1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
29 #include "gdb_obstack.h"
32 #include "expression.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
40 #include "complaints.h"
42 #include "gdb-demangle.h"
44 #include "target-float.h"
46 #include "cp-support.h"
50 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #include "stabsread.h" /* Our own declarations */
58 struct nextfield *next;
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
68 struct next_fnfieldlist
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
74 /* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
78 expected to eventually go away... (FIXME) */
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
87 read_one_struct_field (struct field_info *, const char **, const char *,
88 struct type *, struct objfile *);
90 static struct type *dbx_alloc_type (int[2], struct objfile *);
92 static long read_huge_number (const char **, int, int *, int);
94 static struct type *error_type (const char **, struct objfile *);
97 patch_block_stabs (struct pending *, struct pending_stabs *,
100 static void fix_common_block (struct symbol *, CORE_ADDR);
102 static int read_type_number (const char **, int *);
104 static struct type *read_type (const char **, struct objfile *);
106 static struct type *read_range_type (const char **, int[2],
107 int, struct objfile *);
109 static struct type *read_sun_builtin_type (const char **,
110 int[2], struct objfile *);
112 static struct type *read_sun_floating_type (const char **, int[2],
115 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
117 static struct type *rs6000_builtin_type (int, struct objfile *);
120 read_member_functions (struct field_info *, const char **, struct type *,
124 read_struct_fields (struct field_info *, const char **, struct type *,
128 read_baseclasses (struct field_info *, const char **, struct type *,
132 read_tilde_fields (struct field_info *, const char **, struct type *,
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137 static int attach_fields_to_type (struct field_info *, struct type *,
140 static struct type *read_struct_type (const char **, struct type *,
144 static struct type *read_array_type (const char **, struct type *,
147 static struct field *read_args (const char **, int, struct objfile *,
150 static void add_undefined_type (struct type *, int[2]);
153 read_cpp_abbrev (struct field_info *, const char **, struct type *,
156 static const char *find_name_end (const char *name);
158 static int process_reference (const char **string);
160 void stabsread_clear_cache (void);
162 static const char vptr_name[] = "_vptr$";
163 static const char vb_name[] = "_vb$";
166 invalid_cpp_abbrev_complaint (const char *arg1)
168 complaint (_("invalid C++ abbreviation `%s'"), arg1);
172 reg_value_complaint (int regnum, int num_regs, const char *sym)
174 complaint (_("bad register number %d (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
179 stabs_general_complaint (const char *arg1)
181 complaint ("%s", arg1);
184 /* Make a list of forward references which haven't been defined. */
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
212 /* Vector of types defined so far, indexed by their type numbers.
213 (In newer sun systems, dbx uses a pair of numbers in parens,
214 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
215 Then these numbers must be translated through the type_translations
216 hash table to get the index into the type vector.) */
218 static struct type **type_vector;
220 /* Number of elements allocated for type_vector currently. */
222 static int type_vector_length;
224 /* Initial size of type vector. Is realloc'd larger if needed, and
225 realloc'd down to the size actually used, when completed. */
227 #define INITIAL_TYPE_VECTOR_LENGTH 160
230 /* Look up a dbx type-number pair. Return the address of the slot
231 where the type for that number-pair is stored.
232 The number-pair is in TYPENUMS.
234 This can be used for finding the type associated with that pair
235 or for associating a new type with the pair. */
237 static struct type **
238 dbx_lookup_type (int typenums[2], struct objfile *objfile)
240 int filenum = typenums[0];
241 int index = typenums[1];
244 struct header_file *f;
247 if (filenum == -1) /* -1,-1 is for temporary types. */
250 if (filenum < 0 || filenum >= n_this_object_header_files)
252 complaint (_("Invalid symbol data: type number "
253 "(%d,%d) out of range at symtab pos %d."),
254 filenum, index, symnum);
262 /* Caller wants address of address of type. We think
263 that negative (rs6k builtin) types will never appear as
264 "lvalues", (nor should they), so we stuff the real type
265 pointer into a temp, and return its address. If referenced,
266 this will do the right thing. */
267 static struct type *temp_type;
269 temp_type = rs6000_builtin_type (index, objfile);
273 /* Type is defined outside of header files.
274 Find it in this object file's type vector. */
275 if (index >= type_vector_length)
277 old_len = type_vector_length;
280 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
281 type_vector = XNEWVEC (struct type *, type_vector_length);
283 while (index >= type_vector_length)
285 type_vector_length *= 2;
287 type_vector = (struct type **)
288 xrealloc ((char *) type_vector,
289 (type_vector_length * sizeof (struct type *)));
290 memset (&type_vector[old_len], 0,
291 (type_vector_length - old_len) * sizeof (struct type *));
293 return (&type_vector[index]);
297 real_filenum = this_object_header_files[filenum];
299 if (real_filenum >= N_HEADER_FILES (objfile))
301 static struct type *temp_type;
303 warning (_("GDB internal error: bad real_filenum"));
306 temp_type = objfile_type (objfile)->builtin_error;
310 f = HEADER_FILES (objfile) + real_filenum;
312 f_orig_length = f->length;
313 if (index >= f_orig_length)
315 while (index >= f->length)
319 f->vector = (struct type **)
320 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
321 memset (&f->vector[f_orig_length], 0,
322 (f->length - f_orig_length) * sizeof (struct type *));
324 return (&f->vector[index]);
328 /* Make sure there is a type allocated for type numbers TYPENUMS
329 and return the type object.
330 This can create an empty (zeroed) type object.
331 TYPENUMS may be (-1, -1) to return a new type object that is not
332 put into the type vector, and so may not be referred to by number. */
335 dbx_alloc_type (int typenums[2], struct objfile *objfile)
337 struct type **type_addr;
339 if (typenums[0] == -1)
341 return (alloc_type (objfile));
344 type_addr = dbx_lookup_type (typenums, objfile);
346 /* If we are referring to a type not known at all yet,
347 allocate an empty type for it.
348 We will fill it in later if we find out how. */
351 *type_addr = alloc_type (objfile);
357 /* Allocate a floating-point type of size BITS. */
360 dbx_init_float_type (struct objfile *objfile, int bits)
362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
363 const struct floatformat **format;
366 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
368 type = init_float_type (objfile, bits, NULL, format);
370 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
375 /* for all the stabs in a given stab vector, build appropriate types
376 and fix their symbols in given symbol vector. */
379 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
380 struct objfile *objfile)
389 /* for all the stab entries, find their corresponding symbols and
390 patch their types! */
392 for (ii = 0; ii < stabs->count; ++ii)
394 name = stabs->stab[ii];
395 pp = (char *) strchr (name, ':');
396 gdb_assert (pp); /* Must find a ':' or game's over. */
400 pp = (char *) strchr (pp, ':');
402 sym = find_symbol_in_list (symbols, name, pp - name);
405 /* FIXME-maybe: it would be nice if we noticed whether
406 the variable was defined *anywhere*, not just whether
407 it is defined in this compilation unit. But neither
408 xlc or GCC seem to need such a definition, and until
409 we do psymtabs (so that the minimal symbols from all
410 compilation units are available now), I'm not sure
411 how to get the information. */
413 /* On xcoff, if a global is defined and never referenced,
414 ld will remove it from the executable. There is then
415 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
416 sym = allocate_symbol (objfile);
417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
418 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
419 SYMBOL_SET_LINKAGE_NAME
420 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
423 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
425 /* I don't think the linker does this with functions,
426 so as far as I know this is never executed.
427 But it doesn't hurt to check. */
429 lookup_function_type (read_type (&pp, objfile));
433 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
435 add_symbol_to_list (sym, &global_symbols);
440 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
443 lookup_function_type (read_type (&pp, objfile));
447 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
455 /* Read a number by which a type is referred to in dbx data,
456 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
457 Just a single number N is equivalent to (0,N).
458 Return the two numbers by storing them in the vector TYPENUMS.
459 TYPENUMS will then be used as an argument to dbx_lookup_type.
461 Returns 0 for success, -1 for error. */
464 read_type_number (const char **pp, int *typenums)
471 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
474 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
481 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
489 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
490 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
491 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
492 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
494 /* Structure for storing pointers to reference definitions for fast lookup
495 during "process_later". */
504 #define MAX_CHUNK_REFS 100
505 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
506 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
508 static struct ref_map *ref_map;
510 /* Ptr to free cell in chunk's linked list. */
511 static int ref_count = 0;
513 /* Number of chunks malloced. */
514 static int ref_chunk = 0;
516 /* This file maintains a cache of stabs aliases found in the symbol
517 table. If the symbol table changes, this cache must be cleared
518 or we are left holding onto data in invalid obstacks. */
520 stabsread_clear_cache (void)
526 /* Create array of pointers mapping refids to symbols and stab strings.
527 Add pointers to reference definition symbols and/or their values as we
528 find them, using their reference numbers as our index.
529 These will be used later when we resolve references. */
531 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
535 if (refnum >= ref_count)
536 ref_count = refnum + 1;
537 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
539 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
540 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
542 ref_map = (struct ref_map *)
543 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
544 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
545 new_chunks * REF_CHUNK_SIZE);
546 ref_chunk += new_chunks;
548 ref_map[refnum].stabs = stabs;
549 ref_map[refnum].sym = sym;
550 ref_map[refnum].value = value;
553 /* Return defined sym for the reference REFNUM. */
555 ref_search (int refnum)
557 if (refnum < 0 || refnum > ref_count)
559 return ref_map[refnum].sym;
562 /* Parse a reference id in STRING and return the resulting
563 reference number. Move STRING beyond the reference id. */
566 process_reference (const char **string)
574 /* Advance beyond the initial '#'. */
577 /* Read number as reference id. */
578 while (*p && isdigit (*p))
580 refnum = refnum * 10 + *p - '0';
587 /* If STRING defines a reference, store away a pointer to the reference
588 definition for later use. Return the reference number. */
591 symbol_reference_defined (const char **string)
593 const char *p = *string;
596 refnum = process_reference (&p);
598 /* Defining symbols end in '='. */
601 /* Symbol is being defined here. */
607 /* Must be a reference. Either the symbol has already been defined,
608 or this is a forward reference to it. */
615 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
617 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
620 || regno >= (gdbarch_num_regs (gdbarch)
621 + gdbarch_num_pseudo_regs (gdbarch)))
623 reg_value_complaint (regno,
624 gdbarch_num_regs (gdbarch)
625 + gdbarch_num_pseudo_regs (gdbarch),
626 SYMBOL_PRINT_NAME (sym));
628 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
634 static const struct symbol_register_ops stab_register_funcs = {
638 /* The "aclass" indices for computed symbols. */
640 static int stab_register_index;
641 static int stab_regparm_index;
644 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
645 struct objfile *objfile)
647 struct gdbarch *gdbarch = get_objfile_arch (objfile);
649 const char *p = find_name_end (string);
654 /* We would like to eliminate nameless symbols, but keep their types.
655 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
656 to type 2, but, should not create a symbol to address that type. Since
657 the symbol will be nameless, there is no way any user can refer to it. */
661 /* Ignore syms with empty names. */
665 /* Ignore old-style symbols from cc -go. */
676 _("Bad stabs string '%s'"), string);
681 /* If a nameless stab entry, all we need is the type, not the symbol.
682 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
683 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
685 current_symbol = sym = allocate_symbol (objfile);
687 if (processing_gcc_compilation)
689 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
690 number of bytes occupied by a type or object, which we ignore. */
691 SYMBOL_LINE (sym) = desc;
695 SYMBOL_LINE (sym) = 0; /* unknown */
698 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
699 &objfile->objfile_obstack);
701 if (is_cplus_marker (string[0]))
703 /* Special GNU C++ names. */
707 SYMBOL_SET_LINKAGE_NAME (sym, "this");
710 case 'v': /* $vtbl_ptr_type */
714 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
718 /* This was an anonymous type that was never fixed up. */
722 /* SunPRO (3.0 at least) static variable encoding. */
723 if (gdbarch_static_transform_name_p (gdbarch))
728 complaint (_("Unknown C++ symbol name `%s'"),
730 goto normal; /* Do *something* with it. */
736 std::string new_name;
738 if (SYMBOL_LANGUAGE (sym) == language_cplus)
740 char *name = (char *) alloca (p - string + 1);
742 memcpy (name, string, p - string);
743 name[p - string] = '\0';
744 new_name = cp_canonicalize_string (name);
746 if (!new_name.empty ())
748 SYMBOL_SET_NAMES (sym,
749 new_name.c_str (), new_name.length (),
753 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
755 if (SYMBOL_LANGUAGE (sym) == language_cplus)
756 cp_scan_for_anonymous_namespaces (sym, objfile);
761 /* Determine the type of name being defined. */
763 /* Getting GDB to correctly skip the symbol on an undefined symbol
764 descriptor and not ever dump core is a very dodgy proposition if
765 we do things this way. I say the acorn RISC machine can just
766 fix their compiler. */
767 /* The Acorn RISC machine's compiler can put out locals that don't
768 start with "234=" or "(3,4)=", so assume anything other than the
769 deftypes we know how to handle is a local. */
770 if (!strchr ("cfFGpPrStTvVXCR", *p))
772 if (isdigit (*p) || *p == '(' || *p == '-')
781 /* c is a special case, not followed by a type-number.
782 SYMBOL:c=iVALUE for an integer constant symbol.
783 SYMBOL:c=rVALUE for a floating constant symbol.
784 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
785 e.g. "b:c=e6,0" for "const b = blob1"
786 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
789 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
790 SYMBOL_TYPE (sym) = error_type (&p, objfile);
791 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
792 add_symbol_to_list (sym, &file_symbols);
801 struct type *dbl_type;
803 dbl_type = objfile_type (objfile)->builtin_double;
805 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
806 TYPE_LENGTH (dbl_type));
808 target_float_from_string (dbl_valu, dbl_type, std::string (p));
810 SYMBOL_TYPE (sym) = dbl_type;
811 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
812 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
817 /* Defining integer constants this way is kind of silly,
818 since 'e' constants allows the compiler to give not
819 only the value, but the type as well. C has at least
820 int, long, unsigned int, and long long as constant
821 types; other languages probably should have at least
822 unsigned as well as signed constants. */
824 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
825 SYMBOL_VALUE (sym) = atoi (p);
826 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
832 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
833 SYMBOL_VALUE (sym) = atoi (p);
834 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
840 struct type *range_type;
843 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
844 gdb_byte *string_value;
846 if (quote != '\'' && quote != '"')
848 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
849 SYMBOL_TYPE (sym) = error_type (&p, objfile);
850 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
851 add_symbol_to_list (sym, &file_symbols);
855 /* Find matching quote, rejecting escaped quotes. */
856 while (*p && *p != quote)
858 if (*p == '\\' && p[1] == quote)
860 string_local[ind] = (gdb_byte) quote;
866 string_local[ind] = (gdb_byte) (*p);
873 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
874 SYMBOL_TYPE (sym) = error_type (&p, objfile);
875 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
876 add_symbol_to_list (sym, &file_symbols);
880 /* NULL terminate the string. */
881 string_local[ind] = 0;
883 = create_static_range_type (NULL,
884 objfile_type (objfile)->builtin_int,
886 SYMBOL_TYPE (sym) = create_array_type (NULL,
887 objfile_type (objfile)->builtin_char,
890 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
891 memcpy (string_value, string_local, ind + 1);
894 SYMBOL_VALUE_BYTES (sym) = string_value;
895 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
900 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
901 can be represented as integral.
902 e.g. "b:c=e6,0" for "const b = blob1"
903 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
905 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
906 SYMBOL_TYPE (sym) = read_type (&p, objfile);
910 SYMBOL_TYPE (sym) = error_type (&p, objfile);
915 /* If the value is too big to fit in an int (perhaps because
916 it is unsigned), or something like that, we silently get
917 a bogus value. The type and everything else about it is
918 correct. Ideally, we should be using whatever we have
919 available for parsing unsigned and long long values,
921 SYMBOL_VALUE (sym) = atoi (p);
926 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
927 SYMBOL_TYPE (sym) = error_type (&p, objfile);
930 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
931 add_symbol_to_list (sym, &file_symbols);
935 /* The name of a caught exception. */
936 SYMBOL_TYPE (sym) = read_type (&p, objfile);
937 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
938 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
939 SYMBOL_VALUE_ADDRESS (sym) = valu;
940 add_symbol_to_list (sym, &local_symbols);
944 /* A static function definition. */
945 SYMBOL_TYPE (sym) = read_type (&p, objfile);
946 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
947 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
948 add_symbol_to_list (sym, &file_symbols);
949 /* fall into process_function_types. */
951 process_function_types:
952 /* Function result types are described as the result type in stabs.
953 We need to convert this to the function-returning-type-X type
954 in GDB. E.g. "int" is converted to "function returning int". */
955 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
956 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
958 /* All functions in C++ have prototypes. Stabs does not offer an
959 explicit way to identify prototyped or unprototyped functions,
960 but both GCC and Sun CC emit stabs for the "call-as" type rather
961 than the "declared-as" type for unprototyped functions, so
962 we treat all functions as if they were prototyped. This is used
963 primarily for promotion when calling the function from GDB. */
964 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
966 /* fall into process_prototype_types. */
968 process_prototype_types:
969 /* Sun acc puts declared types of arguments here. */
972 struct type *ftype = SYMBOL_TYPE (sym);
977 /* Obtain a worst case guess for the number of arguments
978 by counting the semicolons. */
985 /* Allocate parameter information fields and fill them in. */
986 TYPE_FIELDS (ftype) = (struct field *)
987 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
992 /* A type number of zero indicates the start of varargs.
993 FIXME: GDB currently ignores vararg functions. */
994 if (p[0] == '0' && p[1] == '\0')
996 ptype = read_type (&p, objfile);
998 /* The Sun compilers mark integer arguments, which should
999 be promoted to the width of the calling conventions, with
1000 a type which references itself. This type is turned into
1001 a TYPE_CODE_VOID type by read_type, and we have to turn
1002 it back into builtin_int here.
1003 FIXME: Do we need a new builtin_promoted_int_arg ? */
1004 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1005 ptype = objfile_type (objfile)->builtin_int;
1006 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1007 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1009 TYPE_NFIELDS (ftype) = nparams;
1010 TYPE_PROTOTYPED (ftype) = 1;
1015 /* A global function definition. */
1016 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1017 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1018 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1019 add_symbol_to_list (sym, &global_symbols);
1020 goto process_function_types;
1023 /* For a class G (global) symbol, it appears that the
1024 value is not correct. It is necessary to search for the
1025 corresponding linker definition to find the value.
1026 These definitions appear at the end of the namelist. */
1027 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1028 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1029 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1030 /* Don't add symbol references to global_sym_chain.
1031 Symbol references don't have valid names and wont't match up with
1032 minimal symbols when the global_sym_chain is relocated.
1033 We'll fixup symbol references when we fixup the defining symbol. */
1034 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1036 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1037 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1038 global_sym_chain[i] = sym;
1040 add_symbol_to_list (sym, &global_symbols);
1043 /* This case is faked by a conditional above,
1044 when there is no code letter in the dbx data.
1045 Dbx data never actually contains 'l'. */
1048 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1049 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1050 SYMBOL_VALUE (sym) = valu;
1051 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1052 add_symbol_to_list (sym, &local_symbols);
1057 /* pF is a two-letter code that means a function parameter in Fortran.
1058 The type-number specifies the type of the return value.
1059 Translate it into a pointer-to-function type. */
1063 = lookup_pointer_type
1064 (lookup_function_type (read_type (&p, objfile)));
1067 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1069 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1070 SYMBOL_VALUE (sym) = valu;
1071 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1072 SYMBOL_IS_ARGUMENT (sym) = 1;
1073 add_symbol_to_list (sym, &local_symbols);
1075 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1077 /* On little-endian machines, this crud is never necessary,
1078 and, if the extra bytes contain garbage, is harmful. */
1082 /* If it's gcc-compiled, if it says `short', believe it. */
1083 if (processing_gcc_compilation
1084 || gdbarch_believe_pcc_promotion (gdbarch))
1087 if (!gdbarch_believe_pcc_promotion (gdbarch))
1089 /* If PCC says a parameter is a short or a char, it is
1091 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1092 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1093 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1096 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1097 ? objfile_type (objfile)->builtin_unsigned_int
1098 : objfile_type (objfile)->builtin_int;
1105 /* acc seems to use P to declare the prototypes of functions that
1106 are referenced by this file. gdb is not prepared to deal
1107 with this extra information. FIXME, it ought to. */
1110 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1111 goto process_prototype_types;
1116 /* Parameter which is in a register. */
1117 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1118 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1119 SYMBOL_IS_ARGUMENT (sym) = 1;
1120 SYMBOL_VALUE (sym) = valu;
1121 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1122 add_symbol_to_list (sym, &local_symbols);
1126 /* Register variable (either global or local). */
1127 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1128 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1129 SYMBOL_VALUE (sym) = valu;
1130 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1131 if (within_function)
1133 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1134 the same name to represent an argument passed in a
1135 register. GCC uses 'P' for the same case. So if we find
1136 such a symbol pair we combine it into one 'P' symbol.
1137 For Sun cc we need to do this regardless of
1138 stabs_argument_has_addr, because the compiler puts out
1139 the 'p' symbol even if it never saves the argument onto
1142 On most machines, we want to preserve both symbols, so
1143 that we can still get information about what is going on
1144 with the stack (VAX for computing args_printed, using
1145 stack slots instead of saved registers in backtraces,
1148 Note that this code illegally combines
1149 main(argc) struct foo argc; { register struct foo argc; }
1150 but this case is considered pathological and causes a warning
1151 from a decent compiler. */
1154 && local_symbols->nsyms > 0
1155 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1157 struct symbol *prev_sym;
1159 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1160 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1161 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1162 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1163 SYMBOL_LINKAGE_NAME (sym)) == 0)
1165 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1166 /* Use the type from the LOC_REGISTER; that is the type
1167 that is actually in that register. */
1168 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1169 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1174 add_symbol_to_list (sym, &local_symbols);
1177 add_symbol_to_list (sym, &file_symbols);
1181 /* Static symbol at top level of file. */
1182 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1183 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1184 SYMBOL_VALUE_ADDRESS (sym) = valu;
1185 if (gdbarch_static_transform_name_p (gdbarch)
1186 && gdbarch_static_transform_name (gdbarch,
1187 SYMBOL_LINKAGE_NAME (sym))
1188 != SYMBOL_LINKAGE_NAME (sym))
1190 struct bound_minimal_symbol msym;
1192 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1194 if (msym.minsym != NULL)
1196 const char *new_name = gdbarch_static_transform_name
1197 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1199 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1200 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1203 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1204 add_symbol_to_list (sym, &file_symbols);
1208 /* In Ada, there is no distinction between typedef and non-typedef;
1209 any type declaration implicitly has the equivalent of a typedef,
1210 and thus 't' is in fact equivalent to 'Tt'.
1212 Therefore, for Ada units, we check the character immediately
1213 before the 't', and if we do not find a 'T', then make sure to
1214 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1215 will be stored in the VAR_DOMAIN). If the symbol was indeed
1216 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1217 elsewhere, so we don't need to take care of that.
1219 This is important to do, because of forward references:
1220 The cleanup of undefined types stored in undef_types only uses
1221 STRUCT_DOMAIN symbols to perform the replacement. */
1222 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1225 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1227 /* For a nameless type, we don't want a create a symbol, thus we
1228 did not use `sym'. Return without further processing. */
1232 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1233 SYMBOL_VALUE (sym) = valu;
1234 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1235 /* C++ vagaries: we may have a type which is derived from
1236 a base type which did not have its name defined when the
1237 derived class was output. We fill in the derived class's
1238 base part member's name here in that case. */
1239 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1240 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1241 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1242 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1246 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1247 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1248 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1249 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1252 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1254 /* gcc-2.6 or later (when using -fvtable-thunks)
1255 emits a unique named type for a vtable entry.
1256 Some gdb code depends on that specific name. */
1257 extern const char vtbl_ptr_name[];
1259 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1260 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1261 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1263 /* If we are giving a name to a type such as "pointer to
1264 foo" or "function returning foo", we better not set
1265 the TYPE_NAME. If the program contains "typedef char
1266 *caddr_t;", we don't want all variables of type char
1267 * to print as caddr_t. This is not just a
1268 consequence of GDB's type management; PCC and GCC (at
1269 least through version 2.4) both output variables of
1270 either type char * or caddr_t with the type number
1271 defined in the 't' symbol for caddr_t. If a future
1272 compiler cleans this up it GDB is not ready for it
1273 yet, but if it becomes ready we somehow need to
1274 disable this check (without breaking the PCC/GCC2.4
1279 Fortunately, this check seems not to be necessary
1280 for anything except pointers or functions. */
1281 /* ezannoni: 2000-10-26. This seems to apply for
1282 versions of gcc older than 2.8. This was the original
1283 problem: with the following code gdb would tell that
1284 the type for name1 is caddr_t, and func is char().
1286 typedef char *caddr_t;
1298 /* Pascal accepts names for pointer types. */
1299 if (get_current_subfile ()->language == language_pascal)
1301 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1305 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1308 add_symbol_to_list (sym, &file_symbols);
1312 /* Create the STRUCT_DOMAIN clone. */
1313 struct symbol *struct_sym = allocate_symbol (objfile);
1316 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1317 SYMBOL_VALUE (struct_sym) = valu;
1318 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1319 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1320 TYPE_NAME (SYMBOL_TYPE (sym))
1321 = obconcat (&objfile->objfile_obstack,
1322 SYMBOL_LINKAGE_NAME (sym),
1324 add_symbol_to_list (struct_sym, &file_symbols);
1330 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1331 by 't' which means we are typedef'ing it as well. */
1332 synonym = *p == 't';
1337 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1339 /* For a nameless type, we don't want a create a symbol, thus we
1340 did not use `sym'. Return without further processing. */
1344 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1345 SYMBOL_VALUE (sym) = valu;
1346 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1347 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1348 TYPE_NAME (SYMBOL_TYPE (sym))
1349 = obconcat (&objfile->objfile_obstack,
1350 SYMBOL_LINKAGE_NAME (sym),
1352 add_symbol_to_list (sym, &file_symbols);
1356 /* Clone the sym and then modify it. */
1357 struct symbol *typedef_sym = allocate_symbol (objfile);
1359 *typedef_sym = *sym;
1360 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1361 SYMBOL_VALUE (typedef_sym) = valu;
1362 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1363 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1364 TYPE_NAME (SYMBOL_TYPE (sym))
1365 = obconcat (&objfile->objfile_obstack,
1366 SYMBOL_LINKAGE_NAME (sym),
1368 add_symbol_to_list (typedef_sym, &file_symbols);
1373 /* Static symbol of local scope. */
1374 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1375 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1376 SYMBOL_VALUE_ADDRESS (sym) = valu;
1377 if (gdbarch_static_transform_name_p (gdbarch)
1378 && gdbarch_static_transform_name (gdbarch,
1379 SYMBOL_LINKAGE_NAME (sym))
1380 != SYMBOL_LINKAGE_NAME (sym))
1382 struct bound_minimal_symbol msym;
1384 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1386 if (msym.minsym != NULL)
1388 const char *new_name = gdbarch_static_transform_name
1389 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1391 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1392 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1396 add_symbol_to_list (sym, &local_symbols);
1400 /* Reference parameter */
1401 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1402 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1403 SYMBOL_IS_ARGUMENT (sym) = 1;
1404 SYMBOL_VALUE (sym) = valu;
1405 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1406 add_symbol_to_list (sym, &local_symbols);
1410 /* Reference parameter which is in a register. */
1411 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1412 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1413 SYMBOL_IS_ARGUMENT (sym) = 1;
1414 SYMBOL_VALUE (sym) = valu;
1415 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1416 add_symbol_to_list (sym, &local_symbols);
1420 /* This is used by Sun FORTRAN for "function result value".
1421 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1422 that Pascal uses it too, but when I tried it Pascal used
1423 "x:3" (local symbol) instead. */
1424 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1425 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1426 SYMBOL_VALUE (sym) = valu;
1427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1428 add_symbol_to_list (sym, &local_symbols);
1432 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1433 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1434 SYMBOL_VALUE (sym) = 0;
1435 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1436 add_symbol_to_list (sym, &file_symbols);
1440 /* Some systems pass variables of certain types by reference instead
1441 of by value, i.e. they will pass the address of a structure (in a
1442 register or on the stack) instead of the structure itself. */
1444 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1445 && SYMBOL_IS_ARGUMENT (sym))
1447 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1448 variables passed in a register). */
1449 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1450 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1451 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1452 and subsequent arguments on SPARC, for example). */
1453 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1454 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1460 /* Skip rest of this symbol and return an error type.
1462 General notes on error recovery: error_type always skips to the
1463 end of the symbol (modulo cretinous dbx symbol name continuation).
1464 Thus code like this:
1466 if (*(*pp)++ != ';')
1467 return error_type (pp, objfile);
1469 is wrong because if *pp starts out pointing at '\0' (typically as the
1470 result of an earlier error), it will be incremented to point to the
1471 start of the next symbol, which might produce strange results, at least
1472 if you run off the end of the string table. Instead use
1475 return error_type (pp, objfile);
1481 foo = error_type (pp, objfile);
1485 And in case it isn't obvious, the point of all this hair is so the compiler
1486 can define new types and new syntaxes, and old versions of the
1487 debugger will be able to read the new symbol tables. */
1489 static struct type *
1490 error_type (const char **pp, struct objfile *objfile)
1492 complaint (_("couldn't parse type; debugger out of date?"));
1495 /* Skip to end of symbol. */
1496 while (**pp != '\0')
1501 /* Check for and handle cretinous dbx symbol name continuation! */
1502 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1504 *pp = next_symbol_text (objfile);
1511 return objfile_type (objfile)->builtin_error;
1515 /* Read type information or a type definition; return the type. Even
1516 though this routine accepts either type information or a type
1517 definition, the distinction is relevant--some parts of stabsread.c
1518 assume that type information starts with a digit, '-', or '(' in
1519 deciding whether to call read_type. */
1521 static struct type *
1522 read_type (const char **pp, struct objfile *objfile)
1524 struct type *type = 0;
1527 char type_descriptor;
1529 /* Size in bits of type if specified by a type attribute, or -1 if
1530 there is no size attribute. */
1533 /* Used to distinguish string and bitstring from char-array and set. */
1536 /* Used to distinguish vector from array. */
1539 /* Read type number if present. The type number may be omitted.
1540 for instance in a two-dimensional array declared with type
1541 "ar1;1;10;ar1;1;10;4". */
1542 if ((**pp >= '0' && **pp <= '9')
1546 if (read_type_number (pp, typenums) != 0)
1547 return error_type (pp, objfile);
1551 /* Type is not being defined here. Either it already
1552 exists, or this is a forward reference to it.
1553 dbx_alloc_type handles both cases. */
1554 type = dbx_alloc_type (typenums, objfile);
1556 /* If this is a forward reference, arrange to complain if it
1557 doesn't get patched up by the time we're done
1559 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1560 add_undefined_type (type, typenums);
1565 /* Type is being defined here. */
1567 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1572 /* 'typenums=' not present, type is anonymous. Read and return
1573 the definition, but don't put it in the type vector. */
1574 typenums[0] = typenums[1] = -1;
1579 type_descriptor = (*pp)[-1];
1580 switch (type_descriptor)
1584 enum type_code code;
1586 /* Used to index through file_symbols. */
1587 struct pending *ppt;
1590 /* Name including "struct", etc. */
1594 const char *from, *p, *q1, *q2;
1596 /* Set the type code according to the following letter. */
1600 code = TYPE_CODE_STRUCT;
1603 code = TYPE_CODE_UNION;
1606 code = TYPE_CODE_ENUM;
1610 /* Complain and keep going, so compilers can invent new
1611 cross-reference types. */
1612 complaint (_("Unrecognized cross-reference type `%c'"),
1614 code = TYPE_CODE_STRUCT;
1619 q1 = strchr (*pp, '<');
1620 p = strchr (*pp, ':');
1622 return error_type (pp, objfile);
1623 if (q1 && p > q1 && p[1] == ':')
1625 int nesting_level = 0;
1627 for (q2 = q1; *q2; q2++)
1631 else if (*q2 == '>')
1633 else if (*q2 == ':' && nesting_level == 0)
1638 return error_type (pp, objfile);
1641 if (get_current_subfile ()->language == language_cplus)
1643 char *name = (char *) alloca (p - *pp + 1);
1645 memcpy (name, *pp, p - *pp);
1646 name[p - *pp] = '\0';
1648 std::string new_name = cp_canonicalize_string (name);
1649 if (!new_name.empty ())
1652 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1654 new_name.length ());
1657 if (type_name == NULL)
1659 char *to = type_name = (char *)
1660 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1662 /* Copy the name. */
1669 /* Set the pointer ahead of the name which we just read, and
1674 /* If this type has already been declared, then reuse the same
1675 type, rather than allocating a new one. This saves some
1678 for (ppt = file_symbols; ppt; ppt = ppt->next)
1679 for (i = 0; i < ppt->nsyms; i++)
1681 struct symbol *sym = ppt->symbol[i];
1683 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1684 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1685 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1686 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1688 obstack_free (&objfile->objfile_obstack, type_name);
1689 type = SYMBOL_TYPE (sym);
1690 if (typenums[0] != -1)
1691 *dbx_lookup_type (typenums, objfile) = type;
1696 /* Didn't find the type to which this refers, so we must
1697 be dealing with a forward reference. Allocate a type
1698 structure for it, and keep track of it so we can
1699 fill in the rest of the fields when we get the full
1701 type = dbx_alloc_type (typenums, objfile);
1702 TYPE_CODE (type) = code;
1703 TYPE_NAME (type) = type_name;
1704 INIT_CPLUS_SPECIFIC (type);
1705 TYPE_STUB (type) = 1;
1707 add_undefined_type (type, typenums);
1711 case '-': /* RS/6000 built-in type */
1725 /* We deal with something like t(1,2)=(3,4)=... which
1726 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1728 /* Allocate and enter the typedef type first.
1729 This handles recursive types. */
1730 type = dbx_alloc_type (typenums, objfile);
1731 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1733 struct type *xtype = read_type (pp, objfile);
1737 /* It's being defined as itself. That means it is "void". */
1738 TYPE_CODE (type) = TYPE_CODE_VOID;
1739 TYPE_LENGTH (type) = 1;
1741 else if (type_size >= 0 || is_string)
1743 /* This is the absolute wrong way to construct types. Every
1744 other debug format has found a way around this problem and
1745 the related problems with unnecessarily stubbed types;
1746 someone motivated should attempt to clean up the issue
1747 here as well. Once a type pointed to has been created it
1748 should not be modified.
1750 Well, it's not *absolutely* wrong. Constructing recursive
1751 types (trees, linked lists) necessarily entails modifying
1752 types after creating them. Constructing any loop structure
1753 entails side effects. The Dwarf 2 reader does handle this
1754 more gracefully (it never constructs more than once
1755 instance of a type object, so it doesn't have to copy type
1756 objects wholesale), but it still mutates type objects after
1757 other folks have references to them.
1759 Keep in mind that this circularity/mutation issue shows up
1760 at the source language level, too: C's "incomplete types",
1761 for example. So the proper cleanup, I think, would be to
1762 limit GDB's type smashing to match exactly those required
1763 by the source language. So GDB could have a
1764 "complete_this_type" function, but never create unnecessary
1765 copies of a type otherwise. */
1766 replace_type (type, xtype);
1767 TYPE_NAME (type) = NULL;
1771 TYPE_TARGET_STUB (type) = 1;
1772 TYPE_TARGET_TYPE (type) = xtype;
1777 /* In the following types, we must be sure to overwrite any existing
1778 type that the typenums refer to, rather than allocating a new one
1779 and making the typenums point to the new one. This is because there
1780 may already be pointers to the existing type (if it had been
1781 forward-referenced), and we must change it to a pointer, function,
1782 reference, or whatever, *in-place*. */
1784 case '*': /* Pointer to another type */
1785 type1 = read_type (pp, objfile);
1786 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1789 case '&': /* Reference to another type */
1790 type1 = read_type (pp, objfile);
1791 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1795 case 'f': /* Function returning another type */
1796 type1 = read_type (pp, objfile);
1797 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1800 case 'g': /* Prototyped function. (Sun) */
1802 /* Unresolved questions:
1804 - According to Sun's ``STABS Interface Manual'', for 'f'
1805 and 'F' symbol descriptors, a `0' in the argument type list
1806 indicates a varargs function. But it doesn't say how 'g'
1807 type descriptors represent that info. Someone with access
1808 to Sun's toolchain should try it out.
1810 - According to the comment in define_symbol (search for
1811 `process_prototype_types:'), Sun emits integer arguments as
1812 types which ref themselves --- like `void' types. Do we
1813 have to deal with that here, too? Again, someone with
1814 access to Sun's toolchain should try it out and let us
1817 const char *type_start = (*pp) - 1;
1818 struct type *return_type = read_type (pp, objfile);
1819 struct type *func_type
1820 = make_function_type (return_type,
1821 dbx_lookup_type (typenums, objfile));
1824 struct type_list *next;
1828 while (**pp && **pp != '#')
1830 struct type *arg_type = read_type (pp, objfile);
1831 struct type_list *newobj = XALLOCA (struct type_list);
1832 newobj->type = arg_type;
1833 newobj->next = arg_types;
1841 complaint (_("Prototyped function type didn't "
1842 "end arguments with `#':\n%s"),
1846 /* If there is just one argument whose type is `void', then
1847 that's just an empty argument list. */
1849 && ! arg_types->next
1850 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1853 TYPE_FIELDS (func_type)
1854 = (struct field *) TYPE_ALLOC (func_type,
1855 num_args * sizeof (struct field));
1856 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1859 struct type_list *t;
1861 /* We stuck each argument type onto the front of the list
1862 when we read it, so the list is reversed. Build the
1863 fields array right-to-left. */
1864 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1865 TYPE_FIELD_TYPE (func_type, i) = t->type;
1867 TYPE_NFIELDS (func_type) = num_args;
1868 TYPE_PROTOTYPED (func_type) = 1;
1874 case 'k': /* Const qualifier on some type (Sun) */
1875 type = read_type (pp, objfile);
1876 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1877 dbx_lookup_type (typenums, objfile));
1880 case 'B': /* Volatile qual on some type (Sun) */
1881 type = read_type (pp, objfile);
1882 type = make_cv_type (TYPE_CONST (type), 1, type,
1883 dbx_lookup_type (typenums, objfile));
1887 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1888 { /* Member (class & variable) type */
1889 /* FIXME -- we should be doing smash_to_XXX types here. */
1891 struct type *domain = read_type (pp, objfile);
1892 struct type *memtype;
1895 /* Invalid member type data format. */
1896 return error_type (pp, objfile);
1899 memtype = read_type (pp, objfile);
1900 type = dbx_alloc_type (typenums, objfile);
1901 smash_to_memberptr_type (type, domain, memtype);
1904 /* type attribute */
1906 const char *attr = *pp;
1908 /* Skip to the semicolon. */
1909 while (**pp != ';' && **pp != '\0')
1912 return error_type (pp, objfile);
1914 ++ * pp; /* Skip the semicolon. */
1918 case 's': /* Size attribute */
1919 type_size = atoi (attr + 1);
1924 case 'S': /* String attribute */
1925 /* FIXME: check to see if following type is array? */
1929 case 'V': /* Vector attribute */
1930 /* FIXME: check to see if following type is array? */
1935 /* Ignore unrecognized type attributes, so future compilers
1936 can invent new ones. */
1944 case '#': /* Method (class & fn) type */
1945 if ((*pp)[0] == '#')
1947 /* We'll get the parameter types from the name. */
1948 struct type *return_type;
1951 return_type = read_type (pp, objfile);
1952 if (*(*pp)++ != ';')
1953 complaint (_("invalid (minimal) member type "
1954 "data format at symtab pos %d."),
1956 type = allocate_stub_method (return_type);
1957 if (typenums[0] != -1)
1958 *dbx_lookup_type (typenums, objfile) = type;
1962 struct type *domain = read_type (pp, objfile);
1963 struct type *return_type;
1968 /* Invalid member type data format. */
1969 return error_type (pp, objfile);
1973 return_type = read_type (pp, objfile);
1974 args = read_args (pp, ';', objfile, &nargs, &varargs);
1976 return error_type (pp, objfile);
1977 type = dbx_alloc_type (typenums, objfile);
1978 smash_to_method_type (type, domain, return_type, args,
1983 case 'r': /* Range type */
1984 type = read_range_type (pp, typenums, type_size, objfile);
1985 if (typenums[0] != -1)
1986 *dbx_lookup_type (typenums, objfile) = type;
1991 /* Sun ACC builtin int type */
1992 type = read_sun_builtin_type (pp, typenums, objfile);
1993 if (typenums[0] != -1)
1994 *dbx_lookup_type (typenums, objfile) = type;
1998 case 'R': /* Sun ACC builtin float type */
1999 type = read_sun_floating_type (pp, typenums, objfile);
2000 if (typenums[0] != -1)
2001 *dbx_lookup_type (typenums, objfile) = type;
2004 case 'e': /* Enumeration type */
2005 type = dbx_alloc_type (typenums, objfile);
2006 type = read_enum_type (pp, type, objfile);
2007 if (typenums[0] != -1)
2008 *dbx_lookup_type (typenums, objfile) = type;
2011 case 's': /* Struct type */
2012 case 'u': /* Union type */
2014 enum type_code type_code = TYPE_CODE_UNDEF;
2015 type = dbx_alloc_type (typenums, objfile);
2016 switch (type_descriptor)
2019 type_code = TYPE_CODE_STRUCT;
2022 type_code = TYPE_CODE_UNION;
2025 type = read_struct_type (pp, type, type_code, objfile);
2029 case 'a': /* Array type */
2031 return error_type (pp, objfile);
2034 type = dbx_alloc_type (typenums, objfile);
2035 type = read_array_type (pp, type, objfile);
2037 TYPE_CODE (type) = TYPE_CODE_STRING;
2039 make_vector_type (type);
2042 case 'S': /* Set type */
2043 type1 = read_type (pp, objfile);
2044 type = create_set_type ((struct type *) NULL, type1);
2045 if (typenums[0] != -1)
2046 *dbx_lookup_type (typenums, objfile) = type;
2050 --*pp; /* Go back to the symbol in error. */
2051 /* Particularly important if it was \0! */
2052 return error_type (pp, objfile);
2057 warning (_("GDB internal error, type is NULL in stabsread.c."));
2058 return error_type (pp, objfile);
2061 /* Size specified in a type attribute overrides any other size. */
2062 if (type_size != -1)
2063 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2068 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2069 Return the proper type node for a given builtin type number. */
2071 static const struct objfile_data *rs6000_builtin_type_data;
2073 static struct type *
2074 rs6000_builtin_type (int typenum, struct objfile *objfile)
2076 struct type **negative_types
2077 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2079 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2080 #define NUMBER_RECOGNIZED 34
2081 struct type *rettype = NULL;
2083 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2085 complaint (_("Unknown builtin type %d"), typenum);
2086 return objfile_type (objfile)->builtin_error;
2089 if (!negative_types)
2091 /* This includes an empty slot for type number -0. */
2092 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2093 NUMBER_RECOGNIZED + 1, struct type *);
2094 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2097 if (negative_types[-typenum] != NULL)
2098 return negative_types[-typenum];
2100 #if TARGET_CHAR_BIT != 8
2101 #error This code wrong for TARGET_CHAR_BIT not 8
2102 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2103 that if that ever becomes not true, the correct fix will be to
2104 make the size in the struct type to be in bits, not in units of
2111 /* The size of this and all the other types are fixed, defined
2112 by the debugging format. If there is a type called "int" which
2113 is other than 32 bits, then it should use a new negative type
2114 number (or avoid negative type numbers for that case).
2115 See stabs.texinfo. */
2116 rettype = init_integer_type (objfile, 32, 0, "int");
2119 rettype = init_integer_type (objfile, 8, 0, "char");
2120 TYPE_NOSIGN (rettype) = 1;
2123 rettype = init_integer_type (objfile, 16, 0, "short");
2126 rettype = init_integer_type (objfile, 32, 0, "long");
2129 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2132 rettype = init_integer_type (objfile, 8, 0, "signed char");
2135 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2138 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2141 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2144 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2147 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2150 /* IEEE single precision (32 bit). */
2151 rettype = init_float_type (objfile, 32, "float",
2152 floatformats_ieee_single);
2155 /* IEEE double precision (64 bit). */
2156 rettype = init_float_type (objfile, 64, "double",
2157 floatformats_ieee_double);
2160 /* This is an IEEE double on the RS/6000, and different machines with
2161 different sizes for "long double" should use different negative
2162 type numbers. See stabs.texinfo. */
2163 rettype = init_float_type (objfile, 64, "long double",
2164 floatformats_ieee_double);
2167 rettype = init_integer_type (objfile, 32, 0, "integer");
2170 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2173 rettype = init_float_type (objfile, 32, "short real",
2174 floatformats_ieee_single);
2177 rettype = init_float_type (objfile, 64, "real",
2178 floatformats_ieee_double);
2181 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2184 rettype = init_character_type (objfile, 8, 1, "character");
2187 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2190 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2193 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2196 rettype = init_boolean_type (objfile, 32, 1, "logical");
2199 /* Complex type consisting of two IEEE single precision values. */
2200 rettype = init_complex_type (objfile, "complex",
2201 rs6000_builtin_type (12, objfile));
2204 /* Complex type consisting of two IEEE double precision values. */
2205 rettype = init_complex_type (objfile, "double complex",
2206 rs6000_builtin_type (13, objfile));
2209 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2212 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2215 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2218 rettype = init_character_type (objfile, 16, 0, "wchar");
2221 rettype = init_integer_type (objfile, 64, 0, "long long");
2224 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2227 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2230 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2233 negative_types[-typenum] = rettype;
2237 /* This page contains subroutines of read_type. */
2239 /* Wrapper around method_name_from_physname to flag a complaint
2240 if there is an error. */
2243 stabs_method_name_from_physname (const char *physname)
2247 method_name = method_name_from_physname (physname);
2249 if (method_name == NULL)
2251 complaint (_("Method has bad physname %s\n"), physname);
2258 /* Read member function stabs info for C++ classes. The form of each member
2261 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2263 An example with two member functions is:
2265 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2267 For the case of overloaded operators, the format is op$::*.funcs, where
2268 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2269 name (such as `+=') and `.' marks the end of the operator name.
2271 Returns 1 for success, 0 for failure. */
2274 read_member_functions (struct field_info *fip, const char **pp,
2275 struct type *type, struct objfile *objfile)
2282 struct next_fnfield *next;
2283 struct fn_field fn_field;
2286 struct type *look_ahead_type;
2287 struct next_fnfieldlist *new_fnlist;
2288 struct next_fnfield *new_sublist;
2292 /* Process each list until we find something that is not a member function
2293 or find the end of the functions. */
2297 /* We should be positioned at the start of the function name.
2298 Scan forward to find the first ':' and if it is not the
2299 first of a "::" delimiter, then this is not a member function. */
2311 look_ahead_type = NULL;
2314 new_fnlist = XCNEW (struct next_fnfieldlist);
2315 make_cleanup (xfree, new_fnlist);
2317 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2319 /* This is a completely wierd case. In order to stuff in the
2320 names that might contain colons (the usual name delimiter),
2321 Mike Tiemann defined a different name format which is
2322 signalled if the identifier is "op$". In that case, the
2323 format is "op$::XXXX." where XXXX is the name. This is
2324 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2325 /* This lets the user type "break operator+".
2326 We could just put in "+" as the name, but that wouldn't
2328 static char opname[32] = "op$";
2329 char *o = opname + 3;
2331 /* Skip past '::'. */
2334 STABS_CONTINUE (pp, objfile);
2340 main_fn_name = savestring (opname, o - opname);
2346 main_fn_name = savestring (*pp, p - *pp);
2347 /* Skip past '::'. */
2350 new_fnlist->fn_fieldlist.name = main_fn_name;
2354 new_sublist = XCNEW (struct next_fnfield);
2355 make_cleanup (xfree, new_sublist);
2357 /* Check for and handle cretinous dbx symbol name continuation! */
2358 if (look_ahead_type == NULL)
2361 STABS_CONTINUE (pp, objfile);
2363 new_sublist->fn_field.type = read_type (pp, objfile);
2366 /* Invalid symtab info for member function. */
2372 /* g++ version 1 kludge */
2373 new_sublist->fn_field.type = look_ahead_type;
2374 look_ahead_type = NULL;
2384 /* These are methods, not functions. */
2385 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2386 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2388 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2389 == TYPE_CODE_METHOD);
2391 /* If this is just a stub, then we don't have the real name here. */
2392 if (TYPE_STUB (new_sublist->fn_field.type))
2394 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2395 set_type_self_type (new_sublist->fn_field.type, type);
2396 new_sublist->fn_field.is_stub = 1;
2399 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2402 /* Set this member function's visibility fields. */
2405 case VISIBILITY_PRIVATE:
2406 new_sublist->fn_field.is_private = 1;
2408 case VISIBILITY_PROTECTED:
2409 new_sublist->fn_field.is_protected = 1;
2413 STABS_CONTINUE (pp, objfile);
2416 case 'A': /* Normal functions. */
2417 new_sublist->fn_field.is_const = 0;
2418 new_sublist->fn_field.is_volatile = 0;
2421 case 'B': /* `const' member functions. */
2422 new_sublist->fn_field.is_const = 1;
2423 new_sublist->fn_field.is_volatile = 0;
2426 case 'C': /* `volatile' member function. */
2427 new_sublist->fn_field.is_const = 0;
2428 new_sublist->fn_field.is_volatile = 1;
2431 case 'D': /* `const volatile' member function. */
2432 new_sublist->fn_field.is_const = 1;
2433 new_sublist->fn_field.is_volatile = 1;
2436 case '*': /* File compiled with g++ version 1 --
2442 complaint (_("const/volatile indicator missing, got '%c'"),
2452 /* virtual member function, followed by index.
2453 The sign bit is set to distinguish pointers-to-methods
2454 from virtual function indicies. Since the array is
2455 in words, the quantity must be shifted left by 1
2456 on 16 bit machine, and by 2 on 32 bit machine, forcing
2457 the sign bit out, and usable as a valid index into
2458 the array. Remove the sign bit here. */
2459 new_sublist->fn_field.voffset =
2460 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2464 STABS_CONTINUE (pp, objfile);
2465 if (**pp == ';' || **pp == '\0')
2467 /* Must be g++ version 1. */
2468 new_sublist->fn_field.fcontext = 0;
2472 /* Figure out from whence this virtual function came.
2473 It may belong to virtual function table of
2474 one of its baseclasses. */
2475 look_ahead_type = read_type (pp, objfile);
2478 /* g++ version 1 overloaded methods. */
2482 new_sublist->fn_field.fcontext = look_ahead_type;
2491 look_ahead_type = NULL;
2497 /* static member function. */
2499 int slen = strlen (main_fn_name);
2501 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2503 /* For static member functions, we can't tell if they
2504 are stubbed, as they are put out as functions, and not as
2506 GCC v2 emits the fully mangled name if
2507 dbxout.c:flag_minimal_debug is not set, so we have to
2508 detect a fully mangled physname here and set is_stub
2509 accordingly. Fully mangled physnames in v2 start with
2510 the member function name, followed by two underscores.
2511 GCC v3 currently always emits stubbed member functions,
2512 but with fully mangled physnames, which start with _Z. */
2513 if (!(strncmp (new_sublist->fn_field.physname,
2514 main_fn_name, slen) == 0
2515 && new_sublist->fn_field.physname[slen] == '_'
2516 && new_sublist->fn_field.physname[slen + 1] == '_'))
2518 new_sublist->fn_field.is_stub = 1;
2525 complaint (_("member function type missing, got '%c'"),
2527 /* Normal member function. */
2531 /* normal member function. */
2532 new_sublist->fn_field.voffset = 0;
2533 new_sublist->fn_field.fcontext = 0;
2537 new_sublist->next = sublist;
2538 sublist = new_sublist;
2540 STABS_CONTINUE (pp, objfile);
2542 while (**pp != ';' && **pp != '\0');
2545 STABS_CONTINUE (pp, objfile);
2547 /* Skip GCC 3.X member functions which are duplicates of the callable
2548 constructor/destructor. */
2549 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2550 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2551 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2553 xfree (main_fn_name);
2558 int has_destructor = 0, has_other = 0;
2560 struct next_fnfield *tmp_sublist;
2562 /* Various versions of GCC emit various mostly-useless
2563 strings in the name field for special member functions.
2565 For stub methods, we need to defer correcting the name
2566 until we are ready to unstub the method, because the current
2567 name string is used by gdb_mangle_name. The only stub methods
2568 of concern here are GNU v2 operators; other methods have their
2569 names correct (see caveat below).
2571 For non-stub methods, in GNU v3, we have a complete physname.
2572 Therefore we can safely correct the name now. This primarily
2573 affects constructors and destructors, whose name will be
2574 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2575 operators will also have incorrect names; for instance,
2576 "operator int" will be named "operator i" (i.e. the type is
2579 For non-stub methods in GNU v2, we have no easy way to
2580 know if we have a complete physname or not. For most
2581 methods the result depends on the platform (if CPLUS_MARKER
2582 can be `$' or `.', it will use minimal debug information, or
2583 otherwise the full physname will be included).
2585 Rather than dealing with this, we take a different approach.
2586 For v3 mangled names, we can use the full physname; for v2,
2587 we use cplus_demangle_opname (which is actually v2 specific),
2588 because the only interesting names are all operators - once again
2589 barring the caveat below. Skip this process if any method in the
2590 group is a stub, to prevent our fouling up the workings of
2593 The caveat: GCC 2.95.x (and earlier?) put constructors and
2594 destructors in the same method group. We need to split this
2595 into two groups, because they should have different names.
2596 So for each method group we check whether it contains both
2597 routines whose physname appears to be a destructor (the physnames
2598 for and destructors are always provided, due to quirks in v2
2599 mangling) and routines whose physname does not appear to be a
2600 destructor. If so then we break up the list into two halves.
2601 Even if the constructors and destructors aren't in the same group
2602 the destructor will still lack the leading tilde, so that also
2605 So, to summarize what we expect and handle here:
2607 Given Given Real Real Action
2608 method name physname physname method name
2610 __opi [none] __opi__3Foo operator int opname
2612 Foo _._3Foo _._3Foo ~Foo separate and
2614 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2615 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2618 tmp_sublist = sublist;
2619 while (tmp_sublist != NULL)
2621 if (tmp_sublist->fn_field.is_stub)
2623 if (tmp_sublist->fn_field.physname[0] == '_'
2624 && tmp_sublist->fn_field.physname[1] == 'Z')
2627 if (is_destructor_name (tmp_sublist->fn_field.physname))
2632 tmp_sublist = tmp_sublist->next;
2635 if (has_destructor && has_other)
2637 struct next_fnfieldlist *destr_fnlist;
2638 struct next_fnfield *last_sublist;
2640 /* Create a new fn_fieldlist for the destructors. */
2642 destr_fnlist = XCNEW (struct next_fnfieldlist);
2643 make_cleanup (xfree, destr_fnlist);
2645 destr_fnlist->fn_fieldlist.name
2646 = obconcat (&objfile->objfile_obstack, "~",
2647 new_fnlist->fn_fieldlist.name, (char *) NULL);
2649 destr_fnlist->fn_fieldlist.fn_fields =
2650 XOBNEWVEC (&objfile->objfile_obstack,
2651 struct fn_field, has_destructor);
2652 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2653 sizeof (struct fn_field) * has_destructor);
2654 tmp_sublist = sublist;
2655 last_sublist = NULL;
2657 while (tmp_sublist != NULL)
2659 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2661 tmp_sublist = tmp_sublist->next;
2665 destr_fnlist->fn_fieldlist.fn_fields[i++]
2666 = tmp_sublist->fn_field;
2668 last_sublist->next = tmp_sublist->next;
2670 sublist = tmp_sublist->next;
2671 last_sublist = tmp_sublist;
2672 tmp_sublist = tmp_sublist->next;
2675 destr_fnlist->fn_fieldlist.length = has_destructor;
2676 destr_fnlist->next = fip->fnlist;
2677 fip->fnlist = destr_fnlist;
2679 length -= has_destructor;
2683 /* v3 mangling prevents the use of abbreviated physnames,
2684 so we can do this here. There are stubbed methods in v3
2686 - in -gstabs instead of -gstabs+
2687 - or for static methods, which are output as a function type
2688 instead of a method type. */
2689 char *new_method_name =
2690 stabs_method_name_from_physname (sublist->fn_field.physname);
2692 if (new_method_name != NULL
2693 && strcmp (new_method_name,
2694 new_fnlist->fn_fieldlist.name) != 0)
2696 new_fnlist->fn_fieldlist.name = new_method_name;
2697 xfree (main_fn_name);
2700 xfree (new_method_name);
2702 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2704 new_fnlist->fn_fieldlist.name =
2705 obconcat (&objfile->objfile_obstack,
2706 "~", main_fn_name, (char *)NULL);
2707 xfree (main_fn_name);
2711 char dem_opname[256];
2714 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2715 dem_opname, DMGL_ANSI);
2717 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2720 new_fnlist->fn_fieldlist.name
2722 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2723 strlen (dem_opname)));
2724 xfree (main_fn_name);
2727 new_fnlist->fn_fieldlist.fn_fields
2728 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2729 for (i = length; (i--, sublist); sublist = sublist->next)
2731 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2734 new_fnlist->fn_fieldlist.length = length;
2735 new_fnlist->next = fip->fnlist;
2736 fip->fnlist = new_fnlist;
2743 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2744 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2745 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2746 memset (TYPE_FN_FIELDLISTS (type), 0,
2747 sizeof (struct fn_fieldlist) * nfn_fields);
2748 TYPE_NFN_FIELDS (type) = nfn_fields;
2754 /* Special GNU C++ name.
2756 Returns 1 for success, 0 for failure. "failure" means that we can't
2757 keep parsing and it's time for error_type(). */
2760 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2761 struct objfile *objfile)
2766 struct type *context;
2776 /* At this point, *pp points to something like "22:23=*22...",
2777 where the type number before the ':' is the "context" and
2778 everything after is a regular type definition. Lookup the
2779 type, find it's name, and construct the field name. */
2781 context = read_type (pp, objfile);
2785 case 'f': /* $vf -- a virtual function table pointer */
2786 name = TYPE_NAME (context);
2791 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2792 vptr_name, name, (char *) NULL);
2795 case 'b': /* $vb -- a virtual bsomethingorother */
2796 name = TYPE_NAME (context);
2799 complaint (_("C++ abbreviated type name "
2800 "unknown at symtab pos %d"),
2804 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2805 name, (char *) NULL);
2809 invalid_cpp_abbrev_complaint (*pp);
2810 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2811 "INVALID_CPLUSPLUS_ABBREV",
2816 /* At this point, *pp points to the ':'. Skip it and read the
2822 invalid_cpp_abbrev_complaint (*pp);
2825 fip->list->field.type = read_type (pp, objfile);
2827 (*pp)++; /* Skip the comma. */
2834 SET_FIELD_BITPOS (fip->list->field,
2835 read_huge_number (pp, ';', &nbits, 0));
2839 /* This field is unpacked. */
2840 FIELD_BITSIZE (fip->list->field) = 0;
2841 fip->list->visibility = VISIBILITY_PRIVATE;
2845 invalid_cpp_abbrev_complaint (*pp);
2846 /* We have no idea what syntax an unrecognized abbrev would have, so
2847 better return 0. If we returned 1, we would need to at least advance
2848 *pp to avoid an infinite loop. */
2855 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2856 struct type *type, struct objfile *objfile)
2858 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2860 fip->list->field.name
2861 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2864 /* This means we have a visibility for a field coming. */
2868 fip->list->visibility = *(*pp)++;
2872 /* normal dbx-style format, no explicit visibility */
2873 fip->list->visibility = VISIBILITY_PUBLIC;
2876 fip->list->field.type = read_type (pp, objfile);
2881 /* Possible future hook for nested types. */
2884 fip->list->field.bitpos = (long) -2; /* nested type */
2894 /* Static class member. */
2895 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2899 else if (**pp != ',')
2901 /* Bad structure-type format. */
2902 stabs_general_complaint ("bad structure-type format");
2906 (*pp)++; /* Skip the comma. */
2911 SET_FIELD_BITPOS (fip->list->field,
2912 read_huge_number (pp, ',', &nbits, 0));
2915 stabs_general_complaint ("bad structure-type format");
2918 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2921 stabs_general_complaint ("bad structure-type format");
2926 if (FIELD_BITPOS (fip->list->field) == 0
2927 && FIELD_BITSIZE (fip->list->field) == 0)
2929 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2930 it is a field which has been optimized out. The correct stab for
2931 this case is to use VISIBILITY_IGNORE, but that is a recent
2932 invention. (2) It is a 0-size array. For example
2933 union { int num; char str[0]; } foo. Printing _("<no value>" for
2934 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2935 will continue to work, and a 0-size array as a whole doesn't
2936 have any contents to print.
2938 I suspect this probably could also happen with gcc -gstabs (not
2939 -gstabs+) for static fields, and perhaps other C++ extensions.
2940 Hopefully few people use -gstabs with gdb, since it is intended
2941 for dbx compatibility. */
2943 /* Ignore this field. */
2944 fip->list->visibility = VISIBILITY_IGNORE;
2948 /* Detect an unpacked field and mark it as such.
2949 dbx gives a bit size for all fields.
2950 Note that forward refs cannot be packed,
2951 and treat enums as if they had the width of ints. */
2953 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2955 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2956 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2957 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2958 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2960 FIELD_BITSIZE (fip->list->field) = 0;
2962 if ((FIELD_BITSIZE (fip->list->field)
2963 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2964 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2965 && FIELD_BITSIZE (fip->list->field)
2966 == gdbarch_int_bit (gdbarch))
2969 FIELD_BITPOS (fip->list->field) % 8 == 0)
2971 FIELD_BITSIZE (fip->list->field) = 0;
2977 /* Read struct or class data fields. They have the form:
2979 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2981 At the end, we see a semicolon instead of a field.
2983 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2986 The optional VISIBILITY is one of:
2988 '/0' (VISIBILITY_PRIVATE)
2989 '/1' (VISIBILITY_PROTECTED)
2990 '/2' (VISIBILITY_PUBLIC)
2991 '/9' (VISIBILITY_IGNORE)
2993 or nothing, for C style fields with public visibility.
2995 Returns 1 for success, 0 for failure. */
2998 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
2999 struct objfile *objfile)
3002 struct nextfield *newobj;
3004 /* We better set p right now, in case there are no fields at all... */
3008 /* Read each data member type until we find the terminating ';' at the end of
3009 the data member list, or break for some other reason such as finding the
3010 start of the member function list. */
3011 /* Stab string for structure/union does not end with two ';' in
3012 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3014 while (**pp != ';' && **pp != '\0')
3016 STABS_CONTINUE (pp, objfile);
3017 /* Get space to record the next field's data. */
3018 newobj = XCNEW (struct nextfield);
3019 make_cleanup (xfree, newobj);
3021 newobj->next = fip->list;
3024 /* Get the field name. */
3027 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3028 unless the CPLUS_MARKER is followed by an underscore, in
3029 which case it is just the name of an anonymous type, which we
3030 should handle like any other type name. */
3032 if (is_cplus_marker (p[0]) && p[1] != '_')
3034 if (!read_cpp_abbrev (fip, pp, type, objfile))
3039 /* Look for the ':' that separates the field name from the field
3040 values. Data members are delimited by a single ':', while member
3041 functions are delimited by a pair of ':'s. When we hit the member
3042 functions (if any), terminate scan loop and return. */
3044 while (*p != ':' && *p != '\0')
3051 /* Check to see if we have hit the member functions yet. */
3056 read_one_struct_field (fip, pp, p, type, objfile);
3058 if (p[0] == ':' && p[1] == ':')
3060 /* (the deleted) chill the list of fields: the last entry (at
3061 the head) is a partially constructed entry which we now
3063 fip->list = fip->list->next;
3068 /* The stabs for C++ derived classes contain baseclass information which
3069 is marked by a '!' character after the total size. This function is
3070 called when we encounter the baseclass marker, and slurps up all the
3071 baseclass information.
3073 Immediately following the '!' marker is the number of base classes that
3074 the class is derived from, followed by information for each base class.
3075 For each base class, there are two visibility specifiers, a bit offset
3076 to the base class information within the derived class, a reference to
3077 the type for the base class, and a terminating semicolon.
3079 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3081 Baseclass information marker __________________|| | | | | | |
3082 Number of baseclasses __________________________| | | | | | |
3083 Visibility specifiers (2) ________________________| | | | | |
3084 Offset in bits from start of class _________________| | | | |
3085 Type number for base class ___________________________| | | |
3086 Visibility specifiers (2) _______________________________| | |
3087 Offset in bits from start of class ________________________| |
3088 Type number of base class ____________________________________|
3090 Return 1 for success, 0 for (error-type-inducing) failure. */
3096 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3097 struct objfile *objfile)
3100 struct nextfield *newobj;
3108 /* Skip the '!' baseclass information marker. */
3112 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3116 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3122 /* Some stupid compilers have trouble with the following, so break
3123 it up into simpler expressions. */
3124 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3125 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3128 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3131 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3132 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3136 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3138 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3140 newobj = XCNEW (struct nextfield);
3141 make_cleanup (xfree, newobj);
3143 newobj->next = fip->list;
3145 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3148 STABS_CONTINUE (pp, objfile);
3152 /* Nothing to do. */
3155 SET_TYPE_FIELD_VIRTUAL (type, i);
3158 /* Unknown character. Complain and treat it as non-virtual. */
3160 complaint (_("Unknown virtual character `%c' for baseclass"),
3166 newobj->visibility = *(*pp)++;
3167 switch (newobj->visibility)
3169 case VISIBILITY_PRIVATE:
3170 case VISIBILITY_PROTECTED:
3171 case VISIBILITY_PUBLIC:
3174 /* Bad visibility format. Complain and treat it as
3177 complaint (_("Unknown visibility `%c' for baseclass"),
3178 newobj->visibility);
3179 newobj->visibility = VISIBILITY_PUBLIC;
3186 /* The remaining value is the bit offset of the portion of the object
3187 corresponding to this baseclass. Always zero in the absence of
3188 multiple inheritance. */
3190 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3195 /* The last piece of baseclass information is the type of the
3196 base class. Read it, and remember it's type name as this
3199 newobj->field.type = read_type (pp, objfile);
3200 newobj->field.name = TYPE_NAME (newobj->field.type);
3202 /* Skip trailing ';' and bump count of number of fields seen. */
3211 /* The tail end of stabs for C++ classes that contain a virtual function
3212 pointer contains a tilde, a %, and a type number.
3213 The type number refers to the base class (possibly this class itself) which
3214 contains the vtable pointer for the current class.
3216 This function is called when we have parsed all the method declarations,
3217 so we can look for the vptr base class info. */
3220 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3221 struct objfile *objfile)
3225 STABS_CONTINUE (pp, objfile);
3227 /* If we are positioned at a ';', then skip it. */
3237 if (**pp == '=' || **pp == '+' || **pp == '-')
3239 /* Obsolete flags that used to indicate the presence
3240 of constructors and/or destructors. */
3244 /* Read either a '%' or the final ';'. */
3245 if (*(*pp)++ == '%')
3247 /* The next number is the type number of the base class
3248 (possibly our own class) which supplies the vtable for
3249 this class. Parse it out, and search that class to find
3250 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3251 and TYPE_VPTR_FIELDNO. */
3256 t = read_type (pp, objfile);
3258 while (*p != '\0' && *p != ';')
3264 /* Premature end of symbol. */
3268 set_type_vptr_basetype (type, t);
3269 if (type == t) /* Our own class provides vtbl ptr. */
3271 for (i = TYPE_NFIELDS (t) - 1;
3272 i >= TYPE_N_BASECLASSES (t);
3275 const char *name = TYPE_FIELD_NAME (t, i);
3277 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3278 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3280 set_type_vptr_fieldno (type, i);
3284 /* Virtual function table field not found. */
3285 complaint (_("virtual function table pointer "
3286 "not found when defining class `%s'"),
3292 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3303 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3307 for (n = TYPE_NFN_FIELDS (type);
3308 fip->fnlist != NULL;
3309 fip->fnlist = fip->fnlist->next)
3311 --n; /* Circumvent Sun3 compiler bug. */
3312 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3317 /* Create the vector of fields, and record how big it is.
3318 We need this info to record proper virtual function table information
3319 for this class's virtual functions. */
3322 attach_fields_to_type (struct field_info *fip, struct type *type,
3323 struct objfile *objfile)
3326 int non_public_fields = 0;
3327 struct nextfield *scan;
3329 /* Count up the number of fields that we have, as well as taking note of
3330 whether or not there are any non-public fields, which requires us to
3331 allocate and build the private_field_bits and protected_field_bits
3334 for (scan = fip->list; scan != NULL; scan = scan->next)
3337 if (scan->visibility != VISIBILITY_PUBLIC)
3339 non_public_fields++;
3343 /* Now we know how many fields there are, and whether or not there are any
3344 non-public fields. Record the field count, allocate space for the
3345 array of fields, and create blank visibility bitfields if necessary. */
3347 TYPE_NFIELDS (type) = nfields;
3348 TYPE_FIELDS (type) = (struct field *)
3349 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3350 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3352 if (non_public_fields)
3354 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3356 TYPE_FIELD_PRIVATE_BITS (type) =
3357 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3358 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3360 TYPE_FIELD_PROTECTED_BITS (type) =
3361 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3362 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3364 TYPE_FIELD_IGNORE_BITS (type) =
3365 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3366 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3369 /* Copy the saved-up fields into the field vector. Start from the
3370 head of the list, adding to the tail of the field array, so that
3371 they end up in the same order in the array in which they were
3372 added to the list. */
3374 while (nfields-- > 0)
3376 TYPE_FIELD (type, nfields) = fip->list->field;
3377 switch (fip->list->visibility)
3379 case VISIBILITY_PRIVATE:
3380 SET_TYPE_FIELD_PRIVATE (type, nfields);
3383 case VISIBILITY_PROTECTED:
3384 SET_TYPE_FIELD_PROTECTED (type, nfields);
3387 case VISIBILITY_IGNORE:
3388 SET_TYPE_FIELD_IGNORE (type, nfields);
3391 case VISIBILITY_PUBLIC:
3395 /* Unknown visibility. Complain and treat it as public. */
3397 complaint (_("Unknown visibility `%c' for field"),
3398 fip->list->visibility);
3402 fip->list = fip->list->next;
3408 /* Complain that the compiler has emitted more than one definition for the
3409 structure type TYPE. */
3411 complain_about_struct_wipeout (struct type *type)
3413 const char *name = "";
3414 const char *kind = "";
3416 if (TYPE_NAME (type))
3418 name = TYPE_NAME (type);
3419 switch (TYPE_CODE (type))
3421 case TYPE_CODE_STRUCT: kind = "struct "; break;
3422 case TYPE_CODE_UNION: kind = "union "; break;
3423 case TYPE_CODE_ENUM: kind = "enum "; break;
3433 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3436 /* Set the length for all variants of a same main_type, which are
3437 connected in the closed chain.
3439 This is something that needs to be done when a type is defined *after*
3440 some cross references to this type have already been read. Consider
3441 for instance the following scenario where we have the following two
3444 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3445 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3447 A stubbed version of type dummy is created while processing the first
3448 stabs entry. The length of that type is initially set to zero, since
3449 it is unknown at this point. Also, a "constant" variation of type
3450 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3453 The second stabs entry allows us to replace the stubbed definition
3454 with the real definition. However, we still need to adjust the length
3455 of the "constant" variation of that type, as its length was left
3456 untouched during the main type replacement... */
3459 set_length_in_type_chain (struct type *type)
3461 struct type *ntype = TYPE_CHAIN (type);
3463 while (ntype != type)
3465 if (TYPE_LENGTH(ntype) == 0)
3466 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3468 complain_about_struct_wipeout (ntype);
3469 ntype = TYPE_CHAIN (ntype);
3473 /* Read the description of a structure (or union type) and return an object
3474 describing the type.
3476 PP points to a character pointer that points to the next unconsumed token
3477 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3478 *PP will point to "4a:1,0,32;;".
3480 TYPE points to an incomplete type that needs to be filled in.
3482 OBJFILE points to the current objfile from which the stabs information is
3483 being read. (Note that it is redundant in that TYPE also contains a pointer
3484 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3487 static struct type *
3488 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3489 struct objfile *objfile)
3491 struct cleanup *back_to;
3492 struct field_info fi;
3497 /* When describing struct/union/class types in stabs, G++ always drops
3498 all qualifications from the name. So if you've got:
3499 struct A { ... struct B { ... }; ... };
3500 then G++ will emit stabs for `struct A::B' that call it simply
3501 `struct B'. Obviously, if you've got a real top-level definition for
3502 `struct B', or other nested definitions, this is going to cause
3505 Obviously, GDB can't fix this by itself, but it can at least avoid
3506 scribbling on existing structure type objects when new definitions
3508 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3509 || TYPE_STUB (type)))
3511 complain_about_struct_wipeout (type);
3513 /* It's probably best to return the type unchanged. */
3517 back_to = make_cleanup (null_cleanup, 0);
3519 INIT_CPLUS_SPECIFIC (type);
3520 TYPE_CODE (type) = type_code;
3521 TYPE_STUB (type) = 0;
3523 /* First comes the total size in bytes. */
3528 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3531 do_cleanups (back_to);
3532 return error_type (pp, objfile);
3534 set_length_in_type_chain (type);
3537 /* Now read the baseclasses, if any, read the regular C struct or C++
3538 class member fields, attach the fields to the type, read the C++
3539 member functions, attach them to the type, and then read any tilde
3540 field (baseclass specifier for the class holding the main vtable). */
3542 if (!read_baseclasses (&fi, pp, type, objfile)
3543 || !read_struct_fields (&fi, pp, type, objfile)
3544 || !attach_fields_to_type (&fi, type, objfile)
3545 || !read_member_functions (&fi, pp, type, objfile)
3546 || !attach_fn_fields_to_type (&fi, type)
3547 || !read_tilde_fields (&fi, pp, type, objfile))
3549 type = error_type (pp, objfile);
3552 do_cleanups (back_to);
3556 /* Read a definition of an array type,
3557 and create and return a suitable type object.
3558 Also creates a range type which represents the bounds of that
3561 static struct type *
3562 read_array_type (const char **pp, struct type *type,
3563 struct objfile *objfile)
3565 struct type *index_type, *element_type, *range_type;
3570 /* Format of an array type:
3571 "ar<index type>;lower;upper;<array_contents_type>".
3572 OS9000: "arlower,upper;<array_contents_type>".
3574 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3575 for these, produce a type like float[][]. */
3578 index_type = read_type (pp, objfile);
3580 /* Improper format of array type decl. */
3581 return error_type (pp, objfile);
3585 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3590 lower = read_huge_number (pp, ';', &nbits, 0);
3593 return error_type (pp, objfile);
3595 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3600 upper = read_huge_number (pp, ';', &nbits, 0);
3602 return error_type (pp, objfile);
3604 element_type = read_type (pp, objfile);
3613 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3614 type = create_array_type (type, element_type, range_type);
3620 /* Read a definition of an enumeration type,
3621 and create and return a suitable type object.
3622 Also defines the symbols that represent the values of the type. */
3624 static struct type *
3625 read_enum_type (const char **pp, struct type *type,
3626 struct objfile *objfile)
3628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3634 struct pending **symlist;
3635 struct pending *osyms, *syms;
3638 int unsigned_enum = 1;
3641 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3642 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3643 to do? For now, force all enum values to file scope. */
3644 if (within_function)
3645 symlist = &local_symbols;
3648 symlist = &file_symbols;
3650 o_nsyms = osyms ? osyms->nsyms : 0;
3652 /* The aix4 compiler emits an extra field before the enum members;
3653 my guess is it's a type of some sort. Just ignore it. */
3656 /* Skip over the type. */
3660 /* Skip over the colon. */
3664 /* Read the value-names and their values.
3665 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3666 A semicolon or comma instead of a NAME means the end. */
3667 while (**pp && **pp != ';' && **pp != ',')
3669 STABS_CONTINUE (pp, objfile);
3673 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3675 n = read_huge_number (pp, ',', &nbits, 0);
3677 return error_type (pp, objfile);
3679 sym = allocate_symbol (objfile);
3680 SYMBOL_SET_LINKAGE_NAME (sym, name);
3681 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3682 &objfile->objfile_obstack);
3683 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3684 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3685 SYMBOL_VALUE (sym) = n;
3688 add_symbol_to_list (sym, symlist);
3693 (*pp)++; /* Skip the semicolon. */
3695 /* Now fill in the fields of the type-structure. */
3697 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3698 set_length_in_type_chain (type);
3699 TYPE_CODE (type) = TYPE_CODE_ENUM;
3700 TYPE_STUB (type) = 0;
3702 TYPE_UNSIGNED (type) = 1;
3703 TYPE_NFIELDS (type) = nsyms;
3704 TYPE_FIELDS (type) = (struct field *)
3705 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3706 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3708 /* Find the symbols for the values and put them into the type.
3709 The symbols can be found in the symlist that we put them on
3710 to cause them to be defined. osyms contains the old value
3711 of that symlist; everything up to there was defined by us. */
3712 /* Note that we preserve the order of the enum constants, so
3713 that in something like "enum {FOO, LAST_THING=FOO}" we print
3714 FOO, not LAST_THING. */
3716 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3718 int last = syms == osyms ? o_nsyms : 0;
3719 int j = syms->nsyms;
3721 for (; --j >= last; --n)
3723 struct symbol *xsym = syms->symbol[j];
3725 SYMBOL_TYPE (xsym) = type;
3726 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3727 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3728 TYPE_FIELD_BITSIZE (type, n) = 0;
3737 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3738 typedefs in every file (for int, long, etc):
3740 type = b <signed> <width> <format type>; <offset>; <nbits>
3742 optional format type = c or b for char or boolean.
3743 offset = offset from high order bit to start bit of type.
3744 width is # bytes in object of this type, nbits is # bits in type.
3746 The width/offset stuff appears to be for small objects stored in
3747 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3750 static struct type *
3751 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3756 int boolean_type = 0;
3767 return error_type (pp, objfile);
3771 /* For some odd reason, all forms of char put a c here. This is strange
3772 because no other type has this honor. We can safely ignore this because
3773 we actually determine 'char'acterness by the number of bits specified in
3775 Boolean forms, e.g Fortran logical*X, put a b here. */
3779 else if (**pp == 'b')
3785 /* The first number appears to be the number of bytes occupied
3786 by this type, except that unsigned short is 4 instead of 2.
3787 Since this information is redundant with the third number,
3788 we will ignore it. */
3789 read_huge_number (pp, ';', &nbits, 0);
3791 return error_type (pp, objfile);
3793 /* The second number is always 0, so ignore it too. */
3794 read_huge_number (pp, ';', &nbits, 0);
3796 return error_type (pp, objfile);
3798 /* The third number is the number of bits for this type. */
3799 type_bits = read_huge_number (pp, 0, &nbits, 0);
3801 return error_type (pp, objfile);
3802 /* The type *should* end with a semicolon. If it are embedded
3803 in a larger type the semicolon may be the only way to know where
3804 the type ends. If this type is at the end of the stabstring we
3805 can deal with the omitted semicolon (but we don't have to like
3806 it). Don't bother to complain(), Sun's compiler omits the semicolon
3813 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3814 TARGET_CHAR_BIT, NULL);
3816 TYPE_UNSIGNED (type) = 1;
3821 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3823 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3826 static struct type *
3827 read_sun_floating_type (const char **pp, int typenums[2],
3828 struct objfile *objfile)
3833 struct type *rettype;
3835 /* The first number has more details about the type, for example
3837 details = read_huge_number (pp, ';', &nbits, 0);
3839 return error_type (pp, objfile);
3841 /* The second number is the number of bytes occupied by this type. */
3842 nbytes = read_huge_number (pp, ';', &nbits, 0);
3844 return error_type (pp, objfile);
3846 nbits = nbytes * TARGET_CHAR_BIT;
3848 if (details == NF_COMPLEX || details == NF_COMPLEX16
3849 || details == NF_COMPLEX32)
3851 rettype = dbx_init_float_type (objfile, nbits / 2);
3852 return init_complex_type (objfile, NULL, rettype);
3855 return dbx_init_float_type (objfile, nbits);
3858 /* Read a number from the string pointed to by *PP.
3859 The value of *PP is advanced over the number.
3860 If END is nonzero, the character that ends the
3861 number must match END, or an error happens;
3862 and that character is skipped if it does match.
3863 If END is zero, *PP is left pointing to that character.
3865 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3866 the number is represented in an octal representation, assume that
3867 it is represented in a 2's complement representation with a size of
3868 TWOS_COMPLEMENT_BITS.
3870 If the number fits in a long, set *BITS to 0 and return the value.
3871 If not, set *BITS to be the number of bits in the number and return 0.
3873 If encounter garbage, set *BITS to -1 and return 0. */
3876 read_huge_number (const char **pp, int end, int *bits,
3877 int twos_complement_bits)
3879 const char *p = *pp;
3888 int twos_complement_representation = 0;
3896 /* Leading zero means octal. GCC uses this to output values larger
3897 than an int (because that would be hard in decimal). */
3904 /* Skip extra zeros. */
3908 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3910 /* Octal, possibly signed. Check if we have enough chars for a
3916 while ((c = *p1) >= '0' && c < '8')
3920 if (len > twos_complement_bits / 3
3921 || (twos_complement_bits % 3 == 0
3922 && len == twos_complement_bits / 3))
3924 /* Ok, we have enough characters for a signed value, check
3925 for signness by testing if the sign bit is set. */
3926 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3928 if (c & (1 << sign_bit))
3930 /* Definitely signed. */
3931 twos_complement_representation = 1;
3937 upper_limit = LONG_MAX / radix;
3939 while ((c = *p++) >= '0' && c < ('0' + radix))
3941 if (n <= upper_limit)
3943 if (twos_complement_representation)
3945 /* Octal, signed, twos complement representation. In
3946 this case, n is the corresponding absolute value. */
3949 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3961 /* unsigned representation */
3963 n += c - '0'; /* FIXME this overflows anyway. */
3969 /* This depends on large values being output in octal, which is
3976 /* Ignore leading zeroes. */
3980 else if (c == '2' || c == '3')
4001 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4003 /* We were supposed to parse a number with maximum
4004 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4015 /* Large decimal constants are an error (because it is hard to
4016 count how many bits are in them). */
4022 /* -0x7f is the same as 0x80. So deal with it by adding one to
4023 the number of bits. Two's complement represention octals
4024 can't have a '-' in front. */
4025 if (sign == -1 && !twos_complement_representation)
4036 /* It's *BITS which has the interesting information. */
4040 static struct type *
4041 read_range_type (const char **pp, int typenums[2], int type_size,
4042 struct objfile *objfile)
4044 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4045 const char *orig_pp = *pp;
4050 struct type *result_type;
4051 struct type *index_type = NULL;
4053 /* First comes a type we are a subrange of.
4054 In C it is usually 0, 1 or the type being defined. */
4055 if (read_type_number (pp, rangenums) != 0)
4056 return error_type (pp, objfile);
4057 self_subrange = (rangenums[0] == typenums[0] &&
4058 rangenums[1] == typenums[1]);
4063 index_type = read_type (pp, objfile);
4066 /* A semicolon should now follow; skip it. */
4070 /* The remaining two operands are usually lower and upper bounds
4071 of the range. But in some special cases they mean something else. */
4072 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4073 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4075 if (n2bits == -1 || n3bits == -1)
4076 return error_type (pp, objfile);
4079 goto handle_true_range;
4081 /* If limits are huge, must be large integral type. */
4082 if (n2bits != 0 || n3bits != 0)
4084 char got_signed = 0;
4085 char got_unsigned = 0;
4086 /* Number of bits in the type. */
4089 /* If a type size attribute has been specified, the bounds of
4090 the range should fit in this size. If the lower bounds needs
4091 more bits than the upper bound, then the type is signed. */
4092 if (n2bits <= type_size && n3bits <= type_size)
4094 if (n2bits == type_size && n2bits > n3bits)
4100 /* Range from 0 to <large number> is an unsigned large integral type. */
4101 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4106 /* Range from <large number> to <large number>-1 is a large signed
4107 integral type. Take care of the case where <large number> doesn't
4108 fit in a long but <large number>-1 does. */
4109 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4110 || (n2bits != 0 && n3bits == 0
4111 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4118 if (got_signed || got_unsigned)
4119 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4121 return error_type (pp, objfile);
4124 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4125 if (self_subrange && n2 == 0 && n3 == 0)
4126 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4128 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4129 is the width in bytes.
4131 Fortran programs appear to use this for complex types also. To
4132 distinguish between floats and complex, g77 (and others?) seem
4133 to use self-subranges for the complexes, and subranges of int for
4136 Also note that for complexes, g77 sets n2 to the size of one of
4137 the member floats, not the whole complex beast. My guess is that
4138 this was to work well with pre-COMPLEX versions of gdb. */
4140 if (n3 == 0 && n2 > 0)
4142 struct type *float_type
4143 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4146 return init_complex_type (objfile, NULL, float_type);
4151 /* If the upper bound is -1, it must really be an unsigned integral. */
4153 else if (n2 == 0 && n3 == -1)
4155 int bits = type_size;
4159 /* We don't know its size. It is unsigned int or unsigned
4160 long. GCC 2.3.3 uses this for long long too, but that is
4161 just a GDB 3.5 compatibility hack. */
4162 bits = gdbarch_int_bit (gdbarch);
4165 return init_integer_type (objfile, bits, 1, NULL);
4168 /* Special case: char is defined (Who knows why) as a subrange of
4169 itself with range 0-127. */
4170 else if (self_subrange && n2 == 0 && n3 == 127)
4172 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4174 TYPE_NOSIGN (type) = 1;
4177 /* We used to do this only for subrange of self or subrange of int. */
4180 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4181 "unsigned long", and we already checked for that,
4182 so don't need to test for it here. */
4185 /* n3 actually gives the size. */
4186 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4188 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4189 unsigned n-byte integer. But do require n to be a power of
4190 two; we don't want 3- and 5-byte integers flying around. */
4196 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4199 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4200 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4203 /* I think this is for Convex "long long". Since I don't know whether
4204 Convex sets self_subrange, I also accept that particular size regardless
4205 of self_subrange. */
4206 else if (n3 == 0 && n2 < 0
4208 || n2 == -gdbarch_long_long_bit
4209 (gdbarch) / TARGET_CHAR_BIT))
4210 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4211 else if (n2 == -n3 - 1)
4214 return init_integer_type (objfile, 8, 0, NULL);
4216 return init_integer_type (objfile, 16, 0, NULL);
4217 if (n3 == 0x7fffffff)
4218 return init_integer_type (objfile, 32, 0, NULL);
4221 /* We have a real range type on our hands. Allocate space and
4222 return a real pointer. */
4226 index_type = objfile_type (objfile)->builtin_int;
4228 index_type = *dbx_lookup_type (rangenums, objfile);
4229 if (index_type == NULL)
4231 /* Does this actually ever happen? Is that why we are worrying
4232 about dealing with it rather than just calling error_type? */
4234 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4236 index_type = objfile_type (objfile)->builtin_int;
4240 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4241 return (result_type);
4244 /* Read in an argument list. This is a list of types, separated by commas
4245 and terminated with END. Return the list of types read in, or NULL
4246 if there is an error. */
4248 static struct field *
4249 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4252 /* FIXME! Remove this arbitrary limit! */
4253 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4260 /* Invalid argument list: no ','. */
4263 STABS_CONTINUE (pp, objfile);
4264 types[n++] = read_type (pp, objfile);
4266 (*pp)++; /* get past `end' (the ':' character). */
4270 /* We should read at least the THIS parameter here. Some broken stabs
4271 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4272 have been present ";-16,(0,43)" reference instead. This way the
4273 excessive ";" marker prematurely stops the parameters parsing. */
4275 complaint (_("Invalid (empty) method arguments"));
4278 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4286 rval = XCNEWVEC (struct field, n);
4287 for (i = 0; i < n; i++)
4288 rval[i].type = types[i];
4293 /* Common block handling. */
4295 /* List of symbols declared since the last BCOMM. This list is a tail
4296 of local_symbols. When ECOMM is seen, the symbols on the list
4297 are noted so their proper addresses can be filled in later,
4298 using the common block base address gotten from the assembler
4301 static struct pending *common_block;
4302 static int common_block_i;
4304 /* Name of the current common block. We get it from the BCOMM instead of the
4305 ECOMM to match IBM documentation (even though IBM puts the name both places
4306 like everyone else). */
4307 static char *common_block_name;
4309 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4310 to remain after this function returns. */
4313 common_block_start (const char *name, struct objfile *objfile)
4315 if (common_block_name != NULL)
4317 complaint (_("Invalid symbol data: common block within common block"));
4319 common_block = local_symbols;
4320 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4321 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4325 /* Process a N_ECOMM symbol. */
4328 common_block_end (struct objfile *objfile)
4330 /* Symbols declared since the BCOMM are to have the common block
4331 start address added in when we know it. common_block and
4332 common_block_i point to the first symbol after the BCOMM in
4333 the local_symbols list; copy the list and hang it off the
4334 symbol for the common block name for later fixup. */
4337 struct pending *newobj = 0;
4338 struct pending *next;
4341 if (common_block_name == NULL)
4343 complaint (_("ECOMM symbol unmatched by BCOMM"));
4347 sym = allocate_symbol (objfile);
4348 /* Note: common_block_name already saved on objfile_obstack. */
4349 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4350 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4352 /* Now we copy all the symbols which have been defined since the BCOMM. */
4354 /* Copy all the struct pendings before common_block. */
4355 for (next = local_symbols;
4356 next != NULL && next != common_block;
4359 for (j = 0; j < next->nsyms; j++)
4360 add_symbol_to_list (next->symbol[j], &newobj);
4363 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4364 NULL, it means copy all the local symbols (which we already did
4367 if (common_block != NULL)
4368 for (j = common_block_i; j < common_block->nsyms; j++)
4369 add_symbol_to_list (common_block->symbol[j], &newobj);
4371 SYMBOL_TYPE (sym) = (struct type *) newobj;
4373 /* Should we be putting local_symbols back to what it was?
4376 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4377 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4378 global_sym_chain[i] = sym;
4379 common_block_name = NULL;
4382 /* Add a common block's start address to the offset of each symbol
4383 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4384 the common block name). */
4387 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4389 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4391 for (; next; next = next->next)
4395 for (j = next->nsyms - 1; j >= 0; j--)
4396 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4402 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4403 See add_undefined_type for more details. */
4406 add_undefined_type_noname (struct type *type, int typenums[2])
4410 nat.typenums[0] = typenums [0];
4411 nat.typenums[1] = typenums [1];
4414 if (noname_undefs_length == noname_undefs_allocated)
4416 noname_undefs_allocated *= 2;
4417 noname_undefs = (struct nat *)
4418 xrealloc ((char *) noname_undefs,
4419 noname_undefs_allocated * sizeof (struct nat));
4421 noname_undefs[noname_undefs_length++] = nat;
4424 /* Add TYPE to the UNDEF_TYPES vector.
4425 See add_undefined_type for more details. */
4428 add_undefined_type_1 (struct type *type)
4430 if (undef_types_length == undef_types_allocated)
4432 undef_types_allocated *= 2;
4433 undef_types = (struct type **)
4434 xrealloc ((char *) undef_types,
4435 undef_types_allocated * sizeof (struct type *));
4437 undef_types[undef_types_length++] = type;
4440 /* What about types defined as forward references inside of a small lexical
4442 /* Add a type to the list of undefined types to be checked through
4443 once this file has been read in.
4445 In practice, we actually maintain two such lists: The first list
4446 (UNDEF_TYPES) is used for types whose name has been provided, and
4447 concerns forward references (eg 'xs' or 'xu' forward references);
4448 the second list (NONAME_UNDEFS) is used for types whose name is
4449 unknown at creation time, because they were referenced through
4450 their type number before the actual type was declared.
4451 This function actually adds the given type to the proper list. */
4454 add_undefined_type (struct type *type, int typenums[2])
4456 if (TYPE_NAME (type) == NULL)
4457 add_undefined_type_noname (type, typenums);
4459 add_undefined_type_1 (type);
4462 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4465 cleanup_undefined_types_noname (struct objfile *objfile)
4469 for (i = 0; i < noname_undefs_length; i++)
4471 struct nat nat = noname_undefs[i];
4474 type = dbx_lookup_type (nat.typenums, objfile);
4475 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4477 /* The instance flags of the undefined type are still unset,
4478 and needs to be copied over from the reference type.
4479 Since replace_type expects them to be identical, we need
4480 to set these flags manually before hand. */
4481 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4482 replace_type (nat.type, *type);
4486 noname_undefs_length = 0;
4489 /* Go through each undefined type, see if it's still undefined, and fix it
4490 up if possible. We have two kinds of undefined types:
4492 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4493 Fix: update array length using the element bounds
4494 and the target type's length.
4495 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4496 yet defined at the time a pointer to it was made.
4497 Fix: Do a full lookup on the struct/union tag. */
4500 cleanup_undefined_types_1 (void)
4504 /* Iterate over every undefined type, and look for a symbol whose type
4505 matches our undefined type. The symbol matches if:
4506 1. It is a typedef in the STRUCT domain;
4507 2. It has the same name, and same type code;
4508 3. The instance flags are identical.
4510 It is important to check the instance flags, because we have seen
4511 examples where the debug info contained definitions such as:
4513 "foo_t:t30=B31=xefoo_t:"
4515 In this case, we have created an undefined type named "foo_t" whose
4516 instance flags is null (when processing "xefoo_t"), and then created
4517 another type with the same name, but with different instance flags
4518 ('B' means volatile). I think that the definition above is wrong,
4519 since the same type cannot be volatile and non-volatile at the same
4520 time, but we need to be able to cope with it when it happens. The
4521 approach taken here is to treat these two types as different. */
4523 for (type = undef_types; type < undef_types + undef_types_length; type++)
4525 switch (TYPE_CODE (*type))
4528 case TYPE_CODE_STRUCT:
4529 case TYPE_CODE_UNION:
4530 case TYPE_CODE_ENUM:
4532 /* Check if it has been defined since. Need to do this here
4533 as well as in check_typedef to deal with the (legitimate in
4534 C though not C++) case of several types with the same name
4535 in different source files. */
4536 if (TYPE_STUB (*type))
4538 struct pending *ppt;
4540 /* Name of the type, without "struct" or "union". */
4541 const char *type_name = TYPE_NAME (*type);
4543 if (type_name == NULL)
4545 complaint (_("need a type name"));
4548 for (ppt = file_symbols; ppt; ppt = ppt->next)
4550 for (i = 0; i < ppt->nsyms; i++)
4552 struct symbol *sym = ppt->symbol[i];
4554 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4555 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4556 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4558 && (TYPE_INSTANCE_FLAGS (*type) ==
4559 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4560 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4562 replace_type (*type, SYMBOL_TYPE (sym));
4571 complaint (_("forward-referenced types left unresolved, "
4579 undef_types_length = 0;
4582 /* Try to fix all the undefined types we ecountered while processing
4586 cleanup_undefined_stabs_types (struct objfile *objfile)
4588 cleanup_undefined_types_1 ();
4589 cleanup_undefined_types_noname (objfile);
4592 /* See stabsread.h. */
4595 scan_file_globals (struct objfile *objfile)
4598 struct minimal_symbol *msymbol;
4599 struct symbol *sym, *prev;
4600 struct objfile *resolve_objfile;
4602 /* SVR4 based linkers copy referenced global symbols from shared
4603 libraries to the main executable.
4604 If we are scanning the symbols for a shared library, try to resolve
4605 them from the minimal symbols of the main executable first. */
4607 if (symfile_objfile && objfile != symfile_objfile)
4608 resolve_objfile = symfile_objfile;
4610 resolve_objfile = objfile;
4614 /* Avoid expensive loop through all minimal symbols if there are
4615 no unresolved symbols. */
4616 for (hash = 0; hash < HASHSIZE; hash++)
4618 if (global_sym_chain[hash])
4621 if (hash >= HASHSIZE)
4624 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4628 /* Skip static symbols. */
4629 switch (MSYMBOL_TYPE (msymbol))
4641 /* Get the hash index and check all the symbols
4642 under that hash index. */
4644 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4646 for (sym = global_sym_chain[hash]; sym;)
4648 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4649 SYMBOL_LINKAGE_NAME (sym)) == 0)
4651 /* Splice this symbol out of the hash chain and
4652 assign the value we have to it. */
4655 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4659 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4662 /* Check to see whether we need to fix up a common block. */
4663 /* Note: this code might be executed several times for
4664 the same symbol if there are multiple references. */
4667 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4669 fix_common_block (sym,
4670 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4675 SYMBOL_VALUE_ADDRESS (sym)
4676 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4678 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4683 sym = SYMBOL_VALUE_CHAIN (prev);
4687 sym = global_sym_chain[hash];
4693 sym = SYMBOL_VALUE_CHAIN (sym);
4697 if (resolve_objfile == objfile)
4699 resolve_objfile = objfile;
4702 /* Change the storage class of any remaining unresolved globals to
4703 LOC_UNRESOLVED and remove them from the chain. */
4704 for (hash = 0; hash < HASHSIZE; hash++)
4706 sym = global_sym_chain[hash];
4710 sym = SYMBOL_VALUE_CHAIN (sym);
4712 /* Change the symbol address from the misleading chain value
4714 SYMBOL_VALUE_ADDRESS (prev) = 0;
4716 /* Complain about unresolved common block symbols. */
4717 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4718 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4720 complaint (_("%s: common block `%s' from "
4721 "global_sym_chain unresolved"),
4722 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4725 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4728 /* Initialize anything that needs initializing when starting to read
4729 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4733 stabsread_init (void)
4737 /* Initialize anything that needs initializing when a completely new
4738 symbol file is specified (not just adding some symbols from another
4739 file, e.g. a shared library). */
4742 stabsread_new_init (void)
4744 /* Empty the hash table of global syms looking for values. */
4745 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4748 /* Initialize anything that needs initializing at the same time as
4749 start_symtab() is called. */
4754 global_stabs = NULL; /* AIX COFF */
4755 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4756 n_this_object_header_files = 1;
4757 type_vector_length = 0;
4758 type_vector = (struct type **) 0;
4759 within_function = 0;
4761 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4762 common_block_name = NULL;
4765 /* Call after end_symtab(). */
4772 xfree (type_vector);
4775 type_vector_length = 0;
4776 previous_stab_code = 0;
4780 finish_global_stabs (struct objfile *objfile)
4784 patch_block_stabs (global_symbols, global_stabs, objfile);
4785 xfree (global_stabs);
4786 global_stabs = NULL;
4790 /* Find the end of the name, delimited by a ':', but don't match
4791 ObjC symbols which look like -[Foo bar::]:bla. */
4793 find_name_end (const char *name)
4795 const char *s = name;
4797 if (s[0] == '-' || *s == '+')
4799 /* Must be an ObjC method symbol. */
4802 error (_("invalid symbol name \"%s\""), name);
4804 s = strchr (s, ']');
4807 error (_("invalid symbol name \"%s\""), name);
4809 return strchr (s, ':');
4813 return strchr (s, ':');
4817 /* See stabsread.h. */
4820 hashname (const char *name)
4822 return hash (name, strlen (name)) % HASHSIZE;
4825 /* Initializer for this module. */
4828 _initialize_stabsread (void)
4830 rs6000_builtin_type_data = register_objfile_data ();
4832 undef_types_allocated = 20;
4833 undef_types_length = 0;
4834 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4836 noname_undefs_allocated = 20;
4837 noname_undefs_length = 0;
4838 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4840 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4841 &stab_register_funcs);
4842 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4843 &stab_register_funcs);