1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
6 Contributed by Cygnus Support, using pieces from other GDB modules.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
35 #include "breakpoint.h"
37 #include "complaints.h"
39 #include "inferior.h" /* for write_pc */
40 #include "gdb-stabs.h"
41 #include "gdb_obstack.h"
42 #include "completer.h"
45 #include <sys/types.h>
47 #include "gdb_string.h"
58 /* Some HP-UX related globals to clear when a new "main"
59 symbol file is loaded. HP-specific. */
61 extern int hp_som_som_object_present;
62 extern int hp_cxx_exception_support_initialized;
63 #define RESET_HP_UX_GLOBALS() do {\
64 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
65 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
69 int (*ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*pre_add_symbol_hook) (char *);
76 void (*post_add_symbol_hook) (void);
77 void (*target_new_objfile_hook) (struct objfile *);
79 static void clear_symtab_users_cleanup (void *ignore);
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
84 /* External variables and functions referenced. */
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
88 /* Functions this file defines */
91 static int simple_read_overlay_region_table (void);
92 static void simple_free_overlay_region_table (void);
95 static void set_initial_language (void);
97 static void load_command (char *, int);
99 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
101 static void add_symbol_file_command (char *, int);
103 static void add_shared_symbol_files_command (char *, int);
105 static void cashier_psymtab (struct partial_symtab *);
107 bfd *symfile_bfd_open (char *);
109 int get_section_index (struct objfile *, char *);
111 static void find_sym_fns (struct objfile *);
113 static void decrement_reading_symtab (void *);
115 static void overlay_invalidate_all (void);
117 static int overlay_is_mapped (struct obj_section *);
119 void list_overlays_command (char *, int);
121 void map_overlay_command (char *, int);
123 void unmap_overlay_command (char *, int);
125 static void overlay_auto_command (char *, int);
127 static void overlay_manual_command (char *, int);
129 static void overlay_off_command (char *, int);
131 static void overlay_load_command (char *, int);
133 static void overlay_command (char *, int);
135 static void simple_free_overlay_table (void);
137 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
139 static int simple_read_overlay_table (void);
141 static int simple_overlay_update_1 (struct obj_section *);
143 static void add_filename_language (char *ext, enum language lang);
145 static void set_ext_lang_command (char *args, int from_tty);
147 static void info_ext_lang_command (char *args, int from_tty);
149 static void init_filename_language_table (void);
151 void _initialize_symfile (void);
153 /* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
157 static struct sym_fns *symtab_fns = NULL;
159 /* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
162 #ifdef SYMBOL_RELOADING_DEFAULT
163 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
165 int symbol_reloading = 0;
168 /* If non-zero, shared library symbols will be added automatically
169 when the inferior is created, new libraries are loaded, or when
170 attaching to the inferior. This is almost always what users will
171 want to have happen; but for very large programs, the startup time
172 will be excessive, and so if this is a problem, the user can clear
173 this flag and then add the shared library symbols as needed. Note
174 that there is a potential for confusion, since if the shared
175 library symbols are not loaded, commands like "info fun" will *not*
176 report all the functions that are actually present. */
178 int auto_solib_add = 1;
180 /* For systems that support it, a threshold size in megabytes. If
181 automatically adding a new library's symbol table to those already
182 known to the debugger would cause the total shared library symbol
183 size to exceed this threshhold, then the shlib's symbols are not
184 added. The threshold is ignored if the user explicitly asks for a
185 shlib to be added, such as when using the "sharedlibrary"
188 int auto_solib_limit;
191 /* Since this function is called from within qsort, in an ANSI environment
192 it must conform to the prototype for qsort, which specifies that the
193 comparison function takes two "void *" pointers. */
196 compare_symbols (const void *s1p, const void *s2p)
198 register struct symbol **s1, **s2;
200 s1 = (struct symbol **) s1p;
201 s2 = (struct symbol **) s2p;
202 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
209 compare_psymbols -- compare two partial symbols by name
213 Given pointers to pointers to two partial symbol table entries,
214 compare them by name and return -N, 0, or +N (ala strcmp).
215 Typically used by sorting routines like qsort().
219 Does direct compare of first two characters before punting
220 and passing to strcmp for longer compares. Note that the
221 original version had a bug whereby two null strings or two
222 identically named one character strings would return the
223 comparison of memory following the null byte.
228 compare_psymbols (const void *s1p, const void *s2p)
230 register struct partial_symbol **s1, **s2;
231 register char *st1, *st2;
233 s1 = (struct partial_symbol **) s1p;
234 s2 = (struct partial_symbol **) s2p;
235 st1 = SYMBOL_SOURCE_NAME (*s1);
236 st2 = SYMBOL_SOURCE_NAME (*s2);
239 if ((st1[0] - st2[0]) || !st1[0])
241 return (st1[0] - st2[0]);
243 else if ((st1[1] - st2[1]) || !st1[1])
245 return (st1[1] - st2[1]);
249 return (strcmp (st1, st2));
254 sort_pst_symbols (struct partial_symtab *pst)
256 /* Sort the global list; don't sort the static list */
258 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
259 pst->n_global_syms, sizeof (struct partial_symbol *),
263 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
266 sort_block_syms (register struct block *b)
268 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
269 sizeof (struct symbol *), compare_symbols);
272 /* Call sort_symtab_syms to sort alphabetically
273 the symbols of each block of one symtab. */
276 sort_symtab_syms (register struct symtab *s)
278 register struct blockvector *bv;
281 register struct block *b;
285 bv = BLOCKVECTOR (s);
286 nbl = BLOCKVECTOR_NBLOCKS (bv);
287 for (i = 0; i < nbl; i++)
289 b = BLOCKVECTOR_BLOCK (bv, i);
290 if (BLOCK_SHOULD_SORT (b))
295 /* Make a null terminated copy of the string at PTR with SIZE characters in
296 the obstack pointed to by OBSTACKP . Returns the address of the copy.
297 Note that the string at PTR does not have to be null terminated, I.E. it
298 may be part of a larger string and we are only saving a substring. */
301 obsavestring (char *ptr, int size, struct obstack *obstackp)
303 register char *p = (char *) obstack_alloc (obstackp, size + 1);
304 /* Open-coded memcpy--saves function call time. These strings are usually
305 short. FIXME: Is this really still true with a compiler that can
308 register char *p1 = ptr;
309 register char *p2 = p;
310 char *end = ptr + size;
318 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
319 in the obstack pointed to by OBSTACKP. */
322 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
325 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
326 register char *val = (char *) obstack_alloc (obstackp, len);
333 /* True if we are nested inside psymtab_to_symtab. */
335 int currently_reading_symtab = 0;
338 decrement_reading_symtab (void *dummy)
340 currently_reading_symtab--;
343 /* Get the symbol table that corresponds to a partial_symtab.
344 This is fast after the first time you do it. In fact, there
345 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
349 psymtab_to_symtab (register struct partial_symtab *pst)
351 /* If it's been looked up before, return it. */
355 /* If it has not yet been read in, read it. */
358 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
359 currently_reading_symtab++;
360 (*pst->read_symtab) (pst);
361 do_cleanups (back_to);
367 /* Initialize entry point information for this objfile. */
370 init_entry_point_info (struct objfile *objfile)
372 /* Save startup file's range of PC addresses to help blockframe.c
373 decide where the bottom of the stack is. */
375 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
377 /* Executable file -- record its entry point so we'll recognize
378 the startup file because it contains the entry point. */
379 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
383 /* Examination of non-executable.o files. Short-circuit this stuff. */
384 objfile->ei.entry_point = INVALID_ENTRY_POINT;
386 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
387 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
388 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
389 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
390 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
391 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
394 /* Get current entry point address. */
397 entry_point_address (void)
399 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
402 /* Remember the lowest-addressed loadable section we've seen.
403 This function is called via bfd_map_over_sections.
405 In case of equal vmas, the section with the largest size becomes the
406 lowest-addressed loadable section.
408 If the vmas and sizes are equal, the last section is considered the
409 lowest-addressed loadable section. */
412 find_lowest_section (bfd *abfd, asection *sect, PTR obj)
414 asection **lowest = (asection **) obj;
416 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
419 *lowest = sect; /* First loadable section */
420 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
421 *lowest = sect; /* A lower loadable section */
422 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
423 && (bfd_section_size (abfd, (*lowest))
424 <= bfd_section_size (abfd, sect)))
429 /* Build (allocate and populate) a section_addr_info struct from
430 an existing section table. */
432 extern struct section_addr_info *
433 build_section_addr_info_from_section_table (const struct section_table *start,
434 const struct section_table *end)
436 struct section_addr_info *sap;
437 const struct section_table *stp;
440 sap = xmalloc (sizeof (struct section_addr_info));
441 memset (sap, 0, sizeof (struct section_addr_info));
443 for (stp = start, oidx = 0; stp != end; stp++)
445 if (bfd_get_section_flags (stp->bfd,
446 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
447 && oidx < MAX_SECTIONS)
449 sap->other[oidx].addr = stp->addr;
450 sap->other[oidx].name
451 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
452 sap->other[oidx].sectindex = stp->the_bfd_section->index;
461 /* Free all memory allocated by build_section_addr_info_from_section_table. */
464 free_section_addr_info (struct section_addr_info *sap)
468 for (idx = 0; idx < MAX_SECTIONS; idx++)
469 if (sap->other[idx].name)
470 xfree (sap->other[idx].name);
475 /* Parse the user's idea of an offset for dynamic linking, into our idea
476 of how to represent it for fast symbol reading. This is the default
477 version of the sym_fns.sym_offsets function for symbol readers that
478 don't need to do anything special. It allocates a section_offsets table
479 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
482 default_symfile_offsets (struct objfile *objfile,
483 struct section_addr_info *addrs)
486 asection *sect = NULL;
488 objfile->num_sections = SECT_OFF_MAX;
489 objfile->section_offsets = (struct section_offsets *)
490 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
491 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
493 /* Now calculate offsets for section that were specified by the
495 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
497 struct other_sections *osp ;
499 osp = &addrs->other[i] ;
503 /* Record all sections in offsets */
504 /* The section_offsets in the objfile are here filled in using
506 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
509 /* Remember the bfd indexes for the .text, .data, .bss and
512 sect = bfd_get_section_by_name (objfile->obfd, ".text");
514 objfile->sect_index_text = sect->index;
516 sect = bfd_get_section_by_name (objfile->obfd, ".data");
518 objfile->sect_index_data = sect->index;
520 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
522 objfile->sect_index_bss = sect->index;
524 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
526 objfile->sect_index_rodata = sect->index;
528 /* This is where things get really weird... We MUST have valid
529 indices for the various sect_index_* members or gdb will abort.
530 So if for example, there is no ".text" section, we have to
531 accomodate that. Except when explicitly adding symbol files at
532 some address, section_offsets contains nothing but zeros, so it
533 doesn't matter which slot in section_offsets the individual
534 sect_index_* members index into. So if they are all zero, it is
535 safe to just point all the currently uninitialized indices to the
538 for (i = 0; i < objfile->num_sections; i++)
540 if (ANOFFSET (objfile->section_offsets, i) != 0)
545 if (i == objfile->num_sections)
547 if (objfile->sect_index_text == -1)
548 objfile->sect_index_text = 0;
549 if (objfile->sect_index_data == -1)
550 objfile->sect_index_data = 0;
551 if (objfile->sect_index_bss == -1)
552 objfile->sect_index_bss = 0;
553 if (objfile->sect_index_rodata == -1)
554 objfile->sect_index_rodata = 0;
558 /* Process a symbol file, as either the main file or as a dynamically
561 OBJFILE is where the symbols are to be read from.
563 ADDR is the address where the text segment was loaded, unless the
564 objfile is the main symbol file, in which case it is zero.
566 MAINLINE is nonzero if this is the main symbol file, or zero if
567 it's an extra symbol file such as dynamically loaded code.
569 VERBO is nonzero if the caller has printed a verbose message about
570 the symbol reading (and complaints can be more terse about it). */
573 syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
574 int mainline, int verbo)
576 asection *lower_sect;
578 CORE_ADDR lower_offset;
579 struct section_addr_info local_addr;
580 struct cleanup *old_chain;
583 /* If ADDRS is NULL, initialize the local section_addr_info struct and
584 point ADDRS to it. We now establish the convention that an addr of
585 zero means no load address was specified. */
589 memset (&local_addr, 0, sizeof (local_addr));
593 init_entry_point_info (objfile);
594 find_sym_fns (objfile);
596 if (objfile->sf == NULL)
597 return; /* No symbols. */
599 /* Make sure that partially constructed symbol tables will be cleaned up
600 if an error occurs during symbol reading. */
601 old_chain = make_cleanup_free_objfile (objfile);
605 /* We will modify the main symbol table, make sure that all its users
606 will be cleaned up if an error occurs during symbol reading. */
607 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
609 /* Since no error yet, throw away the old symbol table. */
611 if (symfile_objfile != NULL)
613 free_objfile (symfile_objfile);
614 symfile_objfile = NULL;
617 /* Currently we keep symbols from the add-symbol-file command.
618 If the user wants to get rid of them, they should do "symbol-file"
619 without arguments first. Not sure this is the best behavior
622 (*objfile->sf->sym_new_init) (objfile);
625 /* Convert addr into an offset rather than an absolute address.
626 We find the lowest address of a loaded segment in the objfile,
627 and assume that <addr> is where that got loaded.
629 We no longer warn if the lowest section is not a text segment (as
630 happens for the PA64 port. */
633 /* Find lowest loadable section to be used as starting point for
634 continguous sections. FIXME!! won't work without call to find
635 .text first, but this assumes text is lowest section. */
636 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
637 if (lower_sect == NULL)
638 bfd_map_over_sections (objfile->obfd, find_lowest_section,
640 if (lower_sect == NULL)
641 warning ("no loadable sections found in added symbol-file %s",
644 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
645 warning ("Lowest section in %s is %s at %s",
647 bfd_section_name (objfile->obfd, lower_sect),
648 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
649 if (lower_sect != NULL)
650 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
654 /* Calculate offsets for the loadable sections.
655 FIXME! Sections must be in order of increasing loadable section
656 so that contiguous sections can use the lower-offset!!!
658 Adjust offsets if the segments are not contiguous.
659 If the section is contiguous, its offset should be set to
660 the offset of the highest loadable section lower than it
661 (the loadable section directly below it in memory).
662 this_offset = lower_offset = lower_addr - lower_orig_addr */
664 /* Calculate offsets for sections. */
665 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
667 if (addrs->other[i].addr != 0)
669 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
672 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
673 lower_offset = addrs->other[i].addr;
674 /* This is the index used by BFD. */
675 addrs->other[i].sectindex = sect->index ;
679 warning ("section %s not found in %s", addrs->other[i].name,
681 addrs->other[i].addr = 0;
685 addrs->other[i].addr = lower_offset;
689 /* Initialize symbol reading routines for this objfile, allow complaints to
690 appear for this new file, and record how verbose to be, then do the
691 initial symbol reading for this file. */
693 (*objfile->sf->sym_init) (objfile);
694 clear_complaints (&symfile_complaints, 1, verbo);
696 (*objfile->sf->sym_offsets) (objfile, addrs);
698 #ifndef IBM6000_TARGET
699 /* This is a SVR4/SunOS specific hack, I think. In any event, it
700 screws RS/6000. sym_offsets should be doing this sort of thing,
701 because it knows the mapping between bfd sections and
703 /* This is a hack. As far as I can tell, section offsets are not
704 target dependent. They are all set to addr with a couple of
705 exceptions. The exceptions are sysvr4 shared libraries, whose
706 offsets are kept in solib structures anyway and rs6000 xcoff
707 which handles shared libraries in a completely unique way.
709 Section offsets are built similarly, except that they are built
710 by adding addr in all cases because there is no clear mapping
711 from section_offsets into actual sections. Note that solib.c
712 has a different algorithm for finding section offsets.
714 These should probably all be collapsed into some target
715 independent form of shared library support. FIXME. */
719 struct obj_section *s;
721 /* Map section offsets in "addr" back to the object's
722 sections by comparing the section names with bfd's
723 section names. Then adjust the section address by
724 the offset. */ /* for gdb/13815 */
726 ALL_OBJFILE_OSECTIONS (objfile, s)
728 CORE_ADDR s_addr = 0;
732 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
734 if (strcmp (bfd_section_name (s->objfile->obfd,
736 addrs->other[i].name) == 0)
737 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
739 s->addr -= s->offset;
741 s->endaddr -= s->offset;
742 s->endaddr += s_addr;
746 #endif /* not IBM6000_TARGET */
748 (*objfile->sf->sym_read) (objfile, mainline);
750 if (!have_partial_symbols () && !have_full_symbols ())
753 printf_filtered ("(no debugging symbols found)...");
757 /* Don't allow char * to have a typename (else would get caddr_t).
758 Ditto void *. FIXME: Check whether this is now done by all the
759 symbol readers themselves (many of them now do), and if so remove
762 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
763 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
765 /* Mark the objfile has having had initial symbol read attempted. Note
766 that this does not mean we found any symbols... */
768 objfile->flags |= OBJF_SYMS;
770 /* Discard cleanups as symbol reading was successful. */
772 discard_cleanups (old_chain);
774 /* Call this after reading in a new symbol table to give target
775 dependent code a crack at the new symbols. For instance, this
776 could be used to update the values of target-specific symbols GDB
777 needs to keep track of (such as _sigtramp, or whatever). */
779 TARGET_SYMFILE_POSTREAD (objfile);
782 /* Perform required actions after either reading in the initial
783 symbols for a new objfile, or mapping in the symbols from a reusable
787 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
790 /* If this is the main symbol file we have to clean up all users of the
791 old main symbol file. Otherwise it is sufficient to fixup all the
792 breakpoints that may have been redefined by this symbol file. */
795 /* OK, make it the "real" symbol file. */
796 symfile_objfile = objfile;
798 clear_symtab_users ();
802 breakpoint_re_set ();
805 /* We're done reading the symbol file; finish off complaints. */
806 clear_complaints (&symfile_complaints, 0, verbo);
809 /* Process a symbol file, as either the main file or as a dynamically
812 NAME is the file name (which will be tilde-expanded and made
813 absolute herein) (but we don't free or modify NAME itself).
814 FROM_TTY says how verbose to be. MAINLINE specifies whether this
815 is the main symbol file, or whether it's an extra symbol file such
816 as dynamically loaded code. If !mainline, ADDR is the address
817 where the text segment was loaded.
819 Upon success, returns a pointer to the objfile that was added.
820 Upon failure, jumps back to command level (never returns). */
823 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
824 int mainline, int flags)
826 struct objfile *objfile;
827 struct partial_symtab *psymtab;
830 /* Open a bfd for the file, and give user a chance to burp if we'd be
831 interactively wiping out any existing symbols. */
833 abfd = symfile_bfd_open (name);
835 if ((have_full_symbols () || have_partial_symbols ())
838 && !query ("Load new symbol table from \"%s\"? ", name))
839 error ("Not confirmed.");
841 objfile = allocate_objfile (abfd, flags);
843 /* If the objfile uses a mapped symbol file, and we have a psymtab for
844 it, then skip reading any symbols at this time. */
846 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
848 /* We mapped in an existing symbol table file that already has had
849 initial symbol reading performed, so we can skip that part. Notify
850 the user that instead of reading the symbols, they have been mapped.
852 if (from_tty || info_verbose)
854 printf_filtered ("Mapped symbols for %s...", name);
856 gdb_flush (gdb_stdout);
858 init_entry_point_info (objfile);
859 find_sym_fns (objfile);
863 /* We either created a new mapped symbol table, mapped an existing
864 symbol table file which has not had initial symbol reading
865 performed, or need to read an unmapped symbol table. */
866 if (from_tty || info_verbose)
868 if (pre_add_symbol_hook)
869 pre_add_symbol_hook (name);
872 printf_filtered ("Reading symbols from %s...", name);
874 gdb_flush (gdb_stdout);
877 syms_from_objfile (objfile, addrs, mainline, from_tty);
880 /* We now have at least a partial symbol table. Check to see if the
881 user requested that all symbols be read on initial access via either
882 the gdb startup command line or on a per symbol file basis. Expand
883 all partial symbol tables for this objfile if so. */
885 if ((flags & OBJF_READNOW) || readnow_symbol_files)
887 if (from_tty || info_verbose)
889 printf_filtered ("expanding to full symbols...");
891 gdb_flush (gdb_stdout);
894 for (psymtab = objfile->psymtabs;
896 psymtab = psymtab->next)
898 psymtab_to_symtab (psymtab);
902 if (from_tty || info_verbose)
904 if (post_add_symbol_hook)
905 post_add_symbol_hook ();
908 printf_filtered ("done.\n");
909 gdb_flush (gdb_stdout);
913 if (objfile->sf == NULL)
914 return objfile; /* No symbols. */
916 new_symfile_objfile (objfile, mainline, from_tty);
918 if (target_new_objfile_hook)
919 target_new_objfile_hook (objfile);
924 /* Call symbol_file_add() with default values and update whatever is
925 affected by the loading of a new main().
926 Used when the file is supplied in the gdb command line
927 and by some targets with special loading requirements.
928 The auxiliary function, symbol_file_add_main_1(), has the flags
929 argument for the switches that can only be specified in the symbol_file
933 symbol_file_add_main (char *args, int from_tty)
935 symbol_file_add_main_1 (args, from_tty, 0);
939 symbol_file_add_main_1 (char *args, int from_tty, int flags)
941 symbol_file_add (args, from_tty, NULL, 1, flags);
944 RESET_HP_UX_GLOBALS ();
947 /* Getting new symbols may change our opinion about
948 what is frameless. */
949 reinit_frame_cache ();
951 set_initial_language ();
955 symbol_file_clear (int from_tty)
957 if ((have_full_symbols () || have_partial_symbols ())
959 && !query ("Discard symbol table from `%s'? ",
960 symfile_objfile->name))
961 error ("Not confirmed.");
962 free_all_objfiles ();
964 /* solib descriptors may have handles to objfiles. Since their
965 storage has just been released, we'd better wipe the solib
968 #if defined(SOLIB_RESTART)
972 symfile_objfile = NULL;
974 printf_unfiltered ("No symbol file now.\n");
976 RESET_HP_UX_GLOBALS ();
980 /* This is the symbol-file command. Read the file, analyze its
981 symbols, and add a struct symtab to a symtab list. The syntax of
982 the command is rather bizarre--(1) buildargv implements various
983 quoting conventions which are undocumented and have little or
984 nothing in common with the way things are quoted (or not quoted)
985 elsewhere in GDB, (2) options are used, which are not generally
986 used in GDB (perhaps "set mapped on", "set readnow on" would be
987 better), (3) the order of options matters, which is contrary to GNU
988 conventions (because it is confusing and inconvenient). */
989 /* Note: ezannoni 2000-04-17. This function used to have support for
990 rombug (see remote-os9k.c). It consisted of a call to target_link()
991 (target.c) to get the address of the text segment from the target,
992 and pass that to symbol_file_add(). This is no longer supported. */
995 symbol_file_command (char *args, int from_tty)
999 struct cleanup *cleanups;
1000 int flags = OBJF_USERLOADED;
1006 symbol_file_clear (from_tty);
1010 if ((argv = buildargv (args)) == NULL)
1014 cleanups = make_cleanup_freeargv (argv);
1015 while (*argv != NULL)
1017 if (STREQ (*argv, "-mapped"))
1018 flags |= OBJF_MAPPED;
1020 if (STREQ (*argv, "-readnow"))
1021 flags |= OBJF_READNOW;
1024 error ("unknown option `%s'", *argv);
1029 symbol_file_add_main_1 (name, from_tty, flags);
1036 error ("no symbol file name was specified");
1038 do_cleanups (cleanups);
1042 /* Set the initial language.
1044 A better solution would be to record the language in the psymtab when reading
1045 partial symbols, and then use it (if known) to set the language. This would
1046 be a win for formats that encode the language in an easily discoverable place,
1047 such as DWARF. For stabs, we can jump through hoops looking for specially
1048 named symbols or try to intuit the language from the specific type of stabs
1049 we find, but we can't do that until later when we read in full symbols.
1053 set_initial_language (void)
1055 struct partial_symtab *pst;
1056 enum language lang = language_unknown;
1058 pst = find_main_psymtab ();
1061 if (pst->filename != NULL)
1063 lang = deduce_language_from_filename (pst->filename);
1065 if (lang == language_unknown)
1067 /* Make C the default language */
1070 set_language (lang);
1071 expected_language = current_language; /* Don't warn the user */
1075 /* Open file specified by NAME and hand it off to BFD for preliminary
1076 analysis. Result is a newly initialized bfd *, which includes a newly
1077 malloc'd` copy of NAME (tilde-expanded and made absolute).
1078 In case of trouble, error() is called. */
1081 symfile_bfd_open (char *name)
1085 char *absolute_name;
1089 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1091 /* Look down path for it, allocate 2nd new malloc'd copy. */
1092 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1093 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1096 char *exename = alloca (strlen (name) + 5);
1097 strcat (strcpy (exename, name), ".exe");
1098 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1104 make_cleanup (xfree, name);
1105 perror_with_name (name);
1107 xfree (name); /* Free 1st new malloc'd copy */
1108 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1109 /* It'll be freed in free_objfile(). */
1111 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1115 make_cleanup (xfree, name);
1116 error ("\"%s\": can't open to read symbols: %s.", name,
1117 bfd_errmsg (bfd_get_error ()));
1119 sym_bfd->cacheable = 1;
1121 if (!bfd_check_format (sym_bfd, bfd_object))
1123 /* FIXME: should be checking for errors from bfd_close (for one thing,
1124 on error it does not free all the storage associated with the
1126 bfd_close (sym_bfd); /* This also closes desc */
1127 make_cleanup (xfree, name);
1128 error ("\"%s\": can't read symbols: %s.", name,
1129 bfd_errmsg (bfd_get_error ()));
1134 /* Return the section index for the given section name. Return -1 if
1135 the section was not found. */
1137 get_section_index (struct objfile *objfile, char *section_name)
1139 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1146 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1147 startup by the _initialize routine in each object file format reader,
1148 to register information about each format the the reader is prepared
1152 add_symtab_fns (struct sym_fns *sf)
1154 sf->next = symtab_fns;
1159 /* Initialize to read symbols from the symbol file sym_bfd. It either
1160 returns or calls error(). The result is an initialized struct sym_fns
1161 in the objfile structure, that contains cached information about the
1165 find_sym_fns (struct objfile *objfile)
1168 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1169 char *our_target = bfd_get_target (objfile->obfd);
1171 if (our_flavour == bfd_target_srec_flavour
1172 || our_flavour == bfd_target_ihex_flavour
1173 || our_flavour == bfd_target_tekhex_flavour)
1174 return; /* No symbols. */
1176 /* Special kludge for apollo. See dstread.c. */
1177 if (STREQN (our_target, "apollo", 6))
1178 our_flavour = (enum bfd_flavour) -2;
1180 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1182 if (our_flavour == sf->sym_flavour)
1188 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1189 bfd_get_target (objfile->obfd));
1192 /* This function runs the load command of our current target. */
1195 load_command (char *arg, int from_tty)
1198 arg = get_exec_file (1);
1199 target_load (arg, from_tty);
1201 /* After re-loading the executable, we don't really know which
1202 overlays are mapped any more. */
1203 overlay_cache_invalid = 1;
1206 /* This version of "load" should be usable for any target. Currently
1207 it is just used for remote targets, not inftarg.c or core files,
1208 on the theory that only in that case is it useful.
1210 Avoiding xmodem and the like seems like a win (a) because we don't have
1211 to worry about finding it, and (b) On VMS, fork() is very slow and so
1212 we don't want to run a subprocess. On the other hand, I'm not sure how
1213 performance compares. */
1215 static int download_write_size = 512;
1216 static int validate_download = 0;
1218 /* Callback service function for generic_load (bfd_map_over_sections). */
1221 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1223 bfd_size_type *sum = data;
1225 *sum += bfd_get_section_size_before_reloc (asec);
1228 /* Opaque data for load_section_callback. */
1229 struct load_section_data {
1230 unsigned long load_offset;
1231 unsigned long write_count;
1232 unsigned long data_count;
1233 bfd_size_type total_size;
1236 /* Callback service function for generic_load (bfd_map_over_sections). */
1239 load_section_callback (bfd *abfd, asection *asec, void *data)
1241 struct load_section_data *args = data;
1243 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1245 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1249 struct cleanup *old_chain;
1250 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1251 bfd_size_type block_size;
1253 const char *sect_name = bfd_get_section_name (abfd, asec);
1256 if (download_write_size > 0 && size > download_write_size)
1257 block_size = download_write_size;
1261 buffer = xmalloc (size);
1262 old_chain = make_cleanup (xfree, buffer);
1264 /* Is this really necessary? I guess it gives the user something
1265 to look at during a long download. */
1266 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1267 sect_name, paddr_nz (size), paddr_nz (lma));
1269 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1275 bfd_size_type this_transfer = size - sent;
1277 if (this_transfer >= block_size)
1278 this_transfer = block_size;
1279 len = target_write_memory_partial (lma, buffer,
1280 this_transfer, &err);
1283 if (validate_download)
1285 /* Broken memories and broken monitors manifest
1286 themselves here when bring new computers to
1287 life. This doubles already slow downloads. */
1288 /* NOTE: cagney/1999-10-18: A more efficient
1289 implementation might add a verify_memory()
1290 method to the target vector and then use
1291 that. remote.c could implement that method
1292 using the ``qCRC'' packet. */
1293 char *check = xmalloc (len);
1294 struct cleanup *verify_cleanups =
1295 make_cleanup (xfree, check);
1297 if (target_read_memory (lma, check, len) != 0)
1298 error ("Download verify read failed at 0x%s",
1300 if (memcmp (buffer, check, len) != 0)
1301 error ("Download verify compare failed at 0x%s",
1303 do_cleanups (verify_cleanups);
1305 args->data_count += len;
1308 args->write_count += 1;
1311 || (ui_load_progress_hook != NULL
1312 && ui_load_progress_hook (sect_name, sent)))
1313 error ("Canceled the download");
1315 if (show_load_progress != NULL)
1316 show_load_progress (sect_name, sent, size,
1317 args->data_count, args->total_size);
1319 while (sent < size);
1322 error ("Memory access error while loading section %s.", sect_name);
1324 do_cleanups (old_chain);
1330 generic_load (char *args, int from_tty)
1334 time_t start_time, end_time; /* Start and end times of download */
1336 struct cleanup *old_cleanups;
1338 struct load_section_data cbdata;
1341 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1342 cbdata.write_count = 0; /* Number of writes needed. */
1343 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1344 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1346 /* Parse the input argument - the user can specify a load offset as
1347 a second argument. */
1348 filename = xmalloc (strlen (args) + 1);
1349 old_cleanups = make_cleanup (xfree, filename);
1350 strcpy (filename, args);
1351 offptr = strchr (filename, ' ');
1356 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1357 if (offptr == endptr)
1358 error ("Invalid download offset:%s\n", offptr);
1362 cbdata.load_offset = 0;
1364 /* Open the file for loading. */
1365 loadfile_bfd = bfd_openr (filename, gnutarget);
1366 if (loadfile_bfd == NULL)
1368 perror_with_name (filename);
1372 /* FIXME: should be checking for errors from bfd_close (for one thing,
1373 on error it does not free all the storage associated with the
1375 make_cleanup_bfd_close (loadfile_bfd);
1377 if (!bfd_check_format (loadfile_bfd, bfd_object))
1379 error ("\"%s\" is not an object file: %s", filename,
1380 bfd_errmsg (bfd_get_error ()));
1383 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1384 (void *) &cbdata.total_size);
1386 start_time = time (NULL);
1388 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1390 end_time = time (NULL);
1392 entry = bfd_get_start_address (loadfile_bfd);
1393 ui_out_text (uiout, "Start address ");
1394 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1395 ui_out_text (uiout, ", load size ");
1396 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1397 ui_out_text (uiout, "\n");
1398 /* We were doing this in remote-mips.c, I suspect it is right
1399 for other targets too. */
1402 /* FIXME: are we supposed to call symbol_file_add or not? According to
1403 a comment from remote-mips.c (where a call to symbol_file_add was
1404 commented out), making the call confuses GDB if more than one file is
1405 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1408 print_transfer_performance (gdb_stdout, cbdata.data_count,
1409 cbdata.write_count, end_time - start_time);
1411 do_cleanups (old_cleanups);
1414 /* Report how fast the transfer went. */
1416 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1417 replaced by print_transfer_performance (with a very different
1418 function signature). */
1421 report_transfer_performance (unsigned long data_count, time_t start_time,
1424 print_transfer_performance (gdb_stdout, data_count,
1425 end_time - start_time, 0);
1429 print_transfer_performance (struct ui_file *stream,
1430 unsigned long data_count,
1431 unsigned long write_count,
1432 unsigned long time_count)
1434 ui_out_text (uiout, "Transfer rate: ");
1437 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1438 (data_count * 8) / time_count);
1439 ui_out_text (uiout, " bits/sec");
1443 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1444 ui_out_text (uiout, " bits in <1 sec");
1446 if (write_count > 0)
1448 ui_out_text (uiout, ", ");
1449 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1450 ui_out_text (uiout, " bytes/write");
1452 ui_out_text (uiout, ".\n");
1455 /* This function allows the addition of incrementally linked object files.
1456 It does not modify any state in the target, only in the debugger. */
1457 /* Note: ezannoni 2000-04-13 This function/command used to have a
1458 special case syntax for the rombug target (Rombug is the boot
1459 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1460 rombug case, the user doesn't need to supply a text address,
1461 instead a call to target_link() (in target.c) would supply the
1462 value to use. We are now discontinuing this type of ad hoc syntax. */
1466 add_symbol_file_command (char *args, int from_tty)
1468 char *filename = NULL;
1469 int flags = OBJF_USERLOADED;
1471 int expecting_option = 0;
1472 int section_index = 0;
1476 int expecting_sec_name = 0;
1477 int expecting_sec_addr = 0;
1483 } sect_opts[SECT_OFF_MAX];
1485 struct section_addr_info section_addrs;
1486 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1491 error ("add-symbol-file takes a file name and an address");
1493 /* Make a copy of the string that we can safely write into. */
1494 args = xstrdup (args);
1496 /* Ensure section_addrs is initialized */
1497 memset (§ion_addrs, 0, sizeof (section_addrs));
1499 while (*args != '\000')
1501 /* Any leading spaces? */
1502 while (isspace (*args))
1505 /* Point arg to the beginning of the argument. */
1508 /* Move args pointer over the argument. */
1509 while ((*args != '\000') && !isspace (*args))
1512 /* If there are more arguments, terminate arg and
1514 if (*args != '\000')
1517 /* Now process the argument. */
1520 /* The first argument is the file name. */
1521 filename = tilde_expand (arg);
1522 make_cleanup (xfree, filename);
1527 /* The second argument is always the text address at which
1528 to load the program. */
1529 sect_opts[section_index].name = ".text";
1530 sect_opts[section_index].value = arg;
1535 /* It's an option (starting with '-') or it's an argument
1540 if (strcmp (arg, "-mapped") == 0)
1541 flags |= OBJF_MAPPED;
1543 if (strcmp (arg, "-readnow") == 0)
1544 flags |= OBJF_READNOW;
1546 if (strcmp (arg, "-s") == 0)
1548 if (section_index >= SECT_OFF_MAX)
1549 error ("Too many sections specified.");
1550 expecting_sec_name = 1;
1551 expecting_sec_addr = 1;
1556 if (expecting_sec_name)
1558 sect_opts[section_index].name = arg;
1559 expecting_sec_name = 0;
1562 if (expecting_sec_addr)
1564 sect_opts[section_index].value = arg;
1565 expecting_sec_addr = 0;
1569 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1575 /* Print the prompt for the query below. And save the arguments into
1576 a sect_addr_info structure to be passed around to other
1577 functions. We have to split this up into separate print
1578 statements because local_hex_string returns a local static
1581 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1582 for (i = 0; i < section_index; i++)
1585 char *val = sect_opts[i].value;
1586 char *sec = sect_opts[i].name;
1588 val = sect_opts[i].value;
1589 if (val[0] == '0' && val[1] == 'x')
1590 addr = strtoul (val+2, NULL, 16);
1592 addr = strtoul (val, NULL, 10);
1594 /* Here we store the section offsets in the order they were
1595 entered on the command line. */
1596 section_addrs.other[sec_num].name = sec;
1597 section_addrs.other[sec_num].addr = addr;
1598 printf_filtered ("\t%s_addr = %s\n",
1600 local_hex_string ((unsigned long)addr));
1603 /* The object's sections are initialized when a
1604 call is made to build_objfile_section_table (objfile).
1605 This happens in reread_symbols.
1606 At this point, we don't know what file type this is,
1607 so we can't determine what section names are valid. */
1610 if (from_tty && (!query ("%s", "")))
1611 error ("Not confirmed.");
1613 symbol_file_add (filename, from_tty, §ion_addrs, 0, flags);
1615 /* Getting new symbols may change our opinion about what is
1617 reinit_frame_cache ();
1618 do_cleanups (my_cleanups);
1622 add_shared_symbol_files_command (char *args, int from_tty)
1624 #ifdef ADD_SHARED_SYMBOL_FILES
1625 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1627 error ("This command is not available in this configuration of GDB.");
1631 /* Re-read symbols if a symbol-file has changed. */
1633 reread_symbols (void)
1635 struct objfile *objfile;
1638 struct stat new_statbuf;
1641 /* With the addition of shared libraries, this should be modified,
1642 the load time should be saved in the partial symbol tables, since
1643 different tables may come from different source files. FIXME.
1644 This routine should then walk down each partial symbol table
1645 and see if the symbol table that it originates from has been changed */
1647 for (objfile = object_files; objfile; objfile = objfile->next)
1651 #ifdef IBM6000_TARGET
1652 /* If this object is from a shared library, then you should
1653 stat on the library name, not member name. */
1655 if (objfile->obfd->my_archive)
1656 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1659 res = stat (objfile->name, &new_statbuf);
1662 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1663 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1667 new_modtime = new_statbuf.st_mtime;
1668 if (new_modtime != objfile->mtime)
1670 struct cleanup *old_cleanups;
1671 struct section_offsets *offsets;
1673 char *obfd_filename;
1675 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1678 /* There are various functions like symbol_file_add,
1679 symfile_bfd_open, syms_from_objfile, etc., which might
1680 appear to do what we want. But they have various other
1681 effects which we *don't* want. So we just do stuff
1682 ourselves. We don't worry about mapped files (for one thing,
1683 any mapped file will be out of date). */
1685 /* If we get an error, blow away this objfile (not sure if
1686 that is the correct response for things like shared
1688 old_cleanups = make_cleanup_free_objfile (objfile);
1689 /* We need to do this whenever any symbols go away. */
1690 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1692 /* Clean up any state BFD has sitting around. We don't need
1693 to close the descriptor but BFD lacks a way of closing the
1694 BFD without closing the descriptor. */
1695 obfd_filename = bfd_get_filename (objfile->obfd);
1696 if (!bfd_close (objfile->obfd))
1697 error ("Can't close BFD for %s: %s", objfile->name,
1698 bfd_errmsg (bfd_get_error ()));
1699 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1700 if (objfile->obfd == NULL)
1701 error ("Can't open %s to read symbols.", objfile->name);
1702 /* bfd_openr sets cacheable to true, which is what we want. */
1703 if (!bfd_check_format (objfile->obfd, bfd_object))
1704 error ("Can't read symbols from %s: %s.", objfile->name,
1705 bfd_errmsg (bfd_get_error ()));
1707 /* Save the offsets, we will nuke them with the rest of the
1709 num_offsets = objfile->num_sections;
1710 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1711 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1713 /* Nuke all the state that we will re-read. Much of the following
1714 code which sets things to NULL really is necessary to tell
1715 other parts of GDB that there is nothing currently there. */
1717 /* FIXME: Do we have to free a whole linked list, or is this
1719 if (objfile->global_psymbols.list)
1720 xmfree (objfile->md, objfile->global_psymbols.list);
1721 memset (&objfile->global_psymbols, 0,
1722 sizeof (objfile->global_psymbols));
1723 if (objfile->static_psymbols.list)
1724 xmfree (objfile->md, objfile->static_psymbols.list);
1725 memset (&objfile->static_psymbols, 0,
1726 sizeof (objfile->static_psymbols));
1728 /* Free the obstacks for non-reusable objfiles */
1729 bcache_xfree (objfile->psymbol_cache);
1730 objfile->psymbol_cache = bcache_xmalloc ();
1731 bcache_xfree (objfile->macro_cache);
1732 objfile->macro_cache = bcache_xmalloc ();
1733 obstack_free (&objfile->psymbol_obstack, 0);
1734 obstack_free (&objfile->symbol_obstack, 0);
1735 obstack_free (&objfile->type_obstack, 0);
1736 objfile->sections = NULL;
1737 objfile->symtabs = NULL;
1738 objfile->psymtabs = NULL;
1739 objfile->free_psymtabs = NULL;
1740 objfile->msymbols = NULL;
1741 objfile->minimal_symbol_count = 0;
1742 memset (&objfile->msymbol_hash, 0,
1743 sizeof (objfile->msymbol_hash));
1744 memset (&objfile->msymbol_demangled_hash, 0,
1745 sizeof (objfile->msymbol_demangled_hash));
1746 objfile->fundamental_types = NULL;
1747 if (objfile->sf != NULL)
1749 (*objfile->sf->sym_finish) (objfile);
1752 /* We never make this a mapped file. */
1754 /* obstack_specify_allocation also initializes the obstack so
1756 objfile->psymbol_cache = bcache_xmalloc ();
1757 objfile->macro_cache = bcache_xmalloc ();
1758 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1760 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1762 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1764 if (build_objfile_section_table (objfile))
1766 error ("Can't find the file sections in `%s': %s",
1767 objfile->name, bfd_errmsg (bfd_get_error ()));
1770 /* We use the same section offsets as from last time. I'm not
1771 sure whether that is always correct for shared libraries. */
1772 objfile->section_offsets = (struct section_offsets *)
1773 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1774 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1775 objfile->num_sections = num_offsets;
1777 /* What the hell is sym_new_init for, anyway? The concept of
1778 distinguishing between the main file and additional files
1779 in this way seems rather dubious. */
1780 if (objfile == symfile_objfile)
1782 (*objfile->sf->sym_new_init) (objfile);
1784 RESET_HP_UX_GLOBALS ();
1788 (*objfile->sf->sym_init) (objfile);
1789 clear_complaints (&symfile_complaints, 1, 1);
1790 /* The "mainline" parameter is a hideous hack; I think leaving it
1791 zero is OK since dbxread.c also does what it needs to do if
1792 objfile->global_psymbols.size is 0. */
1793 (*objfile->sf->sym_read) (objfile, 0);
1794 if (!have_partial_symbols () && !have_full_symbols ())
1797 printf_filtered ("(no debugging symbols found)\n");
1800 objfile->flags |= OBJF_SYMS;
1802 /* We're done reading the symbol file; finish off complaints. */
1803 clear_complaints (&symfile_complaints, 0, 1);
1805 /* Getting new symbols may change our opinion about what is
1808 reinit_frame_cache ();
1810 /* Discard cleanups as symbol reading was successful. */
1811 discard_cleanups (old_cleanups);
1813 /* If the mtime has changed between the time we set new_modtime
1814 and now, we *want* this to be out of date, so don't call stat
1816 objfile->mtime = new_modtime;
1819 /* Call this after reading in a new symbol table to give target
1820 dependent code a crack at the new symbols. For instance, this
1821 could be used to update the values of target-specific symbols GDB
1822 needs to keep track of (such as _sigtramp, or whatever). */
1824 TARGET_SYMFILE_POSTREAD (objfile);
1830 clear_symtab_users ();
1842 static filename_language *filename_language_table;
1843 static int fl_table_size, fl_table_next;
1846 add_filename_language (char *ext, enum language lang)
1848 if (fl_table_next >= fl_table_size)
1850 fl_table_size += 10;
1851 filename_language_table =
1852 xrealloc (filename_language_table,
1853 fl_table_size * sizeof (*filename_language_table));
1856 filename_language_table[fl_table_next].ext = xstrdup (ext);
1857 filename_language_table[fl_table_next].lang = lang;
1861 static char *ext_args;
1864 set_ext_lang_command (char *args, int from_tty)
1867 char *cp = ext_args;
1870 /* First arg is filename extension, starting with '.' */
1872 error ("'%s': Filename extension must begin with '.'", ext_args);
1874 /* Find end of first arg. */
1875 while (*cp && !isspace (*cp))
1879 error ("'%s': two arguments required -- filename extension and language",
1882 /* Null-terminate first arg */
1885 /* Find beginning of second arg, which should be a source language. */
1886 while (*cp && isspace (*cp))
1890 error ("'%s': two arguments required -- filename extension and language",
1893 /* Lookup the language from among those we know. */
1894 lang = language_enum (cp);
1896 /* Now lookup the filename extension: do we already know it? */
1897 for (i = 0; i < fl_table_next; i++)
1898 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1901 if (i >= fl_table_next)
1903 /* new file extension */
1904 add_filename_language (ext_args, lang);
1908 /* redefining a previously known filename extension */
1911 /* query ("Really make files of type %s '%s'?", */
1912 /* ext_args, language_str (lang)); */
1914 xfree (filename_language_table[i].ext);
1915 filename_language_table[i].ext = xstrdup (ext_args);
1916 filename_language_table[i].lang = lang;
1921 info_ext_lang_command (char *args, int from_tty)
1925 printf_filtered ("Filename extensions and the languages they represent:");
1926 printf_filtered ("\n\n");
1927 for (i = 0; i < fl_table_next; i++)
1928 printf_filtered ("\t%s\t- %s\n",
1929 filename_language_table[i].ext,
1930 language_str (filename_language_table[i].lang));
1934 init_filename_language_table (void)
1936 if (fl_table_size == 0) /* protect against repetition */
1940 filename_language_table =
1941 xmalloc (fl_table_size * sizeof (*filename_language_table));
1942 add_filename_language (".c", language_c);
1943 add_filename_language (".C", language_cplus);
1944 add_filename_language (".cc", language_cplus);
1945 add_filename_language (".cp", language_cplus);
1946 add_filename_language (".cpp", language_cplus);
1947 add_filename_language (".cxx", language_cplus);
1948 add_filename_language (".c++", language_cplus);
1949 add_filename_language (".java", language_java);
1950 add_filename_language (".class", language_java);
1951 /* OBSOLETE add_filename_language (".ch", language_chill); */
1952 /* OBSOLETE add_filename_language (".c186", language_chill); */
1953 /* OBSOLETE add_filename_language (".c286", language_chill); */
1954 add_filename_language (".m", language_objc);
1955 add_filename_language (".f", language_fortran);
1956 add_filename_language (".F", language_fortran);
1957 add_filename_language (".s", language_asm);
1958 add_filename_language (".S", language_asm);
1959 add_filename_language (".pas", language_pascal);
1960 add_filename_language (".p", language_pascal);
1961 add_filename_language (".pp", language_pascal);
1966 deduce_language_from_filename (char *filename)
1971 if (filename != NULL)
1972 if ((cp = strrchr (filename, '.')) != NULL)
1973 for (i = 0; i < fl_table_next; i++)
1974 if (strcmp (cp, filename_language_table[i].ext) == 0)
1975 return filename_language_table[i].lang;
1977 return language_unknown;
1982 Allocate and partly initialize a new symbol table. Return a pointer
1983 to it. error() if no space.
1985 Caller must set these fields:
1991 possibly free_named_symtabs (symtab->filename);
1995 allocate_symtab (char *filename, struct objfile *objfile)
1997 register struct symtab *symtab;
1999 symtab = (struct symtab *)
2000 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2001 memset (symtab, 0, sizeof (*symtab));
2002 symtab->filename = obsavestring (filename, strlen (filename),
2003 &objfile->symbol_obstack);
2004 symtab->fullname = NULL;
2005 symtab->language = deduce_language_from_filename (filename);
2006 symtab->debugformat = obsavestring ("unknown", 7,
2007 &objfile->symbol_obstack);
2009 /* Hook it to the objfile it comes from */
2011 symtab->objfile = objfile;
2012 symtab->next = objfile->symtabs;
2013 objfile->symtabs = symtab;
2015 /* FIXME: This should go away. It is only defined for the Z8000,
2016 and the Z8000 definition of this macro doesn't have anything to
2017 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2018 here for convenience. */
2019 #ifdef INIT_EXTRA_SYMTAB_INFO
2020 INIT_EXTRA_SYMTAB_INFO (symtab);
2026 struct partial_symtab *
2027 allocate_psymtab (char *filename, struct objfile *objfile)
2029 struct partial_symtab *psymtab;
2031 if (objfile->free_psymtabs)
2033 psymtab = objfile->free_psymtabs;
2034 objfile->free_psymtabs = psymtab->next;
2037 psymtab = (struct partial_symtab *)
2038 obstack_alloc (&objfile->psymbol_obstack,
2039 sizeof (struct partial_symtab));
2041 memset (psymtab, 0, sizeof (struct partial_symtab));
2042 psymtab->filename = obsavestring (filename, strlen (filename),
2043 &objfile->psymbol_obstack);
2044 psymtab->symtab = NULL;
2046 /* Prepend it to the psymtab list for the objfile it belongs to.
2047 Psymtabs are searched in most recent inserted -> least recent
2050 psymtab->objfile = objfile;
2051 psymtab->next = objfile->psymtabs;
2052 objfile->psymtabs = psymtab;
2055 struct partial_symtab **prev_pst;
2056 psymtab->objfile = objfile;
2057 psymtab->next = NULL;
2058 prev_pst = &(objfile->psymtabs);
2059 while ((*prev_pst) != NULL)
2060 prev_pst = &((*prev_pst)->next);
2061 (*prev_pst) = psymtab;
2069 discard_psymtab (struct partial_symtab *pst)
2071 struct partial_symtab **prev_pst;
2074 Empty psymtabs happen as a result of header files which don't
2075 have any symbols in them. There can be a lot of them. But this
2076 check is wrong, in that a psymtab with N_SLINE entries but
2077 nothing else is not empty, but we don't realize that. Fixing
2078 that without slowing things down might be tricky. */
2080 /* First, snip it out of the psymtab chain */
2082 prev_pst = &(pst->objfile->psymtabs);
2083 while ((*prev_pst) != pst)
2084 prev_pst = &((*prev_pst)->next);
2085 (*prev_pst) = pst->next;
2087 /* Next, put it on a free list for recycling */
2089 pst->next = pst->objfile->free_psymtabs;
2090 pst->objfile->free_psymtabs = pst;
2094 /* Reset all data structures in gdb which may contain references to symbol
2098 clear_symtab_users (void)
2100 /* Someday, we should do better than this, by only blowing away
2101 the things that really need to be blown. */
2102 clear_value_history ();
2104 clear_internalvars ();
2105 breakpoint_re_set ();
2106 set_default_breakpoint (0, 0, 0, 0);
2107 current_source_symtab = 0;
2108 current_source_line = 0;
2109 clear_pc_function_cache ();
2110 if (target_new_objfile_hook)
2111 target_new_objfile_hook (NULL);
2115 clear_symtab_users_cleanup (void *ignore)
2117 clear_symtab_users ();
2120 /* clear_symtab_users_once:
2122 This function is run after symbol reading, or from a cleanup.
2123 If an old symbol table was obsoleted, the old symbol table
2124 has been blown away, but the other GDB data structures that may
2125 reference it have not yet been cleared or re-directed. (The old
2126 symtab was zapped, and the cleanup queued, in free_named_symtab()
2129 This function can be queued N times as a cleanup, or called
2130 directly; it will do all the work the first time, and then will be a
2131 no-op until the next time it is queued. This works by bumping a
2132 counter at queueing time. Much later when the cleanup is run, or at
2133 the end of symbol processing (in case the cleanup is discarded), if
2134 the queued count is greater than the "done-count", we do the work
2135 and set the done-count to the queued count. If the queued count is
2136 less than or equal to the done-count, we just ignore the call. This
2137 is needed because reading a single .o file will often replace many
2138 symtabs (one per .h file, for example), and we don't want to reset
2139 the breakpoints N times in the user's face.
2141 The reason we both queue a cleanup, and call it directly after symbol
2142 reading, is because the cleanup protects us in case of errors, but is
2143 discarded if symbol reading is successful. */
2146 /* FIXME: As free_named_symtabs is currently a big noop this function
2147 is no longer needed. */
2148 static void clear_symtab_users_once (void);
2150 static int clear_symtab_users_queued;
2151 static int clear_symtab_users_done;
2154 clear_symtab_users_once (void)
2156 /* Enforce once-per-`do_cleanups'-semantics */
2157 if (clear_symtab_users_queued <= clear_symtab_users_done)
2159 clear_symtab_users_done = clear_symtab_users_queued;
2161 clear_symtab_users ();
2165 /* Delete the specified psymtab, and any others that reference it. */
2168 cashier_psymtab (struct partial_symtab *pst)
2170 struct partial_symtab *ps, *pprev = NULL;
2173 /* Find its previous psymtab in the chain */
2174 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2183 /* Unhook it from the chain. */
2184 if (ps == pst->objfile->psymtabs)
2185 pst->objfile->psymtabs = ps->next;
2187 pprev->next = ps->next;
2189 /* FIXME, we can't conveniently deallocate the entries in the
2190 partial_symbol lists (global_psymbols/static_psymbols) that
2191 this psymtab points to. These just take up space until all
2192 the psymtabs are reclaimed. Ditto the dependencies list and
2193 filename, which are all in the psymbol_obstack. */
2195 /* We need to cashier any psymtab that has this one as a dependency... */
2197 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2199 for (i = 0; i < ps->number_of_dependencies; i++)
2201 if (ps->dependencies[i] == pst)
2203 cashier_psymtab (ps);
2204 goto again; /* Must restart, chain has been munged. */
2211 /* If a symtab or psymtab for filename NAME is found, free it along
2212 with any dependent breakpoints, displays, etc.
2213 Used when loading new versions of object modules with the "add-file"
2214 command. This is only called on the top-level symtab or psymtab's name;
2215 it is not called for subsidiary files such as .h files.
2217 Return value is 1 if we blew away the environment, 0 if not.
2218 FIXME. The return value appears to never be used.
2220 FIXME. I think this is not the best way to do this. We should
2221 work on being gentler to the environment while still cleaning up
2222 all stray pointers into the freed symtab. */
2225 free_named_symtabs (char *name)
2228 /* FIXME: With the new method of each objfile having it's own
2229 psymtab list, this function needs serious rethinking. In particular,
2230 why was it ever necessary to toss psymtabs with specific compilation
2231 unit filenames, as opposed to all psymtabs from a particular symbol
2233 Well, the answer is that some systems permit reloading of particular
2234 compilation units. We want to blow away any old info about these
2235 compilation units, regardless of which objfiles they arrived in. --gnu. */
2237 register struct symtab *s;
2238 register struct symtab *prev;
2239 register struct partial_symtab *ps;
2240 struct blockvector *bv;
2243 /* We only wack things if the symbol-reload switch is set. */
2244 if (!symbol_reloading)
2247 /* Some symbol formats have trouble providing file names... */
2248 if (name == 0 || *name == '\0')
2251 /* Look for a psymtab with the specified name. */
2254 for (ps = partial_symtab_list; ps; ps = ps->next)
2256 if (STREQ (name, ps->filename))
2258 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2259 goto again2; /* Must restart, chain has been munged */
2263 /* Look for a symtab with the specified name. */
2265 for (s = symtab_list; s; s = s->next)
2267 if (STREQ (name, s->filename))
2274 if (s == symtab_list)
2275 symtab_list = s->next;
2277 prev->next = s->next;
2279 /* For now, queue a delete for all breakpoints, displays, etc., whether
2280 or not they depend on the symtab being freed. This should be
2281 changed so that only those data structures affected are deleted. */
2283 /* But don't delete anything if the symtab is empty.
2284 This test is necessary due to a bug in "dbxread.c" that
2285 causes empty symtabs to be created for N_SO symbols that
2286 contain the pathname of the object file. (This problem
2287 has been fixed in GDB 3.9x). */
2289 bv = BLOCKVECTOR (s);
2290 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2291 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2292 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2294 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2296 clear_symtab_users_queued++;
2297 make_cleanup (clear_symtab_users_once, 0);
2302 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2310 /* It is still possible that some breakpoints will be affected
2311 even though no symtab was found, since the file might have
2312 been compiled without debugging, and hence not be associated
2313 with a symtab. In order to handle this correctly, we would need
2314 to keep a list of text address ranges for undebuggable files.
2315 For now, we do nothing, since this is a fairly obscure case. */
2319 /* FIXME, what about the minimal symbol table? */
2326 /* Allocate and partially fill a partial symtab. It will be
2327 completely filled at the end of the symbol list.
2329 FILENAME is the name of the symbol-file we are reading from. */
2331 struct partial_symtab *
2332 start_psymtab_common (struct objfile *objfile,
2333 struct section_offsets *section_offsets, char *filename,
2334 CORE_ADDR textlow, struct partial_symbol **global_syms,
2335 struct partial_symbol **static_syms)
2337 struct partial_symtab *psymtab;
2339 psymtab = allocate_psymtab (filename, objfile);
2340 psymtab->section_offsets = section_offsets;
2341 psymtab->textlow = textlow;
2342 psymtab->texthigh = psymtab->textlow; /* default */
2343 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2344 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2348 /* Add a symbol with a long value to a psymtab.
2349 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2352 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2353 enum address_class class,
2354 struct psymbol_allocation_list *list, long val, /* Value as a long */
2355 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2356 enum language language, struct objfile *objfile)
2358 register struct partial_symbol *psym;
2359 char *buf = alloca (namelength + 1);
2360 /* psymbol is static so that there will be no uninitialized gaps in the
2361 structure which might contain random data, causing cache misses in
2363 static struct partial_symbol psymbol;
2365 /* Create local copy of the partial symbol */
2366 memcpy (buf, name, namelength);
2367 buf[namelength] = '\0';
2368 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2369 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2372 SYMBOL_VALUE (&psymbol) = val;
2376 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2378 SYMBOL_SECTION (&psymbol) = 0;
2379 SYMBOL_LANGUAGE (&psymbol) = language;
2380 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2381 PSYMBOL_CLASS (&psymbol) = class;
2382 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2384 /* Stash the partial symbol away in the cache */
2385 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2387 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2388 if (list->next >= list->list + list->size)
2390 extend_psymbol_list (list, objfile);
2392 *list->next++ = psym;
2393 OBJSTAT (objfile, n_psyms++);
2396 /* Add a symbol with a long value to a psymtab. This differs from
2397 * add_psymbol_to_list above in taking both a mangled and a demangled
2401 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2402 int dem_namelength, namespace_enum namespace,
2403 enum address_class class,
2404 struct psymbol_allocation_list *list, long val, /* Value as a long */
2405 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2406 enum language language,
2407 struct objfile *objfile)
2409 register struct partial_symbol *psym;
2410 char *buf = alloca (namelength + 1);
2411 /* psymbol is static so that there will be no uninitialized gaps in the
2412 structure which might contain random data, causing cache misses in
2414 static struct partial_symbol psymbol;
2416 /* Create local copy of the partial symbol */
2418 memcpy (buf, name, namelength);
2419 buf[namelength] = '\0';
2420 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2422 buf = alloca (dem_namelength + 1);
2423 memcpy (buf, dem_name, dem_namelength);
2424 buf[dem_namelength] = '\0';
2429 case language_cplus:
2430 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2431 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2433 /* OBSOLETE case language_chill: */
2434 /* OBSOLETE SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) = */
2435 /* OBSOLETE bcache (buf, dem_namelength + 1, objfile->psymbol_cache); */
2437 /* FIXME What should be done for the default case? Ignoring for now. */
2440 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2443 SYMBOL_VALUE (&psymbol) = val;
2447 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2449 SYMBOL_SECTION (&psymbol) = 0;
2450 SYMBOL_LANGUAGE (&psymbol) = language;
2451 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2452 PSYMBOL_CLASS (&psymbol) = class;
2453 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2455 /* Stash the partial symbol away in the cache */
2456 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2458 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2459 if (list->next >= list->list + list->size)
2461 extend_psymbol_list (list, objfile);
2463 *list->next++ = psym;
2464 OBJSTAT (objfile, n_psyms++);
2467 /* Initialize storage for partial symbols. */
2470 init_psymbol_list (struct objfile *objfile, int total_symbols)
2472 /* Free any previously allocated psymbol lists. */
2474 if (objfile->global_psymbols.list)
2476 xmfree (objfile->md, (PTR) objfile->global_psymbols.list);
2478 if (objfile->static_psymbols.list)
2480 xmfree (objfile->md, (PTR) objfile->static_psymbols.list);
2483 /* Current best guess is that approximately a twentieth
2484 of the total symbols (in a debugging file) are global or static
2487 objfile->global_psymbols.size = total_symbols / 10;
2488 objfile->static_psymbols.size = total_symbols / 10;
2490 if (objfile->global_psymbols.size > 0)
2492 objfile->global_psymbols.next =
2493 objfile->global_psymbols.list = (struct partial_symbol **)
2494 xmmalloc (objfile->md, (objfile->global_psymbols.size
2495 * sizeof (struct partial_symbol *)));
2497 if (objfile->static_psymbols.size > 0)
2499 objfile->static_psymbols.next =
2500 objfile->static_psymbols.list = (struct partial_symbol **)
2501 xmmalloc (objfile->md, (objfile->static_psymbols.size
2502 * sizeof (struct partial_symbol *)));
2507 The following code implements an abstraction for debugging overlay sections.
2509 The target model is as follows:
2510 1) The gnu linker will permit multiple sections to be mapped into the
2511 same VMA, each with its own unique LMA (or load address).
2512 2) It is assumed that some runtime mechanism exists for mapping the
2513 sections, one by one, from the load address into the VMA address.
2514 3) This code provides a mechanism for gdb to keep track of which
2515 sections should be considered to be mapped from the VMA to the LMA.
2516 This information is used for symbol lookup, and memory read/write.
2517 For instance, if a section has been mapped then its contents
2518 should be read from the VMA, otherwise from the LMA.
2520 Two levels of debugger support for overlays are available. One is
2521 "manual", in which the debugger relies on the user to tell it which
2522 overlays are currently mapped. This level of support is
2523 implemented entirely in the core debugger, and the information about
2524 whether a section is mapped is kept in the objfile->obj_section table.
2526 The second level of support is "automatic", and is only available if
2527 the target-specific code provides functionality to read the target's
2528 overlay mapping table, and translate its contents for the debugger
2529 (by updating the mapped state information in the obj_section tables).
2531 The interface is as follows:
2533 overlay map <name> -- tell gdb to consider this section mapped
2534 overlay unmap <name> -- tell gdb to consider this section unmapped
2535 overlay list -- list the sections that GDB thinks are mapped
2536 overlay read-target -- get the target's state of what's mapped
2537 overlay off/manual/auto -- set overlay debugging state
2538 Functional interface:
2539 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2540 section, return that section.
2541 find_pc_overlay(pc): find any overlay section that contains
2542 the pc, either in its VMA or its LMA
2543 overlay_is_mapped(sect): true if overlay is marked as mapped
2544 section_is_overlay(sect): true if section's VMA != LMA
2545 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2546 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2547 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2548 overlay_mapped_address(...): map an address from section's LMA to VMA
2549 overlay_unmapped_address(...): map an address from section's VMA to LMA
2550 symbol_overlayed_address(...): Return a "current" address for symbol:
2551 either in VMA or LMA depending on whether
2552 the symbol's section is currently mapped
2555 /* Overlay debugging state: */
2557 enum overlay_debugging_state overlay_debugging = ovly_off;
2558 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2560 /* Target vector for refreshing overlay mapped state */
2561 static void simple_overlay_update (struct obj_section *);
2562 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2564 /* Function: section_is_overlay (SECTION)
2565 Returns true if SECTION has VMA not equal to LMA, ie.
2566 SECTION is loaded at an address different from where it will "run". */
2569 section_is_overlay (asection *section)
2571 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2573 if (overlay_debugging)
2574 if (section && section->lma != 0 &&
2575 section->vma != section->lma)
2581 /* Function: overlay_invalidate_all (void)
2582 Invalidate the mapped state of all overlay sections (mark it as stale). */
2585 overlay_invalidate_all (void)
2587 struct objfile *objfile;
2588 struct obj_section *sect;
2590 ALL_OBJSECTIONS (objfile, sect)
2591 if (section_is_overlay (sect->the_bfd_section))
2592 sect->ovly_mapped = -1;
2595 /* Function: overlay_is_mapped (SECTION)
2596 Returns true if section is an overlay, and is currently mapped.
2597 Private: public access is thru function section_is_mapped.
2599 Access to the ovly_mapped flag is restricted to this function, so
2600 that we can do automatic update. If the global flag
2601 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2602 overlay_invalidate_all. If the mapped state of the particular
2603 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2606 overlay_is_mapped (struct obj_section *osect)
2608 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2611 switch (overlay_debugging)
2615 return 0; /* overlay debugging off */
2616 case ovly_auto: /* overlay debugging automatic */
2617 /* Unles there is a target_overlay_update function,
2618 there's really nothing useful to do here (can't really go auto) */
2619 if (target_overlay_update)
2621 if (overlay_cache_invalid)
2623 overlay_invalidate_all ();
2624 overlay_cache_invalid = 0;
2626 if (osect->ovly_mapped == -1)
2627 (*target_overlay_update) (osect);
2629 /* fall thru to manual case */
2630 case ovly_on: /* overlay debugging manual */
2631 return osect->ovly_mapped == 1;
2635 /* Function: section_is_mapped
2636 Returns true if section is an overlay, and is currently mapped. */
2639 section_is_mapped (asection *section)
2641 struct objfile *objfile;
2642 struct obj_section *osect;
2644 if (overlay_debugging)
2645 if (section && section_is_overlay (section))
2646 ALL_OBJSECTIONS (objfile, osect)
2647 if (osect->the_bfd_section == section)
2648 return overlay_is_mapped (osect);
2653 /* Function: pc_in_unmapped_range
2654 If PC falls into the lma range of SECTION, return true, else false. */
2657 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2659 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2663 if (overlay_debugging)
2664 if (section && section_is_overlay (section))
2666 size = bfd_get_section_size_before_reloc (section);
2667 if (section->lma <= pc && pc < section->lma + size)
2673 /* Function: pc_in_mapped_range
2674 If PC falls into the vma range of SECTION, return true, else false. */
2677 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2679 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2683 if (overlay_debugging)
2684 if (section && section_is_overlay (section))
2686 size = bfd_get_section_size_before_reloc (section);
2687 if (section->vma <= pc && pc < section->vma + size)
2694 /* Return true if the mapped ranges of sections A and B overlap, false
2697 sections_overlap (asection *a, asection *b)
2699 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2701 CORE_ADDR a_start = a->vma;
2702 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2703 CORE_ADDR b_start = b->vma;
2704 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2706 return (a_start < b_end && b_start < a_end);
2709 /* Function: overlay_unmapped_address (PC, SECTION)
2710 Returns the address corresponding to PC in the unmapped (load) range.
2711 May be the same as PC. */
2714 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2716 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2718 if (overlay_debugging)
2719 if (section && section_is_overlay (section) &&
2720 pc_in_mapped_range (pc, section))
2721 return pc + section->lma - section->vma;
2726 /* Function: overlay_mapped_address (PC, SECTION)
2727 Returns the address corresponding to PC in the mapped (runtime) range.
2728 May be the same as PC. */
2731 overlay_mapped_address (CORE_ADDR pc, asection *section)
2733 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2735 if (overlay_debugging)
2736 if (section && section_is_overlay (section) &&
2737 pc_in_unmapped_range (pc, section))
2738 return pc + section->vma - section->lma;
2744 /* Function: symbol_overlayed_address
2745 Return one of two addresses (relative to the VMA or to the LMA),
2746 depending on whether the section is mapped or not. */
2749 symbol_overlayed_address (CORE_ADDR address, asection *section)
2751 if (overlay_debugging)
2753 /* If the symbol has no section, just return its regular address. */
2756 /* If the symbol's section is not an overlay, just return its address */
2757 if (!section_is_overlay (section))
2759 /* If the symbol's section is mapped, just return its address */
2760 if (section_is_mapped (section))
2763 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2764 * then return its LOADED address rather than its vma address!!
2766 return overlay_unmapped_address (address, section);
2771 /* Function: find_pc_overlay (PC)
2772 Return the best-match overlay section for PC:
2773 If PC matches a mapped overlay section's VMA, return that section.
2774 Else if PC matches an unmapped section's VMA, return that section.
2775 Else if PC matches an unmapped section's LMA, return that section. */
2778 find_pc_overlay (CORE_ADDR pc)
2780 struct objfile *objfile;
2781 struct obj_section *osect, *best_match = NULL;
2783 if (overlay_debugging)
2784 ALL_OBJSECTIONS (objfile, osect)
2785 if (section_is_overlay (osect->the_bfd_section))
2787 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2789 if (overlay_is_mapped (osect))
2790 return osect->the_bfd_section;
2794 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2797 return best_match ? best_match->the_bfd_section : NULL;
2800 /* Function: find_pc_mapped_section (PC)
2801 If PC falls into the VMA address range of an overlay section that is
2802 currently marked as MAPPED, return that section. Else return NULL. */
2805 find_pc_mapped_section (CORE_ADDR pc)
2807 struct objfile *objfile;
2808 struct obj_section *osect;
2810 if (overlay_debugging)
2811 ALL_OBJSECTIONS (objfile, osect)
2812 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2813 overlay_is_mapped (osect))
2814 return osect->the_bfd_section;
2819 /* Function: list_overlays_command
2820 Print a list of mapped sections and their PC ranges */
2823 list_overlays_command (char *args, int from_tty)
2826 struct objfile *objfile;
2827 struct obj_section *osect;
2829 if (overlay_debugging)
2830 ALL_OBJSECTIONS (objfile, osect)
2831 if (overlay_is_mapped (osect))
2837 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2838 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2839 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2840 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2842 printf_filtered ("Section %s, loaded at ", name);
2843 print_address_numeric (lma, 1, gdb_stdout);
2844 puts_filtered (" - ");
2845 print_address_numeric (lma + size, 1, gdb_stdout);
2846 printf_filtered (", mapped at ");
2847 print_address_numeric (vma, 1, gdb_stdout);
2848 puts_filtered (" - ");
2849 print_address_numeric (vma + size, 1, gdb_stdout);
2850 puts_filtered ("\n");
2855 printf_filtered ("No sections are mapped.\n");
2858 /* Function: map_overlay_command
2859 Mark the named section as mapped (ie. residing at its VMA address). */
2862 map_overlay_command (char *args, int from_tty)
2864 struct objfile *objfile, *objfile2;
2865 struct obj_section *sec, *sec2;
2868 if (!overlay_debugging)
2870 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2871 the 'overlay manual' command.");
2873 if (args == 0 || *args == 0)
2874 error ("Argument required: name of an overlay section");
2876 /* First, find a section matching the user supplied argument */
2877 ALL_OBJSECTIONS (objfile, sec)
2878 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2880 /* Now, check to see if the section is an overlay. */
2881 bfdsec = sec->the_bfd_section;
2882 if (!section_is_overlay (bfdsec))
2883 continue; /* not an overlay section */
2885 /* Mark the overlay as "mapped" */
2886 sec->ovly_mapped = 1;
2888 /* Next, make a pass and unmap any sections that are
2889 overlapped by this new section: */
2890 ALL_OBJSECTIONS (objfile2, sec2)
2891 if (sec2->ovly_mapped
2893 && sec->the_bfd_section != sec2->the_bfd_section
2894 && sections_overlap (sec->the_bfd_section,
2895 sec2->the_bfd_section))
2898 printf_filtered ("Note: section %s unmapped by overlap\n",
2899 bfd_section_name (objfile->obfd,
2900 sec2->the_bfd_section));
2901 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2905 error ("No overlay section called %s", args);
2908 /* Function: unmap_overlay_command
2909 Mark the overlay section as unmapped
2910 (ie. resident in its LMA address range, rather than the VMA range). */
2913 unmap_overlay_command (char *args, int from_tty)
2915 struct objfile *objfile;
2916 struct obj_section *sec;
2918 if (!overlay_debugging)
2920 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2921 the 'overlay manual' command.");
2923 if (args == 0 || *args == 0)
2924 error ("Argument required: name of an overlay section");
2926 /* First, find a section matching the user supplied argument */
2927 ALL_OBJSECTIONS (objfile, sec)
2928 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2930 if (!sec->ovly_mapped)
2931 error ("Section %s is not mapped", args);
2932 sec->ovly_mapped = 0;
2935 error ("No overlay section called %s", args);
2938 /* Function: overlay_auto_command
2939 A utility command to turn on overlay debugging.
2940 Possibly this should be done via a set/show command. */
2943 overlay_auto_command (char *args, int from_tty)
2945 overlay_debugging = ovly_auto;
2946 enable_overlay_breakpoints ();
2948 printf_filtered ("Automatic overlay debugging enabled.");
2951 /* Function: overlay_manual_command
2952 A utility command to turn on overlay debugging.
2953 Possibly this should be done via a set/show command. */
2956 overlay_manual_command (char *args, int from_tty)
2958 overlay_debugging = ovly_on;
2959 disable_overlay_breakpoints ();
2961 printf_filtered ("Overlay debugging enabled.");
2964 /* Function: overlay_off_command
2965 A utility command to turn on overlay debugging.
2966 Possibly this should be done via a set/show command. */
2969 overlay_off_command (char *args, int from_tty)
2971 overlay_debugging = ovly_off;
2972 disable_overlay_breakpoints ();
2974 printf_filtered ("Overlay debugging disabled.");
2978 overlay_load_command (char *args, int from_tty)
2980 if (target_overlay_update)
2981 (*target_overlay_update) (NULL);
2983 error ("This target does not know how to read its overlay state.");
2986 /* Function: overlay_command
2987 A place-holder for a mis-typed command */
2989 /* Command list chain containing all defined "overlay" subcommands. */
2990 struct cmd_list_element *overlaylist;
2993 overlay_command (char *args, int from_tty)
2996 ("\"overlay\" must be followed by the name of an overlay command.\n");
2997 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3001 /* Target Overlays for the "Simplest" overlay manager:
3003 This is GDB's default target overlay layer. It works with the
3004 minimal overlay manager supplied as an example by Cygnus. The
3005 entry point is via a function pointer "target_overlay_update",
3006 so targets that use a different runtime overlay manager can
3007 substitute their own overlay_update function and take over the
3010 The overlay_update function pokes around in the target's data structures
3011 to see what overlays are mapped, and updates GDB's overlay mapping with
3014 In this simple implementation, the target data structures are as follows:
3015 unsigned _novlys; /# number of overlay sections #/
3016 unsigned _ovly_table[_novlys][4] = {
3017 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3018 {..., ..., ..., ...},
3020 unsigned _novly_regions; /# number of overlay regions #/
3021 unsigned _ovly_region_table[_novly_regions][3] = {
3022 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3025 These functions will attempt to update GDB's mappedness state in the
3026 symbol section table, based on the target's mappedness state.
3028 To do this, we keep a cached copy of the target's _ovly_table, and
3029 attempt to detect when the cached copy is invalidated. The main
3030 entry point is "simple_overlay_update(SECT), which looks up SECT in
3031 the cached table and re-reads only the entry for that section from
3032 the target (whenever possible).
3035 /* Cached, dynamically allocated copies of the target data structures: */
3036 static unsigned (*cache_ovly_table)[4] = 0;
3038 static unsigned (*cache_ovly_region_table)[3] = 0;
3040 static unsigned cache_novlys = 0;
3042 static unsigned cache_novly_regions = 0;
3044 static CORE_ADDR cache_ovly_table_base = 0;
3046 static CORE_ADDR cache_ovly_region_table_base = 0;
3050 VMA, SIZE, LMA, MAPPED
3052 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3054 /* Throw away the cached copy of _ovly_table */
3056 simple_free_overlay_table (void)
3058 if (cache_ovly_table)
3059 xfree (cache_ovly_table);
3061 cache_ovly_table = NULL;
3062 cache_ovly_table_base = 0;
3066 /* Throw away the cached copy of _ovly_region_table */
3068 simple_free_overlay_region_table (void)
3070 if (cache_ovly_region_table)
3071 xfree (cache_ovly_region_table);
3072 cache_novly_regions = 0;
3073 cache_ovly_region_table = NULL;
3074 cache_ovly_region_table_base = 0;
3078 /* Read an array of ints from the target into a local buffer.
3079 Convert to host order. int LEN is number of ints */
3081 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3083 /* FIXME (alloca): Not safe if array is very large. */
3084 char *buf = alloca (len * TARGET_LONG_BYTES);
3087 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3088 for (i = 0; i < len; i++)
3089 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3093 /* Find and grab a copy of the target _ovly_table
3094 (and _novlys, which is needed for the table's size) */
3096 simple_read_overlay_table (void)
3098 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3100 simple_free_overlay_table ();
3101 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3104 error ("Error reading inferior's overlay table: "
3105 "couldn't find `_novlys' variable\n"
3106 "in inferior. Use `overlay manual' mode.");
3110 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3111 if (! ovly_table_msym)
3113 error ("Error reading inferior's overlay table: couldn't find "
3114 "`_ovly_table' array\n"
3115 "in inferior. Use `overlay manual' mode.");
3119 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3121 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3122 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3123 read_target_long_array (cache_ovly_table_base,
3124 (int *) cache_ovly_table,
3127 return 1; /* SUCCESS */
3131 /* Find and grab a copy of the target _ovly_region_table
3132 (and _novly_regions, which is needed for the table's size) */
3134 simple_read_overlay_region_table (void)
3136 struct minimal_symbol *msym;
3138 simple_free_overlay_region_table ();
3139 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3141 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3143 return 0; /* failure */
3144 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3145 if (cache_ovly_region_table != NULL)
3147 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3150 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3151 read_target_long_array (cache_ovly_region_table_base,
3152 (int *) cache_ovly_region_table,
3153 cache_novly_regions * 3);
3156 return 0; /* failure */
3159 return 0; /* failure */
3160 return 1; /* SUCCESS */
3164 /* Function: simple_overlay_update_1
3165 A helper function for simple_overlay_update. Assuming a cached copy
3166 of _ovly_table exists, look through it to find an entry whose vma,
3167 lma and size match those of OSECT. Re-read the entry and make sure
3168 it still matches OSECT (else the table may no longer be valid).
3169 Set OSECT's mapped state to match the entry. Return: 1 for
3170 success, 0 for failure. */
3173 simple_overlay_update_1 (struct obj_section *osect)
3176 bfd *obfd = osect->objfile->obfd;
3177 asection *bsect = osect->the_bfd_section;
3179 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3180 for (i = 0; i < cache_novlys; i++)
3181 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3182 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3183 /* && cache_ovly_table[i][SIZE] == size */ )
3185 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3186 (int *) cache_ovly_table[i], 4);
3187 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3188 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3189 /* && cache_ovly_table[i][SIZE] == size */ )
3191 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3194 else /* Warning! Warning! Target's ovly table has changed! */
3200 /* Function: simple_overlay_update
3201 If OSECT is NULL, then update all sections' mapped state
3202 (after re-reading the entire target _ovly_table).
3203 If OSECT is non-NULL, then try to find a matching entry in the
3204 cached ovly_table and update only OSECT's mapped state.
3205 If a cached entry can't be found or the cache isn't valid, then
3206 re-read the entire cache, and go ahead and update all sections. */
3209 simple_overlay_update (struct obj_section *osect)
3211 struct objfile *objfile;
3213 /* Were we given an osect to look up? NULL means do all of them. */
3215 /* Have we got a cached copy of the target's overlay table? */
3216 if (cache_ovly_table != NULL)
3217 /* Does its cached location match what's currently in the symtab? */
3218 if (cache_ovly_table_base ==
3219 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3220 /* Then go ahead and try to look up this single section in the cache */
3221 if (simple_overlay_update_1 (osect))
3222 /* Found it! We're done. */
3225 /* Cached table no good: need to read the entire table anew.
3226 Or else we want all the sections, in which case it's actually
3227 more efficient to read the whole table in one block anyway. */
3229 if (! simple_read_overlay_table ())
3232 /* Now may as well update all sections, even if only one was requested. */
3233 ALL_OBJSECTIONS (objfile, osect)
3234 if (section_is_overlay (osect->the_bfd_section))
3237 bfd *obfd = osect->objfile->obfd;
3238 asection *bsect = osect->the_bfd_section;
3240 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3241 for (i = 0; i < cache_novlys; i++)
3242 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3243 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3244 /* && cache_ovly_table[i][SIZE] == size */ )
3245 { /* obj_section matches i'th entry in ovly_table */
3246 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3247 break; /* finished with inner for loop: break out */
3254 _initialize_symfile (void)
3256 struct cmd_list_element *c;
3258 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3259 "Load symbol table from executable file FILE.\n\
3260 The `file' command can also load symbol tables, as well as setting the file\n\
3261 to execute.", &cmdlist);
3262 set_cmd_completer (c, filename_completer);
3264 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3265 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3266 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3267 ADDR is the starting address of the file's text.\n\
3268 The optional arguments are section-name section-address pairs and\n\
3269 should be specified if the data and bss segments are not contiguous\n\
3270 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3272 set_cmd_completer (c, filename_completer);
3274 c = add_cmd ("add-shared-symbol-files", class_files,
3275 add_shared_symbol_files_command,
3276 "Load the symbols from shared objects in the dynamic linker's link map.",
3278 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3281 c = add_cmd ("load", class_files, load_command,
3282 "Dynamically load FILE into the running program, and record its symbols\n\
3283 for access from GDB.", &cmdlist);
3284 set_cmd_completer (c, filename_completer);
3287 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3288 (char *) &symbol_reloading,
3289 "Set dynamic symbol table reloading multiple times in one run.",
3293 add_prefix_cmd ("overlay", class_support, overlay_command,
3294 "Commands for debugging overlays.", &overlaylist,
3295 "overlay ", 0, &cmdlist);
3297 add_com_alias ("ovly", "overlay", class_alias, 1);
3298 add_com_alias ("ov", "overlay", class_alias, 1);
3300 add_cmd ("map-overlay", class_support, map_overlay_command,
3301 "Assert that an overlay section is mapped.", &overlaylist);
3303 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3304 "Assert that an overlay section is unmapped.", &overlaylist);
3306 add_cmd ("list-overlays", class_support, list_overlays_command,
3307 "List mappings of overlay sections.", &overlaylist);
3309 add_cmd ("manual", class_support, overlay_manual_command,
3310 "Enable overlay debugging.", &overlaylist);
3311 add_cmd ("off", class_support, overlay_off_command,
3312 "Disable overlay debugging.", &overlaylist);
3313 add_cmd ("auto", class_support, overlay_auto_command,
3314 "Enable automatic overlay debugging.", &overlaylist);
3315 add_cmd ("load-target", class_support, overlay_load_command,
3316 "Read the overlay mapping state from the target.", &overlaylist);
3318 /* Filename extension to source language lookup table: */
3319 init_filename_language_table ();
3320 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3322 "Set mapping between filename extension and source language.\n\
3323 Usage: set extension-language .foo bar",
3325 set_cmd_cfunc (c, set_ext_lang_command);
3327 add_info ("extensions", info_ext_lang_command,
3328 "All filename extensions associated with a source language.");
3331 (add_set_cmd ("download-write-size", class_obscure,
3332 var_integer, (char *) &download_write_size,
3333 "Set the write size used when downloading a program.\n"
3334 "Only used when downloading a program onto a remote\n"
3335 "target. Specify zero, or a negative value, to disable\n"
3336 "blocked writes. The actual size of each transfer is also\n"
3337 "limited by the size of the target packet and the memory\n"