1 /* Support routines for manipulating internal types for GDB.
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28 #include "expression.h"
33 #include "complaints.h"
37 #include "cp-support.h"
39 #include "dwarf2/loc.h"
41 #include "floatformat.h"
44 #include "gmp-utils.h"
46 /* Initialize BADNESS constants. */
48 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
50 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
51 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
53 const struct rank EXACT_MATCH_BADNESS = {0,0};
55 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
56 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
57 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
58 const struct rank CV_CONVERSION_BADNESS = {1, 0};
59 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
60 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
61 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
62 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
63 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
64 const struct rank BASE_CONVERSION_BADNESS = {2,0};
65 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
66 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
67 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
68 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
69 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
71 /* Floatformat pairs. */
72 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_half_big,
74 &floatformat_ieee_half_little
76 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_single_big,
78 &floatformat_ieee_single_little
80 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_little
84 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_ieee_double_big,
86 &floatformat_ieee_double_littlebyte_bigword
88 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_i387_ext,
92 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_m68881_ext,
94 &floatformat_m68881_ext
96 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_arm_ext_big,
98 &floatformat_arm_ext_littlebyte_bigword
100 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_spill_big,
102 &floatformat_ia64_spill_little
104 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_ia64_quad_big,
106 &floatformat_ia64_quad_little
108 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
112 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
116 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
117 &floatformat_ibm_long_double_big,
118 &floatformat_ibm_long_double_little
120 const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
121 &floatformat_bfloat16_big,
122 &floatformat_bfloat16_little
125 /* Should opaque types be resolved? */
127 static bool opaque_type_resolution = true;
129 /* See gdbtypes.h. */
131 unsigned int overload_debug = 0;
133 /* A flag to enable strict type checking. */
135 static bool strict_type_checking = true;
137 /* A function to show whether opaque types are resolved. */
140 show_opaque_type_resolution (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c,
144 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
145 "(if set before loading symbols) is %s.\n"),
149 /* A function to show whether C++ overload debugging is enabled. */
152 show_overload_debug (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
155 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
159 /* A function to show the status of strict type checking. */
162 show_strict_type_checking (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
165 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
169 /* Allocate a new OBJFILE-associated type structure and fill it
170 with some defaults. Space for the type structure is allocated
171 on the objfile's objfile_obstack. */
174 alloc_type (struct objfile *objfile)
178 gdb_assert (objfile != NULL);
180 /* Alloc the structure and start off with all fields zeroed. */
181 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
182 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
184 OBJSTAT (objfile, n_types++);
186 TYPE_OBJFILE_OWNED (type) = 1;
187 TYPE_OWNER (type).objfile = objfile;
189 /* Initialize the fields that might not be zero. */
191 type->set_code (TYPE_CODE_UNDEF);
192 TYPE_CHAIN (type) = type; /* Chain back to itself. */
197 /* Allocate a new GDBARCH-associated type structure and fill it
198 with some defaults. Space for the type structure is allocated
199 on the obstack associated with GDBARCH. */
202 alloc_type_arch (struct gdbarch *gdbarch)
206 gdb_assert (gdbarch != NULL);
208 /* Alloc the structure and start off with all fields zeroed. */
210 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
211 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
213 TYPE_OBJFILE_OWNED (type) = 0;
214 TYPE_OWNER (type).gdbarch = gdbarch;
216 /* Initialize the fields that might not be zero. */
218 type->set_code (TYPE_CODE_UNDEF);
219 TYPE_CHAIN (type) = type; /* Chain back to itself. */
224 /* If TYPE is objfile-associated, allocate a new type structure
225 associated with the same objfile. If TYPE is gdbarch-associated,
226 allocate a new type structure associated with the same gdbarch. */
229 alloc_type_copy (const struct type *type)
231 if (TYPE_OBJFILE_OWNED (type))
232 return alloc_type (TYPE_OWNER (type).objfile);
234 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
237 /* If TYPE is gdbarch-associated, return that architecture.
238 If TYPE is objfile-associated, return that objfile's architecture. */
241 get_type_arch (const struct type *type)
243 struct gdbarch *arch;
245 if (TYPE_OBJFILE_OWNED (type))
246 arch = TYPE_OWNER (type).objfile->arch ();
248 arch = TYPE_OWNER (type).gdbarch;
250 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
251 a gdbarch, however, this is very rare, and even then, in most cases
252 that get_type_arch is called, we assume that a non-NULL value is
254 gdb_assert (arch != NULL);
258 /* See gdbtypes.h. */
261 get_target_type (struct type *type)
265 type = TYPE_TARGET_TYPE (type);
267 type = check_typedef (type);
273 /* See gdbtypes.h. */
276 type_length_units (struct type *type)
278 struct gdbarch *arch = get_type_arch (type);
279 int unit_size = gdbarch_addressable_memory_unit_size (arch);
281 return TYPE_LENGTH (type) / unit_size;
284 /* Alloc a new type instance structure, fill it with some defaults,
285 and point it at OLDTYPE. Allocate the new type instance from the
286 same place as OLDTYPE. */
289 alloc_type_instance (struct type *oldtype)
293 /* Allocate the structure. */
295 if (! TYPE_OBJFILE_OWNED (oldtype))
296 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
298 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
301 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
303 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
308 /* Clear all remnants of the previous type at TYPE, in preparation for
309 replacing it with something else. Preserve owner information. */
312 smash_type (struct type *type)
314 int objfile_owned = TYPE_OBJFILE_OWNED (type);
315 union type_owner owner = TYPE_OWNER (type);
317 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
319 /* Restore owner information. */
320 TYPE_OBJFILE_OWNED (type) = objfile_owned;
321 TYPE_OWNER (type) = owner;
323 /* For now, delete the rings. */
324 TYPE_CHAIN (type) = type;
326 /* For now, leave the pointer/reference types alone. */
329 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
330 to a pointer to memory where the pointer type should be stored.
331 If *TYPEPTR is zero, update it to point to the pointer type we return.
332 We allocate new memory if needed. */
335 make_pointer_type (struct type *type, struct type **typeptr)
337 struct type *ntype; /* New type */
340 ntype = TYPE_POINTER_TYPE (type);
345 return ntype; /* Don't care about alloc,
346 and have new type. */
347 else if (*typeptr == 0)
349 *typeptr = ntype; /* Tracking alloc, and have new type. */
354 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
356 ntype = alloc_type_copy (type);
360 else /* We have storage, but need to reset it. */
363 chain = TYPE_CHAIN (ntype);
365 TYPE_CHAIN (ntype) = chain;
368 TYPE_TARGET_TYPE (ntype) = type;
369 TYPE_POINTER_TYPE (type) = ntype;
371 /* FIXME! Assumes the machine has only one representation for pointers! */
374 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
375 ntype->set_code (TYPE_CODE_PTR);
377 /* Mark pointers as unsigned. The target converts between pointers
378 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
379 gdbarch_address_to_pointer. */
380 ntype->set_is_unsigned (true);
382 /* Update the length of all the other variants of this type. */
383 chain = TYPE_CHAIN (ntype);
384 while (chain != ntype)
386 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
387 chain = TYPE_CHAIN (chain);
393 /* Given a type TYPE, return a type of pointers to that type.
394 May need to construct such a type if this is the first use. */
397 lookup_pointer_type (struct type *type)
399 return make_pointer_type (type, (struct type **) 0);
402 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
403 points to a pointer to memory where the reference type should be
404 stored. If *TYPEPTR is zero, update it to point to the reference
405 type we return. We allocate new memory if needed. REFCODE denotes
406 the kind of reference type to lookup (lvalue or rvalue reference). */
409 make_reference_type (struct type *type, struct type **typeptr,
410 enum type_code refcode)
412 struct type *ntype; /* New type */
413 struct type **reftype;
416 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
418 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
419 : TYPE_RVALUE_REFERENCE_TYPE (type));
424 return ntype; /* Don't care about alloc,
425 and have new type. */
426 else if (*typeptr == 0)
428 *typeptr = ntype; /* Tracking alloc, and have new type. */
433 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
435 ntype = alloc_type_copy (type);
439 else /* We have storage, but need to reset it. */
442 chain = TYPE_CHAIN (ntype);
444 TYPE_CHAIN (ntype) = chain;
447 TYPE_TARGET_TYPE (ntype) = type;
448 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
449 : &TYPE_RVALUE_REFERENCE_TYPE (type));
453 /* FIXME! Assume the machine has only one representation for
454 references, and that it matches the (only) representation for
457 TYPE_LENGTH (ntype) =
458 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
459 ntype->set_code (refcode);
463 /* Update the length of all the other variants of this type. */
464 chain = TYPE_CHAIN (ntype);
465 while (chain != ntype)
467 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
468 chain = TYPE_CHAIN (chain);
474 /* Same as above, but caller doesn't care about memory allocation
478 lookup_reference_type (struct type *type, enum type_code refcode)
480 return make_reference_type (type, (struct type **) 0, refcode);
483 /* Lookup the lvalue reference type for the type TYPE. */
486 lookup_lvalue_reference_type (struct type *type)
488 return lookup_reference_type (type, TYPE_CODE_REF);
491 /* Lookup the rvalue reference type for the type TYPE. */
494 lookup_rvalue_reference_type (struct type *type)
496 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
499 /* Lookup a function type that returns type TYPE. TYPEPTR, if
500 nonzero, points to a pointer to memory where the function type
501 should be stored. If *TYPEPTR is zero, update it to point to the
502 function type we return. We allocate new memory if needed. */
505 make_function_type (struct type *type, struct type **typeptr)
507 struct type *ntype; /* New type */
509 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
511 ntype = alloc_type_copy (type);
515 else /* We have storage, but need to reset it. */
521 TYPE_TARGET_TYPE (ntype) = type;
523 TYPE_LENGTH (ntype) = 1;
524 ntype->set_code (TYPE_CODE_FUNC);
526 INIT_FUNC_SPECIFIC (ntype);
531 /* Given a type TYPE, return a type of functions that return that type.
532 May need to construct such a type if this is the first use. */
535 lookup_function_type (struct type *type)
537 return make_function_type (type, (struct type **) 0);
540 /* Given a type TYPE and argument types, return the appropriate
541 function type. If the final type in PARAM_TYPES is NULL, make a
545 lookup_function_type_with_arguments (struct type *type,
547 struct type **param_types)
549 struct type *fn = make_function_type (type, (struct type **) 0);
554 if (param_types[nparams - 1] == NULL)
557 fn->set_has_varargs (true);
559 else if (check_typedef (param_types[nparams - 1])->code ()
563 /* Caller should have ensured this. */
564 gdb_assert (nparams == 0);
565 fn->set_is_prototyped (true);
568 fn->set_is_prototyped (true);
571 fn->set_num_fields (nparams);
573 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
574 for (i = 0; i < nparams; ++i)
575 fn->field (i).set_type (param_types[i]);
580 /* Identify address space identifier by name -- return a
581 type_instance_flags. */
584 address_space_name_to_type_instance_flags (struct gdbarch *gdbarch,
585 const char *space_identifier)
587 type_instance_flags type_flags;
589 /* Check for known address space delimiters. */
590 if (!strcmp (space_identifier, "code"))
591 return TYPE_INSTANCE_FLAG_CODE_SPACE;
592 else if (!strcmp (space_identifier, "data"))
593 return TYPE_INSTANCE_FLAG_DATA_SPACE;
594 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
595 && gdbarch_address_class_name_to_type_flags (gdbarch,
600 error (_("Unknown address space specifier: \"%s\""), space_identifier);
603 /* Identify address space identifier by type_instance_flags and return
604 the string version of the adress space name. */
607 address_space_type_instance_flags_to_name (struct gdbarch *gdbarch,
608 type_instance_flags space_flag)
610 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
612 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
614 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
615 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
616 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
621 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
623 If STORAGE is non-NULL, create the new type instance there.
624 STORAGE must be in the same obstack as TYPE. */
627 make_qualified_type (struct type *type, type_instance_flags new_flags,
628 struct type *storage)
635 if (ntype->instance_flags () == new_flags)
637 ntype = TYPE_CHAIN (ntype);
639 while (ntype != type);
641 /* Create a new type instance. */
643 ntype = alloc_type_instance (type);
646 /* If STORAGE was provided, it had better be in the same objfile
647 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
648 if one objfile is freed and the other kept, we'd have
649 dangling pointers. */
650 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
653 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
654 TYPE_CHAIN (ntype) = ntype;
657 /* Pointers or references to the original type are not relevant to
659 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
660 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
662 /* Chain the new qualified type to the old type. */
663 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
664 TYPE_CHAIN (type) = ntype;
666 /* Now set the instance flags and return the new type. */
667 ntype->set_instance_flags (new_flags);
669 /* Set length of new type to that of the original type. */
670 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
675 /* Make an address-space-delimited variant of a type -- a type that
676 is identical to the one supplied except that it has an address
677 space attribute attached to it (such as "code" or "data").
679 The space attributes "code" and "data" are for Harvard
680 architectures. The address space attributes are for architectures
681 which have alternately sized pointers or pointers with alternate
685 make_type_with_address_space (struct type *type,
686 type_instance_flags space_flag)
688 type_instance_flags new_flags = ((type->instance_flags ()
689 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
690 | TYPE_INSTANCE_FLAG_DATA_SPACE
691 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
694 return make_qualified_type (type, new_flags, NULL);
697 /* Make a "c-v" variant of a type -- a type that is identical to the
698 one supplied except that it may have const or volatile attributes
699 CNST is a flag for setting the const attribute
700 VOLTL is a flag for setting the volatile attribute
701 TYPE is the base type whose variant we are creating.
703 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
704 storage to hold the new qualified type; *TYPEPTR and TYPE must be
705 in the same objfile. Otherwise, allocate fresh memory for the new
706 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
707 new type we construct. */
710 make_cv_type (int cnst, int voltl,
712 struct type **typeptr)
714 struct type *ntype; /* New type */
716 type_instance_flags new_flags = (type->instance_flags ()
717 & ~(TYPE_INSTANCE_FLAG_CONST
718 | TYPE_INSTANCE_FLAG_VOLATILE));
721 new_flags |= TYPE_INSTANCE_FLAG_CONST;
724 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
726 if (typeptr && *typeptr != NULL)
728 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
729 a C-V variant chain that threads across objfiles: if one
730 objfile gets freed, then the other has a broken C-V chain.
732 This code used to try to copy over the main type from TYPE to
733 *TYPEPTR if they were in different objfiles, but that's
734 wrong, too: TYPE may have a field list or member function
735 lists, which refer to types of their own, etc. etc. The
736 whole shebang would need to be copied over recursively; you
737 can't have inter-objfile pointers. The only thing to do is
738 to leave stub types as stub types, and look them up afresh by
739 name each time you encounter them. */
740 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
743 ntype = make_qualified_type (type, new_flags,
744 typeptr ? *typeptr : NULL);
752 /* Make a 'restrict'-qualified version of TYPE. */
755 make_restrict_type (struct type *type)
757 return make_qualified_type (type,
758 (type->instance_flags ()
759 | TYPE_INSTANCE_FLAG_RESTRICT),
763 /* Make a type without const, volatile, or restrict. */
766 make_unqualified_type (struct type *type)
768 return make_qualified_type (type,
769 (type->instance_flags ()
770 & ~(TYPE_INSTANCE_FLAG_CONST
771 | TYPE_INSTANCE_FLAG_VOLATILE
772 | TYPE_INSTANCE_FLAG_RESTRICT)),
776 /* Make a '_Atomic'-qualified version of TYPE. */
779 make_atomic_type (struct type *type)
781 return make_qualified_type (type,
782 (type->instance_flags ()
783 | TYPE_INSTANCE_FLAG_ATOMIC),
787 /* Replace the contents of ntype with the type *type. This changes the
788 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
789 the changes are propogated to all types in the TYPE_CHAIN.
791 In order to build recursive types, it's inevitable that we'll need
792 to update types in place --- but this sort of indiscriminate
793 smashing is ugly, and needs to be replaced with something more
794 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
795 clear if more steps are needed. */
798 replace_type (struct type *ntype, struct type *type)
802 /* These two types had better be in the same objfile. Otherwise,
803 the assignment of one type's main type structure to the other
804 will produce a type with references to objects (names; field
805 lists; etc.) allocated on an objfile other than its own. */
806 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
808 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
810 /* The type length is not a part of the main type. Update it for
811 each type on the variant chain. */
815 /* Assert that this element of the chain has no address-class bits
816 set in its flags. Such type variants might have type lengths
817 which are supposed to be different from the non-address-class
818 variants. This assertion shouldn't ever be triggered because
819 symbol readers which do construct address-class variants don't
820 call replace_type(). */
821 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
823 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
824 chain = TYPE_CHAIN (chain);
826 while (ntype != chain);
828 /* Assert that the two types have equivalent instance qualifiers.
829 This should be true for at least all of our debug readers. */
830 gdb_assert (ntype->instance_flags () == type->instance_flags ());
833 /* Implement direct support for MEMBER_TYPE in GNU C++.
834 May need to construct such a type if this is the first use.
835 The TYPE is the type of the member. The DOMAIN is the type
836 of the aggregate that the member belongs to. */
839 lookup_memberptr_type (struct type *type, struct type *domain)
843 mtype = alloc_type_copy (type);
844 smash_to_memberptr_type (mtype, domain, type);
848 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
851 lookup_methodptr_type (struct type *to_type)
855 mtype = alloc_type_copy (to_type);
856 smash_to_methodptr_type (mtype, to_type);
860 /* Allocate a stub method whose return type is TYPE. This apparently
861 happens for speed of symbol reading, since parsing out the
862 arguments to the method is cpu-intensive, the way we are doing it.
863 So, we will fill in arguments later. This always returns a fresh
867 allocate_stub_method (struct type *type)
871 mtype = alloc_type_copy (type);
872 mtype->set_code (TYPE_CODE_METHOD);
873 TYPE_LENGTH (mtype) = 1;
874 mtype->set_is_stub (true);
875 TYPE_TARGET_TYPE (mtype) = type;
876 /* TYPE_SELF_TYPE (mtype) = unknown yet */
880 /* See gdbtypes.h. */
883 operator== (const dynamic_prop &l, const dynamic_prop &r)
885 if (l.kind () != r.kind ())
893 return l.const_val () == r.const_val ();
894 case PROP_ADDR_OFFSET:
897 return l.baton () == r.baton ();
898 case PROP_VARIANT_PARTS:
899 return l.variant_parts () == r.variant_parts ();
901 return l.original_type () == r.original_type ();
904 gdb_assert_not_reached ("unhandled dynamic_prop kind");
907 /* See gdbtypes.h. */
910 operator== (const range_bounds &l, const range_bounds &r)
912 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
914 return (FIELD_EQ (low)
916 && FIELD_EQ (flag_upper_bound_is_count)
917 && FIELD_EQ (flag_bound_evaluated)
923 /* Create a range type with a dynamic range from LOW_BOUND to
924 HIGH_BOUND, inclusive. See create_range_type for further details. */
927 create_range_type (struct type *result_type, struct type *index_type,
928 const struct dynamic_prop *low_bound,
929 const struct dynamic_prop *high_bound,
932 /* The INDEX_TYPE should be a type capable of holding the upper and lower
933 bounds, as such a zero sized, or void type makes no sense. */
934 gdb_assert (index_type->code () != TYPE_CODE_VOID);
935 gdb_assert (TYPE_LENGTH (index_type) > 0);
937 if (result_type == NULL)
938 result_type = alloc_type_copy (index_type);
939 result_type->set_code (TYPE_CODE_RANGE);
940 TYPE_TARGET_TYPE (result_type) = index_type;
941 if (index_type->is_stub ())
942 result_type->set_target_is_stub (true);
944 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
947 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
948 bounds->low = *low_bound;
949 bounds->high = *high_bound;
951 bounds->stride.set_const_val (0);
953 result_type->set_bounds (bounds);
955 if (index_type->code () == TYPE_CODE_FIXED_POINT)
956 result_type->set_is_unsigned (index_type->is_unsigned ());
957 /* Note that the signed-ness of a range type can't simply be copied
958 from the underlying type. Consider a case where the underlying
959 type is 'int', but the range type can hold 0..65535, and where
960 the range is further specified to fit into 16 bits. In this
961 case, if we copy the underlying type's sign, then reading some
962 range values will cause an unwanted sign extension. So, we have
963 some heuristics here instead. */
964 else if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
965 result_type->set_is_unsigned (true);
966 /* Ada allows the declaration of range types whose upper bound is
967 less than the lower bound, so checking the lower bound is not
968 enough. Make sure we do not mark a range type whose upper bound
969 is negative as unsigned. */
970 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
971 result_type->set_is_unsigned (false);
973 result_type->set_endianity_is_not_default
974 (index_type->endianity_is_not_default ());
979 /* See gdbtypes.h. */
982 create_range_type_with_stride (struct type *result_type,
983 struct type *index_type,
984 const struct dynamic_prop *low_bound,
985 const struct dynamic_prop *high_bound,
987 const struct dynamic_prop *stride,
990 result_type = create_range_type (result_type, index_type, low_bound,
993 gdb_assert (stride != nullptr);
994 result_type->bounds ()->stride = *stride;
995 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
1002 /* Create a range type using either a blank type supplied in
1003 RESULT_TYPE, or creating a new type, inheriting the objfile from
1006 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
1007 to HIGH_BOUND, inclusive.
1009 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1010 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
1013 create_static_range_type (struct type *result_type, struct type *index_type,
1014 LONGEST low_bound, LONGEST high_bound)
1016 struct dynamic_prop low, high;
1018 low.set_const_val (low_bound);
1019 high.set_const_val (high_bound);
1021 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1026 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1027 are static, otherwise returns 0. */
1030 has_static_range (const struct range_bounds *bounds)
1032 /* If the range doesn't have a defined stride then its stride field will
1033 be initialized to the constant 0. */
1034 return (bounds->low.kind () == PROP_CONST
1035 && bounds->high.kind () == PROP_CONST
1036 && bounds->stride.kind () == PROP_CONST);
1040 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1043 Return 1 if type is a range type with two defined, constant bounds.
1044 Else, return 0 if it is discrete (and bounds will fit in LONGEST).
1048 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1050 type = check_typedef (type);
1051 switch (type->code ())
1053 case TYPE_CODE_RANGE:
1054 /* This function currently only works for ranges with two defined,
1056 if (type->bounds ()->low.kind () != PROP_CONST
1057 || type->bounds ()->high.kind () != PROP_CONST)
1060 *lowp = type->bounds ()->low.const_val ();
1061 *highp = type->bounds ()->high.const_val ();
1063 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1065 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1066 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1070 case TYPE_CODE_ENUM:
1071 if (type->num_fields () > 0)
1073 /* The enums may not be sorted by value, so search all
1077 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1078 for (i = 0; i < type->num_fields (); i++)
1080 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1081 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1082 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1083 *highp = TYPE_FIELD_ENUMVAL (type, i);
1086 /* Set unsigned indicator if warranted. */
1088 type->set_is_unsigned (true);
1096 case TYPE_CODE_BOOL:
1101 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1103 if (!type->is_unsigned ())
1105 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1106 *highp = -*lowp - 1;
1110 case TYPE_CODE_CHAR:
1112 /* This round-about calculation is to avoid shifting by
1113 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1114 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1115 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1116 *highp = (*highp - 1) | *highp;
1123 /* See gdbtypes.h */
1126 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1128 struct type *index = type->index_type ();
1136 res = get_discrete_bounds (index, &low, &high);
1149 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1150 representation of a value of this type, save the corresponding
1151 position number in POS.
1153 Its differs from VAL only in the case of enumeration types. In
1154 this case, the position number of the value of the first listed
1155 enumeration literal is zero; the position number of the value of
1156 each subsequent enumeration literal is one more than that of its
1157 predecessor in the list.
1159 Return 1 if the operation was successful. Return zero otherwise,
1160 in which case the value of POS is unmodified.
1164 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1166 if (type->code () == TYPE_CODE_RANGE)
1167 type = TYPE_TARGET_TYPE (type);
1169 if (type->code () == TYPE_CODE_ENUM)
1173 for (i = 0; i < type->num_fields (); i += 1)
1175 if (val == TYPE_FIELD_ENUMVAL (type, i))
1181 /* Invalid enumeration value. */
1191 /* If the array TYPE has static bounds calculate and update its
1192 size, then return true. Otherwise return false and leave TYPE
1196 update_static_array_size (struct type *type)
1198 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1200 struct type *range_type = type->index_type ();
1202 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1203 && has_static_range (range_type->bounds ())
1204 && (!type_not_associated (type)
1205 && !type_not_allocated (type)))
1207 LONGEST low_bound, high_bound;
1209 struct type *element_type;
1211 /* If the array itself doesn't provide a stride value then take
1212 whatever stride the range provides. Don't update BIT_STRIDE as
1213 we don't want to place the stride value from the range into this
1214 arrays bit size field. */
1215 stride = TYPE_FIELD_BITSIZE (type, 0);
1217 stride = range_type->bit_stride ();
1219 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1220 low_bound = high_bound = 0;
1221 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1222 /* Be careful when setting the array length. Ada arrays can be
1223 empty arrays with the high_bound being smaller than the low_bound.
1224 In such cases, the array length should be zero. */
1225 if (high_bound < low_bound)
1226 TYPE_LENGTH (type) = 0;
1227 else if (stride != 0)
1229 /* Ensure that the type length is always positive, even in the
1230 case where (for example in Fortran) we have a negative
1231 stride. It is possible to have a single element array with a
1232 negative stride in Fortran (this doesn't mean anything
1233 special, it's still just a single element array) so do
1234 consider that case when touching this code. */
1235 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1237 = ((std::abs (stride) * element_count) + 7) / 8;
1240 TYPE_LENGTH (type) =
1241 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1243 /* If this array's element is itself an array with a bit stride,
1244 then we want to update this array's bit stride to reflect the
1245 size of the sub-array. Otherwise, we'll end up using the
1246 wrong size when trying to find elements of the outer
1248 if (element_type->code () == TYPE_CODE_ARRAY
1249 && TYPE_LENGTH (element_type) != 0
1250 && TYPE_FIELD_BITSIZE (element_type, 0) != 0
1251 && get_array_bounds (element_type, &low_bound, &high_bound)
1252 && high_bound >= low_bound)
1253 TYPE_FIELD_BITSIZE (type, 0)
1254 = ((high_bound - low_bound + 1)
1255 * TYPE_FIELD_BITSIZE (element_type, 0));
1263 /* Create an array type using either a blank type supplied in
1264 RESULT_TYPE, or creating a new type, inheriting the objfile from
1267 Elements will be of type ELEMENT_TYPE, the indices will be of type
1270 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1271 This byte stride property is added to the resulting array type
1272 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1273 argument can only be used to create types that are objfile-owned
1274 (see add_dyn_prop), meaning that either this function must be called
1275 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1277 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1278 If BIT_STRIDE is not zero, build a packed array type whose element
1279 size is BIT_STRIDE. Otherwise, ignore this parameter.
1281 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1282 sure it is TYPE_CODE_UNDEF before we bash it into an array
1286 create_array_type_with_stride (struct type *result_type,
1287 struct type *element_type,
1288 struct type *range_type,
1289 struct dynamic_prop *byte_stride_prop,
1290 unsigned int bit_stride)
1292 if (byte_stride_prop != NULL
1293 && byte_stride_prop->kind () == PROP_CONST)
1295 /* The byte stride is actually not dynamic. Pretend we were
1296 called with bit_stride set instead of byte_stride_prop.
1297 This will give us the same result type, while avoiding
1298 the need to handle this as a special case. */
1299 bit_stride = byte_stride_prop->const_val () * 8;
1300 byte_stride_prop = NULL;
1303 if (result_type == NULL)
1304 result_type = alloc_type_copy (range_type);
1306 result_type->set_code (TYPE_CODE_ARRAY);
1307 TYPE_TARGET_TYPE (result_type) = element_type;
1309 result_type->set_num_fields (1);
1310 result_type->set_fields
1311 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1312 result_type->set_index_type (range_type);
1313 if (byte_stride_prop != NULL)
1314 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1315 else if (bit_stride > 0)
1316 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1318 if (!update_static_array_size (result_type))
1320 /* This type is dynamic and its length needs to be computed
1321 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1322 undefined by setting it to zero. Although we are not expected
1323 to trust TYPE_LENGTH in this case, setting the size to zero
1324 allows us to avoid allocating objects of random sizes in case
1325 we accidently do. */
1326 TYPE_LENGTH (result_type) = 0;
1329 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1330 if (TYPE_LENGTH (result_type) == 0)
1331 result_type->set_target_is_stub (true);
1336 /* Same as create_array_type_with_stride but with no bit_stride
1337 (BIT_STRIDE = 0), thus building an unpacked array. */
1340 create_array_type (struct type *result_type,
1341 struct type *element_type,
1342 struct type *range_type)
1344 return create_array_type_with_stride (result_type, element_type,
1345 range_type, NULL, 0);
1349 lookup_array_range_type (struct type *element_type,
1350 LONGEST low_bound, LONGEST high_bound)
1352 struct type *index_type;
1353 struct type *range_type;
1355 if (TYPE_OBJFILE_OWNED (element_type))
1356 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1358 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1359 range_type = create_static_range_type (NULL, index_type,
1360 low_bound, high_bound);
1362 return create_array_type (NULL, element_type, range_type);
1365 /* Create a string type using either a blank type supplied in
1366 RESULT_TYPE, or creating a new type. String types are similar
1367 enough to array of char types that we can use create_array_type to
1368 build the basic type and then bash it into a string type.
1370 For fixed length strings, the range type contains 0 as the lower
1371 bound and the length of the string minus one as the upper bound.
1373 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1374 sure it is TYPE_CODE_UNDEF before we bash it into a string
1378 create_string_type (struct type *result_type,
1379 struct type *string_char_type,
1380 struct type *range_type)
1382 result_type = create_array_type (result_type,
1385 result_type->set_code (TYPE_CODE_STRING);
1390 lookup_string_range_type (struct type *string_char_type,
1391 LONGEST low_bound, LONGEST high_bound)
1393 struct type *result_type;
1395 result_type = lookup_array_range_type (string_char_type,
1396 low_bound, high_bound);
1397 result_type->set_code (TYPE_CODE_STRING);
1402 create_set_type (struct type *result_type, struct type *domain_type)
1404 if (result_type == NULL)
1405 result_type = alloc_type_copy (domain_type);
1407 result_type->set_code (TYPE_CODE_SET);
1408 result_type->set_num_fields (1);
1409 result_type->set_fields
1410 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1412 if (!domain_type->is_stub ())
1414 LONGEST low_bound, high_bound, bit_length;
1416 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1417 low_bound = high_bound = 0;
1418 bit_length = high_bound - low_bound + 1;
1419 TYPE_LENGTH (result_type)
1420 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1422 result_type->set_is_unsigned (true);
1424 result_type->field (0).set_type (domain_type);
1429 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1430 and any array types nested inside it. */
1433 make_vector_type (struct type *array_type)
1435 struct type *inner_array, *elt_type;
1437 /* Find the innermost array type, in case the array is
1438 multi-dimensional. */
1439 inner_array = array_type;
1440 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1441 inner_array = TYPE_TARGET_TYPE (inner_array);
1443 elt_type = TYPE_TARGET_TYPE (inner_array);
1444 if (elt_type->code () == TYPE_CODE_INT)
1446 type_instance_flags flags
1447 = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT;
1448 elt_type = make_qualified_type (elt_type, flags, NULL);
1449 TYPE_TARGET_TYPE (inner_array) = elt_type;
1452 array_type->set_is_vector (true);
1456 init_vector_type (struct type *elt_type, int n)
1458 struct type *array_type;
1460 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1461 make_vector_type (array_type);
1465 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1466 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1467 confusing. "self" is a common enough replacement for "this".
1468 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1469 TYPE_CODE_METHOD. */
1472 internal_type_self_type (struct type *type)
1474 switch (type->code ())
1476 case TYPE_CODE_METHODPTR:
1477 case TYPE_CODE_MEMBERPTR:
1478 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1480 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1481 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1482 case TYPE_CODE_METHOD:
1483 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1485 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1486 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1488 gdb_assert_not_reached ("bad type");
1492 /* Set the type of the class that TYPE belongs to.
1493 In c++ this is the class of "this".
1494 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1495 TYPE_CODE_METHOD. */
1498 set_type_self_type (struct type *type, struct type *self_type)
1500 switch (type->code ())
1502 case TYPE_CODE_METHODPTR:
1503 case TYPE_CODE_MEMBERPTR:
1504 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1505 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1506 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1507 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1509 case TYPE_CODE_METHOD:
1510 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1511 INIT_FUNC_SPECIFIC (type);
1512 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1513 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1516 gdb_assert_not_reached ("bad type");
1520 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1521 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1522 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1523 TYPE doesn't include the offset (that's the value of the MEMBER
1524 itself), but does include the structure type into which it points
1527 When "smashing" the type, we preserve the objfile that the old type
1528 pointed to, since we aren't changing where the type is actually
1532 smash_to_memberptr_type (struct type *type, struct type *self_type,
1533 struct type *to_type)
1536 type->set_code (TYPE_CODE_MEMBERPTR);
1537 TYPE_TARGET_TYPE (type) = to_type;
1538 set_type_self_type (type, self_type);
1539 /* Assume that a data member pointer is the same size as a normal
1542 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1545 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1547 When "smashing" the type, we preserve the objfile that the old type
1548 pointed to, since we aren't changing where the type is actually
1552 smash_to_methodptr_type (struct type *type, struct type *to_type)
1555 type->set_code (TYPE_CODE_METHODPTR);
1556 TYPE_TARGET_TYPE (type) = to_type;
1557 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1558 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1561 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1562 METHOD just means `function that gets an extra "this" argument'.
1564 When "smashing" the type, we preserve the objfile that the old type
1565 pointed to, since we aren't changing where the type is actually
1569 smash_to_method_type (struct type *type, struct type *self_type,
1570 struct type *to_type, struct field *args,
1571 int nargs, int varargs)
1574 type->set_code (TYPE_CODE_METHOD);
1575 TYPE_TARGET_TYPE (type) = to_type;
1576 set_type_self_type (type, self_type);
1577 type->set_fields (args);
1578 type->set_num_fields (nargs);
1580 type->set_has_varargs (true);
1581 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1584 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1585 Since GCC PR debug/47510 DWARF provides associated information to detect the
1586 anonymous class linkage name from its typedef.
1588 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1592 type_name_or_error (struct type *type)
1594 struct type *saved_type = type;
1596 struct objfile *objfile;
1598 type = check_typedef (type);
1600 name = type->name ();
1604 name = saved_type->name ();
1605 objfile = TYPE_OBJFILE (saved_type);
1606 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1607 name ? name : "<anonymous>",
1608 objfile ? objfile_name (objfile) : "<arch>");
1611 /* Lookup a typedef or primitive type named NAME, visible in lexical
1612 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1613 suitably defined. */
1616 lookup_typename (const struct language_defn *language,
1618 const struct block *block, int noerr)
1622 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1623 language->la_language, NULL).symbol;
1624 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1625 return SYMBOL_TYPE (sym);
1629 error (_("No type named %s."), name);
1633 lookup_unsigned_typename (const struct language_defn *language,
1636 char *uns = (char *) alloca (strlen (name) + 10);
1638 strcpy (uns, "unsigned ");
1639 strcpy (uns + 9, name);
1640 return lookup_typename (language, uns, NULL, 0);
1644 lookup_signed_typename (const struct language_defn *language, const char *name)
1647 char *uns = (char *) alloca (strlen (name) + 8);
1649 strcpy (uns, "signed ");
1650 strcpy (uns + 7, name);
1651 t = lookup_typename (language, uns, NULL, 1);
1652 /* If we don't find "signed FOO" just try again with plain "FOO". */
1655 return lookup_typename (language, name, NULL, 0);
1658 /* Lookup a structure type named "struct NAME",
1659 visible in lexical block BLOCK. */
1662 lookup_struct (const char *name, const struct block *block)
1666 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1670 error (_("No struct type named %s."), name);
1672 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1674 error (_("This context has class, union or enum %s, not a struct."),
1677 return (SYMBOL_TYPE (sym));
1680 /* Lookup a union type named "union NAME",
1681 visible in lexical block BLOCK. */
1684 lookup_union (const char *name, const struct block *block)
1689 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1692 error (_("No union type named %s."), name);
1694 t = SYMBOL_TYPE (sym);
1696 if (t->code () == TYPE_CODE_UNION)
1699 /* If we get here, it's not a union. */
1700 error (_("This context has class, struct or enum %s, not a union."),
1704 /* Lookup an enum type named "enum NAME",
1705 visible in lexical block BLOCK. */
1708 lookup_enum (const char *name, const struct block *block)
1712 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1715 error (_("No enum type named %s."), name);
1717 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1719 error (_("This context has class, struct or union %s, not an enum."),
1722 return (SYMBOL_TYPE (sym));
1725 /* Lookup a template type named "template NAME<TYPE>",
1726 visible in lexical block BLOCK. */
1729 lookup_template_type (const char *name, struct type *type,
1730 const struct block *block)
1733 char *nam = (char *)
1734 alloca (strlen (name) + strlen (type->name ()) + 4);
1738 strcat (nam, type->name ());
1739 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1741 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1745 error (_("No template type named %s."), name);
1747 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1749 error (_("This context has class, union or enum %s, not a struct."),
1752 return (SYMBOL_TYPE (sym));
1755 /* See gdbtypes.h. */
1758 lookup_struct_elt (struct type *type, const char *name, int noerr)
1764 type = check_typedef (type);
1765 if (type->code () != TYPE_CODE_PTR
1766 && type->code () != TYPE_CODE_REF)
1768 type = TYPE_TARGET_TYPE (type);
1771 if (type->code () != TYPE_CODE_STRUCT
1772 && type->code () != TYPE_CODE_UNION)
1774 std::string type_name = type_to_string (type);
1775 error (_("Type %s is not a structure or union type."),
1776 type_name.c_str ());
1779 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1781 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1783 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1785 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
1787 else if (!t_field_name || *t_field_name == '\0')
1790 = lookup_struct_elt (type->field (i).type (), name, 1);
1791 if (elt.field != NULL)
1793 elt.offset += TYPE_FIELD_BITPOS (type, i);
1799 /* OK, it's not in this class. Recursively check the baseclasses. */
1800 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1802 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1803 if (elt.field != NULL)
1808 return {nullptr, 0};
1810 std::string type_name = type_to_string (type);
1811 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1814 /* See gdbtypes.h. */
1817 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1819 struct_elt elt = lookup_struct_elt (type, name, noerr);
1820 if (elt.field != NULL)
1821 return elt.field->type ();
1826 /* Store in *MAX the largest number representable by unsigned integer type
1830 get_unsigned_type_max (struct type *type, ULONGEST *max)
1834 type = check_typedef (type);
1835 gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ());
1836 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1838 /* Written this way to avoid overflow. */
1839 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1840 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1843 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1844 signed integer type TYPE. */
1847 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1851 type = check_typedef (type);
1852 gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ());
1853 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1855 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1856 *min = -((ULONGEST) 1 << (n - 1));
1857 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1860 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1861 cplus_stuff.vptr_fieldno.
1863 cplus_stuff is initialized to cplus_struct_default which does not
1864 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1865 designated initializers). We cope with that here. */
1868 internal_type_vptr_fieldno (struct type *type)
1870 type = check_typedef (type);
1871 gdb_assert (type->code () == TYPE_CODE_STRUCT
1872 || type->code () == TYPE_CODE_UNION);
1873 if (!HAVE_CPLUS_STRUCT (type))
1875 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1878 /* Set the value of cplus_stuff.vptr_fieldno. */
1881 set_type_vptr_fieldno (struct type *type, int fieldno)
1883 type = check_typedef (type);
1884 gdb_assert (type->code () == TYPE_CODE_STRUCT
1885 || type->code () == TYPE_CODE_UNION);
1886 if (!HAVE_CPLUS_STRUCT (type))
1887 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1888 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1891 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1892 cplus_stuff.vptr_basetype. */
1895 internal_type_vptr_basetype (struct type *type)
1897 type = check_typedef (type);
1898 gdb_assert (type->code () == TYPE_CODE_STRUCT
1899 || type->code () == TYPE_CODE_UNION);
1900 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1901 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1904 /* Set the value of cplus_stuff.vptr_basetype. */
1907 set_type_vptr_basetype (struct type *type, struct type *basetype)
1909 type = check_typedef (type);
1910 gdb_assert (type->code () == TYPE_CODE_STRUCT
1911 || type->code () == TYPE_CODE_UNION);
1912 if (!HAVE_CPLUS_STRUCT (type))
1913 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1914 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1917 /* Lookup the vptr basetype/fieldno values for TYPE.
1918 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1919 vptr_fieldno. Also, if found and basetype is from the same objfile,
1921 If not found, return -1 and ignore BASETYPEP.
1922 Callers should be aware that in some cases (for example,
1923 the type or one of its baseclasses is a stub type and we are
1924 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1925 this function will not be able to find the
1926 virtual function table pointer, and vptr_fieldno will remain -1 and
1927 vptr_basetype will remain NULL or incomplete. */
1930 get_vptr_fieldno (struct type *type, struct type **basetypep)
1932 type = check_typedef (type);
1934 if (TYPE_VPTR_FIELDNO (type) < 0)
1938 /* We must start at zero in case the first (and only) baseclass
1939 is virtual (and hence we cannot share the table pointer). */
1940 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1942 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1944 struct type *basetype;
1946 fieldno = get_vptr_fieldno (baseclass, &basetype);
1949 /* If the type comes from a different objfile we can't cache
1950 it, it may have a different lifetime. PR 2384 */
1951 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1953 set_type_vptr_fieldno (type, fieldno);
1954 set_type_vptr_basetype (type, basetype);
1957 *basetypep = basetype;
1968 *basetypep = TYPE_VPTR_BASETYPE (type);
1969 return TYPE_VPTR_FIELDNO (type);
1974 stub_noname_complaint (void)
1976 complaint (_("stub type has NULL name"));
1979 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1980 attached to it, and that property has a non-constant value. */
1983 array_type_has_dynamic_stride (struct type *type)
1985 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
1987 return (prop != NULL && prop->kind () != PROP_CONST);
1990 /* Worker for is_dynamic_type. */
1993 is_dynamic_type_internal (struct type *type, int top_level)
1995 type = check_typedef (type);
1997 /* We only want to recognize references at the outermost level. */
1998 if (top_level && type->code () == TYPE_CODE_REF)
1999 type = check_typedef (TYPE_TARGET_TYPE (type));
2001 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
2002 dynamic, even if the type itself is statically defined.
2003 From a user's point of view, this may appear counter-intuitive;
2004 but it makes sense in this context, because the point is to determine
2005 whether any part of the type needs to be resolved before it can
2007 if (TYPE_DATA_LOCATION (type) != NULL
2008 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
2009 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
2012 if (TYPE_ASSOCIATED_PROP (type))
2015 if (TYPE_ALLOCATED_PROP (type))
2018 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2019 if (prop != nullptr && prop->kind () != PROP_TYPE)
2022 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2025 switch (type->code ())
2027 case TYPE_CODE_RANGE:
2029 /* A range type is obviously dynamic if it has at least one
2030 dynamic bound. But also consider the range type to be
2031 dynamic when its subtype is dynamic, even if the bounds
2032 of the range type are static. It allows us to assume that
2033 the subtype of a static range type is also static. */
2034 return (!has_static_range (type->bounds ())
2035 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2038 case TYPE_CODE_STRING:
2039 /* Strings are very much like an array of characters, and can be
2040 treated as one here. */
2041 case TYPE_CODE_ARRAY:
2043 gdb_assert (type->num_fields () == 1);
2045 /* The array is dynamic if either the bounds are dynamic... */
2046 if (is_dynamic_type_internal (type->index_type (), 0))
2048 /* ... or the elements it contains have a dynamic contents... */
2049 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2051 /* ... or if it has a dynamic stride... */
2052 if (array_type_has_dynamic_stride (type))
2057 case TYPE_CODE_STRUCT:
2058 case TYPE_CODE_UNION:
2062 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2064 for (i = 0; i < type->num_fields (); ++i)
2066 /* Static fields can be ignored here. */
2067 if (field_is_static (&type->field (i)))
2069 /* If the field has dynamic type, then so does TYPE. */
2070 if (is_dynamic_type_internal (type->field (i).type (), 0))
2072 /* If the field is at a fixed offset, then it is not
2074 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2076 /* Do not consider C++ virtual base types to be dynamic
2077 due to the field's offset being dynamic; these are
2078 handled via other means. */
2079 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2090 /* See gdbtypes.h. */
2093 is_dynamic_type (struct type *type)
2095 return is_dynamic_type_internal (type, 1);
2098 static struct type *resolve_dynamic_type_internal
2099 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2101 /* Given a dynamic range type (dyn_range_type) and a stack of
2102 struct property_addr_info elements, return a static version
2105 static struct type *
2106 resolve_dynamic_range (struct type *dyn_range_type,
2107 struct property_addr_info *addr_stack)
2110 struct type *static_range_type, *static_target_type;
2111 struct dynamic_prop low_bound, high_bound, stride;
2113 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2115 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
2116 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2117 low_bound.set_const_val (value);
2119 low_bound.set_undefined ();
2121 prop = &dyn_range_type->bounds ()->high;
2122 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2124 high_bound.set_const_val (value);
2126 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
2127 high_bound.set_const_val
2128 (low_bound.const_val () + high_bound.const_val () - 1);
2131 high_bound.set_undefined ();
2133 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2134 prop = &dyn_range_type->bounds ()->stride;
2135 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2137 stride.set_const_val (value);
2139 /* If we have a bit stride that is not an exact number of bytes then
2140 I really don't think this is going to work with current GDB, the
2141 array indexing code in GDB seems to be pretty heavily tied to byte
2142 offsets right now. Assuming 8 bits in a byte. */
2143 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2144 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2145 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2146 error (_("bit strides that are not a multiple of the byte size "
2147 "are currently not supported"));
2151 stride.set_undefined ();
2152 byte_stride_p = true;
2156 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2158 LONGEST bias = dyn_range_type->bounds ()->bias;
2159 static_range_type = create_range_type_with_stride
2160 (copy_type (dyn_range_type), static_target_type,
2161 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2162 static_range_type->bounds ()->flag_bound_evaluated = 1;
2163 return static_range_type;
2166 /* Resolves dynamic bound values of an array or string type TYPE to static
2167 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2168 needed during the dynamic resolution. */
2170 static struct type *
2171 resolve_dynamic_array_or_string (struct type *type,
2172 struct property_addr_info *addr_stack)
2175 struct type *elt_type;
2176 struct type *range_type;
2177 struct type *ary_dim;
2178 struct dynamic_prop *prop;
2179 unsigned int bit_stride = 0;
2181 /* For dynamic type resolution strings can be treated like arrays of
2183 gdb_assert (type->code () == TYPE_CODE_ARRAY
2184 || type->code () == TYPE_CODE_STRING);
2186 type = copy_type (type);
2189 range_type = check_typedef (elt_type->index_type ());
2190 range_type = resolve_dynamic_range (range_type, addr_stack);
2192 /* Resolve allocated/associated here before creating a new array type, which
2193 will update the length of the array accordingly. */
2194 prop = TYPE_ALLOCATED_PROP (type);
2195 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2196 prop->set_const_val (value);
2198 prop = TYPE_ASSOCIATED_PROP (type);
2199 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2200 prop->set_const_val (value);
2202 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2204 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2205 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2207 elt_type = TYPE_TARGET_TYPE (type);
2209 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2212 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2214 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2215 bit_stride = (unsigned int) (value * 8);
2219 /* Could be a bug in our code, but it could also happen
2220 if the DWARF info is not correct. Issue a warning,
2221 and assume no byte/bit stride (leave bit_stride = 0). */
2222 warning (_("cannot determine array stride for type %s"),
2223 type->name () ? type->name () : "<no name>");
2227 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2229 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2233 /* Resolve dynamic bounds of members of the union TYPE to static
2234 bounds. ADDR_STACK is a stack of struct property_addr_info
2235 to be used if needed during the dynamic resolution. */
2237 static struct type *
2238 resolve_dynamic_union (struct type *type,
2239 struct property_addr_info *addr_stack)
2241 struct type *resolved_type;
2243 unsigned int max_len = 0;
2245 gdb_assert (type->code () == TYPE_CODE_UNION);
2247 resolved_type = copy_type (type);
2248 resolved_type->set_fields
2250 TYPE_ALLOC (resolved_type,
2251 resolved_type->num_fields () * sizeof (struct field)));
2252 memcpy (resolved_type->fields (),
2254 resolved_type->num_fields () * sizeof (struct field));
2255 for (i = 0; i < resolved_type->num_fields (); ++i)
2259 if (field_is_static (&type->field (i)))
2262 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
2264 resolved_type->field (i).set_type (t);
2266 struct type *real_type = check_typedef (t);
2267 if (TYPE_LENGTH (real_type) > max_len)
2268 max_len = TYPE_LENGTH (real_type);
2271 TYPE_LENGTH (resolved_type) = max_len;
2272 return resolved_type;
2275 /* See gdbtypes.h. */
2278 variant::matches (ULONGEST value, bool is_unsigned) const
2280 for (const discriminant_range &range : discriminants)
2281 if (range.contains (value, is_unsigned))
2287 compute_variant_fields_inner (struct type *type,
2288 struct property_addr_info *addr_stack,
2289 const variant_part &part,
2290 std::vector<bool> &flags);
2292 /* A helper function to determine which variant fields will be active.
2293 This handles both the variant's direct fields, and any variant
2294 parts embedded in this variant. TYPE is the type we're examining.
2295 ADDR_STACK holds information about the concrete object. VARIANT is
2296 the current variant to be handled. FLAGS is where the results are
2297 stored -- this function sets the Nth element in FLAGS if the
2298 corresponding field is enabled. ENABLED is whether this variant is
2302 compute_variant_fields_recurse (struct type *type,
2303 struct property_addr_info *addr_stack,
2304 const variant &variant,
2305 std::vector<bool> &flags,
2308 for (int field = variant.first_field; field < variant.last_field; ++field)
2309 flags[field] = enabled;
2311 for (const variant_part &new_part : variant.parts)
2314 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2317 for (const auto &sub_variant : new_part.variants)
2318 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2324 /* A helper function to determine which variant fields will be active.
2325 This evaluates the discriminant, decides which variant (if any) is
2326 active, and then updates FLAGS to reflect which fields should be
2327 available. TYPE is the type we're examining. ADDR_STACK holds
2328 information about the concrete object. VARIANT is the current
2329 variant to be handled. FLAGS is where the results are stored --
2330 this function sets the Nth element in FLAGS if the corresponding
2331 field is enabled. */
2334 compute_variant_fields_inner (struct type *type,
2335 struct property_addr_info *addr_stack,
2336 const variant_part &part,
2337 std::vector<bool> &flags)
2339 /* Evaluate the discriminant. */
2340 gdb::optional<ULONGEST> discr_value;
2341 if (part.discriminant_index != -1)
2343 int idx = part.discriminant_index;
2345 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2346 error (_("Cannot determine struct field location"
2347 " (invalid location kind)"));
2349 if (addr_stack->valaddr.data () != NULL)
2350 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2354 CORE_ADDR addr = (addr_stack->addr
2355 + (TYPE_FIELD_BITPOS (type, idx)
2356 / TARGET_CHAR_BIT));
2358 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2359 LONGEST size = bitsize / 8;
2361 size = TYPE_LENGTH (type->field (idx).type ());
2363 gdb_byte bits[sizeof (ULONGEST)];
2364 read_memory (addr, bits, size);
2366 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2369 discr_value = unpack_bits_as_long (type->field (idx).type (),
2370 bits, bitpos, bitsize);
2374 /* Go through each variant and see which applies. */
2375 const variant *default_variant = nullptr;
2376 const variant *applied_variant = nullptr;
2377 for (const auto &variant : part.variants)
2379 if (variant.is_default ())
2380 default_variant = &variant;
2381 else if (discr_value.has_value ()
2382 && variant.matches (*discr_value, part.is_unsigned))
2384 applied_variant = &variant;
2388 if (applied_variant == nullptr)
2389 applied_variant = default_variant;
2391 for (const auto &variant : part.variants)
2392 compute_variant_fields_recurse (type, addr_stack, variant,
2393 flags, applied_variant == &variant);
2396 /* Determine which variant fields are available in TYPE. The enabled
2397 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2398 about the concrete object. PARTS describes the top-level variant
2399 parts for this type. */
2402 compute_variant_fields (struct type *type,
2403 struct type *resolved_type,
2404 struct property_addr_info *addr_stack,
2405 const gdb::array_view<variant_part> &parts)
2407 /* Assume all fields are included by default. */
2408 std::vector<bool> flags (resolved_type->num_fields (), true);
2410 /* Now disable fields based on the variants that control them. */
2411 for (const auto &part : parts)
2412 compute_variant_fields_inner (type, addr_stack, part, flags);
2414 resolved_type->set_num_fields
2415 (std::count (flags.begin (), flags.end (), true));
2416 resolved_type->set_fields
2418 TYPE_ALLOC (resolved_type,
2419 resolved_type->num_fields () * sizeof (struct field)));
2422 for (int i = 0; i < type->num_fields (); ++i)
2427 resolved_type->field (out) = type->field (i);
2432 /* Resolve dynamic bounds of members of the struct TYPE to static
2433 bounds. ADDR_STACK is a stack of struct property_addr_info to
2434 be used if needed during the dynamic resolution. */
2436 static struct type *
2437 resolve_dynamic_struct (struct type *type,
2438 struct property_addr_info *addr_stack)
2440 struct type *resolved_type;
2442 unsigned resolved_type_bit_length = 0;
2444 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2445 gdb_assert (type->num_fields () > 0);
2447 resolved_type = copy_type (type);
2449 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2450 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
2452 compute_variant_fields (type, resolved_type, addr_stack,
2453 *variant_prop->variant_parts ());
2454 /* We want to leave the property attached, so that the Rust code
2455 can tell whether the type was originally an enum. */
2456 variant_prop->set_original_type (type);
2460 resolved_type->set_fields
2462 TYPE_ALLOC (resolved_type,
2463 resolved_type->num_fields () * sizeof (struct field)));
2464 memcpy (resolved_type->fields (),
2466 resolved_type->num_fields () * sizeof (struct field));
2469 for (i = 0; i < resolved_type->num_fields (); ++i)
2471 unsigned new_bit_length;
2472 struct property_addr_info pinfo;
2474 if (field_is_static (&resolved_type->field (i)))
2477 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2479 struct dwarf2_property_baton baton;
2481 = lookup_pointer_type (resolved_type->field (i).type ());
2482 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2484 struct dynamic_prop prop;
2485 prop.set_locexpr (&baton);
2488 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2490 SET_FIELD_BITPOS (resolved_type->field (i),
2491 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2494 /* As we know this field is not a static field, the field's
2495 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2496 this is the case, but only trigger a simple error rather
2497 than an internal error if that fails. While failing
2498 that verification indicates a bug in our code, the error
2499 is not severe enough to suggest to the user he stops
2500 his debugging session because of it. */
2501 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2502 error (_("Cannot determine struct field location"
2503 " (invalid location kind)"));
2505 pinfo.type = check_typedef (resolved_type->field (i).type ());
2506 pinfo.valaddr = addr_stack->valaddr;
2509 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2510 pinfo.next = addr_stack;
2512 resolved_type->field (i).set_type
2513 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
2515 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2516 == FIELD_LOC_KIND_BITPOS);
2518 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2519 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2520 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2523 struct type *real_type
2524 = check_typedef (resolved_type->field (i).type ());
2526 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2529 /* Normally, we would use the position and size of the last field
2530 to determine the size of the enclosing structure. But GCC seems
2531 to be encoding the position of some fields incorrectly when
2532 the struct contains a dynamic field that is not placed last.
2533 So we compute the struct size based on the field that has
2534 the highest position + size - probably the best we can do. */
2535 if (new_bit_length > resolved_type_bit_length)
2536 resolved_type_bit_length = new_bit_length;
2539 /* The length of a type won't change for fortran, but it does for C and Ada.
2540 For fortran the size of dynamic fields might change over time but not the
2541 type length of the structure. If we adapt it, we run into problems
2542 when calculating the element offset for arrays of structs. */
2543 if (current_language->la_language != language_fortran)
2544 TYPE_LENGTH (resolved_type)
2545 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2547 /* The Ada language uses this field as a cache for static fixed types: reset
2548 it as RESOLVED_TYPE must have its own static fixed type. */
2549 TYPE_TARGET_TYPE (resolved_type) = NULL;
2551 return resolved_type;
2554 /* Worker for resolved_dynamic_type. */
2556 static struct type *
2557 resolve_dynamic_type_internal (struct type *type,
2558 struct property_addr_info *addr_stack,
2561 struct type *real_type = check_typedef (type);
2562 struct type *resolved_type = nullptr;
2563 struct dynamic_prop *prop;
2566 if (!is_dynamic_type_internal (real_type, top_level))
2569 gdb::optional<CORE_ADDR> type_length;
2570 prop = TYPE_DYNAMIC_LENGTH (type);
2572 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2573 type_length = value;
2575 if (type->code () == TYPE_CODE_TYPEDEF)
2577 resolved_type = copy_type (type);
2578 TYPE_TARGET_TYPE (resolved_type)
2579 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2584 /* Before trying to resolve TYPE, make sure it is not a stub. */
2587 switch (type->code ())
2591 struct property_addr_info pinfo;
2593 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2595 if (addr_stack->valaddr.data () != NULL)
2596 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2599 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2600 pinfo.next = addr_stack;
2602 resolved_type = copy_type (type);
2603 TYPE_TARGET_TYPE (resolved_type)
2604 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2609 case TYPE_CODE_STRING:
2610 /* Strings are very much like an array of characters, and can be
2611 treated as one here. */
2612 case TYPE_CODE_ARRAY:
2613 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2616 case TYPE_CODE_RANGE:
2617 resolved_type = resolve_dynamic_range (type, addr_stack);
2620 case TYPE_CODE_UNION:
2621 resolved_type = resolve_dynamic_union (type, addr_stack);
2624 case TYPE_CODE_STRUCT:
2625 resolved_type = resolve_dynamic_struct (type, addr_stack);
2630 if (resolved_type == nullptr)
2633 if (type_length.has_value ())
2635 TYPE_LENGTH (resolved_type) = *type_length;
2636 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2639 /* Resolve data_location attribute. */
2640 prop = TYPE_DATA_LOCATION (resolved_type);
2642 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2644 /* Start of Fortran hack. See comment in f-lang.h for what is going
2646 if (current_language->la_language == language_fortran
2647 && resolved_type->code () == TYPE_CODE_ARRAY)
2648 value = fortran_adjust_dynamic_array_base_address_hack (resolved_type,
2650 /* End of Fortran hack. */
2651 prop->set_const_val (value);
2654 return resolved_type;
2657 /* See gdbtypes.h */
2660 resolve_dynamic_type (struct type *type,
2661 gdb::array_view<const gdb_byte> valaddr,
2664 struct property_addr_info pinfo
2665 = {check_typedef (type), valaddr, addr, NULL};
2667 return resolve_dynamic_type_internal (type, &pinfo, 1);
2670 /* See gdbtypes.h */
2673 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2675 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2677 while (node != NULL)
2679 if (node->prop_kind == prop_kind)
2686 /* See gdbtypes.h */
2689 type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2691 struct dynamic_prop_list *temp;
2693 gdb_assert (TYPE_OBJFILE_OWNED (this));
2695 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
2696 struct dynamic_prop_list);
2697 temp->prop_kind = prop_kind;
2699 temp->next = this->main_type->dyn_prop_list;
2701 this->main_type->dyn_prop_list = temp;
2704 /* See gdbtypes.h. */
2707 type::remove_dyn_prop (dynamic_prop_node_kind kind)
2709 struct dynamic_prop_list *prev_node, *curr_node;
2711 curr_node = this->main_type->dyn_prop_list;
2714 while (NULL != curr_node)
2716 if (curr_node->prop_kind == kind)
2718 /* Update the linked list but don't free anything.
2719 The property was allocated on objstack and it is not known
2720 if we are on top of it. Nevertheless, everything is released
2721 when the complete objstack is freed. */
2722 if (NULL == prev_node)
2723 this->main_type->dyn_prop_list = curr_node->next;
2725 prev_node->next = curr_node->next;
2730 prev_node = curr_node;
2731 curr_node = curr_node->next;
2735 /* Find the real type of TYPE. This function returns the real type,
2736 after removing all layers of typedefs, and completing opaque or stub
2737 types. Completion changes the TYPE argument, but stripping of
2740 Instance flags (e.g. const/volatile) are preserved as typedefs are
2741 stripped. If necessary a new qualified form of the underlying type
2744 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2745 not been computed and we're either in the middle of reading symbols, or
2746 there was no name for the typedef in the debug info.
2748 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2749 QUITs in the symbol reading code can also throw.
2750 Thus this function can throw an exception.
2752 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2755 If this is a stubbed struct (i.e. declared as struct foo *), see if
2756 we can find a full definition in some other file. If so, copy this
2757 definition, so we can use it in future. There used to be a comment
2758 (but not any code) that if we don't find a full definition, we'd
2759 set a flag so we don't spend time in the future checking the same
2760 type. That would be a mistake, though--we might load in more
2761 symbols which contain a full definition for the type. */
2764 check_typedef (struct type *type)
2766 struct type *orig_type = type;
2770 /* While we're removing typedefs, we don't want to lose qualifiers.
2771 E.g., const/volatile. */
2772 type_instance_flags instance_flags = type->instance_flags ();
2774 while (type->code () == TYPE_CODE_TYPEDEF)
2776 if (!TYPE_TARGET_TYPE (type))
2781 /* It is dangerous to call lookup_symbol if we are currently
2782 reading a symtab. Infinite recursion is one danger. */
2783 if (currently_reading_symtab)
2784 return make_qualified_type (type, instance_flags, NULL);
2786 name = type->name ();
2787 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2788 VAR_DOMAIN as appropriate? */
2791 stub_noname_complaint ();
2792 return make_qualified_type (type, instance_flags, NULL);
2794 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2796 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2797 else /* TYPE_CODE_UNDEF */
2798 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2800 type = TYPE_TARGET_TYPE (type);
2802 /* Preserve the instance flags as we traverse down the typedef chain.
2804 Handling address spaces/classes is nasty, what do we do if there's a
2806 E.g., what if an outer typedef marks the type as class_1 and an inner
2807 typedef marks the type as class_2?
2808 This is the wrong place to do such error checking. We leave it to
2809 the code that created the typedef in the first place to flag the
2810 error. We just pick the outer address space (akin to letting the
2811 outer cast in a chain of casting win), instead of assuming
2812 "it can't happen". */
2814 const type_instance_flags ALL_SPACES
2815 = (TYPE_INSTANCE_FLAG_CODE_SPACE
2816 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2817 const type_instance_flags ALL_CLASSES
2818 = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2820 type_instance_flags new_instance_flags = type->instance_flags ();
2822 /* Treat code vs data spaces and address classes separately. */
2823 if ((instance_flags & ALL_SPACES) != 0)
2824 new_instance_flags &= ~ALL_SPACES;
2825 if ((instance_flags & ALL_CLASSES) != 0)
2826 new_instance_flags &= ~ALL_CLASSES;
2828 instance_flags |= new_instance_flags;
2832 /* If this is a struct/class/union with no fields, then check
2833 whether a full definition exists somewhere else. This is for
2834 systems where a type definition with no fields is issued for such
2835 types, instead of identifying them as stub types in the first
2838 if (TYPE_IS_OPAQUE (type)
2839 && opaque_type_resolution
2840 && !currently_reading_symtab)
2842 const char *name = type->name ();
2843 struct type *newtype;
2847 stub_noname_complaint ();
2848 return make_qualified_type (type, instance_flags, NULL);
2850 newtype = lookup_transparent_type (name);
2854 /* If the resolved type and the stub are in the same
2855 objfile, then replace the stub type with the real deal.
2856 But if they're in separate objfiles, leave the stub
2857 alone; we'll just look up the transparent type every time
2858 we call check_typedef. We can't create pointers between
2859 types allocated to different objfiles, since they may
2860 have different lifetimes. Trying to copy NEWTYPE over to
2861 TYPE's objfile is pointless, too, since you'll have to
2862 move over any other types NEWTYPE refers to, which could
2863 be an unbounded amount of stuff. */
2864 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2865 type = make_qualified_type (newtype, type->instance_flags (), type);
2870 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2872 else if (type->is_stub () && !currently_reading_symtab)
2874 const char *name = type->name ();
2875 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2881 stub_noname_complaint ();
2882 return make_qualified_type (type, instance_flags, NULL);
2884 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2887 /* Same as above for opaque types, we can replace the stub
2888 with the complete type only if they are in the same
2890 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
2891 type = make_qualified_type (SYMBOL_TYPE (sym),
2892 type->instance_flags (), type);
2894 type = SYMBOL_TYPE (sym);
2898 if (type->target_is_stub ())
2900 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2902 if (target_type->is_stub () || target_type->target_is_stub ())
2904 /* Nothing we can do. */
2906 else if (type->code () == TYPE_CODE_RANGE)
2908 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2909 type->set_target_is_stub (false);
2911 else if (type->code () == TYPE_CODE_ARRAY
2912 && update_static_array_size (type))
2913 type->set_target_is_stub (false);
2916 type = make_qualified_type (type, instance_flags, NULL);
2918 /* Cache TYPE_LENGTH for future use. */
2919 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2924 /* Parse a type expression in the string [P..P+LENGTH). If an error
2925 occurs, silently return a void type. */
2927 static struct type *
2928 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2930 struct ui_file *saved_gdb_stderr;
2931 struct type *type = NULL; /* Initialize to keep gcc happy. */
2933 /* Suppress error messages. */
2934 saved_gdb_stderr = gdb_stderr;
2935 gdb_stderr = &null_stream;
2937 /* Call parse_and_eval_type() without fear of longjmp()s. */
2940 type = parse_and_eval_type (p, length);
2942 catch (const gdb_exception_error &except)
2944 type = builtin_type (gdbarch)->builtin_void;
2947 /* Stop suppressing error messages. */
2948 gdb_stderr = saved_gdb_stderr;
2953 /* Ugly hack to convert method stubs into method types.
2955 He ain't kiddin'. This demangles the name of the method into a
2956 string including argument types, parses out each argument type,
2957 generates a string casting a zero to that type, evaluates the
2958 string, and stuffs the resulting type into an argtype vector!!!
2959 Then it knows the type of the whole function (including argument
2960 types for overloading), which info used to be in the stab's but was
2961 removed to hack back the space required for them. */
2964 check_stub_method (struct type *type, int method_id, int signature_id)
2966 struct gdbarch *gdbarch = get_type_arch (type);
2968 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2969 char *demangled_name = gdb_demangle (mangled_name,
2970 DMGL_PARAMS | DMGL_ANSI);
2971 char *argtypetext, *p;
2972 int depth = 0, argcount = 1;
2973 struct field *argtypes;
2976 /* Make sure we got back a function string that we can use. */
2978 p = strchr (demangled_name, '(');
2982 if (demangled_name == NULL || p == NULL)
2983 error (_("Internal: Cannot demangle mangled name `%s'."),
2986 /* Now, read in the parameters that define this type. */
2991 if (*p == '(' || *p == '<')
2995 else if (*p == ')' || *p == '>')
2999 else if (*p == ',' && depth == 0)
3007 /* If we read one argument and it was ``void'', don't count it. */
3008 if (startswith (argtypetext, "(void)"))
3011 /* We need one extra slot, for the THIS pointer. */
3013 argtypes = (struct field *)
3014 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
3017 /* Add THIS pointer for non-static methods. */
3018 f = TYPE_FN_FIELDLIST1 (type, method_id);
3019 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
3023 argtypes[0].set_type (lookup_pointer_type (type));
3027 if (*p != ')') /* () means no args, skip while. */
3032 if (depth <= 0 && (*p == ',' || *p == ')'))
3034 /* Avoid parsing of ellipsis, they will be handled below.
3035 Also avoid ``void'' as above. */
3036 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3037 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3039 argtypes[argcount].set_type
3040 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
3043 argtypetext = p + 1;
3046 if (*p == '(' || *p == '<')
3050 else if (*p == ')' || *p == '>')
3059 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3061 /* Now update the old "stub" type into a real type. */
3062 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3063 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3064 We want a method (TYPE_CODE_METHOD). */
3065 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3066 argtypes, argcount, p[-2] == '.');
3067 mtype->set_is_stub (false);
3068 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3070 xfree (demangled_name);
3073 /* This is the external interface to check_stub_method, above. This
3074 function unstubs all of the signatures for TYPE's METHOD_ID method
3075 name. After calling this function TYPE_FN_FIELD_STUB will be
3076 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3079 This function unfortunately can not die until stabs do. */
3082 check_stub_method_group (struct type *type, int method_id)
3084 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3085 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3087 for (int j = 0; j < len; j++)
3089 if (TYPE_FN_FIELD_STUB (f, j))
3090 check_stub_method (type, method_id, j);
3094 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3095 const struct cplus_struct_type cplus_struct_default = { };
3098 allocate_cplus_struct_type (struct type *type)
3100 if (HAVE_CPLUS_STRUCT (type))
3101 /* Structure was already allocated. Nothing more to do. */
3104 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3105 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3106 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3107 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3108 set_type_vptr_fieldno (type, -1);
3111 const struct gnat_aux_type gnat_aux_default =
3114 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3115 and allocate the associated gnat-specific data. The gnat-specific
3116 data is also initialized to gnat_aux_default. */
3119 allocate_gnat_aux_type (struct type *type)
3121 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3122 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3123 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3124 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3127 /* Helper function to initialize a newly allocated type. Set type code
3128 to CODE and initialize the type-specific fields accordingly. */
3131 set_type_code (struct type *type, enum type_code code)
3133 type->set_code (code);
3137 case TYPE_CODE_STRUCT:
3138 case TYPE_CODE_UNION:
3139 case TYPE_CODE_NAMESPACE:
3140 INIT_CPLUS_SPECIFIC (type);
3143 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3145 case TYPE_CODE_FUNC:
3146 INIT_FUNC_SPECIFIC (type);
3148 case TYPE_CODE_FIXED_POINT:
3149 INIT_FIXED_POINT_SPECIFIC (type);
3154 /* Helper function to verify floating-point format and size.
3155 BIT is the type size in bits; if BIT equals -1, the size is
3156 determined by the floatformat. Returns size to be used. */
3159 verify_floatformat (int bit, const struct floatformat *floatformat)
3161 gdb_assert (floatformat != NULL);
3164 bit = floatformat->totalsize;
3166 gdb_assert (bit >= 0);
3167 gdb_assert (bit >= floatformat->totalsize);
3172 /* Return the floating-point format for a floating-point variable of
3175 const struct floatformat *
3176 floatformat_from_type (const struct type *type)
3178 gdb_assert (type->code () == TYPE_CODE_FLT);
3179 gdb_assert (TYPE_FLOATFORMAT (type));
3180 return TYPE_FLOATFORMAT (type);
3183 /* Helper function to initialize the standard scalar types.
3185 If NAME is non-NULL, then it is used to initialize the type name.
3186 Note that NAME is not copied; it is required to have a lifetime at
3187 least as long as OBJFILE. */
3190 init_type (struct objfile *objfile, enum type_code code, int bit,
3195 type = alloc_type (objfile);
3196 set_type_code (type, code);
3197 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3198 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3199 type->set_name (name);
3204 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3205 to use with variables that have no debug info. NAME is the type
3208 static struct type *
3209 init_nodebug_var_type (struct objfile *objfile, const char *name)
3211 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3214 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3215 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3216 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3219 init_integer_type (struct objfile *objfile,
3220 int bit, int unsigned_p, const char *name)
3224 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3226 t->set_is_unsigned (true);
3228 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3229 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3230 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3235 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3236 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3237 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3240 init_character_type (struct objfile *objfile,
3241 int bit, int unsigned_p, const char *name)
3245 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3247 t->set_is_unsigned (true);
3252 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3253 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3254 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3257 init_boolean_type (struct objfile *objfile,
3258 int bit, int unsigned_p, const char *name)
3262 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3264 t->set_is_unsigned (true);
3266 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3267 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3268 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3273 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3274 BIT is the type size in bits; if BIT equals -1, the size is
3275 determined by the floatformat. NAME is the type name. Set the
3276 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3277 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3278 order of the objfile's architecture is used. */
3281 init_float_type (struct objfile *objfile,
3282 int bit, const char *name,
3283 const struct floatformat **floatformats,
3284 enum bfd_endian byte_order)
3286 if (byte_order == BFD_ENDIAN_UNKNOWN)
3288 struct gdbarch *gdbarch = objfile->arch ();
3289 byte_order = gdbarch_byte_order (gdbarch);
3291 const struct floatformat *fmt = floatformats[byte_order];
3294 bit = verify_floatformat (bit, fmt);
3295 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3296 TYPE_FLOATFORMAT (t) = fmt;
3301 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3302 BIT is the type size in bits. NAME is the type name. */
3305 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3309 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3313 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3314 name. TARGET_TYPE is the component type. */
3317 init_complex_type (const char *name, struct type *target_type)
3321 gdb_assert (target_type->code () == TYPE_CODE_INT
3322 || target_type->code () == TYPE_CODE_FLT);
3324 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3326 if (name == nullptr && target_type->name () != nullptr)
3329 = (char *) TYPE_ALLOC (target_type,
3330 strlen (target_type->name ())
3331 + strlen ("_Complex ") + 1);
3332 strcpy (new_name, "_Complex ");
3333 strcat (new_name, target_type->name ());
3337 t = alloc_type_copy (target_type);
3338 set_type_code (t, TYPE_CODE_COMPLEX);
3339 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3342 TYPE_TARGET_TYPE (t) = target_type;
3343 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3346 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3349 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3350 BIT is the pointer type size in bits. NAME is the type name.
3351 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3352 TYPE_UNSIGNED flag. */
3355 init_pointer_type (struct objfile *objfile,
3356 int bit, const char *name, struct type *target_type)
3360 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3361 TYPE_TARGET_TYPE (t) = target_type;
3362 t->set_is_unsigned (true);
3366 /* Allocate a TYPE_CODE_FIXED_POINT type structure associated with OBJFILE.
3367 BIT is the pointer type size in bits.
3368 UNSIGNED_P should be nonzero if the type is unsigned.
3369 NAME is the type name. */
3372 init_fixed_point_type (struct objfile *objfile,
3373 int bit, int unsigned_p, const char *name)
3377 t = init_type (objfile, TYPE_CODE_FIXED_POINT, bit, name);
3379 t->set_is_unsigned (true);
3384 /* See gdbtypes.h. */
3387 type_raw_align (struct type *type)
3389 if (type->align_log2 != 0)
3390 return 1 << (type->align_log2 - 1);
3394 /* See gdbtypes.h. */
3397 type_align (struct type *type)
3399 /* Check alignment provided in the debug information. */
3400 unsigned raw_align = type_raw_align (type);
3404 /* Allow the architecture to provide an alignment. */
3405 struct gdbarch *arch = get_type_arch (type);
3406 ULONGEST align = gdbarch_type_align (arch, type);
3410 switch (type->code ())
3413 case TYPE_CODE_FUNC:
3414 case TYPE_CODE_FLAGS:
3416 case TYPE_CODE_RANGE:
3418 case TYPE_CODE_ENUM:
3420 case TYPE_CODE_RVALUE_REF:
3421 case TYPE_CODE_CHAR:
3422 case TYPE_CODE_BOOL:
3423 case TYPE_CODE_DECFLOAT:
3424 case TYPE_CODE_METHODPTR:
3425 case TYPE_CODE_MEMBERPTR:
3426 align = type_length_units (check_typedef (type));
3429 case TYPE_CODE_ARRAY:
3430 case TYPE_CODE_COMPLEX:
3431 case TYPE_CODE_TYPEDEF:
3432 align = type_align (TYPE_TARGET_TYPE (type));
3435 case TYPE_CODE_STRUCT:
3436 case TYPE_CODE_UNION:
3438 int number_of_non_static_fields = 0;
3439 for (unsigned i = 0; i < type->num_fields (); ++i)
3441 if (!field_is_static (&type->field (i)))
3443 number_of_non_static_fields++;
3444 ULONGEST f_align = type_align (type->field (i).type ());
3447 /* Don't pretend we know something we don't. */
3451 if (f_align > align)
3455 /* A struct with no fields, or with only static fields has an
3457 if (number_of_non_static_fields == 0)
3463 case TYPE_CODE_STRING:
3464 /* Not sure what to do here, and these can't appear in C or C++
3468 case TYPE_CODE_VOID:
3472 case TYPE_CODE_ERROR:
3473 case TYPE_CODE_METHOD:
3478 if ((align & (align - 1)) != 0)
3480 /* Not a power of 2, so pass. */
3487 /* See gdbtypes.h. */
3490 set_type_align (struct type *type, ULONGEST align)
3492 /* Must be a power of 2. Zero is ok. */
3493 gdb_assert ((align & (align - 1)) == 0);
3495 unsigned result = 0;
3502 if (result >= (1 << TYPE_ALIGN_BITS))
3505 type->align_log2 = result;
3510 /* Queries on types. */
3513 can_dereference (struct type *t)
3515 /* FIXME: Should we return true for references as well as
3517 t = check_typedef (t);
3520 && t->code () == TYPE_CODE_PTR
3521 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3525 is_integral_type (struct type *t)
3527 t = check_typedef (t);
3530 && !is_fixed_point_type (t)
3531 && ((t->code () == TYPE_CODE_INT)
3532 || (t->code () == TYPE_CODE_ENUM)
3533 || (t->code () == TYPE_CODE_FLAGS)
3534 || (t->code () == TYPE_CODE_CHAR)
3535 || (t->code () == TYPE_CODE_RANGE)
3536 || (t->code () == TYPE_CODE_BOOL)));
3540 is_floating_type (struct type *t)
3542 t = check_typedef (t);
3545 && ((t->code () == TYPE_CODE_FLT)
3546 || (t->code () == TYPE_CODE_DECFLOAT)));
3549 /* Return true if TYPE is scalar. */
3552 is_scalar_type (struct type *type)
3554 type = check_typedef (type);
3556 if (is_fixed_point_type (type))
3557 return 0; /* Implemented as a scalar, but more like a floating point. */
3559 switch (type->code ())
3561 case TYPE_CODE_ARRAY:
3562 case TYPE_CODE_STRUCT:
3563 case TYPE_CODE_UNION:
3565 case TYPE_CODE_STRING:
3572 /* Return true if T is scalar, or a composite type which in practice has
3573 the memory layout of a scalar type. E.g., an array or struct with only
3574 one scalar element inside it, or a union with only scalar elements. */
3577 is_scalar_type_recursive (struct type *t)
3579 t = check_typedef (t);
3581 if (is_scalar_type (t))
3583 /* Are we dealing with an array or string of known dimensions? */
3584 else if ((t->code () == TYPE_CODE_ARRAY
3585 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3586 && t->index_type ()->code () == TYPE_CODE_RANGE)
3588 LONGEST low_bound, high_bound;
3589 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3591 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
3593 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3595 /* Are we dealing with a struct with one element? */
3596 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
3597 return is_scalar_type_recursive (t->field (0).type ());
3598 else if (t->code () == TYPE_CODE_UNION)
3600 int i, n = t->num_fields ();
3602 /* If all elements of the union are scalar, then the union is scalar. */
3603 for (i = 0; i < n; i++)
3604 if (!is_scalar_type_recursive (t->field (i).type ()))
3613 /* Return true is T is a class or a union. False otherwise. */
3616 class_or_union_p (const struct type *t)
3618 return (t->code () == TYPE_CODE_STRUCT
3619 || t->code () == TYPE_CODE_UNION);
3622 /* A helper function which returns true if types A and B represent the
3623 "same" class type. This is true if the types have the same main
3624 type, or the same name. */
3627 class_types_same_p (const struct type *a, const struct type *b)
3629 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3630 || (a->name () && b->name ()
3631 && !strcmp (a->name (), b->name ())));
3634 /* If BASE is an ancestor of DCLASS return the distance between them.
3635 otherwise return -1;
3639 class B: public A {};
3640 class C: public B {};
3643 distance_to_ancestor (A, A, 0) = 0
3644 distance_to_ancestor (A, B, 0) = 1
3645 distance_to_ancestor (A, C, 0) = 2
3646 distance_to_ancestor (A, D, 0) = 3
3648 If PUBLIC is 1 then only public ancestors are considered,
3649 and the function returns the distance only if BASE is a public ancestor
3653 distance_to_ancestor (A, D, 1) = -1. */
3656 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3661 base = check_typedef (base);
3662 dclass = check_typedef (dclass);
3664 if (class_types_same_p (base, dclass))
3667 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3669 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3672 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3680 /* Check whether BASE is an ancestor or base class or DCLASS
3681 Return 1 if so, and 0 if not.
3682 Note: If BASE and DCLASS are of the same type, this function
3683 will return 1. So for some class A, is_ancestor (A, A) will
3687 is_ancestor (struct type *base, struct type *dclass)
3689 return distance_to_ancestor (base, dclass, 0) >= 0;
3692 /* Like is_ancestor, but only returns true when BASE is a public
3693 ancestor of DCLASS. */
3696 is_public_ancestor (struct type *base, struct type *dclass)
3698 return distance_to_ancestor (base, dclass, 1) >= 0;
3701 /* A helper function for is_unique_ancestor. */
3704 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3706 const gdb_byte *valaddr, int embedded_offset,
3707 CORE_ADDR address, struct value *val)
3711 base = check_typedef (base);
3712 dclass = check_typedef (dclass);
3714 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3719 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3721 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3724 if (class_types_same_p (base, iter))
3726 /* If this is the first subclass, set *OFFSET and set count
3727 to 1. Otherwise, if this is at the same offset as
3728 previous instances, do nothing. Otherwise, increment
3732 *offset = this_offset;
3735 else if (this_offset == *offset)
3743 count += is_unique_ancestor_worker (base, iter, offset,
3745 embedded_offset + this_offset,
3752 /* Like is_ancestor, but only returns true if BASE is a unique base
3753 class of the type of VAL. */
3756 is_unique_ancestor (struct type *base, struct value *val)
3760 return is_unique_ancestor_worker (base, value_type (val), &offset,
3761 value_contents_for_printing (val),
3762 value_embedded_offset (val),
3763 value_address (val), val) == 1;
3766 /* See gdbtypes.h. */
3769 type_byte_order (const struct type *type)
3771 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3772 if (type->endianity_is_not_default ())
3774 if (byteorder == BFD_ENDIAN_BIG)
3775 return BFD_ENDIAN_LITTLE;
3778 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3779 return BFD_ENDIAN_BIG;
3787 /* Overload resolution. */
3789 /* Return the sum of the rank of A with the rank of B. */
3792 sum_ranks (struct rank a, struct rank b)
3795 c.rank = a.rank + b.rank;
3796 c.subrank = a.subrank + b.subrank;
3800 /* Compare rank A and B and return:
3802 1 if a is better than b
3803 -1 if b is better than a. */
3806 compare_ranks (struct rank a, struct rank b)
3808 if (a.rank == b.rank)
3810 if (a.subrank == b.subrank)
3812 if (a.subrank < b.subrank)
3814 if (a.subrank > b.subrank)
3818 if (a.rank < b.rank)
3821 /* a.rank > b.rank */
3825 /* Functions for overload resolution begin here. */
3827 /* Compare two badness vectors A and B and return the result.
3828 0 => A and B are identical
3829 1 => A and B are incomparable
3830 2 => A is better than B
3831 3 => A is worse than B */
3834 compare_badness (const badness_vector &a, const badness_vector &b)
3838 short found_pos = 0; /* any positives in c? */
3839 short found_neg = 0; /* any negatives in c? */
3841 /* differing sizes => incomparable */
3842 if (a.size () != b.size ())
3845 /* Subtract b from a */
3846 for (i = 0; i < a.size (); i++)
3848 tmp = compare_ranks (b[i], a[i]);
3858 return 1; /* incomparable */
3860 return 3; /* A > B */
3866 return 2; /* A < B */
3868 return 0; /* A == B */
3872 /* Rank a function by comparing its parameter types (PARMS), to the
3873 types of an argument list (ARGS). Return the badness vector. This
3874 has ARGS.size() + 1 entries. */
3877 rank_function (gdb::array_view<type *> parms,
3878 gdb::array_view<value *> args)
3880 /* add 1 for the length-match rank. */
3882 bv.reserve (1 + args.size ());
3884 /* First compare the lengths of the supplied lists.
3885 If there is a mismatch, set it to a high value. */
3887 /* pai/1997-06-03 FIXME: when we have debug info about default
3888 arguments and ellipsis parameter lists, we should consider those
3889 and rank the length-match more finely. */
3891 bv.push_back ((args.size () != parms.size ())
3892 ? LENGTH_MISMATCH_BADNESS
3893 : EXACT_MATCH_BADNESS);
3895 /* Now rank all the parameters of the candidate function. */
3896 size_t min_len = std::min (parms.size (), args.size ());
3898 for (size_t i = 0; i < min_len; i++)
3899 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3902 /* If more arguments than parameters, add dummy entries. */
3903 for (size_t i = min_len; i < args.size (); i++)
3904 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3909 /* Compare the names of two integer types, assuming that any sign
3910 qualifiers have been checked already. We do it this way because
3911 there may be an "int" in the name of one of the types. */
3914 integer_types_same_name_p (const char *first, const char *second)
3916 int first_p, second_p;
3918 /* If both are shorts, return 1; if neither is a short, keep
3920 first_p = (strstr (first, "short") != NULL);
3921 second_p = (strstr (second, "short") != NULL);
3922 if (first_p && second_p)
3924 if (first_p || second_p)
3927 /* Likewise for long. */
3928 first_p = (strstr (first, "long") != NULL);
3929 second_p = (strstr (second, "long") != NULL);
3930 if (first_p && second_p)
3932 if (first_p || second_p)
3935 /* Likewise for char. */
3936 first_p = (strstr (first, "char") != NULL);
3937 second_p = (strstr (second, "char") != NULL);
3938 if (first_p && second_p)
3940 if (first_p || second_p)
3943 /* They must both be ints. */
3947 /* Compares type A to type B. Returns true if they represent the same
3948 type, false otherwise. */
3951 types_equal (struct type *a, struct type *b)
3953 /* Identical type pointers. */
3954 /* However, this still doesn't catch all cases of same type for b
3955 and a. The reason is that builtin types are different from
3956 the same ones constructed from the object. */
3960 /* Resolve typedefs */
3961 if (a->code () == TYPE_CODE_TYPEDEF)
3962 a = check_typedef (a);
3963 if (b->code () == TYPE_CODE_TYPEDEF)
3964 b = check_typedef (b);
3966 /* If after resolving typedefs a and b are not of the same type
3967 code then they are not equal. */
3968 if (a->code () != b->code ())
3971 /* If a and b are both pointers types or both reference types then
3972 they are equal of the same type iff the objects they refer to are
3973 of the same type. */
3974 if (a->code () == TYPE_CODE_PTR
3975 || a->code () == TYPE_CODE_REF)
3976 return types_equal (TYPE_TARGET_TYPE (a),
3977 TYPE_TARGET_TYPE (b));
3979 /* Well, damnit, if the names are exactly the same, I'll say they
3980 are exactly the same. This happens when we generate method
3981 stubs. The types won't point to the same address, but they
3982 really are the same. */
3984 if (a->name () && b->name ()
3985 && strcmp (a->name (), b->name ()) == 0)
3988 /* Check if identical after resolving typedefs. */
3992 /* Two function types are equal if their argument and return types
3994 if (a->code () == TYPE_CODE_FUNC)
3998 if (a->num_fields () != b->num_fields ())
4001 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
4004 for (i = 0; i < a->num_fields (); ++i)
4005 if (!types_equal (a->field (i).type (), b->field (i).type ()))
4014 /* Deep comparison of types. */
4016 /* An entry in the type-equality bcache. */
4018 struct type_equality_entry
4020 type_equality_entry (struct type *t1, struct type *t2)
4026 struct type *type1, *type2;
4029 /* A helper function to compare two strings. Returns true if they are
4030 the same, false otherwise. Handles NULLs properly. */
4033 compare_maybe_null_strings (const char *s, const char *t)
4035 if (s == NULL || t == NULL)
4037 return strcmp (s, t) == 0;
4040 /* A helper function for check_types_worklist that checks two types for
4041 "deep" equality. Returns true if the types are considered the
4042 same, false otherwise. */
4045 check_types_equal (struct type *type1, struct type *type2,
4046 std::vector<type_equality_entry> *worklist)
4048 type1 = check_typedef (type1);
4049 type2 = check_typedef (type2);
4054 if (type1->code () != type2->code ()
4055 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4056 || type1->is_unsigned () != type2->is_unsigned ()
4057 || type1->has_no_signedness () != type2->has_no_signedness ()
4058 || type1->endianity_is_not_default () != type2->endianity_is_not_default ()
4059 || type1->has_varargs () != type2->has_varargs ()
4060 || type1->is_vector () != type2->is_vector ()
4061 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4062 || type1->instance_flags () != type2->instance_flags ()
4063 || type1->num_fields () != type2->num_fields ())
4066 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4068 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4071 if (type1->code () == TYPE_CODE_RANGE)
4073 if (*type1->bounds () != *type2->bounds ())
4080 for (i = 0; i < type1->num_fields (); ++i)
4082 const struct field *field1 = &type1->field (i);
4083 const struct field *field2 = &type2->field (i);
4085 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4086 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4087 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4089 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4090 FIELD_NAME (*field2)))
4092 switch (FIELD_LOC_KIND (*field1))
4094 case FIELD_LOC_KIND_BITPOS:
4095 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4098 case FIELD_LOC_KIND_ENUMVAL:
4099 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4102 case FIELD_LOC_KIND_PHYSADDR:
4103 if (FIELD_STATIC_PHYSADDR (*field1)
4104 != FIELD_STATIC_PHYSADDR (*field2))
4107 case FIELD_LOC_KIND_PHYSNAME:
4108 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4109 FIELD_STATIC_PHYSNAME (*field2)))
4112 case FIELD_LOC_KIND_DWARF_BLOCK:
4114 struct dwarf2_locexpr_baton *block1, *block2;
4116 block1 = FIELD_DWARF_BLOCK (*field1);
4117 block2 = FIELD_DWARF_BLOCK (*field2);
4118 if (block1->per_cu != block2->per_cu
4119 || block1->size != block2->size
4120 || memcmp (block1->data, block2->data, block1->size) != 0)
4125 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4126 "%d by check_types_equal"),
4127 FIELD_LOC_KIND (*field1));
4130 worklist->emplace_back (field1->type (), field2->type ());
4134 if (TYPE_TARGET_TYPE (type1) != NULL)
4136 if (TYPE_TARGET_TYPE (type2) == NULL)
4139 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4140 TYPE_TARGET_TYPE (type2));
4142 else if (TYPE_TARGET_TYPE (type2) != NULL)
4148 /* Check types on a worklist for equality. Returns false if any pair
4149 is not equal, true if they are all considered equal. */
4152 check_types_worklist (std::vector<type_equality_entry> *worklist,
4155 while (!worklist->empty ())
4159 struct type_equality_entry entry = std::move (worklist->back ());
4160 worklist->pop_back ();
4162 /* If the type pair has already been visited, we know it is
4164 cache->insert (&entry, sizeof (entry), &added);
4168 if (!check_types_equal (entry.type1, entry.type2, worklist))
4175 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4176 "deep comparison". Otherwise return false. */
4179 types_deeply_equal (struct type *type1, struct type *type2)
4181 std::vector<type_equality_entry> worklist;
4183 gdb_assert (type1 != NULL && type2 != NULL);
4185 /* Early exit for the simple case. */
4190 worklist.emplace_back (type1, type2);
4191 return check_types_worklist (&worklist, &cache);
4194 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4195 Otherwise return one. */
4198 type_not_allocated (const struct type *type)
4200 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4202 return (prop != nullptr && prop->kind () == PROP_CONST
4203 && prop->const_val () == 0);
4206 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4207 Otherwise return one. */
4210 type_not_associated (const struct type *type)
4212 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4214 return (prop != nullptr && prop->kind () == PROP_CONST
4215 && prop->const_val () == 0);
4218 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4221 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4223 struct rank rank = {0,0};
4225 switch (arg->code ())
4229 /* Allowed pointer conversions are:
4230 (a) pointer to void-pointer conversion. */
4231 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4232 return VOID_PTR_CONVERSION_BADNESS;
4234 /* (b) pointer to ancestor-pointer conversion. */
4235 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4236 TYPE_TARGET_TYPE (arg),
4238 if (rank.subrank >= 0)
4239 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4241 return INCOMPATIBLE_TYPE_BADNESS;
4242 case TYPE_CODE_ARRAY:
4244 struct type *t1 = TYPE_TARGET_TYPE (parm);
4245 struct type *t2 = TYPE_TARGET_TYPE (arg);
4247 if (types_equal (t1, t2))
4249 /* Make sure they are CV equal. */
4250 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4251 rank.subrank |= CV_CONVERSION_CONST;
4252 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4253 rank.subrank |= CV_CONVERSION_VOLATILE;
4254 if (rank.subrank != 0)
4255 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4256 return EXACT_MATCH_BADNESS;
4258 return INCOMPATIBLE_TYPE_BADNESS;
4260 case TYPE_CODE_FUNC:
4261 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4263 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4265 if (value_as_long (value) == 0)
4267 /* Null pointer conversion: allow it to be cast to a pointer.
4268 [4.10.1 of C++ standard draft n3290] */
4269 return NULL_POINTER_CONVERSION_BADNESS;
4273 /* If type checking is disabled, allow the conversion. */
4274 if (!strict_type_checking)
4275 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4279 case TYPE_CODE_ENUM:
4280 case TYPE_CODE_FLAGS:
4281 case TYPE_CODE_CHAR:
4282 case TYPE_CODE_RANGE:
4283 case TYPE_CODE_BOOL:
4285 return INCOMPATIBLE_TYPE_BADNESS;
4289 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4292 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4294 switch (arg->code ())
4297 case TYPE_CODE_ARRAY:
4298 return rank_one_type (TYPE_TARGET_TYPE (parm),
4299 TYPE_TARGET_TYPE (arg), NULL);
4301 return INCOMPATIBLE_TYPE_BADNESS;
4305 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4308 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4310 switch (arg->code ())
4312 case TYPE_CODE_PTR: /* funcptr -> func */
4313 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4315 return INCOMPATIBLE_TYPE_BADNESS;
4319 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4322 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4324 switch (arg->code ())
4327 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4329 /* Deal with signed, unsigned, and plain chars and
4330 signed and unsigned ints. */
4331 if (parm->has_no_signedness ())
4333 /* This case only for character types. */
4334 if (arg->has_no_signedness ())
4335 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4336 else /* signed/unsigned char -> plain char */
4337 return INTEGER_CONVERSION_BADNESS;
4339 else if (parm->is_unsigned ())
4341 if (arg->is_unsigned ())
4343 /* unsigned int -> unsigned int, or
4344 unsigned long -> unsigned long */
4345 if (integer_types_same_name_p (parm->name (),
4347 return EXACT_MATCH_BADNESS;
4348 else if (integer_types_same_name_p (arg->name (),
4350 && integer_types_same_name_p (parm->name (),
4352 /* unsigned int -> unsigned long */
4353 return INTEGER_PROMOTION_BADNESS;
4355 /* unsigned long -> unsigned int */
4356 return INTEGER_CONVERSION_BADNESS;
4360 if (integer_types_same_name_p (arg->name (),
4362 && integer_types_same_name_p (parm->name (),
4364 /* signed long -> unsigned int */
4365 return INTEGER_CONVERSION_BADNESS;
4367 /* signed int/long -> unsigned int/long */
4368 return INTEGER_CONVERSION_BADNESS;
4371 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4373 if (integer_types_same_name_p (parm->name (),
4375 return EXACT_MATCH_BADNESS;
4376 else if (integer_types_same_name_p (arg->name (),
4378 && integer_types_same_name_p (parm->name (),
4380 return INTEGER_PROMOTION_BADNESS;
4382 return INTEGER_CONVERSION_BADNESS;
4385 return INTEGER_CONVERSION_BADNESS;
4387 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4388 return INTEGER_PROMOTION_BADNESS;
4390 return INTEGER_CONVERSION_BADNESS;
4391 case TYPE_CODE_ENUM:
4392 case TYPE_CODE_FLAGS:
4393 case TYPE_CODE_CHAR:
4394 case TYPE_CODE_RANGE:
4395 case TYPE_CODE_BOOL:
4396 if (TYPE_DECLARED_CLASS (arg))
4397 return INCOMPATIBLE_TYPE_BADNESS;
4398 return INTEGER_PROMOTION_BADNESS;
4400 return INT_FLOAT_CONVERSION_BADNESS;
4402 return NS_POINTER_CONVERSION_BADNESS;
4404 return INCOMPATIBLE_TYPE_BADNESS;
4408 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4411 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4413 switch (arg->code ())
4416 case TYPE_CODE_CHAR:
4417 case TYPE_CODE_RANGE:
4418 case TYPE_CODE_BOOL:
4419 case TYPE_CODE_ENUM:
4420 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4421 return INCOMPATIBLE_TYPE_BADNESS;
4422 return INTEGER_CONVERSION_BADNESS;
4424 return INT_FLOAT_CONVERSION_BADNESS;
4426 return INCOMPATIBLE_TYPE_BADNESS;
4430 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4433 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4435 switch (arg->code ())
4437 case TYPE_CODE_RANGE:
4438 case TYPE_CODE_BOOL:
4439 case TYPE_CODE_ENUM:
4440 if (TYPE_DECLARED_CLASS (arg))
4441 return INCOMPATIBLE_TYPE_BADNESS;
4442 return INTEGER_CONVERSION_BADNESS;
4444 return INT_FLOAT_CONVERSION_BADNESS;
4446 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4447 return INTEGER_CONVERSION_BADNESS;
4448 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4449 return INTEGER_PROMOTION_BADNESS;
4451 case TYPE_CODE_CHAR:
4452 /* Deal with signed, unsigned, and plain chars for C++ and
4453 with int cases falling through from previous case. */
4454 if (parm->has_no_signedness ())
4456 if (arg->has_no_signedness ())
4457 return EXACT_MATCH_BADNESS;
4459 return INTEGER_CONVERSION_BADNESS;
4461 else if (parm->is_unsigned ())
4463 if (arg->is_unsigned ())
4464 return EXACT_MATCH_BADNESS;
4466 return INTEGER_PROMOTION_BADNESS;
4468 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4469 return EXACT_MATCH_BADNESS;
4471 return INTEGER_CONVERSION_BADNESS;
4473 return INCOMPATIBLE_TYPE_BADNESS;
4477 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4480 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4482 switch (arg->code ())
4485 case TYPE_CODE_CHAR:
4486 case TYPE_CODE_RANGE:
4487 case TYPE_CODE_BOOL:
4488 case TYPE_CODE_ENUM:
4489 return INTEGER_CONVERSION_BADNESS;
4491 return INT_FLOAT_CONVERSION_BADNESS;
4493 return INCOMPATIBLE_TYPE_BADNESS;
4497 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4500 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4502 switch (arg->code ())
4504 /* n3290 draft, section 4.12.1 (conv.bool):
4506 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4507 pointer to member type can be converted to a prvalue of type
4508 bool. A zero value, null pointer value, or null member pointer
4509 value is converted to false; any other value is converted to
4510 true. A prvalue of type std::nullptr_t can be converted to a
4511 prvalue of type bool; the resulting value is false." */
4513 case TYPE_CODE_CHAR:
4514 case TYPE_CODE_ENUM:
4516 case TYPE_CODE_MEMBERPTR:
4518 return BOOL_CONVERSION_BADNESS;
4519 case TYPE_CODE_RANGE:
4520 return INCOMPATIBLE_TYPE_BADNESS;
4521 case TYPE_CODE_BOOL:
4522 return EXACT_MATCH_BADNESS;
4524 return INCOMPATIBLE_TYPE_BADNESS;
4528 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4531 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4533 switch (arg->code ())
4536 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4537 return FLOAT_PROMOTION_BADNESS;
4538 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4539 return EXACT_MATCH_BADNESS;
4541 return FLOAT_CONVERSION_BADNESS;
4543 case TYPE_CODE_BOOL:
4544 case TYPE_CODE_ENUM:
4545 case TYPE_CODE_RANGE:
4546 case TYPE_CODE_CHAR:
4547 return INT_FLOAT_CONVERSION_BADNESS;
4549 return INCOMPATIBLE_TYPE_BADNESS;
4553 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4556 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4558 switch (arg->code ())
4559 { /* Strictly not needed for C++, but... */
4561 return FLOAT_PROMOTION_BADNESS;
4562 case TYPE_CODE_COMPLEX:
4563 return EXACT_MATCH_BADNESS;
4565 return INCOMPATIBLE_TYPE_BADNESS;
4569 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4572 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4574 struct rank rank = {0, 0};
4576 switch (arg->code ())
4578 case TYPE_CODE_STRUCT:
4579 /* Check for derivation */
4580 rank.subrank = distance_to_ancestor (parm, arg, 0);
4581 if (rank.subrank >= 0)
4582 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4585 return INCOMPATIBLE_TYPE_BADNESS;
4589 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4592 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4594 switch (arg->code ())
4598 return rank_one_type (parm->field (0).type (),
4599 arg->field (0).type (), NULL);
4601 return INCOMPATIBLE_TYPE_BADNESS;
4605 /* Compare one type (PARM) for compatibility with another (ARG).
4606 * PARM is intended to be the parameter type of a function; and
4607 * ARG is the supplied argument's type. This function tests if
4608 * the latter can be converted to the former.
4609 * VALUE is the argument's value or NULL if none (or called recursively)
4611 * Return 0 if they are identical types;
4612 * Otherwise, return an integer which corresponds to how compatible
4613 * PARM is to ARG. The higher the return value, the worse the match.
4614 * Generally the "bad" conversions are all uniformly assigned a 100. */
4617 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4619 struct rank rank = {0,0};
4621 /* Resolve typedefs */
4622 if (parm->code () == TYPE_CODE_TYPEDEF)
4623 parm = check_typedef (parm);
4624 if (arg->code () == TYPE_CODE_TYPEDEF)
4625 arg = check_typedef (arg);
4627 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4629 if (VALUE_LVAL (value) == not_lval)
4631 /* Rvalues should preferably bind to rvalue references or const
4632 lvalue references. */
4633 if (parm->code () == TYPE_CODE_RVALUE_REF)
4634 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4635 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4636 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4638 return INCOMPATIBLE_TYPE_BADNESS;
4639 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4643 /* It's illegal to pass an lvalue as an rvalue. */
4644 if (parm->code () == TYPE_CODE_RVALUE_REF)
4645 return INCOMPATIBLE_TYPE_BADNESS;
4649 if (types_equal (parm, arg))
4651 struct type *t1 = parm;
4652 struct type *t2 = arg;
4654 /* For pointers and references, compare target type. */
4655 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4657 t1 = TYPE_TARGET_TYPE (parm);
4658 t2 = TYPE_TARGET_TYPE (arg);
4661 /* Make sure they are CV equal, too. */
4662 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4663 rank.subrank |= CV_CONVERSION_CONST;
4664 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4665 rank.subrank |= CV_CONVERSION_VOLATILE;
4666 if (rank.subrank != 0)
4667 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4668 return EXACT_MATCH_BADNESS;
4671 /* See through references, since we can almost make non-references
4674 if (TYPE_IS_REFERENCE (arg))
4675 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4676 REFERENCE_SEE_THROUGH_BADNESS));
4677 if (TYPE_IS_REFERENCE (parm))
4678 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4679 REFERENCE_SEE_THROUGH_BADNESS));
4681 /* Debugging only. */
4682 fprintf_filtered (gdb_stderr,
4683 "------ Arg is %s [%d], parm is %s [%d]\n",
4684 arg->name (), arg->code (),
4685 parm->name (), parm->code ());
4687 /* x -> y means arg of type x being supplied for parameter of type y. */
4689 switch (parm->code ())
4692 return rank_one_type_parm_ptr (parm, arg, value);
4693 case TYPE_CODE_ARRAY:
4694 return rank_one_type_parm_array (parm, arg, value);
4695 case TYPE_CODE_FUNC:
4696 return rank_one_type_parm_func (parm, arg, value);
4698 return rank_one_type_parm_int (parm, arg, value);
4699 case TYPE_CODE_ENUM:
4700 return rank_one_type_parm_enum (parm, arg, value);
4701 case TYPE_CODE_CHAR:
4702 return rank_one_type_parm_char (parm, arg, value);
4703 case TYPE_CODE_RANGE:
4704 return rank_one_type_parm_range (parm, arg, value);
4705 case TYPE_CODE_BOOL:
4706 return rank_one_type_parm_bool (parm, arg, value);
4708 return rank_one_type_parm_float (parm, arg, value);
4709 case TYPE_CODE_COMPLEX:
4710 return rank_one_type_parm_complex (parm, arg, value);
4711 case TYPE_CODE_STRUCT:
4712 return rank_one_type_parm_struct (parm, arg, value);
4714 return rank_one_type_parm_set (parm, arg, value);
4716 return INCOMPATIBLE_TYPE_BADNESS;
4717 } /* switch (arg->code ()) */
4720 /* End of functions for overload resolution. */
4722 /* Routines to pretty-print types. */
4725 print_bit_vector (B_TYPE *bits, int nbits)
4729 for (bitno = 0; bitno < nbits; bitno++)
4731 if ((bitno % 8) == 0)
4733 puts_filtered (" ");
4735 if (B_TST (bits, bitno))
4736 printf_filtered (("1"));
4738 printf_filtered (("0"));
4742 /* Note the first arg should be the "this" pointer, we may not want to
4743 include it since we may get into a infinitely recursive
4747 print_args (struct field *args, int nargs, int spaces)
4753 for (i = 0; i < nargs; i++)
4755 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4756 args[i].name != NULL ? args[i].name : "<NULL>");
4757 recursive_dump_type (args[i].type (), spaces + 2);
4763 field_is_static (struct field *f)
4765 /* "static" fields are the fields whose location is not relative
4766 to the address of the enclosing struct. It would be nice to
4767 have a dedicated flag that would be set for static fields when
4768 the type is being created. But in practice, checking the field
4769 loc_kind should give us an accurate answer. */
4770 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4771 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4775 dump_fn_fieldlists (struct type *type, int spaces)
4781 printfi_filtered (spaces, "fn_fieldlists ");
4782 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4783 printf_filtered ("\n");
4784 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4786 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4787 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4789 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4790 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4792 printf_filtered (_(") length %d\n"),
4793 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4794 for (overload_idx = 0;
4795 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4798 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4800 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4801 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4803 printf_filtered (")\n");
4804 printfi_filtered (spaces + 8, "type ");
4805 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4807 printf_filtered ("\n");
4809 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4812 printfi_filtered (spaces + 8, "args ");
4813 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4815 printf_filtered ("\n");
4816 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4817 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4819 printfi_filtered (spaces + 8, "fcontext ");
4820 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4822 printf_filtered ("\n");
4824 printfi_filtered (spaces + 8, "is_const %d\n",
4825 TYPE_FN_FIELD_CONST (f, overload_idx));
4826 printfi_filtered (spaces + 8, "is_volatile %d\n",
4827 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4828 printfi_filtered (spaces + 8, "is_private %d\n",
4829 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4830 printfi_filtered (spaces + 8, "is_protected %d\n",
4831 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4832 printfi_filtered (spaces + 8, "is_stub %d\n",
4833 TYPE_FN_FIELD_STUB (f, overload_idx));
4834 printfi_filtered (spaces + 8, "defaulted %d\n",
4835 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4836 printfi_filtered (spaces + 8, "is_deleted %d\n",
4837 TYPE_FN_FIELD_DELETED (f, overload_idx));
4838 printfi_filtered (spaces + 8, "voffset %u\n",
4839 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4845 print_cplus_stuff (struct type *type, int spaces)
4847 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4848 printfi_filtered (spaces, "vptr_basetype ");
4849 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4850 puts_filtered ("\n");
4851 if (TYPE_VPTR_BASETYPE (type) != NULL)
4852 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4854 printfi_filtered (spaces, "n_baseclasses %d\n",
4855 TYPE_N_BASECLASSES (type));
4856 printfi_filtered (spaces, "nfn_fields %d\n",
4857 TYPE_NFN_FIELDS (type));
4858 if (TYPE_N_BASECLASSES (type) > 0)
4860 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4861 TYPE_N_BASECLASSES (type));
4862 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4864 printf_filtered (")");
4866 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4867 TYPE_N_BASECLASSES (type));
4868 puts_filtered ("\n");
4870 if (type->num_fields () > 0)
4872 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4874 printfi_filtered (spaces,
4875 "private_field_bits (%d bits at *",
4876 type->num_fields ());
4877 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4879 printf_filtered (")");
4880 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4881 type->num_fields ());
4882 puts_filtered ("\n");
4884 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4886 printfi_filtered (spaces,
4887 "protected_field_bits (%d bits at *",
4888 type->num_fields ());
4889 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4891 printf_filtered (")");
4892 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4893 type->num_fields ());
4894 puts_filtered ("\n");
4897 if (TYPE_NFN_FIELDS (type) > 0)
4899 dump_fn_fieldlists (type, spaces);
4902 printfi_filtered (spaces, "calling_convention %d\n",
4903 TYPE_CPLUS_CALLING_CONVENTION (type));
4906 /* Print the contents of the TYPE's type_specific union, assuming that
4907 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4910 print_gnat_stuff (struct type *type, int spaces)
4912 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4914 if (descriptive_type == NULL)
4915 printfi_filtered (spaces + 2, "no descriptive type\n");
4918 printfi_filtered (spaces + 2, "descriptive type\n");
4919 recursive_dump_type (descriptive_type, spaces + 4);
4923 /* Print the contents of the TYPE's type_specific union, assuming that
4924 its type-specific kind is TYPE_SPECIFIC_FIXED_POINT. */
4927 print_fixed_point_type_info (struct type *type, int spaces)
4929 printfi_filtered (spaces + 2, "scaling factor: %s\n",
4930 type->fixed_point_scaling_factor ().str ().c_str ());
4933 static struct obstack dont_print_type_obstack;
4935 /* Print the dynamic_prop PROP. */
4938 dump_dynamic_prop (dynamic_prop const& prop)
4940 switch (prop.kind ())
4943 printf_filtered ("%s", plongest (prop.const_val ()));
4945 case PROP_UNDEFINED:
4946 printf_filtered ("(undefined)");
4950 printf_filtered ("(dynamic)");
4953 gdb_assert_not_reached ("unhandled prop kind");
4959 recursive_dump_type (struct type *type, int spaces)
4964 obstack_begin (&dont_print_type_obstack, 0);
4966 if (type->num_fields () > 0
4967 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4969 struct type **first_dont_print
4970 = (struct type **) obstack_base (&dont_print_type_obstack);
4972 int i = (struct type **)
4973 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4977 if (type == first_dont_print[i])
4979 printfi_filtered (spaces, "type node ");
4980 gdb_print_host_address (type, gdb_stdout);
4981 printf_filtered (_(" <same as already seen type>\n"));
4986 obstack_ptr_grow (&dont_print_type_obstack, type);
4989 printfi_filtered (spaces, "type node ");
4990 gdb_print_host_address (type, gdb_stdout);
4991 printf_filtered ("\n");
4992 printfi_filtered (spaces, "name '%s' (",
4993 type->name () ? type->name () : "<NULL>");
4994 gdb_print_host_address (type->name (), gdb_stdout);
4995 printf_filtered (")\n");
4996 printfi_filtered (spaces, "code 0x%x ", type->code ());
4997 switch (type->code ())
4999 case TYPE_CODE_UNDEF:
5000 printf_filtered ("(TYPE_CODE_UNDEF)");
5003 printf_filtered ("(TYPE_CODE_PTR)");
5005 case TYPE_CODE_ARRAY:
5006 printf_filtered ("(TYPE_CODE_ARRAY)");
5008 case TYPE_CODE_STRUCT:
5009 printf_filtered ("(TYPE_CODE_STRUCT)");
5011 case TYPE_CODE_UNION:
5012 printf_filtered ("(TYPE_CODE_UNION)");
5014 case TYPE_CODE_ENUM:
5015 printf_filtered ("(TYPE_CODE_ENUM)");
5017 case TYPE_CODE_FLAGS:
5018 printf_filtered ("(TYPE_CODE_FLAGS)");
5020 case TYPE_CODE_FUNC:
5021 printf_filtered ("(TYPE_CODE_FUNC)");
5024 printf_filtered ("(TYPE_CODE_INT)");
5027 printf_filtered ("(TYPE_CODE_FLT)");
5029 case TYPE_CODE_VOID:
5030 printf_filtered ("(TYPE_CODE_VOID)");
5033 printf_filtered ("(TYPE_CODE_SET)");
5035 case TYPE_CODE_RANGE:
5036 printf_filtered ("(TYPE_CODE_RANGE)");
5038 case TYPE_CODE_STRING:
5039 printf_filtered ("(TYPE_CODE_STRING)");
5041 case TYPE_CODE_ERROR:
5042 printf_filtered ("(TYPE_CODE_ERROR)");
5044 case TYPE_CODE_MEMBERPTR:
5045 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
5047 case TYPE_CODE_METHODPTR:
5048 printf_filtered ("(TYPE_CODE_METHODPTR)");
5050 case TYPE_CODE_METHOD:
5051 printf_filtered ("(TYPE_CODE_METHOD)");
5054 printf_filtered ("(TYPE_CODE_REF)");
5056 case TYPE_CODE_CHAR:
5057 printf_filtered ("(TYPE_CODE_CHAR)");
5059 case TYPE_CODE_BOOL:
5060 printf_filtered ("(TYPE_CODE_BOOL)");
5062 case TYPE_CODE_COMPLEX:
5063 printf_filtered ("(TYPE_CODE_COMPLEX)");
5065 case TYPE_CODE_TYPEDEF:
5066 printf_filtered ("(TYPE_CODE_TYPEDEF)");
5068 case TYPE_CODE_NAMESPACE:
5069 printf_filtered ("(TYPE_CODE_NAMESPACE)");
5071 case TYPE_CODE_FIXED_POINT:
5072 printf_filtered ("(TYPE_CODE_FIXED_POINT)");
5075 printf_filtered ("(UNKNOWN TYPE CODE)");
5078 puts_filtered ("\n");
5079 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
5080 if (TYPE_OBJFILE_OWNED (type))
5082 printfi_filtered (spaces, "objfile ");
5083 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
5087 printfi_filtered (spaces, "gdbarch ");
5088 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5090 printf_filtered ("\n");
5091 printfi_filtered (spaces, "target_type ");
5092 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5093 printf_filtered ("\n");
5094 if (TYPE_TARGET_TYPE (type) != NULL)
5096 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5098 printfi_filtered (spaces, "pointer_type ");
5099 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5100 printf_filtered ("\n");
5101 printfi_filtered (spaces, "reference_type ");
5102 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5103 printf_filtered ("\n");
5104 printfi_filtered (spaces, "type_chain ");
5105 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5106 printf_filtered ("\n");
5107 printfi_filtered (spaces, "instance_flags 0x%x",
5108 (unsigned) type->instance_flags ());
5109 if (TYPE_CONST (type))
5111 puts_filtered (" TYPE_CONST");
5113 if (TYPE_VOLATILE (type))
5115 puts_filtered (" TYPE_VOLATILE");
5117 if (TYPE_CODE_SPACE (type))
5119 puts_filtered (" TYPE_CODE_SPACE");
5121 if (TYPE_DATA_SPACE (type))
5123 puts_filtered (" TYPE_DATA_SPACE");
5125 if (TYPE_ADDRESS_CLASS_1 (type))
5127 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5129 if (TYPE_ADDRESS_CLASS_2 (type))
5131 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5133 if (TYPE_RESTRICT (type))
5135 puts_filtered (" TYPE_RESTRICT");
5137 if (TYPE_ATOMIC (type))
5139 puts_filtered (" TYPE_ATOMIC");
5141 puts_filtered ("\n");
5143 printfi_filtered (spaces, "flags");
5144 if (type->is_unsigned ())
5146 puts_filtered (" TYPE_UNSIGNED");
5148 if (type->has_no_signedness ())
5150 puts_filtered (" TYPE_NOSIGN");
5152 if (type->endianity_is_not_default ())
5154 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5156 if (type->is_stub ())
5158 puts_filtered (" TYPE_STUB");
5160 if (type->target_is_stub ())
5162 puts_filtered (" TYPE_TARGET_STUB");
5164 if (type->is_prototyped ())
5166 puts_filtered (" TYPE_PROTOTYPED");
5168 if (type->has_varargs ())
5170 puts_filtered (" TYPE_VARARGS");
5172 /* This is used for things like AltiVec registers on ppc. Gcc emits
5173 an attribute for the array type, which tells whether or not we
5174 have a vector, instead of a regular array. */
5175 if (type->is_vector ())
5177 puts_filtered (" TYPE_VECTOR");
5179 if (type->is_fixed_instance ())
5181 puts_filtered (" TYPE_FIXED_INSTANCE");
5183 if (type->stub_is_supported ())
5185 puts_filtered (" TYPE_STUB_SUPPORTED");
5187 if (TYPE_NOTTEXT (type))
5189 puts_filtered (" TYPE_NOTTEXT");
5191 puts_filtered ("\n");
5192 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
5193 gdb_print_host_address (type->fields (), gdb_stdout);
5194 puts_filtered ("\n");
5195 for (idx = 0; idx < type->num_fields (); idx++)
5197 if (type->code () == TYPE_CODE_ENUM)
5198 printfi_filtered (spaces + 2,
5199 "[%d] enumval %s type ",
5200 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5202 printfi_filtered (spaces + 2,
5203 "[%d] bitpos %s bitsize %d type ",
5204 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5205 TYPE_FIELD_BITSIZE (type, idx));
5206 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
5207 printf_filtered (" name '%s' (",
5208 TYPE_FIELD_NAME (type, idx) != NULL
5209 ? TYPE_FIELD_NAME (type, idx)
5211 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5212 printf_filtered (")\n");
5213 if (type->field (idx).type () != NULL)
5215 recursive_dump_type (type->field (idx).type (), spaces + 4);
5218 if (type->code () == TYPE_CODE_RANGE)
5220 printfi_filtered (spaces, "low ");
5221 dump_dynamic_prop (type->bounds ()->low);
5222 printf_filtered (" high ");
5223 dump_dynamic_prop (type->bounds ()->high);
5224 printf_filtered ("\n");
5227 switch (TYPE_SPECIFIC_FIELD (type))
5229 case TYPE_SPECIFIC_CPLUS_STUFF:
5230 printfi_filtered (spaces, "cplus_stuff ");
5231 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5233 puts_filtered ("\n");
5234 print_cplus_stuff (type, spaces);
5237 case TYPE_SPECIFIC_GNAT_STUFF:
5238 printfi_filtered (spaces, "gnat_stuff ");
5239 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5240 puts_filtered ("\n");
5241 print_gnat_stuff (type, spaces);
5244 case TYPE_SPECIFIC_FLOATFORMAT:
5245 printfi_filtered (spaces, "floatformat ");
5246 if (TYPE_FLOATFORMAT (type) == NULL
5247 || TYPE_FLOATFORMAT (type)->name == NULL)
5248 puts_filtered ("(null)");
5250 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5251 puts_filtered ("\n");
5254 case TYPE_SPECIFIC_FUNC:
5255 printfi_filtered (spaces, "calling_convention %d\n",
5256 TYPE_CALLING_CONVENTION (type));
5257 /* tail_call_list is not printed. */
5260 case TYPE_SPECIFIC_SELF_TYPE:
5261 printfi_filtered (spaces, "self_type ");
5262 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5263 puts_filtered ("\n");
5266 case TYPE_SPECIFIC_FIXED_POINT:
5267 printfi_filtered (spaces, "fixed_point_info ");
5268 print_fixed_point_type_info (type, spaces);
5269 puts_filtered ("\n");
5272 case TYPE_SPECIFIC_INT:
5273 if (type->bit_size_differs_p ())
5275 unsigned bit_size = type->bit_size ();
5276 unsigned bit_off = type->bit_offset ();
5277 printfi_filtered (spaces, " bit size = %u, bit offset = %u\n",
5284 obstack_free (&dont_print_type_obstack, NULL);
5287 /* Trivial helpers for the libiberty hash table, for mapping one
5290 struct type_pair : public allocate_on_obstack
5292 type_pair (struct type *old_, struct type *newobj_)
5293 : old (old_), newobj (newobj_)
5296 struct type * const old, * const newobj;
5300 type_pair_hash (const void *item)
5302 const struct type_pair *pair = (const struct type_pair *) item;
5304 return htab_hash_pointer (pair->old);
5308 type_pair_eq (const void *item_lhs, const void *item_rhs)
5310 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5311 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5313 return lhs->old == rhs->old;
5316 /* Allocate the hash table used by copy_type_recursive to walk
5317 types without duplicates. We use OBJFILE's obstack, because
5318 OBJFILE is about to be deleted. */
5321 create_copied_types_hash (struct objfile *objfile)
5323 return htab_up (htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5324 NULL, &objfile->objfile_obstack,
5325 hashtab_obstack_allocate,
5326 dummy_obstack_deallocate));
5329 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5331 static struct dynamic_prop_list *
5332 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5333 struct dynamic_prop_list *list)
5335 struct dynamic_prop_list *copy = list;
5336 struct dynamic_prop_list **node_ptr = ©
5338 while (*node_ptr != NULL)
5340 struct dynamic_prop_list *node_copy;
5342 node_copy = ((struct dynamic_prop_list *)
5343 obstack_copy (objfile_obstack, *node_ptr,
5344 sizeof (struct dynamic_prop_list)));
5345 node_copy->prop = (*node_ptr)->prop;
5346 *node_ptr = node_copy;
5348 node_ptr = &node_copy->next;
5354 /* Recursively copy (deep copy) TYPE, if it is associated with
5355 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5356 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5357 it is not associated with OBJFILE. */
5360 copy_type_recursive (struct objfile *objfile,
5362 htab_t copied_types)
5365 struct type *new_type;
5367 if (! TYPE_OBJFILE_OWNED (type))
5370 /* This type shouldn't be pointing to any types in other objfiles;
5371 if it did, the type might disappear unexpectedly. */
5372 gdb_assert (TYPE_OBJFILE (type) == objfile);
5374 struct type_pair pair (type, nullptr);
5376 slot = htab_find_slot (copied_types, &pair, INSERT);
5378 return ((struct type_pair *) *slot)->newobj;
5380 new_type = alloc_type_arch (get_type_arch (type));
5382 /* We must add the new type to the hash table immediately, in case
5383 we encounter this type again during a recursive call below. */
5384 struct type_pair *stored
5385 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5389 /* Copy the common fields of types. For the main type, we simply
5390 copy the entire thing and then update specific fields as needed. */
5391 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5392 TYPE_OBJFILE_OWNED (new_type) = 0;
5393 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5396 new_type->set_name (xstrdup (type->name ()));
5398 new_type->set_instance_flags (type->instance_flags ());
5399 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5401 /* Copy the fields. */
5402 if (type->num_fields ())
5406 nfields = type->num_fields ();
5407 new_type->set_fields
5409 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5411 for (i = 0; i < nfields; i++)
5413 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5414 TYPE_FIELD_ARTIFICIAL (type, i);
5415 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5416 if (type->field (i).type ())
5417 new_type->field (i).set_type
5418 (copy_type_recursive (objfile, type->field (i).type (),
5420 if (TYPE_FIELD_NAME (type, i))
5421 TYPE_FIELD_NAME (new_type, i) =
5422 xstrdup (TYPE_FIELD_NAME (type, i));
5423 switch (TYPE_FIELD_LOC_KIND (type, i))
5425 case FIELD_LOC_KIND_BITPOS:
5426 SET_FIELD_BITPOS (new_type->field (i),
5427 TYPE_FIELD_BITPOS (type, i));
5429 case FIELD_LOC_KIND_ENUMVAL:
5430 SET_FIELD_ENUMVAL (new_type->field (i),
5431 TYPE_FIELD_ENUMVAL (type, i));
5433 case FIELD_LOC_KIND_PHYSADDR:
5434 SET_FIELD_PHYSADDR (new_type->field (i),
5435 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5437 case FIELD_LOC_KIND_PHYSNAME:
5438 SET_FIELD_PHYSNAME (new_type->field (i),
5439 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5443 internal_error (__FILE__, __LINE__,
5444 _("Unexpected type field location kind: %d"),
5445 TYPE_FIELD_LOC_KIND (type, i));
5450 /* For range types, copy the bounds information. */
5451 if (type->code () == TYPE_CODE_RANGE)
5453 range_bounds *bounds
5454 = ((struct range_bounds *) TYPE_ALLOC
5455 (new_type, sizeof (struct range_bounds)));
5457 *bounds = *type->bounds ();
5458 new_type->set_bounds (bounds);
5461 if (type->main_type->dyn_prop_list != NULL)
5462 new_type->main_type->dyn_prop_list
5463 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5464 type->main_type->dyn_prop_list);
5467 /* Copy pointers to other types. */
5468 if (TYPE_TARGET_TYPE (type))
5469 TYPE_TARGET_TYPE (new_type) =
5470 copy_type_recursive (objfile,
5471 TYPE_TARGET_TYPE (type),
5474 /* Maybe copy the type_specific bits.
5476 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5477 base classes and methods. There's no fundamental reason why we
5478 can't, but at the moment it is not needed. */
5480 switch (TYPE_SPECIFIC_FIELD (type))
5482 case TYPE_SPECIFIC_NONE:
5484 case TYPE_SPECIFIC_FUNC:
5485 INIT_FUNC_SPECIFIC (new_type);
5486 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5487 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5488 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5490 case TYPE_SPECIFIC_FLOATFORMAT:
5491 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5493 case TYPE_SPECIFIC_CPLUS_STUFF:
5494 INIT_CPLUS_SPECIFIC (new_type);
5496 case TYPE_SPECIFIC_GNAT_STUFF:
5497 INIT_GNAT_SPECIFIC (new_type);
5499 case TYPE_SPECIFIC_SELF_TYPE:
5500 set_type_self_type (new_type,
5501 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5504 case TYPE_SPECIFIC_FIXED_POINT:
5505 INIT_FIXED_POINT_SPECIFIC (new_type);
5506 new_type->fixed_point_info ().scaling_factor
5507 = type->fixed_point_info ().scaling_factor;
5509 case TYPE_SPECIFIC_INT:
5510 TYPE_SPECIFIC_FIELD (new_type) = TYPE_SPECIFIC_INT;
5511 TYPE_MAIN_TYPE (new_type)->type_specific.int_stuff
5512 = TYPE_MAIN_TYPE (type)->type_specific.int_stuff;
5516 gdb_assert_not_reached ("bad type_specific_kind");
5522 /* Make a copy of the given TYPE, except that the pointer & reference
5523 types are not preserved.
5525 This function assumes that the given type has an associated objfile.
5526 This objfile is used to allocate the new type. */
5529 copy_type (const struct type *type)
5531 struct type *new_type;
5533 gdb_assert (TYPE_OBJFILE_OWNED (type));
5535 new_type = alloc_type_copy (type);
5536 new_type->set_instance_flags (type->instance_flags ());
5537 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5538 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5539 sizeof (struct main_type));
5540 if (type->main_type->dyn_prop_list != NULL)
5541 new_type->main_type->dyn_prop_list
5542 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5543 type->main_type->dyn_prop_list);
5548 /* Helper functions to initialize architecture-specific types. */
5550 /* Allocate a type structure associated with GDBARCH and set its
5551 CODE, LENGTH, and NAME fields. */
5554 arch_type (struct gdbarch *gdbarch,
5555 enum type_code code, int bit, const char *name)
5559 type = alloc_type_arch (gdbarch);
5560 set_type_code (type, code);
5561 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5562 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5565 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
5570 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5571 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5572 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5575 arch_integer_type (struct gdbarch *gdbarch,
5576 int bit, int unsigned_p, const char *name)
5580 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5582 t->set_is_unsigned (true);
5587 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5588 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5589 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5592 arch_character_type (struct gdbarch *gdbarch,
5593 int bit, int unsigned_p, const char *name)
5597 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5599 t->set_is_unsigned (true);
5604 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5605 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5606 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5609 arch_boolean_type (struct gdbarch *gdbarch,
5610 int bit, int unsigned_p, const char *name)
5614 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5616 t->set_is_unsigned (true);
5621 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5622 BIT is the type size in bits; if BIT equals -1, the size is
5623 determined by the floatformat. NAME is the type name. Set the
5624 TYPE_FLOATFORMAT from FLOATFORMATS. */
5627 arch_float_type (struct gdbarch *gdbarch,
5628 int bit, const char *name,
5629 const struct floatformat **floatformats)
5631 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5634 bit = verify_floatformat (bit, fmt);
5635 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5636 TYPE_FLOATFORMAT (t) = fmt;
5641 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5642 BIT is the type size in bits. NAME is the type name. */
5645 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5649 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5653 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5654 BIT is the pointer type size in bits. NAME is the type name.
5655 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5656 TYPE_UNSIGNED flag. */
5659 arch_pointer_type (struct gdbarch *gdbarch,
5660 int bit, const char *name, struct type *target_type)
5664 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5665 TYPE_TARGET_TYPE (t) = target_type;
5666 t->set_is_unsigned (true);
5670 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5671 NAME is the type name. BIT is the size of the flag word in bits. */
5674 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5678 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5679 type->set_is_unsigned (true);
5680 type->set_num_fields (0);
5681 /* Pre-allocate enough space assuming every field is one bit. */
5683 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
5688 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5689 position BITPOS is called NAME. Pass NAME as "" for fields that
5690 should not be printed. */
5693 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5694 struct type *field_type, const char *name)
5696 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5697 int field_nr = type->num_fields ();
5699 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5700 gdb_assert (type->num_fields () + 1 <= type_bitsize);
5701 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5702 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5703 gdb_assert (name != NULL);
5705 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5706 type->field (field_nr).set_type (field_type);
5707 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
5708 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5709 type->set_num_fields (type->num_fields () + 1);
5712 /* Special version of append_flags_type_field to add a flag field.
5713 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5714 position BITPOS is called NAME. */
5717 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5719 struct gdbarch *gdbarch = get_type_arch (type);
5721 append_flags_type_field (type, bitpos, 1,
5722 builtin_type (gdbarch)->builtin_bool,
5726 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5727 specified by CODE) associated with GDBARCH. NAME is the type name. */
5730 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5731 enum type_code code)
5735 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5736 t = arch_type (gdbarch, code, 0, NULL);
5738 INIT_CPLUS_SPECIFIC (t);
5742 /* Add new field with name NAME and type FIELD to composite type T.
5743 Do not set the field's position or adjust the type's length;
5744 the caller should do so. Return the new field. */
5747 append_composite_type_field_raw (struct type *t, const char *name,
5752 t->set_num_fields (t->num_fields () + 1);
5753 t->set_fields (XRESIZEVEC (struct field, t->fields (),
5755 f = &t->field (t->num_fields () - 1);
5756 memset (f, 0, sizeof f[0]);
5757 f[0].set_type (field);
5758 FIELD_NAME (f[0]) = name;
5762 /* Add new field with name NAME and type FIELD to composite type T.
5763 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5766 append_composite_type_field_aligned (struct type *t, const char *name,
5767 struct type *field, int alignment)
5769 struct field *f = append_composite_type_field_raw (t, name, field);
5771 if (t->code () == TYPE_CODE_UNION)
5773 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5774 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5776 else if (t->code () == TYPE_CODE_STRUCT)
5778 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5779 if (t->num_fields () > 1)
5781 SET_FIELD_BITPOS (f[0],
5782 (FIELD_BITPOS (f[-1])
5783 + (TYPE_LENGTH (f[-1].type ())
5784 * TARGET_CHAR_BIT)));
5790 alignment *= TARGET_CHAR_BIT;
5791 left = FIELD_BITPOS (f[0]) % alignment;
5795 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5796 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5803 /* Add new field with name NAME and type FIELD to composite type T. */
5806 append_composite_type_field (struct type *t, const char *name,
5809 append_composite_type_field_aligned (t, name, field, 0);
5814 /* We manage the lifetimes of fixed_point_type_info objects by
5815 attaching them to the objfile. Currently, these objects are
5816 modified during construction, and GMP does not provide a way to
5817 hash the contents of an mpq_t; so it's a bit of a pain to hash-cons
5818 them. If we did do this, they could be moved to the per-BFD and
5819 shared across objfiles. */
5820 typedef std::vector<std::unique_ptr<fixed_point_type_info>>
5821 fixed_point_type_storage;
5823 /* Key used for managing the storage of fixed-point type info. */
5824 static const struct objfile_key<fixed_point_type_storage>
5825 fixed_point_objfile_key;
5827 /* See gdbtypes.h. */
5830 allocate_fixed_point_type_info (struct type *type)
5832 std::unique_ptr<fixed_point_type_info> up (new fixed_point_type_info);
5833 fixed_point_type_info *info;
5835 if (TYPE_OBJFILE_OWNED (type))
5837 fixed_point_type_storage *storage
5838 = fixed_point_objfile_key.get (TYPE_OBJFILE (type));
5839 if (storage == nullptr)
5840 storage = fixed_point_objfile_key.emplace (TYPE_OBJFILE (type));
5842 storage->push_back (std::move (up));
5846 /* We just leak the memory, because that's what we do generally
5847 for non-objfile-attached types. */
5848 info = up.release ();
5851 type->set_fixed_point_info (info);
5854 /* See gdbtypes.h. */
5857 is_fixed_point_type (struct type *type)
5859 while (check_typedef (type)->code () == TYPE_CODE_RANGE)
5860 type = TYPE_TARGET_TYPE (check_typedef (type));
5861 type = check_typedef (type);
5863 return type->code () == TYPE_CODE_FIXED_POINT;
5866 /* See gdbtypes.h. */
5869 type::fixed_point_type_base_type ()
5871 struct type *type = this;
5873 while (check_typedef (type)->code () == TYPE_CODE_RANGE)
5874 type = TYPE_TARGET_TYPE (check_typedef (type));
5875 type = check_typedef (type);
5877 gdb_assert (type->code () == TYPE_CODE_FIXED_POINT);
5881 /* See gdbtypes.h. */
5884 type::fixed_point_scaling_factor ()
5886 struct type *type = this->fixed_point_type_base_type ();
5888 return type->fixed_point_info ().scaling_factor;
5893 static struct gdbarch_data *gdbtypes_data;
5895 const struct builtin_type *
5896 builtin_type (struct gdbarch *gdbarch)
5898 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5902 gdbtypes_post_init (struct gdbarch *gdbarch)
5904 struct builtin_type *builtin_type
5905 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5908 builtin_type->builtin_void
5909 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5910 builtin_type->builtin_char
5911 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5912 !gdbarch_char_signed (gdbarch), "char");
5913 builtin_type->builtin_char->set_has_no_signedness (true);
5914 builtin_type->builtin_signed_char
5915 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5917 builtin_type->builtin_unsigned_char
5918 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5919 1, "unsigned char");
5920 builtin_type->builtin_short
5921 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5923 builtin_type->builtin_unsigned_short
5924 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5925 1, "unsigned short");
5926 builtin_type->builtin_int
5927 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5929 builtin_type->builtin_unsigned_int
5930 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5932 builtin_type->builtin_long
5933 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5935 builtin_type->builtin_unsigned_long
5936 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5937 1, "unsigned long");
5938 builtin_type->builtin_long_long
5939 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5941 builtin_type->builtin_unsigned_long_long
5942 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5943 1, "unsigned long long");
5944 builtin_type->builtin_half
5945 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5946 "half", gdbarch_half_format (gdbarch));
5947 builtin_type->builtin_float
5948 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5949 "float", gdbarch_float_format (gdbarch));
5950 builtin_type->builtin_bfloat16
5951 = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
5952 "bfloat16", gdbarch_bfloat16_format (gdbarch));
5953 builtin_type->builtin_double
5954 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5955 "double", gdbarch_double_format (gdbarch));
5956 builtin_type->builtin_long_double
5957 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5958 "long double", gdbarch_long_double_format (gdbarch));
5959 builtin_type->builtin_complex
5960 = init_complex_type ("complex", builtin_type->builtin_float);
5961 builtin_type->builtin_double_complex
5962 = init_complex_type ("double complex", builtin_type->builtin_double);
5963 builtin_type->builtin_string
5964 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5965 builtin_type->builtin_bool
5966 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5968 /* The following three are about decimal floating point types, which
5969 are 32-bits, 64-bits and 128-bits respectively. */
5970 builtin_type->builtin_decfloat
5971 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5972 builtin_type->builtin_decdouble
5973 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5974 builtin_type->builtin_declong
5975 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5977 /* "True" character types. */
5978 builtin_type->builtin_true_char
5979 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5980 builtin_type->builtin_true_unsigned_char
5981 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5983 /* Fixed-size integer types. */
5984 builtin_type->builtin_int0
5985 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5986 builtin_type->builtin_int8
5987 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5988 builtin_type->builtin_uint8
5989 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5990 builtin_type->builtin_int16
5991 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5992 builtin_type->builtin_uint16
5993 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5994 builtin_type->builtin_int24
5995 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5996 builtin_type->builtin_uint24
5997 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5998 builtin_type->builtin_int32
5999 = arch_integer_type (gdbarch, 32, 0, "int32_t");
6000 builtin_type->builtin_uint32
6001 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
6002 builtin_type->builtin_int64
6003 = arch_integer_type (gdbarch, 64, 0, "int64_t");
6004 builtin_type->builtin_uint64
6005 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
6006 builtin_type->builtin_int128
6007 = arch_integer_type (gdbarch, 128, 0, "int128_t");
6008 builtin_type->builtin_uint128
6009 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
6011 builtin_type->builtin_int8->set_instance_flags
6012 (builtin_type->builtin_int8->instance_flags ()
6013 | TYPE_INSTANCE_FLAG_NOTTEXT);
6015 builtin_type->builtin_uint8->set_instance_flags
6016 (builtin_type->builtin_uint8->instance_flags ()
6017 | TYPE_INSTANCE_FLAG_NOTTEXT);
6019 /* Wide character types. */
6020 builtin_type->builtin_char16
6021 = arch_integer_type (gdbarch, 16, 1, "char16_t");
6022 builtin_type->builtin_char32
6023 = arch_integer_type (gdbarch, 32, 1, "char32_t");
6024 builtin_type->builtin_wchar
6025 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
6026 !gdbarch_wchar_signed (gdbarch), "wchar_t");
6028 /* Default data/code pointer types. */
6029 builtin_type->builtin_data_ptr
6030 = lookup_pointer_type (builtin_type->builtin_void);
6031 builtin_type->builtin_func_ptr
6032 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
6033 builtin_type->builtin_func_func
6034 = lookup_function_type (builtin_type->builtin_func_ptr);
6036 /* This type represents a GDB internal function. */
6037 builtin_type->internal_fn
6038 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
6039 "<internal function>");
6041 /* This type represents an xmethod. */
6042 builtin_type->xmethod
6043 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
6045 return builtin_type;
6048 /* This set of objfile-based types is intended to be used by symbol
6049 readers as basic types. */
6051 static const struct objfile_key<struct objfile_type,
6052 gdb::noop_deleter<struct objfile_type>>
6055 const struct objfile_type *
6056 objfile_type (struct objfile *objfile)
6058 struct gdbarch *gdbarch;
6059 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
6062 return objfile_type;
6064 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
6065 1, struct objfile_type);
6067 /* Use the objfile architecture to determine basic type properties. */
6068 gdbarch = objfile->arch ();
6071 objfile_type->builtin_void
6072 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
6073 objfile_type->builtin_char
6074 = init_integer_type (objfile, TARGET_CHAR_BIT,
6075 !gdbarch_char_signed (gdbarch), "char");
6076 objfile_type->builtin_char->set_has_no_signedness (true);
6077 objfile_type->builtin_signed_char
6078 = init_integer_type (objfile, TARGET_CHAR_BIT,
6080 objfile_type->builtin_unsigned_char
6081 = init_integer_type (objfile, TARGET_CHAR_BIT,
6082 1, "unsigned char");
6083 objfile_type->builtin_short
6084 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
6086 objfile_type->builtin_unsigned_short
6087 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
6088 1, "unsigned short");
6089 objfile_type->builtin_int
6090 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
6092 objfile_type->builtin_unsigned_int
6093 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
6095 objfile_type->builtin_long
6096 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
6098 objfile_type->builtin_unsigned_long
6099 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
6100 1, "unsigned long");
6101 objfile_type->builtin_long_long
6102 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
6104 objfile_type->builtin_unsigned_long_long
6105 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
6106 1, "unsigned long long");
6107 objfile_type->builtin_float
6108 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
6109 "float", gdbarch_float_format (gdbarch));
6110 objfile_type->builtin_double
6111 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
6112 "double", gdbarch_double_format (gdbarch));
6113 objfile_type->builtin_long_double
6114 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
6115 "long double", gdbarch_long_double_format (gdbarch));
6117 /* This type represents a type that was unrecognized in symbol read-in. */
6118 objfile_type->builtin_error
6119 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
6121 /* The following set of types is used for symbols with no
6122 debug information. */
6123 objfile_type->nodebug_text_symbol
6124 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
6125 "<text variable, no debug info>");
6127 objfile_type->nodebug_text_gnu_ifunc_symbol
6128 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
6129 "<text gnu-indirect-function variable, no debug info>");
6130 objfile_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true);
6132 objfile_type->nodebug_got_plt_symbol
6133 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
6134 "<text from jump slot in .got.plt, no debug info>",
6135 objfile_type->nodebug_text_symbol);
6136 objfile_type->nodebug_data_symbol
6137 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
6138 objfile_type->nodebug_unknown_symbol
6139 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
6140 objfile_type->nodebug_tls_symbol
6141 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
6143 /* NOTE: on some targets, addresses and pointers are not necessarily
6147 - gdb's `struct type' always describes the target's
6149 - gdb's `struct value' objects should always hold values in
6151 - gdb's CORE_ADDR values are addresses in the unified virtual
6152 address space that the assembler and linker work with. Thus,
6153 since target_read_memory takes a CORE_ADDR as an argument, it
6154 can access any memory on the target, even if the processor has
6155 separate code and data address spaces.
6157 In this context, objfile_type->builtin_core_addr is a bit odd:
6158 it's a target type for a value the target will never see. It's
6159 only used to hold the values of (typeless) linker symbols, which
6160 are indeed in the unified virtual address space. */
6162 objfile_type->builtin_core_addr
6163 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
6166 objfile_type_data.set (objfile, objfile_type);
6167 return objfile_type;
6170 void _initialize_gdbtypes ();
6172 _initialize_gdbtypes ()
6174 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
6176 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
6177 _("Set debugging of C++ overloading."),
6178 _("Show debugging of C++ overloading."),
6179 _("When enabled, ranking of the "
6180 "functions is displayed."),
6182 show_overload_debug,
6183 &setdebuglist, &showdebuglist);
6185 /* Add user knob for controlling resolution of opaque types. */
6186 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
6187 &opaque_type_resolution,
6188 _("Set resolution of opaque struct/class/union"
6189 " types (if set before loading symbols)."),
6190 _("Show resolution of opaque struct/class/union"
6191 " types (if set before loading symbols)."),
6193 show_opaque_type_resolution,
6194 &setlist, &showlist);
6196 /* Add an option to permit non-strict type checking. */
6197 add_setshow_boolean_cmd ("type", class_support,
6198 &strict_type_checking,
6199 _("Set strict type checking."),
6200 _("Show strict type checking."),
6202 show_strict_type_checking,
6203 &setchecklist, &showchecklist);