 FALSE, /* pc_relative */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
189 HOWTO (R_ARM_ABS8, /* type */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
193 FALSE, /* pc_relative */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
203 HOWTO (R_ARM_SBREL32, /* type */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
207 FALSE, /* pc_relative */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
217 HOWTO (R_ARM_THM_CALL, /* type */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
221 TRUE, /* pc_relative */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
231 HOWTO (R_ARM_THM_PC8, /* type */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
235 TRUE, /* pc_relative */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
245 HOWTO (R_ARM_BREL_ADJ, /* type */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
249 FALSE, /* pc_relative */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
259 HOWTO (R_ARM_SWI24, /* type */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
263 FALSE, /* pc_relative */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
273 HOWTO (R_ARM_THM_SWI8, /* type */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
277 FALSE, /* pc_relative */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
292 TRUE, /* pc_relative */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
307 TRUE, /* pc_relative */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
317 /* Dynamic TLS relocations. */
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
323 FALSE, /* pc_relative */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
337 FALSE, /* pc_relative */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
351 FALSE, /* pc_relative */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
361 /* Relocs used in ARM Linux */
363 HOWTO (R_ARM_COPY, /* type */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
367 FALSE, /* pc_relative */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
377 HOWTO (R_ARM_GLOB_DAT, /* type */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
381 FALSE, /* pc_relative */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
395 FALSE, /* pc_relative */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
405 HOWTO (R_ARM_RELATIVE, /* type */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
409 FALSE, /* pc_relative */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
419 HOWTO (R_ARM_GOTOFF32, /* type */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
423 FALSE, /* pc_relative */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
433 HOWTO (R_ARM_GOTPC, /* type */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
437 TRUE, /* pc_relative */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
447 HOWTO (R_ARM_GOT32, /* type */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
451 FALSE, /* pc_relative */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
461 HOWTO (R_ARM_PLT32, /* type */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
465 TRUE, /* pc_relative */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
475 HOWTO (R_ARM_CALL, /* type */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
479 TRUE, /* pc_relative */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
489 HOWTO (R_ARM_JUMP24, /* type */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
493 TRUE, /* pc_relative */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
503 HOWTO (R_ARM_THM_JUMP24, /* type */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
507 TRUE, /* pc_relative */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
517 HOWTO (R_ARM_BASE_ABS, /* type */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
521 FALSE, /* pc_relative */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
535 TRUE, /* pc_relative */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
549 TRUE, /* pc_relative */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
563 TRUE, /* pc_relative */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
577 FALSE, /* pc_relative */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
591 FALSE, /* pc_relative */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
605 FALSE, /* pc_relative */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
615 HOWTO (R_ARM_TARGET1, /* type */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
619 FALSE, /* pc_relative */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
629 HOWTO (R_ARM_ROSEGREL32, /* type */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
633 FALSE, /* pc_relative */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
643 HOWTO (R_ARM_V4BX, /* type */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
647 FALSE, /* pc_relative */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
657 HOWTO (R_ARM_TARGET2, /* type */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
661 FALSE, /* pc_relative */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
671 HOWTO (R_ARM_PREL31, /* type */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
675 TRUE, /* pc_relative */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
689 FALSE, /* pc_relative */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
699 HOWTO (R_ARM_MOVT_ABS, /* type */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
703 FALSE, /* pc_relative */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
717 TRUE, /* pc_relative */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
727 HOWTO (R_ARM_MOVT_PREL, /* type */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
731 TRUE, /* pc_relative */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
745 FALSE, /* pc_relative */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
759 FALSE, /* pc_relative */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
773 TRUE, /* pc_relative */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
787 TRUE, /* pc_relative */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
797 HOWTO (R_ARM_THM_JUMP19, /* type */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
801 TRUE, /* pc_relative */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
811 HOWTO (R_ARM_THM_JUMP6, /* type */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
815 TRUE, /* pc_relative */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
832 TRUE, /* pc_relative */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
842 HOWTO (R_ARM_THM_PC12, /* type */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
846 TRUE, /* pc_relative */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
856 HOWTO (R_ARM_ABS32_NOI, /* type */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
860 FALSE, /* pc_relative */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
870 HOWTO (R_ARM_REL32_NOI, /* type */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
874 TRUE, /* pc_relative */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
884 /* Group relocations. */
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
890 TRUE, /* pc_relative */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
904 TRUE, /* pc_relative */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
918 TRUE, /* pc_relative */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
932 TRUE, /* pc_relative */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
946 TRUE, /* pc_relative */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
960 TRUE, /* pc_relative */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
974 TRUE, /* pc_relative */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
988 TRUE, /* pc_relative */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1002 TRUE, /* pc_relative */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1016 TRUE, /* pc_relative */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1030 TRUE, /* pc_relative */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1044 TRUE, /* pc_relative */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1058 TRUE, /* pc_relative */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1072 TRUE, /* pc_relative */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1086 TRUE, /* pc_relative */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1100 TRUE, /* pc_relative */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1114 TRUE, /* pc_relative */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1128 TRUE, /* pc_relative */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1142 TRUE, /* pc_relative */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1156 TRUE, /* pc_relative */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1170 TRUE, /* pc_relative */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 TRUE, /* pc_relative */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 TRUE, /* pc_relative */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1212 TRUE, /* pc_relative */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1226 TRUE, /* pc_relative */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1240 TRUE, /* pc_relative */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 TRUE, /* pc_relative */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1264 /* End of group relocations. */
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1270 FALSE, /* pc_relative */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1284 FALSE, /* pc_relative */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1298 FALSE, /* pc_relative */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1312 FALSE, /* pc_relative */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1326 FALSE, /* pc_relative */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1340 FALSE, /* pc_relative */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1350 EMPTY_HOWTO (90), /* unallocated */
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1359 FALSE, /* pc_relative */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1373 FALSE, /* pc_relative */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 TRUE, /* pc_relative */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1401 FALSE, /* pc_relative */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1415 FALSE, /* pc_relative */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 FALSE, /* pc_relative */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1440 FALSE), /* pcrel_offset */
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 FALSE, /* pc_relative */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1455 FALSE), /* pcrel_offset */
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1461 TRUE, /* pc_relative */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1475 TRUE, /* pc_relative */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1490 FALSE, /* pc_relative */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1504 FALSE, /* pc_relative */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1518 FALSE, /* pc_relative */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1532 FALSE, /* pc_relative */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1546 FALSE, /* pc_relative */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1560 FALSE, /* pc_relative */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1574 FALSE, /* pc_relative */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1588 FALSE, /* pc_relative */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1603 249-255 extended, currently unused, relocations: */
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1607 HOWTO (R_ARM_RREL32, /* type */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1611 FALSE, /* pc_relative */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1619 FALSE), /* pcrel_offset */
1621 HOWTO (R_ARM_RABS32, /* type */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1625 FALSE, /* pc_relative */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1633 FALSE), /* pcrel_offset */
1635 HOWTO (R_ARM_RPC24, /* type */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1639 FALSE, /* pc_relative */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1647 FALSE), /* pcrel_offset */
1649 HOWTO (R_ARM_RBASE, /* type */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1653 FALSE, /* pc_relative */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1661 FALSE) /* pcrel_offset */
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1681 unsigned int r_type;
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1687 struct elf32_arm_reloc_map
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1781 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1782 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1783 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1788 static reloc_howto_type *
1789 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1794 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1795 if (elf32_arm_howto_table_1[i].name != NULL
1796 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1797 return &elf32_arm_howto_table_1[i];
1799 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1800 if (elf32_arm_howto_table_2[i].name != NULL
1801 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1802 return &elf32_arm_howto_table_2[i];
1807 /* Support for core dump NOTE sections. */
1810 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1815 switch (note->descsz)
1820 case 148: /* Linux/ARM 32-bit*/
1822 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1825 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1834 /* Make a ".reg/999" section. */
1835 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1836 size, note->descpos + offset);
1840 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1842 switch (note->descsz)
1847 case 124: /* Linux/ARM elf_prpsinfo */
1848 elf_tdata (abfd)->core_program
1849 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1850 elf_tdata (abfd)->core_command
1851 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1854 /* Note that for some reason, a spurious space is tacked
1855 onto the end of the args in some (at least one anyway)
1856 implementations, so strip it off if it exists. */
1858 char *command = elf_tdata (abfd)->core_command;
1859 int n = strlen (command);
1861 if (0 < n && command[n - 1] == ' ')
1862 command[n - 1] = '\0';
1868 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1869 #define TARGET_LITTLE_NAME "elf32-littlearm"
1870 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1871 #define TARGET_BIG_NAME "elf32-bigarm"
1873 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1874 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1876 typedef unsigned long int insn32;
1877 typedef unsigned short int insn16;
1879 /* In lieu of proper flags, assume all EABIv4 or later objects are
1881 #define INTERWORK_FLAG(abfd) \
1882 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1883 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1885 /* The linker script knows the section names for placement.
1886 The entry_names are used to do simple name mangling on the stubs.
1887 Given a function name, and its type, the stub can be found. The
1888 name can be changed. The only requirement is the %s be present. */
1889 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1890 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1892 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1893 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1895 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1896 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1898 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1899 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1901 /* The name of the dynamic interpreter. This is put in the .interp
1903 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1905 #ifdef FOUR_WORD_PLT
1907 /* The first entry in a procedure linkage table looks like
1908 this. It is set up so that any shared library function that is
1909 called before the relocation has been set up calls the dynamic
1911 static const bfd_vma elf32_arm_plt0_entry [] =
1913 0xe52de004, /* str lr, [sp, #-4]! */
1914 0xe59fe010, /* ldr lr, [pc, #16] */
1915 0xe08fe00e, /* add lr, pc, lr */
1916 0xe5bef008, /* ldr pc, [lr, #8]! */
1919 /* Subsequent entries in a procedure linkage table look like
1921 static const bfd_vma elf32_arm_plt_entry [] =
1923 0xe28fc600, /* add ip, pc, #NN */
1924 0xe28cca00, /* add ip, ip, #NN */
1925 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1926 0x00000000, /* unused */
1931 /* The first entry in a procedure linkage table looks like
1932 this. It is set up so that any shared library function that is
1933 called before the relocation has been set up calls the dynamic
1935 static const bfd_vma elf32_arm_plt0_entry [] =
1937 0xe52de004, /* str lr, [sp, #-4]! */
1938 0xe59fe004, /* ldr lr, [pc, #4] */
1939 0xe08fe00e, /* add lr, pc, lr */
1940 0xe5bef008, /* ldr pc, [lr, #8]! */
1941 0x00000000, /* &GOT[0] - . */
1944 /* Subsequent entries in a procedure linkage table look like
1946 static const bfd_vma elf32_arm_plt_entry [] =
1948 0xe28fc600, /* add ip, pc, #0xNN00000 */
1949 0xe28cca00, /* add ip, ip, #0xNN000 */
1950 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1955 /* The format of the first entry in the procedure linkage table
1956 for a VxWorks executable. */
1957 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1959 0xe52dc008, /* str ip,[sp,#-8]! */
1960 0xe59fc000, /* ldr ip,[pc] */
1961 0xe59cf008, /* ldr pc,[ip,#8] */
1962 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1965 /* The format of subsequent entries in a VxWorks executable. */
1966 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1968 0xe59fc000, /* ldr ip,[pc] */
1969 0xe59cf000, /* ldr pc,[ip] */
1970 0x00000000, /* .long @got */
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xea000000, /* b _PLT */
1973 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1976 /* The format of entries in a VxWorks shared library. */
1977 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1979 0xe59fc000, /* ldr ip,[pc] */
1980 0xe79cf009, /* ldr pc,[ip,r9] */
1981 0x00000000, /* .long @got */
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe599f008, /* ldr pc,[r9,#8] */
1984 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1987 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1988 #define PLT_THUMB_STUB_SIZE 4
1989 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1995 /* The entries in a PLT when using a DLL-based target with multiple
1997 static const bfd_vma elf32_arm_symbian_plt_entry [] =
1999 0xe51ff004, /* ldr pc, [pc, #-4] */
2000 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2003 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2004 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2005 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2006 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2007 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2008 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2010 static const bfd_vma arm_long_branch_stub[] =
2012 0xe51ff004, /* ldr pc, [pc, #-4] */
2013 0x00000000, /* dcd R_ARM_ABS32(X) */
2016 static const bfd_vma arm_thumb_v4t_long_branch_stub[] =
2018 0xe59fc000, /* ldr ip, [pc, #0] */
2019 0xe12fff1c, /* bx ip */
2020 0x00000000, /* dcd R_ARM_ABS32(X) */
2023 static const bfd_vma arm_thumb_thumb_long_branch_stub[] =
2025 0x4e02b540, /* push {r6, lr} */
2026 /* ldr r6, [pc, #8] */
2027 0xe7fe46fe, /* mov lr, pc */
2029 0xbf00bd40, /* pop {r6, pc} */
2031 0x00000000, /* dcd R_ARM_ABS32(X) */
2034 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub[] =
2036 0x4e03b540, /* push {r6, lr} */
2037 /* ldr r6, [pc, #12] */
2038 0x473046fe, /* mov lr, pc */
2040 0xe8bd4040, /* pop {r6, pc} */
2041 0xe12fff1e, /* bx lr */
2042 0x00000000, /* dcd R_ARM_ABS32(X) */
2045 static const bfd_vma arm_pic_long_branch_stub[] =
2047 0xe59fc000, /* ldr r12, [pc] */
2048 0xe08ff00c, /* add pc, pc, ip */
2049 0x00000000, /* dcd R_ARM_ABS32(X) */
2052 /* Section name for stubs is the associated section name plus this
2054 #define STUB_SUFFIX ".stub"
2056 enum elf32_arm_stub_type
2059 arm_stub_long_branch,
2060 arm_thumb_v4t_stub_long_branch,
2061 arm_thumb_thumb_stub_long_branch,
2062 arm_thumb_arm_v4t_stub_long_branch,
2063 arm_stub_pic_long_branch,
2066 struct elf32_arm_stub_hash_entry
2068 /* Base hash table entry structure. */
2069 struct bfd_hash_entry root;
2071 /* The stub section. */
2074 /* Offset within stub_sec of the beginning of this stub. */
2075 bfd_vma stub_offset;
2077 /* Given the symbol's value and its section we can determine its final
2078 value when building the stubs (so the stub knows where to jump). */
2079 bfd_vma target_value;
2080 asection *target_section;
2082 enum elf32_arm_stub_type stub_type;
2084 /* The symbol table entry, if any, that this was derived from. */
2085 struct elf32_arm_link_hash_entry *h;
2087 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2088 unsigned char st_type;
2090 /* Where this stub is being called from, or, in the case of combined
2091 stub sections, the first input section in the group. */
2095 /* Used to build a map of a section. This is required for mixed-endian
2098 typedef struct elf32_elf_section_map
2103 elf32_arm_section_map;
2105 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2109 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2110 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2111 VFP11_ERRATUM_ARM_VENEER,
2112 VFP11_ERRATUM_THUMB_VENEER
2114 elf32_vfp11_erratum_type;
2116 typedef struct elf32_vfp11_erratum_list
2118 struct elf32_vfp11_erratum_list *next;
2124 struct elf32_vfp11_erratum_list *veneer;
2125 unsigned int vfp_insn;
2129 struct elf32_vfp11_erratum_list *branch;
2133 elf32_vfp11_erratum_type type;
2135 elf32_vfp11_erratum_list;
2137 typedef struct _arm_elf_section_data
2139 struct bfd_elf_section_data elf;
2140 unsigned int mapcount;
2141 unsigned int mapsize;
2142 elf32_arm_section_map *map;
2143 unsigned int erratumcount;
2144 elf32_vfp11_erratum_list *erratumlist;
2146 _arm_elf_section_data;
2148 #define elf32_arm_section_data(sec) \
2149 ((_arm_elf_section_data *) elf_section_data (sec))
2151 /* The size of the thread control block. */
2154 struct elf_arm_obj_tdata
2156 struct elf_obj_tdata root;
2158 /* tls_type for each local got entry. */
2159 char *local_got_tls_type;
2161 /* Zero to warn when linking objects with incompatible enum sizes. */
2162 int no_enum_size_warning;
2165 #define elf_arm_tdata(bfd) \
2166 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2168 #define elf32_arm_local_got_tls_type(bfd) \
2169 (elf_arm_tdata (bfd)->local_got_tls_type)
2171 #define is_arm_elf(bfd) \
2172 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2173 && elf_tdata (bfd) != NULL \
2174 && elf_object_id (bfd) == ARM_ELF_TDATA)
2177 elf32_arm_mkobject (bfd *abfd)
2179 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2183 /* The ARM linker needs to keep track of the number of relocs that it
2184 decides to copy in check_relocs for each symbol. This is so that
2185 it can discard PC relative relocs if it doesn't need them when
2186 linking with -Bsymbolic. We store the information in a field
2187 extending the regular ELF linker hash table. */
2189 /* This structure keeps track of the number of relocs we have copied
2190 for a given symbol. */
2191 struct elf32_arm_relocs_copied
2194 struct elf32_arm_relocs_copied * next;
2195 /* A section in dynobj. */
2197 /* Number of relocs copied in this section. */
2198 bfd_size_type count;
2199 /* Number of PC-relative relocs copied in this section. */
2200 bfd_size_type pc_count;
2203 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2205 /* Arm ELF linker hash entry. */
2206 struct elf32_arm_link_hash_entry
2208 struct elf_link_hash_entry root;
2210 /* Number of PC relative relocs copied for this symbol. */
2211 struct elf32_arm_relocs_copied * relocs_copied;
2213 /* We reference count Thumb references to a PLT entry separately,
2214 so that we can emit the Thumb trampoline only if needed. */
2215 bfd_signed_vma plt_thumb_refcount;
2217 /* Some references from Thumb code may be eliminated by BL->BLX
2218 conversion, so record them separately. */
2219 bfd_signed_vma plt_maybe_thumb_refcount;
2221 /* Since PLT entries have variable size if the Thumb prologue is
2222 used, we need to record the index into .got.plt instead of
2223 recomputing it from the PLT offset. */
2224 bfd_signed_vma plt_got_offset;
2226 #define GOT_UNKNOWN 0
2227 #define GOT_NORMAL 1
2228 #define GOT_TLS_GD 2
2229 #define GOT_TLS_IE 4
2230 unsigned char tls_type;
2232 /* The symbol marking the real symbol location for exported thumb
2233 symbols with Arm stubs. */
2234 struct elf_link_hash_entry *export_glue;
2236 /* A pointer to the most recently used stub hash entry against this
2238 struct elf32_arm_stub_hash_entry *stub_cache;
2241 /* Traverse an arm ELF linker hash table. */
2242 #define elf32_arm_link_hash_traverse(table, func, info) \
2243 (elf_link_hash_traverse \
2245 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2248 /* Get the ARM elf linker hash table from a link_info structure. */
2249 #define elf32_arm_hash_table(info) \
2250 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2252 #define arm_stub_hash_lookup(table, string, create, copy) \
2253 ((struct elf32_arm_stub_hash_entry *) \
2254 bfd_hash_lookup ((table), (string), (create), (copy)))
2256 /* ARM ELF linker hash table. */
2257 struct elf32_arm_link_hash_table
2259 /* The main hash table. */
2260 struct elf_link_hash_table root;
2262 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2263 bfd_size_type thumb_glue_size;
2265 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2266 bfd_size_type arm_glue_size;
2268 /* The size in bytes of section containing the ARMv4 BX veneers. */
2269 bfd_size_type bx_glue_size;
2271 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2272 veneer has been populated. */
2273 bfd_vma bx_glue_offset[15];
2275 /* The size in bytes of the section containing glue for VFP11 erratum
2277 bfd_size_type vfp11_erratum_glue_size;
2279 /* An arbitrary input BFD chosen to hold the glue sections. */
2280 bfd * bfd_of_glue_owner;
2282 /* Nonzero to output a BE8 image. */
2285 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2286 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2289 /* The relocation to use for R_ARM_TARGET2 relocations. */
2292 /* 0 = Ignore R_ARM_V4BX.
2293 1 = Convert BX to MOV PC.
2294 2 = Generate v4 interworing stubs. */
2297 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2300 /* What sort of code sequences we should look for which may trigger the
2301 VFP11 denorm erratum. */
2302 bfd_arm_vfp11_fix vfp11_fix;
2304 /* Global counter for the number of fixes we have emitted. */
2305 int num_vfp11_fixes;
2307 /* Nonzero to force PIC branch veneers. */
2310 /* The number of bytes in the initial entry in the PLT. */
2311 bfd_size_type plt_header_size;
2313 /* The number of bytes in the subsequent PLT etries. */
2314 bfd_size_type plt_entry_size;
2316 /* True if the target system is VxWorks. */
2319 /* True if the target system is Symbian OS. */
2322 /* True if the target uses REL relocations. */
2325 /* Short-cuts to get to dynamic linker sections. */
2334 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2337 /* Data for R_ARM_TLS_LDM32 relocations. */
2340 bfd_signed_vma refcount;
2344 /* Small local sym to section mapping cache. */
2345 struct sym_sec_cache sym_sec;
2347 /* For convenience in allocate_dynrelocs. */
2350 /* The stub hash table. */
2351 struct bfd_hash_table stub_hash_table;
2353 /* Linker stub bfd. */
2356 /* Linker call-backs. */
2357 asection * (*add_stub_section) (const char *, asection *);
2358 void (*layout_sections_again) (void);
2360 /* Array to keep track of which stub sections have been created, and
2361 information on stub grouping. */
2364 /* This is the section to which stubs in the group will be
2367 /* The stub section. */
2371 /* Assorted information used by elf32_arm_size_stubs. */
2372 unsigned int bfd_count;
2374 asection **input_list;
2377 /* Create an entry in an ARM ELF linker hash table. */
2379 static struct bfd_hash_entry *
2380 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2381 struct bfd_hash_table * table,
2382 const char * string)
2384 struct elf32_arm_link_hash_entry * ret =
2385 (struct elf32_arm_link_hash_entry *) entry;
2387 /* Allocate the structure if it has not already been allocated by a
2390 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2392 return (struct bfd_hash_entry *) ret;
2394 /* Call the allocation method of the superclass. */
2395 ret = ((struct elf32_arm_link_hash_entry *)
2396 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2400 ret->relocs_copied = NULL;
2401 ret->tls_type = GOT_UNKNOWN;
2402 ret->plt_thumb_refcount = 0;
2403 ret->plt_maybe_thumb_refcount = 0;
2404 ret->plt_got_offset = -1;
2405 ret->export_glue = NULL;
2407 ret->stub_cache = NULL;
2410 return (struct bfd_hash_entry *) ret;
2413 /* Initialize an entry in the stub hash table. */
2415 static struct bfd_hash_entry *
2416 stub_hash_newfunc (struct bfd_hash_entry *entry,
2417 struct bfd_hash_table *table,
2420 /* Allocate the structure if it has not already been allocated by a
2424 entry = bfd_hash_allocate (table,
2425 sizeof (struct elf32_arm_stub_hash_entry));
2430 /* Call the allocation method of the superclass. */
2431 entry = bfd_hash_newfunc (entry, table, string);
2434 struct elf32_arm_stub_hash_entry *eh;
2436 /* Initialize the local fields. */
2437 eh = (struct elf32_arm_stub_hash_entry *) entry;
2438 eh->stub_sec = NULL;
2439 eh->stub_offset = 0;
2440 eh->target_value = 0;
2441 eh->target_section = NULL;
2442 eh->stub_type = arm_stub_none;
2450 /* Return true if NAME is the name of the relocation section associated
2454 reloc_section_p (struct elf32_arm_link_hash_table *htab,
2455 const char *name, asection *s)
2458 return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0;
2460 return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0;
2463 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2464 shortcuts to them in our hash table. */
2467 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2469 struct elf32_arm_link_hash_table *htab;
2471 htab = elf32_arm_hash_table (info);
2472 /* BPABI objects never have a GOT, or associated sections. */
2473 if (htab->symbian_p)
2476 if (! _bfd_elf_create_got_section (dynobj, info))
2479 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2480 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2481 if (!htab->sgot || !htab->sgotplt)
2484 htab->srelgot = bfd_make_section_with_flags (dynobj,
2485 RELOC_SECTION (htab, ".got"),
2486 (SEC_ALLOC | SEC_LOAD
2489 | SEC_LINKER_CREATED
2491 if (htab->srelgot == NULL
2492 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2497 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2498 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2502 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2504 struct elf32_arm_link_hash_table *htab;
2506 htab = elf32_arm_hash_table (info);
2507 if (!htab->sgot && !create_got_section (dynobj, info))
2510 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2513 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2514 htab->srelplt = bfd_get_section_by_name (dynobj,
2515 RELOC_SECTION (htab, ".plt"));
2516 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2518 htab->srelbss = bfd_get_section_by_name (dynobj,
2519 RELOC_SECTION (htab, ".bss"));
2521 if (htab->vxworks_p)
2523 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2528 htab->plt_header_size = 0;
2529 htab->plt_entry_size
2530 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2534 htab->plt_header_size
2535 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2536 htab->plt_entry_size
2537 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2544 || (!info->shared && !htab->srelbss))
2550 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2553 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2554 struct elf_link_hash_entry *dir,
2555 struct elf_link_hash_entry *ind)
2557 struct elf32_arm_link_hash_entry *edir, *eind;
2559 edir = (struct elf32_arm_link_hash_entry *) dir;
2560 eind = (struct elf32_arm_link_hash_entry *) ind;
2562 if (eind->relocs_copied != NULL)
2564 if (edir->relocs_copied != NULL)
2566 struct elf32_arm_relocs_copied **pp;
2567 struct elf32_arm_relocs_copied *p;
2569 /* Add reloc counts against the indirect sym to the direct sym
2570 list. Merge any entries against the same section. */
2571 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2573 struct elf32_arm_relocs_copied *q;
2575 for (q = edir->relocs_copied; q != NULL; q = q->next)
2576 if (q->section == p->section)
2578 q->pc_count += p->pc_count;
2579 q->count += p->count;
2586 *pp = edir->relocs_copied;
2589 edir->relocs_copied = eind->relocs_copied;
2590 eind->relocs_copied = NULL;
2593 if (ind->root.type == bfd_link_hash_indirect)
2595 /* Copy over PLT info. */
2596 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2597 eind->plt_thumb_refcount = 0;
2598 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2599 eind->plt_maybe_thumb_refcount = 0;
2601 if (dir->got.refcount <= 0)
2603 edir->tls_type = eind->tls_type;
2604 eind->tls_type = GOT_UNKNOWN;
2608 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2611 /* Create an ARM elf linker hash table. */
2613 static struct bfd_link_hash_table *
2614 elf32_arm_link_hash_table_create (bfd *abfd)
2616 struct elf32_arm_link_hash_table *ret;
2617 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2619 ret = bfd_malloc (amt);
2623 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2624 elf32_arm_link_hash_newfunc,
2625 sizeof (struct elf32_arm_link_hash_entry)))
2632 ret->sgotplt = NULL;
2633 ret->srelgot = NULL;
2635 ret->srelplt = NULL;
2636 ret->sdynbss = NULL;
2637 ret->srelbss = NULL;
2638 ret->srelplt2 = NULL;
2639 ret->thumb_glue_size = 0;
2640 ret->arm_glue_size = 0;
2641 ret->bx_glue_size = 0;
2642 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2643 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2644 ret->vfp11_erratum_glue_size = 0;
2645 ret->num_vfp11_fixes = 0;
2646 ret->bfd_of_glue_owner = NULL;
2647 ret->byteswap_code = 0;
2648 ret->target1_is_rel = 0;
2649 ret->target2_reloc = R_ARM_NONE;
2650 #ifdef FOUR_WORD_PLT
2651 ret->plt_header_size = 16;
2652 ret->plt_entry_size = 16;
2654 ret->plt_header_size = 20;
2655 ret->plt_entry_size = 12;
2662 ret->sym_sec.abfd = NULL;
2664 ret->tls_ldm_got.refcount = 0;
2666 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2667 sizeof (struct elf32_arm_stub_hash_entry)))
2673 return &ret->root.root;
2676 /* Free the derived linker hash table. */
2679 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2681 struct elf32_arm_link_hash_table *ret
2682 = (struct elf32_arm_link_hash_table *) hash;
2684 bfd_hash_table_free (&ret->stub_hash_table);
2685 _bfd_generic_link_hash_table_free (hash);
2688 /* Determine if we're dealing with a Thumb only architecture. */
2691 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2693 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2697 if (arch != TAG_CPU_ARCH_V7)
2700 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2701 Tag_CPU_arch_profile);
2703 return profile == 'M';
2706 /* Determine if we're dealing with a Thumb-2 object. */
2709 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2711 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2713 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2716 /* Determine the type of stub needed, if any, for a call. */
2718 static enum elf32_arm_stub_type
2719 arm_type_of_stub (struct bfd_link_info *info,
2720 asection *input_sec,
2721 const Elf_Internal_Rela *rel,
2722 unsigned char st_type,
2723 struct elf32_arm_link_hash_entry *hash,
2724 bfd_vma destination)
2727 bfd_signed_vma branch_offset;
2728 unsigned int r_type;
2729 struct elf32_arm_link_hash_table * globals;
2732 enum elf32_arm_stub_type stub_type = arm_stub_none;
2734 globals = elf32_arm_hash_table (info);
2736 thumb_only = using_thumb_only (globals);
2738 thumb2 = using_thumb2 (globals);
2740 /* Determine where the call point is. */
2741 location = (input_sec->output_offset
2742 + input_sec->output_section->vma
2745 branch_offset = (bfd_signed_vma)(destination - location);
2747 r_type = ELF32_R_TYPE (rel->r_info);
2749 /* If the call will go through a PLT entry then we do not need
2751 if (globals->splt != NULL && hash->root.plt.offset != (bfd_vma) -1)
2754 if (r_type == R_ARM_THM_CALL)
2757 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2758 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2760 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2761 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2762 || ((st_type != STT_ARM_TFUNC) && !globals->use_blx))
2764 if (st_type == STT_ARM_TFUNC)
2766 /* Thumb to thumb. */
2769 stub_type = (info->shared | globals->pic_veneer)
2770 ? ((globals->use_blx)
2771 ? arm_stub_pic_long_branch
2773 : (globals->use_blx)
2774 ? arm_stub_long_branch
2779 stub_type = (info->shared | globals->pic_veneer)
2781 : (globals->use_blx)
2782 ? arm_thumb_thumb_stub_long_branch
2789 stub_type = (info->shared | globals->pic_veneer)
2790 ? ((globals->use_blx)
2791 ? arm_stub_pic_long_branch
2793 : (globals->use_blx)
2794 ? arm_stub_long_branch
2795 : arm_thumb_arm_v4t_stub_long_branch;
2799 else if (r_type == R_ARM_CALL)
2801 if (st_type == STT_ARM_TFUNC)
2804 /* We have an extra 2-bytes reach because of the mode change
2805 (bit 24 (H) of BLX encoding). */
2806 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2807 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2808 || !globals->use_blx)
2810 stub_type = (info->shared | globals->pic_veneer)
2811 ? arm_stub_pic_long_branch
2812 : (globals->use_blx)
2813 ? arm_stub_long_branch
2814 : arm_thumb_v4t_stub_long_branch;
2820 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2821 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2823 stub_type = (info->shared | globals->pic_veneer)
2824 ? arm_stub_pic_long_branch
2825 : arm_stub_long_branch;
2833 /* Build a name for an entry in the stub hash table. */
2836 elf32_arm_stub_name (const asection *input_section,
2837 const asection *sym_sec,
2838 const struct elf32_arm_link_hash_entry *hash,
2839 const Elf_Internal_Rela *rel)
2846 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
2847 stub_name = bfd_malloc (len);
2848 if (stub_name != NULL)
2849 sprintf (stub_name, "%08x_%s+%x",
2850 input_section->id & 0xffffffff,
2851 hash->root.root.root.string,
2852 (int) rel->r_addend & 0xffffffff);
2856 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2857 stub_name = bfd_malloc (len);
2858 if (stub_name != NULL)
2859 sprintf (stub_name, "%08x_%x:%x+%x",
2860 input_section->id & 0xffffffff,
2861 sym_sec->id & 0xffffffff,
2862 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
2863 (int) rel->r_addend & 0xffffffff);
2869 /* Look up an entry in the stub hash. Stub entries are cached because
2870 creating the stub name takes a bit of time. */
2872 static struct elf32_arm_stub_hash_entry *
2873 elf32_arm_get_stub_entry (const asection *input_section,
2874 const asection *sym_sec,
2875 struct elf_link_hash_entry *hash,
2876 const Elf_Internal_Rela *rel,
2877 struct elf32_arm_link_hash_table *htab)
2879 struct elf32_arm_stub_hash_entry *stub_entry;
2880 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
2881 const asection *id_sec;
2883 if ((input_section->flags & SEC_CODE) == 0)
2886 /* If this input section is part of a group of sections sharing one
2887 stub section, then use the id of the first section in the group.
2888 Stub names need to include a section id, as there may well be
2889 more than one stub used to reach say, printf, and we need to
2890 distinguish between them. */
2891 id_sec = htab->stub_group[input_section->id].link_sec;
2893 if (h != NULL && h->stub_cache != NULL
2894 && h->stub_cache->h == h
2895 && h->stub_cache->id_sec == id_sec)
2897 stub_entry = h->stub_cache;
2903 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
2904 if (stub_name == NULL)
2907 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
2908 stub_name, FALSE, FALSE);
2910 h->stub_cache = stub_entry;
2918 static void elf32_arm_stub_add_mapping_symbol (struct bfd_link_info * link_info,
2923 struct bfd_link_hash_entry * bh = NULL;
2924 struct elf_link_hash_entry * myh;
2926 _bfd_generic_link_add_one_symbol (link_info,
2927 stub_sec->owner, name,
2928 BSF_LOCAL, stub_sec, stub_sec->size + val,
2929 NULL, TRUE, FALSE, &bh);
2931 myh = (struct elf_link_hash_entry *) bh;
2932 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
2933 myh->forced_local = 1;
2936 /* Add a new stub entry to the stub hash. Not all fields of the new
2937 stub entry are initialised. */
2939 static struct elf32_arm_stub_hash_entry *
2940 elf32_arm_add_stub (const char *stub_name,
2942 struct elf32_arm_link_hash_table *htab,
2943 struct bfd_link_info * link_info,
2944 enum elf32_arm_stub_type stub_type)
2948 struct elf32_arm_stub_hash_entry *stub_entry;
2950 link_sec = htab->stub_group[section->id].link_sec;
2951 stub_sec = htab->stub_group[section->id].stub_sec;
2952 if (stub_sec == NULL)
2954 stub_sec = htab->stub_group[link_sec->id].stub_sec;
2955 if (stub_sec == NULL)
2961 namelen = strlen (link_sec->name);
2962 len = namelen + sizeof (STUB_SUFFIX);
2963 s_name = bfd_alloc (htab->stub_bfd, len);
2967 memcpy (s_name, link_sec->name, namelen);
2968 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2969 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
2970 if (stub_sec == NULL)
2972 htab->stub_group[link_sec->id].stub_sec = stub_sec;
2974 htab->stub_group[section->id].stub_sec = stub_sec;
2977 /* Enter this entry into the linker stub hash table. */
2978 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2980 if (stub_entry == NULL)
2982 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2988 stub_entry->stub_sec = stub_sec;
2989 stub_entry->stub_offset = 0;
2990 stub_entry->id_sec = link_sec;
2994 case arm_stub_long_branch:
2995 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$a", 0);
2996 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$d", 4);
2998 case arm_thumb_v4t_stub_long_branch:
2999 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$a", 0);
3000 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$d", 8);
3002 case arm_thumb_thumb_stub_long_branch:
3003 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$t", 0);
3004 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$d", 12);
3006 case arm_thumb_arm_v4t_stub_long_branch:
3007 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$t", 0);
3008 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$a", 8);
3009 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$d", 16);
3011 case arm_stub_pic_long_branch:
3012 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$a", 0);
3013 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$d", 8);
3022 /* Store an Arm insn into an output section not processed by
3023 elf32_arm_write_section. */
3026 put_arm_insn (struct elf32_arm_link_hash_table *htab,
3027 bfd * output_bfd, bfd_vma val, void * ptr)
3029 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3030 bfd_putl32 (val, ptr);
3032 bfd_putb32 (val, ptr);
3035 /* Store a 16-bit Thumb insn into an output section not processed by
3036 elf32_arm_write_section. */
3039 put_thumb_insn (struct elf32_arm_link_hash_table *htab,
3040 bfd * output_bfd, bfd_vma val, void * ptr)
3042 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3043 bfd_putl16 (val, ptr);
3045 bfd_putb16 (val, ptr);
3049 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3052 struct elf32_arm_stub_hash_entry *stub_entry;
3053 struct bfd_link_info *info;
3054 struct elf32_arm_link_hash_table *htab;
3062 const bfd_vma *template;
3064 struct elf32_arm_link_hash_table * globals;
3066 /* Massage our args to the form they really have. */
3067 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3068 info = (struct bfd_link_info *) in_arg;
3070 globals = elf32_arm_hash_table (info);
3072 htab = elf32_arm_hash_table (info);
3073 stub_sec = stub_entry->stub_sec;
3075 /* Make a note of the offset within the stubs for this entry. */
3076 stub_entry->stub_offset = stub_sec->size;
3077 loc = stub_sec->contents + stub_entry->stub_offset;
3079 stub_bfd = stub_sec->owner;
3081 /* This is the address of the start of the stub. */
3082 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3083 + stub_entry->stub_offset;
3085 /* This is the address of the stub destination. */
3086 sym_value = (stub_entry->target_value
3087 + stub_entry->target_section->output_offset
3088 + stub_entry->target_section->output_section->vma);
3090 switch (stub_entry->stub_type)
3092 case arm_stub_long_branch:
3093 template = arm_long_branch_stub;
3094 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3096 case arm_thumb_v4t_stub_long_branch:
3097 template = arm_thumb_v4t_long_branch_stub;
3098 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3100 case arm_thumb_thumb_stub_long_branch:
3101 template = arm_thumb_thumb_long_branch_stub;
3102 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3104 case arm_thumb_arm_v4t_stub_long_branch:
3105 template = arm_thumb_arm_v4t_long_branch_stub;
3106 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3108 case arm_stub_pic_long_branch:
3109 template = arm_pic_long_branch_stub;
3110 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3118 for (i = 0; i < (template_size / 4); i++)
3120 /* A 0 pattern is a placeholder, every other pattern is an
3122 if (template[i] != 0)
3123 put_arm_insn (globals, stub_bfd, template[i], loc + size);
3125 bfd_put_32 (stub_bfd, template[i], loc + size);
3129 stub_sec->size += size;
3131 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3132 if (stub_entry->st_type == STT_ARM_TFUNC)
3135 switch (stub_entry->stub_type)
3137 case arm_stub_long_branch:
3138 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3139 stub_bfd, stub_sec, stub_sec->contents + 4,
3140 stub_entry->stub_offset, sym_value, 0);
3142 case arm_thumb_v4t_stub_long_branch:
3143 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3144 stub_bfd, stub_sec, stub_sec->contents + 8,
3145 stub_entry->stub_offset, sym_value, 0);
3147 case arm_thumb_thumb_stub_long_branch:
3148 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3149 stub_bfd, stub_sec, stub_sec->contents + 12,
3150 stub_entry->stub_offset, sym_value, 0);
3152 case arm_thumb_arm_v4t_stub_long_branch:
3153 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3154 stub_bfd, stub_sec, stub_sec->contents + 20,
3155 stub_entry->stub_offset, sym_value, 0);
3157 case arm_stub_pic_long_branch:
3158 /* We want the value relative to the address 8 bytes from the
3159 start of the stub. */
3160 sym_value -= stub_addr + 8;
3162 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3163 stub_bfd, stub_sec, stub_sec->contents + 8,
3164 stub_entry->stub_offset, sym_value, 0);
3173 /* As above, but don't actually build the stub. Just bump offset so
3174 we know stub section sizes. */
3177 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3180 struct elf32_arm_stub_hash_entry *stub_entry;
3181 struct elf32_arm_link_hash_table *htab;
3182 const bfd_vma *template;
3187 /* Massage our args to the form they really have. */
3188 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3189 htab = (struct elf32_arm_link_hash_table *) in_arg;
3191 switch (stub_entry->stub_type)
3193 case arm_stub_long_branch:
3194 template = arm_long_branch_stub;
3195 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3197 case arm_thumb_v4t_stub_long_branch:
3198 template = arm_thumb_v4t_long_branch_stub;
3199 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3201 case arm_thumb_thumb_stub_long_branch:
3202 template = arm_thumb_thumb_long_branch_stub;
3203 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3205 case arm_thumb_arm_v4t_stub_long_branch:
3206 template = arm_thumb_arm_v4t_long_branch_stub;
3207 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3209 case arm_stub_pic_long_branch:
3210 template = arm_pic_long_branch_stub;
3211 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3220 for (i = 0; i < (template_size / 4); i++)
3222 size = (size + 7) & ~7;
3223 stub_entry->stub_sec->size += size;
3227 /* External entry points for sizing and building linker stubs. */
3229 /* Set up various things so that we can make a list of input sections
3230 for each output section included in the link. Returns -1 on error,
3231 0 when no stubs will be needed, and 1 on success. */
3234 elf32_arm_setup_section_lists (bfd *output_bfd,
3235 struct bfd_link_info *info)
3238 unsigned int bfd_count;
3239 int top_id, top_index;
3241 asection **input_list, **list;
3243 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3245 if (! is_elf_hash_table (htab))
3248 /* Count the number of input BFDs and find the top input section id. */
3249 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3251 input_bfd = input_bfd->link_next)
3254 for (section = input_bfd->sections;
3256 section = section->next)
3258 if (top_id < section->id)
3259 top_id = section->id;
3262 htab->bfd_count = bfd_count;
3264 amt = sizeof (struct map_stub) * (top_id + 1);
3265 htab->stub_group = bfd_zmalloc (amt);
3266 if (htab->stub_group == NULL)
3269 /* We can't use output_bfd->section_count here to find the top output
3270 section index as some sections may have been removed, and
3271 _bfd_strip_section_from_output doesn't renumber the indices. */
3272 for (section = output_bfd->sections, top_index = 0;
3274 section = section->next)
3276 if (top_index < section->index)
3277 top_index = section->index;
3280 htab->top_index = top_index;
3281 amt = sizeof (asection *) * (top_index + 1);
3282 input_list = bfd_malloc (amt);
3283 htab->input_list = input_list;
3284 if (input_list == NULL)
3287 /* For sections we aren't interested in, mark their entries with a
3288 value we can check later. */
3289 list = input_list + top_index;
3291 *list = bfd_abs_section_ptr;
3292 while (list-- != input_list);
3294 for (section = output_bfd->sections;
3296 section = section->next)
3298 if ((section->flags & SEC_CODE) != 0)
3299 input_list[section->index] = NULL;
3305 /* The linker repeatedly calls this function for each input section,
3306 in the order that input sections are linked into output sections.
3307 Build lists of input sections to determine groupings between which
3308 we may insert linker stubs. */
3311 elf32_arm_next_input_section (struct bfd_link_info *info,
3314 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3316 if (isec->output_section->index <= htab->top_index)
3318 asection **list = htab->input_list + isec->output_section->index;
3320 if (*list != bfd_abs_section_ptr)
3322 /* Steal the link_sec pointer for our list. */
3323 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3324 /* This happens to make the list in reverse order,
3325 which is what we want. */
3326 PREV_SEC (isec) = *list;
3332 /* See whether we can group stub sections together. Grouping stub
3333 sections may result in fewer stubs. More importantly, we need to
3334 put all .init* and .fini* stubs at the beginning of the .init or
3335 .fini output sections respectively, because glibc splits the
3336 _init and _fini functions into multiple parts. Putting a stub in
3337 the middle of a function is not a good idea. */
3340 group_sections (struct elf32_arm_link_hash_table *htab,
3341 bfd_size_type stub_group_size,
3342 bfd_boolean stubs_always_before_branch)
3344 asection **list = htab->input_list + htab->top_index;
3348 asection *tail = *list;
3350 if (tail == bfd_abs_section_ptr)
3353 while (tail != NULL)
3357 bfd_size_type total;
3361 while ((prev = PREV_SEC (curr)) != NULL
3362 && ((total += curr->output_offset - prev->output_offset)
3366 /* OK, the size from the start of CURR to the end is less
3367 than stub_group_size and thus can be handled by one stub
3368 section. (or the tail section is itself larger than
3369 stub_group_size, in which case we may be toast.)
3370 We should really be keeping track of the total size of
3371 stubs added here, as stubs contribute to the final output
3375 prev = PREV_SEC (tail);
3376 /* Set up this stub group. */
3377 htab->stub_group[tail->id].link_sec = curr;
3379 while (tail != curr && (tail = prev) != NULL);
3381 /* But wait, there's more! Input sections up to stub_group_size
3382 bytes before the stub section can be handled by it too. */
3383 if (!stubs_always_before_branch)
3387 && ((total += tail->output_offset - prev->output_offset)
3391 prev = PREV_SEC (tail);
3392 htab->stub_group[tail->id].link_sec = curr;
3398 while (list-- != htab->input_list);
3400 free (htab->input_list);
3404 /* Determine and set the size of the stub section for a final link.
3406 The basic idea here is to examine all the relocations looking for
3407 PC-relative calls to a target that is unreachable with a "bl"
3411 elf32_arm_size_stubs (bfd *output_bfd,
3413 struct bfd_link_info *info,
3414 bfd_signed_vma group_size,
3415 asection * (*add_stub_section) (const char *, asection *),
3416 void (*layout_sections_again) (void))
3418 bfd_size_type stub_group_size;
3419 bfd_boolean stubs_always_before_branch;
3420 bfd_boolean stub_changed = 0;
3421 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3423 /* Propagate mach to stub bfd, because it may not have been
3424 finalized when we created stub_bfd. */
3425 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3426 bfd_get_mach (output_bfd));
3428 /* Stash our params away. */
3429 htab->stub_bfd = stub_bfd;
3430 htab->add_stub_section = add_stub_section;
3431 htab->layout_sections_again = layout_sections_again;
3432 stubs_always_before_branch = group_size < 0;
3434 stub_group_size = -group_size;
3436 stub_group_size = group_size;
3438 if (stub_group_size == 1)
3440 /* Default values. */
3441 /* Thumb branch range is +-4MB has to be used as the default
3442 maximum size (a given section can contain both ARM and Thumb
3443 code, so the worst case has to be taken into account).
3445 This value is 24K less than that, which allows for 2025
3446 12-byte stubs. If we exceed that, then we will fail to link.
3447 The user will have to relink with an explicit group size
3449 stub_group_size = 4170000;
3452 group_sections (htab, stub_group_size, stubs_always_before_branch);
3457 unsigned int bfd_indx;
3460 for (input_bfd = info->input_bfds, bfd_indx = 0;
3462 input_bfd = input_bfd->link_next, bfd_indx++)
3464 Elf_Internal_Shdr *symtab_hdr;
3466 Elf_Internal_Sym *local_syms = NULL;
3468 /* We'll need the symbol table in a second. */
3469 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3470 if (symtab_hdr->sh_info == 0)
3473 /* Walk over each section attached to the input bfd. */
3474 for (section = input_bfd->sections;
3476 section = section->next)
3478 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3480 /* If there aren't any relocs, then there's nothing more
3482 if ((section->flags & SEC_RELOC) == 0
3483 || section->reloc_count == 0
3484 || (section->flags & SEC_CODE) == 0)
3487 /* If this section is a link-once section that will be
3488 discarded, then don't create any stubs. */
3489 if (section->output_section == NULL
3490 || section->output_section->owner != output_bfd)
3493 /* Get the relocs. */
3495 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3496 NULL, info->keep_memory);
3497 if (internal_relocs == NULL)
3498 goto error_ret_free_local;
3500 /* Now examine each relocation. */
3501 irela = internal_relocs;
3502 irelaend = irela + section->reloc_count;
3503 for (; irela < irelaend; irela++)
3505 unsigned int r_type, r_indx;
3506 enum elf32_arm_stub_type stub_type;
3507 struct elf32_arm_stub_hash_entry *stub_entry;
3510 bfd_vma destination;
3511 struct elf32_arm_link_hash_entry *hash;
3513 const asection *id_sec;
3514 unsigned char st_type;
3516 r_type = ELF32_R_TYPE (irela->r_info);
3517 r_indx = ELF32_R_SYM (irela->r_info);
3519 if (r_type >= (unsigned int) R_ARM_max)
3521 bfd_set_error (bfd_error_bad_value);
3522 error_ret_free_internal:
3523 if (elf_section_data (section)->relocs == NULL)
3524 free (internal_relocs);
3525 goto error_ret_free_local;
3528 /* Only look for stubs on call instructions. */
3529 if ((r_type != (unsigned int) R_ARM_CALL)
3530 && (r_type != (unsigned int) R_ARM_THM_CALL))
3533 /* Now determine the call target, its name, value,
3539 if (r_indx < symtab_hdr->sh_info)
3541 /* It's a local symbol. */
3542 Elf_Internal_Sym *sym;
3543 Elf_Internal_Shdr *hdr;
3545 if (local_syms == NULL)
3548 = (Elf_Internal_Sym *) symtab_hdr->contents;
3549 if (local_syms == NULL)
3551 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3552 symtab_hdr->sh_info, 0,
3554 if (local_syms == NULL)
3555 goto error_ret_free_internal;
3558 sym = local_syms + r_indx;
3559 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3560 sym_sec = hdr->bfd_section;
3561 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3562 sym_value = sym->st_value;
3563 destination = (sym_value + irela->r_addend
3564 + sym_sec->output_offset
3565 + sym_sec->output_section->vma);
3566 st_type = ELF_ST_TYPE (sym->st_info);
3570 /* It's an external symbol. */
3573 e_indx = r_indx - symtab_hdr->sh_info;
3574 hash = ((struct elf32_arm_link_hash_entry *)
3575 elf_sym_hashes (input_bfd)[e_indx]);
3577 while (hash->root.root.type == bfd_link_hash_indirect
3578 || hash->root.root.type == bfd_link_hash_warning)
3579 hash = ((struct elf32_arm_link_hash_entry *)
3580 hash->root.root.u.i.link);
3582 if (hash->root.root.type == bfd_link_hash_defined
3583 || hash->root.root.type == bfd_link_hash_defweak)
3585 sym_sec = hash->root.root.u.def.section;
3586 sym_value = hash->root.root.u.def.value;
3587 if (sym_sec->output_section != NULL)
3588 destination = (sym_value + irela->r_addend
3589 + sym_sec->output_offset
3590 + sym_sec->output_section->vma);
3592 else if (hash->root.root.type == bfd_link_hash_undefweak
3593 || hash->root.root.type == bfd_link_hash_undefined)
3594 /* For a shared library, these will need a PLT stub,
3595 which is treated separately.
3596 For absolute code, they cannot be handled. */
3600 bfd_set_error (bfd_error_bad_value);
3601 goto error_ret_free_internal;
3603 st_type = ELF_ST_TYPE (hash->root.type);
3606 /* Determine what (if any) linker stub is needed. */
3607 stub_type = arm_type_of_stub (info, section, irela, st_type,
3609 if (stub_type == arm_stub_none)
3612 /* Support for grouping stub sections. */
3613 id_sec = htab->stub_group[section->id].link_sec;
3615 /* Get the name of this stub. */
3616 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3618 goto error_ret_free_internal;
3620 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3623 if (stub_entry != NULL)
3625 /* The proper stub has already been created. */
3630 stub_entry = elf32_arm_add_stub (stub_name, section, htab, info, stub_type);
3631 if (stub_entry == NULL)
3634 goto error_ret_free_internal;
3637 stub_entry->target_value = sym_value;
3638 stub_entry->target_section = sym_sec;
3639 stub_entry->stub_type = stub_type;
3640 stub_entry->h = hash;
3641 stub_entry->st_type = st_type;
3642 stub_changed = TRUE;
3645 /* We're done with the internal relocs, free them. */
3646 if (elf_section_data (section)->relocs == NULL)
3647 free (internal_relocs);
3654 /* OK, we've added some stubs. Find out the new size of the
3656 for (stub_sec = htab->stub_bfd->sections;
3658 stub_sec = stub_sec->next)
3661 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3663 /* Ask the linker to do its stuff. */
3664 (*htab->layout_sections_again) ();
3665 stub_changed = FALSE;
3670 error_ret_free_local:
3674 /* Build all the stubs associated with the current output file. The
3675 stubs are kept in a hash table attached to the main linker hash
3676 table. We also set up the .plt entries for statically linked PIC
3677 functions here. This function is called via arm_elf_finish in the
3681 elf32_arm_build_stubs (struct bfd_link_info *info)
3684 struct bfd_hash_table *table;
3685 struct elf32_arm_link_hash_table *htab;
3687 htab = elf32_arm_hash_table (info);
3689 for (stub_sec = htab->stub_bfd->sections;
3691 stub_sec = stub_sec->next)
3695 /* Ignore non-stub sections */
3696 if (!strstr (stub_sec->name, STUB_SUFFIX))
3699 /* Allocate memory to hold the linker stubs. */
3700 size = stub_sec->size;
3701 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3702 if (stub_sec->contents == NULL && size != 0)
3707 /* Build the stubs as directed by the stub hash table. */
3708 table = &htab->stub_hash_table;
3709 bfd_hash_traverse (table, arm_build_one_stub, info);
3714 /* Locate the Thumb encoded calling stub for NAME. */
3716 static struct elf_link_hash_entry *
3717 find_thumb_glue (struct bfd_link_info *link_info,
3719 char **error_message)
3722 struct elf_link_hash_entry *hash;
3723 struct elf32_arm_link_hash_table *hash_table;
3725 /* We need a pointer to the armelf specific hash table. */
3726 hash_table = elf32_arm_hash_table (link_info);
3728 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3729 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3731 BFD_ASSERT (tmp_name);
3733 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3735 hash = elf_link_hash_lookup
3736 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3739 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3740 tmp_name, name) == -1)
3741 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3748 /* Locate the ARM encoded calling stub for NAME. */
3750 static struct elf_link_hash_entry *
3751 find_arm_glue (struct bfd_link_info *link_info,
3753 char **error_message)
3756 struct elf_link_hash_entry *myh;
3757 struct elf32_arm_link_hash_table *hash_table;
3759 /* We need a pointer to the elfarm specific hash table. */
3760 hash_table = elf32_arm_hash_table (link_info);
3762 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3763 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3765 BFD_ASSERT (tmp_name);
3767 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3769 myh = elf_link_hash_lookup
3770 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3773 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
3774 tmp_name, name) == -1)
3775 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3782 /* ARM->Thumb glue (static images):
3786 ldr r12, __func_addr
3789 .word func @ behave as if you saw a ARM_32 reloc.
3796 .word func @ behave as if you saw a ARM_32 reloc.
3798 (relocatable images)
3801 ldr r12, __func_offset
3808 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3809 static const insn32 a2t1_ldr_insn = 0xe59fc000;
3810 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
3811 static const insn32 a2t3_func_addr_insn = 0x00000001;
3813 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3814 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
3815 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
3817 #define ARM2THUMB_PIC_GLUE_SIZE 16
3818 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
3819 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
3820 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
3822 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3826 __func_from_thumb: __func_from_thumb:
3828 nop ldr r6, __func_addr
3830 __func_change_to_arm: bx r6
3832 __func_back_to_thumb:
3838 #define THUMB2ARM_GLUE_SIZE 8
3839 static const insn16 t2a1_bx_pc_insn = 0x4778;
3840 static const insn16 t2a2_noop_insn = 0x46c0;
3841 static const insn32 t2a3_b_insn = 0xea000000;
3843 #define VFP11_ERRATUM_VENEER_SIZE 8
3845 #define ARM_BX_VENEER_SIZE 12
3846 static const insn32 armbx1_tst_insn = 0xe3100001;
3847 static const insn32 armbx2_moveq_insn = 0x01a0f000;
3848 static const insn32 armbx3_bx_insn = 0xe12fff10;
3850 #ifndef ELFARM_NABI_C_INCLUDED
3852 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
3856 struct elf32_arm_link_hash_table * globals;
3858 globals = elf32_arm_hash_table (info);
3860 BFD_ASSERT (globals != NULL);
3862 if (globals->arm_glue_size != 0)
3864 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3866 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
3867 ARM2THUMB_GLUE_SECTION_NAME);
3869 BFD_ASSERT (s != NULL);
3871 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
3873 BFD_ASSERT (s->size == globals->arm_glue_size);
3877 if (globals->thumb_glue_size != 0)
3879 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3881 s = bfd_get_section_by_name
3882 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
3884 BFD_ASSERT (s != NULL);
3886 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
3888 BFD_ASSERT (s->size == globals->thumb_glue_size);
3892 if (globals->vfp11_erratum_glue_size != 0)
3894 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3896 s = bfd_get_section_by_name
3897 (globals->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
3899 BFD_ASSERT (s != NULL);
3901 foo = bfd_alloc (globals->bfd_of_glue_owner,
3902 globals->vfp11_erratum_glue_size);
3904 BFD_ASSERT (s->size == globals->vfp11_erratum_glue_size);
3908 if (globals->bx_glue_size != 0)
3910 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3912 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
3913 ARM_BX_GLUE_SECTION_NAME);
3915 BFD_ASSERT (s != NULL);
3917 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->bx_glue_size);
3919 BFD_ASSERT (s->size == globals->bx_glue_size);
3926 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3927 returns the symbol identifying the stub. */
3929 static struct elf_link_hash_entry *
3930 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
3931 struct elf_link_hash_entry * h)
3933 const char * name = h->root.root.string;
3936 struct elf_link_hash_entry * myh;
3937 struct bfd_link_hash_entry * bh;
3938 struct elf32_arm_link_hash_table * globals;
3942 globals = elf32_arm_hash_table (link_info);
3944 BFD_ASSERT (globals != NULL);
3945 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3947 s = bfd_get_section_by_name
3948 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
3950 BFD_ASSERT (s != NULL);
3952 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3954 BFD_ASSERT (tmp_name);
3956 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3958 myh = elf_link_hash_lookup
3959 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3963 /* We've already seen this guy. */
3968 /* The only trick here is using hash_table->arm_glue_size as the value.
3969 Even though the section isn't allocated yet, this is where we will be
3972 val = globals->arm_glue_size + 1;
3973 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
3974 tmp_name, BSF_GLOBAL, s, val,
3975 NULL, TRUE, FALSE, &bh);
3977 myh = (struct elf_link_hash_entry *) bh;
3978 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
3979 myh->forced_local = 1;
3983 if (link_info->shared || globals->root.is_relocatable_executable
3984 || globals->pic_veneer)
3985 size = ARM2THUMB_PIC_GLUE_SIZE;
3986 else if (globals->use_blx)
3987 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
3989 size = ARM2THUMB_STATIC_GLUE_SIZE;
3992 globals->arm_glue_size += size;
3998 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
3999 struct elf_link_hash_entry *h)
4001 const char *name = h->root.root.string;
4004 struct elf_link_hash_entry *myh;
4005 struct bfd_link_hash_entry *bh;
4006 struct elf32_arm_link_hash_table *hash_table;
4009 hash_table = elf32_arm_hash_table (link_info);
4011 BFD_ASSERT (hash_table != NULL);
4012 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4014 s = bfd_get_section_by_name
4015 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4017 BFD_ASSERT (s != NULL);
4019 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4020 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4022 BFD_ASSERT (tmp_name);
4024 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4026 myh = elf_link_hash_lookup
4027 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4031 /* We've already seen this guy. */
4037 val = hash_table->thumb_glue_size + 1;
4038 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4039 tmp_name, BSF_GLOBAL, s, val,
4040 NULL, TRUE, FALSE, &bh);
4042 /* If we mark it 'Thumb', the disassembler will do a better job. */
4043 myh = (struct elf_link_hash_entry *) bh;
4044 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4045 myh->forced_local = 1;
4049 #define CHANGE_TO_ARM "__%s_change_to_arm"
4050 #define BACK_FROM_ARM "__%s_back_from_arm"
4052 /* Allocate another symbol to mark where we switch to Arm mode. */
4053 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4054 + strlen (CHANGE_TO_ARM) + 1);
4056 BFD_ASSERT (tmp_name);
4058 sprintf (tmp_name, CHANGE_TO_ARM, name);
4061 val = hash_table->thumb_glue_size + 4,
4062 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4063 tmp_name, BSF_LOCAL, s, val,
4064 NULL, TRUE, FALSE, &bh);
4068 s->size += THUMB2ARM_GLUE_SIZE;
4069 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4075 /* Allocate space for ARMv4 BX veneers. */
4078 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4081 struct elf32_arm_link_hash_table *globals;
4083 struct elf_link_hash_entry *myh;
4084 struct bfd_link_hash_entry *bh;
4087 /* BX PC does not need a veneer. */
4091 globals = elf32_arm_hash_table (link_info);
4093 BFD_ASSERT (globals != NULL);
4094 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4096 /* Check if this veneer has already been allocated. */
4097 if (globals->bx_glue_offset[reg])
4100 s = bfd_get_section_by_name
4101 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4103 BFD_ASSERT (s != NULL);
4105 /* Add symbol for veneer. */
4106 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4108 BFD_ASSERT (tmp_name);
4110 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4112 myh = elf_link_hash_lookup
4113 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4115 BFD_ASSERT (myh == NULL);
4118 val = globals->bx_glue_size;
4119 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4120 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4121 NULL, TRUE, FALSE, &bh);
4123 myh = (struct elf_link_hash_entry *) bh;
4124 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4125 myh->forced_local = 1;
4127 s->size += ARM_BX_VENEER_SIZE;
4128 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4129 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4133 /* Add an entry to the code/data map for section SEC. */
4136 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4138 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4139 unsigned int newidx;
4141 if (sec_data->map == NULL)
4143 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4144 sec_data->mapcount = 0;
4145 sec_data->mapsize = 1;
4148 newidx = sec_data->mapcount++;
4150 if (sec_data->mapcount > sec_data->mapsize)
4152 sec_data->mapsize *= 2;
4153 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4154 * sizeof (elf32_arm_section_map));
4159 sec_data->map[newidx].vma = vma;
4160 sec_data->map[newidx].type = type;
4165 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4166 veneers are handled for now. */
4169 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4170 elf32_vfp11_erratum_list *branch,
4172 asection *branch_sec,
4173 unsigned int offset)
4176 struct elf32_arm_link_hash_table *hash_table;
4178 struct elf_link_hash_entry *myh;
4179 struct bfd_link_hash_entry *bh;
4181 struct _arm_elf_section_data *sec_data;
4183 elf32_vfp11_erratum_list *newerr;
4185 hash_table = elf32_arm_hash_table (link_info);
4187 BFD_ASSERT (hash_table != NULL);
4188 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4190 s = bfd_get_section_by_name
4191 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4193 sec_data = elf32_arm_section_data (s);
4195 BFD_ASSERT (s != NULL);
4197 tmp_name = bfd_malloc ((bfd_size_type) strlen
4198 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4200 BFD_ASSERT (tmp_name);
4202 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4203 hash_table->num_vfp11_fixes);
4205 myh = elf_link_hash_lookup
4206 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4208 BFD_ASSERT (myh == NULL);
4211 val = hash_table->vfp11_erratum_glue_size;
4212 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4213 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4214 NULL, TRUE, FALSE, &bh);
4216 myh = (struct elf_link_hash_entry *) bh;
4217 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4218 myh->forced_local = 1;
4220 /* Link veneer back to calling location. */
4221 errcount = ++(sec_data->erratumcount);
4222 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4224 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4226 newerr->u.v.branch = branch;
4227 newerr->u.v.id = hash_table->num_vfp11_fixes;
4228 branch->u.b.veneer = newerr;
4230 newerr->next = sec_data->erratumlist;
4231 sec_data->erratumlist = newerr;
4233 /* A symbol for the return from the veneer. */
4234 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4235 hash_table->num_vfp11_fixes);
4237 myh = elf_link_hash_lookup
4238 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4245 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4246 branch_sec, val, NULL, TRUE, FALSE, &bh);
4248 myh = (struct elf_link_hash_entry *) bh;
4249 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4250 myh->forced_local = 1;
4254 /* Generate a mapping symbol for the veneer section, and explicitly add an
4255 entry for that symbol to the code/data map for the section. */
4256 if (hash_table->vfp11_erratum_glue_size == 0)
4259 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4260 ever requires this erratum fix. */
4261 _bfd_generic_link_add_one_symbol (link_info,
4262 hash_table->bfd_of_glue_owner, "$a",
4263 BSF_LOCAL, s, 0, NULL,
4266 myh = (struct elf_link_hash_entry *) bh;
4267 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4268 myh->forced_local = 1;
4270 /* The elf32_arm_init_maps function only cares about symbols from input
4271 BFDs. We must make a note of this generated mapping symbol
4272 ourselves so that code byteswapping works properly in
4273 elf32_arm_write_section. */
4274 elf32_arm_section_map_add (s, 'a', 0);
4277 s->size += VFP11_ERRATUM_VENEER_SIZE;
4278 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4279 hash_table->num_vfp11_fixes++;
4281 /* The offset of the veneer. */
4285 /* Add the glue sections to ABFD. This function is called from the
4286 linker scripts in ld/emultempl/{armelf}.em. */
4289 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4290 struct bfd_link_info *info)
4295 /* If we are only performing a partial
4296 link do not bother adding the glue. */
4297 if (info->relocatable)
4300 /* linker stubs don't need glue */
4301 if (!strcmp (abfd->filename, "linker stubs"))
4304 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
4308 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
4309 will prevent elf_link_input_bfd() from processing the contents
4311 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4312 | SEC_CODE | SEC_READONLY);
4314 sec = bfd_make_section_with_flags (abfd,
4315 ARM2THUMB_GLUE_SECTION_NAME,
4319 || !bfd_set_section_alignment (abfd, sec, 2))
4322 /* Set the gc mark to prevent the section from being removed by garbage
4323 collection, despite the fact that no relocs refer to this section. */
4327 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
4331 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4332 | SEC_CODE | SEC_READONLY);
4334 sec = bfd_make_section_with_flags (abfd,
4335 THUMB2ARM_GLUE_SECTION_NAME,
4339 || !bfd_set_section_alignment (abfd, sec, 2))
4345 sec = bfd_get_section_by_name (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME);
4349 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4350 | SEC_CODE | SEC_READONLY);
4352 sec = bfd_make_section_with_flags (abfd,
4353 VFP11_ERRATUM_VENEER_SECTION_NAME,
4357 || !bfd_set_section_alignment (abfd, sec, 2))
4363 sec = bfd_get_section_by_name (abfd, ARM_BX_GLUE_SECTION_NAME);
4367 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4368 | SEC_CODE | SEC_READONLY);
4370 sec = bfd_make_section_with_flags (abfd,
4371 ARM_BX_GLUE_SECTION_NAME,
4375 || !bfd_set_section_alignment (abfd, sec, 2))
4384 /* Select a BFD to be used to hold the sections used by the glue code.
4385 This function is called from the linker scripts in ld/emultempl/
4389 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4391 struct elf32_arm_link_hash_table *globals;
4393 /* If we are only performing a partial link
4394 do not bother getting a bfd to hold the glue. */
4395 if (info->relocatable)
4398 /* Make sure we don't attach the glue sections to a dynamic object. */
4399 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4401 globals = elf32_arm_hash_table (info);
4403 BFD_ASSERT (globals != NULL);
4405 if (globals->bfd_of_glue_owner != NULL)
4408 /* Save the bfd for later use. */
4409 globals->bfd_of_glue_owner = abfd;
4415 check_use_blx (struct elf32_arm_link_hash_table *globals)
4417 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4419 globals->use_blx = 1;
4423 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4424 struct bfd_link_info *link_info)
4426 Elf_Internal_Shdr *symtab_hdr;
4427 Elf_Internal_Rela *internal_relocs = NULL;
4428 Elf_Internal_Rela *irel, *irelend;
4429 bfd_byte *contents = NULL;
4432 struct elf32_arm_link_hash_table *globals;
4434 /* If we are only performing a partial link do not bother
4435 to construct any glue. */
4436 if (link_info->relocatable)
4439 /* Here we have a bfd that is to be included on the link. We have a
4440 hook to do reloc rummaging, before section sizes are nailed down. */
4441 globals = elf32_arm_hash_table (link_info);
4443 BFD_ASSERT (globals != NULL);
4445 check_use_blx (globals);
4447 if (globals->byteswap_code && !bfd_big_endian (abfd))
4449 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4454 /* PR 5398: If we have not decided to include any loadable sections in
4455 the output then we will not have a glue owner bfd. This is OK, it
4456 just means that there is nothing else for us to do here. */
4457 if (globals->bfd_of_glue_owner == NULL)
4460 /* Rummage around all the relocs and map the glue vectors. */
4461 sec = abfd->sections;
4466 for (; sec != NULL; sec = sec->next)
4468 if (sec->reloc_count == 0)
4471 if ((sec->flags & SEC_EXCLUDE) != 0)
4474 symtab_hdr = & elf_symtab_hdr (abfd);
4476 /* Load the relocs. */
4478 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4480 if (internal_relocs == NULL)
4483 irelend = internal_relocs + sec->reloc_count;
4484 for (irel = internal_relocs; irel < irelend; irel++)
4487 unsigned long r_index;
4489 struct elf_link_hash_entry *h;
4491 r_type = ELF32_R_TYPE (irel->r_info);
4492 r_index = ELF32_R_SYM (irel->r_info);
4494 /* These are the only relocation types we care about. */
4495 if ( r_type != R_ARM_PC24
4496 && r_type != R_ARM_PLT32
4497 && r_type != R_ARM_JUMP24
4498 && r_type != R_ARM_THM_JUMP24
4499 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4502 /* Get the section contents if we haven't done so already. */
4503 if (contents == NULL)
4505 /* Get cached copy if it exists. */
4506 if (elf_section_data (sec)->this_hdr.contents != NULL)
4507 contents = elf_section_data (sec)->this_hdr.contents;
4510 /* Go get them off disk. */
4511 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4516 if (r_type == R_ARM_V4BX)
4520 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4521 record_arm_bx_glue (link_info, reg);
4525 /* If the relocation is not against a symbol it cannot concern us. */
4528 /* We don't care about local symbols. */
4529 if (r_index < symtab_hdr->sh_info)
4532 /* This is an external symbol. */
4533 r_index -= symtab_hdr->sh_info;
4534 h = (struct elf_link_hash_entry *)
4535 elf_sym_hashes (abfd)[r_index];
4537 /* If the relocation is against a static symbol it must be within
4538 the current section and so cannot be a cross ARM/Thumb relocation. */
4542 /* If the call will go through a PLT entry then we do not need
4544 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4552 /* This one is a call from arm code. We need to look up
4553 the target of the call. If it is a thumb target, we
4555 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
4556 && !(r_type == R_ARM_CALL && globals->use_blx))
4557 record_arm_to_thumb_glue (link_info, h);
4560 case R_ARM_THM_JUMP24:
4561 /* This one is a call from thumb code. We look
4562 up the target of the call. If it is not a thumb
4563 target, we insert glue. */
4564 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4565 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4566 && h->root.type != bfd_link_hash_undefweak)
4567 record_thumb_to_arm_glue (link_info, h);
4575 if (contents != NULL
4576 && elf_section_data (sec)->this_hdr.contents != contents)
4580 if (internal_relocs != NULL
4581 && elf_section_data (sec)->relocs != internal_relocs)
4582 free (internal_relocs);
4583 internal_relocs = NULL;
4589 if (contents != NULL
4590 && elf_section_data (sec)->this_hdr.contents != contents)
4592 if (internal_relocs != NULL
4593 && elf_section_data (sec)->relocs != internal_relocs)
4594 free (internal_relocs);
4601 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4604 bfd_elf32_arm_init_maps (bfd *abfd)
4606 Elf_Internal_Sym *isymbuf;
4607 Elf_Internal_Shdr *hdr;
4608 unsigned int i, localsyms;
4610 if ((abfd->flags & DYNAMIC) != 0)
4613 hdr = & elf_symtab_hdr (abfd);
4614 localsyms = hdr->sh_info;
4616 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4617 should contain the number of local symbols, which should come before any
4618 global symbols. Mapping symbols are always local. */
4619 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4622 /* No internal symbols read? Skip this BFD. */
4623 if (isymbuf == NULL)
4626 for (i = 0; i < localsyms; i++)
4628 Elf_Internal_Sym *isym = &isymbuf[i];
4629 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4633 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4635 name = bfd_elf_string_from_elf_section (abfd,
4636 hdr->sh_link, isym->st_name);
4638 if (bfd_is_arm_special_symbol_name (name,
4639 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4640 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4647 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4649 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4650 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4652 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4653 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4655 switch (globals->vfp11_fix)
4657 case BFD_ARM_VFP11_FIX_DEFAULT:
4658 case BFD_ARM_VFP11_FIX_NONE:
4659 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4663 /* Give a warning, but do as the user requests anyway. */
4664 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4665 "workaround is not necessary for target architecture"), obfd);
4668 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4669 /* For earlier architectures, we might need the workaround, but do not
4670 enable it by default. If users is running with broken hardware, they
4671 must enable the erratum fix explicitly. */
4672 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4676 enum bfd_arm_vfp11_pipe
4684 /* Return a VFP register number. This is encoded as RX:X for single-precision
4685 registers, or X:RX for double-precision registers, where RX is the group of
4686 four bits in the instruction encoding and X is the single extension bit.
4687 RX and X fields are specified using their lowest (starting) bit. The return
4690 0...31: single-precision registers s0...s31
4691 32...63: double-precision registers d0...d31.
4693 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4694 encounter VFP3 instructions, so we allow the full range for DP registers. */
4697 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4701 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4703 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4706 /* Set bits in *WMASK according to a register number REG as encoded by
4707 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4710 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4715 *wmask |= 3 << ((reg - 32) * 2);
4718 /* Return TRUE if WMASK overwrites anything in REGS. */
4721 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4725 for (i = 0; i < numregs; i++)
4727 unsigned int reg = regs[i];
4729 if (reg < 32 && (wmask & (1 << reg)) != 0)
4737 if ((wmask & (3 << (reg * 2))) != 0)
4744 /* In this function, we're interested in two things: finding input registers
4745 for VFP data-processing instructions, and finding the set of registers which
4746 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4747 hold the written set, so FLDM etc. are easy to deal with (we're only
4748 interested in 32 SP registers or 16 dp registers, due to the VFP version
4749 implemented by the chip in question). DP registers are marked by setting
4750 both SP registers in the write mask). */
4752 static enum bfd_arm_vfp11_pipe
4753 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4756 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4757 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4759 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4762 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4763 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4765 pqrs = ((insn & 0x00800000) >> 20)
4766 | ((insn & 0x00300000) >> 19)
4767 | ((insn & 0x00000040) >> 6);
4771 case 0: /* fmac[sd]. */
4772 case 1: /* fnmac[sd]. */
4773 case 2: /* fmsc[sd]. */
4774 case 3: /* fnmsc[sd]. */
4776 bfd_arm_vfp11_write_mask (destmask, fd);
4778 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4783 case 4: /* fmul[sd]. */
4784 case 5: /* fnmul[sd]. */
4785 case 6: /* fadd[sd]. */
4786 case 7: /* fsub[sd]. */
4790 case 8: /* fdiv[sd]. */
4793 bfd_arm_vfp11_write_mask (destmask, fd);
4794 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4799 case 15: /* extended opcode. */
4801 unsigned int extn = ((insn >> 15) & 0x1e)
4802 | ((insn >> 7) & 1);
4806 case 0: /* fcpy[sd]. */
4807 case 1: /* fabs[sd]. */
4808 case 2: /* fneg[sd]. */
4809 case 8: /* fcmp[sd]. */
4810 case 9: /* fcmpe[sd]. */
4811 case 10: /* fcmpz[sd]. */
4812 case 11: /* fcmpez[sd]. */
4813 case 16: /* fuito[sd]. */
4814 case 17: /* fsito[sd]. */
4815 case 24: /* ftoui[sd]. */
4816 case 25: /* ftouiz[sd]. */
4817 case 26: /* ftosi[sd]. */
4818 case 27: /* ftosiz[sd]. */
4819 /* These instructions will not bounce due to underflow. */
4824 case 3: /* fsqrt[sd]. */
4825 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4826 registers to cause the erratum in previous instructions. */
4827 bfd_arm_vfp11_write_mask (destmask, fd);
4831 case 15: /* fcvt{ds,sd}. */
4835 bfd_arm_vfp11_write_mask (destmask, fd);
4837 /* Only FCVTSD can underflow. */
4838 if ((insn & 0x100) != 0)
4857 /* Two-register transfer. */
4858 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
4860 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4862 if ((insn & 0x100000) == 0)
4865 bfd_arm_vfp11_write_mask (destmask, fm);
4868 bfd_arm_vfp11_write_mask (destmask, fm);
4869 bfd_arm_vfp11_write_mask (destmask, fm + 1);
4875 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
4877 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4878 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
4882 case 0: /* Two-reg transfer. We should catch these above. */
4885 case 2: /* fldm[sdx]. */
4889 unsigned int i, offset = insn & 0xff;
4894 for (i = fd; i < fd + offset; i++)
4895 bfd_arm_vfp11_write_mask (destmask, i);
4899 case 4: /* fld[sd]. */
4901 bfd_arm_vfp11_write_mask (destmask, fd);
4910 /* Single-register transfer. Note L==0. */
4911 else if ((insn & 0x0f100e10) == 0x0e000a10)
4913 unsigned int opcode = (insn >> 21) & 7;
4914 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
4918 case 0: /* fmsr/fmdlr. */
4919 case 1: /* fmdhr. */
4920 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4921 destination register. I don't know if this is exactly right,
4922 but it is the conservative choice. */
4923 bfd_arm_vfp11_write_mask (destmask, fn);
4937 static int elf32_arm_compare_mapping (const void * a, const void * b);
4940 /* Look for potentially-troublesome code sequences which might trigger the
4941 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4942 (available from ARM) for details of the erratum. A short version is
4943 described in ld.texinfo. */
4946 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
4949 bfd_byte *contents = NULL;
4951 int regs[3], numregs = 0;
4952 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4953 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
4955 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4956 The states transition as follows:
4958 0 -> 1 (vector) or 0 -> 2 (scalar)
4959 A VFP FMAC-pipeline instruction has been seen. Fill
4960 regs[0]..regs[numregs-1] with its input operands. Remember this
4961 instruction in 'first_fmac'.
4964 Any instruction, except for a VFP instruction which overwrites
4969 A VFP instruction has been seen which overwrites any of regs[*].
4970 We must make a veneer! Reset state to 0 before examining next
4974 If we fail to match anything in state 2, reset to state 0 and reset
4975 the instruction pointer to the instruction after 'first_fmac'.
4977 If the VFP11 vector mode is in use, there must be at least two unrelated
4978 instructions between anti-dependent VFP11 instructions to properly avoid
4979 triggering the erratum, hence the use of the extra state 1. */
4981 /* If we are only performing a partial link do not bother
4982 to construct any glue. */
4983 if (link_info->relocatable)
4986 /* Skip if this bfd does not correspond to an ELF image. */
4987 if (! is_arm_elf (abfd))
4990 /* We should have chosen a fix type by the time we get here. */
4991 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
4993 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
4996 for (sec = abfd->sections; sec != NULL; sec = sec->next)
4998 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
4999 struct _arm_elf_section_data *sec_data;
5001 /* If we don't have executable progbits, we're not interested in this
5002 section. Also skip if section is to be excluded. */
5003 if (elf_section_type (sec) != SHT_PROGBITS
5004 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5005 || (sec->flags & SEC_EXCLUDE) != 0
5006 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5009 sec_data = elf32_arm_section_data (sec);
5011 if (sec_data->mapcount == 0)
5014 if (elf_section_data (sec)->this_hdr.contents != NULL)
5015 contents = elf_section_data (sec)->this_hdr.contents;
5016 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5019 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5020 elf32_arm_compare_mapping);
5022 for (span = 0; span < sec_data->mapcount; span++)
5024 unsigned int span_start = sec_data->map[span].vma;
5025 unsigned int span_end = (span == sec_data->mapcount - 1)
5026 ? sec->size : sec_data->map[span + 1].vma;
5027 char span_type = sec_data->map[span].type;
5029 /* FIXME: Only ARM mode is supported at present. We may need to
5030 support Thumb-2 mode also at some point. */
5031 if (span_type != 'a')
5034 for (i = span_start; i < span_end;)
5036 unsigned int next_i = i + 4;
5037 unsigned int insn = bfd_big_endian (abfd)
5038 ? (contents[i] << 24)
5039 | (contents[i + 1] << 16)
5040 | (contents[i + 2] << 8)
5042 : (contents[i + 3] << 24)
5043 | (contents[i + 2] << 16)
5044 | (contents[i + 1] << 8)
5046 unsigned int writemask = 0;
5047 enum bfd_arm_vfp11_pipe pipe;
5052 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5054 /* I'm assuming the VFP11 erratum can trigger with denorm
5055 operands on either the FMAC or the DS pipeline. This might
5056 lead to slightly overenthusiastic veneer insertion. */
5057 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5059 state = use_vector ? 1 : 2;
5061 veneer_of_insn = insn;
5067 int other_regs[3], other_numregs;
5068 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5071 if (pipe != VFP11_BAD
5072 && bfd_arm_vfp11_antidependency (writemask, regs,
5082 int other_regs[3], other_numregs;
5083 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5086 if (pipe != VFP11_BAD
5087 && bfd_arm_vfp11_antidependency (writemask, regs,
5093 next_i = first_fmac + 4;
5099 abort (); /* Should be unreachable. */
5104 elf32_vfp11_erratum_list *newerr
5105 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5108 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5110 newerr->u.b.vfp_insn = veneer_of_insn;
5115 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5122 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5127 newerr->next = sec_data->erratumlist;
5128 sec_data->erratumlist = newerr;
5137 if (contents != NULL
5138 && elf_section_data (sec)->this_hdr.contents != contents)
5146 if (contents != NULL
5147 && elf_section_data (sec)->this_hdr.contents != contents)
5153 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5154 after sections have been laid out, using specially-named symbols. */
5157 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5158 struct bfd_link_info *link_info)
5161 struct elf32_arm_link_hash_table *globals;
5164 if (link_info->relocatable)
5167 /* Skip if this bfd does not correspond to an ELF image. */
5168 if (! is_arm_elf (abfd))
5171 globals = elf32_arm_hash_table (link_info);
5173 tmp_name = bfd_malloc ((bfd_size_type) strlen
5174 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5176 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5178 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5179 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5181 for (; errnode != NULL; errnode = errnode->next)
5183 struct elf_link_hash_entry *myh;
5186 switch (errnode->type)
5188 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5189 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5190 /* Find veneer symbol. */
5191 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5192 errnode->u.b.veneer->u.v.id);
5194 myh = elf_link_hash_lookup
5195 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5198 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5199 "`%s'"), abfd, tmp_name);
5201 vma = myh->root.u.def.section->output_section->vma
5202 + myh->root.u.def.section->output_offset
5203 + myh->root.u.def.value;
5205 errnode->u.b.veneer->vma = vma;
5208 case VFP11_ERRATUM_ARM_VENEER:
5209 case VFP11_ERRATUM_THUMB_VENEER:
5210 /* Find return location. */
5211 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5214 myh = elf_link_hash_lookup
5215 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5218 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5219 "`%s'"), abfd, tmp_name);
5221 vma = myh->root.u.def.section->output_section->vma
5222 + myh->root.u.def.section->output_offset
5223 + myh->root.u.def.value;
5225 errnode->u.v.branch->vma = vma;
5238 /* Set target relocation values needed during linking. */
5241 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5242 struct bfd_link_info *link_info,
5244 char * target2_type,
5247 bfd_arm_vfp11_fix vfp11_fix,
5248 int no_enum_warn, int pic_veneer)
5250 struct elf32_arm_link_hash_table *globals;
5252 globals = elf32_arm_hash_table (link_info);
5254 globals->target1_is_rel = target1_is_rel;
5255 if (strcmp (target2_type, "rel") == 0)
5256 globals->target2_reloc = R_ARM_REL32;
5257 else if (strcmp (target2_type, "abs") == 0)
5258 globals->target2_reloc = R_ARM_ABS32;
5259 else if (strcmp (target2_type, "got-rel") == 0)
5260 globals->target2_reloc = R_ARM_GOT_PREL;
5263 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5266 globals->fix_v4bx = fix_v4bx;
5267 globals->use_blx |= use_blx;
5268 globals->vfp11_fix = vfp11_fix;
5269 globals->pic_veneer = pic_veneer;
5271 BFD_ASSERT (is_arm_elf (output_bfd));
5272 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5275 /* Replace the target offset of a Thumb bl or b.w instruction. */
5278 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5284 BFD_ASSERT ((offset & 1) == 0);
5286 upper = bfd_get_16 (abfd, insn);
5287 lower = bfd_get_16 (abfd, insn + 2);
5288 reloc_sign = (offset < 0) ? 1 : 0;
5289 upper = (upper & ~(bfd_vma) 0x7ff)
5290 | ((offset >> 12) & 0x3ff)
5291 | (reloc_sign << 10);
5292 lower = (lower & ~(bfd_vma) 0x2fff)
5293 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5294 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5295 | ((offset >> 1) & 0x7ff);
5296 bfd_put_16 (abfd, upper, insn);
5297 bfd_put_16 (abfd, lower, insn + 2);
5300 /* Thumb code calling an ARM function. */
5303 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5307 asection * input_section,
5308 bfd_byte * hit_data,
5311 bfd_signed_vma addend,
5313 char **error_message)
5317 long int ret_offset;
5318 struct elf_link_hash_entry * myh;
5319 struct elf32_arm_link_hash_table * globals;
5321 myh = find_thumb_glue (info, name, error_message);
5325 globals = elf32_arm_hash_table (info);
5327 BFD_ASSERT (globals != NULL);
5328 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5330 my_offset = myh->root.u.def.value;
5332 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5333 THUMB2ARM_GLUE_SECTION_NAME);
5335 BFD_ASSERT (s != NULL);
5336 BFD_ASSERT (s->contents != NULL);
5337 BFD_ASSERT (s->output_section != NULL);
5339 if ((my_offset & 0x01) == 0x01)
5342 && sym_sec->owner != NULL
5343 && !INTERWORK_FLAG (sym_sec->owner))
5345 (*_bfd_error_handler)
5346 (_("%B(%s): warning: interworking not enabled.\n"
5347 " first occurrence: %B: thumb call to arm"),
5348 sym_sec->owner, input_bfd, name);
5354 myh->root.u.def.value = my_offset;
5356 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5357 s->contents + my_offset);
5359 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5360 s->contents + my_offset + 2);
5363 /* Address of destination of the stub. */
5364 ((bfd_signed_vma) val)
5366 /* Offset from the start of the current section
5367 to the start of the stubs. */
5369 /* Offset of the start of this stub from the start of the stubs. */
5371 /* Address of the start of the current section. */
5372 + s->output_section->vma)
5373 /* The branch instruction is 4 bytes into the stub. */
5375 /* ARM branches work from the pc of the instruction + 8. */
5378 put_arm_insn (globals, output_bfd,
5379 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5380 s->contents + my_offset + 4);
5383 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5385 /* Now go back and fix up the original BL insn to point to here. */
5387 /* Address of where the stub is located. */
5388 (s->output_section->vma + s->output_offset + my_offset)
5389 /* Address of where the BL is located. */
5390 - (input_section->output_section->vma + input_section->output_offset
5392 /* Addend in the relocation. */
5394 /* Biassing for PC-relative addressing. */
5397 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5402 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5404 static struct elf_link_hash_entry *
5405 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5412 char **error_message)
5415 long int ret_offset;
5416 struct elf_link_hash_entry * myh;
5417 struct elf32_arm_link_hash_table * globals;
5419 myh = find_arm_glue (info, name, error_message);
5423 globals = elf32_arm_hash_table (info);
5425 BFD_ASSERT (globals != NULL);
5426 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5428 my_offset = myh->root.u.def.value;
5430 if ((my_offset & 0x01) == 0x01)
5433 && sym_sec->owner != NULL
5434 && !INTERWORK_FLAG (sym_sec->owner))
5436 (*_bfd_error_handler)
5437 (_("%B(%s): warning: interworking not enabled.\n"
5438 " first occurrence: %B: arm call to thumb"),
5439 sym_sec->owner, input_bfd, name);
5443 myh->root.u.def.value = my_offset;
5445 if (info->shared || globals->root.is_relocatable_executable
5446 || globals->pic_veneer)
5448 /* For relocatable objects we can't use absolute addresses,
5449 so construct the address from a relative offset. */
5450 /* TODO: If the offset is small it's probably worth
5451 constructing the address with adds. */
5452 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5453 s->contents + my_offset);
5454 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5455 s->contents + my_offset + 4);
5456 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5457 s->contents + my_offset + 8);
5458 /* Adjust the offset by 4 for the position of the add,
5459 and 8 for the pipeline offset. */
5460 ret_offset = (val - (s->output_offset
5461 + s->output_section->vma
5464 bfd_put_32 (output_bfd, ret_offset,
5465 s->contents + my_offset + 12);
5467 else if (globals->use_blx)
5469 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5470 s->contents + my_offset);
5472 /* It's a thumb address. Add the low order bit. */
5473 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5474 s->contents + my_offset + 4);
5478 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5479 s->contents + my_offset);
5481 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5482 s->contents + my_offset + 4);
5484 /* It's a thumb address. Add the low order bit. */
5485 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5486 s->contents + my_offset + 8);
5490 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5495 /* Arm code calling a Thumb function. */
5498 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5502 asection * input_section,
5503 bfd_byte * hit_data,
5506 bfd_signed_vma addend,
5508 char **error_message)
5510 unsigned long int tmp;
5513 long int ret_offset;
5514 struct elf_link_hash_entry * myh;
5515 struct elf32_arm_link_hash_table * globals;
5517 globals = elf32_arm_hash_table (info);
5519 BFD_ASSERT (globals != NULL);
5520 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5522 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5523 ARM2THUMB_GLUE_SECTION_NAME);
5524 BFD_ASSERT (s != NULL);
5525 BFD_ASSERT (s->contents != NULL);
5526 BFD_ASSERT (s->output_section != NULL);
5528 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5529 sym_sec, val, s, error_message);
5533 my_offset = myh->root.u.def.value;
5534 tmp = bfd_get_32 (input_bfd, hit_data);
5535 tmp = tmp & 0xFF000000;
5537 /* Somehow these are both 4 too far, so subtract 8. */
5538 ret_offset = (s->output_offset
5540 + s->output_section->vma
5541 - (input_section->output_offset
5542 + input_section->output_section->vma
5546 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5548 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5553 /* Populate Arm stub for an exported Thumb function. */
5556 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5558 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5560 struct elf_link_hash_entry * myh;
5561 struct elf32_arm_link_hash_entry *eh;
5562 struct elf32_arm_link_hash_table * globals;
5565 char *error_message;
5567 eh = elf32_arm_hash_entry (h);
5568 /* Allocate stubs for exported Thumb functions on v4t. */
5569 if (eh->export_glue == NULL)
5572 globals = elf32_arm_hash_table (info);
5574 BFD_ASSERT (globals != NULL);
5575 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5577 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5578 ARM2THUMB_GLUE_SECTION_NAME);
5579 BFD_ASSERT (s != NULL);
5580 BFD_ASSERT (s->contents != NULL);
5581 BFD_ASSERT (s->output_section != NULL);
5583 sec = eh->export_glue->root.u.def.section;
5585 BFD_ASSERT (sec->output_section != NULL);
5587 val = eh->export_glue->root.u.def.value + sec->output_offset
5588 + sec->output_section->vma;
5589 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5590 h->root.u.def.section->owner,
5591 globals->obfd, sec, val, s,
5597 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5600 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5605 struct elf32_arm_link_hash_table *globals;
5607 globals = elf32_arm_hash_table (info);
5609 BFD_ASSERT (globals != NULL);
5610 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5612 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5613 ARM_BX_GLUE_SECTION_NAME);
5614 BFD_ASSERT (s != NULL);
5615 BFD_ASSERT (s->contents != NULL);
5616 BFD_ASSERT (s->output_section != NULL);
5618 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5620 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5622 if ((globals->bx_glue_offset[reg] & 1) == 0)
5624 p = s->contents + glue_addr;
5625 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5626 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5627 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5628 globals->bx_glue_offset[reg] |= 1;
5631 return glue_addr + s->output_section->vma + s->output_offset;
5634 /* Generate Arm stubs for exported Thumb symbols. */
5636 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5637 struct bfd_link_info *link_info)
5639 struct elf32_arm_link_hash_table * globals;
5644 globals = elf32_arm_hash_table (link_info);
5645 /* If blx is available then exported Thumb symbols are OK and there is
5647 if (globals->use_blx)
5650 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5654 /* Some relocations map to different relocations depending on the
5655 target. Return the real relocation. */
5657 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5663 if (globals->target1_is_rel)
5669 return globals->target2_reloc;
5676 /* Return the base VMA address which should be subtracted from real addresses
5677 when resolving @dtpoff relocation.
5678 This is PT_TLS segment p_vaddr. */
5681 dtpoff_base (struct bfd_link_info *info)
5683 /* If tls_sec is NULL, we should have signalled an error already. */
5684 if (elf_hash_table (info)->tls_sec == NULL)
5686 return elf_hash_table (info)->tls_sec->vma;
5689 /* Return the relocation value for @tpoff relocation
5690 if STT_TLS virtual address is ADDRESS. */
5693 tpoff (struct bfd_link_info *info, bfd_vma address)
5695 struct elf_link_hash_table *htab = elf_hash_table (info);
5698 /* If tls_sec is NULL, we should have signalled an error already. */
5699 if (htab->tls_sec == NULL)
5701 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5702 return address - htab->tls_sec->vma + base;
5705 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5706 VALUE is the relocation value. */
5708 static bfd_reloc_status_type
5709 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5712 return bfd_reloc_overflow;
5714 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5715 bfd_put_32 (abfd, value, data);
5716 return bfd_reloc_ok;
5719 /* For a given value of n, calculate the value of G_n as required to
5720 deal with group relocations. We return it in the form of an
5721 encoded constant-and-rotation, together with the final residual. If n is
5722 specified as less than zero, then final_residual is filled with the
5723 input value and no further action is performed. */
5726 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5730 bfd_vma encoded_g_n = 0;
5731 bfd_vma residual = value; /* Also known as Y_n. */
5733 for (current_n = 0; current_n <= n; current_n++)
5737 /* Calculate which part of the value to mask. */
5744 /* Determine the most significant bit in the residual and
5745 align the resulting value to a 2-bit boundary. */
5746 for (msb = 30; msb >= 0; msb -= 2)
5747 if (residual & (3 << msb))
5750 /* The desired shift is now (msb - 6), or zero, whichever
5757 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5758 g_n = residual & (0xff << shift);
5759 encoded_g_n = (g_n >> shift)
5760 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5762 /* Calculate the residual for the next time around. */
5766 *final_residual = residual;
5771 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5772 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5775 identify_add_or_sub (bfd_vma insn)
5777 int opcode = insn & 0x1e00000;
5779 if (opcode == 1 << 23) /* ADD */
5782 if (opcode == 1 << 22) /* SUB */
5788 /* Perform a relocation as part of a final link. */
5790 static bfd_reloc_status_type
5791 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5794 asection * input_section,
5795 bfd_byte * contents,
5796 Elf_Internal_Rela * rel,
5798 struct bfd_link_info * info,
5800 const char * sym_name,
5802 struct elf_link_hash_entry * h,
5803 bfd_boolean * unresolved_reloc_p,
5804 char **error_message)
5806 unsigned long r_type = howto->type;
5807 unsigned long r_symndx;
5808 bfd_byte * hit_data = contents + rel->r_offset;
5809 bfd * dynobj = NULL;
5810 Elf_Internal_Shdr * symtab_hdr;
5811 struct elf_link_hash_entry ** sym_hashes;
5812 bfd_vma * local_got_offsets;
5813 asection * sgot = NULL;
5814 asection * splt = NULL;
5815 asection * sreloc = NULL;
5817 bfd_signed_vma signed_addend;
5818 struct elf32_arm_link_hash_table * globals;
5820 globals = elf32_arm_hash_table (info);
5822 BFD_ASSERT (is_arm_elf (input_bfd));
5824 /* Some relocation types map to different relocations depending on the
5825 target. We pick the right one here. */
5826 r_type = arm_real_reloc_type (globals, r_type);
5827 if (r_type != howto->type)
5828 howto = elf32_arm_howto_from_type (r_type);
5830 /* If the start address has been set, then set the EF_ARM_HASENTRY
5831 flag. Setting this more than once is redundant, but the cost is
5832 not too high, and it keeps the code simple.
5834 The test is done here, rather than somewhere else, because the
5835 start address is only set just before the final link commences.
5837 Note - if the user deliberately sets a start address of 0, the
5838 flag will not be set. */
5839 if (bfd_get_start_address (output_bfd) != 0)
5840 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
5842 dynobj = elf_hash_table (info)->dynobj;
5845 sgot = bfd_get_section_by_name (dynobj, ".got");
5846 splt = bfd_get_section_by_name (dynobj, ".plt");
5848 symtab_hdr = & elf_symtab_hdr (input_bfd);
5849 sym_hashes = elf_sym_hashes (input_bfd);
5850 local_got_offsets = elf_local_got_offsets (input_bfd);
5851 r_symndx = ELF32_R_SYM (rel->r_info);
5853 if (globals->use_rel)
5855 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
5857 if (addend & ((howto->src_mask + 1) >> 1))
5860 signed_addend &= ~ howto->src_mask;
5861 signed_addend |= addend;
5864 signed_addend = addend;
5867 addend = signed_addend = rel->r_addend;
5872 /* We don't need to find a value for this symbol. It's just a
5874 *unresolved_reloc_p = FALSE;
5875 return bfd_reloc_ok;
5878 if (!globals->vxworks_p)
5879 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
5883 case R_ARM_ABS32_NOI:
5885 case R_ARM_REL32_NOI:
5891 /* Handle relocations which should use the PLT entry. ABS32/REL32
5892 will use the symbol's value, which may point to a PLT entry, but we
5893 don't need to handle that here. If we created a PLT entry, all
5894 branches in this object should go to it. */
5895 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5896 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
5899 && h->plt.offset != (bfd_vma) -1)
5901 /* If we've created a .plt section, and assigned a PLT entry to
5902 this function, it should not be known to bind locally. If
5903 it were, we would have cleared the PLT entry. */
5904 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
5906 value = (splt->output_section->vma
5907 + splt->output_offset
5909 *unresolved_reloc_p = FALSE;
5910 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5911 contents, rel->r_offset, value,
5915 /* When generating a shared object or relocatable executable, these
5916 relocations are copied into the output file to be resolved at
5918 if ((info->shared || globals->root.is_relocatable_executable)
5919 && (input_section->flags & SEC_ALLOC)
5920 && !(elf32_arm_hash_table (info)->vxworks_p
5921 && strcmp (input_section->output_section->name,
5923 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
5924 || !SYMBOL_CALLS_LOCAL (info, h))
5926 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5927 || h->root.type != bfd_link_hash_undefweak)
5928 && r_type != R_ARM_PC24
5929 && r_type != R_ARM_CALL
5930 && r_type != R_ARM_JUMP24
5931 && r_type != R_ARM_PREL31
5932 && r_type != R_ARM_PLT32)
5934 Elf_Internal_Rela outrel;
5936 bfd_boolean skip, relocate;
5938 *unresolved_reloc_p = FALSE;
5944 name = (bfd_elf_string_from_elf_section
5946 elf_elfheader (input_bfd)->e_shstrndx,
5947 elf_section_data (input_section)->rel_hdr.sh_name));
5949 return bfd_reloc_notsupported;
5951 BFD_ASSERT (reloc_section_p (globals, name, input_section));
5953 sreloc = bfd_get_section_by_name (dynobj, name);
5954 BFD_ASSERT (sreloc != NULL);
5960 outrel.r_addend = addend;
5962 _bfd_elf_section_offset (output_bfd, info, input_section,
5964 if (outrel.r_offset == (bfd_vma) -1)
5966 else if (outrel.r_offset == (bfd_vma) -2)
5967 skip = TRUE, relocate = TRUE;
5968 outrel.r_offset += (input_section->output_section->vma
5969 + input_section->output_offset);
5972 memset (&outrel, 0, sizeof outrel);
5977 || !h->def_regular))
5978 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
5983 /* This symbol is local, or marked to become local. */
5984 if (sym_flags == STT_ARM_TFUNC)
5986 if (globals->symbian_p)
5990 /* On Symbian OS, the data segment and text segement
5991 can be relocated independently. Therefore, we
5992 must indicate the segment to which this
5993 relocation is relative. The BPABI allows us to
5994 use any symbol in the right segment; we just use
5995 the section symbol as it is convenient. (We
5996 cannot use the symbol given by "h" directly as it
5997 will not appear in the dynamic symbol table.)
5999 Note that the dynamic linker ignores the section
6000 symbol value, so we don't subtract osec->vma
6001 from the emitted reloc addend. */
6003 osec = sym_sec->output_section;
6005 osec = input_section->output_section;
6006 symbol = elf_section_data (osec)->dynindx;
6009 struct elf_link_hash_table *htab = elf_hash_table (info);
6011 if ((osec->flags & SEC_READONLY) == 0
6012 && htab->data_index_section != NULL)
6013 osec = htab->data_index_section;
6015 osec = htab->text_index_section;
6016 symbol = elf_section_data (osec)->dynindx;
6018 BFD_ASSERT (symbol != 0);
6021 /* On SVR4-ish systems, the dynamic loader cannot
6022 relocate the text and data segments independently,
6023 so the symbol does not matter. */
6025 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6026 if (globals->use_rel)
6029 outrel.r_addend += value;
6032 loc = sreloc->contents;
6033 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6034 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6036 /* If this reloc is against an external symbol, we do not want to
6037 fiddle with the addend. Otherwise, we need to include the symbol
6038 value so that it becomes an addend for the dynamic reloc. */
6040 return bfd_reloc_ok;
6042 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6043 contents, rel->r_offset, value,
6046 else switch (r_type)
6049 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6051 case R_ARM_XPC25: /* Arm BLX instruction. */
6054 case R_ARM_PC24: /* Arm B/BL instruction */
6058 bfd_signed_vma branch_offset;
6059 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6061 from = (input_section->output_section->vma
6062 + input_section->output_offset
6064 branch_offset = (bfd_signed_vma)(value - from);
6066 if (r_type == R_ARM_XPC25)
6068 /* Check for Arm calling Arm function. */
6069 /* FIXME: Should we translate the instruction into a BL
6070 instruction instead ? */
6071 if (sym_flags != STT_ARM_TFUNC)
6072 (*_bfd_error_handler)
6073 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6075 h ? h->root.root.string : "(local)");
6077 else if (r_type != R_ARM_CALL)
6079 /* Check for Arm calling Thumb function. */
6080 if (sym_flags == STT_ARM_TFUNC)
6082 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6083 output_bfd, input_section,
6084 hit_data, sym_sec, rel->r_offset,
6085 signed_addend, value,
6087 return bfd_reloc_ok;
6089 return bfd_reloc_dangerous;
6093 /* Check if a stub has to be inserted because the
6094 destination is too far or we are changing mode */
6095 if (r_type == R_ARM_CALL)
6097 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6098 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6099 || sym_flags == STT_ARM_TFUNC)
6101 /* The target is out of reach, so redirect the
6102 branch to the local stub for this function. */
6104 stub_entry = elf32_arm_get_stub_entry (input_section,
6107 if (stub_entry != NULL)
6108 value = (stub_entry->stub_offset
6109 + stub_entry->stub_sec->output_offset
6110 + stub_entry->stub_sec->output_section->vma);
6114 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6116 S is the address of the symbol in the relocation.
6117 P is address of the instruction being relocated.
6118 A is the addend (extracted from the instruction) in bytes.
6120 S is held in 'value'.
6121 P is the base address of the section containing the
6122 instruction plus the offset of the reloc into that
6124 (input_section->output_section->vma +
6125 input_section->output_offset +
6127 A is the addend, converted into bytes, ie:
6130 Note: None of these operations have knowledge of the pipeline
6131 size of the processor, thus it is up to the assembler to
6132 encode this information into the addend. */
6133 value -= (input_section->output_section->vma
6134 + input_section->output_offset);
6135 value -= rel->r_offset;
6136 if (globals->use_rel)
6137 value += (signed_addend << howto->size);
6139 /* RELA addends do not have to be adjusted by howto->size. */
6140 value += signed_addend;
6142 signed_addend = value;
6143 signed_addend >>= howto->rightshift;
6145 /* A branch to an undefined weak symbol is turned into a jump to
6146 the next instruction. */
6147 if (h && h->root.type == bfd_link_hash_undefweak)
6149 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6154 /* Perform a signed range check. */
6155 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6156 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6157 return bfd_reloc_overflow;
6159 addend = (value & 2);
6161 value = (signed_addend & howto->dst_mask)
6162 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6164 /* Set the H bit in the BLX instruction. */
6165 if (sym_flags == STT_ARM_TFUNC)
6170 value &= ~(bfd_vma)(1 << 24);
6172 if (r_type == R_ARM_CALL)
6174 /* Select the correct instruction (BL or BLX). */
6175 /* Only if we are not handling a BL to a stub. In this
6176 case, mode switching is performed by the stub. */
6177 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6181 value &= ~(bfd_vma)(1 << 28);
6191 if (sym_flags == STT_ARM_TFUNC)
6195 case R_ARM_ABS32_NOI:
6201 if (sym_flags == STT_ARM_TFUNC)
6203 value -= (input_section->output_section->vma
6204 + input_section->output_offset + rel->r_offset);
6207 case R_ARM_REL32_NOI:
6209 value -= (input_section->output_section->vma
6210 + input_section->output_offset + rel->r_offset);
6214 value -= (input_section->output_section->vma
6215 + input_section->output_offset + rel->r_offset);
6216 value += signed_addend;
6217 if (! h || h->root.type != bfd_link_hash_undefweak)
6219 /* Check for overflow */
6220 if ((value ^ (value >> 1)) & (1 << 30))
6221 return bfd_reloc_overflow;
6223 value &= 0x7fffffff;
6224 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6225 if (sym_flags == STT_ARM_TFUNC)
6230 bfd_put_32 (input_bfd, value, hit_data);
6231 return bfd_reloc_ok;
6235 if ((long) value > 0x7f || (long) value < -0x80)
6236 return bfd_reloc_overflow;
6238 bfd_put_8 (input_bfd, value, hit_data);
6239 return bfd_reloc_ok;
6244 if ((long) value > 0x7fff || (long) value < -0x8000)
6245 return bfd_reloc_overflow;
6247 bfd_put_16 (input_bfd, value, hit_data);
6248 return bfd_reloc_ok;
6250 case R_ARM_THM_ABS5:
6251 /* Support ldr and str instructions for the thumb. */
6252 if (globals->use_rel)
6254 /* Need to refetch addend. */
6255 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6256 /* ??? Need to determine shift amount from operand size. */
6257 addend >>= howto->rightshift;
6261 /* ??? Isn't value unsigned? */
6262 if ((long) value > 0x1f || (long) value < -0x10)
6263 return bfd_reloc_overflow;
6265 /* ??? Value needs to be properly shifted into place first. */
6266 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6267 bfd_put_16 (input_bfd, value, hit_data);
6268 return bfd_reloc_ok;
6270 case R_ARM_THM_ALU_PREL_11_0:
6271 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6274 bfd_signed_vma relocation;
6276 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6277 | bfd_get_16 (input_bfd, hit_data + 2);
6279 if (globals->use_rel)
6281 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6282 | ((insn & (1 << 26)) >> 15);
6283 if (insn & 0xf00000)
6284 signed_addend = -signed_addend;
6287 relocation = value + signed_addend;
6288 relocation -= (input_section->output_section->vma
6289 + input_section->output_offset
6292 value = abs (relocation);
6294 if (value >= 0x1000)
6295 return bfd_reloc_overflow;
6297 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6298 | ((value & 0x700) << 4)
6299 | ((value & 0x800) << 15);
6303 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6304 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6306 return bfd_reloc_ok;
6309 case R_ARM_THM_PC12:
6310 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6313 bfd_signed_vma relocation;
6315 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6316 | bfd_get_16 (input_bfd, hit_data + 2);
6318 if (globals->use_rel)
6320 signed_addend = insn & 0xfff;
6321 if (!(insn & (1 << 23)))
6322 signed_addend = -signed_addend;
6325 relocation = value + signed_addend;
6326 relocation -= (input_section->output_section->vma
6327 + input_section->output_offset
6330 value = abs (relocation);
6332 if (value >= 0x1000)
6333 return bfd_reloc_overflow;
6335 insn = (insn & 0xff7ff000) | value;
6336 if (relocation >= 0)
6339 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6340 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6342 return bfd_reloc_ok;
6345 case R_ARM_THM_XPC22:
6346 case R_ARM_THM_CALL:
6347 case R_ARM_THM_JUMP24:
6348 /* Thumb BL (branch long instruction). */
6352 bfd_boolean overflow = FALSE;
6353 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6354 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6355 bfd_signed_vma reloc_signed_max;
6356 bfd_signed_vma reloc_signed_min;
6358 bfd_signed_vma signed_check;
6360 int thumb2 = using_thumb2 (globals);
6362 /* A branch to an undefined weak symbol is turned into a jump to
6363 the next instruction. */
6364 if (h && h->root.type == bfd_link_hash_undefweak)
6366 bfd_put_16 (input_bfd, 0xe000, hit_data);
6367 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6368 return bfd_reloc_ok;
6371 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6372 with Thumb-1) involving the J1 and J2 bits. */
6373 if (globals->use_rel)
6375 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6376 bfd_vma upper = upper_insn & 0x3ff;
6377 bfd_vma lower = lower_insn & 0x7ff;
6378 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6379 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6380 bfd_vma i1 = j1 ^ s ? 0 : 1;
6381 bfd_vma i2 = j2 ^ s ? 0 : 1;
6383 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6385 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6387 signed_addend = addend;
6390 if (r_type == R_ARM_THM_XPC22)
6392 /* Check for Thumb to Thumb call. */
6393 /* FIXME: Should we translate the instruction into a BL
6394 instruction instead ? */
6395 if (sym_flags == STT_ARM_TFUNC)
6396 (*_bfd_error_handler)
6397 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6399 h ? h->root.root.string : "(local)");
6403 /* If it is not a call to Thumb, assume call to Arm.
6404 If it is a call relative to a section name, then it is not a
6405 function call at all, but rather a long jump. Calls through
6406 the PLT do not require stubs. */
6407 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6408 && (h == NULL || splt == NULL
6409 || h->plt.offset == (bfd_vma) -1))
6411 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6413 /* Convert BL to BLX. */
6414 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6416 else if (elf32_thumb_to_arm_stub
6417 (info, sym_name, input_bfd, output_bfd, input_section,
6418 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6420 return bfd_reloc_ok;
6422 return bfd_reloc_dangerous;
6424 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6425 && r_type == R_ARM_THM_CALL)
6427 /* Make sure this is a BL. */
6428 lower_insn |= 0x1800;
6432 /* Handle calls via the PLT. */
6433 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6435 value = (splt->output_section->vma
6436 + splt->output_offset
6438 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6440 /* If the Thumb BLX instruction is available, convert the
6441 BL to a BLX instruction to call the ARM-mode PLT entry. */
6442 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6445 /* Target the Thumb stub before the ARM PLT entry. */
6446 value -= PLT_THUMB_STUB_SIZE;
6447 *unresolved_reloc_p = FALSE;
6450 if (r_type == R_ARM_THM_CALL)
6452 /* Check if a stub has to be inserted because the destination
6455 bfd_signed_vma branch_offset;
6456 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6458 from = (input_section->output_section->vma
6459 + input_section->output_offset
6461 branch_offset = (bfd_signed_vma)(value - from);
6464 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6465 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6468 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6469 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET))))
6471 /* The target is out of reach or we are changing modes, so
6472 redirect the branch to the local stub for this
6474 stub_entry = elf32_arm_get_stub_entry (input_section,
6477 if (stub_entry != NULL)
6478 value = (stub_entry->stub_offset
6479 + stub_entry->stub_sec->output_offset
6480 + stub_entry->stub_sec->output_section->vma);
6482 /* This call becomes a call to Arm for sure. Force BLX. */
6483 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6487 relocation = value + signed_addend;
6489 relocation -= (input_section->output_section->vma
6490 + input_section->output_offset
6493 check = relocation >> howto->rightshift;
6495 /* If this is a signed value, the rightshift just dropped
6496 leading 1 bits (assuming twos complement). */
6497 if ((bfd_signed_vma) relocation >= 0)
6498 signed_check = check;
6500 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6502 /* Calculate the permissable maximum and minimum values for
6503 this relocation according to whether we're relocating for
6505 bitsize = howto->bitsize;
6508 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6509 reloc_signed_min = ~reloc_signed_max;
6511 /* Assumes two's complement. */
6512 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6515 if ((lower_insn & 0x5000) == 0x4000)
6516 /* For a BLX instruction, make sure that the relocation is rounded up
6517 to a word boundary. This follows the semantics of the instruction
6518 which specifies that bit 1 of the target address will come from bit
6519 1 of the base address. */
6520 relocation = (relocation + 2) & ~ 3;
6522 /* Put RELOCATION back into the insn. Assumes two's complement.
6523 We use the Thumb-2 encoding, which is safe even if dealing with
6524 a Thumb-1 instruction by virtue of our overflow check above. */
6525 reloc_sign = (signed_check < 0) ? 1 : 0;
6526 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6527 | ((relocation >> 12) & 0x3ff)
6528 | (reloc_sign << 10);
6529 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6530 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6531 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6532 | ((relocation >> 1) & 0x7ff);
6534 /* Put the relocated value back in the object file: */
6535 bfd_put_16 (input_bfd, upper_insn, hit_data);
6536 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6538 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6542 case R_ARM_THM_JUMP19:
6543 /* Thumb32 conditional branch instruction. */
6546 bfd_boolean overflow = FALSE;
6547 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6548 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6549 bfd_signed_vma reloc_signed_max = 0xffffe;
6550 bfd_signed_vma reloc_signed_min = -0x100000;
6551 bfd_signed_vma signed_check;
6553 /* Need to refetch the addend, reconstruct the top three bits,
6554 and squish the two 11 bit pieces together. */
6555 if (globals->use_rel)
6557 bfd_vma S = (upper_insn & 0x0400) >> 10;
6558 bfd_vma upper = (upper_insn & 0x003f);
6559 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6560 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6561 bfd_vma lower = (lower_insn & 0x07ff);
6566 upper -= 0x0100; /* Sign extend. */
6568 addend = (upper << 12) | (lower << 1);
6569 signed_addend = addend;
6572 /* Handle calls via the PLT. */
6573 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6575 value = (splt->output_section->vma
6576 + splt->output_offset
6578 /* Target the Thumb stub before the ARM PLT entry. */
6579 value -= PLT_THUMB_STUB_SIZE;
6580 *unresolved_reloc_p = FALSE;
6583 /* ??? Should handle interworking? GCC might someday try to
6584 use this for tail calls. */
6586 relocation = value + signed_addend;
6587 relocation -= (input_section->output_section->vma
6588 + input_section->output_offset
6590 signed_check = (bfd_signed_vma) relocation;
6592 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6595 /* Put RELOCATION back into the insn. */
6597 bfd_vma S = (relocation & 0x00100000) >> 20;
6598 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6599 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6600 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6601 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6603 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6604 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6607 /* Put the relocated value back in the object file: */
6608 bfd_put_16 (input_bfd, upper_insn, hit_data);
6609 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6611 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6614 case R_ARM_THM_JUMP11:
6615 case R_ARM_THM_JUMP8:
6616 case R_ARM_THM_JUMP6:
6617 /* Thumb B (branch) instruction). */
6619 bfd_signed_vma relocation;
6620 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6621 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6622 bfd_signed_vma signed_check;
6624 /* CZB cannot jump backward. */
6625 if (r_type == R_ARM_THM_JUMP6)
6626 reloc_signed_min = 0;
6628 if (globals->use_rel)
6630 /* Need to refetch addend. */
6631 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6632 if (addend & ((howto->src_mask + 1) >> 1))
6635 signed_addend &= ~ howto->src_mask;
6636 signed_addend |= addend;
6639 signed_addend = addend;
6640 /* The value in the insn has been right shifted. We need to
6641 undo this, so that we can perform the address calculation
6642 in terms of bytes. */
6643 signed_addend <<= howto->rightshift;
6645 relocation = value + signed_addend;
6647 relocation -= (input_section->output_section->vma
6648 + input_section->output_offset
6651 relocation >>= howto->rightshift;
6652 signed_check = relocation;
6654 if (r_type == R_ARM_THM_JUMP6)
6655 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6657 relocation &= howto->dst_mask;
6658 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6660 bfd_put_16 (input_bfd, relocation, hit_data);
6662 /* Assumes two's complement. */
6663 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6664 return bfd_reloc_overflow;
6666 return bfd_reloc_ok;
6669 case R_ARM_ALU_PCREL7_0:
6670 case R_ARM_ALU_PCREL15_8:
6671 case R_ARM_ALU_PCREL23_15:
6676 insn = bfd_get_32 (input_bfd, hit_data);
6677 if (globals->use_rel)
6679 /* Extract the addend. */
6680 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6681 signed_addend = addend;
6683 relocation = value + signed_addend;
6685 relocation -= (input_section->output_section->vma
6686 + input_section->output_offset
6688 insn = (insn & ~0xfff)
6689 | ((howto->bitpos << 7) & 0xf00)
6690 | ((relocation >> howto->bitpos) & 0xff);
6691 bfd_put_32 (input_bfd, value, hit_data);
6693 return bfd_reloc_ok;
6695 case R_ARM_GNU_VTINHERIT:
6696 case R_ARM_GNU_VTENTRY:
6697 return bfd_reloc_ok;
6699 case R_ARM_GOTOFF32:
6700 /* Relocation is relative to the start of the
6701 global offset table. */
6703 BFD_ASSERT (sgot != NULL);
6705 return bfd_reloc_notsupported;
6707 /* If we are addressing a Thumb function, we need to adjust the
6708 address by one, so that attempts to call the function pointer will
6709 correctly interpret it as Thumb code. */
6710 if (sym_flags == STT_ARM_TFUNC)
6713 /* Note that sgot->output_offset is not involved in this
6714 calculation. We always want the start of .got. If we
6715 define _GLOBAL_OFFSET_TABLE in a different way, as is
6716 permitted by the ABI, we might have to change this
6718 value -= sgot->output_section->vma;
6719 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6720 contents, rel->r_offset, value,
6724 /* Use global offset table as symbol value. */
6725 BFD_ASSERT (sgot != NULL);
6728 return bfd_reloc_notsupported;
6730 *unresolved_reloc_p = FALSE;
6731 value = sgot->output_section->vma;
6732 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6733 contents, rel->r_offset, value,
6737 case R_ARM_GOT_PREL:
6738 /* Relocation is to the entry for this symbol in the
6739 global offset table. */
6741 return bfd_reloc_notsupported;
6748 off = h->got.offset;
6749 BFD_ASSERT (off != (bfd_vma) -1);
6750 dyn = globals->root.dynamic_sections_created;
6752 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6754 && SYMBOL_REFERENCES_LOCAL (info, h))
6755 || (ELF_ST_VISIBILITY (h->other)
6756 && h->root.type == bfd_link_hash_undefweak))
6758 /* This is actually a static link, or it is a -Bsymbolic link
6759 and the symbol is defined locally. We must initialize this
6760 entry in the global offset table. Since the offset must
6761 always be a multiple of 4, we use the least significant bit
6762 to record whether we have initialized it already.
6764 When doing a dynamic link, we create a .rel(a).got relocation
6765 entry to initialize the value. This is done in the
6766 finish_dynamic_symbol routine. */
6771 /* If we are addressing a Thumb function, we need to
6772 adjust the address by one, so that attempts to
6773 call the function pointer will correctly
6774 interpret it as Thumb code. */
6775 if (sym_flags == STT_ARM_TFUNC)
6778 bfd_put_32 (output_bfd, value, sgot->contents + off);
6783 *unresolved_reloc_p = FALSE;
6785 value = sgot->output_offset + off;
6791 BFD_ASSERT (local_got_offsets != NULL &&
6792 local_got_offsets[r_symndx] != (bfd_vma) -1);
6794 off = local_got_offsets[r_symndx];
6796 /* The offset must always be a multiple of 4. We use the
6797 least significant bit to record whether we have already
6798 generated the necessary reloc. */
6803 /* If we are addressing a Thumb function, we need to
6804 adjust the address by one, so that attempts to
6805 call the function pointer will correctly
6806 interpret it as Thumb code. */
6807 if (sym_flags == STT_ARM_TFUNC)
6810 if (globals->use_rel)
6811 bfd_put_32 (output_bfd, value, sgot->contents + off);
6816 Elf_Internal_Rela outrel;
6819 srelgot = (bfd_get_section_by_name
6820 (dynobj, RELOC_SECTION (globals, ".got")));
6821 BFD_ASSERT (srelgot != NULL);
6823 outrel.r_addend = addend + value;
6824 outrel.r_offset = (sgot->output_section->vma
6825 + sgot->output_offset
6827 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
6828 loc = srelgot->contents;
6829 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
6830 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6833 local_got_offsets[r_symndx] |= 1;
6836 value = sgot->output_offset + off;
6838 if (r_type != R_ARM_GOT32)
6839 value += sgot->output_section->vma;
6841 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6842 contents, rel->r_offset, value,
6845 case R_ARM_TLS_LDO32:
6846 value = value - dtpoff_base (info);
6848 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6849 contents, rel->r_offset, value,
6852 case R_ARM_TLS_LDM32:
6856 if (globals->sgot == NULL)
6859 off = globals->tls_ldm_got.offset;
6865 /* If we don't know the module number, create a relocation
6869 Elf_Internal_Rela outrel;
6872 if (globals->srelgot == NULL)
6875 outrel.r_addend = 0;
6876 outrel.r_offset = (globals->sgot->output_section->vma
6877 + globals->sgot->output_offset + off);
6878 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
6880 if (globals->use_rel)
6881 bfd_put_32 (output_bfd, outrel.r_addend,
6882 globals->sgot->contents + off);
6884 loc = globals->srelgot->contents;
6885 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
6886 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6889 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
6891 globals->tls_ldm_got.offset |= 1;
6894 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
6895 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
6897 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6898 contents, rel->r_offset, value,
6902 case R_ARM_TLS_GD32:
6903 case R_ARM_TLS_IE32:
6909 if (globals->sgot == NULL)
6916 dyn = globals->root.dynamic_sections_created;
6917 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6919 || !SYMBOL_REFERENCES_LOCAL (info, h)))
6921 *unresolved_reloc_p = FALSE;
6924 off = h->got.offset;
6925 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
6929 if (local_got_offsets == NULL)
6931 off = local_got_offsets[r_symndx];
6932 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
6935 if (tls_type == GOT_UNKNOWN)
6942 bfd_boolean need_relocs = FALSE;
6943 Elf_Internal_Rela outrel;
6944 bfd_byte *loc = NULL;
6947 /* The GOT entries have not been initialized yet. Do it
6948 now, and emit any relocations. If both an IE GOT and a
6949 GD GOT are necessary, we emit the GD first. */
6951 if ((info->shared || indx != 0)
6953 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6954 || h->root.type != bfd_link_hash_undefweak))
6957 if (globals->srelgot == NULL)
6959 loc = globals->srelgot->contents;
6960 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
6963 if (tls_type & GOT_TLS_GD)
6967 outrel.r_addend = 0;
6968 outrel.r_offset = (globals->sgot->output_section->vma
6969 + globals->sgot->output_offset
6971 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
6973 if (globals->use_rel)
6974 bfd_put_32 (output_bfd, outrel.r_addend,
6975 globals->sgot->contents + cur_off);
6977 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6978 globals->srelgot->reloc_count++;
6979 loc += RELOC_SIZE (globals);
6982 bfd_put_32 (output_bfd, value - dtpoff_base (info),
6983 globals->sgot->contents + cur_off + 4);
6986 outrel.r_addend = 0;
6987 outrel.r_info = ELF32_R_INFO (indx,
6988 R_ARM_TLS_DTPOFF32);
6989 outrel.r_offset += 4;
6991 if (globals->use_rel)
6992 bfd_put_32 (output_bfd, outrel.r_addend,
6993 globals->sgot->contents + cur_off + 4);
6996 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6997 globals->srelgot->reloc_count++;
6998 loc += RELOC_SIZE (globals);
7003 /* If we are not emitting relocations for a
7004 general dynamic reference, then we must be in a
7005 static link or an executable link with the
7006 symbol binding locally. Mark it as belonging
7007 to module 1, the executable. */
7008 bfd_put_32 (output_bfd, 1,
7009 globals->sgot->contents + cur_off);
7010 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7011 globals->sgot->contents + cur_off + 4);
7017 if (tls_type & GOT_TLS_IE)
7022 outrel.r_addend = value - dtpoff_base (info);
7024 outrel.r_addend = 0;
7025 outrel.r_offset = (globals->sgot->output_section->vma
7026 + globals->sgot->output_offset
7028 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7030 if (globals->use_rel)
7031 bfd_put_32 (output_bfd, outrel.r_addend,
7032 globals->sgot->contents + cur_off);
7034 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7035 globals->srelgot->reloc_count++;
7036 loc += RELOC_SIZE (globals);
7039 bfd_put_32 (output_bfd, tpoff (info, value),
7040 globals->sgot->contents + cur_off);
7047 local_got_offsets[r_symndx] |= 1;
7050 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7052 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7053 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7055 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7056 contents, rel->r_offset, value,
7060 case R_ARM_TLS_LE32:
7063 (*_bfd_error_handler)
7064 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7065 input_bfd, input_section,
7066 (long) rel->r_offset, howto->name);
7070 value = tpoff (info, value);
7072 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7073 contents, rel->r_offset, value,
7077 if (globals->fix_v4bx)
7079 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7081 /* Ensure that we have a BX instruction. */
7082 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7084 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7086 /* Branch to veneer. */
7088 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7089 glue_addr -= input_section->output_section->vma
7090 + input_section->output_offset
7091 + rel->r_offset + 8;
7092 insn = (insn & 0xf0000000) | 0x0a000000
7093 | ((glue_addr >> 2) & 0x00ffffff);
7097 /* Preserve Rm (lowest four bits) and the condition code
7098 (highest four bits). Other bits encode MOV PC,Rm. */
7099 insn = (insn & 0xf000000f) | 0x01a0f000;
7102 bfd_put_32 (input_bfd, insn, hit_data);
7104 return bfd_reloc_ok;
7106 case R_ARM_MOVW_ABS_NC:
7107 case R_ARM_MOVT_ABS:
7108 case R_ARM_MOVW_PREL_NC:
7109 case R_ARM_MOVT_PREL:
7110 /* Until we properly support segment-base-relative addressing then
7111 we assume the segment base to be zero, as for the group relocations.
7112 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7113 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7114 case R_ARM_MOVW_BREL_NC:
7115 case R_ARM_MOVW_BREL:
7116 case R_ARM_MOVT_BREL:
7118 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7120 if (globals->use_rel)
7122 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7123 signed_addend = (addend ^ 0x8000) - 0x8000;
7126 value += signed_addend;
7128 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7129 value -= (input_section->output_section->vma
7130 + input_section->output_offset + rel->r_offset);
7132 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7133 return bfd_reloc_overflow;
7135 if (sym_flags == STT_ARM_TFUNC)
7138 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7139 || r_type == R_ARM_MOVT_BREL)
7143 insn |= value & 0xfff;
7144 insn |= (value & 0xf000) << 4;
7145 bfd_put_32 (input_bfd, insn, hit_data);
7147 return bfd_reloc_ok;
7149 case R_ARM_THM_MOVW_ABS_NC:
7150 case R_ARM_THM_MOVT_ABS:
7151 case R_ARM_THM_MOVW_PREL_NC:
7152 case R_ARM_THM_MOVT_PREL:
7153 /* Until we properly support segment-base-relative addressing then
7154 we assume the segment base to be zero, as for the above relocations.
7155 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7156 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7157 as R_ARM_THM_MOVT_ABS. */
7158 case R_ARM_THM_MOVW_BREL_NC:
7159 case R_ARM_THM_MOVW_BREL:
7160 case R_ARM_THM_MOVT_BREL:
7164 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7165 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7167 if (globals->use_rel)
7169 addend = ((insn >> 4) & 0xf000)
7170 | ((insn >> 15) & 0x0800)
7171 | ((insn >> 4) & 0x0700)
7173 signed_addend = (addend ^ 0x8000) - 0x8000;
7176 value += signed_addend;
7178 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7179 value -= (input_section->output_section->vma
7180 + input_section->output_offset + rel->r_offset);
7182 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7183 return bfd_reloc_overflow;
7185 if (sym_flags == STT_ARM_TFUNC)
7188 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7189 || r_type == R_ARM_THM_MOVT_BREL)
7193 insn |= (value & 0xf000) << 4;
7194 insn |= (value & 0x0800) << 15;
7195 insn |= (value & 0x0700) << 4;
7196 insn |= (value & 0x00ff);
7198 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7199 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7201 return bfd_reloc_ok;
7203 case R_ARM_ALU_PC_G0_NC:
7204 case R_ARM_ALU_PC_G1_NC:
7205 case R_ARM_ALU_PC_G0:
7206 case R_ARM_ALU_PC_G1:
7207 case R_ARM_ALU_PC_G2:
7208 case R_ARM_ALU_SB_G0_NC:
7209 case R_ARM_ALU_SB_G1_NC:
7210 case R_ARM_ALU_SB_G0:
7211 case R_ARM_ALU_SB_G1:
7212 case R_ARM_ALU_SB_G2:
7214 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7215 bfd_vma pc = input_section->output_section->vma
7216 + input_section->output_offset + rel->r_offset;
7217 /* sb should be the origin of the *segment* containing the symbol.
7218 It is not clear how to obtain this OS-dependent value, so we
7219 make an arbitrary choice of zero. */
7223 bfd_signed_vma signed_value;
7226 /* Determine which group of bits to select. */
7229 case R_ARM_ALU_PC_G0_NC:
7230 case R_ARM_ALU_PC_G0:
7231 case R_ARM_ALU_SB_G0_NC:
7232 case R_ARM_ALU_SB_G0:
7236 case R_ARM_ALU_PC_G1_NC:
7237 case R_ARM_ALU_PC_G1:
7238 case R_ARM_ALU_SB_G1_NC:
7239 case R_ARM_ALU_SB_G1:
7243 case R_ARM_ALU_PC_G2:
7244 case R_ARM_ALU_SB_G2:
7252 /* If REL, extract the addend from the insn. If RELA, it will
7253 have already been fetched for us. */
7254 if (globals->use_rel)
7257 bfd_vma constant = insn & 0xff;
7258 bfd_vma rotation = (insn & 0xf00) >> 8;
7261 signed_addend = constant;
7264 /* Compensate for the fact that in the instruction, the
7265 rotation is stored in multiples of 2 bits. */
7268 /* Rotate "constant" right by "rotation" bits. */
7269 signed_addend = (constant >> rotation) |
7270 (constant << (8 * sizeof (bfd_vma) - rotation));
7273 /* Determine if the instruction is an ADD or a SUB.
7274 (For REL, this determines the sign of the addend.) */
7275 negative = identify_add_or_sub (insn);
7278 (*_bfd_error_handler)
7279 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7280 input_bfd, input_section,
7281 (long) rel->r_offset, howto->name);
7282 return bfd_reloc_overflow;
7285 signed_addend *= negative;
7288 /* Compute the value (X) to go in the place. */
7289 if (r_type == R_ARM_ALU_PC_G0_NC
7290 || r_type == R_ARM_ALU_PC_G1_NC
7291 || r_type == R_ARM_ALU_PC_G0
7292 || r_type == R_ARM_ALU_PC_G1
7293 || r_type == R_ARM_ALU_PC_G2)
7295 signed_value = value - pc + signed_addend;
7297 /* Section base relative. */
7298 signed_value = value - sb + signed_addend;
7300 /* If the target symbol is a Thumb function, then set the
7301 Thumb bit in the address. */
7302 if (sym_flags == STT_ARM_TFUNC)
7305 /* Calculate the value of the relevant G_n, in encoded
7306 constant-with-rotation format. */
7307 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7310 /* Check for overflow if required. */
7311 if ((r_type == R_ARM_ALU_PC_G0
7312 || r_type == R_ARM_ALU_PC_G1
7313 || r_type == R_ARM_ALU_PC_G2
7314 || r_type == R_ARM_ALU_SB_G0
7315 || r_type == R_ARM_ALU_SB_G1
7316 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7318 (*_bfd_error_handler)
7319 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7320 input_bfd, input_section,
7321 (long) rel->r_offset, abs (signed_value), howto->name);
7322 return bfd_reloc_overflow;
7325 /* Mask out the value and the ADD/SUB part of the opcode; take care
7326 not to destroy the S bit. */
7329 /* Set the opcode according to whether the value to go in the
7330 place is negative. */
7331 if (signed_value < 0)
7336 /* Encode the offset. */
7339 bfd_put_32 (input_bfd, insn, hit_data);
7341 return bfd_reloc_ok;
7343 case R_ARM_LDR_PC_G0:
7344 case R_ARM_LDR_PC_G1:
7345 case R_ARM_LDR_PC_G2:
7346 case R_ARM_LDR_SB_G0:
7347 case R_ARM_LDR_SB_G1:
7348 case R_ARM_LDR_SB_G2:
7350 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7351 bfd_vma pc = input_section->output_section->vma
7352 + input_section->output_offset + rel->r_offset;
7353 bfd_vma sb = 0; /* See note above. */
7355 bfd_signed_vma signed_value;
7358 /* Determine which groups of bits to calculate. */
7361 case R_ARM_LDR_PC_G0:
7362 case R_ARM_LDR_SB_G0:
7366 case R_ARM_LDR_PC_G1:
7367 case R_ARM_LDR_SB_G1:
7371 case R_ARM_LDR_PC_G2:
7372 case R_ARM_LDR_SB_G2:
7380 /* If REL, extract the addend from the insn. If RELA, it will
7381 have already been fetched for us. */
7382 if (globals->use_rel)
7384 int negative = (insn & (1 << 23)) ? 1 : -1;
7385 signed_addend = negative * (insn & 0xfff);
7388 /* Compute the value (X) to go in the place. */
7389 if (r_type == R_ARM_LDR_PC_G0
7390 || r_type == R_ARM_LDR_PC_G1
7391 || r_type == R_ARM_LDR_PC_G2)
7393 signed_value = value - pc + signed_addend;
7395 /* Section base relative. */
7396 signed_value = value - sb + signed_addend;
7398 /* Calculate the value of the relevant G_{n-1} to obtain
7399 the residual at that stage. */
7400 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7402 /* Check for overflow. */
7403 if (residual >= 0x1000)
7405 (*_bfd_error_handler)
7406 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7407 input_bfd, input_section,
7408 (long) rel->r_offset, abs (signed_value), howto->name);
7409 return bfd_reloc_overflow;
7412 /* Mask out the value and U bit. */
7415 /* Set the U bit if the value to go in the place is non-negative. */
7416 if (signed_value >= 0)
7419 /* Encode the offset. */
7422 bfd_put_32 (input_bfd, insn, hit_data);
7424 return bfd_reloc_ok;
7426 case R_ARM_LDRS_PC_G0:
7427 case R_ARM_LDRS_PC_G1:
7428 case R_ARM_LDRS_PC_G2:
7429 case R_ARM_LDRS_SB_G0:
7430 case R_ARM_LDRS_SB_G1:
7431 case R_ARM_LDRS_SB_G2:
7433 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7434 bfd_vma pc = input_section->output_section->vma
7435 + input_section->output_offset + rel->r_offset;
7436 bfd_vma sb = 0; /* See note above. */
7438 bfd_signed_vma signed_value;
7441 /* Determine which groups of bits to calculate. */
7444 case R_ARM_LDRS_PC_G0:
7445 case R_ARM_LDRS_SB_G0:
7449 case R_ARM_LDRS_PC_G1:
7450 case R_ARM_LDRS_SB_G1:
7454 case R_ARM_LDRS_PC_G2:
7455 case R_ARM_LDRS_SB_G2:
7463 /* If REL, extract the addend from the insn. If RELA, it will
7464 have already been fetched for us. */
7465 if (globals->use_rel)
7467 int negative = (insn & (1 << 23)) ? 1 : -1;
7468 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7471 /* Compute the value (X) to go in the place. */
7472 if (r_type == R_ARM_LDRS_PC_G0
7473 || r_type == R_ARM_LDRS_PC_G1
7474 || r_type == R_ARM_LDRS_PC_G2)
7476 signed_value = value - pc + signed_addend;
7478 /* Section base relative. */
7479 signed_value = value - sb + signed_addend;
7481 /* Calculate the value of the relevant G_{n-1} to obtain
7482 the residual at that stage. */
7483 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7485 /* Check for overflow. */
7486 if (residual >= 0x100)
7488 (*_bfd_error_handler)
7489 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7490 input_bfd, input_section,
7491 (long) rel->r_offset, abs (signed_value), howto->name);
7492 return bfd_reloc_overflow;
7495 /* Mask out the value and U bit. */
7498 /* Set the U bit if the value to go in the place is non-negative. */
7499 if (signed_value >= 0)
7502 /* Encode the offset. */
7503 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7505 bfd_put_32 (input_bfd, insn, hit_data);
7507 return bfd_reloc_ok;
7509 case R_ARM_LDC_PC_G0:
7510 case R_ARM_LDC_PC_G1:
7511 case R_ARM_LDC_PC_G2:
7512 case R_ARM_LDC_SB_G0:
7513 case R_ARM_LDC_SB_G1:
7514 case R_ARM_LDC_SB_G2:
7516 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7517 bfd_vma pc = input_section->output_section->vma
7518 + input_section->output_offset + rel->r_offset;
7519 bfd_vma sb = 0; /* See note above. */
7521 bfd_signed_vma signed_value;
7524 /* Determine which groups of bits to calculate. */
7527 case R_ARM_LDC_PC_G0:
7528 case R_ARM_LDC_SB_G0:
7532 case R_ARM_LDC_PC_G1:
7533 case R_ARM_LDC_SB_G1:
7537 case R_ARM_LDC_PC_G2:
7538 case R_ARM_LDC_SB_G2:
7546 /* If REL, extract the addend from the insn. If RELA, it will
7547 have already been fetched for us. */
7548 if (globals->use_rel)
7550 int negative = (insn & (1 << 23)) ? 1 : -1;
7551 signed_addend = negative * ((insn & 0xff) << 2);
7554 /* Compute the value (X) to go in the place. */
7555 if (r_type == R_ARM_LDC_PC_G0
7556 || r_type == R_ARM_LDC_PC_G1
7557 || r_type == R_ARM_LDC_PC_G2)
7559 signed_value = value - pc + signed_addend;
7561 /* Section base relative. */
7562 signed_value = value - sb + signed_addend;
7564 /* Calculate the value of the relevant G_{n-1} to obtain
7565 the residual at that stage. */
7566 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7568 /* Check for overflow. (The absolute value to go in the place must be
7569 divisible by four and, after having been divided by four, must
7570 fit in eight bits.) */
7571 if ((residual & 0x3) != 0 || residual >= 0x400)
7573 (*_bfd_error_handler)
7574 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7575 input_bfd, input_section,
7576 (long) rel->r_offset, abs (signed_value), howto->name);
7577 return bfd_reloc_overflow;
7580 /* Mask out the value and U bit. */
7583 /* Set the U bit if the value to go in the place is non-negative. */
7584 if (signed_value >= 0)
7587 /* Encode the offset. */
7588 insn |= residual >> 2;
7590 bfd_put_32 (input_bfd, insn, hit_data);
7592 return bfd_reloc_ok;
7595 return bfd_reloc_notsupported;
7599 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7601 arm_add_to_rel (bfd * abfd,
7603 reloc_howto_type * howto,
7604 bfd_signed_vma increment)
7606 bfd_signed_vma addend;
7608 if (howto->type == R_ARM_THM_CALL
7609 || howto->type == R_ARM_THM_JUMP24)
7611 int upper_insn, lower_insn;
7614 upper_insn = bfd_get_16 (abfd, address);
7615 lower_insn = bfd_get_16 (abfd, address + 2);
7616 upper = upper_insn & 0x7ff;
7617 lower = lower_insn & 0x7ff;
7619 addend = (upper << 12) | (lower << 1);
7620 addend += increment;
7623 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7624 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7626 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7627 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7633 contents = bfd_get_32 (abfd, address);
7635 /* Get the (signed) value from the instruction. */
7636 addend = contents & howto->src_mask;
7637 if (addend & ((howto->src_mask + 1) >> 1))
7639 bfd_signed_vma mask;
7642 mask &= ~ howto->src_mask;
7646 /* Add in the increment, (which is a byte value). */
7647 switch (howto->type)
7650 addend += increment;
7657 addend <<= howto->size;
7658 addend += increment;
7660 /* Should we check for overflow here ? */
7662 /* Drop any undesired bits. */
7663 addend >>= howto->rightshift;
7667 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7669 bfd_put_32 (abfd, contents, address);
7673 #define IS_ARM_TLS_RELOC(R_TYPE) \
7674 ((R_TYPE) == R_ARM_TLS_GD32 \
7675 || (R_TYPE) == R_ARM_TLS_LDO32 \
7676 || (R_TYPE) == R_ARM_TLS_LDM32 \
7677 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7678 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7679 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7680 || (R_TYPE) == R_ARM_TLS_LE32 \
7681 || (R_TYPE) == R_ARM_TLS_IE32)
7683 /* Relocate an ARM ELF section. */
7686 elf32_arm_relocate_section (bfd * output_bfd,
7687 struct bfd_link_info * info,
7689 asection * input_section,
7690 bfd_byte * contents,
7691 Elf_Internal_Rela * relocs,
7692 Elf_Internal_Sym * local_syms,
7693 asection ** local_sections)
7695 Elf_Internal_Shdr *symtab_hdr;
7696 struct elf_link_hash_entry **sym_hashes;
7697 Elf_Internal_Rela *rel;
7698 Elf_Internal_Rela *relend;
7700 struct elf32_arm_link_hash_table * globals;
7702 globals = elf32_arm_hash_table (info);
7704 symtab_hdr = & elf_symtab_hdr (input_bfd);
7705 sym_hashes = elf_sym_hashes (input_bfd);
7708 relend = relocs + input_section->reloc_count;
7709 for (; rel < relend; rel++)
7712 reloc_howto_type * howto;
7713 unsigned long r_symndx;
7714 Elf_Internal_Sym * sym;
7716 struct elf_link_hash_entry * h;
7718 bfd_reloc_status_type r;
7721 bfd_boolean unresolved_reloc = FALSE;
7722 char *error_message = NULL;
7724 r_symndx = ELF32_R_SYM (rel->r_info);
7725 r_type = ELF32_R_TYPE (rel->r_info);
7726 r_type = arm_real_reloc_type (globals, r_type);
7728 if ( r_type == R_ARM_GNU_VTENTRY
7729 || r_type == R_ARM_GNU_VTINHERIT)
7732 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7733 howto = bfd_reloc.howto;
7739 if (r_symndx < symtab_hdr->sh_info)
7741 sym = local_syms + r_symndx;
7742 sym_type = ELF32_ST_TYPE (sym->st_info);
7743 sec = local_sections[r_symndx];
7744 if (globals->use_rel)
7746 relocation = (sec->output_section->vma
7747 + sec->output_offset
7749 if (!info->relocatable
7750 && (sec->flags & SEC_MERGE)
7751 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7754 bfd_vma addend, value;
7758 case R_ARM_MOVW_ABS_NC:
7759 case R_ARM_MOVT_ABS:
7760 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7761 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7762 addend = (addend ^ 0x8000) - 0x8000;
7765 case R_ARM_THM_MOVW_ABS_NC:
7766 case R_ARM_THM_MOVT_ABS:
7767 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7769 value |= bfd_get_16 (input_bfd,
7770 contents + rel->r_offset + 2);
7771 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7772 | ((value & 0x04000000) >> 15);
7773 addend = (addend ^ 0x8000) - 0x8000;
7777 if (howto->rightshift
7778 || (howto->src_mask & (howto->src_mask + 1)))
7780 (*_bfd_error_handler)
7781 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7782 input_bfd, input_section,
7783 (long) rel->r_offset, howto->name);
7787 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7789 /* Get the (signed) value from the instruction. */
7790 addend = value & howto->src_mask;
7791 if (addend & ((howto->src_mask + 1) >> 1))
7793 bfd_signed_vma mask;
7796 mask &= ~ howto->src_mask;
7804 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
7806 addend += msec->output_section->vma + msec->output_offset;
7808 /* Cases here must match those in the preceeding
7809 switch statement. */
7812 case R_ARM_MOVW_ABS_NC:
7813 case R_ARM_MOVT_ABS:
7814 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
7816 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7819 case R_ARM_THM_MOVW_ABS_NC:
7820 case R_ARM_THM_MOVT_ABS:
7821 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
7822 | (addend & 0xff) | ((addend & 0x0800) << 15);
7823 bfd_put_16 (input_bfd, value >> 16,
7824 contents + rel->r_offset);
7825 bfd_put_16 (input_bfd, value,
7826 contents + rel->r_offset + 2);
7830 value = (value & ~ howto->dst_mask)
7831 | (addend & howto->dst_mask);
7832 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7838 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7844 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
7845 r_symndx, symtab_hdr, sym_hashes,
7847 unresolved_reloc, warned);
7852 if (sec != NULL && elf_discarded_section (sec))
7854 /* For relocs against symbols from removed linkonce sections,
7855 or sections discarded by a linker script, we just want the
7856 section contents zeroed. Avoid any special processing. */
7857 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7863 if (info->relocatable)
7865 /* This is a relocatable link. We don't have to change
7866 anything, unless the reloc is against a section symbol,
7867 in which case we have to adjust according to where the
7868 section symbol winds up in the output section. */
7869 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7871 if (globals->use_rel)
7872 arm_add_to_rel (input_bfd, contents + rel->r_offset,
7873 howto, (bfd_signed_vma) sec->output_offset);
7875 rel->r_addend += sec->output_offset;
7881 name = h->root.root.string;
7884 name = (bfd_elf_string_from_elf_section
7885 (input_bfd, symtab_hdr->sh_link, sym->st_name));
7886 if (name == NULL || *name == '\0')
7887 name = bfd_section_name (input_bfd, sec);
7891 && r_type != R_ARM_NONE
7893 || h->root.type == bfd_link_hash_defined
7894 || h->root.type == bfd_link_hash_defweak)
7895 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
7897 (*_bfd_error_handler)
7898 ((sym_type == STT_TLS
7899 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7900 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7903 (long) rel->r_offset,
7908 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
7909 input_section, contents, rel,
7910 relocation, info, sec, name,
7911 (h ? ELF_ST_TYPE (h->type) :
7912 ELF_ST_TYPE (sym->st_info)), h,
7913 &unresolved_reloc, &error_message);
7915 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7916 because such sections are not SEC_ALLOC and thus ld.so will
7917 not process them. */
7918 if (unresolved_reloc
7919 && !((input_section->flags & SEC_DEBUGGING) != 0
7922 (*_bfd_error_handler)
7923 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7926 (long) rel->r_offset,
7928 h->root.root.string);
7932 if (r != bfd_reloc_ok)
7936 case bfd_reloc_overflow:
7937 /* If the overflowing reloc was to an undefined symbol,
7938 we have already printed one error message and there
7939 is no point complaining again. */
7941 h->root.type != bfd_link_hash_undefined)
7942 && (!((*info->callbacks->reloc_overflow)
7943 (info, (h ? &h->root : NULL), name, howto->name,
7944 (bfd_vma) 0, input_bfd, input_section,
7949 case bfd_reloc_undefined:
7950 if (!((*info->callbacks->undefined_symbol)
7951 (info, name, input_bfd, input_section,
7952 rel->r_offset, TRUE)))
7956 case bfd_reloc_outofrange:
7957 error_message = _("out of range");
7960 case bfd_reloc_notsupported:
7961 error_message = _("unsupported relocation");
7964 case bfd_reloc_dangerous:
7965 /* error_message should already be set. */
7969 error_message = _("unknown error");
7973 BFD_ASSERT (error_message != NULL);
7974 if (!((*info->callbacks->reloc_dangerous)
7975 (info, error_message, input_bfd, input_section,
7986 /* Set the right machine number. */
7989 elf32_arm_object_p (bfd *abfd)
7993 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
7995 if (mach != bfd_mach_arm_unknown)
7996 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
7998 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
7999 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8002 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8007 /* Function to keep ARM specific flags in the ELF header. */
8010 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8012 if (elf_flags_init (abfd)
8013 && elf_elfheader (abfd)->e_flags != flags)
8015 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8017 if (flags & EF_ARM_INTERWORK)
8018 (*_bfd_error_handler)
8019 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8023 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8029 elf_elfheader (abfd)->e_flags = flags;
8030 elf_flags_init (abfd) = TRUE;
8036 /* Copy backend specific data from one object module to another. */
8039 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8044 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8047 in_flags = elf_elfheader (ibfd)->e_flags;
8048 out_flags = elf_elfheader (obfd)->e_flags;
8050 if (elf_flags_init (obfd)
8051 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8052 && in_flags != out_flags)
8054 /* Cannot mix APCS26 and APCS32 code. */
8055 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8058 /* Cannot mix float APCS and non-float APCS code. */
8059 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8062 /* If the src and dest have different interworking flags
8063 then turn off the interworking bit. */
8064 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8066 if (out_flags & EF_ARM_INTERWORK)
8068 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8071 in_flags &= ~EF_ARM_INTERWORK;
8074 /* Likewise for PIC, though don't warn for this case. */
8075 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8076 in_flags &= ~EF_ARM_PIC;
8079 elf_elfheader (obfd)->e_flags = in_flags;
8080 elf_flags_init (obfd) = TRUE;
8082 /* Also copy the EI_OSABI field. */
8083 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8084 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8086 /* Copy object attributes. */
8087 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8092 /* Values for Tag_ABI_PCS_R9_use. */
8101 /* Values for Tag_ABI_PCS_RW_data. */
8104 AEABI_PCS_RW_data_absolute,
8105 AEABI_PCS_RW_data_PCrel,
8106 AEABI_PCS_RW_data_SBrel,
8107 AEABI_PCS_RW_data_unused
8110 /* Values for Tag_ABI_enum_size. */
8116 AEABI_enum_forced_wide
8119 /* Determine whether an object attribute tag takes an integer, a
8123 elf32_arm_obj_attrs_arg_type (int tag)
8125 if (tag == Tag_compatibility)
8127 else if (tag == 4 || tag == 5)
8132 return (tag & 1) != 0 ? 2 : 1;
8135 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8136 are conflicting attributes. */
8139 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8141 obj_attribute *in_attr;
8142 obj_attribute *out_attr;
8143 obj_attribute_list *in_list;
8144 /* Some tags have 0 = don't care, 1 = strong requirement,
8145 2 = weak requirement. */
8146 static const int order_312[3] = {3, 1, 2};
8147 /* For use with Tag_VFP_arch. */
8148 static const int order_01243[5] = {0, 1, 2, 4, 3};
8151 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8153 /* This is the first object. Copy the attributes. */
8154 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8156 /* Use the Tag_null value to indicate the attributes have been
8158 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8163 in_attr = elf_known_obj_attributes_proc (ibfd);
8164 out_attr = elf_known_obj_attributes_proc (obfd);
8165 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8166 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8168 /* Ignore mismatches if teh object doesn't use floating point. */
8169 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8170 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8171 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8174 (_("ERROR: %B uses VFP register arguments, %B does not"),
8180 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8182 /* Merge this attribute with existing attributes. */
8185 case Tag_CPU_raw_name:
8187 /* Use whichever has the greatest architecture requirements. We
8188 won't necessarily have both the above tags, so make sure input
8189 name is non-NULL. */
8190 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
8192 out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s);
8195 case Tag_ABI_optimization_goals:
8196 case Tag_ABI_FP_optimization_goals:
8197 /* Use the first value seen. */
8201 case Tag_ARM_ISA_use:
8202 case Tag_THUMB_ISA_use:
8205 /* ??? Do NEON and WMMX conflict? */
8206 case Tag_ABI_FP_rounding:
8207 case Tag_ABI_FP_denormal:
8208 case Tag_ABI_FP_exceptions:
8209 case Tag_ABI_FP_user_exceptions:
8210 case Tag_ABI_FP_number_model:
8211 case Tag_ABI_align8_preserved:
8212 case Tag_ABI_HardFP_use:
8213 /* Use the largest value specified. */
8214 if (in_attr[i].i > out_attr[i].i)
8215 out_attr[i].i = in_attr[i].i;
8218 case Tag_CPU_arch_profile:
8219 /* Warn if conflicting architecture profiles used. */
8220 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
8223 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8224 ibfd, in_attr[i].i, out_attr[i].i);
8228 out_attr[i].i = in_attr[i].i;
8231 if (in_attr[i].i > 4 || out_attr[i].i > 4
8232 || order_01243[in_attr[i].i] > order_01243[out_attr[i].i])
8233 out_attr[i].i = in_attr[i].i;
8235 case Tag_PCS_config:
8236 if (out_attr[i].i == 0)
8237 out_attr[i].i = in_attr[i].i;
8238 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8240 /* It's sometimes ok to mix different configs, so this is only
8243 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8246 case Tag_ABI_PCS_R9_use:
8247 if (in_attr[i].i != out_attr[i].i
8248 && out_attr[i].i != AEABI_R9_unused
8249 && in_attr[i].i != AEABI_R9_unused)
8252 (_("ERROR: %B: Conflicting use of R9"), ibfd);
8255 if (out_attr[i].i == AEABI_R9_unused)
8256 out_attr[i].i = in_attr[i].i;
8258 case Tag_ABI_PCS_RW_data:
8259 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8260 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8261 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8264 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8268 /* Use the smallest value specified. */
8269 if (in_attr[i].i < out_attr[i].i)
8270 out_attr[i].i = in_attr[i].i;
8272 case Tag_ABI_PCS_RO_data:
8273 /* Use the smallest value specified. */
8274 if (in_attr[i].i < out_attr[i].i)
8275 out_attr[i].i = in_attr[i].i;
8277 case Tag_ABI_PCS_GOT_use:
8278 if (in_attr[i].i > 2 || out_attr[i].i > 2
8279 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8280 out_attr[i].i = in_attr[i].i;
8282 case Tag_ABI_PCS_wchar_t:
8283 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i)
8286 (_("ERROR: %B: Conflicting definitions of wchar_t"), ibfd);
8290 out_attr[i].i = in_attr[i].i;
8292 case Tag_ABI_align8_needed:
8293 /* ??? Check against Tag_ABI_align8_preserved. */
8294 if (in_attr[i].i > 2 || out_attr[i].i > 2
8295 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8296 out_attr[i].i = in_attr[i].i;
8298 case Tag_ABI_enum_size:
8299 if (in_attr[i].i != AEABI_enum_unused)
8301 if (out_attr[i].i == AEABI_enum_unused
8302 || out_attr[i].i == AEABI_enum_forced_wide)
8304 /* The existing object is compatible with anything.
8305 Use whatever requirements the new object has. */
8306 out_attr[i].i = in_attr[i].i;
8308 else if (in_attr[i].i != AEABI_enum_forced_wide
8309 && out_attr[i].i != in_attr[i].i
8310 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8312 const char *aeabi_enum_names[] =
8313 { "", "variable-size", "32-bit", "" };
8315 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8316 ibfd, aeabi_enum_names[in_attr[i].i],
8317 aeabi_enum_names[out_attr[i].i]);
8321 case Tag_ABI_VFP_args:
8324 case Tag_ABI_WMMX_args:
8325 if (in_attr[i].i != out_attr[i].i)
8328 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8333 default: /* All known attributes should be explicitly covered. */
8337 if (in_attr[i].type && !out_attr[i].type)
8338 switch (in_attr[i].type)
8342 out_attr[i].type = 1;
8347 out_attr[i].type = 2;
8355 /* Merge Tag_compatibility attributes and any common GNU ones. */
8356 _bfd_elf_merge_object_attributes (ibfd, obfd);
8358 /* Check for any attributes not known on ARM. */
8359 in_list = elf_other_obj_attributes_proc (ibfd);
8360 while (in_list && in_list->tag == Tag_compatibility)
8361 in_list = in_list->next;
8363 for (; in_list; in_list = in_list->next)
8365 if ((in_list->tag & 128) < 64)
8368 (_("Warning: %B: Unknown EABI object attribute %d"),
8369 ibfd, in_list->tag);
8377 /* Return TRUE if the two EABI versions are incompatible. */
8380 elf32_arm_versions_compatible (unsigned iver, unsigned over)
8382 /* v4 and v5 are the same spec before and after it was released,
8383 so allow mixing them. */
8384 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
8385 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
8388 return (iver == over);
8391 /* Merge backend specific data from an object file to the output
8392 object file when linking. */
8395 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
8399 bfd_boolean flags_compatible = TRUE;
8402 /* Check if we have the same endianess. */
8403 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8406 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8409 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
8412 /* The input BFD must have had its flags initialised. */
8413 /* The following seems bogus to me -- The flags are initialized in
8414 the assembler but I don't think an elf_flags_init field is
8415 written into the object. */
8416 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8418 in_flags = elf_elfheader (ibfd)->e_flags;
8419 out_flags = elf_elfheader (obfd)->e_flags;
8421 if (!elf_flags_init (obfd))
8423 /* If the input is the default architecture and had the default
8424 flags then do not bother setting the flags for the output
8425 architecture, instead allow future merges to do this. If no
8426 future merges ever set these flags then they will retain their
8427 uninitialised values, which surprise surprise, correspond
8428 to the default values. */
8429 if (bfd_get_arch_info (ibfd)->the_default
8430 && elf_elfheader (ibfd)->e_flags == 0)
8433 elf_flags_init (obfd) = TRUE;
8434 elf_elfheader (obfd)->e_flags = in_flags;
8436 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8437 && bfd_get_arch_info (obfd)->the_default)
8438 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
8443 /* Determine what should happen if the input ARM architecture
8444 does not match the output ARM architecture. */
8445 if (! bfd_arm_merge_machines (ibfd, obfd))
8448 /* Identical flags must be compatible. */
8449 if (in_flags == out_flags)
8452 /* Check to see if the input BFD actually contains any sections. If
8453 not, its flags may not have been initialised either, but it
8454 cannot actually cause any incompatiblity. Do not short-circuit
8455 dynamic objects; their section list may be emptied by
8456 elf_link_add_object_symbols.
8458 Also check to see if there are no code sections in the input.
8459 In this case there is no need to check for code specific flags.
8460 XXX - do we need to worry about floating-point format compatability
8461 in data sections ? */
8462 if (!(ibfd->flags & DYNAMIC))
8464 bfd_boolean null_input_bfd = TRUE;
8465 bfd_boolean only_data_sections = TRUE;
8467 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8469 /* Ignore synthetic glue sections. */
8470 if (strcmp (sec->name, ".glue_7")
8471 && strcmp (sec->name, ".glue_7t"))
8473 if ((bfd_get_section_flags (ibfd, sec)
8474 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8475 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8476 only_data_sections = FALSE;
8478 null_input_bfd = FALSE;
8483 if (null_input_bfd || only_data_sections)
8487 /* Complain about various flag mismatches. */
8488 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
8489 EF_ARM_EABI_VERSION (out_flags)))
8492 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8494 (in_flags & EF_ARM_EABIMASK) >> 24,
8495 (out_flags & EF_ARM_EABIMASK) >> 24);
8499 /* Not sure what needs to be checked for EABI versions >= 1. */
8500 /* VxWorks libraries do not use these flags. */
8501 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
8502 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
8503 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
8505 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8508 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8510 in_flags & EF_ARM_APCS_26 ? 26 : 32,
8511 out_flags & EF_ARM_APCS_26 ? 26 : 32);
8512 flags_compatible = FALSE;
8515 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8517 if (in_flags & EF_ARM_APCS_FLOAT)
8519 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
8523 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
8526 flags_compatible = FALSE;
8529 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
8531 if (in_flags & EF_ARM_VFP_FLOAT)
8533 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
8537 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
8540 flags_compatible = FALSE;
8543 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
8545 if (in_flags & EF_ARM_MAVERICK_FLOAT)
8547 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
8551 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
8554 flags_compatible = FALSE;
8557 #ifdef EF_ARM_SOFT_FLOAT
8558 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
8560 /* We can allow interworking between code that is VFP format
8561 layout, and uses either soft float or integer regs for
8562 passing floating point arguments and results. We already
8563 know that the APCS_FLOAT flags match; similarly for VFP
8565 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
8566 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
8568 if (in_flags & EF_ARM_SOFT_FLOAT)
8570 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
8574 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
8577 flags_compatible = FALSE;
8582 /* Interworking mismatch is only a warning. */
8583 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8585 if (in_flags & EF_ARM_INTERWORK)
8588 (_("Warning: %B supports interworking, whereas %B does not"),
8594 (_("Warning: %B does not support interworking, whereas %B does"),
8600 return flags_compatible;
8603 /* Display the flags field. */
8606 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
8608 FILE * file = (FILE *) ptr;
8609 unsigned long flags;
8611 BFD_ASSERT (abfd != NULL && ptr != NULL);
8613 /* Print normal ELF private data. */
8614 _bfd_elf_print_private_bfd_data (abfd, ptr);
8616 flags = elf_elfheader (abfd)->e_flags;
8617 /* Ignore init flag - it may not be set, despite the flags field
8618 containing valid data. */
8620 /* xgettext:c-format */
8621 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
8623 switch (EF_ARM_EABI_VERSION (flags))
8625 case EF_ARM_EABI_UNKNOWN:
8626 /* The following flag bits are GNU extensions and not part of the
8627 official ARM ELF extended ABI. Hence they are only decoded if
8628 the EABI version is not set. */
8629 if (flags & EF_ARM_INTERWORK)
8630 fprintf (file, _(" [interworking enabled]"));
8632 if (flags & EF_ARM_APCS_26)
8633 fprintf (file, " [APCS-26]");
8635 fprintf (file, " [APCS-32]");
8637 if (flags & EF_ARM_VFP_FLOAT)
8638 fprintf (file, _(" [VFP float format]"));
8639 else if (flags & EF_ARM_MAVERICK_FLOAT)
8640 fprintf (file, _(" [Maverick float format]"));
8642 fprintf (file, _(" [FPA float format]"));
8644 if (flags & EF_ARM_APCS_FLOAT)
8645 fprintf (file, _(" [floats passed in float registers]"));
8647 if (flags & EF_ARM_PIC)
8648 fprintf (file, _(" [position independent]"));
8650 if (flags & EF_ARM_NEW_ABI)
8651 fprintf (file, _(" [new ABI]"));
8653 if (flags & EF_ARM_OLD_ABI)
8654 fprintf (file, _(" [old ABI]"));
8656 if (flags & EF_ARM_SOFT_FLOAT)
8657 fprintf (file, _(" [software FP]"));
8659 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
8660 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
8661 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
8662 | EF_ARM_MAVERICK_FLOAT);
8665 case EF_ARM_EABI_VER1:
8666 fprintf (file, _(" [Version1 EABI]"));
8668 if (flags & EF_ARM_SYMSARESORTED)
8669 fprintf (file, _(" [sorted symbol table]"));
8671 fprintf (file, _(" [unsorted symbol table]"));
8673 flags &= ~ EF_ARM_SYMSARESORTED;
8676 case EF_ARM_EABI_VER2:
8677 fprintf (file, _(" [Version2 EABI]"));
8679 if (flags & EF_ARM_SYMSARESORTED)
8680 fprintf (file, _(" [sorted symbol table]"));
8682 fprintf (file, _(" [unsorted symbol table]"));
8684 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
8685 fprintf (file, _(" [dynamic symbols use segment index]"));
8687 if (flags & EF_ARM_MAPSYMSFIRST)
8688 fprintf (file, _(" [mapping symbols precede others]"));
8690 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
8691 | EF_ARM_MAPSYMSFIRST);
8694 case EF_ARM_EABI_VER3:
8695 fprintf (file, _(" [Version3 EABI]"));
8698 case EF_ARM_EABI_VER4:
8699 fprintf (file, _(" [Version4 EABI]"));
8702 case EF_ARM_EABI_VER5:
8703 fprintf (file, _(" [Version5 EABI]"));
8705 if (flags & EF_ARM_BE8)
8706 fprintf (file, _(" [BE8]"));
8708 if (flags & EF_ARM_LE8)
8709 fprintf (file, _(" [LE8]"));
8711 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
8715 fprintf (file, _(" <EABI version unrecognised>"));
8719 flags &= ~ EF_ARM_EABIMASK;
8721 if (flags & EF_ARM_RELEXEC)
8722 fprintf (file, _(" [relocatable executable]"));
8724 if (flags & EF_ARM_HASENTRY)
8725 fprintf (file, _(" [has entry point]"));
8727 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
8730 fprintf (file, _("<Unrecognised flag bits set>"));
8738 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
8740 switch (ELF_ST_TYPE (elf_sym->st_info))
8743 return ELF_ST_TYPE (elf_sym->st_info);
8746 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
8747 This allows us to distinguish between data used by Thumb instructions
8748 and non-data (which is probably code) inside Thumb regions of an
8750 if (type != STT_OBJECT && type != STT_TLS)
8751 return ELF_ST_TYPE (elf_sym->st_info);
8762 elf32_arm_gc_mark_hook (asection *sec,
8763 struct bfd_link_info *info,
8764 Elf_Internal_Rela *rel,
8765 struct elf_link_hash_entry *h,
8766 Elf_Internal_Sym *sym)
8769 switch (ELF32_R_TYPE (rel->r_info))
8771 case R_ARM_GNU_VTINHERIT:
8772 case R_ARM_GNU_VTENTRY:
8776 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
8779 /* Update the got entry reference counts for the section being removed. */
8782 elf32_arm_gc_sweep_hook (bfd * abfd,
8783 struct bfd_link_info * info,
8785 const Elf_Internal_Rela * relocs)
8787 Elf_Internal_Shdr *symtab_hdr;
8788 struct elf_link_hash_entry **sym_hashes;
8789 bfd_signed_vma *local_got_refcounts;
8790 const Elf_Internal_Rela *rel, *relend;
8791 struct elf32_arm_link_hash_table * globals;
8793 if (info->relocatable)
8796 globals = elf32_arm_hash_table (info);
8798 elf_section_data (sec)->local_dynrel = NULL;
8800 symtab_hdr = & elf_symtab_hdr (abfd);
8801 sym_hashes = elf_sym_hashes (abfd);
8802 local_got_refcounts = elf_local_got_refcounts (abfd);
8804 check_use_blx (globals);
8806 relend = relocs + sec->reloc_count;
8807 for (rel = relocs; rel < relend; rel++)
8809 unsigned long r_symndx;
8810 struct elf_link_hash_entry *h = NULL;
8813 r_symndx = ELF32_R_SYM (rel->r_info);
8814 if (r_symndx >= symtab_hdr->sh_info)
8816 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8817 while (h->root.type == bfd_link_hash_indirect
8818 || h->root.type == bfd_link_hash_warning)
8819 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8822 r_type = ELF32_R_TYPE (rel->r_info);
8823 r_type = arm_real_reloc_type (globals, r_type);
8827 case R_ARM_GOT_PREL:
8828 case R_ARM_TLS_GD32:
8829 case R_ARM_TLS_IE32:
8832 if (h->got.refcount > 0)
8833 h->got.refcount -= 1;
8835 else if (local_got_refcounts != NULL)
8837 if (local_got_refcounts[r_symndx] > 0)
8838 local_got_refcounts[r_symndx] -= 1;
8842 case R_ARM_TLS_LDM32:
8843 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
8847 case R_ARM_ABS32_NOI:
8849 case R_ARM_REL32_NOI:
8855 case R_ARM_THM_CALL:
8856 case R_ARM_THM_JUMP24:
8857 case R_ARM_THM_JUMP19:
8858 case R_ARM_MOVW_ABS_NC:
8859 case R_ARM_MOVT_ABS:
8860 case R_ARM_MOVW_PREL_NC:
8861 case R_ARM_MOVT_PREL:
8862 case R_ARM_THM_MOVW_ABS_NC:
8863 case R_ARM_THM_MOVT_ABS:
8864 case R_ARM_THM_MOVW_PREL_NC:
8865 case R_ARM_THM_MOVT_PREL:
8866 /* Should the interworking branches be here also? */
8870 struct elf32_arm_link_hash_entry *eh;
8871 struct elf32_arm_relocs_copied **pp;
8872 struct elf32_arm_relocs_copied *p;
8874 eh = (struct elf32_arm_link_hash_entry *) h;
8876 if (h->plt.refcount > 0)
8878 h->plt.refcount -= 1;
8879 if (r_type == R_ARM_THM_CALL)
8880 eh->plt_maybe_thumb_refcount--;
8882 if (r_type == R_ARM_THM_JUMP24
8883 || r_type == R_ARM_THM_JUMP19)
8884 eh->plt_thumb_refcount--;
8887 if (r_type == R_ARM_ABS32
8888 || r_type == R_ARM_REL32
8889 || r_type == R_ARM_ABS32_NOI
8890 || r_type == R_ARM_REL32_NOI)
8892 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
8894 if (p->section == sec)
8897 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
8898 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
8916 /* Look through the relocs for a section during the first phase. */
8919 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
8920 asection *sec, const Elf_Internal_Rela *relocs)
8922 Elf_Internal_Shdr *symtab_hdr;
8923 struct elf_link_hash_entry **sym_hashes;
8924 const Elf_Internal_Rela *rel;
8925 const Elf_Internal_Rela *rel_end;
8928 bfd_vma *local_got_offsets;
8929 struct elf32_arm_link_hash_table *htab;
8930 bfd_boolean needs_plt;
8932 if (info->relocatable)
8935 BFD_ASSERT (is_arm_elf (abfd));
8937 htab = elf32_arm_hash_table (info);
8940 /* Create dynamic sections for relocatable executables so that we can
8941 copy relocations. */
8942 if (htab->root.is_relocatable_executable
8943 && ! htab->root.dynamic_sections_created)
8945 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
8949 dynobj = elf_hash_table (info)->dynobj;
8950 local_got_offsets = elf_local_got_offsets (abfd);
8952 symtab_hdr = & elf_symtab_hdr (abfd);
8953 sym_hashes = elf_sym_hashes (abfd);
8955 rel_end = relocs + sec->reloc_count;
8956 for (rel = relocs; rel < rel_end; rel++)
8958 struct elf_link_hash_entry *h;
8959 struct elf32_arm_link_hash_entry *eh;
8960 unsigned long r_symndx;
8963 r_symndx = ELF32_R_SYM (rel->r_info);
8964 r_type = ELF32_R_TYPE (rel->r_info);
8965 r_type = arm_real_reloc_type (htab, r_type);
8967 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
8969 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
8974 if (r_symndx < symtab_hdr->sh_info)
8978 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8979 while (h->root.type == bfd_link_hash_indirect
8980 || h->root.type == bfd_link_hash_warning)
8981 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8984 eh = (struct elf32_arm_link_hash_entry *) h;
8989 case R_ARM_GOT_PREL:
8990 case R_ARM_TLS_GD32:
8991 case R_ARM_TLS_IE32:
8992 /* This symbol requires a global offset table entry. */
8994 int tls_type, old_tls_type;
8998 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
8999 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9000 default: tls_type = GOT_NORMAL; break;
9006 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9010 bfd_signed_vma *local_got_refcounts;
9012 /* This is a global offset table entry for a local symbol. */
9013 local_got_refcounts = elf_local_got_refcounts (abfd);
9014 if (local_got_refcounts == NULL)
9018 size = symtab_hdr->sh_info;
9019 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9020 local_got_refcounts = bfd_zalloc (abfd, size);
9021 if (local_got_refcounts == NULL)
9023 elf_local_got_refcounts (abfd) = local_got_refcounts;
9024 elf32_arm_local_got_tls_type (abfd)
9025 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9027 local_got_refcounts[r_symndx] += 1;
9028 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9031 /* We will already have issued an error message if there is a
9032 TLS / non-TLS mismatch, based on the symbol type. We don't
9033 support any linker relaxations. So just combine any TLS
9035 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9036 && tls_type != GOT_NORMAL)
9037 tls_type |= old_tls_type;
9039 if (old_tls_type != tls_type)
9042 elf32_arm_hash_entry (h)->tls_type = tls_type;
9044 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9049 case R_ARM_TLS_LDM32:
9050 if (r_type == R_ARM_TLS_LDM32)
9051 htab->tls_ldm_got.refcount++;
9054 case R_ARM_GOTOFF32:
9056 if (htab->sgot == NULL)
9058 if (htab->root.dynobj == NULL)
9059 htab->root.dynobj = abfd;
9060 if (!create_got_section (htab->root.dynobj, info))
9066 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9067 ldr __GOTT_INDEX__ offsets. */
9068 if (!htab->vxworks_p)
9077 case R_ARM_THM_CALL:
9078 case R_ARM_THM_JUMP24:
9079 case R_ARM_THM_JUMP19:
9084 case R_ARM_ABS32_NOI:
9086 case R_ARM_REL32_NOI:
9087 case R_ARM_MOVW_ABS_NC:
9088 case R_ARM_MOVT_ABS:
9089 case R_ARM_MOVW_PREL_NC:
9090 case R_ARM_MOVT_PREL:
9091 case R_ARM_THM_MOVW_ABS_NC:
9092 case R_ARM_THM_MOVT_ABS:
9093 case R_ARM_THM_MOVW_PREL_NC:
9094 case R_ARM_THM_MOVT_PREL:
9098 /* Should the interworking branches be listed here? */
9101 /* If this reloc is in a read-only section, we might
9102 need a copy reloc. We can't check reliably at this
9103 stage whether the section is read-only, as input
9104 sections have not yet been mapped to output sections.
9105 Tentatively set the flag for now, and correct in
9106 adjust_dynamic_symbol. */
9110 /* We may need a .plt entry if the function this reloc
9111 refers to is in a different object. We can't tell for
9112 sure yet, because something later might force the
9117 /* If we create a PLT entry, this relocation will reference
9118 it, even if it's an ABS32 relocation. */
9119 h->plt.refcount += 1;
9121 /* It's too early to use htab->use_blx here, so we have to
9122 record possible blx references separately from
9123 relocs that definitely need a thumb stub. */
9125 if (r_type == R_ARM_THM_CALL)
9126 eh->plt_maybe_thumb_refcount += 1;
9128 if (r_type == R_ARM_THM_JUMP24
9129 || r_type == R_ARM_THM_JUMP19)
9130 eh->plt_thumb_refcount += 1;
9133 /* If we are creating a shared library or relocatable executable,
9134 and this is a reloc against a global symbol, or a non PC
9135 relative reloc against a local symbol, then we need to copy
9136 the reloc into the shared library. However, if we are linking
9137 with -Bsymbolic, we do not need to copy a reloc against a
9138 global symbol which is defined in an object we are
9139 including in the link (i.e., DEF_REGULAR is set). At
9140 this point we have not seen all the input files, so it is
9141 possible that DEF_REGULAR is not set now but will be set
9142 later (it is never cleared). We account for that
9143 possibility below by storing information in the
9144 relocs_copied field of the hash table entry. */
9145 if ((info->shared || htab->root.is_relocatable_executable)
9146 && (sec->flags & SEC_ALLOC) != 0
9147 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9148 || (h != NULL && ! h->needs_plt
9149 && (! info->symbolic || ! h->def_regular))))
9151 struct elf32_arm_relocs_copied *p, **head;
9153 /* When creating a shared object, we must copy these
9154 reloc types into the output file. We create a reloc
9155 section in dynobj and make room for this reloc. */
9160 name = (bfd_elf_string_from_elf_section
9162 elf_elfheader (abfd)->e_shstrndx,
9163 elf_section_data (sec)->rel_hdr.sh_name));
9167 BFD_ASSERT (reloc_section_p (htab, name, sec));
9169 sreloc = bfd_get_section_by_name (dynobj, name);
9174 flags = (SEC_HAS_CONTENTS | SEC_READONLY
9175 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
9176 if ((sec->flags & SEC_ALLOC) != 0
9177 /* BPABI objects never have dynamic
9178 relocations mapped. */
9179 && !htab->symbian_p)
9180 flags |= SEC_ALLOC | SEC_LOAD;
9181 sreloc = bfd_make_section_with_flags (dynobj,
9185 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
9189 elf_section_data (sec)->sreloc = sreloc;
9192 /* If this is a global symbol, we count the number of
9193 relocations we need for this symbol. */
9196 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9200 /* Track dynamic relocs needed for local syms too.
9201 We really need local syms available to do this
9207 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9212 vpp = &elf_section_data (s)->local_dynrel;
9213 head = (struct elf32_arm_relocs_copied **) vpp;
9217 if (p == NULL || p->section != sec)
9219 bfd_size_type amt = sizeof *p;
9221 p = bfd_alloc (htab->root.dynobj, amt);
9231 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9237 /* This relocation describes the C++ object vtable hierarchy.
9238 Reconstruct it for later use during GC. */
9239 case R_ARM_GNU_VTINHERIT:
9240 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9244 /* This relocation describes which C++ vtable entries are actually
9245 used. Record for later use during GC. */
9246 case R_ARM_GNU_VTENTRY:
9247 BFD_ASSERT (h != NULL);
9249 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9258 /* Unwinding tables are not referenced directly. This pass marks them as
9259 required if the corresponding code section is marked. */
9262 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9263 elf_gc_mark_hook_fn gc_mark_hook)
9266 Elf_Internal_Shdr **elf_shdrp;
9269 /* Marking EH data may cause additional code sections to be marked,
9270 requiring multiple passes. */
9275 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9279 if (! is_arm_elf (sub))
9282 elf_shdrp = elf_elfsections (sub);
9283 for (o = sub->sections; o != NULL; o = o->next)
9285 Elf_Internal_Shdr *hdr;
9287 hdr = &elf_section_data (o)->this_hdr;
9288 if (hdr->sh_type == SHT_ARM_EXIDX
9290 && hdr->sh_link < elf_numsections (sub)
9292 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9295 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9305 /* Treat mapping symbols as special target symbols. */
9308 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9310 return bfd_is_arm_special_symbol_name (sym->name,
9311 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9314 /* This is a copy of elf_find_function() from elf.c except that
9315 ARM mapping symbols are ignored when looking for function names
9316 and STT_ARM_TFUNC is considered to a function type. */
9319 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9323 const char ** filename_ptr,
9324 const char ** functionname_ptr)
9326 const char * filename = NULL;
9327 asymbol * func = NULL;
9328 bfd_vma low_func = 0;
9331 for (p = symbols; *p != NULL; p++)
9335 q = (elf_symbol_type *) *p;
9337 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9342 filename = bfd_asymbol_name (&q->symbol);
9347 /* Skip mapping symbols. */
9348 if ((q->symbol.flags & BSF_LOCAL)
9349 && bfd_is_arm_special_symbol_name (q->symbol.name,
9350 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
9353 if (bfd_get_section (&q->symbol) == section
9354 && q->symbol.value >= low_func
9355 && q->symbol.value <= offset)
9357 func = (asymbol *) q;
9358 low_func = q->symbol.value;
9368 *filename_ptr = filename;
9369 if (functionname_ptr)
9370 *functionname_ptr = bfd_asymbol_name (func);
9376 /* Find the nearest line to a particular section and offset, for error
9377 reporting. This code is a duplicate of the code in elf.c, except
9378 that it uses arm_elf_find_function. */
9381 elf32_arm_find_nearest_line (bfd * abfd,
9385 const char ** filename_ptr,
9386 const char ** functionname_ptr,
9387 unsigned int * line_ptr)
9389 bfd_boolean found = FALSE;
9391 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9393 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9394 filename_ptr, functionname_ptr,
9396 & elf_tdata (abfd)->dwarf2_find_line_info))
9398 if (!*functionname_ptr)
9399 arm_elf_find_function (abfd, section, symbols, offset,
9400 *filename_ptr ? NULL : filename_ptr,
9406 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9407 & found, filename_ptr,
9408 functionname_ptr, line_ptr,
9409 & elf_tdata (abfd)->line_info))
9412 if (found && (*functionname_ptr || *line_ptr))
9415 if (symbols == NULL)
9418 if (! arm_elf_find_function (abfd, section, symbols, offset,
9419 filename_ptr, functionname_ptr))
9427 elf32_arm_find_inliner_info (bfd * abfd,
9428 const char ** filename_ptr,
9429 const char ** functionname_ptr,
9430 unsigned int * line_ptr)
9433 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9434 functionname_ptr, line_ptr,
9435 & elf_tdata (abfd)->dwarf2_find_line_info);
9439 /* Adjust a symbol defined by a dynamic object and referenced by a
9440 regular object. The current definition is in some section of the
9441 dynamic object, but we're not including those sections. We have to
9442 change the definition to something the rest of the link can
9446 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
9447 struct elf_link_hash_entry * h)
9451 struct elf32_arm_link_hash_entry * eh;
9452 struct elf32_arm_link_hash_table *globals;
9454 globals = elf32_arm_hash_table (info);
9455 dynobj = elf_hash_table (info)->dynobj;
9457 /* Make sure we know what is going on here. */
9458 BFD_ASSERT (dynobj != NULL
9460 || h->u.weakdef != NULL
9463 && !h->def_regular)));
9465 eh = (struct elf32_arm_link_hash_entry *) h;
9467 /* If this is a function, put it in the procedure linkage table. We
9468 will fill in the contents of the procedure linkage table later,
9469 when we know the address of the .got section. */
9470 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
9473 if (h->plt.refcount <= 0
9474 || SYMBOL_CALLS_LOCAL (info, h)
9475 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9476 && h->root.type == bfd_link_hash_undefweak))
9478 /* This case can occur if we saw a PLT32 reloc in an input
9479 file, but the symbol was never referred to by a dynamic
9480 object, or if all references were garbage collected. In
9481 such a case, we don't actually need to build a procedure
9482 linkage table, and we can just do a PC24 reloc instead. */
9483 h->plt.offset = (bfd_vma) -1;
9484 eh->plt_thumb_refcount = 0;
9485 eh->plt_maybe_thumb_refcount = 0;
9493 /* It's possible that we incorrectly decided a .plt reloc was
9494 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9495 in check_relocs. We can't decide accurately between function
9496 and non-function syms in check-relocs; Objects loaded later in
9497 the link may change h->type. So fix it now. */
9498 h->plt.offset = (bfd_vma) -1;
9499 eh->plt_thumb_refcount = 0;
9500 eh->plt_maybe_thumb_refcount = 0;
9503 /* If this is a weak symbol, and there is a real definition, the
9504 processor independent code will have arranged for us to see the
9505 real definition first, and we can just use the same value. */
9506 if (h->u.weakdef != NULL)
9508 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9509 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9510 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9511 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9515 /* If there are no non-GOT references, we do not need a copy
9517 if (!h->non_got_ref)
9520 /* This is a reference to a symbol defined by a dynamic object which
9521 is not a function. */
9523 /* If we are creating a shared library, we must presume that the
9524 only references to the symbol are via the global offset table.
9525 For such cases we need not do anything here; the relocations will
9526 be handled correctly by relocate_section. Relocatable executables
9527 can reference data in shared objects directly, so we don't need to
9528 do anything here. */
9529 if (info->shared || globals->root.is_relocatable_executable)
9534 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
9535 h->root.root.string);
9539 /* We must allocate the symbol in our .dynbss section, which will
9540 become part of the .bss section of the executable. There will be
9541 an entry for this symbol in the .dynsym section. The dynamic
9542 object will contain position independent code, so all references
9543 from the dynamic object to this symbol will go through the global
9544 offset table. The dynamic linker will use the .dynsym entry to
9545 determine the address it must put in the global offset table, so
9546 both the dynamic object and the regular object will refer to the
9547 same memory location for the variable. */
9548 s = bfd_get_section_by_name (dynobj, ".dynbss");
9549 BFD_ASSERT (s != NULL);
9551 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
9552 copy the initial value out of the dynamic object and into the
9553 runtime process image. We need to remember the offset into the
9554 .rel(a).bss section we are going to use. */
9555 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9559 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
9560 BFD_ASSERT (srel != NULL);
9561 srel->size += RELOC_SIZE (globals);
9565 return _bfd_elf_adjust_dynamic_copy (h, s);
9568 /* Allocate space in .plt, .got and associated reloc sections for
9572 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
9574 struct bfd_link_info *info;
9575 struct elf32_arm_link_hash_table *htab;
9576 struct elf32_arm_link_hash_entry *eh;
9577 struct elf32_arm_relocs_copied *p;
9578 bfd_signed_vma thumb_refs;
9580 eh = (struct elf32_arm_link_hash_entry *) h;
9582 if (h->root.type == bfd_link_hash_indirect)
9585 if (h->root.type == bfd_link_hash_warning)
9586 /* When warning symbols are created, they **replace** the "real"
9587 entry in the hash table, thus we never get to see the real
9588 symbol in a hash traversal. So look at it now. */
9589 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9591 info = (struct bfd_link_info *) inf;
9592 htab = elf32_arm_hash_table (info);
9594 if (htab->root.dynamic_sections_created
9595 && h->plt.refcount > 0)
9597 /* Make sure this symbol is output as a dynamic symbol.
9598 Undefined weak syms won't yet be marked as dynamic. */
9599 if (h->dynindx == -1
9600 && !h->forced_local)
9602 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9607 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
9609 asection *s = htab->splt;
9611 /* If this is the first .plt entry, make room for the special
9614 s->size += htab->plt_header_size;
9616 h->plt.offset = s->size;
9618 /* If we will insert a Thumb trampoline before this PLT, leave room
9620 thumb_refs = eh->plt_thumb_refcount;
9622 thumb_refs += eh->plt_maybe_thumb_refcount;
9626 h->plt.offset += PLT_THUMB_STUB_SIZE;
9627 s->size += PLT_THUMB_STUB_SIZE;
9630 /* If this symbol is not defined in a regular file, and we are
9631 not generating a shared library, then set the symbol to this
9632 location in the .plt. This is required to make function
9633 pointers compare as equal between the normal executable and
9634 the shared library. */
9638 h->root.u.def.section = s;
9639 h->root.u.def.value = h->plt.offset;
9641 /* Make sure the function is not marked as Thumb, in case
9642 it is the target of an ABS32 relocation, which will
9643 point to the PLT entry. */
9644 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
9645 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9648 /* Make room for this entry. */
9649 s->size += htab->plt_entry_size;
9651 if (!htab->symbian_p)
9653 /* We also need to make an entry in the .got.plt section, which
9654 will be placed in the .got section by the linker script. */
9655 eh->plt_got_offset = htab->sgotplt->size;
9656 htab->sgotplt->size += 4;
9659 /* We also need to make an entry in the .rel(a).plt section. */
9660 htab->srelplt->size += RELOC_SIZE (htab);
9662 /* VxWorks executables have a second set of relocations for
9663 each PLT entry. They go in a separate relocation section,
9664 which is processed by the kernel loader. */
9665 if (htab->vxworks_p && !info->shared)
9667 /* There is a relocation for the initial PLT entry:
9668 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
9669 if (h->plt.offset == htab->plt_header_size)
9670 htab->srelplt2->size += RELOC_SIZE (htab);
9672 /* There are two extra relocations for each subsequent
9673 PLT entry: an R_ARM_32 relocation for the GOT entry,
9674 and an R_ARM_32 relocation for the PLT entry. */
9675 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
9680 h->plt.offset = (bfd_vma) -1;
9686 h->plt.offset = (bfd_vma) -1;
9690 if (h->got.refcount > 0)
9694 int tls_type = elf32_arm_hash_entry (h)->tls_type;
9697 /* Make sure this symbol is output as a dynamic symbol.
9698 Undefined weak syms won't yet be marked as dynamic. */
9699 if (h->dynindx == -1
9700 && !h->forced_local)
9702 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9706 if (!htab->symbian_p)
9709 h->got.offset = s->size;
9711 if (tls_type == GOT_UNKNOWN)
9714 if (tls_type == GOT_NORMAL)
9715 /* Non-TLS symbols need one GOT slot. */
9719 if (tls_type & GOT_TLS_GD)
9720 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
9722 if (tls_type & GOT_TLS_IE)
9723 /* R_ARM_TLS_IE32 needs one GOT slot. */
9727 dyn = htab->root.dynamic_sections_created;
9730 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9732 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9735 if (tls_type != GOT_NORMAL
9736 && (info->shared || indx != 0)
9737 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9738 || h->root.type != bfd_link_hash_undefweak))
9740 if (tls_type & GOT_TLS_IE)
9741 htab->srelgot->size += RELOC_SIZE (htab);
9743 if (tls_type & GOT_TLS_GD)
9744 htab->srelgot->size += RELOC_SIZE (htab);
9746 if ((tls_type & GOT_TLS_GD) && indx != 0)
9747 htab->srelgot->size += RELOC_SIZE (htab);
9749 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9750 || h->root.type != bfd_link_hash_undefweak)
9752 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
9753 htab->srelgot->size += RELOC_SIZE (htab);
9757 h->got.offset = (bfd_vma) -1;
9759 /* Allocate stubs for exported Thumb functions on v4t. */
9760 if (!htab->use_blx && h->dynindx != -1
9762 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
9763 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9765 struct elf_link_hash_entry * th;
9766 struct bfd_link_hash_entry * bh;
9767 struct elf_link_hash_entry * myh;
9771 /* Create a new symbol to regist the real location of the function. */
9772 s = h->root.u.def.section;
9773 sprintf (name, "__real_%s", h->root.root.string);
9774 _bfd_generic_link_add_one_symbol (info, s->owner,
9775 name, BSF_GLOBAL, s,
9776 h->root.u.def.value,
9777 NULL, TRUE, FALSE, &bh);
9779 myh = (struct elf_link_hash_entry *) bh;
9780 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
9781 myh->forced_local = 1;
9782 eh->export_glue = myh;
9783 th = record_arm_to_thumb_glue (info, h);
9784 /* Point the symbol at the stub. */
9785 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9786 h->root.u.def.section = th->root.u.def.section;
9787 h->root.u.def.value = th->root.u.def.value & ~1;
9790 if (eh->relocs_copied == NULL)
9793 /* In the shared -Bsymbolic case, discard space allocated for
9794 dynamic pc-relative relocs against symbols which turn out to be
9795 defined in regular objects. For the normal shared case, discard
9796 space for pc-relative relocs that have become local due to symbol
9797 visibility changes. */
9799 if (info->shared || htab->root.is_relocatable_executable)
9801 /* The only relocs that use pc_count are R_ARM_REL32 and
9802 R_ARM_REL32_NOI, which will appear on something like
9803 ".long foo - .". We want calls to protected symbols to resolve
9804 directly to the function rather than going via the plt. If people
9805 want function pointer comparisons to work as expected then they
9806 should avoid writing assembly like ".long foo - .". */
9807 if (SYMBOL_CALLS_LOCAL (info, h))
9809 struct elf32_arm_relocs_copied **pp;
9811 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9813 p->count -= p->pc_count;
9822 if (elf32_arm_hash_table (info)->vxworks_p)
9824 struct elf32_arm_relocs_copied **pp;
9826 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9828 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
9835 /* Also discard relocs on undefined weak syms with non-default
9837 if (eh->relocs_copied != NULL
9838 && h->root.type == bfd_link_hash_undefweak)
9840 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9841 eh->relocs_copied = NULL;
9843 /* Make sure undefined weak symbols are output as a dynamic
9845 else if (h->dynindx == -1
9846 && !h->forced_local)
9848 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9853 else if (htab->root.is_relocatable_executable && h->dynindx == -1
9854 && h->root.type == bfd_link_hash_new)
9856 /* Output absolute symbols so that we can create relocations
9857 against them. For normal symbols we output a relocation
9858 against the section that contains them. */
9859 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9866 /* For the non-shared case, discard space for relocs against
9867 symbols which turn out to need copy relocs or are not
9873 || (htab->root.dynamic_sections_created
9874 && (h->root.type == bfd_link_hash_undefweak
9875 || h->root.type == bfd_link_hash_undefined))))
9877 /* Make sure this symbol is output as a dynamic symbol.
9878 Undefined weak syms won't yet be marked as dynamic. */
9879 if (h->dynindx == -1
9880 && !h->forced_local)
9882 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9886 /* If that succeeded, we know we'll be keeping all the
9888 if (h->dynindx != -1)
9892 eh->relocs_copied = NULL;
9897 /* Finally, allocate space. */
9898 for (p = eh->relocs_copied; p != NULL; p = p->next)
9900 asection *sreloc = elf_section_data (p->section)->sreloc;
9901 sreloc->size += p->count * RELOC_SIZE (htab);
9907 /* Find any dynamic relocs that apply to read-only sections. */
9910 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
9912 struct elf32_arm_link_hash_entry *eh;
9913 struct elf32_arm_relocs_copied *p;
9915 if (h->root.type == bfd_link_hash_warning)
9916 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9918 eh = (struct elf32_arm_link_hash_entry *) h;
9919 for (p = eh->relocs_copied; p != NULL; p = p->next)
9921 asection *s = p->section;
9923 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9925 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9927 info->flags |= DF_TEXTREL;
9929 /* Not an error, just cut short the traversal. */
9937 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
9940 struct elf32_arm_link_hash_table *globals;
9942 globals = elf32_arm_hash_table (info);
9943 globals->byteswap_code = byteswap_code;
9946 /* Set the sizes of the dynamic sections. */
9949 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
9950 struct bfd_link_info * info)
9957 struct elf32_arm_link_hash_table *htab;
9959 htab = elf32_arm_hash_table (info);
9960 dynobj = elf_hash_table (info)->dynobj;
9961 BFD_ASSERT (dynobj != NULL);
9962 check_use_blx (htab);
9964 if (elf_hash_table (info)->dynamic_sections_created)
9966 /* Set the contents of the .interp section to the interpreter. */
9967 if (info->executable)
9969 s = bfd_get_section_by_name (dynobj, ".interp");
9970 BFD_ASSERT (s != NULL);
9971 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9972 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9976 /* Set up .got offsets for local syms, and space for local dynamic
9978 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9980 bfd_signed_vma *local_got;
9981 bfd_signed_vma *end_local_got;
9982 char *local_tls_type;
9983 bfd_size_type locsymcount;
9984 Elf_Internal_Shdr *symtab_hdr;
9986 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
9988 if (! is_arm_elf (ibfd))
9991 for (s = ibfd->sections; s != NULL; s = s->next)
9993 struct elf32_arm_relocs_copied *p;
9995 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9997 if (!bfd_is_abs_section (p->section)
9998 && bfd_is_abs_section (p->section->output_section))
10000 /* Input section has been discarded, either because
10001 it is a copy of a linkonce section or due to
10002 linker script /DISCARD/, so we'll be discarding
10005 else if (is_vxworks
10006 && strcmp (p->section->output_section->name,
10009 /* Relocations in vxworks .tls_vars sections are
10010 handled specially by the loader. */
10012 else if (p->count != 0)
10014 srel = elf_section_data (p->section)->sreloc;
10015 srel->size += p->count * RELOC_SIZE (htab);
10016 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10017 info->flags |= DF_TEXTREL;
10022 local_got = elf_local_got_refcounts (ibfd);
10026 symtab_hdr = & elf_symtab_hdr (ibfd);
10027 locsymcount = symtab_hdr->sh_info;
10028 end_local_got = local_got + locsymcount;
10029 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10031 srel = htab->srelgot;
10032 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10034 if (*local_got > 0)
10036 *local_got = s->size;
10037 if (*local_tls_type & GOT_TLS_GD)
10038 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10040 if (*local_tls_type & GOT_TLS_IE)
10042 if (*local_tls_type == GOT_NORMAL)
10045 if (info->shared || *local_tls_type == GOT_TLS_GD)
10046 srel->size += RELOC_SIZE (htab);
10049 *local_got = (bfd_vma) -1;
10053 if (htab->tls_ldm_got.refcount > 0)
10055 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10056 for R_ARM_TLS_LDM32 relocations. */
10057 htab->tls_ldm_got.offset = htab->sgot->size;
10058 htab->sgot->size += 8;
10060 htab->srelgot->size += RELOC_SIZE (htab);
10063 htab->tls_ldm_got.offset = -1;
10065 /* Allocate global sym .plt and .got entries, and space for global
10066 sym dynamic relocs. */
10067 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10069 /* Here we rummage through the found bfds to collect glue information. */
10070 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10072 if (! is_arm_elf (ibfd))
10075 /* Initialise mapping tables for code/data. */
10076 bfd_elf32_arm_init_maps (ibfd);
10078 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10079 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10080 /* xgettext:c-format */
10081 _bfd_error_handler (_("Errors encountered processing file %s"),
10085 /* The check_relocs and adjust_dynamic_symbol entry points have
10086 determined the sizes of the various dynamic sections. Allocate
10087 memory for them. */
10090 for (s = dynobj->sections; s != NULL; s = s->next)
10094 if ((s->flags & SEC_LINKER_CREATED) == 0)
10097 /* It's OK to base decisions on the section name, because none
10098 of the dynobj section names depend upon the input files. */
10099 name = bfd_get_section_name (dynobj, s);
10101 if (strcmp (name, ".plt") == 0)
10103 /* Remember whether there is a PLT. */
10104 plt = s->size != 0;
10106 else if (CONST_STRNEQ (name, ".rel"))
10110 /* Remember whether there are any reloc sections other
10111 than .rel(a).plt and .rela.plt.unloaded. */
10112 if (s != htab->srelplt && s != htab->srelplt2)
10115 /* We use the reloc_count field as a counter if we need
10116 to copy relocs into the output file. */
10117 s->reloc_count = 0;
10120 else if (! CONST_STRNEQ (name, ".got")
10121 && strcmp (name, ".dynbss") != 0)
10123 /* It's not one of our sections, so don't allocate space. */
10129 /* If we don't need this section, strip it from the
10130 output file. This is mostly to handle .rel(a).bss and
10131 .rel(a).plt. We must create both sections in
10132 create_dynamic_sections, because they must be created
10133 before the linker maps input sections to output
10134 sections. The linker does that before
10135 adjust_dynamic_symbol is called, and it is that
10136 function which decides whether anything needs to go
10137 into these sections. */
10138 s->flags |= SEC_EXCLUDE;
10142 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10145 /* Allocate memory for the section contents. */
10146 s->contents = bfd_zalloc (dynobj, s->size);
10147 if (s->contents == NULL)
10151 if (elf_hash_table (info)->dynamic_sections_created)
10153 /* Add some entries to the .dynamic section. We fill in the
10154 values later, in elf32_arm_finish_dynamic_sections, but we
10155 must add the entries now so that we get the correct size for
10156 the .dynamic section. The DT_DEBUG entry is filled in by the
10157 dynamic linker and used by the debugger. */
10158 #define add_dynamic_entry(TAG, VAL) \
10159 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10161 if (info->executable)
10163 if (!add_dynamic_entry (DT_DEBUG, 0))
10169 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10170 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10171 || !add_dynamic_entry (DT_PLTREL,
10172 htab->use_rel ? DT_REL : DT_RELA)
10173 || !add_dynamic_entry (DT_JMPREL, 0))
10181 if (!add_dynamic_entry (DT_REL, 0)
10182 || !add_dynamic_entry (DT_RELSZ, 0)
10183 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10188 if (!add_dynamic_entry (DT_RELA, 0)
10189 || !add_dynamic_entry (DT_RELASZ, 0)
10190 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10195 /* If any dynamic relocs apply to a read-only section,
10196 then we need a DT_TEXTREL entry. */
10197 if ((info->flags & DF_TEXTREL) == 0)
10198 elf_link_hash_traverse (&htab->root, elf32_arm_readonly_dynrelocs,
10201 if ((info->flags & DF_TEXTREL) != 0)
10203 if (!add_dynamic_entry (DT_TEXTREL, 0))
10206 if (htab->vxworks_p
10207 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10210 #undef add_dynamic_entry
10215 /* Finish up dynamic symbol handling. We set the contents of various
10216 dynamic sections here. */
10219 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10220 struct bfd_link_info * info,
10221 struct elf_link_hash_entry * h,
10222 Elf_Internal_Sym * sym)
10225 struct elf32_arm_link_hash_table *htab;
10226 struct elf32_arm_link_hash_entry *eh;
10228 dynobj = elf_hash_table (info)->dynobj;
10229 htab = elf32_arm_hash_table (info);
10230 eh = (struct elf32_arm_link_hash_entry *) h;
10232 if (h->plt.offset != (bfd_vma) -1)
10238 Elf_Internal_Rela rel;
10240 /* This symbol has an entry in the procedure linkage table. Set
10243 BFD_ASSERT (h->dynindx != -1);
10245 splt = bfd_get_section_by_name (dynobj, ".plt");
10246 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10247 BFD_ASSERT (splt != NULL && srel != NULL);
10249 /* Fill in the entry in the procedure linkage table. */
10250 if (htab->symbian_p)
10252 put_arm_insn (htab, output_bfd,
10253 elf32_arm_symbian_plt_entry[0],
10254 splt->contents + h->plt.offset);
10255 bfd_put_32 (output_bfd,
10256 elf32_arm_symbian_plt_entry[1],
10257 splt->contents + h->plt.offset + 4);
10259 /* Fill in the entry in the .rel.plt section. */
10260 rel.r_offset = (splt->output_section->vma
10261 + splt->output_offset
10262 + h->plt.offset + 4);
10263 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10265 /* Get the index in the procedure linkage table which
10266 corresponds to this symbol. This is the index of this symbol
10267 in all the symbols for which we are making plt entries. The
10268 first entry in the procedure linkage table is reserved. */
10269 plt_index = ((h->plt.offset - htab->plt_header_size)
10270 / htab->plt_entry_size);
10274 bfd_vma got_offset, got_address, plt_address;
10275 bfd_vma got_displacement;
10279 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10280 BFD_ASSERT (sgot != NULL);
10282 /* Get the offset into the .got.plt table of the entry that
10283 corresponds to this function. */
10284 got_offset = eh->plt_got_offset;
10286 /* Get the index in the procedure linkage table which
10287 corresponds to this symbol. This is the index of this symbol
10288 in all the symbols for which we are making plt entries. The
10289 first three entries in .got.plt are reserved; after that
10290 symbols appear in the same order as in .plt. */
10291 plt_index = (got_offset - 12) / 4;
10293 /* Calculate the address of the GOT entry. */
10294 got_address = (sgot->output_section->vma
10295 + sgot->output_offset
10298 /* ...and the address of the PLT entry. */
10299 plt_address = (splt->output_section->vma
10300 + splt->output_offset
10303 ptr = htab->splt->contents + h->plt.offset;
10304 if (htab->vxworks_p && info->shared)
10309 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10311 val = elf32_arm_vxworks_shared_plt_entry[i];
10313 val |= got_address - sgot->output_section->vma;
10315 val |= plt_index * RELOC_SIZE (htab);
10316 if (i == 2 || i == 5)
10317 bfd_put_32 (output_bfd, val, ptr);
10319 put_arm_insn (htab, output_bfd, val, ptr);
10322 else if (htab->vxworks_p)
10327 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10329 val = elf32_arm_vxworks_exec_plt_entry[i];
10331 val |= got_address;
10333 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10335 val |= plt_index * RELOC_SIZE (htab);
10336 if (i == 2 || i == 5)
10337 bfd_put_32 (output_bfd, val, ptr);
10339 put_arm_insn (htab, output_bfd, val, ptr);
10342 loc = (htab->srelplt2->contents
10343 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10345 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10346 referencing the GOT for this PLT entry. */
10347 rel.r_offset = plt_address + 8;
10348 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10349 rel.r_addend = got_offset;
10350 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10351 loc += RELOC_SIZE (htab);
10353 /* Create the R_ARM_ABS32 relocation referencing the
10354 beginning of the PLT for this GOT entry. */
10355 rel.r_offset = got_address;
10356 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10358 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10362 bfd_signed_vma thumb_refs;
10363 /* Calculate the displacement between the PLT slot and the
10364 entry in the GOT. The eight-byte offset accounts for the
10365 value produced by adding to pc in the first instruction
10366 of the PLT stub. */
10367 got_displacement = got_address - (plt_address + 8);
10369 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
10371 thumb_refs = eh->plt_thumb_refcount;
10372 if (!htab->use_blx)
10373 thumb_refs += eh->plt_maybe_thumb_refcount;
10375 if (thumb_refs > 0)
10377 put_thumb_insn (htab, output_bfd,
10378 elf32_arm_plt_thumb_stub[0], ptr - 4);
10379 put_thumb_insn (htab, output_bfd,
10380 elf32_arm_plt_thumb_stub[1], ptr - 2);
10383 put_arm_insn (htab, output_bfd,
10384 elf32_arm_plt_entry[0]
10385 | ((got_displacement & 0x0ff00000) >> 20),
10387 put_arm_insn (htab, output_bfd,
10388 elf32_arm_plt_entry[1]
10389 | ((got_displacement & 0x000ff000) >> 12),
10391 put_arm_insn (htab, output_bfd,
10392 elf32_arm_plt_entry[2]
10393 | (got_displacement & 0x00000fff),
10395 #ifdef FOUR_WORD_PLT
10396 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
10400 /* Fill in the entry in the global offset table. */
10401 bfd_put_32 (output_bfd,
10402 (splt->output_section->vma
10403 + splt->output_offset),
10404 sgot->contents + got_offset);
10406 /* Fill in the entry in the .rel(a).plt section. */
10408 rel.r_offset = got_address;
10409 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
10412 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10413 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10415 if (!h->def_regular)
10417 /* Mark the symbol as undefined, rather than as defined in
10418 the .plt section. Leave the value alone. */
10419 sym->st_shndx = SHN_UNDEF;
10420 /* If the symbol is weak, we do need to clear the value.
10421 Otherwise, the PLT entry would provide a definition for
10422 the symbol even if the symbol wasn't defined anywhere,
10423 and so the symbol would never be NULL. */
10424 if (!h->ref_regular_nonweak)
10429 if (h->got.offset != (bfd_vma) -1
10430 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
10431 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
10435 Elf_Internal_Rela rel;
10439 /* This symbol has an entry in the global offset table. Set it
10441 sgot = bfd_get_section_by_name (dynobj, ".got");
10442 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
10443 BFD_ASSERT (sgot != NULL && srel != NULL);
10445 offset = (h->got.offset & ~(bfd_vma) 1);
10447 rel.r_offset = (sgot->output_section->vma
10448 + sgot->output_offset
10451 /* If this is a static link, or it is a -Bsymbolic link and the
10452 symbol is defined locally or was forced to be local because
10453 of a version file, we just want to emit a RELATIVE reloc.
10454 The entry in the global offset table will already have been
10455 initialized in the relocate_section function. */
10457 && SYMBOL_REFERENCES_LOCAL (info, h))
10459 BFD_ASSERT ((h->got.offset & 1) != 0);
10460 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10461 if (!htab->use_rel)
10463 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
10464 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10469 BFD_ASSERT ((h->got.offset & 1) == 0);
10470 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10471 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10474 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
10475 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10481 Elf_Internal_Rela rel;
10484 /* This symbol needs a copy reloc. Set it up. */
10485 BFD_ASSERT (h->dynindx != -1
10486 && (h->root.type == bfd_link_hash_defined
10487 || h->root.type == bfd_link_hash_defweak));
10489 s = bfd_get_section_by_name (h->root.u.def.section->owner,
10490 RELOC_SECTION (htab, ".bss"));
10491 BFD_ASSERT (s != NULL);
10494 rel.r_offset = (h->root.u.def.value
10495 + h->root.u.def.section->output_section->vma
10496 + h->root.u.def.section->output_offset);
10497 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
10498 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
10499 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10502 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10503 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10504 to the ".got" section. */
10505 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
10506 || (!htab->vxworks_p && h == htab->root.hgot))
10507 sym->st_shndx = SHN_ABS;
10512 /* Finish up the dynamic sections. */
10515 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
10521 dynobj = elf_hash_table (info)->dynobj;
10523 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10524 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
10525 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10527 if (elf_hash_table (info)->dynamic_sections_created)
10530 Elf32_External_Dyn *dyncon, *dynconend;
10531 struct elf32_arm_link_hash_table *htab;
10533 htab = elf32_arm_hash_table (info);
10534 splt = bfd_get_section_by_name (dynobj, ".plt");
10535 BFD_ASSERT (splt != NULL && sdyn != NULL);
10537 dyncon = (Elf32_External_Dyn *) sdyn->contents;
10538 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
10540 for (; dyncon < dynconend; dyncon++)
10542 Elf_Internal_Dyn dyn;
10546 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
10553 if (htab->vxworks_p
10554 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10555 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10560 goto get_vma_if_bpabi;
10563 goto get_vma_if_bpabi;
10566 goto get_vma_if_bpabi;
10568 name = ".gnu.version";
10569 goto get_vma_if_bpabi;
10571 name = ".gnu.version_d";
10572 goto get_vma_if_bpabi;
10574 name = ".gnu.version_r";
10575 goto get_vma_if_bpabi;
10581 name = RELOC_SECTION (htab, ".plt");
10583 s = bfd_get_section_by_name (output_bfd, name);
10584 BFD_ASSERT (s != NULL);
10585 if (!htab->symbian_p)
10586 dyn.d_un.d_ptr = s->vma;
10588 /* In the BPABI, tags in the PT_DYNAMIC section point
10589 at the file offset, not the memory address, for the
10590 convenience of the post linker. */
10591 dyn.d_un.d_ptr = s->filepos;
10592 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10596 if (htab->symbian_p)
10601 s = bfd_get_section_by_name (output_bfd,
10602 RELOC_SECTION (htab, ".plt"));
10603 BFD_ASSERT (s != NULL);
10604 dyn.d_un.d_val = s->size;
10605 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10610 if (!htab->symbian_p)
10612 /* My reading of the SVR4 ABI indicates that the
10613 procedure linkage table relocs (DT_JMPREL) should be
10614 included in the overall relocs (DT_REL). This is
10615 what Solaris does. However, UnixWare can not handle
10616 that case. Therefore, we override the DT_RELSZ entry
10617 here to make it not include the JMPREL relocs. Since
10618 the linker script arranges for .rel(a).plt to follow all
10619 other relocation sections, we don't have to worry
10620 about changing the DT_REL entry. */
10621 s = bfd_get_section_by_name (output_bfd,
10622 RELOC_SECTION (htab, ".plt"));
10624 dyn.d_un.d_val -= s->size;
10625 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10632 /* In the BPABI, the DT_REL tag must point at the file
10633 offset, not the VMA, of the first relocation
10634 section. So, we use code similar to that in
10635 elflink.c, but do not check for SHF_ALLOC on the
10636 relcoation section, since relocations sections are
10637 never allocated under the BPABI. The comments above
10638 about Unixware notwithstanding, we include all of the
10639 relocations here. */
10640 if (htab->symbian_p)
10643 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10644 ? SHT_REL : SHT_RELA);
10645 dyn.d_un.d_val = 0;
10646 for (i = 1; i < elf_numsections (output_bfd); i++)
10648 Elf_Internal_Shdr *hdr
10649 = elf_elfsections (output_bfd)[i];
10650 if (hdr->sh_type == type)
10652 if (dyn.d_tag == DT_RELSZ
10653 || dyn.d_tag == DT_RELASZ)
10654 dyn.d_un.d_val += hdr->sh_size;
10655 else if ((ufile_ptr) hdr->sh_offset
10656 <= dyn.d_un.d_val - 1)
10657 dyn.d_un.d_val = hdr->sh_offset;
10660 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10664 /* Set the bottom bit of DT_INIT/FINI if the
10665 corresponding function is Thumb. */
10667 name = info->init_function;
10670 name = info->fini_function;
10672 /* If it wasn't set by elf_bfd_final_link
10673 then there is nothing to adjust. */
10674 if (dyn.d_un.d_val != 0)
10676 struct elf_link_hash_entry * eh;
10678 eh = elf_link_hash_lookup (elf_hash_table (info), name,
10679 FALSE, FALSE, TRUE);
10681 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
10683 dyn.d_un.d_val |= 1;
10684 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10691 /* Fill in the first entry in the procedure linkage table. */
10692 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
10694 const bfd_vma *plt0_entry;
10695 bfd_vma got_address, plt_address, got_displacement;
10697 /* Calculate the addresses of the GOT and PLT. */
10698 got_address = sgot->output_section->vma + sgot->output_offset;
10699 plt_address = splt->output_section->vma + splt->output_offset;
10701 if (htab->vxworks_p)
10703 /* The VxWorks GOT is relocated by the dynamic linker.
10704 Therefore, we must emit relocations rather than simply
10705 computing the values now. */
10706 Elf_Internal_Rela rel;
10708 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
10709 put_arm_insn (htab, output_bfd, plt0_entry[0],
10710 splt->contents + 0);
10711 put_arm_insn (htab, output_bfd, plt0_entry[1],
10712 splt->contents + 4);
10713 put_arm_insn (htab, output_bfd, plt0_entry[2],
10714 splt->contents + 8);
10715 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
10717 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
10718 rel.r_offset = plt_address + 12;
10719 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10721 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
10722 htab->srelplt2->contents);
10726 got_displacement = got_address - (plt_address + 16);
10728 plt0_entry = elf32_arm_plt0_entry;
10729 put_arm_insn (htab, output_bfd, plt0_entry[0],
10730 splt->contents + 0);
10731 put_arm_insn (htab, output_bfd, plt0_entry[1],
10732 splt->contents + 4);
10733 put_arm_insn (htab, output_bfd, plt0_entry[2],
10734 splt->contents + 8);
10735 put_arm_insn (htab, output_bfd, plt0_entry[3],
10736 splt->contents + 12);
10738 #ifdef FOUR_WORD_PLT
10739 /* The displacement value goes in the otherwise-unused
10740 last word of the second entry. */
10741 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
10743 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
10748 /* UnixWare sets the entsize of .plt to 4, although that doesn't
10749 really seem like the right value. */
10750 if (splt->output_section->owner == output_bfd)
10751 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
10753 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
10755 /* Correct the .rel(a).plt.unloaded relocations. They will have
10756 incorrect symbol indexes. */
10760 num_plts = ((htab->splt->size - htab->plt_header_size)
10761 / htab->plt_entry_size);
10762 p = htab->srelplt2->contents + RELOC_SIZE (htab);
10764 for (; num_plts; num_plts--)
10766 Elf_Internal_Rela rel;
10768 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10769 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10770 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10771 p += RELOC_SIZE (htab);
10773 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10774 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10775 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10776 p += RELOC_SIZE (htab);
10781 /* Fill in the first three entries in the global offset table. */
10784 if (sgot->size > 0)
10787 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
10789 bfd_put_32 (output_bfd,
10790 sdyn->output_section->vma + sdyn->output_offset,
10792 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
10793 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
10796 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
10803 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10805 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10806 struct elf32_arm_link_hash_table *globals;
10808 i_ehdrp = elf_elfheader (abfd);
10810 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
10811 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
10813 i_ehdrp->e_ident[EI_OSABI] = 0;
10814 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
10818 globals = elf32_arm_hash_table (link_info);
10819 if (globals->byteswap_code)
10820 i_ehdrp->e_flags |= EF_ARM_BE8;
10824 static enum elf_reloc_type_class
10825 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
10827 switch ((int) ELF32_R_TYPE (rela->r_info))
10829 case R_ARM_RELATIVE:
10830 return reloc_class_relative;
10831 case R_ARM_JUMP_SLOT:
10832 return reloc_class_plt;
10834 return reloc_class_copy;
10836 return reloc_class_normal;
10840 /* Set the right machine number for an Arm ELF file. */
10843 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
10845 if (hdr->sh_type == SHT_NOTE)
10846 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
10852 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
10854 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
10857 /* Return TRUE if this is an unwinding table entry. */
10860 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
10862 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
10863 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
10867 /* Set the type and flags for an ARM section. We do this by
10868 the section name, which is a hack, but ought to work. */
10871 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
10875 name = bfd_get_section_name (abfd, sec);
10877 if (is_arm_elf_unwind_section_name (abfd, name))
10879 hdr->sh_type = SHT_ARM_EXIDX;
10880 hdr->sh_flags |= SHF_LINK_ORDER;
10885 /* Handle an ARM specific section when reading an object file. This is
10886 called when bfd_section_from_shdr finds a section with an unknown
10890 elf32_arm_section_from_shdr (bfd *abfd,
10891 Elf_Internal_Shdr * hdr,
10895 /* There ought to be a place to keep ELF backend specific flags, but
10896 at the moment there isn't one. We just keep track of the
10897 sections by their name, instead. Fortunately, the ABI gives
10898 names for all the ARM specific sections, so we will probably get
10900 switch (hdr->sh_type)
10902 case SHT_ARM_EXIDX:
10903 case SHT_ARM_PREEMPTMAP:
10904 case SHT_ARM_ATTRIBUTES:
10911 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
10917 /* A structure used to record a list of sections, independently
10918 of the next and prev fields in the asection structure. */
10919 typedef struct section_list
10922 struct section_list * next;
10923 struct section_list * prev;
10927 /* Unfortunately we need to keep a list of sections for which
10928 an _arm_elf_section_data structure has been allocated. This
10929 is because it is possible for functions like elf32_arm_write_section
10930 to be called on a section which has had an elf_data_structure
10931 allocated for it (and so the used_by_bfd field is valid) but
10932 for which the ARM extended version of this structure - the
10933 _arm_elf_section_data structure - has not been allocated. */
10934 static section_list * sections_with_arm_elf_section_data = NULL;
10937 record_section_with_arm_elf_section_data (asection * sec)
10939 struct section_list * entry;
10941 entry = bfd_malloc (sizeof (* entry));
10945 entry->next = sections_with_arm_elf_section_data;
10946 entry->prev = NULL;
10947 if (entry->next != NULL)
10948 entry->next->prev = entry;
10949 sections_with_arm_elf_section_data = entry;
10952 static struct section_list *
10953 find_arm_elf_section_entry (asection * sec)
10955 struct section_list * entry;
10956 static struct section_list * last_entry = NULL;
10958 /* This is a short cut for the typical case where the sections are added
10959 to the sections_with_arm_elf_section_data list in forward order and
10960 then looked up here in backwards order. This makes a real difference
10961 to the ld-srec/sec64k.exp linker test. */
10962 entry = sections_with_arm_elf_section_data;
10963 if (last_entry != NULL)
10965 if (last_entry->sec == sec)
10966 entry = last_entry;
10967 else if (last_entry->next != NULL
10968 && last_entry->next->sec == sec)
10969 entry = last_entry->next;
10972 for (; entry; entry = entry->next)
10973 if (entry->sec == sec)
10977 /* Record the entry prior to this one - it is the entry we are most
10978 likely to want to locate next time. Also this way if we have been
10979 called from unrecord_section_with_arm_elf_section_data() we will not
10980 be caching a pointer that is about to be freed. */
10981 last_entry = entry->prev;
10986 static _arm_elf_section_data *
10987 get_arm_elf_section_data (asection * sec)
10989 struct section_list * entry;
10991 entry = find_arm_elf_section_entry (sec);
10994 return elf32_arm_section_data (entry->sec);
11000 unrecord_section_with_arm_elf_section_data (asection * sec)
11002 struct section_list * entry;
11004 entry = find_arm_elf_section_entry (sec);
11008 if (entry->prev != NULL)
11009 entry->prev->next = entry->next;
11010 if (entry->next != NULL)
11011 entry->next->prev = entry->prev;
11012 if (entry == sections_with_arm_elf_section_data)
11013 sections_with_arm_elf_section_data = entry->next;
11022 struct bfd_link_info *info;
11025 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11026 asection *, struct elf_link_hash_entry *);
11027 } output_arch_syminfo;
11029 enum map_symbol_type
11037 /* Output a single PLT mapping symbol. */
11040 elf32_arm_ouput_plt_map_sym (output_arch_syminfo *osi,
11041 enum map_symbol_type type,
11044 static const char *names[3] = {"$a", "$t", "$d"};
11045 struct elf32_arm_link_hash_table *htab;
11046 Elf_Internal_Sym sym;
11048 htab = elf32_arm_hash_table (osi->info);
11049 sym.st_value = osi->sec->output_section->vma
11050 + osi->sec->output_offset
11054 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11055 sym.st_shndx = osi->sec_shndx;
11056 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11062 /* Output mapping symbols for PLT entries associated with H. */
11065 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11067 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11068 struct elf32_arm_link_hash_table *htab;
11069 struct elf32_arm_link_hash_entry *eh;
11072 htab = elf32_arm_hash_table (osi->info);
11074 if (h->root.type == bfd_link_hash_indirect)
11077 if (h->root.type == bfd_link_hash_warning)
11078 /* When warning symbols are created, they **replace** the "real"
11079 entry in the hash table, thus we never get to see the real
11080 symbol in a hash traversal. So look at it now. */
11081 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11083 if (h->plt.offset == (bfd_vma) -1)
11086 eh = (struct elf32_arm_link_hash_entry *) h;
11087 addr = h->plt.offset;
11088 if (htab->symbian_p)
11090 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11092 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 4))
11095 else if (htab->vxworks_p)
11097 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11099 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8))
11101 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr + 12))
11103 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 20))
11108 bfd_signed_vma thumb_refs;
11110 thumb_refs = eh->plt_thumb_refcount;
11111 if (!htab->use_blx)
11112 thumb_refs += eh->plt_maybe_thumb_refcount;
11114 if (thumb_refs > 0)
11116 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11119 #ifdef FOUR_WORD_PLT
11120 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11122 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 12))
11125 /* A three-word PLT with no Thumb thunk contains only Arm code,
11126 so only need to output a mapping symbol for the first PLT entry and
11127 entries with thumb thunks. */
11128 if (thumb_refs > 0 || addr == 20)
11130 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11140 /* Output mapping symbols for linker generated sections. */
11143 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11144 struct bfd_link_info *info,
11146 bfd_boolean (*func) (void *, const char *,
11147 Elf_Internal_Sym *,
11149 struct elf_link_hash_entry *))
11151 output_arch_syminfo osi;
11152 struct elf32_arm_link_hash_table *htab;
11154 bfd_size_type size;
11156 htab = elf32_arm_hash_table (info);
11157 check_use_blx (htab);
11163 /* ARM->Thumb glue. */
11164 if (htab->arm_glue_size > 0)
11166 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11167 ARM2THUMB_GLUE_SECTION_NAME);
11169 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11170 (output_bfd, osi.sec->output_section);
11171 if (info->shared || htab->root.is_relocatable_executable
11172 || htab->pic_veneer)
11173 size = ARM2THUMB_PIC_GLUE_SIZE;
11174 else if (htab->use_blx)
11175 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11177 size = ARM2THUMB_STATIC_GLUE_SIZE;
11179 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11181 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset);
11182 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11186 /* Thumb->ARM glue. */
11187 if (htab->thumb_glue_size > 0)
11189 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11190 THUMB2ARM_GLUE_SECTION_NAME);
11192 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11193 (output_bfd, osi.sec->output_section);
11194 size = THUMB2ARM_GLUE_SIZE;
11196 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11198 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_THUMB, offset);
11199 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11203 /* ARMv4 BX veneers. */
11204 if (htab->bx_glue_size > 0)
11206 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11207 ARM_BX_GLUE_SECTION_NAME);
11209 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11210 (output_bfd, osi.sec->output_section);
11212 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0);
11215 /* Finally, output mapping symbols for the PLT. */
11216 if (!htab->splt || htab->splt->size == 0)
11219 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11220 htab->splt->output_section);
11221 osi.sec = htab->splt;
11222 /* Output mapping symbols for the plt header. SymbianOS does not have a
11224 if (htab->vxworks_p)
11226 /* VxWorks shared libraries have no PLT header. */
11229 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
11231 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 12))
11235 else if (!htab->symbian_p)
11237 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
11239 #ifndef FOUR_WORD_PLT
11240 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 16))
11245 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
11249 /* Allocate target specific section data. */
11252 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
11254 if (!sec->used_by_bfd)
11256 _arm_elf_section_data *sdata;
11257 bfd_size_type amt = sizeof (*sdata);
11259 sdata = bfd_zalloc (abfd, amt);
11262 sec->used_by_bfd = sdata;
11265 record_section_with_arm_elf_section_data (sec);
11267 return _bfd_elf_new_section_hook (abfd, sec);
11271 /* Used to order a list of mapping symbols by address. */
11274 elf32_arm_compare_mapping (const void * a, const void * b)
11276 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
11277 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
11279 if (amap->vma > bmap->vma)
11281 else if (amap->vma < bmap->vma)
11283 else if (amap->type > bmap->type)
11284 /* Ensure results do not depend on the host qsort for objects with
11285 multiple mapping symbols at the same address by sorting on type
11288 else if (amap->type < bmap->type)
11295 /* Do code byteswapping. Return FALSE afterwards so that the section is
11296 written out as normal. */
11299 elf32_arm_write_section (bfd *output_bfd,
11300 struct bfd_link_info *link_info, asection *sec,
11301 bfd_byte *contents)
11303 int mapcount, errcount;
11304 _arm_elf_section_data *arm_data;
11305 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
11306 elf32_arm_section_map *map;
11307 elf32_vfp11_erratum_list *errnode;
11310 bfd_vma offset = sec->output_section->vma + sec->output_offset;
11314 /* If this section has not been allocated an _arm_elf_section_data
11315 structure then we cannot record anything. */
11316 arm_data = get_arm_elf_section_data (sec);
11317 if (arm_data == NULL)
11320 mapcount = arm_data->mapcount;
11321 map = arm_data->map;
11322 errcount = arm_data->erratumcount;
11326 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
11328 for (errnode = arm_data->erratumlist; errnode != 0;
11329 errnode = errnode->next)
11331 bfd_vma index = errnode->vma - offset;
11333 switch (errnode->type)
11335 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
11337 bfd_vma branch_to_veneer;
11338 /* Original condition code of instruction, plus bit mask for
11339 ARM B instruction. */
11340 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
11343 /* The instruction is before the label. */
11346 /* Above offset included in -4 below. */
11347 branch_to_veneer = errnode->u.b.veneer->vma
11348 - errnode->vma - 4;
11350 if ((signed) branch_to_veneer < -(1 << 25)
11351 || (signed) branch_to_veneer >= (1 << 25))
11352 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11353 "range"), output_bfd);
11355 insn |= (branch_to_veneer >> 2) & 0xffffff;
11356 contents[endianflip ^ index] = insn & 0xff;
11357 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11358 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11359 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11363 case VFP11_ERRATUM_ARM_VENEER:
11365 bfd_vma branch_from_veneer;
11368 /* Take size of veneer into account. */
11369 branch_from_veneer = errnode->u.v.branch->vma
11370 - errnode->vma - 12;
11372 if ((signed) branch_from_veneer < -(1 << 25)
11373 || (signed) branch_from_veneer >= (1 << 25))
11374 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11375 "range"), output_bfd);
11377 /* Original instruction. */
11378 insn = errnode->u.v.branch->u.b.vfp_insn;
11379 contents[endianflip ^ index] = insn & 0xff;
11380 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11381 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11382 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11384 /* Branch back to insn after original insn. */
11385 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
11386 contents[endianflip ^ (index + 4)] = insn & 0xff;
11387 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
11388 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
11389 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
11402 if (globals->byteswap_code)
11404 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
11407 for (i = 0; i < mapcount; i++)
11409 if (i == mapcount - 1)
11412 end = map[i + 1].vma;
11414 switch (map[i].type)
11417 /* Byte swap code words. */
11418 while (ptr + 3 < end)
11420 tmp = contents[ptr];
11421 contents[ptr] = contents[ptr + 3];
11422 contents[ptr + 3] = tmp;
11423 tmp = contents[ptr + 1];
11424 contents[ptr + 1] = contents[ptr + 2];
11425 contents[ptr + 2] = tmp;
11431 /* Byte swap code halfwords. */
11432 while (ptr + 1 < end)
11434 tmp = contents[ptr];
11435 contents[ptr] = contents[ptr + 1];
11436 contents[ptr + 1] = tmp;
11442 /* Leave data alone. */
11450 arm_data->mapcount = 0;
11451 arm_data->mapsize = 0;
11452 arm_data->map = NULL;
11453 unrecord_section_with_arm_elf_section_data (sec);
11459 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
11461 void * ignore ATTRIBUTE_UNUSED)
11463 unrecord_section_with_arm_elf_section_data (sec);
11467 elf32_arm_close_and_cleanup (bfd * abfd)
11469 if (abfd->sections)
11470 bfd_map_over_sections (abfd,
11471 unrecord_section_via_map_over_sections,
11474 return _bfd_elf_close_and_cleanup (abfd);
11478 elf32_arm_bfd_free_cached_info (bfd * abfd)
11480 if (abfd->sections)
11481 bfd_map_over_sections (abfd,
11482 unrecord_section_via_map_over_sections,
11485 return _bfd_free_cached_info (abfd);
11488 /* Display STT_ARM_TFUNC symbols as functions. */
11491 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
11494 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
11496 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
11497 elfsym->symbol.flags |= BSF_FUNCTION;
11501 /* Mangle thumb function symbols as we read them in. */
11504 elf32_arm_swap_symbol_in (bfd * abfd,
11507 Elf_Internal_Sym *dst)
11509 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
11512 /* New EABI objects mark thumb function symbols by setting the low bit of
11513 the address. Turn these into STT_ARM_TFUNC. */
11514 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
11515 && (dst->st_value & 1))
11517 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
11518 dst->st_value &= ~(bfd_vma) 1;
11524 /* Mangle thumb function symbols as we write them out. */
11527 elf32_arm_swap_symbol_out (bfd *abfd,
11528 const Elf_Internal_Sym *src,
11532 Elf_Internal_Sym newsym;
11534 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
11535 of the address set, as per the new EABI. We do this unconditionally
11536 because objcopy does not set the elf header flags until after
11537 it writes out the symbol table. */
11538 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
11541 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
11542 if (newsym.st_shndx != SHN_UNDEF)
11544 /* Do this only for defined symbols. At link type, the static
11545 linker will simulate the work of dynamic linker of resolving
11546 symbols and will carry over the thumbness of found symbols to
11547 the output symbol table. It's not clear how it happens, but
11548 the thumbness of undefined symbols can well be different at
11549 runtime, and writing '1' for them will be confusing for users
11550 and possibly for dynamic linker itself.
11552 newsym.st_value |= 1;
11557 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
11560 /* Add the PT_ARM_EXIDX program header. */
11563 elf32_arm_modify_segment_map (bfd *abfd,
11564 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11566 struct elf_segment_map *m;
11569 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11570 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11572 /* If there is already a PT_ARM_EXIDX header, then we do not
11573 want to add another one. This situation arises when running
11574 "strip"; the input binary already has the header. */
11575 m = elf_tdata (abfd)->segment_map;
11576 while (m && m->p_type != PT_ARM_EXIDX)
11580 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
11583 m->p_type = PT_ARM_EXIDX;
11585 m->sections[0] = sec;
11587 m->next = elf_tdata (abfd)->segment_map;
11588 elf_tdata (abfd)->segment_map = m;
11595 /* We may add a PT_ARM_EXIDX program header. */
11598 elf32_arm_additional_program_headers (bfd *abfd,
11599 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11603 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11604 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11610 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
11613 elf32_arm_is_function_type (unsigned int type)
11615 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
11618 /* We use this to override swap_symbol_in and swap_symbol_out. */
11619 const struct elf_size_info elf32_arm_size_info =
11621 sizeof (Elf32_External_Ehdr),
11622 sizeof (Elf32_External_Phdr),
11623 sizeof (Elf32_External_Shdr),
11624 sizeof (Elf32_External_Rel),
11625 sizeof (Elf32_External_Rela),
11626 sizeof (Elf32_External_Sym),
11627 sizeof (Elf32_External_Dyn),
11628 sizeof (Elf_External_Note),
11632 ELFCLASS32, EV_CURRENT,
11633 bfd_elf32_write_out_phdrs,
11634 bfd_elf32_write_shdrs_and_ehdr,
11635 bfd_elf32_checksum_contents,
11636 bfd_elf32_write_relocs,
11637 elf32_arm_swap_symbol_in,
11638 elf32_arm_swap_symbol_out,
11639 bfd_elf32_slurp_reloc_table,
11640 bfd_elf32_slurp_symbol_table,
11641 bfd_elf32_swap_dyn_in,
11642 bfd_elf32_swap_dyn_out,
11643 bfd_elf32_swap_reloc_in,
11644 bfd_elf32_swap_reloc_out,
11645 bfd_elf32_swap_reloca_in,
11646 bfd_elf32_swap_reloca_out
11649 #define ELF_ARCH bfd_arch_arm
11650 #define ELF_MACHINE_CODE EM_ARM
11651 #ifdef __QNXTARGET__
11652 #define ELF_MAXPAGESIZE 0x1000
11654 #define ELF_MAXPAGESIZE 0x8000
11656 #define ELF_MINPAGESIZE 0x1000
11657 #define ELF_COMMONPAGESIZE 0x1000
11659 #define bfd_elf32_mkobject elf32_arm_mkobject
11661 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
11662 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
11663 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
11664 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
11665 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
11666 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
11667 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
11668 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
11669 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
11670 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
11671 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
11672 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
11673 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
11674 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
11676 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
11677 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
11678 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
11679 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
11680 #define elf_backend_check_relocs elf32_arm_check_relocs
11681 #define elf_backend_relocate_section elf32_arm_relocate_section
11682 #define elf_backend_write_section elf32_arm_write_section
11683 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
11684 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
11685 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
11686 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
11687 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
11688 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
11689 #define elf_backend_post_process_headers elf32_arm_post_process_headers
11690 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
11691 #define elf_backend_object_p elf32_arm_object_p
11692 #define elf_backend_section_flags elf32_arm_section_flags
11693 #define elf_backend_fake_sections elf32_arm_fake_sections
11694 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
11695 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11696 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
11697 #define elf_backend_symbol_processing elf32_arm_symbol_processing
11698 #define elf_backend_size_info elf32_arm_size_info
11699 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
11700 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
11701 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
11702 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
11703 #define elf_backend_is_function_type elf32_arm_is_function_type
11705 #define elf_backend_can_refcount 1
11706 #define elf_backend_can_gc_sections 1
11707 #define elf_backend_plt_readonly 1
11708 #define elf_backend_want_got_plt 1
11709 #define elf_backend_want_plt_sym 0
11710 #define elf_backend_may_use_rel_p 1
11711 #define elf_backend_may_use_rela_p 0
11712 #define elf_backend_default_use_rela_p 0
11714 #define elf_backend_got_header_size 12
11716 #undef elf_backend_obj_attrs_vendor
11717 #define elf_backend_obj_attrs_vendor "aeabi"
11718 #undef elf_backend_obj_attrs_section
11719 #define elf_backend_obj_attrs_section ".ARM.attributes"
11720 #undef elf_backend_obj_attrs_arg_type
11721 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
11722 #undef elf_backend_obj_attrs_section_type
11723 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
11725 #include "elf32-target.h"
11727 /* VxWorks Targets. */
11729 #undef TARGET_LITTLE_SYM
11730 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
11731 #undef TARGET_LITTLE_NAME
11732 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
11733 #undef TARGET_BIG_SYM
11734 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
11735 #undef TARGET_BIG_NAME
11736 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
11738 /* Like elf32_arm_link_hash_table_create -- but overrides
11739 appropriately for VxWorks. */
11741 static struct bfd_link_hash_table *
11742 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
11744 struct bfd_link_hash_table *ret;
11746 ret = elf32_arm_link_hash_table_create (abfd);
11749 struct elf32_arm_link_hash_table *htab
11750 = (struct elf32_arm_link_hash_table *) ret;
11752 htab->vxworks_p = 1;
11758 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
11760 elf32_arm_final_write_processing (abfd, linker);
11761 elf_vxworks_final_write_processing (abfd, linker);
11765 #define elf32_bed elf32_arm_vxworks_bed
11767 #undef bfd_elf32_bfd_link_hash_table_create
11768 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
11769 #undef elf_backend_add_symbol_hook
11770 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
11771 #undef elf_backend_final_write_processing
11772 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
11773 #undef elf_backend_emit_relocs
11774 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
11776 #undef elf_backend_may_use_rel_p
11777 #define elf_backend_may_use_rel_p 0
11778 #undef elf_backend_may_use_rela_p
11779 #define elf_backend_may_use_rela_p 1
11780 #undef elf_backend_default_use_rela_p
11781 #define elf_backend_default_use_rela_p 1
11782 #undef elf_backend_want_plt_sym
11783 #define elf_backend_want_plt_sym 1
11784 #undef ELF_MAXPAGESIZE
11785 #define ELF_MAXPAGESIZE 0x1000
11787 #include "elf32-target.h"
11790 /* Symbian OS Targets. */
11792 #undef TARGET_LITTLE_SYM
11793 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
11794 #undef TARGET_LITTLE_NAME
11795 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
11796 #undef TARGET_BIG_SYM
11797 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
11798 #undef TARGET_BIG_NAME
11799 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
11801 /* Like elf32_arm_link_hash_table_create -- but overrides
11802 appropriately for Symbian OS. */
11804 static struct bfd_link_hash_table *
11805 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
11807 struct bfd_link_hash_table *ret;
11809 ret = elf32_arm_link_hash_table_create (abfd);
11812 struct elf32_arm_link_hash_table *htab
11813 = (struct elf32_arm_link_hash_table *)ret;
11814 /* There is no PLT header for Symbian OS. */
11815 htab->plt_header_size = 0;
11816 /* The PLT entries are each one instruction and one word. */
11817 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
11818 htab->symbian_p = 1;
11819 /* Symbian uses armv5t or above, so use_blx is always true. */
11821 htab->root.is_relocatable_executable = 1;
11826 static const struct bfd_elf_special_section
11827 elf32_arm_symbian_special_sections[] =
11829 /* In a BPABI executable, the dynamic linking sections do not go in
11830 the loadable read-only segment. The post-linker may wish to
11831 refer to these sections, but they are not part of the final
11833 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
11834 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
11835 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
11836 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
11837 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
11838 /* These sections do not need to be writable as the SymbianOS
11839 postlinker will arrange things so that no dynamic relocation is
11841 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
11842 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
11843 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
11844 { NULL, 0, 0, 0, 0 }
11848 elf32_arm_symbian_begin_write_processing (bfd *abfd,
11849 struct bfd_link_info *link_info)
11851 /* BPABI objects are never loaded directly by an OS kernel; they are
11852 processed by a postlinker first, into an OS-specific format. If
11853 the D_PAGED bit is set on the file, BFD will align segments on
11854 page boundaries, so that an OS can directly map the file. With
11855 BPABI objects, that just results in wasted space. In addition,
11856 because we clear the D_PAGED bit, map_sections_to_segments will
11857 recognize that the program headers should not be mapped into any
11858 loadable segment. */
11859 abfd->flags &= ~D_PAGED;
11860 elf32_arm_begin_write_processing (abfd, link_info);
11864 elf32_arm_symbian_modify_segment_map (bfd *abfd,
11865 struct bfd_link_info *info)
11867 struct elf_segment_map *m;
11870 /* BPABI shared libraries and executables should have a PT_DYNAMIC
11871 segment. However, because the .dynamic section is not marked
11872 with SEC_LOAD, the generic ELF code will not create such a
11874 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
11877 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11878 if (m->p_type == PT_DYNAMIC)
11883 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
11884 m->next = elf_tdata (abfd)->segment_map;
11885 elf_tdata (abfd)->segment_map = m;
11889 /* Also call the generic arm routine. */
11890 return elf32_arm_modify_segment_map (abfd, info);
11893 /* Return address for Ith PLT stub in section PLT, for relocation REL
11894 or (bfd_vma) -1 if it should not be included. */
11897 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
11898 const arelent *rel ATTRIBUTE_UNUSED)
11900 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
11905 #define elf32_bed elf32_arm_symbian_bed
11907 /* The dynamic sections are not allocated on SymbianOS; the postlinker
11908 will process them and then discard them. */
11909 #undef ELF_DYNAMIC_SEC_FLAGS
11910 #define ELF_DYNAMIC_SEC_FLAGS \
11911 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
11913 #undef elf_backend_add_symbol_hook
11914 #undef elf_backend_emit_relocs
11916 #undef bfd_elf32_bfd_link_hash_table_create
11917 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
11918 #undef elf_backend_special_sections
11919 #define elf_backend_special_sections elf32_arm_symbian_special_sections
11920 #undef elf_backend_begin_write_processing
11921 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
11922 #undef elf_backend_final_write_processing
11923 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11925 #undef elf_backend_modify_segment_map
11926 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
11928 /* There is no .got section for BPABI objects, and hence no header. */
11929 #undef elf_backend_got_header_size
11930 #define elf_backend_got_header_size 0
11932 /* Similarly, there is no .got.plt section. */
11933 #undef elf_backend_want_got_plt
11934 #define elf_backend_want_got_plt 0
11936 #undef elf_backend_plt_sym_val
11937 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
11939 #undef elf_backend_may_use_rel_p
11940 #define elf_backend_may_use_rel_p 1
11941 #undef elf_backend_may_use_rela_p
11942 #define elf_backend_may_use_rela_p 0
11943 #undef elf_backend_default_use_rela_p
11944 #define elf_backend_default_use_rela_p 0
11945 #undef elf_backend_want_plt_sym
11946 #define elf_backend_want_plt_sym 0
11947 #undef ELF_MAXPAGESIZE
11948 #define ELF_MAXPAGESIZE 0x8000
11950 #include "elf32-target.h"