1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
27 #include "xcoffsolib.h"
30 #include "libbfd.h" /* For bfd_cache_lookup (FIXME) */
32 #include "gdb-stabs.h"
35 #include <sys/ptrace.h>
38 #include <sys/param.h>
42 #include <sys/ioctl.h>
50 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
51 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
53 #include <sys/systemcfg.h>
55 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
56 debugging 32-bit and 64-bit processes. Define a typedef and macros for
57 accessing fields in the appropriate structures. */
59 /* In 32-bit compilation mode (which is the only mode from which ptrace()
60 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
66 /* Return whether the current architecture is 64-bit. */
71 # define ARCH64() (REGISTER_RAW_SIZE (0) == 8)
74 /* Union of 32-bit and 64-bit ".reg" core file sections. */
78 struct __context64 r64;
85 /* Union of 32-bit and 64-bit versions of ld_info. */
92 struct __ld_info32 l32;
93 struct __ld_info64 l64;
97 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
98 declare and initialize a variable named VAR suitable for use as the arch64
99 parameter to the various LDI_*() macros. */
102 # define ARCH64_DECL(var)
104 # define ARCH64_DECL(var) int var = ARCH64 ()
107 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
108 otherwise. This technique only works for FIELDs with the same data type in
109 32-bit and 64-bit versions of ld_info. */
112 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
114 # define LDI_FIELD(ldi, arch64, field) \
115 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
118 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
119 process otherwise. */
121 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
122 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
123 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
125 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
127 extern struct target_ops exec_ops;
129 static void vmap_exec (void);
131 static void vmap_ldinfo (LdInfo *);
133 static struct vmap *add_vmap (LdInfo *);
135 static int objfile_symbol_add (void *);
137 static void vmap_symtab (struct vmap *);
139 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
141 static void exec_one_dummy_insn (void);
144 fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
146 /* Conversion from gdb-to-system special purpose register numbers. */
148 static int special_regs[] =
154 CTR, /* CTR_REGNUM */
155 XER, /* XER_REGNUM */
159 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
162 ptrace32 (int req, int id, int *addr, int data, int *buf)
164 int ret = ptrace (req, id, (int *)addr, data, buf);
166 printf ("ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
167 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
172 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
175 ptrace64 (int req, int id, long long addr, int data, int *buf)
178 int ret = ptracex (req, id, addr, data, buf);
183 printf ("ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
184 req, id, addr, data, (unsigned int)buf, ret);
189 /* Fetch register REGNO from the inferior. */
192 fetch_register (int regno)
194 int *addr = (int *) ®isters[REGISTER_BYTE (regno)];
197 /* Retrieved values may be -1, so infer errors from errno. */
200 /* Floating-point registers. */
201 if (regno >= FP0_REGNUM && regno <= FPLAST_REGNUM)
203 nr = regno - FP0_REGNUM + FPR0;
204 ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
207 /* Bogus register number. */
208 else if (regno > LAST_UISA_SP_REGNUM)
209 fprintf_unfiltered (gdb_stderr,
210 "gdb error: register no %d not implemented.\n",
213 /* Fixed-point registers. */
216 if (regno >= FIRST_UISA_SP_REGNUM)
217 nr = special_regs[regno - FIRST_UISA_SP_REGNUM];
222 *addr = ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
225 /* PT_READ_GPR requires the buffer parameter to point to long long,
226 even if the register is really only 32 bits. */
228 ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
229 if (REGISTER_RAW_SIZE (regno) == 8)
230 memcpy (addr, &buf, 8);
237 register_valid[regno] = 1;
241 /* FIXME: this happens 3 times at the start of each 64-bit program. */
242 perror ("ptrace read");
248 /* Store register REGNO back into the inferior. */
251 store_register (int regno)
253 int *addr = (int *) ®isters[REGISTER_BYTE (regno)];
256 /* -1 can be a successful return value, so infer errors from errno. */
259 /* Floating-point registers. */
260 if (regno >= FP0_REGNUM && regno <= FPLAST_REGNUM)
262 nr = regno - FP0_REGNUM + FPR0;
263 ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
266 /* Bogus register number. */
267 else if (regno > LAST_UISA_SP_REGNUM)
269 if (regno >= NUM_REGS)
270 fprintf_unfiltered (gdb_stderr,
271 "gdb error: register no %d not implemented.\n",
275 /* Fixed-point registers. */
278 if (regno == SP_REGNUM)
279 /* Execute one dummy instruction (which is a breakpoint) in inferior
280 process to give kernel a chance to do internal housekeeping.
281 Otherwise the following ptrace(2) calls will mess up user stack
282 since kernel will get confused about the bottom of the stack
284 exec_one_dummy_insn ();
286 if (regno >= FIRST_UISA_SP_REGNUM)
287 nr = special_regs[regno - FIRST_UISA_SP_REGNUM];
292 ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
295 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
296 area, even if the register is really only 32 bits. */
298 if (REGISTER_RAW_SIZE (regno) == 8)
299 memcpy (&buf, addr, 8);
302 ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
308 perror ("ptrace write");
313 /* Read from the inferior all registers if REGNO == -1 and just register
317 fetch_inferior_registers (int regno)
320 fetch_register (regno);
324 /* read 32 general purpose registers. */
325 for (regno = 0; regno < 32; regno++)
326 fetch_register (regno);
328 /* read general purpose floating point registers. */
329 for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
330 fetch_register (regno);
332 /* read special registers. */
333 for (regno = FIRST_UISA_SP_REGNUM; regno <= LAST_UISA_SP_REGNUM; regno++)
334 fetch_register (regno);
338 /* Store our register values back into the inferior.
339 If REGNO is -1, do this for all registers.
340 Otherwise, REGNO specifies which register (so we can save time). */
343 store_inferior_registers (int regno)
346 store_register (regno);
350 /* write general purpose registers first! */
351 for (regno = GPR0; regno <= GPR31; regno++)
352 store_register (regno);
354 /* write floating point registers now. */
355 for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
356 store_register (regno);
358 /* write special registers. */
360 for (regno = FIRST_UISA_SP_REGNUM; regno <= LAST_UISA_SP_REGNUM; regno++)
361 store_register (regno);
365 /* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
366 process, which is 64-bit if ARCH64 and 32-bit otherwise. Return
370 read_word (CORE_ADDR from, int *to, int arch64)
372 /* Retrieved values may be -1, so infer errors from errno. */
376 *to = ptrace64 (PT_READ_I, PIDGET (inferior_ptid), from, 0, NULL);
378 *to = ptrace32 (PT_READ_I, PIDGET (inferior_ptid), (int *)(long) from,
384 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
385 to debugger memory starting at MYADDR. Copy to inferior if
388 Returns the length copied, which is either the LEN argument or zero.
389 This xfer function does not do partial moves, since child_ops
390 doesn't allow memory operations to cross below us in the target stack
394 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
395 int write, struct mem_attrib *attrib,
396 struct target_ops *target)
398 /* Round starting address down to 32-bit word boundary. */
399 int mask = sizeof (int) - 1;
400 CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
402 /* Round ending address up to 32-bit word boundary. */
403 int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
406 /* Allocate word transfer buffer. */
407 int *buf = (int *) alloca (count * sizeof (int));
409 int arch64 = ARCH64 ();
414 /* Retrieve memory a word at a time. */
415 for (i = 0; i < count; i++, addr += sizeof (int))
417 if (!read_word (addr, buf + i, arch64))
422 /* Copy memory to supplied buffer. */
423 addr -= count * sizeof (int);
424 memcpy (myaddr, (char *)buf + (memaddr - addr), len);
428 /* Fetch leading memory needed for alignment. */
430 if (!read_word (addr, buf, arch64))
433 /* Fetch trailing memory needed for alignment. */
434 if (addr + count * sizeof (int) > memaddr + len)
435 if (!read_word (addr, buf + count - 1, arch64))
438 /* Copy supplied data into memory buffer. */
439 memcpy ((char *)buf + (memaddr - addr), myaddr, len);
441 /* Store memory one word at a time. */
442 for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
445 ptrace64 (PT_WRITE_D, PIDGET (inferior_ptid), addr, buf[i], NULL);
447 ptrace32 (PT_WRITE_D, PIDGET (inferior_ptid), (int *)(long) addr,
459 /* Execute one dummy breakpoint instruction. This way we give the kernel
460 a chance to do some housekeeping and update inferior's internal data,
464 exec_one_dummy_insn (void)
466 #define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
468 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
469 int ret, status, pid;
472 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
473 assume that this address will never be executed again by the real
476 target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
478 /* You might think this could be done with a single ptrace call, and
479 you'd be correct for just about every platform I've ever worked
480 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
481 the inferior never hits the breakpoint (it's also worth noting
482 powerpc-ibm-aix4.1.3 works correctly). */
483 prev_pc = read_pc ();
484 write_pc (DUMMY_INSN_ADDR);
486 ret = ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
488 ret = ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
491 perror ("pt_continue");
495 pid = wait (&status);
497 while (pid != PIDGET (inferior_ptid));
500 target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
503 /* Fetch registers from the register section in core bfd. */
506 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
507 int which, CORE_ADDR reg_addr)
512 void *gprs, *sprs[7];
518 "Gdb error: unknown parameter to fetch_core_registers().\n");
523 regs = (CoreRegs *) core_reg_sect;
525 /* Retrieve register pointers. */
529 gprs = regs->r64.gpr;
530 fprs = regs->r64.fpr;
531 sprs[0] = ®s->r64.iar;
532 sprs[1] = ®s->r64.msr;
533 sprs[2] = ®s->r64.cr;
534 sprs[3] = ®s->r64.lr;
535 sprs[4] = ®s->r64.ctr;
536 sprs[5] = ®s->r64.xer;
540 gprs = regs->r32.gpr;
541 fprs = regs->r32.fpr;
542 sprs[0] = ®s->r32.iar;
543 sprs[1] = ®s->r32.msr;
544 sprs[2] = ®s->r32.cr;
545 sprs[3] = ®s->r32.lr;
546 sprs[4] = ®s->r32.ctr;
547 sprs[5] = ®s->r32.xer;
548 sprs[6] = ®s->r32.mq;
551 /* Copy from pointers to registers[]. */
553 memcpy (registers, gprs, 32 * (arch64 ? 8 : 4));
554 memcpy (registers + REGISTER_BYTE (FP0_REGNUM), fprs, 32 * 8);
555 for (i = FIRST_UISA_SP_REGNUM; i <= LAST_UISA_SP_REGNUM; i++)
557 size = REGISTER_RAW_SIZE (i);
559 memcpy (registers + REGISTER_BYTE (i),
560 sprs[i - FIRST_UISA_SP_REGNUM], size);
565 /* Copy information about text and data sections from LDI to VP for a 64-bit
566 process if ARCH64 and for a 32-bit process otherwise. */
569 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
573 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
574 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
575 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
576 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
580 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
581 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
582 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
583 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
586 /* The run time loader maps the file header in addition to the text
587 section and returns a pointer to the header in ldinfo_textorg.
588 Adjust the text start address to point to the real start address
589 of the text section. */
590 vp->tstart += vp->toffs;
593 /* handle symbol translation on vmapping */
596 vmap_symtab (struct vmap *vp)
598 register struct objfile *objfile;
599 struct section_offsets *new_offsets;
602 objfile = vp->objfile;
605 /* OK, it's not an objfile we opened ourselves.
606 Currently, that can only happen with the exec file, so
607 relocate the symbols for the symfile. */
608 if (symfile_objfile == NULL)
610 objfile = symfile_objfile;
612 else if (!vp->loaded)
613 /* If symbols are not yet loaded, offsets are not yet valid. */
616 new_offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
618 for (i = 0; i < objfile->num_sections; ++i)
619 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
621 /* The symbols in the object file are linked to the VMA of the section,
622 relocate them VMA relative. */
623 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
624 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
625 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
627 objfile_relocate (objfile, new_offsets);
630 /* Add symbols for an objfile. */
633 objfile_symbol_add (void *arg)
635 struct objfile *obj = (struct objfile *) arg;
637 syms_from_objfile (obj, NULL, 0, 0);
638 new_symfile_objfile (obj, 0, 0);
642 /* Add symbols for a vmap. Return zero upon error. */
645 vmap_add_symbols (struct vmap *vp)
647 if (catch_errors (objfile_symbol_add, vp->objfile,
648 "Error while reading shared library symbols:\n",
651 /* Note this is only done if symbol reading was successful. */
659 /* Add a new vmap entry based on ldinfo() information.
661 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
662 core file), the caller should set it to -1, and we will open the file.
664 Return the vmap new entry. */
667 add_vmap (LdInfo *ldi)
670 register char *mem, *objname, *filename;
674 ARCH64_DECL (arch64);
676 /* This ldi structure was allocated using alloca() in
677 xcoff_relocate_symtab(). Now we need to have persistent object
678 and member names, so we should save them. */
680 filename = LDI_FILENAME (ldi, arch64);
681 mem = filename + strlen (filename) + 1;
682 mem = savestring (mem, strlen (mem));
683 objname = savestring (filename, strlen (filename));
685 fd = LDI_FD (ldi, arch64);
687 /* Note that this opens it once for every member; a possible
688 enhancement would be to only open it once for every object. */
689 abfd = bfd_openr (objname, gnutarget);
691 abfd = bfd_fdopenr (objname, gnutarget, fd);
694 warning ("Could not open `%s' as an executable file: %s",
695 objname, bfd_errmsg (bfd_get_error ()));
699 /* make sure we have an object file */
701 if (bfd_check_format (abfd, bfd_object))
702 vp = map_vmap (abfd, 0);
704 else if (bfd_check_format (abfd, bfd_archive))
707 /* FIXME??? am I tossing BFDs? bfd? */
708 while ((last = bfd_openr_next_archived_file (abfd, last)))
709 if (STREQ (mem, last->filename))
714 warning ("\"%s\": member \"%s\" missing.", objname, mem);
719 if (!bfd_check_format (last, bfd_object))
721 warning ("\"%s\": member \"%s\" not in executable format: %s.",
722 objname, mem, bfd_errmsg (bfd_get_error ()));
728 vp = map_vmap (last, abfd);
732 warning ("\"%s\": not in executable format: %s.",
733 objname, bfd_errmsg (bfd_get_error ()));
737 obj = allocate_objfile (vp->bfd, 0);
740 /* Always add symbols for the main objfile. */
741 if (vp == vmap || auto_solib_add)
742 vmap_add_symbols (vp);
746 /* update VMAP info with ldinfo() information
747 Input is ptr to ldinfo() results. */
750 vmap_ldinfo (LdInfo *ldi)
753 register struct vmap *vp;
754 int got_one, retried;
755 int got_exec_file = 0;
757 int arch64 = ARCH64 ();
759 /* For each *ldi, see if we have a corresponding *vp.
760 If so, update the mapping, and symbol table.
761 If not, add an entry and symbol table. */
765 char *name = LDI_FILENAME (ldi, arch64);
766 char *memb = name + strlen (name) + 1;
767 int fd = LDI_FD (ldi, arch64);
771 if (fstat (fd, &ii) < 0)
773 /* The kernel sets ld_info to -1, if the process is still using the
774 object, and the object is removed. Keep the symbol info for the
775 removed object and issue a warning. */
776 warning ("%s (fd=%d) has disappeared, keeping its symbols",
781 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
783 struct objfile *objfile;
785 /* First try to find a `vp', which is the same as in ldinfo.
786 If not the same, just continue and grep the next `vp'. If same,
787 relocate its tstart, tend, dstart, dend values. If no such `vp'
788 found, get out of this for loop, add this ldi entry as a new vmap
789 (add_vmap) and come back, find its `vp' and so on... */
791 /* The filenames are not always sufficient to match on. */
793 if ((name[0] == '/' && !STREQ (name, vp->name))
794 || (memb[0] && !STREQ (memb, vp->member)))
797 /* See if we are referring to the same file.
798 We have to check objfile->obfd, symfile.c:reread_symbols might
799 have updated the obfd after a change. */
800 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
802 || objfile->obfd == NULL
803 || bfd_stat (objfile->obfd, &vi) < 0)
805 warning ("Unable to stat %s, keeping its symbols", name);
809 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
817 /* Found a corresponding VMAP. Remap! */
819 vmap_secs (vp, ldi, arch64);
821 /* The objfile is only NULL for the exec file. */
822 if (vp->objfile == NULL)
825 /* relocate symbol table(s). */
828 /* There may be more, so we don't break out of the loop. */
831 /* if there was no matching *vp, we must perforce create the sucker(s) */
832 if (!got_one && !retried)
839 while ((next = LDI_NEXT (ldi, arch64))
840 && (ldi = (void *) (next + (char *) ldi)));
842 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
843 is unlikely that the symbol file is relocated to the proper
844 address. And we might have attached to a process which is
845 running a different copy of the same executable. */
846 if (symfile_objfile != NULL && !got_exec_file)
849 fputs_unfiltered ("Symbol file ", gdb_stderr);
850 fputs_unfiltered (symfile_objfile->name, gdb_stderr);
851 fputs_unfiltered ("\nis not mapped; discarding it.\n\
852 If in fact that file has symbols which the mapped files listed by\n\
853 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
854 \"add-symbol-file\" commands (note that you must take care of relocating\n\
855 symbols to the proper address).\n", gdb_stderr);
856 free_objfile (symfile_objfile);
857 symfile_objfile = NULL;
859 breakpoint_re_set ();
862 /* As well as symbol tables, exec_sections need relocation. After
863 the inferior process' termination, there will be a relocated symbol
864 table exist with no corresponding inferior process. At that time, we
865 need to use `exec' bfd, rather than the inferior process's memory space
868 `exec_sections' need to be relocated only once, as long as the exec
869 file remains unchanged.
878 if (execbfd == exec_bfd)
883 if (!vmap || !exec_ops.to_sections)
884 error ("vmap_exec: vmap or exec_ops.to_sections == 0\n");
886 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
888 if (STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
890 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
891 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
893 else if (STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
895 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
896 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
898 else if (STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
900 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
901 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
906 /* Set the current architecture from the host running GDB. Called when
907 starting a child process. */
910 set_host_arch (int pid)
912 enum bfd_architecture arch;
915 struct gdbarch_info info;
919 arch = bfd_arch_rs6000;
920 mach = bfd_mach_rs6k;
924 arch = bfd_arch_powerpc;
927 bfd_default_set_arch_mach (&abfd, arch, mach);
929 memset (&info, 0, sizeof info);
930 info.bfd_arch_info = bfd_get_arch_info (&abfd);
932 if (!gdbarch_update_p (info))
934 internal_error (__FILE__, __LINE__,
935 "set_host_arch: failed to select architecture");
940 /* xcoff_relocate_symtab - hook for symbol table relocation.
941 also reads shared libraries.. */
944 xcoff_relocate_symtab (unsigned int pid)
946 int load_segs = 64; /* number of load segments */
949 int arch64 = ARCH64 ();
950 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
955 size = load_segs * ldisize;
956 ldi = (void *) xrealloc (ldi, size);
959 /* According to my humble theory, AIX has some timing problems and
960 when the user stack grows, kernel doesn't update stack info in time
961 and ptrace calls step on user stack. That is why we sleep here a
962 little, and give kernel to update its internals. */
967 rc = ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
969 rc = ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
976 perror_with_name ("ptrace ldinfo");
981 vmap_exec (); /* relocate the exec and core sections as well. */
988 /* Core file stuff. */
990 /* Relocate symtabs and read in shared library info, based on symbols
991 from the core file. */
994 xcoff_relocate_core (struct target_ops *target)
1000 int arch64 = ARCH64 ();
1002 /* Size of a struct ld_info except for the variable-length filename. */
1003 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1005 /* Allocated size of buffer. */
1006 int buffer_size = nonfilesz;
1007 char *buffer = xmalloc (buffer_size);
1008 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1010 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1011 if (ldinfo_sec == NULL)
1014 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1015 bfd_errmsg (bfd_get_error ()));
1022 int names_found = 0;
1024 /* Read in everything but the name. */
1025 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1026 offset, nonfilesz) == 0)
1033 if (i == buffer_size)
1036 buffer = xrealloc (buffer, buffer_size);
1038 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1039 offset + i, 1) == 0)
1041 if (buffer[i++] == '\0')
1044 while (names_found < 2);
1046 ldi = (LdInfo *) buffer;
1048 /* Can't use a file descriptor from the core file; need to open it. */
1050 ldi->l64.ldinfo_fd = -1;
1052 ldi->l32.ldinfo_fd = -1;
1054 /* The first ldinfo is for the exec file, allocated elsewhere. */
1055 if (offset == 0 && vmap != NULL)
1058 vp = add_vmap (ldi);
1060 /* Process next shared library upon error. */
1061 offset += LDI_NEXT (ldi, arch64);
1065 vmap_secs (vp, ldi, arch64);
1067 /* Unless this is the exec file,
1068 add our sections to the section table for the core target. */
1071 struct section_table *stp;
1073 target_resize_to_sections (target, 2);
1074 stp = target->to_sections_end - 2;
1077 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1078 stp->addr = vp->tstart;
1079 stp->endaddr = vp->tend;
1083 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1084 stp->addr = vp->dstart;
1085 stp->endaddr = vp->dend;
1090 while (LDI_NEXT (ldi, arch64) != 0);
1092 breakpoint_re_set ();
1097 kernel_u_size (void)
1099 return (sizeof (struct user));
1102 /* Under AIX, we have to pass the correct TOC pointer to a function
1103 when calling functions in the inferior.
1104 We try to find the relative toc offset of the objfile containing PC
1105 and add the current load address of the data segment from the vmap. */
1108 find_toc_address (CORE_ADDR pc)
1111 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1113 for (vp = vmap; vp; vp = vp->nxt)
1115 if (pc >= vp->tstart && pc < vp->tend)
1117 /* vp->objfile is only NULL for the exec file. */
1118 return vp->dstart + get_toc_offset (vp->objfile == NULL
1123 error ("Unable to find TOC entry for pc 0x%x\n", pc);
1126 /* Register that we are able to handle rs6000 core file formats. */
1128 static struct core_fns rs6000_core_fns =
1130 bfd_target_xcoff_flavour, /* core_flavour */
1131 default_check_format, /* check_format */
1132 default_core_sniffer, /* core_sniffer */
1133 fetch_core_registers, /* core_read_registers */
1138 _initialize_core_rs6000 (void)
1140 /* Initialize hook in rs6000-tdep.c for determining the TOC address when
1141 calling functions in the inferior. */
1142 rs6000_find_toc_address_hook = find_toc_address;
1144 /* Initialize hook in rs6000-tdep.c to set the current architecture when
1145 starting a child process. */
1146 rs6000_set_host_arch_hook = set_host_arch;
1148 add_core_fns (&rs6000_core_fns);