1 /* Target-dependent code for Morpho mt processor, for GDB.
3 Copyright (C) 2005 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
26 #include "frame-unwind.h"
27 #include "frame-base.h"
30 #include "arch-utils.h"
32 #include "gdb_string.h"
34 #include "reggroups.h"
36 #include "trad-frame.h"
38 #include "dwarf2-frame.h"
40 #include "gdb_assert.h"
42 enum mt_arch_constants
44 MT_MAX_STRUCT_SIZE = 16
49 MT_R0_REGNUM, /* 32 bit regs. */
51 MT_1ST_ARGREG = MT_R1_REGNUM,
55 MT_LAST_ARGREG = MT_R4_REGNUM,
64 MT_FP_REGNUM = MT_R12_REGNUM,
66 MT_SP_REGNUM = MT_R13_REGNUM,
68 MT_RA_REGNUM = MT_R14_REGNUM,
70 MT_IRA_REGNUM = MT_R15_REGNUM,
73 /* Interrupt Enable pseudo-register, exported by SID. */
75 /* End of CPU regs. */
79 /* Co-processor registers. */
80 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
97 MT_BYPA_REGNUM, /* 32 bit regs. */
101 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
103 MT_MAC_REGNUM, /* 32 bits. */
104 MT_Z1_REGNUM, /* 16 bits. */
105 MT_Z2_REGNUM, /* 16 bits. */
106 MT_ICHANNEL_REGNUM, /* 32 bits. */
107 MT_ISCRAMB_REGNUM, /* 32 bits. */
108 MT_QSCRAMB_REGNUM, /* 32 bits. */
109 MT_OUT_REGNUM, /* 16 bits. */
110 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
111 MT_QCHANNEL_REGNUM, /* 32 bits. */
112 MT_ZI2_REGNUM, /* 16 bits. */
113 MT_ZQ2_REGNUM, /* 16 bits. */
114 MT_CHANNEL2_REGNUM, /* 32 bits. */
115 MT_ISCRAMB2_REGNUM, /* 32 bits. */
116 MT_QSCRAMB2_REGNUM, /* 32 bits. */
117 MT_QCHANNEL2_REGNUM, /* 32 bits. */
119 /* Number of real registers. */
122 /* Pseudo-registers. */
123 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
124 MT_MAC_PSEUDOREG_REGNUM,
125 MT_COPRO_PSEUDOREG_ARRAY,
127 MT_COPRO_PSEUDOREG_DIM_1 = 2,
128 MT_COPRO_PSEUDOREG_DIM_2 = 8,
129 /* The number of pseudo-registers for each coprocessor. These
130 include the real coprocessor registers, the pseudo-registe for
131 the coprocessor number, and the pseudo-register for the MAC. */
132 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
133 /* The register number of the MAC, relative to a given coprocessor. */
134 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
136 /* Two pseudo-regs ('coprocessor' and 'mac'). */
137 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
138 * MT_COPRO_PSEUDOREG_DIM_1
139 * MT_COPRO_PSEUDOREG_DIM_2)
142 /* Return name of register number specified by REGNUM. */
145 mt_register_name (int regnum)
147 static const char *const register_names[] = {
149 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
150 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
152 /* Co-processor regs. */
153 "", /* copro register. */
154 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
155 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
156 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
157 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
158 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
159 /* Pseudo-registers. */
162 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
163 * MT_COPRO_PSEUDOREG_DIM_1
164 * MT_COPRO_PSEUDOREG_DIM_2];
168 if (regnum < ARRAY_SIZE (register_names))
169 return register_names[regnum];
170 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
171 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
180 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
181 index = regnum % MT_COPRO_PSEUDOREG_REGS;
182 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
183 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
184 % MT_COPRO_PSEUDOREG_DIM_1);
186 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
187 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
188 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
191 stub = register_names[index + MT_CPR0_REGNUM];
194 array_names[regnum] = stub;
198 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
199 array_names[regnum] = name;
204 /* Return the type of a coprocessor register. */
207 mt_copro_register_type (struct gdbarch *arch, int regnum)
211 case MT_INT_ENABLE_REGNUM:
212 case MT_ICHANNEL_REGNUM:
213 case MT_QCHANNEL_REGNUM:
214 case MT_ISCRAMB_REGNUM:
215 case MT_QSCRAMB_REGNUM:
216 return builtin_type_int32;
225 return builtin_type_int16;
226 case MT_EXMAC_REGNUM:
228 return builtin_type_uint32;
229 case MT_CONTEXT_REGNUM:
230 return builtin_type_long_long;
232 return builtin_type_unsigned_char;
234 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
235 return builtin_type_int16;
236 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
238 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
239 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
240 return builtin_type_uint64;
242 return builtin_type_uint32;
245 return builtin_type_uint32;
249 /* Given ARCH and a register number specified by REGNUM, return the
250 type of that register. */
253 mt_register_type (struct gdbarch *arch, int regnum)
255 static struct type *void_func_ptr = NULL;
256 static struct type *void_ptr = NULL;
257 static struct type *copro_type;
259 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
261 if (void_func_ptr == NULL)
265 void_ptr = lookup_pointer_type (builtin_type_void);
267 lookup_pointer_type (lookup_function_type (builtin_type_void));
268 temp = create_range_type (NULL, builtin_type_unsigned_int, 0, 1);
269 copro_type = create_array_type (NULL, builtin_type_int16, temp);
276 return void_func_ptr;
280 case MT_COPRO_REGNUM:
281 case MT_COPRO_PSEUDOREG_REGNUM:
283 case MT_MAC_PSEUDOREG_REGNUM:
284 return mt_copro_register_type (arch,
286 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
288 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
289 return builtin_type_int32;
290 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
291 return mt_copro_register_type (arch, regnum);
294 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
295 regnum %= MT_COPRO_PSEUDOREG_REGS;
296 regnum += MT_CPR0_REGNUM;
297 return mt_copro_register_type (arch, regnum);
301 internal_error (__FILE__, __LINE__,
302 _("mt_register_type: illegal register number %d"), regnum);
305 /* Return true if register REGNUM is a member of the register group
306 specified by GROUP. */
309 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
310 struct reggroup *group)
312 /* Groups of registers that can be displayed via "info reg". */
313 if (group == all_reggroup)
315 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
316 && mt_register_name (regnum)[0] != '\0');
318 if (group == general_reggroup)
319 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
321 if (group == float_reggroup)
322 return 0; /* No float regs. */
324 if (group == vector_reggroup)
325 return 0; /* No vector regs. */
327 /* For any that are not handled above. */
328 return default_register_reggroup_p (gdbarch, regnum, group);
331 /* Return the return value convention used for a given type TYPE.
332 Optionally, fetch or set the return value via READBUF or
333 WRITEBUF respectively using REGCACHE for the register
336 static enum return_value_convention
337 mt_return_value (struct gdbarch *gdbarch, struct type *type,
338 struct regcache *regcache, gdb_byte *readbuf,
339 const gdb_byte *writebuf)
341 if (TYPE_LENGTH (type) > 4)
343 /* Return values > 4 bytes are returned in memory,
344 pointed to by R11. */
349 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
350 read_memory (addr, readbuf, TYPE_LENGTH (type));
357 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
358 write_memory (addr, writebuf, TYPE_LENGTH (type));
361 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
369 /* Return values of <= 4 bytes are returned in R11. */
370 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
371 store_unsigned_integer (readbuf, TYPE_LENGTH (type), temp);
376 if (TYPE_LENGTH (type) < 4)
379 /* Add leading zeros to the value. */
380 memset (buf, 0, sizeof (buf));
381 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
382 writebuf, TYPE_LENGTH (type));
383 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
385 else /* (TYPE_LENGTH (type) == 4 */
386 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
389 return RETURN_VALUE_REGISTER_CONVENTION;
393 /* If the input address, PC, is in a function prologue, return the
394 address of the end of the prologue, otherwise return the input
397 Note: PC is likely to be the function start, since this function
398 is mainly used for advancing a breakpoint to the first line, or
399 stepping to the first line when we have stepped into a function
403 mt_skip_prologue (CORE_ADDR pc)
405 CORE_ADDR func_addr = 0, func_end = 0;
409 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
411 struct symtab_and_line sal;
414 /* Found a function. */
415 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
416 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
418 /* Don't use this trick for assembly source files. */
419 sal = find_pc_line (func_addr, 0);
421 if (sal.end && sal.end < func_end)
423 /* Found a line number, use it as end of prologue. */
429 /* No function symbol, or no line symbol. Use prologue scanning method. */
432 instr = read_memory_unsigned_integer (pc, 4);
433 if (instr == 0x12000000) /* nop */
435 if (instr == 0x12ddc000) /* copy sp into fp */
438 if (instr == 0x05dd) /* subi sp, sp, imm */
440 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
442 /* Not an obvious prologue instruction. */
449 /* The breakpoint instruction must be the same size as the smallest
450 instruction in the instruction set.
452 The BP for ms1 is defined as 0x68000000 (BREAK).
453 The BP for ms2 is defined as 0x69000000 (illegal) */
455 static const gdb_byte *
456 mt_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
458 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
459 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
462 if (gdbarch_bfd_arch_info (current_gdbarch)->mach == bfd_mach_ms2)
463 return ms2_breakpoint;
465 return ms1_breakpoint;
468 /* Select the correct coprocessor register bank. Return the pseudo
469 regnum we really want to read. */
472 mt_select_coprocessor (struct gdbarch *gdbarch,
473 struct regcache *regcache, int regno)
475 unsigned index, base;
478 /* Get the copro pseudo regnum. */
479 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
480 base = (extract_signed_integer (&copro[0], 2) * MT_COPRO_PSEUDOREG_DIM_2
481 + extract_signed_integer (&copro[2], 2));
483 regno -= MT_COPRO_PSEUDOREG_ARRAY;
484 index = regno % MT_COPRO_PSEUDOREG_REGS;
485 regno /= MT_COPRO_PSEUDOREG_REGS;
488 /* Select the correct coprocessor register bank. Invalidate the
489 coprocessor register cache. */
492 store_signed_integer (&copro[0], 2, regno / MT_COPRO_PSEUDOREG_DIM_2);
493 store_signed_integer (&copro[2], 2, regno % MT_COPRO_PSEUDOREG_DIM_2);
494 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
496 /* We must flush the cache, as it is now invalid. */
497 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
498 set_register_cached (ix, 0);
504 /* Fetch the pseudo registers:
506 There are two regular pseudo-registers:
507 1) The 'coprocessor' pseudo-register (which mirrors the
508 "real" coprocessor register sent by the target), and
509 2) The 'MAC' pseudo-register (which represents the union
510 of the original 32 bit target MAC register and the new
511 8-bit extended-MAC register).
513 Additionally there is an array of coprocessor registers which track
514 the coprocessor registers for each coprocessor. */
517 mt_pseudo_register_read (struct gdbarch *gdbarch,
518 struct regcache *regcache, int regno, gdb_byte *buf)
522 case MT_COPRO_REGNUM:
523 case MT_COPRO_PSEUDOREG_REGNUM:
524 regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
527 case MT_MAC_PSEUDOREG_REGNUM:
528 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
529 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
531 ULONGEST oldmac = 0, ext_mac = 0;
534 regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
535 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
537 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
538 store_signed_integer (buf, 8, newmac);
541 regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
545 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
547 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
548 mt_pseudo_register_read (gdbarch, regcache,
549 MT_MAC_PSEUDOREG_REGNUM, buf);
550 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
551 regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
557 /* Write the pseudo registers:
559 Mt pseudo-registers are stored directly to the target. The
560 'coprocessor' register is special, because when it is modified, all
561 the other coprocessor regs must be flushed from the reg cache. */
564 mt_pseudo_register_write (struct gdbarch *gdbarch,
565 struct regcache *regcache,
566 int regno, const gdb_byte *buf)
572 case MT_COPRO_REGNUM:
573 case MT_COPRO_PSEUDOREG_REGNUM:
574 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
575 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
576 set_register_cached (i, 0);
579 case MT_MAC_PSEUDOREG_REGNUM:
580 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
581 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
583 /* The 8-byte MAC pseudo-register must be broken down into two
584 32-byte registers. */
585 unsigned int oldmac, ext_mac;
588 newmac = extract_unsigned_integer (buf, 8);
589 oldmac = newmac & 0xffffffff;
590 ext_mac = (newmac >> 32) & 0xff;
591 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
592 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
595 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
599 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
601 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
602 mt_pseudo_register_write (gdbarch, regcache,
603 MT_MAC_PSEUDOREG_REGNUM, buf);
604 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
605 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
612 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
614 /* Register size is 4 bytes. */
615 return align_down (sp, 4);
618 /* Implements the "info registers" command. When ``all'' is non-zero,
619 the coprocessor registers will be printed in addition to the rest
623 mt_registers_info (struct gdbarch *gdbarch,
624 struct ui_file *file,
625 struct frame_info *frame, int regnum, int all)
631 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
633 for (regnum = 0; regnum < lim; regnum++)
635 /* Don't display the Qchannel register since it will be displayed
636 along with Ichannel. (See below.) */
637 if (regnum == MT_QCHANNEL_REGNUM)
640 mt_registers_info (gdbarch, file, frame, regnum, all);
642 /* Display the Qchannel register immediately after Ichannel. */
643 if (regnum == MT_ICHANNEL_REGNUM)
644 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
649 if (regnum == MT_EXMAC_REGNUM)
651 else if (regnum == MT_CONTEXT_REGNUM)
653 /* Special output handling for 38-bit context register. */
655 unsigned int *bytes, i, regsize;
657 regsize = register_size (gdbarch, regnum);
659 buff = alloca (regsize);
660 bytes = alloca (regsize * sizeof (*bytes));
662 frame_register_read (frame, regnum, buff);
664 fputs_filtered (REGISTER_NAME (regnum), file);
665 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
666 fputs_filtered ("0x", file);
668 for (i = 0; i < regsize; i++)
669 fprintf_filtered (file, "%02x", (unsigned int)
670 extract_unsigned_integer (buff + i, 1));
671 fputs_filtered ("\t", file);
672 print_longest (file, 'd', 0,
673 extract_unsigned_integer (buff, regsize));
674 fputs_filtered ("\n", file);
676 else if (regnum == MT_COPRO_REGNUM
677 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
679 /* Special output handling for the 'coprocessor' register. */
682 buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
683 frame_register_read (frame, MT_COPRO_REGNUM, buf);
685 regnum = MT_COPRO_PSEUDOREG_REGNUM;
686 fputs_filtered (REGISTER_NAME (regnum), file);
687 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
688 val_print (register_type (gdbarch, regnum), buf,
689 0, 0, file, 0, 1, 0, Val_no_prettyprint);
690 fputs_filtered ("\n", file);
692 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
694 ULONGEST oldmac, ext_mac, newmac;
695 gdb_byte buf[3 * sizeof (LONGEST)];
697 /* Get the two "real" mac registers. */
698 frame_register_read (frame, MT_MAC_REGNUM, buf);
699 oldmac = extract_unsigned_integer
700 (buf, register_size (gdbarch, MT_MAC_REGNUM));
701 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
702 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
704 frame_register_read (frame, MT_EXMAC_REGNUM, buf);
705 ext_mac = extract_unsigned_integer
706 (buf, register_size (gdbarch, MT_EXMAC_REGNUM));
711 /* Add them together. */
712 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
715 regnum = MT_MAC_PSEUDOREG_REGNUM;
716 fputs_filtered (REGISTER_NAME (regnum), file);
717 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
718 fputs_filtered ("0x", file);
719 print_longest (file, 'x', 0, newmac);
720 fputs_filtered ("\t", file);
721 print_longest (file, 'u', 0, newmac);
722 fputs_filtered ("\n", file);
725 default_print_registers_info (gdbarch, file, frame, regnum, all);
729 /* Set up the callee's arguments for an inferior function call. The
730 arguments are pushed on the stack or are placed in registers as
731 appropriate. It also sets up the return address (which points to
732 the call dummy breakpoint).
734 Returns the updated (and aligned) stack pointer. */
737 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
738 struct regcache *regcache, CORE_ADDR bp_addr,
739 int nargs, struct value **args, CORE_ADDR sp,
740 int struct_return, CORE_ADDR struct_addr)
743 gdb_byte buf[MT_MAX_STRUCT_SIZE];
744 int argreg = MT_1ST_ARGREG;
745 int split_param_len = 0;
751 /* First handle however many args we can fit into MT_1ST_ARGREG thru
753 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
756 typelen = TYPE_LENGTH (value_type (args[i]));
763 regcache_cooked_write_unsigned (regcache, argreg++,
764 extract_unsigned_integer
765 (value_contents (args[i]),
771 val = value_contents (args[i]);
774 if (argreg <= MT_LAST_ARGREG)
776 /* This word of the argument is passed in a register. */
777 regcache_cooked_write_unsigned (regcache, argreg++,
778 extract_unsigned_integer
785 /* Remainder of this arg must be passed on the stack
786 (deferred to do later). */
787 split_param_len = typelen;
788 memcpy (buf, val, typelen);
789 break; /* No more args can be handled in regs. */
794 /* By reverse engineering of gcc output, args bigger than
795 16 bytes go on the stack, and their address is passed
797 stack_dest -= typelen;
798 write_memory (stack_dest, value_contents (args[i]), typelen);
799 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
804 /* Next, the rest of the arguments go onto the stack, in reverse order. */
805 for (j = nargs - 1; j >= i; j--)
809 /* Right-justify the value in an aligned-length buffer. */
810 typelen = TYPE_LENGTH (value_type (args[j]));
811 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
812 val = alloca (typelen + slacklen);
813 memcpy (val, value_contents (args[j]), typelen);
814 memset (val + typelen, 0, slacklen);
815 /* Now write this data to the stack. */
816 stack_dest -= typelen + slacklen;
817 write_memory (stack_dest, val, typelen + slacklen);
820 /* Finally, if a param needs to be split between registers and stack,
821 write the second half to the stack now. */
822 if (split_param_len != 0)
824 stack_dest -= split_param_len;
825 write_memory (stack_dest, buf, split_param_len);
828 /* Set up return address (provided to us as bp_addr). */
829 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
831 /* Store struct return address, if given. */
832 if (struct_return && struct_addr != 0)
833 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
835 /* Set aside 16 bytes for the callee to save regs 1-4. */
838 /* Update the stack pointer. */
839 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
841 /* And that should do it. Return the new stack pointer. */
846 /* The 'unwind_cache' data structure. */
848 struct mt_unwind_cache
850 /* The previous frame's inner most stack address.
851 Used as this frame ID's stack_addr. */
853 CORE_ADDR frame_base;
857 /* Table indicating the location of each and every register. */
858 struct trad_frame_saved_reg *saved_regs;
861 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
864 static struct mt_unwind_cache *
865 mt_frame_unwind_cache (struct frame_info *next_frame,
866 void **this_prologue_cache)
868 struct gdbarch *gdbarch;
869 struct mt_unwind_cache *info;
870 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
871 unsigned long instr, upper_half, delayed_store = 0;
875 if ((*this_prologue_cache))
876 return (*this_prologue_cache);
878 gdbarch = get_frame_arch (next_frame);
879 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
880 (*this_prologue_cache) = info;
884 info->frame_base = 0;
885 info->frameless_p = 1;
886 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
888 /* Grab the frame-relative values of SP and FP, needed below.
889 The frame_saved_register function will find them on the
890 stack or in the registers as appropriate. */
891 frame_unwind_unsigned_register (next_frame, MT_SP_REGNUM, &sp);
892 frame_unwind_unsigned_register (next_frame, MT_FP_REGNUM, &fp);
894 start_addr = frame_func_unwind (next_frame);
896 /* Return early if GDB couldn't find the function. */
900 end_addr = frame_pc_unwind (next_frame);
901 prologue_end_addr = skip_prologue_using_sal (start_addr);
903 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
905 instr = get_frame_memory_unsigned (next_frame, next_addr, 4);
906 if (delayed_store) /* previous instr was a push */
908 upper_half = delayed_store >> 16;
909 regnum = upper_half & 0xf;
910 offset = delayed_store & 0xffff;
911 switch (upper_half & 0xfff0)
913 case 0x43c0: /* push using frame pointer */
914 info->saved_regs[regnum].addr = offset;
916 case 0x43d0: /* push using stack pointer */
917 info->saved_regs[regnum].addr = offset;
927 case 0x12000000: /* NO-OP */
929 case 0x12ddc000: /* copy sp into fp */
930 info->frameless_p = 0; /* Record that the frame pointer is in use. */
933 upper_half = instr >> 16;
934 if (upper_half == 0x05dd || /* subi sp, sp, imm */
935 upper_half == 0x07dd) /* subui sp, sp, imm */
937 /* Record the frame size. */
938 info->framesize = instr & 0xffff;
941 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
942 (upper_half & 0xfff0) == 0x43d0) /* stack push */
944 /* Save this instruction, but don't record the
945 pushed register as 'saved' until we see the
946 next instruction. That's because of deferred stores
947 on this target -- GDB won't be able to read the register
948 from the stack until one instruction later. */
949 delayed_store = instr;
952 /* Not a prologue instruction. Is this the end of the prologue?
953 This is the most difficult decision; when to stop scanning.
955 If we have no line symbol, then the best thing we can do
956 is to stop scanning when we encounter an instruction that
957 is not likely to be a part of the prologue.
959 But if we do have a line symbol, then we should
960 keep scanning until we reach it (or we reach end_addr). */
962 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
963 continue; /* Keep scanning, recording saved_regs etc. */
965 break; /* Quit scanning: breakpoint can be set here. */
969 /* Special handling for the "saved" address of the SP:
970 The SP is of course never saved on the stack at all, so
971 by convention what we put here is simply the previous
972 _value_ of the SP (as opposed to an address where the
973 previous value would have been pushed). This will also
974 give us the frame base address. */
976 if (info->frameless_p)
978 info->frame_base = sp + info->framesize;
979 info->prev_sp = sp + info->framesize;
983 info->frame_base = fp + info->framesize;
984 info->prev_sp = fp + info->framesize;
986 /* Save prev_sp in saved_regs as a value, not as an address. */
987 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
989 /* Now convert frame offsets to actual addresses (not offsets). */
990 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
991 if (trad_frame_addr_p (info->saved_regs, regnum))
992 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
994 /* The call instruction moves the caller's PC in the callee's RA reg.
995 Since this is an unwind, do the reverse. Copy the location of RA
996 into PC (the address / regnum) so that a request for PC will be
997 converted into a request for the RA. */
998 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
1004 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1008 frame_unwind_unsigned_register (next_frame, MT_PC_REGNUM, &pc);
1013 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1017 frame_unwind_unsigned_register (next_frame, MT_SP_REGNUM, &sp);
1021 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1022 dummy frame. The frame ID's base needs to match the TOS value
1023 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1026 static struct frame_id
1027 mt_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1029 return frame_id_build (mt_unwind_sp (gdbarch, next_frame),
1030 frame_pc_unwind (next_frame));
1033 /* Given a GDB frame, determine the address of the calling function's
1034 frame. This will be used to create a new GDB frame struct. */
1037 mt_frame_this_id (struct frame_info *next_frame,
1038 void **this_prologue_cache, struct frame_id *this_id)
1040 struct mt_unwind_cache *info =
1041 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1043 if (!(info == NULL || info->prev_sp == 0))
1045 (*this_id) = frame_id_build (info->prev_sp,
1046 frame_func_unwind (next_frame));
1052 mt_frame_prev_register (struct frame_info *next_frame,
1053 void **this_prologue_cache,
1054 int regnum, int *optimizedp,
1055 enum lval_type *lvalp, CORE_ADDR *addrp,
1056 int *realnump, gdb_byte *bufferp)
1058 struct mt_unwind_cache *info =
1059 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1061 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1062 optimizedp, lvalp, addrp, realnump, bufferp);
1066 mt_frame_base_address (struct frame_info *next_frame,
1067 void **this_prologue_cache)
1069 struct mt_unwind_cache *info =
1070 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1072 return info->frame_base;
1075 /* This is a shared interface: the 'frame_unwind' object is what's
1076 returned by the 'sniffer' function, and in turn specifies how to
1077 get a frame's ID and prev_regs.
1079 This exports the 'prev_register' and 'this_id' methods. */
1081 static const struct frame_unwind mt_frame_unwind = {
1084 mt_frame_prev_register
1087 /* The sniffer is a registered function that identifies our family of
1088 frame unwind functions (this_id and prev_register). */
1090 static const struct frame_unwind *
1091 mt_frame_sniffer (struct frame_info *next_frame)
1093 return &mt_frame_unwind;
1096 /* Another shared interface: the 'frame_base' object specifies how to
1097 unwind a frame and secure the base addresses for frame objects
1100 static struct frame_base mt_frame_base = {
1102 mt_frame_base_address,
1103 mt_frame_base_address,
1104 mt_frame_base_address
1107 static struct gdbarch *
1108 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1110 struct gdbarch *gdbarch;
1112 /* Find a candidate among the list of pre-declared architectures. */
1113 arches = gdbarch_list_lookup_by_info (arches, &info);
1115 return arches->gdbarch;
1117 /* None found, create a new architecture from the information
1119 gdbarch = gdbarch_alloc (&info, NULL);
1121 switch (info.byte_order)
1123 case BFD_ENDIAN_BIG:
1124 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1125 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
1126 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1128 case BFD_ENDIAN_LITTLE:
1129 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1130 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
1131 set_gdbarch_long_double_format (gdbarch,
1132 &floatformat_ieee_double_little);
1135 internal_error (__FILE__, __LINE__,
1136 _("mt_gdbarch_init: bad byte order for float format"));
1139 set_gdbarch_register_name (gdbarch, mt_register_name);
1140 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1141 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1142 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1143 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1144 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1145 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1146 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1147 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1148 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
1149 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1150 set_gdbarch_frame_args_skip (gdbarch, 0);
1151 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1152 set_gdbarch_register_type (gdbarch, mt_register_type);
1153 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1155 set_gdbarch_return_value (gdbarch, mt_return_value);
1156 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1158 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1160 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1162 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1164 /* Target builtin data types. */
1165 set_gdbarch_short_bit (gdbarch, 16);
1166 set_gdbarch_int_bit (gdbarch, 32);
1167 set_gdbarch_long_bit (gdbarch, 32);
1168 set_gdbarch_long_long_bit (gdbarch, 64);
1169 set_gdbarch_float_bit (gdbarch, 32);
1170 set_gdbarch_double_bit (gdbarch, 64);
1171 set_gdbarch_long_double_bit (gdbarch, 64);
1172 set_gdbarch_ptr_bit (gdbarch, 32);
1174 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1176 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1177 frame_unwind_append_sniffer (gdbarch, mt_frame_sniffer);
1178 frame_base_set_default (gdbarch, &mt_frame_base);
1180 /* Register the 'unwind_pc' method. */
1181 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1182 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1184 /* Methods for saving / extracting a dummy frame's ID.
1185 The ID's stack address must match the SP value returned by
1186 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1187 set_gdbarch_unwind_dummy_id (gdbarch, mt_unwind_dummy_id);
1193 _initialize_mt_tdep (void)
1195 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);