1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
57 #include "typeprint.h"
60 #include "completer.h"
61 #include "gdbsupport/vec.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
71 #include "gdbsupport/filestuff.h"
73 #include "namespace.h"
74 #include "gdbsupport/gdb_unlinker.h"
75 #include "gdbsupport/function-view.h"
76 #include "gdbsupport/gdb_optional.h"
77 #include "gdbsupport/underlying.h"
78 #include "gdbsupport/byte-vector.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
83 #include <sys/types.h>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "gdbsupport/selftest.h"
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "gdbsupport/pathstuff.h"
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
105 /* When true, cross-check physname against demangler. */
106 static bool check_physname = false;
108 /* When true, do not reject deprecated .gdb_index sections. */
109 static bool use_deprecated_index_sections = false;
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
133 struct name_component
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
140 /* The symbol's index in the symbol and constant pool tables of a
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
148 struct mapped_index_base
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
166 /* Return whether the name at IDX in the symbol table should be
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
173 /* Build the symbol name component sorted vector, if we haven't
175 void build_name_components ();
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params,
183 enum language lang) const;
185 /* Prevent deleting/destroying via a base class pointer. */
187 ~mapped_index_base() = default;
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
197 const offset_type name;
198 const offset_type vec;
201 /* Index data format version. */
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
213 bool symbol_name_slot_invalid (offset_type idx) const override
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec == 0;
219 /* Convenience method to get at the name of the symbol at IDX in the
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
254 /* Attribute name DW_IDX_*. */
257 /* Attribute form DW_FORM_*. */
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
263 std::vector<attr> attr_vec;
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
268 const char *namei_to_name (uint32_t namei) const;
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
276 size_t symbol_name_count () const override
277 { return this->name_count; }
280 /* See dwarf2read.h. */
283 get_dwarf2_per_objfile (struct objfile *objfile)
285 return dwarf2_objfile_data_key.get (objfile);
288 /* Default names of the debugging sections. */
290 /* Note that if the debugging section has been compressed, it might
291 have a name like .zdebug_info. */
293 static const struct dwarf2_debug_sections dwarf2_elf_names =
295 { ".debug_info", ".zdebug_info" },
296 { ".debug_abbrev", ".zdebug_abbrev" },
297 { ".debug_line", ".zdebug_line" },
298 { ".debug_loc", ".zdebug_loc" },
299 { ".debug_loclists", ".zdebug_loclists" },
300 { ".debug_macinfo", ".zdebug_macinfo" },
301 { ".debug_macro", ".zdebug_macro" },
302 { ".debug_str", ".zdebug_str" },
303 { ".debug_line_str", ".zdebug_line_str" },
304 { ".debug_ranges", ".zdebug_ranges" },
305 { ".debug_rnglists", ".zdebug_rnglists" },
306 { ".debug_types", ".zdebug_types" },
307 { ".debug_addr", ".zdebug_addr" },
308 { ".debug_frame", ".zdebug_frame" },
309 { ".eh_frame", NULL },
310 { ".gdb_index", ".zgdb_index" },
311 { ".debug_names", ".zdebug_names" },
312 { ".debug_aranges", ".zdebug_aranges" },
316 /* List of DWO/DWP sections. */
318 static const struct dwop_section_names
320 struct dwarf2_section_names abbrev_dwo;
321 struct dwarf2_section_names info_dwo;
322 struct dwarf2_section_names line_dwo;
323 struct dwarf2_section_names loc_dwo;
324 struct dwarf2_section_names loclists_dwo;
325 struct dwarf2_section_names macinfo_dwo;
326 struct dwarf2_section_names macro_dwo;
327 struct dwarf2_section_names str_dwo;
328 struct dwarf2_section_names str_offsets_dwo;
329 struct dwarf2_section_names types_dwo;
330 struct dwarf2_section_names cu_index;
331 struct dwarf2_section_names tu_index;
335 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
336 { ".debug_info.dwo", ".zdebug_info.dwo" },
337 { ".debug_line.dwo", ".zdebug_line.dwo" },
338 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
339 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
340 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
341 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
342 { ".debug_str.dwo", ".zdebug_str.dwo" },
343 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
344 { ".debug_types.dwo", ".zdebug_types.dwo" },
345 { ".debug_cu_index", ".zdebug_cu_index" },
346 { ".debug_tu_index", ".zdebug_tu_index" },
349 /* local data types */
351 /* The data in a compilation unit header, after target2host
352 translation, looks like this. */
353 struct comp_unit_head
357 unsigned char addr_size;
358 unsigned char signed_addr_p;
359 sect_offset abbrev_sect_off;
361 /* Size of file offsets; either 4 or 8. */
362 unsigned int offset_size;
364 /* Size of the length field; either 4 or 12. */
365 unsigned int initial_length_size;
367 enum dwarf_unit_type unit_type;
369 /* Offset to the first byte of this compilation unit header in the
370 .debug_info section, for resolving relative reference dies. */
371 sect_offset sect_off;
373 /* Offset to first die in this cu from the start of the cu.
374 This will be the first byte following the compilation unit header. */
375 cu_offset first_die_cu_offset;
378 /* 64-bit signature of this unit. For type units, it denotes the signature of
379 the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5).
380 Also used in DWARF 5, to denote the dwo id when the unit type is
381 DW_UT_skeleton or DW_UT_split_compile. */
384 /* For types, offset in the type's DIE of the type defined by this TU. */
385 cu_offset type_cu_offset_in_tu;
388 /* Type used for delaying computation of method physnames.
389 See comments for compute_delayed_physnames. */
390 struct delayed_method_info
392 /* The type to which the method is attached, i.e., its parent class. */
395 /* The index of the method in the type's function fieldlists. */
398 /* The index of the method in the fieldlist. */
401 /* The name of the DIE. */
404 /* The DIE associated with this method. */
405 struct die_info *die;
408 /* Internal state when decoding a particular compilation unit. */
411 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
414 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
416 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
417 Create the set of symtabs used by this TU, or if this TU is sharing
418 symtabs with another TU and the symtabs have already been created
419 then restore those symtabs in the line header.
420 We don't need the pc/line-number mapping for type units. */
421 void setup_type_unit_groups (struct die_info *die);
423 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
424 buildsym_compunit constructor. */
425 struct compunit_symtab *start_symtab (const char *name,
426 const char *comp_dir,
429 /* Reset the builder. */
430 void reset_builder () { m_builder.reset (); }
432 /* The header of the compilation unit. */
433 struct comp_unit_head header {};
435 /* Base address of this compilation unit. */
436 CORE_ADDR base_address = 0;
438 /* Non-zero if base_address has been set. */
441 /* The language we are debugging. */
442 enum language language = language_unknown;
443 const struct language_defn *language_defn = nullptr;
445 const char *producer = nullptr;
448 /* The symtab builder for this CU. This is only non-NULL when full
449 symbols are being read. */
450 std::unique_ptr<buildsym_compunit> m_builder;
453 /* The generic symbol table building routines have separate lists for
454 file scope symbols and all all other scopes (local scopes). So
455 we need to select the right one to pass to add_symbol_to_list().
456 We do it by keeping a pointer to the correct list in list_in_scope.
458 FIXME: The original dwarf code just treated the file scope as the
459 first local scope, and all other local scopes as nested local
460 scopes, and worked fine. Check to see if we really need to
461 distinguish these in buildsym.c. */
462 struct pending **list_in_scope = nullptr;
464 /* Hash table holding all the loaded partial DIEs
465 with partial_die->offset.SECT_OFF as hash. */
466 htab_t partial_dies = nullptr;
468 /* Storage for things with the same lifetime as this read-in compilation
469 unit, including partial DIEs. */
470 auto_obstack comp_unit_obstack;
472 /* When multiple dwarf2_cu structures are living in memory, this field
473 chains them all together, so that they can be released efficiently.
474 We will probably also want a generation counter so that most-recently-used
475 compilation units are cached... */
476 struct dwarf2_per_cu_data *read_in_chain = nullptr;
478 /* Backlink to our per_cu entry. */
479 struct dwarf2_per_cu_data *per_cu;
481 /* How many compilation units ago was this CU last referenced? */
484 /* A hash table of DIE cu_offset for following references with
485 die_info->offset.sect_off as hash. */
486 htab_t die_hash = nullptr;
488 /* Full DIEs if read in. */
489 struct die_info *dies = nullptr;
491 /* A set of pointers to dwarf2_per_cu_data objects for compilation
492 units referenced by this one. Only set during full symbol processing;
493 partial symbol tables do not have dependencies. */
494 htab_t dependencies = nullptr;
496 /* Header data from the line table, during full symbol processing. */
497 struct line_header *line_header = nullptr;
498 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
499 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
500 this is the DW_TAG_compile_unit die for this CU. We'll hold on
501 to the line header as long as this DIE is being processed. See
502 process_die_scope. */
503 die_info *line_header_die_owner = nullptr;
505 /* A list of methods which need to have physnames computed
506 after all type information has been read. */
507 std::vector<delayed_method_info> method_list;
509 /* To be copied to symtab->call_site_htab. */
510 htab_t call_site_htab = nullptr;
512 /* Non-NULL if this CU came from a DWO file.
513 There is an invariant here that is important to remember:
514 Except for attributes copied from the top level DIE in the "main"
515 (or "stub") file in preparation for reading the DWO file
516 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
517 Either there isn't a DWO file (in which case this is NULL and the point
518 is moot), or there is and either we're not going to read it (in which
519 case this is NULL) or there is and we are reading it (in which case this
521 struct dwo_unit *dwo_unit = nullptr;
523 /* The DW_AT_addr_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE. */
526 ULONGEST addr_base = 0;
528 /* The DW_AT_ranges_base attribute if present, zero otherwise
529 (zero is a valid value though).
530 Note this value comes from the Fission stub CU/TU's DIE.
531 Also note that the value is zero in the non-DWO case so this value can
532 be used without needing to know whether DWO files are in use or not.
533 N.B. This does not apply to DW_AT_ranges appearing in
534 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
535 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
536 DW_AT_ranges_base *would* have to be applied, and we'd have to care
537 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
538 ULONGEST ranges_base = 0;
540 /* When reading debug info generated by older versions of rustc, we
541 have to rewrite some union types to be struct types with a
542 variant part. This rewriting must be done after the CU is fully
543 read in, because otherwise at the point of rewriting some struct
544 type might not have been fully processed. So, we keep a list of
545 all such types here and process them after expansion. */
546 std::vector<struct type *> rust_unions;
548 /* Mark used when releasing cached dies. */
551 /* This CU references .debug_loc. See the symtab->locations_valid field.
552 This test is imperfect as there may exist optimized debug code not using
553 any location list and still facing inlining issues if handled as
554 unoptimized code. For a future better test see GCC PR other/32998. */
555 bool has_loclist : 1;
557 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
558 if all the producer_is_* fields are valid. This information is cached
559 because profiling CU expansion showed excessive time spent in
560 producer_is_gxx_lt_4_6. */
561 bool checked_producer : 1;
562 bool producer_is_gxx_lt_4_6 : 1;
563 bool producer_is_gcc_lt_4_3 : 1;
564 bool producer_is_icc : 1;
565 bool producer_is_icc_lt_14 : 1;
566 bool producer_is_codewarrior : 1;
568 /* When true, the file that we're processing is known to have
569 debugging info for C++ namespaces. GCC 3.3.x did not produce
570 this information, but later versions do. */
572 bool processing_has_namespace_info : 1;
574 struct partial_die_info *find_partial_die (sect_offset sect_off);
576 /* If this CU was inherited by another CU (via specification,
577 abstract_origin, etc), this is the ancestor CU. */
580 /* Get the buildsym_compunit for this CU. */
581 buildsym_compunit *get_builder ()
583 /* If this CU has a builder associated with it, use that. */
584 if (m_builder != nullptr)
585 return m_builder.get ();
587 /* Otherwise, search ancestors for a valid builder. */
588 if (ancestor != nullptr)
589 return ancestor->get_builder ();
595 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
596 This includes type_unit_group and quick_file_names. */
598 struct stmt_list_hash
600 /* The DWO unit this table is from or NULL if there is none. */
601 struct dwo_unit *dwo_unit;
603 /* Offset in .debug_line or .debug_line.dwo. */
604 sect_offset line_sect_off;
607 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
608 an object of this type. */
610 struct type_unit_group
612 /* dwarf2read.c's main "handle" on a TU symtab.
613 To simplify things we create an artificial CU that "includes" all the
614 type units using this stmt_list so that the rest of the code still has
615 a "per_cu" handle on the symtab.
616 This PER_CU is recognized by having no section. */
617 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
618 struct dwarf2_per_cu_data per_cu;
620 /* The TUs that share this DW_AT_stmt_list entry.
621 This is added to while parsing type units to build partial symtabs,
622 and is deleted afterwards and not used again. */
623 std::vector <signatured_type *> *tus;
625 /* The compunit symtab.
626 Type units in a group needn't all be defined in the same source file,
627 so we create an essentially anonymous symtab as the compunit symtab. */
628 struct compunit_symtab *compunit_symtab;
630 /* The data used to construct the hash key. */
631 struct stmt_list_hash hash;
633 /* The number of symtabs from the line header.
634 The value here must match line_header.num_file_names. */
635 unsigned int num_symtabs;
637 /* The symbol tables for this TU (obtained from the files listed in
639 WARNING: The order of entries here must match the order of entries
640 in the line header. After the first TU using this type_unit_group, the
641 line header for the subsequent TUs is recreated from this. This is done
642 because we need to use the same symtabs for each TU using the same
643 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
644 there's no guarantee the line header doesn't have duplicate entries. */
645 struct symtab **symtabs;
648 /* These sections are what may appear in a (real or virtual) DWO file. */
652 struct dwarf2_section_info abbrev;
653 struct dwarf2_section_info line;
654 struct dwarf2_section_info loc;
655 struct dwarf2_section_info loclists;
656 struct dwarf2_section_info macinfo;
657 struct dwarf2_section_info macro;
658 struct dwarf2_section_info str;
659 struct dwarf2_section_info str_offsets;
660 /* In the case of a virtual DWO file, these two are unused. */
661 struct dwarf2_section_info info;
662 std::vector<dwarf2_section_info> types;
665 /* CUs/TUs in DWP/DWO files. */
669 /* Backlink to the containing struct dwo_file. */
670 struct dwo_file *dwo_file;
672 /* The "id" that distinguishes this CU/TU.
673 .debug_info calls this "dwo_id", .debug_types calls this "signature".
674 Since signatures came first, we stick with it for consistency. */
677 /* The section this CU/TU lives in, in the DWO file. */
678 struct dwarf2_section_info *section;
680 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
681 sect_offset sect_off;
684 /* For types, offset in the type's DIE of the type defined by this TU. */
685 cu_offset type_offset_in_tu;
688 /* include/dwarf2.h defines the DWP section codes.
689 It defines a max value but it doesn't define a min value, which we
690 use for error checking, so provide one. */
692 enum dwp_v2_section_ids
697 /* Data for one DWO file.
699 This includes virtual DWO files (a virtual DWO file is a DWO file as it
700 appears in a DWP file). DWP files don't really have DWO files per se -
701 comdat folding of types "loses" the DWO file they came from, and from
702 a high level view DWP files appear to contain a mass of random types.
703 However, to maintain consistency with the non-DWP case we pretend DWP
704 files contain virtual DWO files, and we assign each TU with one virtual
705 DWO file (generally based on the line and abbrev section offsets -
706 a heuristic that seems to work in practice). */
710 dwo_file () = default;
711 DISABLE_COPY_AND_ASSIGN (dwo_file);
713 /* The DW_AT_GNU_dwo_name attribute.
714 For virtual DWO files the name is constructed from the section offsets
715 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
716 from related CU+TUs. */
717 const char *dwo_name = nullptr;
719 /* The DW_AT_comp_dir attribute. */
720 const char *comp_dir = nullptr;
722 /* The bfd, when the file is open. Otherwise this is NULL.
723 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
724 gdb_bfd_ref_ptr dbfd;
726 /* The sections that make up this DWO file.
727 Remember that for virtual DWO files in DWP V2, these are virtual
728 sections (for lack of a better name). */
729 struct dwo_sections sections {};
731 /* The CUs in the file.
732 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
733 an extension to handle LLVM's Link Time Optimization output (where
734 multiple source files may be compiled into a single object/dwo pair). */
737 /* Table of TUs in the file.
738 Each element is a struct dwo_unit. */
742 /* These sections are what may appear in a DWP file. */
746 /* These are used by both DWP version 1 and 2. */
747 struct dwarf2_section_info str;
748 struct dwarf2_section_info cu_index;
749 struct dwarf2_section_info tu_index;
751 /* These are only used by DWP version 2 files.
752 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
753 sections are referenced by section number, and are not recorded here.
754 In DWP version 2 there is at most one copy of all these sections, each
755 section being (effectively) comprised of the concatenation of all of the
756 individual sections that exist in the version 1 format.
757 To keep the code simple we treat each of these concatenated pieces as a
758 section itself (a virtual section?). */
759 struct dwarf2_section_info abbrev;
760 struct dwarf2_section_info info;
761 struct dwarf2_section_info line;
762 struct dwarf2_section_info loc;
763 struct dwarf2_section_info macinfo;
764 struct dwarf2_section_info macro;
765 struct dwarf2_section_info str_offsets;
766 struct dwarf2_section_info types;
769 /* These sections are what may appear in a virtual DWO file in DWP version 1.
770 A virtual DWO file is a DWO file as it appears in a DWP file. */
772 struct virtual_v1_dwo_sections
774 struct dwarf2_section_info abbrev;
775 struct dwarf2_section_info line;
776 struct dwarf2_section_info loc;
777 struct dwarf2_section_info macinfo;
778 struct dwarf2_section_info macro;
779 struct dwarf2_section_info str_offsets;
780 /* Each DWP hash table entry records one CU or one TU.
781 That is recorded here, and copied to dwo_unit.section. */
782 struct dwarf2_section_info info_or_types;
785 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
786 In version 2, the sections of the DWO files are concatenated together
787 and stored in one section of that name. Thus each ELF section contains
788 several "virtual" sections. */
790 struct virtual_v2_dwo_sections
792 bfd_size_type abbrev_offset;
793 bfd_size_type abbrev_size;
795 bfd_size_type line_offset;
796 bfd_size_type line_size;
798 bfd_size_type loc_offset;
799 bfd_size_type loc_size;
801 bfd_size_type macinfo_offset;
802 bfd_size_type macinfo_size;
804 bfd_size_type macro_offset;
805 bfd_size_type macro_size;
807 bfd_size_type str_offsets_offset;
808 bfd_size_type str_offsets_size;
810 /* Each DWP hash table entry records one CU or one TU.
811 That is recorded here, and copied to dwo_unit.section. */
812 bfd_size_type info_or_types_offset;
813 bfd_size_type info_or_types_size;
816 /* Contents of DWP hash tables. */
818 struct dwp_hash_table
820 uint32_t version, nr_columns;
821 uint32_t nr_units, nr_slots;
822 const gdb_byte *hash_table, *unit_table;
827 const gdb_byte *indices;
831 /* This is indexed by column number and gives the id of the section
833 #define MAX_NR_V2_DWO_SECTIONS \
834 (1 /* .debug_info or .debug_types */ \
835 + 1 /* .debug_abbrev */ \
836 + 1 /* .debug_line */ \
837 + 1 /* .debug_loc */ \
838 + 1 /* .debug_str_offsets */ \
839 + 1 /* .debug_macro or .debug_macinfo */)
840 int section_ids[MAX_NR_V2_DWO_SECTIONS];
841 const gdb_byte *offsets;
842 const gdb_byte *sizes;
847 /* Data for one DWP file. */
851 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
853 dbfd (std::move (abfd))
857 /* Name of the file. */
860 /* File format version. */
864 gdb_bfd_ref_ptr dbfd;
866 /* Section info for this file. */
867 struct dwp_sections sections {};
869 /* Table of CUs in the file. */
870 const struct dwp_hash_table *cus = nullptr;
872 /* Table of TUs in the file. */
873 const struct dwp_hash_table *tus = nullptr;
875 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
876 htab_t loaded_cus {};
877 htab_t loaded_tus {};
879 /* Table to map ELF section numbers to their sections.
880 This is only needed for the DWP V1 file format. */
881 unsigned int num_sections = 0;
882 asection **elf_sections = nullptr;
885 /* Struct used to pass misc. parameters to read_die_and_children, et
886 al. which are used for both .debug_info and .debug_types dies.
887 All parameters here are unchanging for the life of the call. This
888 struct exists to abstract away the constant parameters of die reading. */
890 struct die_reader_specs
892 /* The bfd of die_section. */
895 /* The CU of the DIE we are parsing. */
896 struct dwarf2_cu *cu;
898 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
899 struct dwo_file *dwo_file;
901 /* The section the die comes from.
902 This is either .debug_info or .debug_types, or the .dwo variants. */
903 struct dwarf2_section_info *die_section;
905 /* die_section->buffer. */
906 const gdb_byte *buffer;
908 /* The end of the buffer. */
909 const gdb_byte *buffer_end;
911 /* The value of the DW_AT_comp_dir attribute. */
912 const char *comp_dir;
914 /* The abbreviation table to use when reading the DIEs. */
915 struct abbrev_table *abbrev_table;
918 /* Type of function passed to init_cutu_and_read_dies, et.al. */
919 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
920 const gdb_byte *info_ptr,
921 struct die_info *comp_unit_die,
925 /* A 1-based directory index. This is a strong typedef to prevent
926 accidentally using a directory index as a 0-based index into an
928 enum class dir_index : unsigned int {};
930 /* Likewise, a 1-based file name index. */
931 enum class file_name_index : unsigned int {};
935 file_entry () = default;
937 file_entry (const char *name_, dir_index d_index_,
938 unsigned int mod_time_, unsigned int length_)
941 mod_time (mod_time_),
945 /* Return the include directory at D_INDEX stored in LH. Returns
946 NULL if D_INDEX is out of bounds. */
947 const char *include_dir (const line_header *lh) const;
949 /* The file name. Note this is an observing pointer. The memory is
950 owned by debug_line_buffer. */
953 /* The directory index (1-based). */
954 dir_index d_index {};
956 unsigned int mod_time {};
958 unsigned int length {};
960 /* True if referenced by the Line Number Program. */
963 /* The associated symbol table, if any. */
964 struct symtab *symtab {};
967 /* The line number information for a compilation unit (found in the
968 .debug_line section) begins with a "statement program header",
969 which contains the following information. */
976 /* Add an entry to the include directory table. */
977 void add_include_dir (const char *include_dir);
979 /* Add an entry to the file name table. */
980 void add_file_name (const char *name, dir_index d_index,
981 unsigned int mod_time, unsigned int length);
983 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
985 const char *include_dir_at (dir_index index) const
987 /* Convert directory index number (1-based) to vector index
989 size_t vec_index = to_underlying (index) - 1;
991 if (vec_index >= include_dirs.size ())
993 return include_dirs[vec_index];
996 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
998 file_entry *file_name_at (file_name_index index)
1000 /* Convert file name index number (1-based) to vector index
1002 size_t vec_index = to_underlying (index) - 1;
1004 if (vec_index >= file_names.size ())
1006 return &file_names[vec_index];
1009 /* Offset of line number information in .debug_line section. */
1010 sect_offset sect_off {};
1012 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1013 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1015 unsigned int total_length {};
1016 unsigned short version {};
1017 unsigned int header_length {};
1018 unsigned char minimum_instruction_length {};
1019 unsigned char maximum_ops_per_instruction {};
1020 unsigned char default_is_stmt {};
1022 unsigned char line_range {};
1023 unsigned char opcode_base {};
1025 /* standard_opcode_lengths[i] is the number of operands for the
1026 standard opcode whose value is i. This means that
1027 standard_opcode_lengths[0] is unused, and the last meaningful
1028 element is standard_opcode_lengths[opcode_base - 1]. */
1029 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1031 /* The include_directories table. Note these are observing
1032 pointers. The memory is owned by debug_line_buffer. */
1033 std::vector<const char *> include_dirs;
1035 /* The file_names table. */
1036 std::vector<file_entry> file_names;
1038 /* The start and end of the statement program following this
1039 header. These point into dwarf2_per_objfile->line_buffer. */
1040 const gdb_byte *statement_program_start {}, *statement_program_end {};
1043 typedef std::unique_ptr<line_header> line_header_up;
1046 file_entry::include_dir (const line_header *lh) const
1048 return lh->include_dir_at (d_index);
1051 /* When we construct a partial symbol table entry we only
1052 need this much information. */
1053 struct partial_die_info : public allocate_on_obstack
1055 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1057 /* Disable assign but still keep copy ctor, which is needed
1058 load_partial_dies. */
1059 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1061 /* Adjust the partial die before generating a symbol for it. This
1062 function may set the is_external flag or change the DIE's
1064 void fixup (struct dwarf2_cu *cu);
1066 /* Read a minimal amount of information into the minimal die
1068 const gdb_byte *read (const struct die_reader_specs *reader,
1069 const struct abbrev_info &abbrev,
1070 const gdb_byte *info_ptr);
1072 /* Offset of this DIE. */
1073 const sect_offset sect_off;
1075 /* DWARF-2 tag for this DIE. */
1076 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1078 /* Assorted flags describing the data found in this DIE. */
1079 const unsigned int has_children : 1;
1081 unsigned int is_external : 1;
1082 unsigned int is_declaration : 1;
1083 unsigned int has_type : 1;
1084 unsigned int has_specification : 1;
1085 unsigned int has_pc_info : 1;
1086 unsigned int may_be_inlined : 1;
1088 /* This DIE has been marked DW_AT_main_subprogram. */
1089 unsigned int main_subprogram : 1;
1091 /* Flag set if the SCOPE field of this structure has been
1093 unsigned int scope_set : 1;
1095 /* Flag set if the DIE has a byte_size attribute. */
1096 unsigned int has_byte_size : 1;
1098 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1099 unsigned int has_const_value : 1;
1101 /* Flag set if any of the DIE's children are template arguments. */
1102 unsigned int has_template_arguments : 1;
1104 /* Flag set if fixup has been called on this die. */
1105 unsigned int fixup_called : 1;
1107 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1108 unsigned int is_dwz : 1;
1110 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1111 unsigned int spec_is_dwz : 1;
1113 /* The name of this DIE. Normally the value of DW_AT_name, but
1114 sometimes a default name for unnamed DIEs. */
1115 const char *name = nullptr;
1117 /* The linkage name, if present. */
1118 const char *linkage_name = nullptr;
1120 /* The scope to prepend to our children. This is generally
1121 allocated on the comp_unit_obstack, so will disappear
1122 when this compilation unit leaves the cache. */
1123 const char *scope = nullptr;
1125 /* Some data associated with the partial DIE. The tag determines
1126 which field is live. */
1129 /* The location description associated with this DIE, if any. */
1130 struct dwarf_block *locdesc;
1131 /* The offset of an import, for DW_TAG_imported_unit. */
1132 sect_offset sect_off;
1135 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1136 CORE_ADDR lowpc = 0;
1137 CORE_ADDR highpc = 0;
1139 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1140 DW_AT_sibling, if any. */
1141 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1142 could return DW_AT_sibling values to its caller load_partial_dies. */
1143 const gdb_byte *sibling = nullptr;
1145 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1146 DW_AT_specification (or DW_AT_abstract_origin or
1147 DW_AT_extension). */
1148 sect_offset spec_offset {};
1150 /* Pointers to this DIE's parent, first child, and next sibling,
1152 struct partial_die_info *die_parent = nullptr;
1153 struct partial_die_info *die_child = nullptr;
1154 struct partial_die_info *die_sibling = nullptr;
1156 friend struct partial_die_info *
1157 dwarf2_cu::find_partial_die (sect_offset sect_off);
1160 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1161 partial_die_info (sect_offset sect_off)
1162 : partial_die_info (sect_off, DW_TAG_padding, 0)
1166 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1168 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1173 has_specification = 0;
1176 main_subprogram = 0;
1179 has_const_value = 0;
1180 has_template_arguments = 0;
1187 /* This data structure holds the information of an abbrev. */
1190 unsigned int number; /* number identifying abbrev */
1191 enum dwarf_tag tag; /* dwarf tag */
1192 unsigned short has_children; /* boolean */
1193 unsigned short num_attrs; /* number of attributes */
1194 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1195 struct abbrev_info *next; /* next in chain */
1200 ENUM_BITFIELD(dwarf_attribute) name : 16;
1201 ENUM_BITFIELD(dwarf_form) form : 16;
1203 /* It is valid only if FORM is DW_FORM_implicit_const. */
1204 LONGEST implicit_const;
1207 /* Size of abbrev_table.abbrev_hash_table. */
1208 #define ABBREV_HASH_SIZE 121
1210 /* Top level data structure to contain an abbreviation table. */
1214 explicit abbrev_table (sect_offset off)
1218 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1219 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1222 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1224 /* Allocate space for a struct abbrev_info object in
1226 struct abbrev_info *alloc_abbrev ();
1228 /* Add an abbreviation to the table. */
1229 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1231 /* Look up an abbrev in the table.
1232 Returns NULL if the abbrev is not found. */
1234 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1237 /* Where the abbrev table came from.
1238 This is used as a sanity check when the table is used. */
1239 const sect_offset sect_off;
1241 /* Storage for the abbrev table. */
1242 auto_obstack abbrev_obstack;
1246 /* Hash table of abbrevs.
1247 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1248 It could be statically allocated, but the previous code didn't so we
1250 struct abbrev_info **m_abbrevs;
1253 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1255 /* Attributes have a name and a value. */
1258 ENUM_BITFIELD(dwarf_attribute) name : 16;
1259 ENUM_BITFIELD(dwarf_form) form : 15;
1261 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1262 field should be in u.str (existing only for DW_STRING) but it is kept
1263 here for better struct attribute alignment. */
1264 unsigned int string_is_canonical : 1;
1269 struct dwarf_block *blk;
1278 /* This data structure holds a complete die structure. */
1281 /* DWARF-2 tag for this DIE. */
1282 ENUM_BITFIELD(dwarf_tag) tag : 16;
1284 /* Number of attributes */
1285 unsigned char num_attrs;
1287 /* True if we're presently building the full type name for the
1288 type derived from this DIE. */
1289 unsigned char building_fullname : 1;
1291 /* True if this die is in process. PR 16581. */
1292 unsigned char in_process : 1;
1295 unsigned int abbrev;
1297 /* Offset in .debug_info or .debug_types section. */
1298 sect_offset sect_off;
1300 /* The dies in a compilation unit form an n-ary tree. PARENT
1301 points to this die's parent; CHILD points to the first child of
1302 this node; and all the children of a given node are chained
1303 together via their SIBLING fields. */
1304 struct die_info *child; /* Its first child, if any. */
1305 struct die_info *sibling; /* Its next sibling, if any. */
1306 struct die_info *parent; /* Its parent, if any. */
1308 /* An array of attributes, with NUM_ATTRS elements. There may be
1309 zero, but it's not common and zero-sized arrays are not
1310 sufficiently portable C. */
1311 struct attribute attrs[1];
1314 /* Get at parts of an attribute structure. */
1316 #define DW_STRING(attr) ((attr)->u.str)
1317 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1318 #define DW_UNSND(attr) ((attr)->u.unsnd)
1319 #define DW_BLOCK(attr) ((attr)->u.blk)
1320 #define DW_SND(attr) ((attr)->u.snd)
1321 #define DW_ADDR(attr) ((attr)->u.addr)
1322 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1324 /* Blocks are a bunch of untyped bytes. */
1329 /* Valid only if SIZE is not zero. */
1330 const gdb_byte *data;
1333 #ifndef ATTR_ALLOC_CHUNK
1334 #define ATTR_ALLOC_CHUNK 4
1337 /* Allocate fields for structs, unions and enums in this size. */
1338 #ifndef DW_FIELD_ALLOC_CHUNK
1339 #define DW_FIELD_ALLOC_CHUNK 4
1342 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1343 but this would require a corresponding change in unpack_field_as_long
1345 static int bits_per_byte = 8;
1347 /* When reading a variant or variant part, we track a bit more
1348 information about the field, and store it in an object of this
1351 struct variant_field
1353 /* If we see a DW_TAG_variant, then this will be the discriminant
1355 ULONGEST discriminant_value;
1356 /* If we see a DW_TAG_variant, then this will be set if this is the
1358 bool default_branch;
1359 /* While reading a DW_TAG_variant_part, this will be set if this
1360 field is the discriminant. */
1361 bool is_discriminant;
1366 int accessibility = 0;
1368 /* Extra information to describe a variant or variant part. */
1369 struct variant_field variant {};
1370 struct field field {};
1375 const char *name = nullptr;
1376 std::vector<struct fn_field> fnfields;
1379 /* The routines that read and process dies for a C struct or C++ class
1380 pass lists of data member fields and lists of member function fields
1381 in an instance of a field_info structure, as defined below. */
1384 /* List of data member and baseclasses fields. */
1385 std::vector<struct nextfield> fields;
1386 std::vector<struct nextfield> baseclasses;
1388 /* Number of fields (including baseclasses). */
1391 /* Set if the accesibility of one of the fields is not public. */
1392 int non_public_fields = 0;
1394 /* Member function fieldlist array, contains name of possibly overloaded
1395 member function, number of overloaded member functions and a pointer
1396 to the head of the member function field chain. */
1397 std::vector<struct fnfieldlist> fnfieldlists;
1399 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1400 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1401 std::vector<struct decl_field> typedef_field_list;
1403 /* Nested types defined by this class and the number of elements in this
1405 std::vector<struct decl_field> nested_types_list;
1408 /* One item on the queue of compilation units to read in full symbols
1410 struct dwarf2_queue_item
1412 struct dwarf2_per_cu_data *per_cu;
1413 enum language pretend_language;
1414 struct dwarf2_queue_item *next;
1417 /* The current queue. */
1418 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1420 /* Loaded secondary compilation units are kept in memory until they
1421 have not been referenced for the processing of this many
1422 compilation units. Set this to zero to disable caching. Cache
1423 sizes of up to at least twenty will improve startup time for
1424 typical inter-CU-reference binaries, at an obvious memory cost. */
1425 static int dwarf_max_cache_age = 5;
1427 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1428 struct cmd_list_element *c, const char *value)
1430 fprintf_filtered (file, _("The upper bound on the age of cached "
1431 "DWARF compilation units is %s.\n"),
1435 /* local function prototypes */
1437 static const char *get_section_name (const struct dwarf2_section_info *);
1439 static const char *get_section_file_name (const struct dwarf2_section_info *);
1441 static void dwarf2_find_base_address (struct die_info *die,
1442 struct dwarf2_cu *cu);
1444 static struct partial_symtab *create_partial_symtab
1445 (struct dwarf2_per_cu_data *per_cu, const char *name);
1447 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1448 const gdb_byte *info_ptr,
1449 struct die_info *type_unit_die,
1450 int has_children, void *data);
1452 static void dwarf2_build_psymtabs_hard
1453 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1455 static void scan_partial_symbols (struct partial_die_info *,
1456 CORE_ADDR *, CORE_ADDR *,
1457 int, struct dwarf2_cu *);
1459 static void add_partial_symbol (struct partial_die_info *,
1460 struct dwarf2_cu *);
1462 static void add_partial_namespace (struct partial_die_info *pdi,
1463 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1464 int set_addrmap, struct dwarf2_cu *cu);
1466 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1467 CORE_ADDR *highpc, int set_addrmap,
1468 struct dwarf2_cu *cu);
1470 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1471 struct dwarf2_cu *cu);
1473 static void add_partial_subprogram (struct partial_die_info *pdi,
1474 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1475 int need_pc, struct dwarf2_cu *cu);
1477 static void dwarf2_read_symtab (struct partial_symtab *,
1480 static void psymtab_to_symtab_1 (struct partial_symtab *);
1482 static abbrev_table_up abbrev_table_read_table
1483 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1486 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1488 static struct partial_die_info *load_partial_dies
1489 (const struct die_reader_specs *, const gdb_byte *, int);
1491 /* A pair of partial_die_info and compilation unit. */
1492 struct cu_partial_die_info
1494 /* The compilation unit of the partial_die_info. */
1495 struct dwarf2_cu *cu;
1496 /* A partial_die_info. */
1497 struct partial_die_info *pdi;
1499 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1505 cu_partial_die_info () = delete;
1508 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1509 struct dwarf2_cu *);
1511 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1512 struct attribute *, struct attr_abbrev *,
1515 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1517 static int read_1_signed_byte (bfd *, const gdb_byte *);
1519 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1521 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1522 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1524 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1526 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1528 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1531 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1533 static LONGEST read_checked_initial_length_and_offset
1534 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1535 unsigned int *, unsigned int *);
1537 static LONGEST read_offset (bfd *, const gdb_byte *,
1538 const struct comp_unit_head *,
1541 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1543 static sect_offset read_abbrev_offset
1544 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1545 struct dwarf2_section_info *, sect_offset);
1547 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1549 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1551 static const char *read_indirect_string
1552 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1553 const struct comp_unit_head *, unsigned int *);
1555 static const char *read_indirect_line_string
1556 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1557 const struct comp_unit_head *, unsigned int *);
1559 static const char *read_indirect_string_at_offset
1560 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1561 LONGEST str_offset);
1563 static const char *read_indirect_string_from_dwz
1564 (struct objfile *objfile, struct dwz_file *, LONGEST);
1566 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1568 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1572 static const char *read_str_index (const struct die_reader_specs *reader,
1573 ULONGEST str_index);
1575 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1577 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1578 struct dwarf2_cu *);
1580 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1583 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1584 struct dwarf2_cu *cu);
1586 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1588 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1589 struct dwarf2_cu *cu);
1591 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1593 static struct die_info *die_specification (struct die_info *die,
1594 struct dwarf2_cu **);
1596 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1597 struct dwarf2_cu *cu);
1599 static void dwarf_decode_lines (struct line_header *, const char *,
1600 struct dwarf2_cu *, struct partial_symtab *,
1601 CORE_ADDR, int decode_mapping);
1603 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1606 static struct symbol *new_symbol (struct die_info *, struct type *,
1607 struct dwarf2_cu *, struct symbol * = NULL);
1609 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1610 struct dwarf2_cu *);
1612 static void dwarf2_const_value_attr (const struct attribute *attr,
1615 struct obstack *obstack,
1616 struct dwarf2_cu *cu, LONGEST *value,
1617 const gdb_byte **bytes,
1618 struct dwarf2_locexpr_baton **baton);
1620 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1622 static int need_gnat_info (struct dwarf2_cu *);
1624 static struct type *die_descriptive_type (struct die_info *,
1625 struct dwarf2_cu *);
1627 static void set_descriptive_type (struct type *, struct die_info *,
1628 struct dwarf2_cu *);
1630 static struct type *die_containing_type (struct die_info *,
1631 struct dwarf2_cu *);
1633 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1634 struct dwarf2_cu *);
1636 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1638 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1640 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1642 static char *typename_concat (struct obstack *obs, const char *prefix,
1643 const char *suffix, int physname,
1644 struct dwarf2_cu *cu);
1646 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1648 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1650 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1652 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1654 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1656 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1658 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *, struct partial_symtab *);
1661 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1662 values. Keep the items ordered with increasing constraints compliance. */
1665 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1666 PC_BOUNDS_NOT_PRESENT,
1668 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1669 were present but they do not form a valid range of PC addresses. */
1672 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1675 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1679 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1680 CORE_ADDR *, CORE_ADDR *,
1682 struct partial_symtab *);
1684 static void get_scope_pc_bounds (struct die_info *,
1685 CORE_ADDR *, CORE_ADDR *,
1686 struct dwarf2_cu *);
1688 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1689 CORE_ADDR, struct dwarf2_cu *);
1691 static void dwarf2_add_field (struct field_info *, struct die_info *,
1692 struct dwarf2_cu *);
1694 static void dwarf2_attach_fields_to_type (struct field_info *,
1695 struct type *, struct dwarf2_cu *);
1697 static void dwarf2_add_member_fn (struct field_info *,
1698 struct die_info *, struct type *,
1699 struct dwarf2_cu *);
1701 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1703 struct dwarf2_cu *);
1705 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1707 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1709 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1711 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1713 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1715 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1717 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1719 static struct type *read_module_type (struct die_info *die,
1720 struct dwarf2_cu *cu);
1722 static const char *namespace_name (struct die_info *die,
1723 int *is_anonymous, struct dwarf2_cu *);
1725 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1727 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1729 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1730 struct dwarf2_cu *);
1732 static struct die_info *read_die_and_siblings_1
1733 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1736 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1737 const gdb_byte *info_ptr,
1738 const gdb_byte **new_info_ptr,
1739 struct die_info *parent);
1741 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1742 struct die_info **, const gdb_byte *,
1745 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1746 struct die_info **, const gdb_byte *,
1749 static void process_die (struct die_info *, struct dwarf2_cu *);
1751 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1754 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1756 static const char *dwarf2_full_name (const char *name,
1757 struct die_info *die,
1758 struct dwarf2_cu *cu);
1760 static const char *dwarf2_physname (const char *name, struct die_info *die,
1761 struct dwarf2_cu *cu);
1763 static struct die_info *dwarf2_extension (struct die_info *die,
1764 struct dwarf2_cu **);
1766 static const char *dwarf_tag_name (unsigned int);
1768 static const char *dwarf_attr_name (unsigned int);
1770 static const char *dwarf_unit_type_name (int unit_type);
1772 static const char *dwarf_form_name (unsigned int);
1774 static const char *dwarf_bool_name (unsigned int);
1776 static const char *dwarf_type_encoding_name (unsigned int);
1778 static struct die_info *sibling_die (struct die_info *);
1780 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1782 static void dump_die_for_error (struct die_info *);
1784 static void dump_die_1 (struct ui_file *, int level, int max_level,
1787 /*static*/ void dump_die (struct die_info *, int max_level);
1789 static void store_in_ref_table (struct die_info *,
1790 struct dwarf2_cu *);
1792 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1794 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1796 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1797 const struct attribute *,
1798 struct dwarf2_cu **);
1800 static struct die_info *follow_die_ref (struct die_info *,
1801 const struct attribute *,
1802 struct dwarf2_cu **);
1804 static struct die_info *follow_die_sig (struct die_info *,
1805 const struct attribute *,
1806 struct dwarf2_cu **);
1808 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1809 struct dwarf2_cu *);
1811 static struct type *get_DW_AT_signature_type (struct die_info *,
1812 const struct attribute *,
1813 struct dwarf2_cu *);
1815 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1817 static void read_signatured_type (struct signatured_type *);
1819 static int attr_to_dynamic_prop (const struct attribute *attr,
1820 struct die_info *die, struct dwarf2_cu *cu,
1821 struct dynamic_prop *prop, struct type *type);
1823 /* memory allocation interface */
1825 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1827 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1829 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1831 static int attr_form_is_block (const struct attribute *);
1833 static int attr_form_is_section_offset (const struct attribute *);
1835 static int attr_form_is_constant (const struct attribute *);
1837 static int attr_form_is_ref (const struct attribute *);
1839 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1840 struct dwarf2_loclist_baton *baton,
1841 const struct attribute *attr);
1843 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1845 struct dwarf2_cu *cu,
1848 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1849 const gdb_byte *info_ptr,
1850 struct abbrev_info *abbrev);
1852 static hashval_t partial_die_hash (const void *item);
1854 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1856 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1857 (sect_offset sect_off, unsigned int offset_in_dwz,
1858 struct dwarf2_per_objfile *dwarf2_per_objfile);
1860 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1861 struct die_info *comp_unit_die,
1862 enum language pretend_language);
1864 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1866 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1868 static struct type *set_die_type (struct die_info *, struct type *,
1869 struct dwarf2_cu *);
1871 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1873 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1875 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1878 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1881 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1884 static void dwarf2_add_dependence (struct dwarf2_cu *,
1885 struct dwarf2_per_cu_data *);
1887 static void dwarf2_mark (struct dwarf2_cu *);
1889 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1891 static struct type *get_die_type_at_offset (sect_offset,
1892 struct dwarf2_per_cu_data *);
1894 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1896 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1897 enum language pretend_language);
1899 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1901 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1902 static struct type *dwarf2_per_cu_addr_sized_int_type
1903 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1905 /* Class, the destructor of which frees all allocated queue entries. This
1906 will only have work to do if an error was thrown while processing the
1907 dwarf. If no error was thrown then the queue entries should have all
1908 been processed, and freed, as we went along. */
1910 class dwarf2_queue_guard
1913 dwarf2_queue_guard () = default;
1915 /* Free any entries remaining on the queue. There should only be
1916 entries left if we hit an error while processing the dwarf. */
1917 ~dwarf2_queue_guard ()
1919 struct dwarf2_queue_item *item, *last;
1921 item = dwarf2_queue;
1924 /* Anything still marked queued is likely to be in an
1925 inconsistent state, so discard it. */
1926 if (item->per_cu->queued)
1928 if (item->per_cu->cu != NULL)
1929 free_one_cached_comp_unit (item->per_cu);
1930 item->per_cu->queued = 0;
1938 dwarf2_queue = dwarf2_queue_tail = NULL;
1942 /* The return type of find_file_and_directory. Note, the enclosed
1943 string pointers are only valid while this object is valid. */
1945 struct file_and_directory
1947 /* The filename. This is never NULL. */
1950 /* The compilation directory. NULL if not known. If we needed to
1951 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1952 points directly to the DW_AT_comp_dir string attribute owned by
1953 the obstack that owns the DIE. */
1954 const char *comp_dir;
1956 /* If we needed to build a new string for comp_dir, this is what
1957 owns the storage. */
1958 std::string comp_dir_storage;
1961 static file_and_directory find_file_and_directory (struct die_info *die,
1962 struct dwarf2_cu *cu);
1964 static char *file_full_name (int file, struct line_header *lh,
1965 const char *comp_dir);
1967 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1968 enum class rcuh_kind { COMPILE, TYPE };
1970 static const gdb_byte *read_and_check_comp_unit_head
1971 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1972 struct comp_unit_head *header,
1973 struct dwarf2_section_info *section,
1974 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1975 rcuh_kind section_kind);
1977 static void init_cutu_and_read_dies
1978 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1979 int use_existing_cu, int keep, bool skip_partial,
1980 die_reader_func_ftype *die_reader_func, void *data);
1982 static void init_cutu_and_read_dies_simple
1983 (struct dwarf2_per_cu_data *this_cu,
1984 die_reader_func_ftype *die_reader_func, void *data);
1986 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1988 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1990 static struct dwo_unit *lookup_dwo_unit_in_dwp
1991 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1992 struct dwp_file *dwp_file, const char *comp_dir,
1993 ULONGEST signature, int is_debug_types);
1995 static struct dwp_file *get_dwp_file
1996 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1998 static struct dwo_unit *lookup_dwo_comp_unit
1999 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2001 static struct dwo_unit *lookup_dwo_type_unit
2002 (struct signatured_type *, const char *, const char *);
2004 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2006 /* A unique pointer to a dwo_file. */
2008 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
2010 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2012 static void check_producer (struct dwarf2_cu *cu);
2014 static void free_line_header_voidp (void *arg);
2016 /* Various complaints about symbol reading that don't abort the process. */
2019 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2021 complaint (_("statement list doesn't fit in .debug_line section"));
2025 dwarf2_debug_line_missing_file_complaint (void)
2027 complaint (_(".debug_line section has line data without a file"));
2031 dwarf2_debug_line_missing_end_sequence_complaint (void)
2033 complaint (_(".debug_line section has line "
2034 "program sequence without an end"));
2038 dwarf2_complex_location_expr_complaint (void)
2040 complaint (_("location expression too complex"));
2044 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2047 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2052 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2054 complaint (_("debug info runs off end of %s section"
2056 get_section_name (section),
2057 get_section_file_name (section));
2061 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2063 complaint (_("macro debug info contains a "
2064 "malformed macro definition:\n`%s'"),
2069 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2071 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2075 /* Hash function for line_header_hash. */
2078 line_header_hash (const struct line_header *ofs)
2080 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2083 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2086 line_header_hash_voidp (const void *item)
2088 const struct line_header *ofs = (const struct line_header *) item;
2090 return line_header_hash (ofs);
2093 /* Equality function for line_header_hash. */
2096 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2098 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2099 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2101 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2102 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2107 /* Read the given attribute value as an address, taking the attribute's
2108 form into account. */
2111 attr_value_as_address (struct attribute *attr)
2115 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2116 && attr->form != DW_FORM_GNU_addr_index)
2118 /* Aside from a few clearly defined exceptions, attributes that
2119 contain an address must always be in DW_FORM_addr form.
2120 Unfortunately, some compilers happen to be violating this
2121 requirement by encoding addresses using other forms, such
2122 as DW_FORM_data4 for example. For those broken compilers,
2123 we try to do our best, without any guarantee of success,
2124 to interpret the address correctly. It would also be nice
2125 to generate a complaint, but that would require us to maintain
2126 a list of legitimate cases where a non-address form is allowed,
2127 as well as update callers to pass in at least the CU's DWARF
2128 version. This is more overhead than what we're willing to
2129 expand for a pretty rare case. */
2130 addr = DW_UNSND (attr);
2133 addr = DW_ADDR (attr);
2138 /* See declaration. */
2140 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2141 const dwarf2_debug_sections *names)
2142 : objfile (objfile_)
2145 names = &dwarf2_elf_names;
2147 bfd *obfd = objfile->obfd;
2149 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2150 locate_sections (obfd, sec, *names);
2153 dwarf2_per_objfile::~dwarf2_per_objfile ()
2155 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2156 free_cached_comp_units ();
2158 if (quick_file_names_table)
2159 htab_delete (quick_file_names_table);
2161 if (line_header_hash)
2162 htab_delete (line_header_hash);
2164 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2165 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2167 for (signatured_type *sig_type : all_type_units)
2168 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2170 /* Everything else should be on the objfile obstack. */
2173 /* See declaration. */
2176 dwarf2_per_objfile::free_cached_comp_units ()
2178 dwarf2_per_cu_data *per_cu = read_in_chain;
2179 dwarf2_per_cu_data **last_chain = &read_in_chain;
2180 while (per_cu != NULL)
2182 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2185 *last_chain = next_cu;
2190 /* A helper class that calls free_cached_comp_units on
2193 class free_cached_comp_units
2197 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2198 : m_per_objfile (per_objfile)
2202 ~free_cached_comp_units ()
2204 m_per_objfile->free_cached_comp_units ();
2207 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2211 dwarf2_per_objfile *m_per_objfile;
2214 /* Try to locate the sections we need for DWARF 2 debugging
2215 information and return true if we have enough to do something.
2216 NAMES points to the dwarf2 section names, or is NULL if the standard
2217 ELF names are used. */
2220 dwarf2_has_info (struct objfile *objfile,
2221 const struct dwarf2_debug_sections *names)
2223 if (objfile->flags & OBJF_READNEVER)
2226 struct dwarf2_per_objfile *dwarf2_per_objfile
2227 = get_dwarf2_per_objfile (objfile);
2229 if (dwarf2_per_objfile == NULL)
2230 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2233 return (!dwarf2_per_objfile->info.is_virtual
2234 && dwarf2_per_objfile->info.s.section != NULL
2235 && !dwarf2_per_objfile->abbrev.is_virtual
2236 && dwarf2_per_objfile->abbrev.s.section != NULL);
2239 /* Return the containing section of virtual section SECTION. */
2241 static struct dwarf2_section_info *
2242 get_containing_section (const struct dwarf2_section_info *section)
2244 gdb_assert (section->is_virtual);
2245 return section->s.containing_section;
2248 /* Return the bfd owner of SECTION. */
2251 get_section_bfd_owner (const struct dwarf2_section_info *section)
2253 if (section->is_virtual)
2255 section = get_containing_section (section);
2256 gdb_assert (!section->is_virtual);
2258 return section->s.section->owner;
2261 /* Return the bfd section of SECTION.
2262 Returns NULL if the section is not present. */
2265 get_section_bfd_section (const struct dwarf2_section_info *section)
2267 if (section->is_virtual)
2269 section = get_containing_section (section);
2270 gdb_assert (!section->is_virtual);
2272 return section->s.section;
2275 /* Return the name of SECTION. */
2278 get_section_name (const struct dwarf2_section_info *section)
2280 asection *sectp = get_section_bfd_section (section);
2282 gdb_assert (sectp != NULL);
2283 return bfd_section_name (sectp);
2286 /* Return the name of the file SECTION is in. */
2289 get_section_file_name (const struct dwarf2_section_info *section)
2291 bfd *abfd = get_section_bfd_owner (section);
2293 return bfd_get_filename (abfd);
2296 /* Return the id of SECTION.
2297 Returns 0 if SECTION doesn't exist. */
2300 get_section_id (const struct dwarf2_section_info *section)
2302 asection *sectp = get_section_bfd_section (section);
2309 /* Return the flags of SECTION.
2310 SECTION (or containing section if this is a virtual section) must exist. */
2313 get_section_flags (const struct dwarf2_section_info *section)
2315 asection *sectp = get_section_bfd_section (section);
2317 gdb_assert (sectp != NULL);
2318 return bfd_section_flags (sectp);
2321 /* When loading sections, we look either for uncompressed section or for
2322 compressed section names. */
2325 section_is_p (const char *section_name,
2326 const struct dwarf2_section_names *names)
2328 if (names->normal != NULL
2329 && strcmp (section_name, names->normal) == 0)
2331 if (names->compressed != NULL
2332 && strcmp (section_name, names->compressed) == 0)
2337 /* See declaration. */
2340 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2341 const dwarf2_debug_sections &names)
2343 flagword aflag = bfd_section_flags (sectp);
2345 if ((aflag & SEC_HAS_CONTENTS) == 0)
2348 else if (section_is_p (sectp->name, &names.info))
2350 this->info.s.section = sectp;
2351 this->info.size = bfd_section_size (sectp);
2353 else if (section_is_p (sectp->name, &names.abbrev))
2355 this->abbrev.s.section = sectp;
2356 this->abbrev.size = bfd_section_size (sectp);
2358 else if (section_is_p (sectp->name, &names.line))
2360 this->line.s.section = sectp;
2361 this->line.size = bfd_section_size (sectp);
2363 else if (section_is_p (sectp->name, &names.loc))
2365 this->loc.s.section = sectp;
2366 this->loc.size = bfd_section_size (sectp);
2368 else if (section_is_p (sectp->name, &names.loclists))
2370 this->loclists.s.section = sectp;
2371 this->loclists.size = bfd_section_size (sectp);
2373 else if (section_is_p (sectp->name, &names.macinfo))
2375 this->macinfo.s.section = sectp;
2376 this->macinfo.size = bfd_section_size (sectp);
2378 else if (section_is_p (sectp->name, &names.macro))
2380 this->macro.s.section = sectp;
2381 this->macro.size = bfd_section_size (sectp);
2383 else if (section_is_p (sectp->name, &names.str))
2385 this->str.s.section = sectp;
2386 this->str.size = bfd_section_size (sectp);
2388 else if (section_is_p (sectp->name, &names.line_str))
2390 this->line_str.s.section = sectp;
2391 this->line_str.size = bfd_section_size (sectp);
2393 else if (section_is_p (sectp->name, &names.addr))
2395 this->addr.s.section = sectp;
2396 this->addr.size = bfd_section_size (sectp);
2398 else if (section_is_p (sectp->name, &names.frame))
2400 this->frame.s.section = sectp;
2401 this->frame.size = bfd_section_size (sectp);
2403 else if (section_is_p (sectp->name, &names.eh_frame))
2405 this->eh_frame.s.section = sectp;
2406 this->eh_frame.size = bfd_section_size (sectp);
2408 else if (section_is_p (sectp->name, &names.ranges))
2410 this->ranges.s.section = sectp;
2411 this->ranges.size = bfd_section_size (sectp);
2413 else if (section_is_p (sectp->name, &names.rnglists))
2415 this->rnglists.s.section = sectp;
2416 this->rnglists.size = bfd_section_size (sectp);
2418 else if (section_is_p (sectp->name, &names.types))
2420 struct dwarf2_section_info type_section;
2422 memset (&type_section, 0, sizeof (type_section));
2423 type_section.s.section = sectp;
2424 type_section.size = bfd_section_size (sectp);
2426 this->types.push_back (type_section);
2428 else if (section_is_p (sectp->name, &names.gdb_index))
2430 this->gdb_index.s.section = sectp;
2431 this->gdb_index.size = bfd_section_size (sectp);
2433 else if (section_is_p (sectp->name, &names.debug_names))
2435 this->debug_names.s.section = sectp;
2436 this->debug_names.size = bfd_section_size (sectp);
2438 else if (section_is_p (sectp->name, &names.debug_aranges))
2440 this->debug_aranges.s.section = sectp;
2441 this->debug_aranges.size = bfd_section_size (sectp);
2444 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2445 && bfd_section_vma (sectp) == 0)
2446 this->has_section_at_zero = true;
2449 /* A helper function that decides whether a section is empty,
2453 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2455 if (section->is_virtual)
2456 return section->size == 0;
2457 return section->s.section == NULL || section->size == 0;
2460 /* See dwarf2read.h. */
2463 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2467 gdb_byte *buf, *retbuf;
2471 info->buffer = NULL;
2472 info->readin = true;
2474 if (dwarf2_section_empty_p (info))
2477 sectp = get_section_bfd_section (info);
2479 /* If this is a virtual section we need to read in the real one first. */
2480 if (info->is_virtual)
2482 struct dwarf2_section_info *containing_section =
2483 get_containing_section (info);
2485 gdb_assert (sectp != NULL);
2486 if ((sectp->flags & SEC_RELOC) != 0)
2488 error (_("Dwarf Error: DWP format V2 with relocations is not"
2489 " supported in section %s [in module %s]"),
2490 get_section_name (info), get_section_file_name (info));
2492 dwarf2_read_section (objfile, containing_section);
2493 /* Other code should have already caught virtual sections that don't
2495 gdb_assert (info->virtual_offset + info->size
2496 <= containing_section->size);
2497 /* If the real section is empty or there was a problem reading the
2498 section we shouldn't get here. */
2499 gdb_assert (containing_section->buffer != NULL);
2500 info->buffer = containing_section->buffer + info->virtual_offset;
2504 /* If the section has relocations, we must read it ourselves.
2505 Otherwise we attach it to the BFD. */
2506 if ((sectp->flags & SEC_RELOC) == 0)
2508 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2512 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2515 /* When debugging .o files, we may need to apply relocations; see
2516 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2517 We never compress sections in .o files, so we only need to
2518 try this when the section is not compressed. */
2519 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2522 info->buffer = retbuf;
2526 abfd = get_section_bfd_owner (info);
2527 gdb_assert (abfd != NULL);
2529 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2530 || bfd_bread (buf, info->size, abfd) != info->size)
2532 error (_("Dwarf Error: Can't read DWARF data"
2533 " in section %s [in module %s]"),
2534 bfd_section_name (sectp), bfd_get_filename (abfd));
2538 /* A helper function that returns the size of a section in a safe way.
2539 If you are positive that the section has been read before using the
2540 size, then it is safe to refer to the dwarf2_section_info object's
2541 "size" field directly. In other cases, you must call this
2542 function, because for compressed sections the size field is not set
2543 correctly until the section has been read. */
2545 static bfd_size_type
2546 dwarf2_section_size (struct objfile *objfile,
2547 struct dwarf2_section_info *info)
2550 dwarf2_read_section (objfile, info);
2554 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2558 dwarf2_get_section_info (struct objfile *objfile,
2559 enum dwarf2_section_enum sect,
2560 asection **sectp, const gdb_byte **bufp,
2561 bfd_size_type *sizep)
2563 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2564 struct dwarf2_section_info *info;
2566 /* We may see an objfile without any DWARF, in which case we just
2577 case DWARF2_DEBUG_FRAME:
2578 info = &data->frame;
2580 case DWARF2_EH_FRAME:
2581 info = &data->eh_frame;
2584 gdb_assert_not_reached ("unexpected section");
2587 dwarf2_read_section (objfile, info);
2589 *sectp = get_section_bfd_section (info);
2590 *bufp = info->buffer;
2591 *sizep = info->size;
2594 /* A helper function to find the sections for a .dwz file. */
2597 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2599 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2601 /* Note that we only support the standard ELF names, because .dwz
2602 is ELF-only (at the time of writing). */
2603 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2605 dwz_file->abbrev.s.section = sectp;
2606 dwz_file->abbrev.size = bfd_section_size (sectp);
2608 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2610 dwz_file->info.s.section = sectp;
2611 dwz_file->info.size = bfd_section_size (sectp);
2613 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2615 dwz_file->str.s.section = sectp;
2616 dwz_file->str.size = bfd_section_size (sectp);
2618 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2620 dwz_file->line.s.section = sectp;
2621 dwz_file->line.size = bfd_section_size (sectp);
2623 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2625 dwz_file->macro.s.section = sectp;
2626 dwz_file->macro.size = bfd_section_size (sectp);
2628 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2630 dwz_file->gdb_index.s.section = sectp;
2631 dwz_file->gdb_index.size = bfd_section_size (sectp);
2633 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2635 dwz_file->debug_names.s.section = sectp;
2636 dwz_file->debug_names.size = bfd_section_size (sectp);
2640 /* See dwarf2read.h. */
2643 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2645 const char *filename;
2646 bfd_size_type buildid_len_arg;
2650 if (dwarf2_per_objfile->dwz_file != NULL)
2651 return dwarf2_per_objfile->dwz_file.get ();
2653 bfd_set_error (bfd_error_no_error);
2654 gdb::unique_xmalloc_ptr<char> data
2655 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2656 &buildid_len_arg, &buildid));
2659 if (bfd_get_error () == bfd_error_no_error)
2661 error (_("could not read '.gnu_debugaltlink' section: %s"),
2662 bfd_errmsg (bfd_get_error ()));
2665 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2667 buildid_len = (size_t) buildid_len_arg;
2669 filename = data.get ();
2671 std::string abs_storage;
2672 if (!IS_ABSOLUTE_PATH (filename))
2674 gdb::unique_xmalloc_ptr<char> abs
2675 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2677 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2678 filename = abs_storage.c_str ();
2681 /* First try the file name given in the section. If that doesn't
2682 work, try to use the build-id instead. */
2683 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2684 if (dwz_bfd != NULL)
2686 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2687 dwz_bfd.reset (nullptr);
2690 if (dwz_bfd == NULL)
2691 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2693 if (dwz_bfd == NULL)
2694 error (_("could not find '.gnu_debugaltlink' file for %s"),
2695 objfile_name (dwarf2_per_objfile->objfile));
2697 std::unique_ptr<struct dwz_file> result
2698 (new struct dwz_file (std::move (dwz_bfd)));
2700 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2703 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2704 result->dwz_bfd.get ());
2705 dwarf2_per_objfile->dwz_file = std::move (result);
2706 return dwarf2_per_objfile->dwz_file.get ();
2709 /* DWARF quick_symbols_functions support. */
2711 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2712 unique line tables, so we maintain a separate table of all .debug_line
2713 derived entries to support the sharing.
2714 All the quick functions need is the list of file names. We discard the
2715 line_header when we're done and don't need to record it here. */
2716 struct quick_file_names
2718 /* The data used to construct the hash key. */
2719 struct stmt_list_hash hash;
2721 /* The number of entries in file_names, real_names. */
2722 unsigned int num_file_names;
2724 /* The file names from the line table, after being run through
2726 const char **file_names;
2728 /* The file names from the line table after being run through
2729 gdb_realpath. These are computed lazily. */
2730 const char **real_names;
2733 /* When using the index (and thus not using psymtabs), each CU has an
2734 object of this type. This is used to hold information needed by
2735 the various "quick" methods. */
2736 struct dwarf2_per_cu_quick_data
2738 /* The file table. This can be NULL if there was no file table
2739 or it's currently not read in.
2740 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2741 struct quick_file_names *file_names;
2743 /* The corresponding symbol table. This is NULL if symbols for this
2744 CU have not yet been read. */
2745 struct compunit_symtab *compunit_symtab;
2747 /* A temporary mark bit used when iterating over all CUs in
2748 expand_symtabs_matching. */
2749 unsigned int mark : 1;
2751 /* True if we've tried to read the file table and found there isn't one.
2752 There will be no point in trying to read it again next time. */
2753 unsigned int no_file_data : 1;
2756 /* Utility hash function for a stmt_list_hash. */
2759 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2763 if (stmt_list_hash->dwo_unit != NULL)
2764 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2765 v += to_underlying (stmt_list_hash->line_sect_off);
2769 /* Utility equality function for a stmt_list_hash. */
2772 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2773 const struct stmt_list_hash *rhs)
2775 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2777 if (lhs->dwo_unit != NULL
2778 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2781 return lhs->line_sect_off == rhs->line_sect_off;
2784 /* Hash function for a quick_file_names. */
2787 hash_file_name_entry (const void *e)
2789 const struct quick_file_names *file_data
2790 = (const struct quick_file_names *) e;
2792 return hash_stmt_list_entry (&file_data->hash);
2795 /* Equality function for a quick_file_names. */
2798 eq_file_name_entry (const void *a, const void *b)
2800 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2801 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2803 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2806 /* Delete function for a quick_file_names. */
2809 delete_file_name_entry (void *e)
2811 struct quick_file_names *file_data = (struct quick_file_names *) e;
2814 for (i = 0; i < file_data->num_file_names; ++i)
2816 xfree ((void*) file_data->file_names[i]);
2817 if (file_data->real_names)
2818 xfree ((void*) file_data->real_names[i]);
2821 /* The space for the struct itself lives on objfile_obstack,
2822 so we don't free it here. */
2825 /* Create a quick_file_names hash table. */
2828 create_quick_file_names_table (unsigned int nr_initial_entries)
2830 return htab_create_alloc (nr_initial_entries,
2831 hash_file_name_entry, eq_file_name_entry,
2832 delete_file_name_entry, xcalloc, xfree);
2835 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2836 have to be created afterwards. You should call age_cached_comp_units after
2837 processing PER_CU->CU. dw2_setup must have been already called. */
2840 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2842 if (per_cu->is_debug_types)
2843 load_full_type_unit (per_cu);
2845 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2847 if (per_cu->cu == NULL)
2848 return; /* Dummy CU. */
2850 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2853 /* Read in the symbols for PER_CU. */
2856 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2858 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2860 /* Skip type_unit_groups, reading the type units they contain
2861 is handled elsewhere. */
2862 if (IS_TYPE_UNIT_GROUP (per_cu))
2865 /* The destructor of dwarf2_queue_guard frees any entries left on
2866 the queue. After this point we're guaranteed to leave this function
2867 with the dwarf queue empty. */
2868 dwarf2_queue_guard q_guard;
2870 if (dwarf2_per_objfile->using_index
2871 ? per_cu->v.quick->compunit_symtab == NULL
2872 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2874 queue_comp_unit (per_cu, language_minimal);
2875 load_cu (per_cu, skip_partial);
2877 /* If we just loaded a CU from a DWO, and we're working with an index
2878 that may badly handle TUs, load all the TUs in that DWO as well.
2879 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2880 if (!per_cu->is_debug_types
2881 && per_cu->cu != NULL
2882 && per_cu->cu->dwo_unit != NULL
2883 && dwarf2_per_objfile->index_table != NULL
2884 && dwarf2_per_objfile->index_table->version <= 7
2885 /* DWP files aren't supported yet. */
2886 && get_dwp_file (dwarf2_per_objfile) == NULL)
2887 queue_and_load_all_dwo_tus (per_cu);
2890 process_queue (dwarf2_per_objfile);
2892 /* Age the cache, releasing compilation units that have not
2893 been used recently. */
2894 age_cached_comp_units (dwarf2_per_objfile);
2897 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2898 the objfile from which this CU came. Returns the resulting symbol
2901 static struct compunit_symtab *
2902 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2904 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2906 gdb_assert (dwarf2_per_objfile->using_index);
2907 if (!per_cu->v.quick->compunit_symtab)
2909 free_cached_comp_units freer (dwarf2_per_objfile);
2910 scoped_restore decrementer = increment_reading_symtab ();
2911 dw2_do_instantiate_symtab (per_cu, skip_partial);
2912 process_cu_includes (dwarf2_per_objfile);
2915 return per_cu->v.quick->compunit_symtab;
2918 /* See declaration. */
2920 dwarf2_per_cu_data *
2921 dwarf2_per_objfile::get_cutu (int index)
2923 if (index >= this->all_comp_units.size ())
2925 index -= this->all_comp_units.size ();
2926 gdb_assert (index < this->all_type_units.size ());
2927 return &this->all_type_units[index]->per_cu;
2930 return this->all_comp_units[index];
2933 /* See declaration. */
2935 dwarf2_per_cu_data *
2936 dwarf2_per_objfile::get_cu (int index)
2938 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2940 return this->all_comp_units[index];
2943 /* See declaration. */
2946 dwarf2_per_objfile::get_tu (int index)
2948 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2950 return this->all_type_units[index];
2953 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2954 objfile_obstack, and constructed with the specified field
2957 static dwarf2_per_cu_data *
2958 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2959 struct dwarf2_section_info *section,
2961 sect_offset sect_off, ULONGEST length)
2963 struct objfile *objfile = dwarf2_per_objfile->objfile;
2964 dwarf2_per_cu_data *the_cu
2965 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2966 struct dwarf2_per_cu_data);
2967 the_cu->sect_off = sect_off;
2968 the_cu->length = length;
2969 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2970 the_cu->section = section;
2971 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2972 struct dwarf2_per_cu_quick_data);
2973 the_cu->is_dwz = is_dwz;
2977 /* A helper for create_cus_from_index that handles a given list of
2981 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2982 const gdb_byte *cu_list, offset_type n_elements,
2983 struct dwarf2_section_info *section,
2986 for (offset_type i = 0; i < n_elements; i += 2)
2988 gdb_static_assert (sizeof (ULONGEST) >= 8);
2990 sect_offset sect_off
2991 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2992 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2995 dwarf2_per_cu_data *per_cu
2996 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2998 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3002 /* Read the CU list from the mapped index, and use it to create all
3003 the CU objects for this objfile. */
3006 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3007 const gdb_byte *cu_list, offset_type cu_list_elements,
3008 const gdb_byte *dwz_list, offset_type dwz_elements)
3010 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3011 dwarf2_per_objfile->all_comp_units.reserve
3012 ((cu_list_elements + dwz_elements) / 2);
3014 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3015 &dwarf2_per_objfile->info, 0);
3017 if (dwz_elements == 0)
3020 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3021 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3025 /* Create the signatured type hash table from the index. */
3028 create_signatured_type_table_from_index
3029 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3030 struct dwarf2_section_info *section,
3031 const gdb_byte *bytes,
3032 offset_type elements)
3034 struct objfile *objfile = dwarf2_per_objfile->objfile;
3036 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3037 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3039 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3041 for (offset_type i = 0; i < elements; i += 3)
3043 struct signatured_type *sig_type;
3046 cu_offset type_offset_in_tu;
3048 gdb_static_assert (sizeof (ULONGEST) >= 8);
3049 sect_offset sect_off
3050 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3052 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3054 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3057 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3058 struct signatured_type);
3059 sig_type->signature = signature;
3060 sig_type->type_offset_in_tu = type_offset_in_tu;
3061 sig_type->per_cu.is_debug_types = 1;
3062 sig_type->per_cu.section = section;
3063 sig_type->per_cu.sect_off = sect_off;
3064 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3065 sig_type->per_cu.v.quick
3066 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3067 struct dwarf2_per_cu_quick_data);
3069 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3072 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3075 dwarf2_per_objfile->signatured_types = sig_types_hash;
3078 /* Create the signatured type hash table from .debug_names. */
3081 create_signatured_type_table_from_debug_names
3082 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3083 const mapped_debug_names &map,
3084 struct dwarf2_section_info *section,
3085 struct dwarf2_section_info *abbrev_section)
3087 struct objfile *objfile = dwarf2_per_objfile->objfile;
3089 dwarf2_read_section (objfile, section);
3090 dwarf2_read_section (objfile, abbrev_section);
3092 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3093 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3095 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3097 for (uint32_t i = 0; i < map.tu_count; ++i)
3099 struct signatured_type *sig_type;
3102 sect_offset sect_off
3103 = (sect_offset) (extract_unsigned_integer
3104 (map.tu_table_reordered + i * map.offset_size,
3106 map.dwarf5_byte_order));
3108 comp_unit_head cu_header;
3109 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3111 section->buffer + to_underlying (sect_off),
3114 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3115 struct signatured_type);
3116 sig_type->signature = cu_header.signature;
3117 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3118 sig_type->per_cu.is_debug_types = 1;
3119 sig_type->per_cu.section = section;
3120 sig_type->per_cu.sect_off = sect_off;
3121 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3122 sig_type->per_cu.v.quick
3123 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3124 struct dwarf2_per_cu_quick_data);
3126 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3129 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3132 dwarf2_per_objfile->signatured_types = sig_types_hash;
3135 /* Read the address map data from the mapped index, and use it to
3136 populate the objfile's psymtabs_addrmap. */
3139 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3140 struct mapped_index *index)
3142 struct objfile *objfile = dwarf2_per_objfile->objfile;
3143 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3144 const gdb_byte *iter, *end;
3145 struct addrmap *mutable_map;
3148 auto_obstack temp_obstack;
3150 mutable_map = addrmap_create_mutable (&temp_obstack);
3152 iter = index->address_table.data ();
3153 end = iter + index->address_table.size ();
3155 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3159 ULONGEST hi, lo, cu_index;
3160 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3162 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3164 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3169 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3170 hex_string (lo), hex_string (hi));
3174 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3176 complaint (_(".gdb_index address table has invalid CU number %u"),
3177 (unsigned) cu_index);
3181 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3182 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3183 addrmap_set_empty (mutable_map, lo, hi - 1,
3184 dwarf2_per_objfile->get_cu (cu_index));
3187 objfile->partial_symtabs->psymtabs_addrmap
3188 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3191 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3192 populate the objfile's psymtabs_addrmap. */
3195 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3196 struct dwarf2_section_info *section)
3198 struct objfile *objfile = dwarf2_per_objfile->objfile;
3199 bfd *abfd = objfile->obfd;
3200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3201 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3202 SECT_OFF_TEXT (objfile));
3204 auto_obstack temp_obstack;
3205 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3207 std::unordered_map<sect_offset,
3208 dwarf2_per_cu_data *,
3209 gdb::hash_enum<sect_offset>>
3210 debug_info_offset_to_per_cu;
3211 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3213 const auto insertpair
3214 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3215 if (!insertpair.second)
3217 warning (_("Section .debug_aranges in %s has duplicate "
3218 "debug_info_offset %s, ignoring .debug_aranges."),
3219 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3224 dwarf2_read_section (objfile, section);
3226 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3228 const gdb_byte *addr = section->buffer;
3230 while (addr < section->buffer + section->size)
3232 const gdb_byte *const entry_addr = addr;
3233 unsigned int bytes_read;
3235 const LONGEST entry_length = read_initial_length (abfd, addr,
3239 const gdb_byte *const entry_end = addr + entry_length;
3240 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3241 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3242 if (addr + entry_length > section->buffer + section->size)
3244 warning (_("Section .debug_aranges in %s entry at offset %s "
3245 "length %s exceeds section length %s, "
3246 "ignoring .debug_aranges."),
3247 objfile_name (objfile),
3248 plongest (entry_addr - section->buffer),
3249 plongest (bytes_read + entry_length),
3250 pulongest (section->size));
3254 /* The version number. */
3255 const uint16_t version = read_2_bytes (abfd, addr);
3259 warning (_("Section .debug_aranges in %s entry at offset %s "
3260 "has unsupported version %d, ignoring .debug_aranges."),
3261 objfile_name (objfile),
3262 plongest (entry_addr - section->buffer), version);
3266 const uint64_t debug_info_offset
3267 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3268 addr += offset_size;
3269 const auto per_cu_it
3270 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3271 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3273 warning (_("Section .debug_aranges in %s entry at offset %s "
3274 "debug_info_offset %s does not exists, "
3275 "ignoring .debug_aranges."),
3276 objfile_name (objfile),
3277 plongest (entry_addr - section->buffer),
3278 pulongest (debug_info_offset));
3281 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3283 const uint8_t address_size = *addr++;
3284 if (address_size < 1 || address_size > 8)
3286 warning (_("Section .debug_aranges in %s entry at offset %s "
3287 "address_size %u is invalid, ignoring .debug_aranges."),
3288 objfile_name (objfile),
3289 plongest (entry_addr - section->buffer), address_size);
3293 const uint8_t segment_selector_size = *addr++;
3294 if (segment_selector_size != 0)
3296 warning (_("Section .debug_aranges in %s entry at offset %s "
3297 "segment_selector_size %u is not supported, "
3298 "ignoring .debug_aranges."),
3299 objfile_name (objfile),
3300 plongest (entry_addr - section->buffer),
3301 segment_selector_size);
3305 /* Must pad to an alignment boundary that is twice the address
3306 size. It is undocumented by the DWARF standard but GCC does
3308 for (size_t padding = ((-(addr - section->buffer))
3309 & (2 * address_size - 1));
3310 padding > 0; padding--)
3313 warning (_("Section .debug_aranges in %s entry at offset %s "
3314 "padding is not zero, ignoring .debug_aranges."),
3315 objfile_name (objfile),
3316 plongest (entry_addr - section->buffer));
3322 if (addr + 2 * address_size > entry_end)
3324 warning (_("Section .debug_aranges in %s entry at offset %s "
3325 "address list is not properly terminated, "
3326 "ignoring .debug_aranges."),
3327 objfile_name (objfile),
3328 plongest (entry_addr - section->buffer));
3331 ULONGEST start = extract_unsigned_integer (addr, address_size,
3333 addr += address_size;
3334 ULONGEST length = extract_unsigned_integer (addr, address_size,
3336 addr += address_size;
3337 if (start == 0 && length == 0)
3339 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3341 /* Symbol was eliminated due to a COMDAT group. */
3344 ULONGEST end = start + length;
3345 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3347 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3349 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3353 objfile->partial_symtabs->psymtabs_addrmap
3354 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3357 /* Find a slot in the mapped index INDEX for the object named NAME.
3358 If NAME is found, set *VEC_OUT to point to the CU vector in the
3359 constant pool and return true. If NAME cannot be found, return
3363 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3364 offset_type **vec_out)
3367 offset_type slot, step;
3368 int (*cmp) (const char *, const char *);
3370 gdb::unique_xmalloc_ptr<char> without_params;
3371 if (current_language->la_language == language_cplus
3372 || current_language->la_language == language_fortran
3373 || current_language->la_language == language_d)
3375 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3378 if (strchr (name, '(') != NULL)
3380 without_params = cp_remove_params (name);
3382 if (without_params != NULL)
3383 name = without_params.get ();
3387 /* Index version 4 did not support case insensitive searches. But the
3388 indices for case insensitive languages are built in lowercase, therefore
3389 simulate our NAME being searched is also lowercased. */
3390 hash = mapped_index_string_hash ((index->version == 4
3391 && case_sensitivity == case_sensitive_off
3392 ? 5 : index->version),
3395 slot = hash & (index->symbol_table.size () - 1);
3396 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3397 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3403 const auto &bucket = index->symbol_table[slot];
3404 if (bucket.name == 0 && bucket.vec == 0)
3407 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3408 if (!cmp (name, str))
3410 *vec_out = (offset_type *) (index->constant_pool
3411 + MAYBE_SWAP (bucket.vec));
3415 slot = (slot + step) & (index->symbol_table.size () - 1);
3419 /* A helper function that reads the .gdb_index from BUFFER and fills
3420 in MAP. FILENAME is the name of the file containing the data;
3421 it is used for error reporting. DEPRECATED_OK is true if it is
3422 ok to use deprecated sections.
3424 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3425 out parameters that are filled in with information about the CU and
3426 TU lists in the section.
3428 Returns true if all went well, false otherwise. */
3431 read_gdb_index_from_buffer (struct objfile *objfile,
3432 const char *filename,
3434 gdb::array_view<const gdb_byte> buffer,
3435 struct mapped_index *map,
3436 const gdb_byte **cu_list,
3437 offset_type *cu_list_elements,
3438 const gdb_byte **types_list,
3439 offset_type *types_list_elements)
3441 const gdb_byte *addr = &buffer[0];
3443 /* Version check. */
3444 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3445 /* Versions earlier than 3 emitted every copy of a psymbol. This
3446 causes the index to behave very poorly for certain requests. Version 3
3447 contained incomplete addrmap. So, it seems better to just ignore such
3451 static int warning_printed = 0;
3452 if (!warning_printed)
3454 warning (_("Skipping obsolete .gdb_index section in %s."),
3456 warning_printed = 1;
3460 /* Index version 4 uses a different hash function than index version
3463 Versions earlier than 6 did not emit psymbols for inlined
3464 functions. Using these files will cause GDB not to be able to
3465 set breakpoints on inlined functions by name, so we ignore these
3466 indices unless the user has done
3467 "set use-deprecated-index-sections on". */
3468 if (version < 6 && !deprecated_ok)
3470 static int warning_printed = 0;
3471 if (!warning_printed)
3474 Skipping deprecated .gdb_index section in %s.\n\
3475 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3476 to use the section anyway."),
3478 warning_printed = 1;
3482 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3483 of the TU (for symbols coming from TUs),
3484 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3485 Plus gold-generated indices can have duplicate entries for global symbols,
3486 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3487 These are just performance bugs, and we can't distinguish gdb-generated
3488 indices from gold-generated ones, so issue no warning here. */
3490 /* Indexes with higher version than the one supported by GDB may be no
3491 longer backward compatible. */
3495 map->version = version;
3497 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3500 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3501 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3505 *types_list = addr + MAYBE_SWAP (metadata[i]);
3506 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3507 - MAYBE_SWAP (metadata[i]))
3511 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3512 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3517 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3518 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 = gdb::array_view<mapped_index::symbol_table_slot>
3521 ((mapped_index::symbol_table_slot *) symbol_table,
3522 (mapped_index::symbol_table_slot *) symbol_table_end);
3525 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3530 /* Callback types for dwarf2_read_gdb_index. */
3532 typedef gdb::function_view
3533 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3534 get_gdb_index_contents_ftype;
3535 typedef gdb::function_view
3536 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3537 get_gdb_index_contents_dwz_ftype;
3539 /* Read .gdb_index. If everything went ok, initialize the "quick"
3540 elements of all the CUs and return 1. Otherwise, return 0. */
3543 dwarf2_read_gdb_index
3544 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3545 get_gdb_index_contents_ftype get_gdb_index_contents,
3546 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3548 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3549 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3550 struct dwz_file *dwz;
3551 struct objfile *objfile = dwarf2_per_objfile->objfile;
3553 gdb::array_view<const gdb_byte> main_index_contents
3554 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3556 if (main_index_contents.empty ())
3559 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3560 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3561 use_deprecated_index_sections,
3562 main_index_contents, map.get (), &cu_list,
3563 &cu_list_elements, &types_list,
3564 &types_list_elements))
3567 /* Don't use the index if it's empty. */
3568 if (map->symbol_table.empty ())
3571 /* If there is a .dwz file, read it so we can get its CU list as
3573 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3576 struct mapped_index dwz_map;
3577 const gdb_byte *dwz_types_ignore;
3578 offset_type dwz_types_elements_ignore;
3580 gdb::array_view<const gdb_byte> dwz_index_content
3581 = get_gdb_index_contents_dwz (objfile, dwz);
3583 if (dwz_index_content.empty ())
3586 if (!read_gdb_index_from_buffer (objfile,
3587 bfd_get_filename (dwz->dwz_bfd.get ()),
3588 1, dwz_index_content, &dwz_map,
3589 &dwz_list, &dwz_list_elements,
3591 &dwz_types_elements_ignore))
3593 warning (_("could not read '.gdb_index' section from %s; skipping"),
3594 bfd_get_filename (dwz->dwz_bfd.get ()));
3599 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3600 dwz_list, dwz_list_elements);
3602 if (types_list_elements)
3604 /* We can only handle a single .debug_types when we have an
3606 if (dwarf2_per_objfile->types.size () != 1)
3609 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3611 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3612 types_list, types_list_elements);
3615 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3617 dwarf2_per_objfile->index_table = std::move (map);
3618 dwarf2_per_objfile->using_index = 1;
3619 dwarf2_per_objfile->quick_file_names_table =
3620 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3625 /* die_reader_func for dw2_get_file_names. */
3628 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3629 const gdb_byte *info_ptr,
3630 struct die_info *comp_unit_die,
3634 struct dwarf2_cu *cu = reader->cu;
3635 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3636 struct dwarf2_per_objfile *dwarf2_per_objfile
3637 = cu->per_cu->dwarf2_per_objfile;
3638 struct objfile *objfile = dwarf2_per_objfile->objfile;
3639 struct dwarf2_per_cu_data *lh_cu;
3640 struct attribute *attr;
3643 struct quick_file_names *qfn;
3645 gdb_assert (! this_cu->is_debug_types);
3647 /* Our callers never want to match partial units -- instead they
3648 will match the enclosing full CU. */
3649 if (comp_unit_die->tag == DW_TAG_partial_unit)
3651 this_cu->v.quick->no_file_data = 1;
3659 sect_offset line_offset {};
3661 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3664 struct quick_file_names find_entry;
3666 line_offset = (sect_offset) DW_UNSND (attr);
3668 /* We may have already read in this line header (TU line header sharing).
3669 If we have we're done. */
3670 find_entry.hash.dwo_unit = cu->dwo_unit;
3671 find_entry.hash.line_sect_off = line_offset;
3672 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3673 &find_entry, INSERT);
3676 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3680 lh = dwarf_decode_line_header (line_offset, cu);
3684 lh_cu->v.quick->no_file_data = 1;
3688 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3689 qfn->hash.dwo_unit = cu->dwo_unit;
3690 qfn->hash.line_sect_off = line_offset;
3691 gdb_assert (slot != NULL);
3694 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3697 if (strcmp (fnd.name, "<unknown>") != 0)
3700 qfn->num_file_names = offset + lh->file_names.size ();
3702 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3704 qfn->file_names[0] = xstrdup (fnd.name);
3705 for (i = 0; i < lh->file_names.size (); ++i)
3706 qfn->file_names[i + offset] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3707 qfn->real_names = NULL;
3709 lh_cu->v.quick->file_names = qfn;
3712 /* A helper for the "quick" functions which attempts to read the line
3713 table for THIS_CU. */
3715 static struct quick_file_names *
3716 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3718 /* This should never be called for TUs. */
3719 gdb_assert (! this_cu->is_debug_types);
3720 /* Nor type unit groups. */
3721 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3723 if (this_cu->v.quick->file_names != NULL)
3724 return this_cu->v.quick->file_names;
3725 /* If we know there is no line data, no point in looking again. */
3726 if (this_cu->v.quick->no_file_data)
3729 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3731 if (this_cu->v.quick->no_file_data)
3733 return this_cu->v.quick->file_names;
3736 /* A helper for the "quick" functions which computes and caches the
3737 real path for a given file name from the line table. */
3740 dw2_get_real_path (struct objfile *objfile,
3741 struct quick_file_names *qfn, int index)
3743 if (qfn->real_names == NULL)
3744 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3745 qfn->num_file_names, const char *);
3747 if (qfn->real_names[index] == NULL)
3748 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3750 return qfn->real_names[index];
3753 static struct symtab *
3754 dw2_find_last_source_symtab (struct objfile *objfile)
3756 struct dwarf2_per_objfile *dwarf2_per_objfile
3757 = get_dwarf2_per_objfile (objfile);
3758 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3759 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3764 return compunit_primary_filetab (cust);
3767 /* Traversal function for dw2_forget_cached_source_info. */
3770 dw2_free_cached_file_names (void **slot, void *info)
3772 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3774 if (file_data->real_names)
3778 for (i = 0; i < file_data->num_file_names; ++i)
3780 xfree ((void*) file_data->real_names[i]);
3781 file_data->real_names[i] = NULL;
3789 dw2_forget_cached_source_info (struct objfile *objfile)
3791 struct dwarf2_per_objfile *dwarf2_per_objfile
3792 = get_dwarf2_per_objfile (objfile);
3794 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3795 dw2_free_cached_file_names, NULL);
3798 /* Helper function for dw2_map_symtabs_matching_filename that expands
3799 the symtabs and calls the iterator. */
3802 dw2_map_expand_apply (struct objfile *objfile,
3803 struct dwarf2_per_cu_data *per_cu,
3804 const char *name, const char *real_path,
3805 gdb::function_view<bool (symtab *)> callback)
3807 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3809 /* Don't visit already-expanded CUs. */
3810 if (per_cu->v.quick->compunit_symtab)
3813 /* This may expand more than one symtab, and we want to iterate over
3815 dw2_instantiate_symtab (per_cu, false);
3817 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3818 last_made, callback);
3821 /* Implementation of the map_symtabs_matching_filename method. */
3824 dw2_map_symtabs_matching_filename
3825 (struct objfile *objfile, const char *name, const char *real_path,
3826 gdb::function_view<bool (symtab *)> callback)
3828 const char *name_basename = lbasename (name);
3829 struct dwarf2_per_objfile *dwarf2_per_objfile
3830 = get_dwarf2_per_objfile (objfile);
3832 /* The rule is CUs specify all the files, including those used by
3833 any TU, so there's no need to scan TUs here. */
3835 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3837 /* We only need to look at symtabs not already expanded. */
3838 if (per_cu->v.quick->compunit_symtab)
3841 quick_file_names *file_data = dw2_get_file_names (per_cu);
3842 if (file_data == NULL)
3845 for (int j = 0; j < file_data->num_file_names; ++j)
3847 const char *this_name = file_data->file_names[j];
3848 const char *this_real_name;
3850 if (compare_filenames_for_search (this_name, name))
3852 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3858 /* Before we invoke realpath, which can get expensive when many
3859 files are involved, do a quick comparison of the basenames. */
3860 if (! basenames_may_differ
3861 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3864 this_real_name = dw2_get_real_path (objfile, file_data, j);
3865 if (compare_filenames_for_search (this_real_name, name))
3867 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3873 if (real_path != NULL)
3875 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3876 gdb_assert (IS_ABSOLUTE_PATH (name));
3877 if (this_real_name != NULL
3878 && FILENAME_CMP (real_path, this_real_name) == 0)
3880 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3892 /* Struct used to manage iterating over all CUs looking for a symbol. */
3894 struct dw2_symtab_iterator
3896 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3897 struct dwarf2_per_objfile *dwarf2_per_objfile;
3898 /* If set, only look for symbols that match that block. Valid values are
3899 GLOBAL_BLOCK and STATIC_BLOCK. */
3900 gdb::optional<block_enum> block_index;
3901 /* The kind of symbol we're looking for. */
3903 /* The list of CUs from the index entry of the symbol,
3904 or NULL if not found. */
3906 /* The next element in VEC to look at. */
3908 /* The number of elements in VEC, or zero if there is no match. */
3910 /* Have we seen a global version of the symbol?
3911 If so we can ignore all further global instances.
3912 This is to work around gold/15646, inefficient gold-generated
3917 /* Initialize the index symtab iterator ITER. */
3920 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3921 struct dwarf2_per_objfile *dwarf2_per_objfile,
3922 gdb::optional<block_enum> block_index,
3926 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3927 iter->block_index = block_index;
3928 iter->domain = domain;
3930 iter->global_seen = 0;
3932 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3934 /* index is NULL if OBJF_READNOW. */
3935 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3936 iter->length = MAYBE_SWAP (*iter->vec);
3944 /* Return the next matching CU or NULL if there are no more. */
3946 static struct dwarf2_per_cu_data *
3947 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3949 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3951 for ( ; iter->next < iter->length; ++iter->next)
3953 offset_type cu_index_and_attrs =
3954 MAYBE_SWAP (iter->vec[iter->next + 1]);
3955 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3956 gdb_index_symbol_kind symbol_kind =
3957 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3958 /* Only check the symbol attributes if they're present.
3959 Indices prior to version 7 don't record them,
3960 and indices >= 7 may elide them for certain symbols
3961 (gold does this). */
3963 (dwarf2_per_objfile->index_table->version >= 7
3964 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3966 /* Don't crash on bad data. */
3967 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3968 + dwarf2_per_objfile->all_type_units.size ()))
3970 complaint (_(".gdb_index entry has bad CU index"
3972 objfile_name (dwarf2_per_objfile->objfile));
3976 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3978 /* Skip if already read in. */
3979 if (per_cu->v.quick->compunit_symtab)
3982 /* Check static vs global. */
3985 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3987 if (iter->block_index.has_value ())
3989 bool want_static = *iter->block_index == STATIC_BLOCK;
3991 if (is_static != want_static)
3995 /* Work around gold/15646. */
3996 if (!is_static && iter->global_seen)
3999 iter->global_seen = 1;
4002 /* Only check the symbol's kind if it has one. */
4005 switch (iter->domain)
4008 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4009 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4010 /* Some types are also in VAR_DOMAIN. */
4011 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4015 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4019 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4034 static struct compunit_symtab *
4035 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
4036 const char *name, domain_enum domain)
4038 struct compunit_symtab *stab_best = NULL;
4039 struct dwarf2_per_objfile *dwarf2_per_objfile
4040 = get_dwarf2_per_objfile (objfile);
4042 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4044 struct dw2_symtab_iterator iter;
4045 struct dwarf2_per_cu_data *per_cu;
4047 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
4049 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4051 struct symbol *sym, *with_opaque = NULL;
4052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4054 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4056 sym = block_find_symbol (block, name, domain,
4057 block_find_non_opaque_type_preferred,
4060 /* Some caution must be observed with overloaded functions
4061 and methods, since the index will not contain any overload
4062 information (but NAME might contain it). */
4065 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4067 if (with_opaque != NULL
4068 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4071 /* Keep looking through other CUs. */
4078 dw2_print_stats (struct objfile *objfile)
4080 struct dwarf2_per_objfile *dwarf2_per_objfile
4081 = get_dwarf2_per_objfile (objfile);
4082 int total = (dwarf2_per_objfile->all_comp_units.size ()
4083 + dwarf2_per_objfile->all_type_units.size ());
4086 for (int i = 0; i < total; ++i)
4088 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4090 if (!per_cu->v.quick->compunit_symtab)
4093 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4094 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4097 /* This dumps minimal information about the index.
4098 It is called via "mt print objfiles".
4099 One use is to verify .gdb_index has been loaded by the
4100 gdb.dwarf2/gdb-index.exp testcase. */
4103 dw2_dump (struct objfile *objfile)
4105 struct dwarf2_per_objfile *dwarf2_per_objfile
4106 = get_dwarf2_per_objfile (objfile);
4108 gdb_assert (dwarf2_per_objfile->using_index);
4109 printf_filtered (".gdb_index:");
4110 if (dwarf2_per_objfile->index_table != NULL)
4112 printf_filtered (" version %d\n",
4113 dwarf2_per_objfile->index_table->version);
4116 printf_filtered (" faked for \"readnow\"\n");
4117 printf_filtered ("\n");
4121 dw2_expand_symtabs_for_function (struct objfile *objfile,
4122 const char *func_name)
4124 struct dwarf2_per_objfile *dwarf2_per_objfile
4125 = get_dwarf2_per_objfile (objfile);
4127 struct dw2_symtab_iterator iter;
4128 struct dwarf2_per_cu_data *per_cu;
4130 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
4132 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4133 dw2_instantiate_symtab (per_cu, false);
4138 dw2_expand_all_symtabs (struct objfile *objfile)
4140 struct dwarf2_per_objfile *dwarf2_per_objfile
4141 = get_dwarf2_per_objfile (objfile);
4142 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4143 + dwarf2_per_objfile->all_type_units.size ());
4145 for (int i = 0; i < total_units; ++i)
4147 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4149 /* We don't want to directly expand a partial CU, because if we
4150 read it with the wrong language, then assertion failures can
4151 be triggered later on. See PR symtab/23010. So, tell
4152 dw2_instantiate_symtab to skip partial CUs -- any important
4153 partial CU will be read via DW_TAG_imported_unit anyway. */
4154 dw2_instantiate_symtab (per_cu, true);
4159 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4160 const char *fullname)
4162 struct dwarf2_per_objfile *dwarf2_per_objfile
4163 = get_dwarf2_per_objfile (objfile);
4165 /* We don't need to consider type units here.
4166 This is only called for examining code, e.g. expand_line_sal.
4167 There can be an order of magnitude (or more) more type units
4168 than comp units, and we avoid them if we can. */
4170 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4172 /* We only need to look at symtabs not already expanded. */
4173 if (per_cu->v.quick->compunit_symtab)
4176 quick_file_names *file_data = dw2_get_file_names (per_cu);
4177 if (file_data == NULL)
4180 for (int j = 0; j < file_data->num_file_names; ++j)
4182 const char *this_fullname = file_data->file_names[j];
4184 if (filename_cmp (this_fullname, fullname) == 0)
4186 dw2_instantiate_symtab (per_cu, false);
4194 dw2_map_matching_symbols
4195 (struct objfile *objfile,
4196 const lookup_name_info &name, domain_enum domain,
4198 gdb::function_view<symbol_found_callback_ftype> callback,
4199 symbol_compare_ftype *ordered_compare)
4201 /* Currently unimplemented; used for Ada. The function can be called if the
4202 current language is Ada for a non-Ada objfile using GNU index. As Ada
4203 does not look for non-Ada symbols this function should just return. */
4206 /* Starting from a search name, return the string that finds the upper
4207 bound of all strings that start with SEARCH_NAME in a sorted name
4208 list. Returns the empty string to indicate that the upper bound is
4209 the end of the list. */
4212 make_sort_after_prefix_name (const char *search_name)
4214 /* When looking to complete "func", we find the upper bound of all
4215 symbols that start with "func" by looking for where we'd insert
4216 the closest string that would follow "func" in lexicographical
4217 order. Usually, that's "func"-with-last-character-incremented,
4218 i.e. "fund". Mind non-ASCII characters, though. Usually those
4219 will be UTF-8 multi-byte sequences, but we can't be certain.
4220 Especially mind the 0xff character, which is a valid character in
4221 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4222 rule out compilers allowing it in identifiers. Note that
4223 conveniently, strcmp/strcasecmp are specified to compare
4224 characters interpreted as unsigned char. So what we do is treat
4225 the whole string as a base 256 number composed of a sequence of
4226 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4227 to 0, and carries 1 to the following more-significant position.
4228 If the very first character in SEARCH_NAME ends up incremented
4229 and carries/overflows, then the upper bound is the end of the
4230 list. The string after the empty string is also the empty
4233 Some examples of this operation:
4235 SEARCH_NAME => "+1" RESULT
4239 "\xff" "a" "\xff" => "\xff" "b"
4244 Then, with these symbols for example:
4250 completing "func" looks for symbols between "func" and
4251 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4252 which finds "func" and "func1", but not "fund".
4256 funcÿ (Latin1 'ÿ' [0xff])
4260 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4261 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4265 ÿÿ (Latin1 'ÿ' [0xff])
4268 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4269 the end of the list.
4271 std::string after = search_name;
4272 while (!after.empty () && (unsigned char) after.back () == 0xff)
4274 if (!after.empty ())
4275 after.back () = (unsigned char) after.back () + 1;
4279 /* See declaration. */
4281 std::pair<std::vector<name_component>::const_iterator,
4282 std::vector<name_component>::const_iterator>
4283 mapped_index_base::find_name_components_bounds
4284 (const lookup_name_info &lookup_name_without_params, language lang) const
4287 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4289 const char *lang_name
4290 = lookup_name_without_params.language_lookup_name (lang).c_str ();
4292 /* Comparison function object for lower_bound that matches against a
4293 given symbol name. */
4294 auto lookup_compare_lower = [&] (const name_component &elem,
4297 const char *elem_qualified = this->symbol_name_at (elem.idx);
4298 const char *elem_name = elem_qualified + elem.name_offset;
4299 return name_cmp (elem_name, name) < 0;
4302 /* Comparison function object for upper_bound that matches against a
4303 given symbol name. */
4304 auto lookup_compare_upper = [&] (const char *name,
4305 const name_component &elem)
4307 const char *elem_qualified = this->symbol_name_at (elem.idx);
4308 const char *elem_name = elem_qualified + elem.name_offset;
4309 return name_cmp (name, elem_name) < 0;
4312 auto begin = this->name_components.begin ();
4313 auto end = this->name_components.end ();
4315 /* Find the lower bound. */
4318 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
4321 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
4324 /* Find the upper bound. */
4327 if (lookup_name_without_params.completion_mode ())
4329 /* In completion mode, we want UPPER to point past all
4330 symbols names that have the same prefix. I.e., with
4331 these symbols, and completing "func":
4333 function << lower bound
4335 other_function << upper bound
4337 We find the upper bound by looking for the insertion
4338 point of "func"-with-last-character-incremented,
4340 std::string after = make_sort_after_prefix_name (lang_name);
4343 return std::lower_bound (lower, end, after.c_str (),
4344 lookup_compare_lower);
4347 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
4350 return {lower, upper};
4353 /* See declaration. */
4356 mapped_index_base::build_name_components ()
4358 if (!this->name_components.empty ())
4361 this->name_components_casing = case_sensitivity;
4363 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4365 /* The code below only knows how to break apart components of C++
4366 symbol names (and other languages that use '::' as
4367 namespace/module separator) and Ada symbol names. */
4368 auto count = this->symbol_name_count ();
4369 for (offset_type idx = 0; idx < count; idx++)
4371 if (this->symbol_name_slot_invalid (idx))
4374 const char *name = this->symbol_name_at (idx);
4376 /* Add each name component to the name component table. */
4377 unsigned int previous_len = 0;
4379 if (strstr (name, "::") != nullptr)
4381 for (unsigned int current_len = cp_find_first_component (name);
4382 name[current_len] != '\0';
4383 current_len += cp_find_first_component (name + current_len))
4385 gdb_assert (name[current_len] == ':');
4386 this->name_components.push_back ({previous_len, idx});
4387 /* Skip the '::'. */
4389 previous_len = current_len;
4394 /* Handle the Ada encoded (aka mangled) form here. */
4395 for (const char *iter = strstr (name, "__");
4397 iter = strstr (iter, "__"))
4399 this->name_components.push_back ({previous_len, idx});
4401 previous_len = iter - name;
4405 this->name_components.push_back ({previous_len, idx});
4408 /* Sort name_components elements by name. */
4409 auto name_comp_compare = [&] (const name_component &left,
4410 const name_component &right)
4412 const char *left_qualified = this->symbol_name_at (left.idx);
4413 const char *right_qualified = this->symbol_name_at (right.idx);
4415 const char *left_name = left_qualified + left.name_offset;
4416 const char *right_name = right_qualified + right.name_offset;
4418 return name_cmp (left_name, right_name) < 0;
4421 std::sort (this->name_components.begin (),
4422 this->name_components.end (),
4426 /* Helper for dw2_expand_symtabs_matching that works with a
4427 mapped_index_base instead of the containing objfile. This is split
4428 to a separate function in order to be able to unit test the
4429 name_components matching using a mock mapped_index_base. For each
4430 symbol name that matches, calls MATCH_CALLBACK, passing it the
4431 symbol's index in the mapped_index_base symbol table. */
4434 dw2_expand_symtabs_matching_symbol
4435 (mapped_index_base &index,
4436 const lookup_name_info &lookup_name_in,
4437 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4438 enum search_domain kind,
4439 gdb::function_view<bool (offset_type)> match_callback)
4441 lookup_name_info lookup_name_without_params
4442 = lookup_name_in.make_ignore_params ();
4444 /* Build the symbol name component sorted vector, if we haven't
4446 index.build_name_components ();
4448 /* The same symbol may appear more than once in the range though.
4449 E.g., if we're looking for symbols that complete "w", and we have
4450 a symbol named "w1::w2", we'll find the two name components for
4451 that same symbol in the range. To be sure we only call the
4452 callback once per symbol, we first collect the symbol name
4453 indexes that matched in a temporary vector and ignore
4455 std::vector<offset_type> matches;
4457 struct name_and_matcher
4459 symbol_name_matcher_ftype *matcher;
4460 const std::string &name;
4462 bool operator== (const name_and_matcher &other) const
4464 return matcher == other.matcher && name == other.name;
4468 /* A vector holding all the different symbol name matchers, for all
4470 std::vector<name_and_matcher> matchers;
4472 for (int i = 0; i < nr_languages; i++)
4474 enum language lang_e = (enum language) i;
4476 const language_defn *lang = language_def (lang_e);
4477 symbol_name_matcher_ftype *name_matcher
4478 = get_symbol_name_matcher (lang, lookup_name_without_params);
4480 name_and_matcher key {
4482 lookup_name_without_params.language_lookup_name (lang_e)
4485 /* Don't insert the same comparison routine more than once.
4486 Note that we do this linear walk. This is not a problem in
4487 practice because the number of supported languages is
4489 if (std::find (matchers.begin (), matchers.end (), key)
4492 matchers.push_back (std::move (key));
4495 = index.find_name_components_bounds (lookup_name_without_params,
4498 /* Now for each symbol name in range, check to see if we have a name
4499 match, and if so, call the MATCH_CALLBACK callback. */
4501 for (; bounds.first != bounds.second; ++bounds.first)
4503 const char *qualified = index.symbol_name_at (bounds.first->idx);
4505 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4506 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4509 matches.push_back (bounds.first->idx);
4513 std::sort (matches.begin (), matches.end ());
4515 /* Finally call the callback, once per match. */
4517 for (offset_type idx : matches)
4521 if (!match_callback (idx))
4527 /* Above we use a type wider than idx's for 'prev', since 0 and
4528 (offset_type)-1 are both possible values. */
4529 static_assert (sizeof (prev) > sizeof (offset_type), "");
4534 namespace selftests { namespace dw2_expand_symtabs_matching {
4536 /* A mock .gdb_index/.debug_names-like name index table, enough to
4537 exercise dw2_expand_symtabs_matching_symbol, which works with the
4538 mapped_index_base interface. Builds an index from the symbol list
4539 passed as parameter to the constructor. */
4540 class mock_mapped_index : public mapped_index_base
4543 mock_mapped_index (gdb::array_view<const char *> symbols)
4544 : m_symbol_table (symbols)
4547 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4549 /* Return the number of names in the symbol table. */
4550 size_t symbol_name_count () const override
4552 return m_symbol_table.size ();
4555 /* Get the name of the symbol at IDX in the symbol table. */
4556 const char *symbol_name_at (offset_type idx) const override
4558 return m_symbol_table[idx];
4562 gdb::array_view<const char *> m_symbol_table;
4565 /* Convenience function that converts a NULL pointer to a "<null>"
4566 string, to pass to print routines. */
4569 string_or_null (const char *str)
4571 return str != NULL ? str : "<null>";
4574 /* Check if a lookup_name_info built from
4575 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4576 index. EXPECTED_LIST is the list of expected matches, in expected
4577 matching order. If no match expected, then an empty list is
4578 specified. Returns true on success. On failure prints a warning
4579 indicating the file:line that failed, and returns false. */
4582 check_match (const char *file, int line,
4583 mock_mapped_index &mock_index,
4584 const char *name, symbol_name_match_type match_type,
4585 bool completion_mode,
4586 std::initializer_list<const char *> expected_list)
4588 lookup_name_info lookup_name (name, match_type, completion_mode);
4590 bool matched = true;
4592 auto mismatch = [&] (const char *expected_str,
4595 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4596 "expected=\"%s\", got=\"%s\"\n"),
4598 (match_type == symbol_name_match_type::FULL
4600 name, string_or_null (expected_str), string_or_null (got));
4604 auto expected_it = expected_list.begin ();
4605 auto expected_end = expected_list.end ();
4607 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4609 [&] (offset_type idx)
4611 const char *matched_name = mock_index.symbol_name_at (idx);
4612 const char *expected_str
4613 = expected_it == expected_end ? NULL : *expected_it++;
4615 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4616 mismatch (expected_str, matched_name);
4620 const char *expected_str
4621 = expected_it == expected_end ? NULL : *expected_it++;
4622 if (expected_str != NULL)
4623 mismatch (expected_str, NULL);
4628 /* The symbols added to the mock mapped_index for testing (in
4630 static const char *test_symbols[] = {
4639 "ns2::tmpl<int>::foo2",
4640 "(anonymous namespace)::A::B::C",
4642 /* These are used to check that the increment-last-char in the
4643 matching algorithm for completion doesn't match "t1_fund" when
4644 completing "t1_func". */
4650 /* A UTF-8 name with multi-byte sequences to make sure that
4651 cp-name-parser understands this as a single identifier ("função"
4652 is "function" in PT). */
4655 /* \377 (0xff) is Latin1 'ÿ'. */
4658 /* \377 (0xff) is Latin1 'ÿ'. */
4662 /* A name with all sorts of complications. Starts with "z" to make
4663 it easier for the completion tests below. */
4664 #define Z_SYM_NAME \
4665 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4666 "::tuple<(anonymous namespace)::ui*, " \
4667 "std::default_delete<(anonymous namespace)::ui>, void>"
4672 /* Returns true if the mapped_index_base::find_name_component_bounds
4673 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4674 in completion mode. */
4677 check_find_bounds_finds (mapped_index_base &index,
4678 const char *search_name,
4679 gdb::array_view<const char *> expected_syms)
4681 lookup_name_info lookup_name (search_name,
4682 symbol_name_match_type::FULL, true);
4684 auto bounds = index.find_name_components_bounds (lookup_name,
4687 size_t distance = std::distance (bounds.first, bounds.second);
4688 if (distance != expected_syms.size ())
4691 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4693 auto nc_elem = bounds.first + exp_elem;
4694 const char *qualified = index.symbol_name_at (nc_elem->idx);
4695 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4702 /* Test the lower-level mapped_index::find_name_component_bounds
4706 test_mapped_index_find_name_component_bounds ()
4708 mock_mapped_index mock_index (test_symbols);
4710 mock_index.build_name_components ();
4712 /* Test the lower-level mapped_index::find_name_component_bounds
4713 method in completion mode. */
4715 static const char *expected_syms[] = {
4720 SELF_CHECK (check_find_bounds_finds (mock_index,
4721 "t1_func", expected_syms));
4724 /* Check that the increment-last-char in the name matching algorithm
4725 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4727 static const char *expected_syms1[] = {
4731 SELF_CHECK (check_find_bounds_finds (mock_index,
4732 "\377", expected_syms1));
4734 static const char *expected_syms2[] = {
4737 SELF_CHECK (check_find_bounds_finds (mock_index,
4738 "\377\377", expected_syms2));
4742 /* Test dw2_expand_symtabs_matching_symbol. */
4745 test_dw2_expand_symtabs_matching_symbol ()
4747 mock_mapped_index mock_index (test_symbols);
4749 /* We let all tests run until the end even if some fails, for debug
4751 bool any_mismatch = false;
4753 /* Create the expected symbols list (an initializer_list). Needed
4754 because lists have commas, and we need to pass them to CHECK,
4755 which is a macro. */
4756 #define EXPECT(...) { __VA_ARGS__ }
4758 /* Wrapper for check_match that passes down the current
4759 __FILE__/__LINE__. */
4760 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4761 any_mismatch |= !check_match (__FILE__, __LINE__, \
4763 NAME, MATCH_TYPE, COMPLETION_MODE, \
4766 /* Identity checks. */
4767 for (const char *sym : test_symbols)
4769 /* Should be able to match all existing symbols. */
4770 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4773 /* Should be able to match all existing symbols with
4775 std::string with_params = std::string (sym) + "(int)";
4776 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4779 /* Should be able to match all existing symbols with
4780 parameters and qualifiers. */
4781 with_params = std::string (sym) + " ( int ) const";
4782 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4785 /* This should really find sym, but cp-name-parser.y doesn't
4786 know about lvalue/rvalue qualifiers yet. */
4787 with_params = std::string (sym) + " ( int ) &&";
4788 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4792 /* Check that the name matching algorithm for completion doesn't get
4793 confused with Latin1 'ÿ' / 0xff. */
4795 static const char str[] = "\377";
4796 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4797 EXPECT ("\377", "\377\377123"));
4800 /* Check that the increment-last-char in the matching algorithm for
4801 completion doesn't match "t1_fund" when completing "t1_func". */
4803 static const char str[] = "t1_func";
4804 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4805 EXPECT ("t1_func", "t1_func1"));
4808 /* Check that completion mode works at each prefix of the expected
4811 static const char str[] = "function(int)";
4812 size_t len = strlen (str);
4815 for (size_t i = 1; i < len; i++)
4817 lookup.assign (str, i);
4818 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4819 EXPECT ("function"));
4823 /* While "w" is a prefix of both components, the match function
4824 should still only be called once. */
4826 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4828 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4832 /* Same, with a "complicated" symbol. */
4834 static const char str[] = Z_SYM_NAME;
4835 size_t len = strlen (str);
4838 for (size_t i = 1; i < len; i++)
4840 lookup.assign (str, i);
4841 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4842 EXPECT (Z_SYM_NAME));
4846 /* In FULL mode, an incomplete symbol doesn't match. */
4848 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4852 /* A complete symbol with parameters matches any overload, since the
4853 index has no overload info. */
4855 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4856 EXPECT ("std::zfunction", "std::zfunction2"));
4857 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4858 EXPECT ("std::zfunction", "std::zfunction2"));
4859 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4860 EXPECT ("std::zfunction", "std::zfunction2"));
4863 /* Check that whitespace is ignored appropriately. A symbol with a
4864 template argument list. */
4866 static const char expected[] = "ns::foo<int>";
4867 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4869 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4873 /* Check that whitespace is ignored appropriately. A symbol with a
4874 template argument list that includes a pointer. */
4876 static const char expected[] = "ns::foo<char*>";
4877 /* Try both completion and non-completion modes. */
4878 static const bool completion_mode[2] = {false, true};
4879 for (size_t i = 0; i < 2; i++)
4881 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4882 completion_mode[i], EXPECT (expected));
4883 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4884 completion_mode[i], EXPECT (expected));
4886 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4887 completion_mode[i], EXPECT (expected));
4888 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4889 completion_mode[i], EXPECT (expected));
4894 /* Check method qualifiers are ignored. */
4895 static const char expected[] = "ns::foo<char*>";
4896 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4897 symbol_name_match_type::FULL, true, EXPECT (expected));
4898 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4899 symbol_name_match_type::FULL, true, EXPECT (expected));
4900 CHECK_MATCH ("foo < char * > ( int ) const",
4901 symbol_name_match_type::WILD, true, EXPECT (expected));
4902 CHECK_MATCH ("foo < char * > ( int ) &&",
4903 symbol_name_match_type::WILD, true, EXPECT (expected));
4906 /* Test lookup names that don't match anything. */
4908 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4911 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4915 /* Some wild matching tests, exercising "(anonymous namespace)",
4916 which should not be confused with a parameter list. */
4918 static const char *syms[] = {
4922 "A :: B :: C ( int )",
4927 for (const char *s : syms)
4929 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4930 EXPECT ("(anonymous namespace)::A::B::C"));
4935 static const char expected[] = "ns2::tmpl<int>::foo2";
4936 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4938 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4942 SELF_CHECK (!any_mismatch);
4951 test_mapped_index_find_name_component_bounds ();
4952 test_dw2_expand_symtabs_matching_symbol ();
4955 }} // namespace selftests::dw2_expand_symtabs_matching
4957 #endif /* GDB_SELF_TEST */
4959 /* If FILE_MATCHER is NULL or if PER_CU has
4960 dwarf2_per_cu_quick_data::MARK set (see
4961 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4962 EXPANSION_NOTIFY on it. */
4965 dw2_expand_symtabs_matching_one
4966 (struct dwarf2_per_cu_data *per_cu,
4967 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4968 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4970 if (file_matcher == NULL || per_cu->v.quick->mark)
4972 bool symtab_was_null
4973 = (per_cu->v.quick->compunit_symtab == NULL);
4975 dw2_instantiate_symtab (per_cu, false);
4977 if (expansion_notify != NULL
4979 && per_cu->v.quick->compunit_symtab != NULL)
4980 expansion_notify (per_cu->v.quick->compunit_symtab);
4984 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4985 matched, to expand corresponding CUs that were marked. IDX is the
4986 index of the symbol name that matched. */
4989 dw2_expand_marked_cus
4990 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4991 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4992 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4995 offset_type *vec, vec_len, vec_idx;
4996 bool global_seen = false;
4997 mapped_index &index = *dwarf2_per_objfile->index_table;
4999 vec = (offset_type *) (index.constant_pool
5000 + MAYBE_SWAP (index.symbol_table[idx].vec));
5001 vec_len = MAYBE_SWAP (vec[0]);
5002 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5004 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5005 /* This value is only valid for index versions >= 7. */
5006 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5007 gdb_index_symbol_kind symbol_kind =
5008 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5009 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5010 /* Only check the symbol attributes if they're present.
5011 Indices prior to version 7 don't record them,
5012 and indices >= 7 may elide them for certain symbols
5013 (gold does this). */
5016 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5018 /* Work around gold/15646. */
5021 if (!is_static && global_seen)
5027 /* Only check the symbol's kind if it has one. */
5032 case VARIABLES_DOMAIN:
5033 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5036 case FUNCTIONS_DOMAIN:
5037 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5041 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5049 /* Don't crash on bad data. */
5050 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5051 + dwarf2_per_objfile->all_type_units.size ()))
5053 complaint (_(".gdb_index entry has bad CU index"
5055 objfile_name (dwarf2_per_objfile->objfile));
5059 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5060 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5065 /* If FILE_MATCHER is non-NULL, set all the
5066 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5067 that match FILE_MATCHER. */
5070 dw_expand_symtabs_matching_file_matcher
5071 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5072 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5074 if (file_matcher == NULL)
5077 objfile *const objfile = dwarf2_per_objfile->objfile;
5079 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5081 NULL, xcalloc, xfree));
5082 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5084 NULL, xcalloc, xfree));
5086 /* The rule is CUs specify all the files, including those used by
5087 any TU, so there's no need to scan TUs here. */
5089 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5093 per_cu->v.quick->mark = 0;
5095 /* We only need to look at symtabs not already expanded. */
5096 if (per_cu->v.quick->compunit_symtab)
5099 quick_file_names *file_data = dw2_get_file_names (per_cu);
5100 if (file_data == NULL)
5103 if (htab_find (visited_not_found.get (), file_data) != NULL)
5105 else if (htab_find (visited_found.get (), file_data) != NULL)
5107 per_cu->v.quick->mark = 1;
5111 for (int j = 0; j < file_data->num_file_names; ++j)
5113 const char *this_real_name;
5115 if (file_matcher (file_data->file_names[j], false))
5117 per_cu->v.quick->mark = 1;
5121 /* Before we invoke realpath, which can get expensive when many
5122 files are involved, do a quick comparison of the basenames. */
5123 if (!basenames_may_differ
5124 && !file_matcher (lbasename (file_data->file_names[j]),
5128 this_real_name = dw2_get_real_path (objfile, file_data, j);
5129 if (file_matcher (this_real_name, false))
5131 per_cu->v.quick->mark = 1;
5136 void **slot = htab_find_slot (per_cu->v.quick->mark
5137 ? visited_found.get ()
5138 : visited_not_found.get (),
5145 dw2_expand_symtabs_matching
5146 (struct objfile *objfile,
5147 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5148 const lookup_name_info &lookup_name,
5149 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5150 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5151 enum search_domain kind)
5153 struct dwarf2_per_objfile *dwarf2_per_objfile
5154 = get_dwarf2_per_objfile (objfile);
5156 /* index_table is NULL if OBJF_READNOW. */
5157 if (!dwarf2_per_objfile->index_table)
5160 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5162 mapped_index &index = *dwarf2_per_objfile->index_table;
5164 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5166 kind, [&] (offset_type idx)
5168 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5169 expansion_notify, kind);
5174 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5177 static struct compunit_symtab *
5178 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5183 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5184 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5187 if (cust->includes == NULL)
5190 for (i = 0; cust->includes[i]; ++i)
5192 struct compunit_symtab *s = cust->includes[i];
5194 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5202 static struct compunit_symtab *
5203 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5204 struct bound_minimal_symbol msymbol,
5206 struct obj_section *section,
5209 struct dwarf2_per_cu_data *data;
5210 struct compunit_symtab *result;
5212 if (!objfile->partial_symtabs->psymtabs_addrmap)
5215 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5216 SECT_OFF_TEXT (objfile));
5217 data = (struct dwarf2_per_cu_data *) addrmap_find
5218 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5222 if (warn_if_readin && data->v.quick->compunit_symtab)
5223 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5224 paddress (get_objfile_arch (objfile), pc));
5227 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5230 gdb_assert (result != NULL);
5235 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5236 void *data, int need_fullname)
5238 struct dwarf2_per_objfile *dwarf2_per_objfile
5239 = get_dwarf2_per_objfile (objfile);
5241 if (!dwarf2_per_objfile->filenames_cache)
5243 dwarf2_per_objfile->filenames_cache.emplace ();
5245 htab_up visited (htab_create_alloc (10,
5246 htab_hash_pointer, htab_eq_pointer,
5247 NULL, xcalloc, xfree));
5249 /* The rule is CUs specify all the files, including those used
5250 by any TU, so there's no need to scan TUs here. We can
5251 ignore file names coming from already-expanded CUs. */
5253 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5255 if (per_cu->v.quick->compunit_symtab)
5257 void **slot = htab_find_slot (visited.get (),
5258 per_cu->v.quick->file_names,
5261 *slot = per_cu->v.quick->file_names;
5265 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5267 /* We only need to look at symtabs not already expanded. */
5268 if (per_cu->v.quick->compunit_symtab)
5271 quick_file_names *file_data = dw2_get_file_names (per_cu);
5272 if (file_data == NULL)
5275 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5278 /* Already visited. */
5283 for (int j = 0; j < file_data->num_file_names; ++j)
5285 const char *filename = file_data->file_names[j];
5286 dwarf2_per_objfile->filenames_cache->seen (filename);
5291 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5293 gdb::unique_xmalloc_ptr<char> this_real_name;
5296 this_real_name = gdb_realpath (filename);
5297 (*fun) (filename, this_real_name.get (), data);
5302 dw2_has_symbols (struct objfile *objfile)
5307 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5310 dw2_find_last_source_symtab,
5311 dw2_forget_cached_source_info,
5312 dw2_map_symtabs_matching_filename,
5316 dw2_expand_symtabs_for_function,
5317 dw2_expand_all_symtabs,
5318 dw2_expand_symtabs_with_fullname,
5319 dw2_map_matching_symbols,
5320 dw2_expand_symtabs_matching,
5321 dw2_find_pc_sect_compunit_symtab,
5323 dw2_map_symbol_filenames
5326 /* DWARF-5 debug_names reader. */
5328 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5329 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5331 /* A helper function that reads the .debug_names section in SECTION
5332 and fills in MAP. FILENAME is the name of the file containing the
5333 section; it is used for error reporting.
5335 Returns true if all went well, false otherwise. */
5338 read_debug_names_from_section (struct objfile *objfile,
5339 const char *filename,
5340 struct dwarf2_section_info *section,
5341 mapped_debug_names &map)
5343 if (dwarf2_section_empty_p (section))
5346 /* Older elfutils strip versions could keep the section in the main
5347 executable while splitting it for the separate debug info file. */
5348 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5351 dwarf2_read_section (objfile, section);
5353 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5355 const gdb_byte *addr = section->buffer;
5357 bfd *const abfd = get_section_bfd_owner (section);
5359 unsigned int bytes_read;
5360 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5363 map.dwarf5_is_dwarf64 = bytes_read != 4;
5364 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5365 if (bytes_read + length != section->size)
5367 /* There may be multiple per-CU indices. */
5368 warning (_("Section .debug_names in %s length %s does not match "
5369 "section length %s, ignoring .debug_names."),
5370 filename, plongest (bytes_read + length),
5371 pulongest (section->size));
5375 /* The version number. */
5376 uint16_t version = read_2_bytes (abfd, addr);
5380 warning (_("Section .debug_names in %s has unsupported version %d, "
5381 "ignoring .debug_names."),
5387 uint16_t padding = read_2_bytes (abfd, addr);
5391 warning (_("Section .debug_names in %s has unsupported padding %d, "
5392 "ignoring .debug_names."),
5397 /* comp_unit_count - The number of CUs in the CU list. */
5398 map.cu_count = read_4_bytes (abfd, addr);
5401 /* local_type_unit_count - The number of TUs in the local TU
5403 map.tu_count = read_4_bytes (abfd, addr);
5406 /* foreign_type_unit_count - The number of TUs in the foreign TU
5408 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5410 if (foreign_tu_count != 0)
5412 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5413 "ignoring .debug_names."),
5414 filename, static_cast<unsigned long> (foreign_tu_count));
5418 /* bucket_count - The number of hash buckets in the hash lookup
5420 map.bucket_count = read_4_bytes (abfd, addr);
5423 /* name_count - The number of unique names in the index. */
5424 map.name_count = read_4_bytes (abfd, addr);
5427 /* abbrev_table_size - The size in bytes of the abbreviations
5429 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5432 /* augmentation_string_size - The size in bytes of the augmentation
5433 string. This value is rounded up to a multiple of 4. */
5434 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5436 map.augmentation_is_gdb = ((augmentation_string_size
5437 == sizeof (dwarf5_augmentation))
5438 && memcmp (addr, dwarf5_augmentation,
5439 sizeof (dwarf5_augmentation)) == 0);
5440 augmentation_string_size += (-augmentation_string_size) & 3;
5441 addr += augmentation_string_size;
5444 map.cu_table_reordered = addr;
5445 addr += map.cu_count * map.offset_size;
5447 /* List of Local TUs */
5448 map.tu_table_reordered = addr;
5449 addr += map.tu_count * map.offset_size;
5451 /* Hash Lookup Table */
5452 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5453 addr += map.bucket_count * 4;
5454 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5455 addr += map.name_count * 4;
5458 map.name_table_string_offs_reordered = addr;
5459 addr += map.name_count * map.offset_size;
5460 map.name_table_entry_offs_reordered = addr;
5461 addr += map.name_count * map.offset_size;
5463 const gdb_byte *abbrev_table_start = addr;
5466 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5471 const auto insertpair
5472 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5473 if (!insertpair.second)
5475 warning (_("Section .debug_names in %s has duplicate index %s, "
5476 "ignoring .debug_names."),
5477 filename, pulongest (index_num));
5480 mapped_debug_names::index_val &indexval = insertpair.first->second;
5481 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5486 mapped_debug_names::index_val::attr attr;
5487 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5489 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5491 if (attr.form == DW_FORM_implicit_const)
5493 attr.implicit_const = read_signed_leb128 (abfd, addr,
5497 if (attr.dw_idx == 0 && attr.form == 0)
5499 indexval.attr_vec.push_back (std::move (attr));
5502 if (addr != abbrev_table_start + abbrev_table_size)
5504 warning (_("Section .debug_names in %s has abbreviation_table "
5505 "of size %s vs. written as %u, ignoring .debug_names."),
5506 filename, plongest (addr - abbrev_table_start),
5510 map.entry_pool = addr;
5515 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5519 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5520 const mapped_debug_names &map,
5521 dwarf2_section_info §ion,
5524 sect_offset sect_off_prev;
5525 for (uint32_t i = 0; i <= map.cu_count; ++i)
5527 sect_offset sect_off_next;
5528 if (i < map.cu_count)
5531 = (sect_offset) (extract_unsigned_integer
5532 (map.cu_table_reordered + i * map.offset_size,
5534 map.dwarf5_byte_order));
5537 sect_off_next = (sect_offset) section.size;
5540 const ULONGEST length = sect_off_next - sect_off_prev;
5541 dwarf2_per_cu_data *per_cu
5542 = create_cu_from_index_list (dwarf2_per_objfile, §ion, is_dwz,
5543 sect_off_prev, length);
5544 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5546 sect_off_prev = sect_off_next;
5550 /* Read the CU list from the mapped index, and use it to create all
5551 the CU objects for this dwarf2_per_objfile. */
5554 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5555 const mapped_debug_names &map,
5556 const mapped_debug_names &dwz_map)
5558 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5559 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5561 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5562 dwarf2_per_objfile->info,
5563 false /* is_dwz */);
5565 if (dwz_map.cu_count == 0)
5568 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5569 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5573 /* Read .debug_names. If everything went ok, initialize the "quick"
5574 elements of all the CUs and return true. Otherwise, return false. */
5577 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5579 std::unique_ptr<mapped_debug_names> map
5580 (new mapped_debug_names (dwarf2_per_objfile));
5581 mapped_debug_names dwz_map (dwarf2_per_objfile);
5582 struct objfile *objfile = dwarf2_per_objfile->objfile;
5584 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5585 &dwarf2_per_objfile->debug_names,
5589 /* Don't use the index if it's empty. */
5590 if (map->name_count == 0)
5593 /* If there is a .dwz file, read it so we can get its CU list as
5595 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5598 if (!read_debug_names_from_section (objfile,
5599 bfd_get_filename (dwz->dwz_bfd.get ()),
5600 &dwz->debug_names, dwz_map))
5602 warning (_("could not read '.debug_names' section from %s; skipping"),
5603 bfd_get_filename (dwz->dwz_bfd.get ()));
5608 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5610 if (map->tu_count != 0)
5612 /* We can only handle a single .debug_types when we have an
5614 if (dwarf2_per_objfile->types.size () != 1)
5617 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5619 create_signatured_type_table_from_debug_names
5620 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5623 create_addrmap_from_aranges (dwarf2_per_objfile,
5624 &dwarf2_per_objfile->debug_aranges);
5626 dwarf2_per_objfile->debug_names_table = std::move (map);
5627 dwarf2_per_objfile->using_index = 1;
5628 dwarf2_per_objfile->quick_file_names_table =
5629 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5634 /* Type used to manage iterating over all CUs looking for a symbol for
5637 class dw2_debug_names_iterator
5640 dw2_debug_names_iterator (const mapped_debug_names &map,
5641 gdb::optional<block_enum> block_index,
5644 : m_map (map), m_block_index (block_index), m_domain (domain),
5645 m_addr (find_vec_in_debug_names (map, name))
5648 dw2_debug_names_iterator (const mapped_debug_names &map,
5649 search_domain search, uint32_t namei)
5652 m_addr (find_vec_in_debug_names (map, namei))
5655 dw2_debug_names_iterator (const mapped_debug_names &map,
5656 block_enum block_index, domain_enum domain,
5658 : m_map (map), m_block_index (block_index), m_domain (domain),
5659 m_addr (find_vec_in_debug_names (map, namei))
5662 /* Return the next matching CU or NULL if there are no more. */
5663 dwarf2_per_cu_data *next ();
5666 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5668 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5671 /* The internalized form of .debug_names. */
5672 const mapped_debug_names &m_map;
5674 /* If set, only look for symbols that match that block. Valid values are
5675 GLOBAL_BLOCK and STATIC_BLOCK. */
5676 const gdb::optional<block_enum> m_block_index;
5678 /* The kind of symbol we're looking for. */
5679 const domain_enum m_domain = UNDEF_DOMAIN;
5680 const search_domain m_search = ALL_DOMAIN;
5682 /* The list of CUs from the index entry of the symbol, or NULL if
5684 const gdb_byte *m_addr;
5688 mapped_debug_names::namei_to_name (uint32_t namei) const
5690 const ULONGEST namei_string_offs
5691 = extract_unsigned_integer ((name_table_string_offs_reordered
5692 + namei * offset_size),
5695 return read_indirect_string_at_offset
5696 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5699 /* Find a slot in .debug_names for the object named NAME. If NAME is
5700 found, return pointer to its pool data. If NAME cannot be found,
5704 dw2_debug_names_iterator::find_vec_in_debug_names
5705 (const mapped_debug_names &map, const char *name)
5707 int (*cmp) (const char *, const char *);
5709 gdb::unique_xmalloc_ptr<char> without_params;
5710 if (current_language->la_language == language_cplus
5711 || current_language->la_language == language_fortran
5712 || current_language->la_language == language_d)
5714 /* NAME is already canonical. Drop any qualifiers as
5715 .debug_names does not contain any. */
5717 if (strchr (name, '(') != NULL)
5719 without_params = cp_remove_params (name);
5720 if (without_params != NULL)
5721 name = without_params.get ();
5725 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5727 const uint32_t full_hash = dwarf5_djb_hash (name);
5729 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5730 (map.bucket_table_reordered
5731 + (full_hash % map.bucket_count)), 4,
5732 map.dwarf5_byte_order);
5736 if (namei >= map.name_count)
5738 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5740 namei, map.name_count,
5741 objfile_name (map.dwarf2_per_objfile->objfile));
5747 const uint32_t namei_full_hash
5748 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5749 (map.hash_table_reordered + namei), 4,
5750 map.dwarf5_byte_order);
5751 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5754 if (full_hash == namei_full_hash)
5756 const char *const namei_string = map.namei_to_name (namei);
5758 #if 0 /* An expensive sanity check. */
5759 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5761 complaint (_("Wrong .debug_names hash for string at index %u "
5763 namei, objfile_name (dwarf2_per_objfile->objfile));
5768 if (cmp (namei_string, name) == 0)
5770 const ULONGEST namei_entry_offs
5771 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5772 + namei * map.offset_size),
5773 map.offset_size, map.dwarf5_byte_order);
5774 return map.entry_pool + namei_entry_offs;
5779 if (namei >= map.name_count)
5785 dw2_debug_names_iterator::find_vec_in_debug_names
5786 (const mapped_debug_names &map, uint32_t namei)
5788 if (namei >= map.name_count)
5790 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5792 namei, map.name_count,
5793 objfile_name (map.dwarf2_per_objfile->objfile));
5797 const ULONGEST namei_entry_offs
5798 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5799 + namei * map.offset_size),
5800 map.offset_size, map.dwarf5_byte_order);
5801 return map.entry_pool + namei_entry_offs;
5804 /* See dw2_debug_names_iterator. */
5806 dwarf2_per_cu_data *
5807 dw2_debug_names_iterator::next ()
5812 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5813 struct objfile *objfile = dwarf2_per_objfile->objfile;
5814 bfd *const abfd = objfile->obfd;
5818 unsigned int bytes_read;
5819 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5820 m_addr += bytes_read;
5824 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5825 if (indexval_it == m_map.abbrev_map.cend ())
5827 complaint (_("Wrong .debug_names undefined abbrev code %s "
5829 pulongest (abbrev), objfile_name (objfile));
5832 const mapped_debug_names::index_val &indexval = indexval_it->second;
5833 enum class symbol_linkage {
5837 } symbol_linkage_ = symbol_linkage::unknown;
5838 dwarf2_per_cu_data *per_cu = NULL;
5839 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5844 case DW_FORM_implicit_const:
5845 ull = attr.implicit_const;
5847 case DW_FORM_flag_present:
5851 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5852 m_addr += bytes_read;
5855 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5856 dwarf_form_name (attr.form),
5857 objfile_name (objfile));
5860 switch (attr.dw_idx)
5862 case DW_IDX_compile_unit:
5863 /* Don't crash on bad data. */
5864 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5866 complaint (_(".debug_names entry has bad CU index %s"
5869 objfile_name (dwarf2_per_objfile->objfile));
5872 per_cu = dwarf2_per_objfile->get_cutu (ull);
5874 case DW_IDX_type_unit:
5875 /* Don't crash on bad data. */
5876 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5878 complaint (_(".debug_names entry has bad TU index %s"
5881 objfile_name (dwarf2_per_objfile->objfile));
5884 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5886 case DW_IDX_GNU_internal:
5887 if (!m_map.augmentation_is_gdb)
5889 symbol_linkage_ = symbol_linkage::static_;
5891 case DW_IDX_GNU_external:
5892 if (!m_map.augmentation_is_gdb)
5894 symbol_linkage_ = symbol_linkage::extern_;
5899 /* Skip if already read in. */
5900 if (per_cu->v.quick->compunit_symtab)
5903 /* Check static vs global. */
5904 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5906 const bool want_static = *m_block_index == STATIC_BLOCK;
5907 const bool symbol_is_static =
5908 symbol_linkage_ == symbol_linkage::static_;
5909 if (want_static != symbol_is_static)
5913 /* Match dw2_symtab_iter_next, symbol_kind
5914 and debug_names::psymbol_tag. */
5918 switch (indexval.dwarf_tag)
5920 case DW_TAG_variable:
5921 case DW_TAG_subprogram:
5922 /* Some types are also in VAR_DOMAIN. */
5923 case DW_TAG_typedef:
5924 case DW_TAG_structure_type:
5931 switch (indexval.dwarf_tag)
5933 case DW_TAG_typedef:
5934 case DW_TAG_structure_type:
5941 switch (indexval.dwarf_tag)
5944 case DW_TAG_variable:
5954 /* Match dw2_expand_symtabs_matching, symbol_kind and
5955 debug_names::psymbol_tag. */
5958 case VARIABLES_DOMAIN:
5959 switch (indexval.dwarf_tag)
5961 case DW_TAG_variable:
5967 case FUNCTIONS_DOMAIN:
5968 switch (indexval.dwarf_tag)
5970 case DW_TAG_subprogram:
5977 switch (indexval.dwarf_tag)
5979 case DW_TAG_typedef:
5980 case DW_TAG_structure_type:
5993 static struct compunit_symtab *
5994 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5995 const char *name, domain_enum domain)
5997 struct dwarf2_per_objfile *dwarf2_per_objfile
5998 = get_dwarf2_per_objfile (objfile);
6000 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6003 /* index is NULL if OBJF_READNOW. */
6006 const auto &map = *mapp;
6008 dw2_debug_names_iterator iter (map, block_index, domain, name);
6010 struct compunit_symtab *stab_best = NULL;
6011 struct dwarf2_per_cu_data *per_cu;
6012 while ((per_cu = iter.next ()) != NULL)
6014 struct symbol *sym, *with_opaque = NULL;
6015 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6016 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6017 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6019 sym = block_find_symbol (block, name, domain,
6020 block_find_non_opaque_type_preferred,
6023 /* Some caution must be observed with overloaded functions and
6024 methods, since the index will not contain any overload
6025 information (but NAME might contain it). */
6028 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6030 if (with_opaque != NULL
6031 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6034 /* Keep looking through other CUs. */
6040 /* This dumps minimal information about .debug_names. It is called
6041 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6042 uses this to verify that .debug_names has been loaded. */
6045 dw2_debug_names_dump (struct objfile *objfile)
6047 struct dwarf2_per_objfile *dwarf2_per_objfile
6048 = get_dwarf2_per_objfile (objfile);
6050 gdb_assert (dwarf2_per_objfile->using_index);
6051 printf_filtered (".debug_names:");
6052 if (dwarf2_per_objfile->debug_names_table)
6053 printf_filtered (" exists\n");
6055 printf_filtered (" faked for \"readnow\"\n");
6056 printf_filtered ("\n");
6060 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6061 const char *func_name)
6063 struct dwarf2_per_objfile *dwarf2_per_objfile
6064 = get_dwarf2_per_objfile (objfile);
6066 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6067 if (dwarf2_per_objfile->debug_names_table)
6069 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6071 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
6073 struct dwarf2_per_cu_data *per_cu;
6074 while ((per_cu = iter.next ()) != NULL)
6075 dw2_instantiate_symtab (per_cu, false);
6080 dw2_debug_names_map_matching_symbols
6081 (struct objfile *objfile,
6082 const lookup_name_info &name, domain_enum domain,
6084 gdb::function_view<symbol_found_callback_ftype> callback,
6085 symbol_compare_ftype *ordered_compare)
6087 struct dwarf2_per_objfile *dwarf2_per_objfile
6088 = get_dwarf2_per_objfile (objfile);
6090 /* debug_names_table is NULL if OBJF_READNOW. */
6091 if (!dwarf2_per_objfile->debug_names_table)
6094 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6095 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
6097 const char *match_name = name.ada ().lookup_name ().c_str ();
6098 auto matcher = [&] (const char *symname)
6100 if (ordered_compare == nullptr)
6102 return ordered_compare (symname, match_name) == 0;
6105 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
6106 [&] (offset_type namei)
6108 /* The name was matched, now expand corresponding CUs that were
6110 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
6114 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
6118 /* It's a shame we couldn't do this inside the
6119 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
6120 that have already been expanded. Instead, this loop matches what
6121 the psymtab code does. */
6122 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
6124 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
6125 if (cust != nullptr)
6127 const struct block *block
6128 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
6129 if (!iterate_over_symbols_terminated (block, name,
6137 dw2_debug_names_expand_symtabs_matching
6138 (struct objfile *objfile,
6139 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6140 const lookup_name_info &lookup_name,
6141 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6142 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6143 enum search_domain kind)
6145 struct dwarf2_per_objfile *dwarf2_per_objfile
6146 = get_dwarf2_per_objfile (objfile);
6148 /* debug_names_table is NULL if OBJF_READNOW. */
6149 if (!dwarf2_per_objfile->debug_names_table)
6152 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6154 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6156 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6158 kind, [&] (offset_type namei)
6160 /* The name was matched, now expand corresponding CUs that were
6162 dw2_debug_names_iterator iter (map, kind, namei);
6164 struct dwarf2_per_cu_data *per_cu;
6165 while ((per_cu = iter.next ()) != NULL)
6166 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6172 const struct quick_symbol_functions dwarf2_debug_names_functions =
6175 dw2_find_last_source_symtab,
6176 dw2_forget_cached_source_info,
6177 dw2_map_symtabs_matching_filename,
6178 dw2_debug_names_lookup_symbol,
6180 dw2_debug_names_dump,
6181 dw2_debug_names_expand_symtabs_for_function,
6182 dw2_expand_all_symtabs,
6183 dw2_expand_symtabs_with_fullname,
6184 dw2_debug_names_map_matching_symbols,
6185 dw2_debug_names_expand_symtabs_matching,
6186 dw2_find_pc_sect_compunit_symtab,
6188 dw2_map_symbol_filenames
6191 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6192 to either a dwarf2_per_objfile or dwz_file object. */
6194 template <typename T>
6195 static gdb::array_view<const gdb_byte>
6196 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6198 dwarf2_section_info *section = §ion_owner->gdb_index;
6200 if (dwarf2_section_empty_p (section))
6203 /* Older elfutils strip versions could keep the section in the main
6204 executable while splitting it for the separate debug info file. */
6205 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6208 dwarf2_read_section (obj, section);
6210 /* dwarf2_section_info::size is a bfd_size_type, while
6211 gdb::array_view works with size_t. On 32-bit hosts, with
6212 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6213 is 32-bit. So we need an explicit narrowing conversion here.
6214 This is fine, because it's impossible to allocate or mmap an
6215 array/buffer larger than what size_t can represent. */
6216 return gdb::make_array_view (section->buffer, section->size);
6219 /* Lookup the index cache for the contents of the index associated to
6222 static gdb::array_view<const gdb_byte>
6223 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6225 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6226 if (build_id == nullptr)
6229 return global_index_cache.lookup_gdb_index (build_id,
6230 &dwarf2_obj->index_cache_res);
6233 /* Same as the above, but for DWZ. */
6235 static gdb::array_view<const gdb_byte>
6236 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6238 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6239 if (build_id == nullptr)
6242 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6245 /* See symfile.h. */
6248 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6250 struct dwarf2_per_objfile *dwarf2_per_objfile
6251 = get_dwarf2_per_objfile (objfile);
6253 /* If we're about to read full symbols, don't bother with the
6254 indices. In this case we also don't care if some other debug
6255 format is making psymtabs, because they are all about to be
6257 if ((objfile->flags & OBJF_READNOW))
6259 dwarf2_per_objfile->using_index = 1;
6260 create_all_comp_units (dwarf2_per_objfile);
6261 create_all_type_units (dwarf2_per_objfile);
6262 dwarf2_per_objfile->quick_file_names_table
6263 = create_quick_file_names_table
6264 (dwarf2_per_objfile->all_comp_units.size ());
6266 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6267 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6269 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6271 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6272 struct dwarf2_per_cu_quick_data);
6275 /* Return 1 so that gdb sees the "quick" functions. However,
6276 these functions will be no-ops because we will have expanded
6278 *index_kind = dw_index_kind::GDB_INDEX;
6282 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6284 *index_kind = dw_index_kind::DEBUG_NAMES;
6288 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6289 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6290 get_gdb_index_contents_from_section<dwz_file>))
6292 *index_kind = dw_index_kind::GDB_INDEX;
6296 /* ... otherwise, try to find the index in the index cache. */
6297 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6298 get_gdb_index_contents_from_cache,
6299 get_gdb_index_contents_from_cache_dwz))
6301 global_index_cache.hit ();
6302 *index_kind = dw_index_kind::GDB_INDEX;
6306 global_index_cache.miss ();
6312 /* Build a partial symbol table. */
6315 dwarf2_build_psymtabs (struct objfile *objfile)
6317 struct dwarf2_per_objfile *dwarf2_per_objfile
6318 = get_dwarf2_per_objfile (objfile);
6320 init_psymbol_list (objfile, 1024);
6324 /* This isn't really ideal: all the data we allocate on the
6325 objfile's obstack is still uselessly kept around. However,
6326 freeing it seems unsafe. */
6327 psymtab_discarder psymtabs (objfile);
6328 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6331 /* (maybe) store an index in the cache. */
6332 global_index_cache.store (dwarf2_per_objfile);
6334 catch (const gdb_exception_error &except)
6336 exception_print (gdb_stderr, except);
6340 /* Return the total length of the CU described by HEADER. */
6343 get_cu_length (const struct comp_unit_head *header)
6345 return header->initial_length_size + header->length;
6348 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6351 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6353 sect_offset bottom = cu_header->sect_off;
6354 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6356 return sect_off >= bottom && sect_off < top;
6359 /* Find the base address of the compilation unit for range lists and
6360 location lists. It will normally be specified by DW_AT_low_pc.
6361 In DWARF-3 draft 4, the base address could be overridden by
6362 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6363 compilation units with discontinuous ranges. */
6366 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6368 struct attribute *attr;
6371 cu->base_address = 0;
6373 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6376 cu->base_address = attr_value_as_address (attr);
6381 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6384 cu->base_address = attr_value_as_address (attr);
6390 /* Read in the comp unit header information from the debug_info at info_ptr.
6391 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6392 NOTE: This leaves members offset, first_die_offset to be filled in
6395 static const gdb_byte *
6396 read_comp_unit_head (struct comp_unit_head *cu_header,
6397 const gdb_byte *info_ptr,
6398 struct dwarf2_section_info *section,
6399 rcuh_kind section_kind)
6402 unsigned int bytes_read;
6403 const char *filename = get_section_file_name (section);
6404 bfd *abfd = get_section_bfd_owner (section);
6406 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6407 cu_header->initial_length_size = bytes_read;
6408 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6409 info_ptr += bytes_read;
6410 cu_header->version = read_2_bytes (abfd, info_ptr);
6411 if (cu_header->version < 2 || cu_header->version > 5)
6412 error (_("Dwarf Error: wrong version in compilation unit header "
6413 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6414 cu_header->version, filename);
6416 if (cu_header->version < 5)
6417 switch (section_kind)
6419 case rcuh_kind::COMPILE:
6420 cu_header->unit_type = DW_UT_compile;
6422 case rcuh_kind::TYPE:
6423 cu_header->unit_type = DW_UT_type;
6426 internal_error (__FILE__, __LINE__,
6427 _("read_comp_unit_head: invalid section_kind"));
6431 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6432 (read_1_byte (abfd, info_ptr));
6434 switch (cu_header->unit_type)
6438 case DW_UT_skeleton:
6439 case DW_UT_split_compile:
6440 if (section_kind != rcuh_kind::COMPILE)
6441 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6442 "(is %s, should be %s) [in module %s]"),
6443 dwarf_unit_type_name (cu_header->unit_type),
6444 dwarf_unit_type_name (DW_UT_type), filename);
6447 case DW_UT_split_type:
6448 section_kind = rcuh_kind::TYPE;
6451 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6452 "(is %#04x, should be one of: %s, %s, %s, %s or %s) "
6453 "[in module %s]"), cu_header->unit_type,
6454 dwarf_unit_type_name (DW_UT_compile),
6455 dwarf_unit_type_name (DW_UT_skeleton),
6456 dwarf_unit_type_name (DW_UT_split_compile),
6457 dwarf_unit_type_name (DW_UT_type),
6458 dwarf_unit_type_name (DW_UT_split_type), filename);
6461 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6464 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6467 info_ptr += bytes_read;
6468 if (cu_header->version < 5)
6470 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6473 signed_addr = bfd_get_sign_extend_vma (abfd);
6474 if (signed_addr < 0)
6475 internal_error (__FILE__, __LINE__,
6476 _("read_comp_unit_head: dwarf from non elf file"));
6477 cu_header->signed_addr_p = signed_addr;
6479 bool header_has_signature = section_kind == rcuh_kind::TYPE
6480 || cu_header->unit_type == DW_UT_skeleton
6481 || cu_header->unit_type == DW_UT_split_compile;
6483 if (header_has_signature)
6485 cu_header->signature = read_8_bytes (abfd, info_ptr);
6489 if (section_kind == rcuh_kind::TYPE)
6491 LONGEST type_offset;
6492 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6493 info_ptr += bytes_read;
6494 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6495 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6496 error (_("Dwarf Error: Too big type_offset in compilation unit "
6497 "header (is %s) [in module %s]"), plongest (type_offset),
6504 /* Helper function that returns the proper abbrev section for
6507 static struct dwarf2_section_info *
6508 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6510 struct dwarf2_section_info *abbrev;
6511 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6513 if (this_cu->is_dwz)
6514 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6516 abbrev = &dwarf2_per_objfile->abbrev;
6521 /* Subroutine of read_and_check_comp_unit_head and
6522 read_and_check_type_unit_head to simplify them.
6523 Perform various error checking on the header. */
6526 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6527 struct comp_unit_head *header,
6528 struct dwarf2_section_info *section,
6529 struct dwarf2_section_info *abbrev_section)
6531 const char *filename = get_section_file_name (section);
6533 if (to_underlying (header->abbrev_sect_off)
6534 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6535 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6536 "(offset %s + 6) [in module %s]"),
6537 sect_offset_str (header->abbrev_sect_off),
6538 sect_offset_str (header->sect_off),
6541 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6542 avoid potential 32-bit overflow. */
6543 if (((ULONGEST) header->sect_off + get_cu_length (header))
6545 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6546 "(offset %s + 0) [in module %s]"),
6547 header->length, sect_offset_str (header->sect_off),
6551 /* Read in a CU/TU header and perform some basic error checking.
6552 The contents of the header are stored in HEADER.
6553 The result is a pointer to the start of the first DIE. */
6555 static const gdb_byte *
6556 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6557 struct comp_unit_head *header,
6558 struct dwarf2_section_info *section,
6559 struct dwarf2_section_info *abbrev_section,
6560 const gdb_byte *info_ptr,
6561 rcuh_kind section_kind)
6563 const gdb_byte *beg_of_comp_unit = info_ptr;
6565 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6567 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6569 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6571 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6577 /* Fetch the abbreviation table offset from a comp or type unit header. */
6580 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6581 struct dwarf2_section_info *section,
6582 sect_offset sect_off)
6584 bfd *abfd = get_section_bfd_owner (section);
6585 const gdb_byte *info_ptr;
6586 unsigned int initial_length_size, offset_size;
6589 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6590 info_ptr = section->buffer + to_underlying (sect_off);
6591 read_initial_length (abfd, info_ptr, &initial_length_size);
6592 offset_size = initial_length_size == 4 ? 4 : 8;
6593 info_ptr += initial_length_size;
6595 version = read_2_bytes (abfd, info_ptr);
6599 /* Skip unit type and address size. */
6603 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6606 /* Allocate a new partial symtab for file named NAME and mark this new
6607 partial symtab as being an include of PST. */
6610 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6611 struct objfile *objfile)
6613 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6615 if (!IS_ABSOLUTE_PATH (subpst->filename))
6617 /* It shares objfile->objfile_obstack. */
6618 subpst->dirname = pst->dirname;
6621 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6622 subpst->dependencies[0] = pst;
6623 subpst->number_of_dependencies = 1;
6625 subpst->read_symtab = pst->read_symtab;
6627 /* No private part is necessary for include psymtabs. This property
6628 can be used to differentiate between such include psymtabs and
6629 the regular ones. */
6630 subpst->read_symtab_private = NULL;
6633 /* Read the Line Number Program data and extract the list of files
6634 included by the source file represented by PST. Build an include
6635 partial symtab for each of these included files. */
6638 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6639 struct die_info *die,
6640 struct partial_symtab *pst)
6643 struct attribute *attr;
6645 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6647 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6649 return; /* No linetable, so no includes. */
6651 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6652 that we pass in the raw text_low here; that is ok because we're
6653 only decoding the line table to make include partial symtabs, and
6654 so the addresses aren't really used. */
6655 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6656 pst->raw_text_low (), 1);
6660 hash_signatured_type (const void *item)
6662 const struct signatured_type *sig_type
6663 = (const struct signatured_type *) item;
6665 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6666 return sig_type->signature;
6670 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6672 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6673 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6675 return lhs->signature == rhs->signature;
6678 /* Allocate a hash table for signatured types. */
6681 allocate_signatured_type_table (struct objfile *objfile)
6683 return htab_create_alloc_ex (41,
6684 hash_signatured_type,
6687 &objfile->objfile_obstack,
6688 hashtab_obstack_allocate,
6689 dummy_obstack_deallocate);
6692 /* A helper function to add a signatured type CU to a table. */
6695 add_signatured_type_cu_to_table (void **slot, void *datum)
6697 struct signatured_type *sigt = (struct signatured_type *) *slot;
6698 std::vector<signatured_type *> *all_type_units
6699 = (std::vector<signatured_type *> *) datum;
6701 all_type_units->push_back (sigt);
6706 /* A helper for create_debug_types_hash_table. Read types from SECTION
6707 and fill them into TYPES_HTAB. It will process only type units,
6708 therefore DW_UT_type. */
6711 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6712 struct dwo_file *dwo_file,
6713 dwarf2_section_info *section, htab_t &types_htab,
6714 rcuh_kind section_kind)
6716 struct objfile *objfile = dwarf2_per_objfile->objfile;
6717 struct dwarf2_section_info *abbrev_section;
6719 const gdb_byte *info_ptr, *end_ptr;
6721 abbrev_section = (dwo_file != NULL
6722 ? &dwo_file->sections.abbrev
6723 : &dwarf2_per_objfile->abbrev);
6725 if (dwarf_read_debug)
6726 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6727 get_section_name (section),
6728 get_section_file_name (abbrev_section));
6730 dwarf2_read_section (objfile, section);
6731 info_ptr = section->buffer;
6733 if (info_ptr == NULL)
6736 /* We can't set abfd until now because the section may be empty or
6737 not present, in which case the bfd is unknown. */
6738 abfd = get_section_bfd_owner (section);
6740 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6741 because we don't need to read any dies: the signature is in the
6744 end_ptr = info_ptr + section->size;
6745 while (info_ptr < end_ptr)
6747 struct signatured_type *sig_type;
6748 struct dwo_unit *dwo_tu;
6750 const gdb_byte *ptr = info_ptr;
6751 struct comp_unit_head header;
6752 unsigned int length;
6754 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6756 /* Initialize it due to a false compiler warning. */
6757 header.signature = -1;
6758 header.type_cu_offset_in_tu = (cu_offset) -1;
6760 /* We need to read the type's signature in order to build the hash
6761 table, but we don't need anything else just yet. */
6763 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6764 abbrev_section, ptr, section_kind);
6766 length = get_cu_length (&header);
6768 /* Skip dummy type units. */
6769 if (ptr >= info_ptr + length
6770 || peek_abbrev_code (abfd, ptr) == 0
6771 || header.unit_type != DW_UT_type)
6777 if (types_htab == NULL)
6780 types_htab = allocate_dwo_unit_table (objfile);
6782 types_htab = allocate_signatured_type_table (objfile);
6788 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6790 dwo_tu->dwo_file = dwo_file;
6791 dwo_tu->signature = header.signature;
6792 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6793 dwo_tu->section = section;
6794 dwo_tu->sect_off = sect_off;
6795 dwo_tu->length = length;
6799 /* N.B.: type_offset is not usable if this type uses a DWO file.
6800 The real type_offset is in the DWO file. */
6802 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6803 struct signatured_type);
6804 sig_type->signature = header.signature;
6805 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6806 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6807 sig_type->per_cu.is_debug_types = 1;
6808 sig_type->per_cu.section = section;
6809 sig_type->per_cu.sect_off = sect_off;
6810 sig_type->per_cu.length = length;
6813 slot = htab_find_slot (types_htab,
6814 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6816 gdb_assert (slot != NULL);
6819 sect_offset dup_sect_off;
6823 const struct dwo_unit *dup_tu
6824 = (const struct dwo_unit *) *slot;
6826 dup_sect_off = dup_tu->sect_off;
6830 const struct signatured_type *dup_tu
6831 = (const struct signatured_type *) *slot;
6833 dup_sect_off = dup_tu->per_cu.sect_off;
6836 complaint (_("debug type entry at offset %s is duplicate to"
6837 " the entry at offset %s, signature %s"),
6838 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6839 hex_string (header.signature));
6841 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6843 if (dwarf_read_debug > 1)
6844 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6845 sect_offset_str (sect_off),
6846 hex_string (header.signature));
6852 /* Create the hash table of all entries in the .debug_types
6853 (or .debug_types.dwo) section(s).
6854 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6855 otherwise it is NULL.
6857 The result is a pointer to the hash table or NULL if there are no types.
6859 Note: This function processes DWO files only, not DWP files. */
6862 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6863 struct dwo_file *dwo_file,
6864 gdb::array_view<dwarf2_section_info> type_sections,
6867 for (dwarf2_section_info §ion : type_sections)
6868 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, §ion,
6869 types_htab, rcuh_kind::TYPE);
6872 /* Create the hash table of all entries in the .debug_types section,
6873 and initialize all_type_units.
6874 The result is zero if there is an error (e.g. missing .debug_types section),
6875 otherwise non-zero. */
6878 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6880 htab_t types_htab = NULL;
6882 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6883 &dwarf2_per_objfile->info, types_htab,
6884 rcuh_kind::COMPILE);
6885 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6886 dwarf2_per_objfile->types, types_htab);
6887 if (types_htab == NULL)
6889 dwarf2_per_objfile->signatured_types = NULL;
6893 dwarf2_per_objfile->signatured_types = types_htab;
6895 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6896 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6898 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6899 &dwarf2_per_objfile->all_type_units);
6904 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6905 If SLOT is non-NULL, it is the entry to use in the hash table.
6906 Otherwise we find one. */
6908 static struct signatured_type *
6909 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6912 struct objfile *objfile = dwarf2_per_objfile->objfile;
6914 if (dwarf2_per_objfile->all_type_units.size ()
6915 == dwarf2_per_objfile->all_type_units.capacity ())
6916 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6918 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6919 struct signatured_type);
6921 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6922 sig_type->signature = sig;
6923 sig_type->per_cu.is_debug_types = 1;
6924 if (dwarf2_per_objfile->using_index)
6926 sig_type->per_cu.v.quick =
6927 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6928 struct dwarf2_per_cu_quick_data);
6933 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6936 gdb_assert (*slot == NULL);
6938 /* The rest of sig_type must be filled in by the caller. */
6942 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6943 Fill in SIG_ENTRY with DWO_ENTRY. */
6946 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6947 struct signatured_type *sig_entry,
6948 struct dwo_unit *dwo_entry)
6950 /* Make sure we're not clobbering something we don't expect to. */
6951 gdb_assert (! sig_entry->per_cu.queued);
6952 gdb_assert (sig_entry->per_cu.cu == NULL);
6953 if (dwarf2_per_objfile->using_index)
6955 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6956 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6959 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6960 gdb_assert (sig_entry->signature == dwo_entry->signature);
6961 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6962 gdb_assert (sig_entry->type_unit_group == NULL);
6963 gdb_assert (sig_entry->dwo_unit == NULL);
6965 sig_entry->per_cu.section = dwo_entry->section;
6966 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6967 sig_entry->per_cu.length = dwo_entry->length;
6968 sig_entry->per_cu.reading_dwo_directly = 1;
6969 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6970 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6971 sig_entry->dwo_unit = dwo_entry;
6974 /* Subroutine of lookup_signatured_type.
6975 If we haven't read the TU yet, create the signatured_type data structure
6976 for a TU to be read in directly from a DWO file, bypassing the stub.
6977 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6978 using .gdb_index, then when reading a CU we want to stay in the DWO file
6979 containing that CU. Otherwise we could end up reading several other DWO
6980 files (due to comdat folding) to process the transitive closure of all the
6981 mentioned TUs, and that can be slow. The current DWO file will have every
6982 type signature that it needs.
6983 We only do this for .gdb_index because in the psymtab case we already have
6984 to read all the DWOs to build the type unit groups. */
6986 static struct signatured_type *
6987 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6989 struct dwarf2_per_objfile *dwarf2_per_objfile
6990 = cu->per_cu->dwarf2_per_objfile;
6991 struct objfile *objfile = dwarf2_per_objfile->objfile;
6992 struct dwo_file *dwo_file;
6993 struct dwo_unit find_dwo_entry, *dwo_entry;
6994 struct signatured_type find_sig_entry, *sig_entry;
6997 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6999 /* If TU skeletons have been removed then we may not have read in any
7001 if (dwarf2_per_objfile->signatured_types == NULL)
7003 dwarf2_per_objfile->signatured_types
7004 = allocate_signatured_type_table (objfile);
7007 /* We only ever need to read in one copy of a signatured type.
7008 Use the global signatured_types array to do our own comdat-folding
7009 of types. If this is the first time we're reading this TU, and
7010 the TU has an entry in .gdb_index, replace the recorded data from
7011 .gdb_index with this TU. */
7013 find_sig_entry.signature = sig;
7014 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7015 &find_sig_entry, INSERT);
7016 sig_entry = (struct signatured_type *) *slot;
7018 /* We can get here with the TU already read, *or* in the process of being
7019 read. Don't reassign the global entry to point to this DWO if that's
7020 the case. Also note that if the TU is already being read, it may not
7021 have come from a DWO, the program may be a mix of Fission-compiled
7022 code and non-Fission-compiled code. */
7024 /* Have we already tried to read this TU?
7025 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7026 needn't exist in the global table yet). */
7027 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7030 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7031 dwo_unit of the TU itself. */
7032 dwo_file = cu->dwo_unit->dwo_file;
7034 /* Ok, this is the first time we're reading this TU. */
7035 if (dwo_file->tus == NULL)
7037 find_dwo_entry.signature = sig;
7038 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7039 if (dwo_entry == NULL)
7042 /* If the global table doesn't have an entry for this TU, add one. */
7043 if (sig_entry == NULL)
7044 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7046 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7047 sig_entry->per_cu.tu_read = 1;
7051 /* Subroutine of lookup_signatured_type.
7052 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7053 then try the DWP file. If the TU stub (skeleton) has been removed then
7054 it won't be in .gdb_index. */
7056 static struct signatured_type *
7057 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7059 struct dwarf2_per_objfile *dwarf2_per_objfile
7060 = cu->per_cu->dwarf2_per_objfile;
7061 struct objfile *objfile = dwarf2_per_objfile->objfile;
7062 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7063 struct dwo_unit *dwo_entry;
7064 struct signatured_type find_sig_entry, *sig_entry;
7067 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7068 gdb_assert (dwp_file != NULL);
7070 /* If TU skeletons have been removed then we may not have read in any
7072 if (dwarf2_per_objfile->signatured_types == NULL)
7074 dwarf2_per_objfile->signatured_types
7075 = allocate_signatured_type_table (objfile);
7078 find_sig_entry.signature = sig;
7079 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7080 &find_sig_entry, INSERT);
7081 sig_entry = (struct signatured_type *) *slot;
7083 /* Have we already tried to read this TU?
7084 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7085 needn't exist in the global table yet). */
7086 if (sig_entry != NULL)
7089 if (dwp_file->tus == NULL)
7091 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7092 sig, 1 /* is_debug_types */);
7093 if (dwo_entry == NULL)
7096 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7097 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7102 /* Lookup a signature based type for DW_FORM_ref_sig8.
7103 Returns NULL if signature SIG is not present in the table.
7104 It is up to the caller to complain about this. */
7106 static struct signatured_type *
7107 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7109 struct dwarf2_per_objfile *dwarf2_per_objfile
7110 = cu->per_cu->dwarf2_per_objfile;
7113 && dwarf2_per_objfile->using_index)
7115 /* We're in a DWO/DWP file, and we're using .gdb_index.
7116 These cases require special processing. */
7117 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7118 return lookup_dwo_signatured_type (cu, sig);
7120 return lookup_dwp_signatured_type (cu, sig);
7124 struct signatured_type find_entry, *entry;
7126 if (dwarf2_per_objfile->signatured_types == NULL)
7128 find_entry.signature = sig;
7129 entry = ((struct signatured_type *)
7130 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7135 /* Low level DIE reading support. */
7137 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7140 init_cu_die_reader (struct die_reader_specs *reader,
7141 struct dwarf2_cu *cu,
7142 struct dwarf2_section_info *section,
7143 struct dwo_file *dwo_file,
7144 struct abbrev_table *abbrev_table)
7146 gdb_assert (section->readin && section->buffer != NULL);
7147 reader->abfd = get_section_bfd_owner (section);
7149 reader->dwo_file = dwo_file;
7150 reader->die_section = section;
7151 reader->buffer = section->buffer;
7152 reader->buffer_end = section->buffer + section->size;
7153 reader->comp_dir = NULL;
7154 reader->abbrev_table = abbrev_table;
7157 /* Subroutine of init_cutu_and_read_dies to simplify it.
7158 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7159 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7162 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7163 from it to the DIE in the DWO. If NULL we are skipping the stub.
7164 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7165 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7166 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7167 STUB_COMP_DIR may be non-NULL.
7168 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7169 are filled in with the info of the DIE from the DWO file.
7170 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7171 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7172 kept around for at least as long as *RESULT_READER.
7174 The result is non-zero if a valid (non-dummy) DIE was found. */
7177 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7178 struct dwo_unit *dwo_unit,
7179 struct die_info *stub_comp_unit_die,
7180 const char *stub_comp_dir,
7181 struct die_reader_specs *result_reader,
7182 const gdb_byte **result_info_ptr,
7183 struct die_info **result_comp_unit_die,
7184 int *result_has_children,
7185 abbrev_table_up *result_dwo_abbrev_table)
7187 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7188 struct objfile *objfile = dwarf2_per_objfile->objfile;
7189 struct dwarf2_cu *cu = this_cu->cu;
7191 const gdb_byte *begin_info_ptr, *info_ptr;
7192 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7193 int i,num_extra_attrs;
7194 struct dwarf2_section_info *dwo_abbrev_section;
7195 struct attribute *attr;
7196 struct die_info *comp_unit_die;
7198 /* At most one of these may be provided. */
7199 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7201 /* These attributes aren't processed until later:
7202 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7203 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7204 referenced later. However, these attributes are found in the stub
7205 which we won't have later. In order to not impose this complication
7206 on the rest of the code, we read them here and copy them to the
7215 if (stub_comp_unit_die != NULL)
7217 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7219 if (! this_cu->is_debug_types)
7220 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7221 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7222 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7223 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7224 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7226 /* There should be a DW_AT_addr_base attribute here (if needed).
7227 We need the value before we can process DW_FORM_GNU_addr_index
7228 or DW_FORM_addrx. */
7230 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7232 cu->addr_base = DW_UNSND (attr);
7234 /* There should be a DW_AT_ranges_base attribute here (if needed).
7235 We need the value before we can process DW_AT_ranges. */
7236 cu->ranges_base = 0;
7237 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7239 cu->ranges_base = DW_UNSND (attr);
7241 else if (stub_comp_dir != NULL)
7243 /* Reconstruct the comp_dir attribute to simplify the code below. */
7244 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7245 comp_dir->name = DW_AT_comp_dir;
7246 comp_dir->form = DW_FORM_string;
7247 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7248 DW_STRING (comp_dir) = stub_comp_dir;
7251 /* Set up for reading the DWO CU/TU. */
7252 cu->dwo_unit = dwo_unit;
7253 dwarf2_section_info *section = dwo_unit->section;
7254 dwarf2_read_section (objfile, section);
7255 abfd = get_section_bfd_owner (section);
7256 begin_info_ptr = info_ptr = (section->buffer
7257 + to_underlying (dwo_unit->sect_off));
7258 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7260 if (this_cu->is_debug_types)
7262 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7264 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7265 &cu->header, section,
7267 info_ptr, rcuh_kind::TYPE);
7268 /* This is not an assert because it can be caused by bad debug info. */
7269 if (sig_type->signature != cu->header.signature)
7271 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7272 " TU at offset %s [in module %s]"),
7273 hex_string (sig_type->signature),
7274 hex_string (cu->header.signature),
7275 sect_offset_str (dwo_unit->sect_off),
7276 bfd_get_filename (abfd));
7278 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7279 /* For DWOs coming from DWP files, we don't know the CU length
7280 nor the type's offset in the TU until now. */
7281 dwo_unit->length = get_cu_length (&cu->header);
7282 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7284 /* Establish the type offset that can be used to lookup the type.
7285 For DWO files, we don't know it until now. */
7286 sig_type->type_offset_in_section
7287 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7291 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7292 &cu->header, section,
7294 info_ptr, rcuh_kind::COMPILE);
7295 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7296 /* For DWOs coming from DWP files, we don't know the CU length
7298 dwo_unit->length = get_cu_length (&cu->header);
7301 *result_dwo_abbrev_table
7302 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7303 cu->header.abbrev_sect_off);
7304 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7305 result_dwo_abbrev_table->get ());
7307 /* Read in the die, but leave space to copy over the attributes
7308 from the stub. This has the benefit of simplifying the rest of
7309 the code - all the work to maintain the illusion of a single
7310 DW_TAG_{compile,type}_unit DIE is done here. */
7311 num_extra_attrs = ((stmt_list != NULL)
7315 + (comp_dir != NULL));
7316 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7317 result_has_children, num_extra_attrs);
7319 /* Copy over the attributes from the stub to the DIE we just read in. */
7320 comp_unit_die = *result_comp_unit_die;
7321 i = comp_unit_die->num_attrs;
7322 if (stmt_list != NULL)
7323 comp_unit_die->attrs[i++] = *stmt_list;
7325 comp_unit_die->attrs[i++] = *low_pc;
7326 if (high_pc != NULL)
7327 comp_unit_die->attrs[i++] = *high_pc;
7329 comp_unit_die->attrs[i++] = *ranges;
7330 if (comp_dir != NULL)
7331 comp_unit_die->attrs[i++] = *comp_dir;
7332 comp_unit_die->num_attrs += num_extra_attrs;
7334 if (dwarf_die_debug)
7336 fprintf_unfiltered (gdb_stdlog,
7337 "Read die from %s@0x%x of %s:\n",
7338 get_section_name (section),
7339 (unsigned) (begin_info_ptr - section->buffer),
7340 bfd_get_filename (abfd));
7341 dump_die (comp_unit_die, dwarf_die_debug);
7344 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7345 TUs by skipping the stub and going directly to the entry in the DWO file.
7346 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7347 to get it via circuitous means. Blech. */
7348 if (comp_dir != NULL)
7349 result_reader->comp_dir = DW_STRING (comp_dir);
7351 /* Skip dummy compilation units. */
7352 if (info_ptr >= begin_info_ptr + dwo_unit->length
7353 || peek_abbrev_code (abfd, info_ptr) == 0)
7356 *result_info_ptr = info_ptr;
7360 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
7361 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
7362 signature is part of the header. */
7363 static gdb::optional<ULONGEST>
7364 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
7366 if (cu->header.version >= 5)
7367 return cu->header.signature;
7368 struct attribute *attr;
7369 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7370 if (attr == nullptr)
7371 return gdb::optional<ULONGEST> ();
7372 return DW_UNSND (attr);
7375 /* Subroutine of init_cutu_and_read_dies to simplify it.
7376 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7377 Returns NULL if the specified DWO unit cannot be found. */
7379 static struct dwo_unit *
7380 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7381 struct die_info *comp_unit_die)
7383 struct dwarf2_cu *cu = this_cu->cu;
7384 struct dwo_unit *dwo_unit;
7385 const char *comp_dir, *dwo_name;
7387 gdb_assert (cu != NULL);
7389 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7390 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7391 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7393 if (this_cu->is_debug_types)
7395 struct signatured_type *sig_type;
7397 /* Since this_cu is the first member of struct signatured_type,
7398 we can go from a pointer to one to a pointer to the other. */
7399 sig_type = (struct signatured_type *) this_cu;
7400 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7404 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7405 if (!signature.has_value ())
7406 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7408 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7409 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7416 /* Subroutine of init_cutu_and_read_dies to simplify it.
7417 See it for a description of the parameters.
7418 Read a TU directly from a DWO file, bypassing the stub. */
7421 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7422 int use_existing_cu, int keep,
7423 die_reader_func_ftype *die_reader_func,
7426 std::unique_ptr<dwarf2_cu> new_cu;
7427 struct signatured_type *sig_type;
7428 struct die_reader_specs reader;
7429 const gdb_byte *info_ptr;
7430 struct die_info *comp_unit_die;
7432 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7434 /* Verify we can do the following downcast, and that we have the
7436 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7437 sig_type = (struct signatured_type *) this_cu;
7438 gdb_assert (sig_type->dwo_unit != NULL);
7440 if (use_existing_cu && this_cu->cu != NULL)
7442 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7443 /* There's no need to do the rereading_dwo_cu handling that
7444 init_cutu_and_read_dies does since we don't read the stub. */
7448 /* If !use_existing_cu, this_cu->cu must be NULL. */
7449 gdb_assert (this_cu->cu == NULL);
7450 new_cu.reset (new dwarf2_cu (this_cu));
7453 /* A future optimization, if needed, would be to use an existing
7454 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7455 could share abbrev tables. */
7457 /* The abbreviation table used by READER, this must live at least as long as
7459 abbrev_table_up dwo_abbrev_table;
7461 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7462 NULL /* stub_comp_unit_die */,
7463 sig_type->dwo_unit->dwo_file->comp_dir,
7465 &comp_unit_die, &has_children,
7466 &dwo_abbrev_table) == 0)
7472 /* All the "real" work is done here. */
7473 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7475 /* This duplicates the code in init_cutu_and_read_dies,
7476 but the alternative is making the latter more complex.
7477 This function is only for the special case of using DWO files directly:
7478 no point in overly complicating the general case just to handle this. */
7479 if (new_cu != NULL && keep)
7481 /* Link this CU into read_in_chain. */
7482 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7483 dwarf2_per_objfile->read_in_chain = this_cu;
7484 /* The chain owns it now. */
7489 /* Initialize a CU (or TU) and read its DIEs.
7490 If the CU defers to a DWO file, read the DWO file as well.
7492 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7493 Otherwise the table specified in the comp unit header is read in and used.
7494 This is an optimization for when we already have the abbrev table.
7496 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7497 Otherwise, a new CU is allocated with xmalloc.
7499 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7500 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7502 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7503 linker) then DIE_READER_FUNC will not get called. */
7506 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7507 struct abbrev_table *abbrev_table,
7508 int use_existing_cu, int keep,
7510 die_reader_func_ftype *die_reader_func,
7513 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7514 struct objfile *objfile = dwarf2_per_objfile->objfile;
7515 struct dwarf2_section_info *section = this_cu->section;
7516 bfd *abfd = get_section_bfd_owner (section);
7517 struct dwarf2_cu *cu;
7518 const gdb_byte *begin_info_ptr, *info_ptr;
7519 struct die_reader_specs reader;
7520 struct die_info *comp_unit_die;
7522 struct signatured_type *sig_type = NULL;
7523 struct dwarf2_section_info *abbrev_section;
7524 /* Non-zero if CU currently points to a DWO file and we need to
7525 reread it. When this happens we need to reread the skeleton die
7526 before we can reread the DWO file (this only applies to CUs, not TUs). */
7527 int rereading_dwo_cu = 0;
7529 if (dwarf_die_debug)
7530 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7531 this_cu->is_debug_types ? "type" : "comp",
7532 sect_offset_str (this_cu->sect_off));
7534 if (use_existing_cu)
7537 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7538 file (instead of going through the stub), short-circuit all of this. */
7539 if (this_cu->reading_dwo_directly)
7541 /* Narrow down the scope of possibilities to have to understand. */
7542 gdb_assert (this_cu->is_debug_types);
7543 gdb_assert (abbrev_table == NULL);
7544 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7545 die_reader_func, data);
7549 /* This is cheap if the section is already read in. */
7550 dwarf2_read_section (objfile, section);
7552 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7554 abbrev_section = get_abbrev_section_for_cu (this_cu);
7556 std::unique_ptr<dwarf2_cu> new_cu;
7557 if (use_existing_cu && this_cu->cu != NULL)
7560 /* If this CU is from a DWO file we need to start over, we need to
7561 refetch the attributes from the skeleton CU.
7562 This could be optimized by retrieving those attributes from when we
7563 were here the first time: the previous comp_unit_die was stored in
7564 comp_unit_obstack. But there's no data yet that we need this
7566 if (cu->dwo_unit != NULL)
7567 rereading_dwo_cu = 1;
7571 /* If !use_existing_cu, this_cu->cu must be NULL. */
7572 gdb_assert (this_cu->cu == NULL);
7573 new_cu.reset (new dwarf2_cu (this_cu));
7577 /* Get the header. */
7578 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7580 /* We already have the header, there's no need to read it in again. */
7581 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7585 if (this_cu->is_debug_types)
7587 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7588 &cu->header, section,
7589 abbrev_section, info_ptr,
7592 /* Since per_cu is the first member of struct signatured_type,
7593 we can go from a pointer to one to a pointer to the other. */
7594 sig_type = (struct signatured_type *) this_cu;
7595 gdb_assert (sig_type->signature == cu->header.signature);
7596 gdb_assert (sig_type->type_offset_in_tu
7597 == cu->header.type_cu_offset_in_tu);
7598 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7600 /* LENGTH has not been set yet for type units if we're
7601 using .gdb_index. */
7602 this_cu->length = get_cu_length (&cu->header);
7604 /* Establish the type offset that can be used to lookup the type. */
7605 sig_type->type_offset_in_section =
7606 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7608 this_cu->dwarf_version = cu->header.version;
7612 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7613 &cu->header, section,
7616 rcuh_kind::COMPILE);
7618 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7619 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7620 this_cu->dwarf_version = cu->header.version;
7624 /* Skip dummy compilation units. */
7625 if (info_ptr >= begin_info_ptr + this_cu->length
7626 || peek_abbrev_code (abfd, info_ptr) == 0)
7629 /* If we don't have them yet, read the abbrevs for this compilation unit.
7630 And if we need to read them now, make sure they're freed when we're
7631 done (own the table through ABBREV_TABLE_HOLDER). */
7632 abbrev_table_up abbrev_table_holder;
7633 if (abbrev_table != NULL)
7634 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7638 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7639 cu->header.abbrev_sect_off);
7640 abbrev_table = abbrev_table_holder.get ();
7643 /* Read the top level CU/TU die. */
7644 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7645 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7647 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7650 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7651 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7652 table from the DWO file and pass the ownership over to us. It will be
7653 referenced from READER, so we must make sure to free it after we're done
7656 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7657 DWO CU, that this test will fail (the attribute will not be present). */
7658 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7659 abbrev_table_up dwo_abbrev_table;
7660 if (dwo_name != nullptr)
7662 struct dwo_unit *dwo_unit;
7663 struct die_info *dwo_comp_unit_die;
7667 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7668 " has children (offset %s) [in module %s]"),
7669 sect_offset_str (this_cu->sect_off),
7670 bfd_get_filename (abfd));
7672 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7673 if (dwo_unit != NULL)
7675 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7676 comp_unit_die, NULL,
7678 &dwo_comp_unit_die, &has_children,
7679 &dwo_abbrev_table) == 0)
7684 comp_unit_die = dwo_comp_unit_die;
7688 /* Yikes, we couldn't find the rest of the DIE, we only have
7689 the stub. A complaint has already been logged. There's
7690 not much more we can do except pass on the stub DIE to
7691 die_reader_func. We don't want to throw an error on bad
7696 /* All of the above is setup for this call. Yikes. */
7697 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7699 /* Done, clean up. */
7700 if (new_cu != NULL && keep)
7702 /* Link this CU into read_in_chain. */
7703 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7704 dwarf2_per_objfile->read_in_chain = this_cu;
7705 /* The chain owns it now. */
7710 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7711 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7712 to have already done the lookup to find the DWO file).
7714 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7715 THIS_CU->is_debug_types, but nothing else.
7717 We fill in THIS_CU->length.
7719 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7720 linker) then DIE_READER_FUNC will not get called.
7722 THIS_CU->cu is always freed when done.
7723 This is done in order to not leave THIS_CU->cu in a state where we have
7724 to care whether it refers to the "main" CU or the DWO CU. */
7727 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7728 struct dwo_file *dwo_file,
7729 die_reader_func_ftype *die_reader_func,
7732 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7733 struct objfile *objfile = dwarf2_per_objfile->objfile;
7734 struct dwarf2_section_info *section = this_cu->section;
7735 bfd *abfd = get_section_bfd_owner (section);
7736 struct dwarf2_section_info *abbrev_section;
7737 const gdb_byte *begin_info_ptr, *info_ptr;
7738 struct die_reader_specs reader;
7739 struct die_info *comp_unit_die;
7742 if (dwarf_die_debug)
7743 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7744 this_cu->is_debug_types ? "type" : "comp",
7745 sect_offset_str (this_cu->sect_off));
7747 gdb_assert (this_cu->cu == NULL);
7749 abbrev_section = (dwo_file != NULL
7750 ? &dwo_file->sections.abbrev
7751 : get_abbrev_section_for_cu (this_cu));
7753 /* This is cheap if the section is already read in. */
7754 dwarf2_read_section (objfile, section);
7756 struct dwarf2_cu cu (this_cu);
7758 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7759 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7760 &cu.header, section,
7761 abbrev_section, info_ptr,
7762 (this_cu->is_debug_types
7764 : rcuh_kind::COMPILE));
7766 this_cu->length = get_cu_length (&cu.header);
7768 /* Skip dummy compilation units. */
7769 if (info_ptr >= begin_info_ptr + this_cu->length
7770 || peek_abbrev_code (abfd, info_ptr) == 0)
7773 abbrev_table_up abbrev_table
7774 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7775 cu.header.abbrev_sect_off);
7777 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7778 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7780 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7783 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7784 does not lookup the specified DWO file.
7785 This cannot be used to read DWO files.
7787 THIS_CU->cu is always freed when done.
7788 This is done in order to not leave THIS_CU->cu in a state where we have
7789 to care whether it refers to the "main" CU or the DWO CU.
7790 We can revisit this if the data shows there's a performance issue. */
7793 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7794 die_reader_func_ftype *die_reader_func,
7797 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7800 /* Type Unit Groups.
7802 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7803 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7804 so that all types coming from the same compilation (.o file) are grouped
7805 together. A future step could be to put the types in the same symtab as
7806 the CU the types ultimately came from. */
7809 hash_type_unit_group (const void *item)
7811 const struct type_unit_group *tu_group
7812 = (const struct type_unit_group *) item;
7814 return hash_stmt_list_entry (&tu_group->hash);
7818 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7820 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7821 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7823 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7826 /* Allocate a hash table for type unit groups. */
7829 allocate_type_unit_groups_table (struct objfile *objfile)
7831 return htab_create_alloc_ex (3,
7832 hash_type_unit_group,
7835 &objfile->objfile_obstack,
7836 hashtab_obstack_allocate,
7837 dummy_obstack_deallocate);
7840 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7841 partial symtabs. We combine several TUs per psymtab to not let the size
7842 of any one psymtab grow too big. */
7843 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7844 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7846 /* Helper routine for get_type_unit_group.
7847 Create the type_unit_group object used to hold one or more TUs. */
7849 static struct type_unit_group *
7850 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7852 struct dwarf2_per_objfile *dwarf2_per_objfile
7853 = cu->per_cu->dwarf2_per_objfile;
7854 struct objfile *objfile = dwarf2_per_objfile->objfile;
7855 struct dwarf2_per_cu_data *per_cu;
7856 struct type_unit_group *tu_group;
7858 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7859 struct type_unit_group);
7860 per_cu = &tu_group->per_cu;
7861 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7863 if (dwarf2_per_objfile->using_index)
7865 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7866 struct dwarf2_per_cu_quick_data);
7870 unsigned int line_offset = to_underlying (line_offset_struct);
7871 struct partial_symtab *pst;
7874 /* Give the symtab a useful name for debug purposes. */
7875 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7876 name = string_printf ("<type_units_%d>",
7877 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7879 name = string_printf ("<type_units_at_0x%x>", line_offset);
7881 pst = create_partial_symtab (per_cu, name.c_str ());
7885 tu_group->hash.dwo_unit = cu->dwo_unit;
7886 tu_group->hash.line_sect_off = line_offset_struct;
7891 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7892 STMT_LIST is a DW_AT_stmt_list attribute. */
7894 static struct type_unit_group *
7895 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7897 struct dwarf2_per_objfile *dwarf2_per_objfile
7898 = cu->per_cu->dwarf2_per_objfile;
7899 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7900 struct type_unit_group *tu_group;
7902 unsigned int line_offset;
7903 struct type_unit_group type_unit_group_for_lookup;
7905 if (dwarf2_per_objfile->type_unit_groups == NULL)
7907 dwarf2_per_objfile->type_unit_groups =
7908 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7911 /* Do we need to create a new group, or can we use an existing one? */
7915 line_offset = DW_UNSND (stmt_list);
7916 ++tu_stats->nr_symtab_sharers;
7920 /* Ugh, no stmt_list. Rare, but we have to handle it.
7921 We can do various things here like create one group per TU or
7922 spread them over multiple groups to split up the expansion work.
7923 To avoid worst case scenarios (too many groups or too large groups)
7924 we, umm, group them in bunches. */
7925 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7926 | (tu_stats->nr_stmt_less_type_units
7927 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7928 ++tu_stats->nr_stmt_less_type_units;
7931 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7932 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7933 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7934 &type_unit_group_for_lookup, INSERT);
7937 tu_group = (struct type_unit_group *) *slot;
7938 gdb_assert (tu_group != NULL);
7942 sect_offset line_offset_struct = (sect_offset) line_offset;
7943 tu_group = create_type_unit_group (cu, line_offset_struct);
7945 ++tu_stats->nr_symtabs;
7951 /* Partial symbol tables. */
7953 /* Create a psymtab named NAME and assign it to PER_CU.
7955 The caller must fill in the following details:
7956 dirname, textlow, texthigh. */
7958 static struct partial_symtab *
7959 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7961 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7962 struct partial_symtab *pst;
7964 pst = start_psymtab_common (objfile, name, 0);
7966 pst->psymtabs_addrmap_supported = 1;
7968 /* This is the glue that links PST into GDB's symbol API. */
7969 pst->read_symtab_private = per_cu;
7970 pst->read_symtab = dwarf2_read_symtab;
7971 per_cu->v.psymtab = pst;
7976 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7979 struct process_psymtab_comp_unit_data
7981 /* True if we are reading a DW_TAG_partial_unit. */
7983 int want_partial_unit;
7985 /* The "pretend" language that is used if the CU doesn't declare a
7988 enum language pretend_language;
7991 /* die_reader_func for process_psymtab_comp_unit. */
7994 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7995 const gdb_byte *info_ptr,
7996 struct die_info *comp_unit_die,
8000 struct dwarf2_cu *cu = reader->cu;
8001 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8002 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8003 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8005 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8006 struct partial_symtab *pst;
8007 enum pc_bounds_kind cu_bounds_kind;
8008 const char *filename;
8009 struct process_psymtab_comp_unit_data *info
8010 = (struct process_psymtab_comp_unit_data *) data;
8012 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8015 gdb_assert (! per_cu->is_debug_types);
8017 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8019 /* Allocate a new partial symbol table structure. */
8020 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8021 if (filename == NULL)
8024 pst = create_partial_symtab (per_cu, filename);
8026 /* This must be done before calling dwarf2_build_include_psymtabs. */
8027 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8029 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8031 dwarf2_find_base_address (comp_unit_die, cu);
8033 /* Possibly set the default values of LOWPC and HIGHPC from
8035 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8036 &best_highpc, cu, pst);
8037 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8040 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8043 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8045 /* Store the contiguous range if it is not empty; it can be
8046 empty for CUs with no code. */
8047 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8051 /* Check if comp unit has_children.
8052 If so, read the rest of the partial symbols from this comp unit.
8053 If not, there's no more debug_info for this comp unit. */
8056 struct partial_die_info *first_die;
8057 CORE_ADDR lowpc, highpc;
8059 lowpc = ((CORE_ADDR) -1);
8060 highpc = ((CORE_ADDR) 0);
8062 first_die = load_partial_dies (reader, info_ptr, 1);
8064 scan_partial_symbols (first_die, &lowpc, &highpc,
8065 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8067 /* If we didn't find a lowpc, set it to highpc to avoid
8068 complaints from `maint check'. */
8069 if (lowpc == ((CORE_ADDR) -1))
8072 /* If the compilation unit didn't have an explicit address range,
8073 then use the information extracted from its child dies. */
8074 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8077 best_highpc = highpc;
8080 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8081 best_lowpc + baseaddr)
8083 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8084 best_highpc + baseaddr)
8087 end_psymtab_common (objfile, pst);
8089 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8092 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8093 struct dwarf2_per_cu_data *iter;
8095 /* Fill in 'dependencies' here; we fill in 'users' in a
8097 pst->number_of_dependencies = len;
8099 = objfile->partial_symtabs->allocate_dependencies (len);
8101 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8104 pst->dependencies[i] = iter->v.psymtab;
8106 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8109 /* Get the list of files included in the current compilation unit,
8110 and build a psymtab for each of them. */
8111 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8113 if (dwarf_read_debug)
8114 fprintf_unfiltered (gdb_stdlog,
8115 "Psymtab for %s unit @%s: %s - %s"
8116 ", %d global, %d static syms\n",
8117 per_cu->is_debug_types ? "type" : "comp",
8118 sect_offset_str (per_cu->sect_off),
8119 paddress (gdbarch, pst->text_low (objfile)),
8120 paddress (gdbarch, pst->text_high (objfile)),
8121 pst->n_global_syms, pst->n_static_syms);
8124 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8125 Process compilation unit THIS_CU for a psymtab. */
8128 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8129 int want_partial_unit,
8130 enum language pretend_language)
8132 /* If this compilation unit was already read in, free the
8133 cached copy in order to read it in again. This is
8134 necessary because we skipped some symbols when we first
8135 read in the compilation unit (see load_partial_dies).
8136 This problem could be avoided, but the benefit is unclear. */
8137 if (this_cu->cu != NULL)
8138 free_one_cached_comp_unit (this_cu);
8140 if (this_cu->is_debug_types)
8141 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8142 build_type_psymtabs_reader, NULL);
8145 process_psymtab_comp_unit_data info;
8146 info.want_partial_unit = want_partial_unit;
8147 info.pretend_language = pretend_language;
8148 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8149 process_psymtab_comp_unit_reader, &info);
8152 /* Age out any secondary CUs. */
8153 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8156 /* Reader function for build_type_psymtabs. */
8159 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8160 const gdb_byte *info_ptr,
8161 struct die_info *type_unit_die,
8165 struct dwarf2_per_objfile *dwarf2_per_objfile
8166 = reader->cu->per_cu->dwarf2_per_objfile;
8167 struct objfile *objfile = dwarf2_per_objfile->objfile;
8168 struct dwarf2_cu *cu = reader->cu;
8169 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8170 struct signatured_type *sig_type;
8171 struct type_unit_group *tu_group;
8172 struct attribute *attr;
8173 struct partial_die_info *first_die;
8174 CORE_ADDR lowpc, highpc;
8175 struct partial_symtab *pst;
8177 gdb_assert (data == NULL);
8178 gdb_assert (per_cu->is_debug_types);
8179 sig_type = (struct signatured_type *) per_cu;
8184 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8185 tu_group = get_type_unit_group (cu, attr);
8187 if (tu_group->tus == nullptr)
8188 tu_group->tus = new std::vector <signatured_type *>;
8189 tu_group->tus->push_back (sig_type);
8191 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8192 pst = create_partial_symtab (per_cu, "");
8195 first_die = load_partial_dies (reader, info_ptr, 1);
8197 lowpc = (CORE_ADDR) -1;
8198 highpc = (CORE_ADDR) 0;
8199 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8201 end_psymtab_common (objfile, pst);
8204 /* Struct used to sort TUs by their abbreviation table offset. */
8206 struct tu_abbrev_offset
8208 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8209 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8212 signatured_type *sig_type;
8213 sect_offset abbrev_offset;
8216 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8219 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8220 const struct tu_abbrev_offset &b)
8222 return a.abbrev_offset < b.abbrev_offset;
8225 /* Efficiently read all the type units.
8226 This does the bulk of the work for build_type_psymtabs.
8228 The efficiency is because we sort TUs by the abbrev table they use and
8229 only read each abbrev table once. In one program there are 200K TUs
8230 sharing 8K abbrev tables.
8232 The main purpose of this function is to support building the
8233 dwarf2_per_objfile->type_unit_groups table.
8234 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8235 can collapse the search space by grouping them by stmt_list.
8236 The savings can be significant, in the same program from above the 200K TUs
8237 share 8K stmt_list tables.
8239 FUNC is expected to call get_type_unit_group, which will create the
8240 struct type_unit_group if necessary and add it to
8241 dwarf2_per_objfile->type_unit_groups. */
8244 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8246 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8247 abbrev_table_up abbrev_table;
8248 sect_offset abbrev_offset;
8250 /* It's up to the caller to not call us multiple times. */
8251 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8253 if (dwarf2_per_objfile->all_type_units.empty ())
8256 /* TUs typically share abbrev tables, and there can be way more TUs than
8257 abbrev tables. Sort by abbrev table to reduce the number of times we
8258 read each abbrev table in.
8259 Alternatives are to punt or to maintain a cache of abbrev tables.
8260 This is simpler and efficient enough for now.
8262 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8263 symtab to use). Typically TUs with the same abbrev offset have the same
8264 stmt_list value too so in practice this should work well.
8266 The basic algorithm here is:
8268 sort TUs by abbrev table
8269 for each TU with same abbrev table:
8270 read abbrev table if first user
8271 read TU top level DIE
8272 [IWBN if DWO skeletons had DW_AT_stmt_list]
8275 if (dwarf_read_debug)
8276 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8278 /* Sort in a separate table to maintain the order of all_type_units
8279 for .gdb_index: TU indices directly index all_type_units. */
8280 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8281 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8283 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8284 sorted_by_abbrev.emplace_back
8285 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8286 sig_type->per_cu.section,
8287 sig_type->per_cu.sect_off));
8289 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8290 sort_tu_by_abbrev_offset);
8292 abbrev_offset = (sect_offset) ~(unsigned) 0;
8294 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8296 /* Switch to the next abbrev table if necessary. */
8297 if (abbrev_table == NULL
8298 || tu.abbrev_offset != abbrev_offset)
8300 abbrev_offset = tu.abbrev_offset;
8302 abbrev_table_read_table (dwarf2_per_objfile,
8303 &dwarf2_per_objfile->abbrev,
8305 ++tu_stats->nr_uniq_abbrev_tables;
8308 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8309 0, 0, false, build_type_psymtabs_reader, NULL);
8313 /* Print collected type unit statistics. */
8316 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8318 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8320 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8321 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8322 dwarf2_per_objfile->all_type_units.size ());
8323 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8324 tu_stats->nr_uniq_abbrev_tables);
8325 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8326 tu_stats->nr_symtabs);
8327 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8328 tu_stats->nr_symtab_sharers);
8329 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8330 tu_stats->nr_stmt_less_type_units);
8331 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8332 tu_stats->nr_all_type_units_reallocs);
8335 /* Traversal function for build_type_psymtabs. */
8338 build_type_psymtab_dependencies (void **slot, void *info)
8340 struct dwarf2_per_objfile *dwarf2_per_objfile
8341 = (struct dwarf2_per_objfile *) info;
8342 struct objfile *objfile = dwarf2_per_objfile->objfile;
8343 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8344 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8345 struct partial_symtab *pst = per_cu->v.psymtab;
8346 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
8349 gdb_assert (len > 0);
8350 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8352 pst->number_of_dependencies = len;
8353 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8354 for (i = 0; i < len; ++i)
8356 struct signatured_type *iter = tu_group->tus->at (i);
8357 gdb_assert (iter->per_cu.is_debug_types);
8358 pst->dependencies[i] = iter->per_cu.v.psymtab;
8359 iter->type_unit_group = tu_group;
8362 delete tu_group->tus;
8363 tu_group->tus = nullptr;
8368 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8369 Build partial symbol tables for the .debug_types comp-units. */
8372 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8374 if (! create_all_type_units (dwarf2_per_objfile))
8377 build_type_psymtabs_1 (dwarf2_per_objfile);
8380 /* Traversal function for process_skeletonless_type_unit.
8381 Read a TU in a DWO file and build partial symbols for it. */
8384 process_skeletonless_type_unit (void **slot, void *info)
8386 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8387 struct dwarf2_per_objfile *dwarf2_per_objfile
8388 = (struct dwarf2_per_objfile *) info;
8389 struct signatured_type find_entry, *entry;
8391 /* If this TU doesn't exist in the global table, add it and read it in. */
8393 if (dwarf2_per_objfile->signatured_types == NULL)
8395 dwarf2_per_objfile->signatured_types
8396 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8399 find_entry.signature = dwo_unit->signature;
8400 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8402 /* If we've already seen this type there's nothing to do. What's happening
8403 is we're doing our own version of comdat-folding here. */
8407 /* This does the job that create_all_type_units would have done for
8409 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8410 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8413 /* This does the job that build_type_psymtabs_1 would have done. */
8414 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8415 build_type_psymtabs_reader, NULL);
8420 /* Traversal function for process_skeletonless_type_units. */
8423 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8425 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8427 if (dwo_file->tus != NULL)
8429 htab_traverse_noresize (dwo_file->tus,
8430 process_skeletonless_type_unit, info);
8436 /* Scan all TUs of DWO files, verifying we've processed them.
8437 This is needed in case a TU was emitted without its skeleton.
8438 Note: This can't be done until we know what all the DWO files are. */
8441 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8443 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8444 if (get_dwp_file (dwarf2_per_objfile) == NULL
8445 && dwarf2_per_objfile->dwo_files != NULL)
8447 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8448 process_dwo_file_for_skeletonless_type_units,
8449 dwarf2_per_objfile);
8453 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8456 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8458 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8460 struct partial_symtab *pst = per_cu->v.psymtab;
8465 for (int j = 0; j < pst->number_of_dependencies; ++j)
8467 /* Set the 'user' field only if it is not already set. */
8468 if (pst->dependencies[j]->user == NULL)
8469 pst->dependencies[j]->user = pst;
8474 /* Build the partial symbol table by doing a quick pass through the
8475 .debug_info and .debug_abbrev sections. */
8478 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8480 struct objfile *objfile = dwarf2_per_objfile->objfile;
8482 if (dwarf_read_debug)
8484 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8485 objfile_name (objfile));
8488 dwarf2_per_objfile->reading_partial_symbols = 1;
8490 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8492 /* Any cached compilation units will be linked by the per-objfile
8493 read_in_chain. Make sure to free them when we're done. */
8494 free_cached_comp_units freer (dwarf2_per_objfile);
8496 build_type_psymtabs (dwarf2_per_objfile);
8498 create_all_comp_units (dwarf2_per_objfile);
8500 /* Create a temporary address map on a temporary obstack. We later
8501 copy this to the final obstack. */
8502 auto_obstack temp_obstack;
8504 scoped_restore save_psymtabs_addrmap
8505 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8506 addrmap_create_mutable (&temp_obstack));
8508 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8509 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8511 /* This has to wait until we read the CUs, we need the list of DWOs. */
8512 process_skeletonless_type_units (dwarf2_per_objfile);
8514 /* Now that all TUs have been processed we can fill in the dependencies. */
8515 if (dwarf2_per_objfile->type_unit_groups != NULL)
8517 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8518 build_type_psymtab_dependencies, dwarf2_per_objfile);
8521 if (dwarf_read_debug)
8522 print_tu_stats (dwarf2_per_objfile);
8524 set_partial_user (dwarf2_per_objfile);
8526 objfile->partial_symtabs->psymtabs_addrmap
8527 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8528 objfile->partial_symtabs->obstack ());
8529 /* At this point we want to keep the address map. */
8530 save_psymtabs_addrmap.release ();
8532 if (dwarf_read_debug)
8533 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8534 objfile_name (objfile));
8537 /* die_reader_func for load_partial_comp_unit. */
8540 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8541 const gdb_byte *info_ptr,
8542 struct die_info *comp_unit_die,
8546 struct dwarf2_cu *cu = reader->cu;
8548 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8550 /* Check if comp unit has_children.
8551 If so, read the rest of the partial symbols from this comp unit.
8552 If not, there's no more debug_info for this comp unit. */
8554 load_partial_dies (reader, info_ptr, 0);
8557 /* Load the partial DIEs for a secondary CU into memory.
8558 This is also used when rereading a primary CU with load_all_dies. */
8561 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8563 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8564 load_partial_comp_unit_reader, NULL);
8568 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8569 struct dwarf2_section_info *section,
8570 struct dwarf2_section_info *abbrev_section,
8571 unsigned int is_dwz)
8573 const gdb_byte *info_ptr;
8574 struct objfile *objfile = dwarf2_per_objfile->objfile;
8576 if (dwarf_read_debug)
8577 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8578 get_section_name (section),
8579 get_section_file_name (section));
8581 dwarf2_read_section (objfile, section);
8583 info_ptr = section->buffer;
8585 while (info_ptr < section->buffer + section->size)
8587 struct dwarf2_per_cu_data *this_cu;
8589 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8591 comp_unit_head cu_header;
8592 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8593 abbrev_section, info_ptr,
8594 rcuh_kind::COMPILE);
8596 /* Save the compilation unit for later lookup. */
8597 if (cu_header.unit_type != DW_UT_type)
8599 this_cu = XOBNEW (&objfile->objfile_obstack,
8600 struct dwarf2_per_cu_data);
8601 memset (this_cu, 0, sizeof (*this_cu));
8605 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8606 struct signatured_type);
8607 memset (sig_type, 0, sizeof (*sig_type));
8608 sig_type->signature = cu_header.signature;
8609 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8610 this_cu = &sig_type->per_cu;
8612 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8613 this_cu->sect_off = sect_off;
8614 this_cu->length = cu_header.length + cu_header.initial_length_size;
8615 this_cu->is_dwz = is_dwz;
8616 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8617 this_cu->section = section;
8619 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8621 info_ptr = info_ptr + this_cu->length;
8625 /* Create a list of all compilation units in OBJFILE.
8626 This is only done for -readnow and building partial symtabs. */
8629 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8631 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8632 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8633 &dwarf2_per_objfile->abbrev, 0);
8635 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8637 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8641 /* Process all loaded DIEs for compilation unit CU, starting at
8642 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8643 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8644 DW_AT_ranges). See the comments of add_partial_subprogram on how
8645 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8648 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8649 CORE_ADDR *highpc, int set_addrmap,
8650 struct dwarf2_cu *cu)
8652 struct partial_die_info *pdi;
8654 /* Now, march along the PDI's, descending into ones which have
8655 interesting children but skipping the children of the other ones,
8656 until we reach the end of the compilation unit. */
8664 /* Anonymous namespaces or modules have no name but have interesting
8665 children, so we need to look at them. Ditto for anonymous
8668 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8669 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8670 || pdi->tag == DW_TAG_imported_unit
8671 || pdi->tag == DW_TAG_inlined_subroutine)
8675 case DW_TAG_subprogram:
8676 case DW_TAG_inlined_subroutine:
8677 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8679 case DW_TAG_constant:
8680 case DW_TAG_variable:
8681 case DW_TAG_typedef:
8682 case DW_TAG_union_type:
8683 if (!pdi->is_declaration)
8685 add_partial_symbol (pdi, cu);
8688 case DW_TAG_class_type:
8689 case DW_TAG_interface_type:
8690 case DW_TAG_structure_type:
8691 if (!pdi->is_declaration)
8693 add_partial_symbol (pdi, cu);
8695 if ((cu->language == language_rust
8696 || cu->language == language_cplus) && pdi->has_children)
8697 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8700 case DW_TAG_enumeration_type:
8701 if (!pdi->is_declaration)
8702 add_partial_enumeration (pdi, cu);
8704 case DW_TAG_base_type:
8705 case DW_TAG_subrange_type:
8706 /* File scope base type definitions are added to the partial
8708 add_partial_symbol (pdi, cu);
8710 case DW_TAG_namespace:
8711 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8714 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8716 case DW_TAG_imported_unit:
8718 struct dwarf2_per_cu_data *per_cu;
8720 /* For now we don't handle imported units in type units. */
8721 if (cu->per_cu->is_debug_types)
8723 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8724 " supported in type units [in module %s]"),
8725 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8728 per_cu = dwarf2_find_containing_comp_unit
8729 (pdi->d.sect_off, pdi->is_dwz,
8730 cu->per_cu->dwarf2_per_objfile);
8732 /* Go read the partial unit, if needed. */
8733 if (per_cu->v.psymtab == NULL)
8734 process_psymtab_comp_unit (per_cu, 1, cu->language);
8736 VEC_safe_push (dwarf2_per_cu_ptr,
8737 cu->per_cu->imported_symtabs, per_cu);
8740 case DW_TAG_imported_declaration:
8741 add_partial_symbol (pdi, cu);
8748 /* If the die has a sibling, skip to the sibling. */
8750 pdi = pdi->die_sibling;
8754 /* Functions used to compute the fully scoped name of a partial DIE.
8756 Normally, this is simple. For C++, the parent DIE's fully scoped
8757 name is concatenated with "::" and the partial DIE's name.
8758 Enumerators are an exception; they use the scope of their parent
8759 enumeration type, i.e. the name of the enumeration type is not
8760 prepended to the enumerator.
8762 There are two complexities. One is DW_AT_specification; in this
8763 case "parent" means the parent of the target of the specification,
8764 instead of the direct parent of the DIE. The other is compilers
8765 which do not emit DW_TAG_namespace; in this case we try to guess
8766 the fully qualified name of structure types from their members'
8767 linkage names. This must be done using the DIE's children rather
8768 than the children of any DW_AT_specification target. We only need
8769 to do this for structures at the top level, i.e. if the target of
8770 any DW_AT_specification (if any; otherwise the DIE itself) does not
8773 /* Compute the scope prefix associated with PDI's parent, in
8774 compilation unit CU. The result will be allocated on CU's
8775 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8776 field. NULL is returned if no prefix is necessary. */
8778 partial_die_parent_scope (struct partial_die_info *pdi,
8779 struct dwarf2_cu *cu)
8781 const char *grandparent_scope;
8782 struct partial_die_info *parent, *real_pdi;
8784 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8785 then this means the parent of the specification DIE. */
8788 while (real_pdi->has_specification)
8790 auto res = find_partial_die (real_pdi->spec_offset,
8791 real_pdi->spec_is_dwz, cu);
8796 parent = real_pdi->die_parent;
8800 if (parent->scope_set)
8801 return parent->scope;
8805 grandparent_scope = partial_die_parent_scope (parent, cu);
8807 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8808 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8809 Work around this problem here. */
8810 if (cu->language == language_cplus
8811 && parent->tag == DW_TAG_namespace
8812 && strcmp (parent->name, "::") == 0
8813 && grandparent_scope == NULL)
8815 parent->scope = NULL;
8816 parent->scope_set = 1;
8820 if (pdi->tag == DW_TAG_enumerator)
8821 /* Enumerators should not get the name of the enumeration as a prefix. */
8822 parent->scope = grandparent_scope;
8823 else if (parent->tag == DW_TAG_namespace
8824 || parent->tag == DW_TAG_module
8825 || parent->tag == DW_TAG_structure_type
8826 || parent->tag == DW_TAG_class_type
8827 || parent->tag == DW_TAG_interface_type
8828 || parent->tag == DW_TAG_union_type
8829 || parent->tag == DW_TAG_enumeration_type)
8831 if (grandparent_scope == NULL)
8832 parent->scope = parent->name;
8834 parent->scope = typename_concat (&cu->comp_unit_obstack,
8836 parent->name, 0, cu);
8840 /* FIXME drow/2004-04-01: What should we be doing with
8841 function-local names? For partial symbols, we should probably be
8843 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8844 dwarf_tag_name (parent->tag),
8845 sect_offset_str (pdi->sect_off));
8846 parent->scope = grandparent_scope;
8849 parent->scope_set = 1;
8850 return parent->scope;
8853 /* Return the fully scoped name associated with PDI, from compilation unit
8854 CU. The result will be allocated with malloc. */
8857 partial_die_full_name (struct partial_die_info *pdi,
8858 struct dwarf2_cu *cu)
8860 const char *parent_scope;
8862 /* If this is a template instantiation, we can not work out the
8863 template arguments from partial DIEs. So, unfortunately, we have
8864 to go through the full DIEs. At least any work we do building
8865 types here will be reused if full symbols are loaded later. */
8866 if (pdi->has_template_arguments)
8870 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8872 struct die_info *die;
8873 struct attribute attr;
8874 struct dwarf2_cu *ref_cu = cu;
8876 /* DW_FORM_ref_addr is using section offset. */
8877 attr.name = (enum dwarf_attribute) 0;
8878 attr.form = DW_FORM_ref_addr;
8879 attr.u.unsnd = to_underlying (pdi->sect_off);
8880 die = follow_die_ref (NULL, &attr, &ref_cu);
8882 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8886 parent_scope = partial_die_parent_scope (pdi, cu);
8887 if (parent_scope == NULL)
8890 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8894 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8896 struct dwarf2_per_objfile *dwarf2_per_objfile
8897 = cu->per_cu->dwarf2_per_objfile;
8898 struct objfile *objfile = dwarf2_per_objfile->objfile;
8899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8901 const char *actual_name = NULL;
8903 char *built_actual_name;
8905 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8907 built_actual_name = partial_die_full_name (pdi, cu);
8908 if (built_actual_name != NULL)
8909 actual_name = built_actual_name;
8911 if (actual_name == NULL)
8912 actual_name = pdi->name;
8916 case DW_TAG_inlined_subroutine:
8917 case DW_TAG_subprogram:
8918 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8920 if (pdi->is_external || cu->language == language_ada)
8922 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8923 of the global scope. But in Ada, we want to be able to access
8924 nested procedures globally. So all Ada subprograms are stored
8925 in the global scope. */
8926 add_psymbol_to_list (actual_name, strlen (actual_name),
8927 built_actual_name != NULL,
8928 VAR_DOMAIN, LOC_BLOCK,
8929 SECT_OFF_TEXT (objfile),
8930 psymbol_placement::GLOBAL,
8932 cu->language, objfile);
8936 add_psymbol_to_list (actual_name, strlen (actual_name),
8937 built_actual_name != NULL,
8938 VAR_DOMAIN, LOC_BLOCK,
8939 SECT_OFF_TEXT (objfile),
8940 psymbol_placement::STATIC,
8941 addr, cu->language, objfile);
8944 if (pdi->main_subprogram && actual_name != NULL)
8945 set_objfile_main_name (objfile, actual_name, cu->language);
8947 case DW_TAG_constant:
8948 add_psymbol_to_list (actual_name, strlen (actual_name),
8949 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8950 -1, (pdi->is_external
8951 ? psymbol_placement::GLOBAL
8952 : psymbol_placement::STATIC),
8953 0, cu->language, objfile);
8955 case DW_TAG_variable:
8957 addr = decode_locdesc (pdi->d.locdesc, cu);
8961 && !dwarf2_per_objfile->has_section_at_zero)
8963 /* A global or static variable may also have been stripped
8964 out by the linker if unused, in which case its address
8965 will be nullified; do not add such variables into partial
8966 symbol table then. */
8968 else if (pdi->is_external)
8971 Don't enter into the minimal symbol tables as there is
8972 a minimal symbol table entry from the ELF symbols already.
8973 Enter into partial symbol table if it has a location
8974 descriptor or a type.
8975 If the location descriptor is missing, new_symbol will create
8976 a LOC_UNRESOLVED symbol, the address of the variable will then
8977 be determined from the minimal symbol table whenever the variable
8979 The address for the partial symbol table entry is not
8980 used by GDB, but it comes in handy for debugging partial symbol
8983 if (pdi->d.locdesc || pdi->has_type)
8984 add_psymbol_to_list (actual_name, strlen (actual_name),
8985 built_actual_name != NULL,
8986 VAR_DOMAIN, LOC_STATIC,
8987 SECT_OFF_TEXT (objfile),
8988 psymbol_placement::GLOBAL,
8989 addr, cu->language, objfile);
8993 int has_loc = pdi->d.locdesc != NULL;
8995 /* Static Variable. Skip symbols whose value we cannot know (those
8996 without location descriptors or constant values). */
8997 if (!has_loc && !pdi->has_const_value)
8999 xfree (built_actual_name);
9003 add_psymbol_to_list (actual_name, strlen (actual_name),
9004 built_actual_name != NULL,
9005 VAR_DOMAIN, LOC_STATIC,
9006 SECT_OFF_TEXT (objfile),
9007 psymbol_placement::STATIC,
9009 cu->language, objfile);
9012 case DW_TAG_typedef:
9013 case DW_TAG_base_type:
9014 case DW_TAG_subrange_type:
9015 add_psymbol_to_list (actual_name, strlen (actual_name),
9016 built_actual_name != NULL,
9017 VAR_DOMAIN, LOC_TYPEDEF, -1,
9018 psymbol_placement::STATIC,
9019 0, cu->language, objfile);
9021 case DW_TAG_imported_declaration:
9022 case DW_TAG_namespace:
9023 add_psymbol_to_list (actual_name, strlen (actual_name),
9024 built_actual_name != NULL,
9025 VAR_DOMAIN, LOC_TYPEDEF, -1,
9026 psymbol_placement::GLOBAL,
9027 0, cu->language, objfile);
9030 /* With Fortran 77 there might be a "BLOCK DATA" module
9031 available without any name. If so, we skip the module as it
9032 doesn't bring any value. */
9033 if (actual_name != nullptr)
9034 add_psymbol_to_list (actual_name, strlen (actual_name),
9035 built_actual_name != NULL,
9036 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9037 psymbol_placement::GLOBAL,
9038 0, cu->language, objfile);
9040 case DW_TAG_class_type:
9041 case DW_TAG_interface_type:
9042 case DW_TAG_structure_type:
9043 case DW_TAG_union_type:
9044 case DW_TAG_enumeration_type:
9045 /* Skip external references. The DWARF standard says in the section
9046 about "Structure, Union, and Class Type Entries": "An incomplete
9047 structure, union or class type is represented by a structure,
9048 union or class entry that does not have a byte size attribute
9049 and that has a DW_AT_declaration attribute." */
9050 if (!pdi->has_byte_size && pdi->is_declaration)
9052 xfree (built_actual_name);
9056 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9057 static vs. global. */
9058 add_psymbol_to_list (actual_name, strlen (actual_name),
9059 built_actual_name != NULL,
9060 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9061 cu->language == language_cplus
9062 ? psymbol_placement::GLOBAL
9063 : psymbol_placement::STATIC,
9064 0, cu->language, objfile);
9067 case DW_TAG_enumerator:
9068 add_psymbol_to_list (actual_name, strlen (actual_name),
9069 built_actual_name != NULL,
9070 VAR_DOMAIN, LOC_CONST, -1,
9071 cu->language == language_cplus
9072 ? psymbol_placement::GLOBAL
9073 : psymbol_placement::STATIC,
9074 0, cu->language, objfile);
9080 xfree (built_actual_name);
9083 /* Read a partial die corresponding to a namespace; also, add a symbol
9084 corresponding to that namespace to the symbol table. NAMESPACE is
9085 the name of the enclosing namespace. */
9088 add_partial_namespace (struct partial_die_info *pdi,
9089 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9090 int set_addrmap, struct dwarf2_cu *cu)
9092 /* Add a symbol for the namespace. */
9094 add_partial_symbol (pdi, cu);
9096 /* Now scan partial symbols in that namespace. */
9098 if (pdi->has_children)
9099 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9102 /* Read a partial die corresponding to a Fortran module. */
9105 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9106 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9108 /* Add a symbol for the namespace. */
9110 add_partial_symbol (pdi, cu);
9112 /* Now scan partial symbols in that module. */
9114 if (pdi->has_children)
9115 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9118 /* Read a partial die corresponding to a subprogram or an inlined
9119 subprogram and create a partial symbol for that subprogram.
9120 When the CU language allows it, this routine also defines a partial
9121 symbol for each nested subprogram that this subprogram contains.
9122 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9123 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9125 PDI may also be a lexical block, in which case we simply search
9126 recursively for subprograms defined inside that lexical block.
9127 Again, this is only performed when the CU language allows this
9128 type of definitions. */
9131 add_partial_subprogram (struct partial_die_info *pdi,
9132 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9133 int set_addrmap, struct dwarf2_cu *cu)
9135 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9137 if (pdi->has_pc_info)
9139 if (pdi->lowpc < *lowpc)
9140 *lowpc = pdi->lowpc;
9141 if (pdi->highpc > *highpc)
9142 *highpc = pdi->highpc;
9145 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9146 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9148 CORE_ADDR this_highpc;
9149 CORE_ADDR this_lowpc;
9151 baseaddr = ANOFFSET (objfile->section_offsets,
9152 SECT_OFF_TEXT (objfile));
9154 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9155 pdi->lowpc + baseaddr)
9158 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9159 pdi->highpc + baseaddr)
9161 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9162 this_lowpc, this_highpc - 1,
9163 cu->per_cu->v.psymtab);
9167 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9169 if (!pdi->is_declaration)
9170 /* Ignore subprogram DIEs that do not have a name, they are
9171 illegal. Do not emit a complaint at this point, we will
9172 do so when we convert this psymtab into a symtab. */
9174 add_partial_symbol (pdi, cu);
9178 if (! pdi->has_children)
9181 if (cu->language == language_ada)
9183 pdi = pdi->die_child;
9187 if (pdi->tag == DW_TAG_subprogram
9188 || pdi->tag == DW_TAG_inlined_subroutine
9189 || pdi->tag == DW_TAG_lexical_block)
9190 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9191 pdi = pdi->die_sibling;
9196 /* Read a partial die corresponding to an enumeration type. */
9199 add_partial_enumeration (struct partial_die_info *enum_pdi,
9200 struct dwarf2_cu *cu)
9202 struct partial_die_info *pdi;
9204 if (enum_pdi->name != NULL)
9205 add_partial_symbol (enum_pdi, cu);
9207 pdi = enum_pdi->die_child;
9210 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9211 complaint (_("malformed enumerator DIE ignored"));
9213 add_partial_symbol (pdi, cu);
9214 pdi = pdi->die_sibling;
9218 /* Return the initial uleb128 in the die at INFO_PTR. */
9221 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9223 unsigned int bytes_read;
9225 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9228 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9229 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9231 Return the corresponding abbrev, or NULL if the number is zero (indicating
9232 an empty DIE). In either case *BYTES_READ will be set to the length of
9233 the initial number. */
9235 static struct abbrev_info *
9236 peek_die_abbrev (const die_reader_specs &reader,
9237 const gdb_byte *info_ptr, unsigned int *bytes_read)
9239 dwarf2_cu *cu = reader.cu;
9240 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9241 unsigned int abbrev_number
9242 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9244 if (abbrev_number == 0)
9247 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9250 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9251 " at offset %s [in module %s]"),
9252 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9253 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9259 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9260 Returns a pointer to the end of a series of DIEs, terminated by an empty
9261 DIE. Any children of the skipped DIEs will also be skipped. */
9263 static const gdb_byte *
9264 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9268 unsigned int bytes_read;
9269 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9272 return info_ptr + bytes_read;
9274 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9278 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9279 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9280 abbrev corresponding to that skipped uleb128 should be passed in
9281 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9284 static const gdb_byte *
9285 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9286 struct abbrev_info *abbrev)
9288 unsigned int bytes_read;
9289 struct attribute attr;
9290 bfd *abfd = reader->abfd;
9291 struct dwarf2_cu *cu = reader->cu;
9292 const gdb_byte *buffer = reader->buffer;
9293 const gdb_byte *buffer_end = reader->buffer_end;
9294 unsigned int form, i;
9296 for (i = 0; i < abbrev->num_attrs; i++)
9298 /* The only abbrev we care about is DW_AT_sibling. */
9299 if (abbrev->attrs[i].name == DW_AT_sibling)
9301 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9302 if (attr.form == DW_FORM_ref_addr)
9303 complaint (_("ignoring absolute DW_AT_sibling"));
9306 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9307 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9309 if (sibling_ptr < info_ptr)
9310 complaint (_("DW_AT_sibling points backwards"));
9311 else if (sibling_ptr > reader->buffer_end)
9312 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9318 /* If it isn't DW_AT_sibling, skip this attribute. */
9319 form = abbrev->attrs[i].form;
9323 case DW_FORM_ref_addr:
9324 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9325 and later it is offset sized. */
9326 if (cu->header.version == 2)
9327 info_ptr += cu->header.addr_size;
9329 info_ptr += cu->header.offset_size;
9331 case DW_FORM_GNU_ref_alt:
9332 info_ptr += cu->header.offset_size;
9335 info_ptr += cu->header.addr_size;
9343 case DW_FORM_flag_present:
9344 case DW_FORM_implicit_const:
9361 case DW_FORM_ref_sig8:
9364 case DW_FORM_data16:
9367 case DW_FORM_string:
9368 read_direct_string (abfd, info_ptr, &bytes_read);
9369 info_ptr += bytes_read;
9371 case DW_FORM_sec_offset:
9373 case DW_FORM_GNU_strp_alt:
9374 info_ptr += cu->header.offset_size;
9376 case DW_FORM_exprloc:
9378 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9379 info_ptr += bytes_read;
9381 case DW_FORM_block1:
9382 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9384 case DW_FORM_block2:
9385 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9387 case DW_FORM_block4:
9388 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9394 case DW_FORM_ref_udata:
9395 case DW_FORM_GNU_addr_index:
9396 case DW_FORM_GNU_str_index:
9397 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9399 case DW_FORM_indirect:
9400 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9401 info_ptr += bytes_read;
9402 /* We need to continue parsing from here, so just go back to
9404 goto skip_attribute;
9407 error (_("Dwarf Error: Cannot handle %s "
9408 "in DWARF reader [in module %s]"),
9409 dwarf_form_name (form),
9410 bfd_get_filename (abfd));
9414 if (abbrev->has_children)
9415 return skip_children (reader, info_ptr);
9420 /* Locate ORIG_PDI's sibling.
9421 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9423 static const gdb_byte *
9424 locate_pdi_sibling (const struct die_reader_specs *reader,
9425 struct partial_die_info *orig_pdi,
9426 const gdb_byte *info_ptr)
9428 /* Do we know the sibling already? */
9430 if (orig_pdi->sibling)
9431 return orig_pdi->sibling;
9433 /* Are there any children to deal with? */
9435 if (!orig_pdi->has_children)
9438 /* Skip the children the long way. */
9440 return skip_children (reader, info_ptr);
9443 /* Expand this partial symbol table into a full symbol table. SELF is
9447 dwarf2_read_symtab (struct partial_symtab *self,
9448 struct objfile *objfile)
9450 struct dwarf2_per_objfile *dwarf2_per_objfile
9451 = get_dwarf2_per_objfile (objfile);
9455 warning (_("bug: psymtab for %s is already read in."),
9462 printf_filtered (_("Reading in symbols for %s..."),
9464 gdb_flush (gdb_stdout);
9467 /* If this psymtab is constructed from a debug-only objfile, the
9468 has_section_at_zero flag will not necessarily be correct. We
9469 can get the correct value for this flag by looking at the data
9470 associated with the (presumably stripped) associated objfile. */
9471 if (objfile->separate_debug_objfile_backlink)
9473 struct dwarf2_per_objfile *dpo_backlink
9474 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9476 dwarf2_per_objfile->has_section_at_zero
9477 = dpo_backlink->has_section_at_zero;
9480 dwarf2_per_objfile->reading_partial_symbols = 0;
9482 psymtab_to_symtab_1 (self);
9484 /* Finish up the debug error message. */
9486 printf_filtered (_("done.\n"));
9489 process_cu_includes (dwarf2_per_objfile);
9492 /* Reading in full CUs. */
9494 /* Add PER_CU to the queue. */
9497 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9498 enum language pretend_language)
9500 struct dwarf2_queue_item *item;
9503 item = XNEW (struct dwarf2_queue_item);
9504 item->per_cu = per_cu;
9505 item->pretend_language = pretend_language;
9508 if (dwarf2_queue == NULL)
9509 dwarf2_queue = item;
9511 dwarf2_queue_tail->next = item;
9513 dwarf2_queue_tail = item;
9516 /* If PER_CU is not yet queued, add it to the queue.
9517 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9519 The result is non-zero if PER_CU was queued, otherwise the result is zero
9520 meaning either PER_CU is already queued or it is already loaded.
9522 N.B. There is an invariant here that if a CU is queued then it is loaded.
9523 The caller is required to load PER_CU if we return non-zero. */
9526 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9527 struct dwarf2_per_cu_data *per_cu,
9528 enum language pretend_language)
9530 /* We may arrive here during partial symbol reading, if we need full
9531 DIEs to process an unusual case (e.g. template arguments). Do
9532 not queue PER_CU, just tell our caller to load its DIEs. */
9533 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9535 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9540 /* Mark the dependence relation so that we don't flush PER_CU
9542 if (dependent_cu != NULL)
9543 dwarf2_add_dependence (dependent_cu, per_cu);
9545 /* If it's already on the queue, we have nothing to do. */
9549 /* If the compilation unit is already loaded, just mark it as
9551 if (per_cu->cu != NULL)
9553 per_cu->cu->last_used = 0;
9557 /* Add it to the queue. */
9558 queue_comp_unit (per_cu, pretend_language);
9563 /* Process the queue. */
9566 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9568 struct dwarf2_queue_item *item, *next_item;
9570 if (dwarf_read_debug)
9572 fprintf_unfiltered (gdb_stdlog,
9573 "Expanding one or more symtabs of objfile %s ...\n",
9574 objfile_name (dwarf2_per_objfile->objfile));
9577 /* The queue starts out with one item, but following a DIE reference
9578 may load a new CU, adding it to the end of the queue. */
9579 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9581 if ((dwarf2_per_objfile->using_index
9582 ? !item->per_cu->v.quick->compunit_symtab
9583 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9584 /* Skip dummy CUs. */
9585 && item->per_cu->cu != NULL)
9587 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9588 unsigned int debug_print_threshold;
9591 if (per_cu->is_debug_types)
9593 struct signatured_type *sig_type =
9594 (struct signatured_type *) per_cu;
9596 sprintf (buf, "TU %s at offset %s",
9597 hex_string (sig_type->signature),
9598 sect_offset_str (per_cu->sect_off));
9599 /* There can be 100s of TUs.
9600 Only print them in verbose mode. */
9601 debug_print_threshold = 2;
9605 sprintf (buf, "CU at offset %s",
9606 sect_offset_str (per_cu->sect_off));
9607 debug_print_threshold = 1;
9610 if (dwarf_read_debug >= debug_print_threshold)
9611 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9613 if (per_cu->is_debug_types)
9614 process_full_type_unit (per_cu, item->pretend_language);
9616 process_full_comp_unit (per_cu, item->pretend_language);
9618 if (dwarf_read_debug >= debug_print_threshold)
9619 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9622 item->per_cu->queued = 0;
9623 next_item = item->next;
9627 dwarf2_queue_tail = NULL;
9629 if (dwarf_read_debug)
9631 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9632 objfile_name (dwarf2_per_objfile->objfile));
9636 /* Read in full symbols for PST, and anything it depends on. */
9639 psymtab_to_symtab_1 (struct partial_symtab *pst)
9641 struct dwarf2_per_cu_data *per_cu;
9647 for (i = 0; i < pst->number_of_dependencies; i++)
9648 if (!pst->dependencies[i]->readin
9649 && pst->dependencies[i]->user == NULL)
9651 /* Inform about additional files that need to be read in. */
9654 /* FIXME: i18n: Need to make this a single string. */
9655 fputs_filtered (" ", gdb_stdout);
9657 fputs_filtered ("and ", gdb_stdout);
9659 printf_filtered ("%s...", pst->dependencies[i]->filename);
9660 wrap_here (""); /* Flush output. */
9661 gdb_flush (gdb_stdout);
9663 psymtab_to_symtab_1 (pst->dependencies[i]);
9666 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9670 /* It's an include file, no symbols to read for it.
9671 Everything is in the parent symtab. */
9676 dw2_do_instantiate_symtab (per_cu, false);
9679 /* Trivial hash function for die_info: the hash value of a DIE
9680 is its offset in .debug_info for this objfile. */
9683 die_hash (const void *item)
9685 const struct die_info *die = (const struct die_info *) item;
9687 return to_underlying (die->sect_off);
9690 /* Trivial comparison function for die_info structures: two DIEs
9691 are equal if they have the same offset. */
9694 die_eq (const void *item_lhs, const void *item_rhs)
9696 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9697 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9699 return die_lhs->sect_off == die_rhs->sect_off;
9702 /* die_reader_func for load_full_comp_unit.
9703 This is identical to read_signatured_type_reader,
9704 but is kept separate for now. */
9707 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9708 const gdb_byte *info_ptr,
9709 struct die_info *comp_unit_die,
9713 struct dwarf2_cu *cu = reader->cu;
9714 enum language *language_ptr = (enum language *) data;
9716 gdb_assert (cu->die_hash == NULL);
9718 htab_create_alloc_ex (cu->header.length / 12,
9722 &cu->comp_unit_obstack,
9723 hashtab_obstack_allocate,
9724 dummy_obstack_deallocate);
9727 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9728 &info_ptr, comp_unit_die);
9729 cu->dies = comp_unit_die;
9730 /* comp_unit_die is not stored in die_hash, no need. */
9732 /* We try not to read any attributes in this function, because not
9733 all CUs needed for references have been loaded yet, and symbol
9734 table processing isn't initialized. But we have to set the CU language,
9735 or we won't be able to build types correctly.
9736 Similarly, if we do not read the producer, we can not apply
9737 producer-specific interpretation. */
9738 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9741 /* Load the DIEs associated with PER_CU into memory. */
9744 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9746 enum language pretend_language)
9748 gdb_assert (! this_cu->is_debug_types);
9750 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9751 load_full_comp_unit_reader, &pretend_language);
9754 /* Add a DIE to the delayed physname list. */
9757 add_to_method_list (struct type *type, int fnfield_index, int index,
9758 const char *name, struct die_info *die,
9759 struct dwarf2_cu *cu)
9761 struct delayed_method_info mi;
9763 mi.fnfield_index = fnfield_index;
9767 cu->method_list.push_back (mi);
9770 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9771 "const" / "volatile". If so, decrements LEN by the length of the
9772 modifier and return true. Otherwise return false. */
9776 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9778 size_t mod_len = sizeof (mod) - 1;
9779 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9787 /* Compute the physnames of any methods on the CU's method list.
9789 The computation of method physnames is delayed in order to avoid the
9790 (bad) condition that one of the method's formal parameters is of an as yet
9794 compute_delayed_physnames (struct dwarf2_cu *cu)
9796 /* Only C++ delays computing physnames. */
9797 if (cu->method_list.empty ())
9799 gdb_assert (cu->language == language_cplus);
9801 for (const delayed_method_info &mi : cu->method_list)
9803 const char *physname;
9804 struct fn_fieldlist *fn_flp
9805 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9806 physname = dwarf2_physname (mi.name, mi.die, cu);
9807 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9808 = physname ? physname : "";
9810 /* Since there's no tag to indicate whether a method is a
9811 const/volatile overload, extract that information out of the
9813 if (physname != NULL)
9815 size_t len = strlen (physname);
9819 if (physname[len] == ')') /* shortcut */
9821 else if (check_modifier (physname, len, " const"))
9822 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9823 else if (check_modifier (physname, len, " volatile"))
9824 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9831 /* The list is no longer needed. */
9832 cu->method_list.clear ();
9835 /* Go objects should be embedded in a DW_TAG_module DIE,
9836 and it's not clear if/how imported objects will appear.
9837 To keep Go support simple until that's worked out,
9838 go back through what we've read and create something usable.
9839 We could do this while processing each DIE, and feels kinda cleaner,
9840 but that way is more invasive.
9841 This is to, for example, allow the user to type "p var" or "b main"
9842 without having to specify the package name, and allow lookups
9843 of module.object to work in contexts that use the expression
9847 fixup_go_packaging (struct dwarf2_cu *cu)
9849 char *package_name = NULL;
9850 struct pending *list;
9853 for (list = *cu->get_builder ()->get_global_symbols ();
9857 for (i = 0; i < list->nsyms; ++i)
9859 struct symbol *sym = list->symbol[i];
9861 if (SYMBOL_LANGUAGE (sym) == language_go
9862 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9864 char *this_package_name = go_symbol_package_name (sym);
9866 if (this_package_name == NULL)
9868 if (package_name == NULL)
9869 package_name = this_package_name;
9872 struct objfile *objfile
9873 = cu->per_cu->dwarf2_per_objfile->objfile;
9874 if (strcmp (package_name, this_package_name) != 0)
9875 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9876 (symbol_symtab (sym) != NULL
9877 ? symtab_to_filename_for_display
9878 (symbol_symtab (sym))
9879 : objfile_name (objfile)),
9880 this_package_name, package_name);
9881 xfree (this_package_name);
9887 if (package_name != NULL)
9889 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9890 const char *saved_package_name
9891 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
9892 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9893 saved_package_name);
9896 sym = allocate_symbol (objfile);
9897 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9898 SYMBOL_SET_NAMES (sym, saved_package_name,
9899 strlen (saved_package_name), 0, objfile);
9900 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9901 e.g., "main" finds the "main" module and not C's main(). */
9902 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9903 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9904 SYMBOL_TYPE (sym) = type;
9906 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9908 xfree (package_name);
9912 /* Allocate a fully-qualified name consisting of the two parts on the
9916 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9918 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9921 /* A helper that allocates a struct discriminant_info to attach to a
9924 static struct discriminant_info *
9925 alloc_discriminant_info (struct type *type, int discriminant_index,
9928 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9929 gdb_assert (discriminant_index == -1
9930 || (discriminant_index >= 0
9931 && discriminant_index < TYPE_NFIELDS (type)));
9932 gdb_assert (default_index == -1
9933 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9935 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9937 struct discriminant_info *disc
9938 = ((struct discriminant_info *)
9940 offsetof (struct discriminant_info, discriminants)
9941 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9942 disc->default_index = default_index;
9943 disc->discriminant_index = discriminant_index;
9945 struct dynamic_prop prop;
9946 prop.kind = PROP_UNDEFINED;
9947 prop.data.baton = disc;
9949 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9954 /* Some versions of rustc emitted enums in an unusual way.
9956 Ordinary enums were emitted as unions. The first element of each
9957 structure in the union was named "RUST$ENUM$DISR". This element
9958 held the discriminant.
9960 These versions of Rust also implemented the "non-zero"
9961 optimization. When the enum had two values, and one is empty and
9962 the other holds a pointer that cannot be zero, the pointer is used
9963 as the discriminant, with a zero value meaning the empty variant.
9964 Here, the union's first member is of the form
9965 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9966 where the fieldnos are the indices of the fields that should be
9967 traversed in order to find the field (which may be several fields deep)
9968 and the variantname is the name of the variant of the case when the
9971 This function recognizes whether TYPE is of one of these forms,
9972 and, if so, smashes it to be a variant type. */
9975 quirk_rust_enum (struct type *type, struct objfile *objfile)
9977 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9979 /* We don't need to deal with empty enums. */
9980 if (TYPE_NFIELDS (type) == 0)
9983 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9984 if (TYPE_NFIELDS (type) == 1
9985 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9987 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9989 /* Decode the field name to find the offset of the
9991 ULONGEST bit_offset = 0;
9992 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9993 while (name[0] >= '0' && name[0] <= '9')
9996 unsigned long index = strtoul (name, &tail, 10);
9999 || index >= TYPE_NFIELDS (field_type)
10000 || (TYPE_FIELD_LOC_KIND (field_type, index)
10001 != FIELD_LOC_KIND_BITPOS))
10003 complaint (_("Could not parse Rust enum encoding string \"%s\""
10005 TYPE_FIELD_NAME (type, 0),
10006 objfile_name (objfile));
10011 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
10012 field_type = TYPE_FIELD_TYPE (field_type, index);
10015 /* Make a union to hold the variants. */
10016 struct type *union_type = alloc_type (objfile);
10017 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10018 TYPE_NFIELDS (union_type) = 3;
10019 TYPE_FIELDS (union_type)
10020 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10021 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10022 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10024 /* Put the discriminant must at index 0. */
10025 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10026 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10027 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10028 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10030 /* The order of fields doesn't really matter, so put the real
10031 field at index 1 and the data-less field at index 2. */
10032 struct discriminant_info *disc
10033 = alloc_discriminant_info (union_type, 0, 1);
10034 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10035 TYPE_FIELD_NAME (union_type, 1)
10036 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10037 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10038 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10039 TYPE_FIELD_NAME (union_type, 1));
10041 const char *dataless_name
10042 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10044 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10046 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10047 /* NAME points into the original discriminant name, which
10048 already has the correct lifetime. */
10049 TYPE_FIELD_NAME (union_type, 2) = name;
10050 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10051 disc->discriminants[2] = 0;
10053 /* Smash this type to be a structure type. We have to do this
10054 because the type has already been recorded. */
10055 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10056 TYPE_NFIELDS (type) = 1;
10058 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10060 /* Install the variant part. */
10061 TYPE_FIELD_TYPE (type, 0) = union_type;
10062 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10063 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10065 else if (TYPE_NFIELDS (type) == 1)
10067 /* We assume that a union with a single field is a univariant
10069 /* Smash this type to be a structure type. We have to do this
10070 because the type has already been recorded. */
10071 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10073 /* Make a union to hold the variants. */
10074 struct type *union_type = alloc_type (objfile);
10075 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10076 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10077 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10078 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10079 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10081 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10082 const char *variant_name
10083 = rust_last_path_segment (TYPE_NAME (field_type));
10084 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10085 TYPE_NAME (field_type)
10086 = rust_fully_qualify (&objfile->objfile_obstack,
10087 TYPE_NAME (type), variant_name);
10089 /* Install the union in the outer struct type. */
10090 TYPE_NFIELDS (type) = 1;
10092 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10093 TYPE_FIELD_TYPE (type, 0) = union_type;
10094 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10095 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10097 alloc_discriminant_info (union_type, -1, 0);
10101 struct type *disr_type = nullptr;
10102 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10104 disr_type = TYPE_FIELD_TYPE (type, i);
10106 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10108 /* All fields of a true enum will be structs. */
10111 else if (TYPE_NFIELDS (disr_type) == 0)
10113 /* Could be data-less variant, so keep going. */
10114 disr_type = nullptr;
10116 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10117 "RUST$ENUM$DISR") != 0)
10119 /* Not a Rust enum. */
10129 /* If we got here without a discriminant, then it's probably
10131 if (disr_type == nullptr)
10134 /* Smash this type to be a structure type. We have to do this
10135 because the type has already been recorded. */
10136 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10138 /* Make a union to hold the variants. */
10139 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10140 struct type *union_type = alloc_type (objfile);
10141 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10142 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10143 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10144 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10145 TYPE_FIELDS (union_type)
10146 = (struct field *) TYPE_ZALLOC (union_type,
10147 (TYPE_NFIELDS (union_type)
10148 * sizeof (struct field)));
10150 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10151 TYPE_NFIELDS (type) * sizeof (struct field));
10153 /* Install the discriminant at index 0 in the union. */
10154 TYPE_FIELD (union_type, 0) = *disr_field;
10155 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10156 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10158 /* Install the union in the outer struct type. */
10159 TYPE_FIELD_TYPE (type, 0) = union_type;
10160 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10161 TYPE_NFIELDS (type) = 1;
10163 /* Set the size and offset of the union type. */
10164 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10166 /* We need a way to find the correct discriminant given a
10167 variant name. For convenience we build a map here. */
10168 struct type *enum_type = FIELD_TYPE (*disr_field);
10169 std::unordered_map<std::string, ULONGEST> discriminant_map;
10170 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10172 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10175 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10176 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10180 int n_fields = TYPE_NFIELDS (union_type);
10181 struct discriminant_info *disc
10182 = alloc_discriminant_info (union_type, 0, -1);
10183 /* Skip the discriminant here. */
10184 for (int i = 1; i < n_fields; ++i)
10186 /* Find the final word in the name of this variant's type.
10187 That name can be used to look up the correct
10189 const char *variant_name
10190 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10193 auto iter = discriminant_map.find (variant_name);
10194 if (iter != discriminant_map.end ())
10195 disc->discriminants[i] = iter->second;
10197 /* Remove the discriminant field, if it exists. */
10198 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10199 if (TYPE_NFIELDS (sub_type) > 0)
10201 --TYPE_NFIELDS (sub_type);
10202 ++TYPE_FIELDS (sub_type);
10204 TYPE_FIELD_NAME (union_type, i) = variant_name;
10205 TYPE_NAME (sub_type)
10206 = rust_fully_qualify (&objfile->objfile_obstack,
10207 TYPE_NAME (type), variant_name);
10212 /* Rewrite some Rust unions to be structures with variants parts. */
10215 rust_union_quirks (struct dwarf2_cu *cu)
10217 gdb_assert (cu->language == language_rust);
10218 for (type *type_ : cu->rust_unions)
10219 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10220 /* We don't need this any more. */
10221 cu->rust_unions.clear ();
10224 /* Return the symtab for PER_CU. This works properly regardless of
10225 whether we're using the index or psymtabs. */
10227 static struct compunit_symtab *
10228 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10230 return (per_cu->dwarf2_per_objfile->using_index
10231 ? per_cu->v.quick->compunit_symtab
10232 : per_cu->v.psymtab->compunit_symtab);
10235 /* A helper function for computing the list of all symbol tables
10236 included by PER_CU. */
10239 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10240 htab_t all_children, htab_t all_type_symtabs,
10241 struct dwarf2_per_cu_data *per_cu,
10242 struct compunit_symtab *immediate_parent)
10246 struct compunit_symtab *cust;
10247 struct dwarf2_per_cu_data *iter;
10249 slot = htab_find_slot (all_children, per_cu, INSERT);
10252 /* This inclusion and its children have been processed. */
10257 /* Only add a CU if it has a symbol table. */
10258 cust = get_compunit_symtab (per_cu);
10261 /* If this is a type unit only add its symbol table if we haven't
10262 seen it yet (type unit per_cu's can share symtabs). */
10263 if (per_cu->is_debug_types)
10265 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10269 result->push_back (cust);
10270 if (cust->user == NULL)
10271 cust->user = immediate_parent;
10276 result->push_back (cust);
10277 if (cust->user == NULL)
10278 cust->user = immediate_parent;
10283 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10286 recursively_compute_inclusions (result, all_children,
10287 all_type_symtabs, iter, cust);
10291 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10295 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10297 gdb_assert (! per_cu->is_debug_types);
10299 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10302 struct dwarf2_per_cu_data *per_cu_iter;
10303 std::vector<compunit_symtab *> result_symtabs;
10304 htab_t all_children, all_type_symtabs;
10305 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10307 /* If we don't have a symtab, we can just skip this case. */
10311 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10312 NULL, xcalloc, xfree);
10313 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10314 NULL, xcalloc, xfree);
10317 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10321 recursively_compute_inclusions (&result_symtabs, all_children,
10322 all_type_symtabs, per_cu_iter,
10326 /* Now we have a transitive closure of all the included symtabs. */
10327 len = result_symtabs.size ();
10329 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10330 struct compunit_symtab *, len + 1);
10331 memcpy (cust->includes, result_symtabs.data (),
10332 len * sizeof (compunit_symtab *));
10333 cust->includes[len] = NULL;
10335 htab_delete (all_children);
10336 htab_delete (all_type_symtabs);
10340 /* Compute the 'includes' field for the symtabs of all the CUs we just
10344 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10346 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10348 if (! iter->is_debug_types)
10349 compute_compunit_symtab_includes (iter);
10352 dwarf2_per_objfile->just_read_cus.clear ();
10355 /* Generate full symbol information for PER_CU, whose DIEs have
10356 already been loaded into memory. */
10359 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10360 enum language pretend_language)
10362 struct dwarf2_cu *cu = per_cu->cu;
10363 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10364 struct objfile *objfile = dwarf2_per_objfile->objfile;
10365 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10366 CORE_ADDR lowpc, highpc;
10367 struct compunit_symtab *cust;
10368 CORE_ADDR baseaddr;
10369 struct block *static_block;
10372 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10374 /* Clear the list here in case something was left over. */
10375 cu->method_list.clear ();
10377 cu->language = pretend_language;
10378 cu->language_defn = language_def (cu->language);
10380 /* Do line number decoding in read_file_scope () */
10381 process_die (cu->dies, cu);
10383 /* For now fudge the Go package. */
10384 if (cu->language == language_go)
10385 fixup_go_packaging (cu);
10387 /* Now that we have processed all the DIEs in the CU, all the types
10388 should be complete, and it should now be safe to compute all of the
10390 compute_delayed_physnames (cu);
10392 if (cu->language == language_rust)
10393 rust_union_quirks (cu);
10395 /* Some compilers don't define a DW_AT_high_pc attribute for the
10396 compilation unit. If the DW_AT_high_pc is missing, synthesize
10397 it, by scanning the DIE's below the compilation unit. */
10398 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10400 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10401 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10403 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10404 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10405 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10406 addrmap to help ensure it has an accurate map of pc values belonging to
10408 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10410 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10411 SECT_OFF_TEXT (objfile),
10416 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10418 /* Set symtab language to language from DW_AT_language. If the
10419 compilation is from a C file generated by language preprocessors, do
10420 not set the language if it was already deduced by start_subfile. */
10421 if (!(cu->language == language_c
10422 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10423 COMPUNIT_FILETABS (cust)->language = cu->language;
10425 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10426 produce DW_AT_location with location lists but it can be possibly
10427 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10428 there were bugs in prologue debug info, fixed later in GCC-4.5
10429 by "unwind info for epilogues" patch (which is not directly related).
10431 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10432 needed, it would be wrong due to missing DW_AT_producer there.
10434 Still one can confuse GDB by using non-standard GCC compilation
10435 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10437 if (cu->has_loclist && gcc_4_minor >= 5)
10438 cust->locations_valid = 1;
10440 if (gcc_4_minor >= 5)
10441 cust->epilogue_unwind_valid = 1;
10443 cust->call_site_htab = cu->call_site_htab;
10446 if (dwarf2_per_objfile->using_index)
10447 per_cu->v.quick->compunit_symtab = cust;
10450 struct partial_symtab *pst = per_cu->v.psymtab;
10451 pst->compunit_symtab = cust;
10455 /* Push it for inclusion processing later. */
10456 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10458 /* Not needed any more. */
10459 cu->reset_builder ();
10462 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10463 already been loaded into memory. */
10466 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10467 enum language pretend_language)
10469 struct dwarf2_cu *cu = per_cu->cu;
10470 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10471 struct objfile *objfile = dwarf2_per_objfile->objfile;
10472 struct compunit_symtab *cust;
10473 struct signatured_type *sig_type;
10475 gdb_assert (per_cu->is_debug_types);
10476 sig_type = (struct signatured_type *) per_cu;
10478 /* Clear the list here in case something was left over. */
10479 cu->method_list.clear ();
10481 cu->language = pretend_language;
10482 cu->language_defn = language_def (cu->language);
10484 /* The symbol tables are set up in read_type_unit_scope. */
10485 process_die (cu->dies, cu);
10487 /* For now fudge the Go package. */
10488 if (cu->language == language_go)
10489 fixup_go_packaging (cu);
10491 /* Now that we have processed all the DIEs in the CU, all the types
10492 should be complete, and it should now be safe to compute all of the
10494 compute_delayed_physnames (cu);
10496 if (cu->language == language_rust)
10497 rust_union_quirks (cu);
10499 /* TUs share symbol tables.
10500 If this is the first TU to use this symtab, complete the construction
10501 of it with end_expandable_symtab. Otherwise, complete the addition of
10502 this TU's symbols to the existing symtab. */
10503 if (sig_type->type_unit_group->compunit_symtab == NULL)
10505 buildsym_compunit *builder = cu->get_builder ();
10506 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10507 sig_type->type_unit_group->compunit_symtab = cust;
10511 /* Set symtab language to language from DW_AT_language. If the
10512 compilation is from a C file generated by language preprocessors,
10513 do not set the language if it was already deduced by
10515 if (!(cu->language == language_c
10516 && COMPUNIT_FILETABS (cust)->language != language_c))
10517 COMPUNIT_FILETABS (cust)->language = cu->language;
10522 cu->get_builder ()->augment_type_symtab ();
10523 cust = sig_type->type_unit_group->compunit_symtab;
10526 if (dwarf2_per_objfile->using_index)
10527 per_cu->v.quick->compunit_symtab = cust;
10530 struct partial_symtab *pst = per_cu->v.psymtab;
10531 pst->compunit_symtab = cust;
10535 /* Not needed any more. */
10536 cu->reset_builder ();
10539 /* Process an imported unit DIE. */
10542 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10544 struct attribute *attr;
10546 /* For now we don't handle imported units in type units. */
10547 if (cu->per_cu->is_debug_types)
10549 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10550 " supported in type units [in module %s]"),
10551 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10554 attr = dwarf2_attr (die, DW_AT_import, cu);
10557 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10558 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10559 dwarf2_per_cu_data *per_cu
10560 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10561 cu->per_cu->dwarf2_per_objfile);
10563 /* If necessary, add it to the queue and load its DIEs. */
10564 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10565 load_full_comp_unit (per_cu, false, cu->language);
10567 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10572 /* RAII object that represents a process_die scope: i.e.,
10573 starts/finishes processing a DIE. */
10574 class process_die_scope
10577 process_die_scope (die_info *die, dwarf2_cu *cu)
10578 : m_die (die), m_cu (cu)
10580 /* We should only be processing DIEs not already in process. */
10581 gdb_assert (!m_die->in_process);
10582 m_die->in_process = true;
10585 ~process_die_scope ()
10587 m_die->in_process = false;
10589 /* If we're done processing the DIE for the CU that owns the line
10590 header, we don't need the line header anymore. */
10591 if (m_cu->line_header_die_owner == m_die)
10593 delete m_cu->line_header;
10594 m_cu->line_header = NULL;
10595 m_cu->line_header_die_owner = NULL;
10604 /* Process a die and its children. */
10607 process_die (struct die_info *die, struct dwarf2_cu *cu)
10609 process_die_scope scope (die, cu);
10613 case DW_TAG_padding:
10615 case DW_TAG_compile_unit:
10616 case DW_TAG_partial_unit:
10617 read_file_scope (die, cu);
10619 case DW_TAG_type_unit:
10620 read_type_unit_scope (die, cu);
10622 case DW_TAG_subprogram:
10623 case DW_TAG_inlined_subroutine:
10624 read_func_scope (die, cu);
10626 case DW_TAG_lexical_block:
10627 case DW_TAG_try_block:
10628 case DW_TAG_catch_block:
10629 read_lexical_block_scope (die, cu);
10631 case DW_TAG_call_site:
10632 case DW_TAG_GNU_call_site:
10633 read_call_site_scope (die, cu);
10635 case DW_TAG_class_type:
10636 case DW_TAG_interface_type:
10637 case DW_TAG_structure_type:
10638 case DW_TAG_union_type:
10639 process_structure_scope (die, cu);
10641 case DW_TAG_enumeration_type:
10642 process_enumeration_scope (die, cu);
10645 /* These dies have a type, but processing them does not create
10646 a symbol or recurse to process the children. Therefore we can
10647 read them on-demand through read_type_die. */
10648 case DW_TAG_subroutine_type:
10649 case DW_TAG_set_type:
10650 case DW_TAG_array_type:
10651 case DW_TAG_pointer_type:
10652 case DW_TAG_ptr_to_member_type:
10653 case DW_TAG_reference_type:
10654 case DW_TAG_rvalue_reference_type:
10655 case DW_TAG_string_type:
10658 case DW_TAG_base_type:
10659 case DW_TAG_subrange_type:
10660 case DW_TAG_typedef:
10661 /* Add a typedef symbol for the type definition, if it has a
10663 new_symbol (die, read_type_die (die, cu), cu);
10665 case DW_TAG_common_block:
10666 read_common_block (die, cu);
10668 case DW_TAG_common_inclusion:
10670 case DW_TAG_namespace:
10671 cu->processing_has_namespace_info = true;
10672 read_namespace (die, cu);
10674 case DW_TAG_module:
10675 cu->processing_has_namespace_info = true;
10676 read_module (die, cu);
10678 case DW_TAG_imported_declaration:
10679 cu->processing_has_namespace_info = true;
10680 if (read_namespace_alias (die, cu))
10682 /* The declaration is not a global namespace alias. */
10683 /* Fall through. */
10684 case DW_TAG_imported_module:
10685 cu->processing_has_namespace_info = true;
10686 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10687 || cu->language != language_fortran))
10688 complaint (_("Tag '%s' has unexpected children"),
10689 dwarf_tag_name (die->tag));
10690 read_import_statement (die, cu);
10693 case DW_TAG_imported_unit:
10694 process_imported_unit_die (die, cu);
10697 case DW_TAG_variable:
10698 read_variable (die, cu);
10702 new_symbol (die, NULL, cu);
10707 /* DWARF name computation. */
10709 /* A helper function for dwarf2_compute_name which determines whether DIE
10710 needs to have the name of the scope prepended to the name listed in the
10714 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10716 struct attribute *attr;
10720 case DW_TAG_namespace:
10721 case DW_TAG_typedef:
10722 case DW_TAG_class_type:
10723 case DW_TAG_interface_type:
10724 case DW_TAG_structure_type:
10725 case DW_TAG_union_type:
10726 case DW_TAG_enumeration_type:
10727 case DW_TAG_enumerator:
10728 case DW_TAG_subprogram:
10729 case DW_TAG_inlined_subroutine:
10730 case DW_TAG_member:
10731 case DW_TAG_imported_declaration:
10734 case DW_TAG_variable:
10735 case DW_TAG_constant:
10736 /* We only need to prefix "globally" visible variables. These include
10737 any variable marked with DW_AT_external or any variable that
10738 lives in a namespace. [Variables in anonymous namespaces
10739 require prefixing, but they are not DW_AT_external.] */
10741 if (dwarf2_attr (die, DW_AT_specification, cu))
10743 struct dwarf2_cu *spec_cu = cu;
10745 return die_needs_namespace (die_specification (die, &spec_cu),
10749 attr = dwarf2_attr (die, DW_AT_external, cu);
10750 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10751 && die->parent->tag != DW_TAG_module)
10753 /* A variable in a lexical block of some kind does not need a
10754 namespace, even though in C++ such variables may be external
10755 and have a mangled name. */
10756 if (die->parent->tag == DW_TAG_lexical_block
10757 || die->parent->tag == DW_TAG_try_block
10758 || die->parent->tag == DW_TAG_catch_block
10759 || die->parent->tag == DW_TAG_subprogram)
10768 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10769 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10770 defined for the given DIE. */
10772 static struct attribute *
10773 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10775 struct attribute *attr;
10777 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10779 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10784 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10785 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10786 defined for the given DIE. */
10788 static const char *
10789 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10791 const char *linkage_name;
10793 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10794 if (linkage_name == NULL)
10795 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10797 return linkage_name;
10800 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10801 compute the physname for the object, which include a method's:
10802 - formal parameters (C++),
10803 - receiver type (Go),
10805 The term "physname" is a bit confusing.
10806 For C++, for example, it is the demangled name.
10807 For Go, for example, it's the mangled name.
10809 For Ada, return the DIE's linkage name rather than the fully qualified
10810 name. PHYSNAME is ignored..
10812 The result is allocated on the objfile_obstack and canonicalized. */
10814 static const char *
10815 dwarf2_compute_name (const char *name,
10816 struct die_info *die, struct dwarf2_cu *cu,
10819 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10822 name = dwarf2_name (die, cu);
10824 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10825 but otherwise compute it by typename_concat inside GDB.
10826 FIXME: Actually this is not really true, or at least not always true.
10827 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10828 Fortran names because there is no mangling standard. So new_symbol
10829 will set the demangled name to the result of dwarf2_full_name, and it is
10830 the demangled name that GDB uses if it exists. */
10831 if (cu->language == language_ada
10832 || (cu->language == language_fortran && physname))
10834 /* For Ada unit, we prefer the linkage name over the name, as
10835 the former contains the exported name, which the user expects
10836 to be able to reference. Ideally, we want the user to be able
10837 to reference this entity using either natural or linkage name,
10838 but we haven't started looking at this enhancement yet. */
10839 const char *linkage_name = dw2_linkage_name (die, cu);
10841 if (linkage_name != NULL)
10842 return linkage_name;
10845 /* These are the only languages we know how to qualify names in. */
10847 && (cu->language == language_cplus
10848 || cu->language == language_fortran || cu->language == language_d
10849 || cu->language == language_rust))
10851 if (die_needs_namespace (die, cu))
10853 const char *prefix;
10854 const char *canonical_name = NULL;
10858 prefix = determine_prefix (die, cu);
10859 if (*prefix != '\0')
10861 char *prefixed_name = typename_concat (NULL, prefix, name,
10864 buf.puts (prefixed_name);
10865 xfree (prefixed_name);
10870 /* Template parameters may be specified in the DIE's DW_AT_name, or
10871 as children with DW_TAG_template_type_param or
10872 DW_TAG_value_type_param. If the latter, add them to the name
10873 here. If the name already has template parameters, then
10874 skip this step; some versions of GCC emit both, and
10875 it is more efficient to use the pre-computed name.
10877 Something to keep in mind about this process: it is very
10878 unlikely, or in some cases downright impossible, to produce
10879 something that will match the mangled name of a function.
10880 If the definition of the function has the same debug info,
10881 we should be able to match up with it anyway. But fallbacks
10882 using the minimal symbol, for instance to find a method
10883 implemented in a stripped copy of libstdc++, will not work.
10884 If we do not have debug info for the definition, we will have to
10885 match them up some other way.
10887 When we do name matching there is a related problem with function
10888 templates; two instantiated function templates are allowed to
10889 differ only by their return types, which we do not add here. */
10891 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10893 struct attribute *attr;
10894 struct die_info *child;
10897 die->building_fullname = 1;
10899 for (child = die->child; child != NULL; child = child->sibling)
10903 const gdb_byte *bytes;
10904 struct dwarf2_locexpr_baton *baton;
10907 if (child->tag != DW_TAG_template_type_param
10908 && child->tag != DW_TAG_template_value_param)
10919 attr = dwarf2_attr (child, DW_AT_type, cu);
10922 complaint (_("template parameter missing DW_AT_type"));
10923 buf.puts ("UNKNOWN_TYPE");
10926 type = die_type (child, cu);
10928 if (child->tag == DW_TAG_template_type_param)
10930 c_print_type (type, "", &buf, -1, 0, cu->language,
10931 &type_print_raw_options);
10935 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10938 complaint (_("template parameter missing "
10939 "DW_AT_const_value"));
10940 buf.puts ("UNKNOWN_VALUE");
10944 dwarf2_const_value_attr (attr, type, name,
10945 &cu->comp_unit_obstack, cu,
10946 &value, &bytes, &baton);
10948 if (TYPE_NOSIGN (type))
10949 /* GDB prints characters as NUMBER 'CHAR'. If that's
10950 changed, this can use value_print instead. */
10951 c_printchar (value, type, &buf);
10954 struct value_print_options opts;
10957 v = dwarf2_evaluate_loc_desc (type, NULL,
10961 else if (bytes != NULL)
10963 v = allocate_value (type);
10964 memcpy (value_contents_writeable (v), bytes,
10965 TYPE_LENGTH (type));
10968 v = value_from_longest (type, value);
10970 /* Specify decimal so that we do not depend on
10972 get_formatted_print_options (&opts, 'd');
10974 value_print (v, &buf, &opts);
10979 die->building_fullname = 0;
10983 /* Close the argument list, with a space if necessary
10984 (nested templates). */
10985 if (!buf.empty () && buf.string ().back () == '>')
10992 /* For C++ methods, append formal parameter type
10993 information, if PHYSNAME. */
10995 if (physname && die->tag == DW_TAG_subprogram
10996 && cu->language == language_cplus)
10998 struct type *type = read_type_die (die, cu);
11000 c_type_print_args (type, &buf, 1, cu->language,
11001 &type_print_raw_options);
11003 if (cu->language == language_cplus)
11005 /* Assume that an artificial first parameter is
11006 "this", but do not crash if it is not. RealView
11007 marks unnamed (and thus unused) parameters as
11008 artificial; there is no way to differentiate
11010 if (TYPE_NFIELDS (type) > 0
11011 && TYPE_FIELD_ARTIFICIAL (type, 0)
11012 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11013 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11015 buf.puts (" const");
11019 const std::string &intermediate_name = buf.string ();
11021 if (cu->language == language_cplus)
11023 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11024 &objfile->per_bfd->storage_obstack);
11026 /* If we only computed INTERMEDIATE_NAME, or if
11027 INTERMEDIATE_NAME is already canonical, then we need to
11028 copy it to the appropriate obstack. */
11029 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11030 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
11031 intermediate_name);
11033 name = canonical_name;
11040 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11041 If scope qualifiers are appropriate they will be added. The result
11042 will be allocated on the storage_obstack, or NULL if the DIE does
11043 not have a name. NAME may either be from a previous call to
11044 dwarf2_name or NULL.
11046 The output string will be canonicalized (if C++). */
11048 static const char *
11049 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11051 return dwarf2_compute_name (name, die, cu, 0);
11054 /* Construct a physname for the given DIE in CU. NAME may either be
11055 from a previous call to dwarf2_name or NULL. The result will be
11056 allocated on the objfile_objstack or NULL if the DIE does not have a
11059 The output string will be canonicalized (if C++). */
11061 static const char *
11062 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11064 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11065 const char *retval, *mangled = NULL, *canon = NULL;
11068 /* In this case dwarf2_compute_name is just a shortcut not building anything
11070 if (!die_needs_namespace (die, cu))
11071 return dwarf2_compute_name (name, die, cu, 1);
11073 mangled = dw2_linkage_name (die, cu);
11075 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11076 See https://github.com/rust-lang/rust/issues/32925. */
11077 if (cu->language == language_rust && mangled != NULL
11078 && strchr (mangled, '{') != NULL)
11081 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11083 gdb::unique_xmalloc_ptr<char> demangled;
11084 if (mangled != NULL)
11087 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11089 /* Do nothing (do not demangle the symbol name). */
11091 else if (cu->language == language_go)
11093 /* This is a lie, but we already lie to the caller new_symbol.
11094 new_symbol assumes we return the mangled name.
11095 This just undoes that lie until things are cleaned up. */
11099 /* Use DMGL_RET_DROP for C++ template functions to suppress
11100 their return type. It is easier for GDB users to search
11101 for such functions as `name(params)' than `long name(params)'.
11102 In such case the minimal symbol names do not match the full
11103 symbol names but for template functions there is never a need
11104 to look up their definition from their declaration so
11105 the only disadvantage remains the minimal symbol variant
11106 `long name(params)' does not have the proper inferior type. */
11107 demangled.reset (gdb_demangle (mangled,
11108 (DMGL_PARAMS | DMGL_ANSI
11109 | DMGL_RET_DROP)));
11112 canon = demangled.get ();
11120 if (canon == NULL || check_physname)
11122 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11124 if (canon != NULL && strcmp (physname, canon) != 0)
11126 /* It may not mean a bug in GDB. The compiler could also
11127 compute DW_AT_linkage_name incorrectly. But in such case
11128 GDB would need to be bug-to-bug compatible. */
11130 complaint (_("Computed physname <%s> does not match demangled <%s> "
11131 "(from linkage <%s>) - DIE at %s [in module %s]"),
11132 physname, canon, mangled, sect_offset_str (die->sect_off),
11133 objfile_name (objfile));
11135 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11136 is available here - over computed PHYSNAME. It is safer
11137 against both buggy GDB and buggy compilers. */
11151 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
11156 /* Inspect DIE in CU for a namespace alias. If one exists, record
11157 a new symbol for it.
11159 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11162 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11164 struct attribute *attr;
11166 /* If the die does not have a name, this is not a namespace
11168 attr = dwarf2_attr (die, DW_AT_name, cu);
11172 struct die_info *d = die;
11173 struct dwarf2_cu *imported_cu = cu;
11175 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11176 keep inspecting DIEs until we hit the underlying import. */
11177 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11178 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11180 attr = dwarf2_attr (d, DW_AT_import, cu);
11184 d = follow_die_ref (d, attr, &imported_cu);
11185 if (d->tag != DW_TAG_imported_declaration)
11189 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11191 complaint (_("DIE at %s has too many recursively imported "
11192 "declarations"), sect_offset_str (d->sect_off));
11199 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11201 type = get_die_type_at_offset (sect_off, cu->per_cu);
11202 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11204 /* This declaration is a global namespace alias. Add
11205 a symbol for it whose type is the aliased namespace. */
11206 new_symbol (die, type, cu);
11215 /* Return the using directives repository (global or local?) to use in the
11216 current context for CU.
11218 For Ada, imported declarations can materialize renamings, which *may* be
11219 global. However it is impossible (for now?) in DWARF to distinguish
11220 "external" imported declarations and "static" ones. As all imported
11221 declarations seem to be static in all other languages, make them all CU-wide
11222 global only in Ada. */
11224 static struct using_direct **
11225 using_directives (struct dwarf2_cu *cu)
11227 if (cu->language == language_ada
11228 && cu->get_builder ()->outermost_context_p ())
11229 return cu->get_builder ()->get_global_using_directives ();
11231 return cu->get_builder ()->get_local_using_directives ();
11234 /* Read the import statement specified by the given die and record it. */
11237 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11239 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11240 struct attribute *import_attr;
11241 struct die_info *imported_die, *child_die;
11242 struct dwarf2_cu *imported_cu;
11243 const char *imported_name;
11244 const char *imported_name_prefix;
11245 const char *canonical_name;
11246 const char *import_alias;
11247 const char *imported_declaration = NULL;
11248 const char *import_prefix;
11249 std::vector<const char *> excludes;
11251 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11252 if (import_attr == NULL)
11254 complaint (_("Tag '%s' has no DW_AT_import"),
11255 dwarf_tag_name (die->tag));
11260 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11261 imported_name = dwarf2_name (imported_die, imported_cu);
11262 if (imported_name == NULL)
11264 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11266 The import in the following code:
11280 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11281 <52> DW_AT_decl_file : 1
11282 <53> DW_AT_decl_line : 6
11283 <54> DW_AT_import : <0x75>
11284 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11285 <59> DW_AT_name : B
11286 <5b> DW_AT_decl_file : 1
11287 <5c> DW_AT_decl_line : 2
11288 <5d> DW_AT_type : <0x6e>
11290 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11291 <76> DW_AT_byte_size : 4
11292 <77> DW_AT_encoding : 5 (signed)
11294 imports the wrong die ( 0x75 instead of 0x58 ).
11295 This case will be ignored until the gcc bug is fixed. */
11299 /* Figure out the local name after import. */
11300 import_alias = dwarf2_name (die, cu);
11302 /* Figure out where the statement is being imported to. */
11303 import_prefix = determine_prefix (die, cu);
11305 /* Figure out what the scope of the imported die is and prepend it
11306 to the name of the imported die. */
11307 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11309 if (imported_die->tag != DW_TAG_namespace
11310 && imported_die->tag != DW_TAG_module)
11312 imported_declaration = imported_name;
11313 canonical_name = imported_name_prefix;
11315 else if (strlen (imported_name_prefix) > 0)
11316 canonical_name = obconcat (&objfile->objfile_obstack,
11317 imported_name_prefix,
11318 (cu->language == language_d ? "." : "::"),
11319 imported_name, (char *) NULL);
11321 canonical_name = imported_name;
11323 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11324 for (child_die = die->child; child_die && child_die->tag;
11325 child_die = sibling_die (child_die))
11327 /* DWARF-4: A Fortran use statement with a “rename list” may be
11328 represented by an imported module entry with an import attribute
11329 referring to the module and owned entries corresponding to those
11330 entities that are renamed as part of being imported. */
11332 if (child_die->tag != DW_TAG_imported_declaration)
11334 complaint (_("child DW_TAG_imported_declaration expected "
11335 "- DIE at %s [in module %s]"),
11336 sect_offset_str (child_die->sect_off),
11337 objfile_name (objfile));
11341 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11342 if (import_attr == NULL)
11344 complaint (_("Tag '%s' has no DW_AT_import"),
11345 dwarf_tag_name (child_die->tag));
11350 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11352 imported_name = dwarf2_name (imported_die, imported_cu);
11353 if (imported_name == NULL)
11355 complaint (_("child DW_TAG_imported_declaration has unknown "
11356 "imported name - DIE at %s [in module %s]"),
11357 sect_offset_str (child_die->sect_off),
11358 objfile_name (objfile));
11362 excludes.push_back (imported_name);
11364 process_die (child_die, cu);
11367 add_using_directive (using_directives (cu),
11371 imported_declaration,
11374 &objfile->objfile_obstack);
11377 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11378 types, but gives them a size of zero. Starting with version 14,
11379 ICC is compatible with GCC. */
11382 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11384 if (!cu->checked_producer)
11385 check_producer (cu);
11387 return cu->producer_is_icc_lt_14;
11390 /* ICC generates a DW_AT_type for C void functions. This was observed on
11391 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11392 which says that void functions should not have a DW_AT_type. */
11395 producer_is_icc (struct dwarf2_cu *cu)
11397 if (!cu->checked_producer)
11398 check_producer (cu);
11400 return cu->producer_is_icc;
11403 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11404 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11405 this, it was first present in GCC release 4.3.0. */
11408 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11410 if (!cu->checked_producer)
11411 check_producer (cu);
11413 return cu->producer_is_gcc_lt_4_3;
11416 static file_and_directory
11417 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11419 file_and_directory res;
11421 /* Find the filename. Do not use dwarf2_name here, since the filename
11422 is not a source language identifier. */
11423 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11424 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11426 if (res.comp_dir == NULL
11427 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11428 && IS_ABSOLUTE_PATH (res.name))
11430 res.comp_dir_storage = ldirname (res.name);
11431 if (!res.comp_dir_storage.empty ())
11432 res.comp_dir = res.comp_dir_storage.c_str ();
11434 if (res.comp_dir != NULL)
11436 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11437 directory, get rid of it. */
11438 const char *cp = strchr (res.comp_dir, ':');
11440 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11441 res.comp_dir = cp + 1;
11444 if (res.name == NULL)
11445 res.name = "<unknown>";
11450 /* Handle DW_AT_stmt_list for a compilation unit.
11451 DIE is the DW_TAG_compile_unit die for CU.
11452 COMP_DIR is the compilation directory. LOWPC is passed to
11453 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11456 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11457 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11459 struct dwarf2_per_objfile *dwarf2_per_objfile
11460 = cu->per_cu->dwarf2_per_objfile;
11461 struct objfile *objfile = dwarf2_per_objfile->objfile;
11462 struct attribute *attr;
11463 struct line_header line_header_local;
11464 hashval_t line_header_local_hash;
11466 int decode_mapping;
11468 gdb_assert (! cu->per_cu->is_debug_types);
11470 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11474 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11476 /* The line header hash table is only created if needed (it exists to
11477 prevent redundant reading of the line table for partial_units).
11478 If we're given a partial_unit, we'll need it. If we're given a
11479 compile_unit, then use the line header hash table if it's already
11480 created, but don't create one just yet. */
11482 if (dwarf2_per_objfile->line_header_hash == NULL
11483 && die->tag == DW_TAG_partial_unit)
11485 dwarf2_per_objfile->line_header_hash
11486 = htab_create_alloc_ex (127, line_header_hash_voidp,
11487 line_header_eq_voidp,
11488 free_line_header_voidp,
11489 &objfile->objfile_obstack,
11490 hashtab_obstack_allocate,
11491 dummy_obstack_deallocate);
11494 line_header_local.sect_off = line_offset;
11495 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11496 line_header_local_hash = line_header_hash (&line_header_local);
11497 if (dwarf2_per_objfile->line_header_hash != NULL)
11499 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11500 &line_header_local,
11501 line_header_local_hash, NO_INSERT);
11503 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11504 is not present in *SLOT (since if there is something in *SLOT then
11505 it will be for a partial_unit). */
11506 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11508 gdb_assert (*slot != NULL);
11509 cu->line_header = (struct line_header *) *slot;
11514 /* dwarf_decode_line_header does not yet provide sufficient information.
11515 We always have to call also dwarf_decode_lines for it. */
11516 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11520 cu->line_header = lh.release ();
11521 cu->line_header_die_owner = die;
11523 if (dwarf2_per_objfile->line_header_hash == NULL)
11527 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11528 &line_header_local,
11529 line_header_local_hash, INSERT);
11530 gdb_assert (slot != NULL);
11532 if (slot != NULL && *slot == NULL)
11534 /* This newly decoded line number information unit will be owned
11535 by line_header_hash hash table. */
11536 *slot = cu->line_header;
11537 cu->line_header_die_owner = NULL;
11541 /* We cannot free any current entry in (*slot) as that struct line_header
11542 may be already used by multiple CUs. Create only temporary decoded
11543 line_header for this CU - it may happen at most once for each line
11544 number information unit. And if we're not using line_header_hash
11545 then this is what we want as well. */
11546 gdb_assert (die->tag != DW_TAG_partial_unit);
11548 decode_mapping = (die->tag != DW_TAG_partial_unit);
11549 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11554 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11557 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11559 struct dwarf2_per_objfile *dwarf2_per_objfile
11560 = cu->per_cu->dwarf2_per_objfile;
11561 struct objfile *objfile = dwarf2_per_objfile->objfile;
11562 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11563 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11564 CORE_ADDR highpc = ((CORE_ADDR) 0);
11565 struct attribute *attr;
11566 struct die_info *child_die;
11567 CORE_ADDR baseaddr;
11569 prepare_one_comp_unit (cu, die, cu->language);
11570 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11572 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11574 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11575 from finish_block. */
11576 if (lowpc == ((CORE_ADDR) -1))
11578 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11580 file_and_directory fnd = find_file_and_directory (die, cu);
11582 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11583 standardised yet. As a workaround for the language detection we fall
11584 back to the DW_AT_producer string. */
11585 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11586 cu->language = language_opencl;
11588 /* Similar hack for Go. */
11589 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11590 set_cu_language (DW_LANG_Go, cu);
11592 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11594 /* Decode line number information if present. We do this before
11595 processing child DIEs, so that the line header table is available
11596 for DW_AT_decl_file. */
11597 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11599 /* Process all dies in compilation unit. */
11600 if (die->child != NULL)
11602 child_die = die->child;
11603 while (child_die && child_die->tag)
11605 process_die (child_die, cu);
11606 child_die = sibling_die (child_die);
11610 /* Decode macro information, if present. Dwarf 2 macro information
11611 refers to information in the line number info statement program
11612 header, so we can only read it if we've read the header
11614 attr = dwarf2_attr (die, DW_AT_macros, cu);
11616 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11617 if (attr && cu->line_header)
11619 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11620 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11622 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11626 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11627 if (attr && cu->line_header)
11629 unsigned int macro_offset = DW_UNSND (attr);
11631 dwarf_decode_macros (cu, macro_offset, 0);
11637 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11639 struct type_unit_group *tu_group;
11641 struct attribute *attr;
11643 struct signatured_type *sig_type;
11645 gdb_assert (per_cu->is_debug_types);
11646 sig_type = (struct signatured_type *) per_cu;
11648 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11650 /* If we're using .gdb_index (includes -readnow) then
11651 per_cu->type_unit_group may not have been set up yet. */
11652 if (sig_type->type_unit_group == NULL)
11653 sig_type->type_unit_group = get_type_unit_group (this, attr);
11654 tu_group = sig_type->type_unit_group;
11656 /* If we've already processed this stmt_list there's no real need to
11657 do it again, we could fake it and just recreate the part we need
11658 (file name,index -> symtab mapping). If data shows this optimization
11659 is useful we can do it then. */
11660 first_time = tu_group->compunit_symtab == NULL;
11662 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11667 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11668 lh = dwarf_decode_line_header (line_offset, this);
11673 start_symtab ("", NULL, 0);
11676 gdb_assert (tu_group->symtabs == NULL);
11677 gdb_assert (m_builder == nullptr);
11678 struct compunit_symtab *cust = tu_group->compunit_symtab;
11679 m_builder.reset (new struct buildsym_compunit
11680 (COMPUNIT_OBJFILE (cust), "",
11681 COMPUNIT_DIRNAME (cust),
11682 compunit_language (cust),
11688 line_header = lh.release ();
11689 line_header_die_owner = die;
11693 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11695 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11696 still initializing it, and our caller (a few levels up)
11697 process_full_type_unit still needs to know if this is the first
11700 tu_group->num_symtabs = line_header->file_names.size ();
11701 tu_group->symtabs = XNEWVEC (struct symtab *,
11702 line_header->file_names.size ());
11704 for (i = 0; i < line_header->file_names.size (); ++i)
11706 file_entry &fe = line_header->file_names[i];
11708 dwarf2_start_subfile (this, fe.name,
11709 fe.include_dir (line_header));
11710 buildsym_compunit *b = get_builder ();
11711 if (b->get_current_subfile ()->symtab == NULL)
11713 /* NOTE: start_subfile will recognize when it's been
11714 passed a file it has already seen. So we can't
11715 assume there's a simple mapping from
11716 cu->line_header->file_names to subfiles, plus
11717 cu->line_header->file_names may contain dups. */
11718 b->get_current_subfile ()->symtab
11719 = allocate_symtab (cust, b->get_current_subfile ()->name);
11722 fe.symtab = b->get_current_subfile ()->symtab;
11723 tu_group->symtabs[i] = fe.symtab;
11728 gdb_assert (m_builder == nullptr);
11729 struct compunit_symtab *cust = tu_group->compunit_symtab;
11730 m_builder.reset (new struct buildsym_compunit
11731 (COMPUNIT_OBJFILE (cust), "",
11732 COMPUNIT_DIRNAME (cust),
11733 compunit_language (cust),
11736 for (i = 0; i < line_header->file_names.size (); ++i)
11738 file_entry &fe = line_header->file_names[i];
11740 fe.symtab = tu_group->symtabs[i];
11744 /* The main symtab is allocated last. Type units don't have DW_AT_name
11745 so they don't have a "real" (so to speak) symtab anyway.
11746 There is later code that will assign the main symtab to all symbols
11747 that don't have one. We need to handle the case of a symbol with a
11748 missing symtab (DW_AT_decl_file) anyway. */
11751 /* Process DW_TAG_type_unit.
11752 For TUs we want to skip the first top level sibling if it's not the
11753 actual type being defined by this TU. In this case the first top
11754 level sibling is there to provide context only. */
11757 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11759 struct die_info *child_die;
11761 prepare_one_comp_unit (cu, die, language_minimal);
11763 /* Initialize (or reinitialize) the machinery for building symtabs.
11764 We do this before processing child DIEs, so that the line header table
11765 is available for DW_AT_decl_file. */
11766 cu->setup_type_unit_groups (die);
11768 if (die->child != NULL)
11770 child_die = die->child;
11771 while (child_die && child_die->tag)
11773 process_die (child_die, cu);
11774 child_die = sibling_die (child_die);
11781 http://gcc.gnu.org/wiki/DebugFission
11782 http://gcc.gnu.org/wiki/DebugFissionDWP
11784 To simplify handling of both DWO files ("object" files with the DWARF info)
11785 and DWP files (a file with the DWOs packaged up into one file), we treat
11786 DWP files as having a collection of virtual DWO files. */
11789 hash_dwo_file (const void *item)
11791 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11794 hash = htab_hash_string (dwo_file->dwo_name);
11795 if (dwo_file->comp_dir != NULL)
11796 hash += htab_hash_string (dwo_file->comp_dir);
11801 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11803 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11804 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11806 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11808 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11809 return lhs->comp_dir == rhs->comp_dir;
11810 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11813 /* Allocate a hash table for DWO files. */
11816 allocate_dwo_file_hash_table (struct objfile *objfile)
11818 auto delete_dwo_file = [] (void *item)
11820 struct dwo_file *dwo_file = (struct dwo_file *) item;
11825 return htab_up (htab_create_alloc_ex (41,
11829 &objfile->objfile_obstack,
11830 hashtab_obstack_allocate,
11831 dummy_obstack_deallocate));
11834 /* Lookup DWO file DWO_NAME. */
11837 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11838 const char *dwo_name,
11839 const char *comp_dir)
11841 struct dwo_file find_entry;
11844 if (dwarf2_per_objfile->dwo_files == NULL)
11845 dwarf2_per_objfile->dwo_files
11846 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11848 find_entry.dwo_name = dwo_name;
11849 find_entry.comp_dir = comp_dir;
11850 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11857 hash_dwo_unit (const void *item)
11859 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11861 /* This drops the top 32 bits of the id, but is ok for a hash. */
11862 return dwo_unit->signature;
11866 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11868 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11869 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11871 /* The signature is assumed to be unique within the DWO file.
11872 So while object file CU dwo_id's always have the value zero,
11873 that's OK, assuming each object file DWO file has only one CU,
11874 and that's the rule for now. */
11875 return lhs->signature == rhs->signature;
11878 /* Allocate a hash table for DWO CUs,TUs.
11879 There is one of these tables for each of CUs,TUs for each DWO file. */
11882 allocate_dwo_unit_table (struct objfile *objfile)
11884 /* Start out with a pretty small number.
11885 Generally DWO files contain only one CU and maybe some TUs. */
11886 return htab_create_alloc_ex (3,
11890 &objfile->objfile_obstack,
11891 hashtab_obstack_allocate,
11892 dummy_obstack_deallocate);
11895 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11897 struct create_dwo_cu_data
11899 struct dwo_file *dwo_file;
11900 struct dwo_unit dwo_unit;
11903 /* die_reader_func for create_dwo_cu. */
11906 create_dwo_cu_reader (const struct die_reader_specs *reader,
11907 const gdb_byte *info_ptr,
11908 struct die_info *comp_unit_die,
11912 struct dwarf2_cu *cu = reader->cu;
11913 sect_offset sect_off = cu->per_cu->sect_off;
11914 struct dwarf2_section_info *section = cu->per_cu->section;
11915 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11916 struct dwo_file *dwo_file = data->dwo_file;
11917 struct dwo_unit *dwo_unit = &data->dwo_unit;
11919 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11920 if (!signature.has_value ())
11922 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11923 " its dwo_id [in module %s]"),
11924 sect_offset_str (sect_off), dwo_file->dwo_name);
11928 dwo_unit->dwo_file = dwo_file;
11929 dwo_unit->signature = *signature;
11930 dwo_unit->section = section;
11931 dwo_unit->sect_off = sect_off;
11932 dwo_unit->length = cu->per_cu->length;
11934 if (dwarf_read_debug)
11935 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11936 sect_offset_str (sect_off),
11937 hex_string (dwo_unit->signature));
11940 /* Create the dwo_units for the CUs in a DWO_FILE.
11941 Note: This function processes DWO files only, not DWP files. */
11944 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11945 struct dwo_file &dwo_file, dwarf2_section_info §ion,
11948 struct objfile *objfile = dwarf2_per_objfile->objfile;
11949 const gdb_byte *info_ptr, *end_ptr;
11951 dwarf2_read_section (objfile, §ion);
11952 info_ptr = section.buffer;
11954 if (info_ptr == NULL)
11957 if (dwarf_read_debug)
11959 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11960 get_section_name (§ion),
11961 get_section_file_name (§ion));
11964 end_ptr = info_ptr + section.size;
11965 while (info_ptr < end_ptr)
11967 struct dwarf2_per_cu_data per_cu;
11968 struct create_dwo_cu_data create_dwo_cu_data;
11969 struct dwo_unit *dwo_unit;
11971 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11973 memset (&create_dwo_cu_data.dwo_unit, 0,
11974 sizeof (create_dwo_cu_data.dwo_unit));
11975 memset (&per_cu, 0, sizeof (per_cu));
11976 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11977 per_cu.is_debug_types = 0;
11978 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11979 per_cu.section = §ion;
11980 create_dwo_cu_data.dwo_file = &dwo_file;
11982 init_cutu_and_read_dies_no_follow (
11983 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11984 info_ptr += per_cu.length;
11986 // If the unit could not be parsed, skip it.
11987 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11990 if (cus_htab == NULL)
11991 cus_htab = allocate_dwo_unit_table (objfile);
11993 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11994 *dwo_unit = create_dwo_cu_data.dwo_unit;
11995 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11996 gdb_assert (slot != NULL);
11999 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12000 sect_offset dup_sect_off = dup_cu->sect_off;
12002 complaint (_("debug cu entry at offset %s is duplicate to"
12003 " the entry at offset %s, signature %s"),
12004 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
12005 hex_string (dwo_unit->signature));
12007 *slot = (void *)dwo_unit;
12011 /* DWP file .debug_{cu,tu}_index section format:
12012 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12016 Both index sections have the same format, and serve to map a 64-bit
12017 signature to a set of section numbers. Each section begins with a header,
12018 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12019 indexes, and a pool of 32-bit section numbers. The index sections will be
12020 aligned at 8-byte boundaries in the file.
12022 The index section header consists of:
12024 V, 32 bit version number
12026 N, 32 bit number of compilation units or type units in the index
12027 M, 32 bit number of slots in the hash table
12029 Numbers are recorded using the byte order of the application binary.
12031 The hash table begins at offset 16 in the section, and consists of an array
12032 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12033 order of the application binary). Unused slots in the hash table are 0.
12034 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12036 The parallel table begins immediately after the hash table
12037 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12038 array of 32-bit indexes (using the byte order of the application binary),
12039 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12040 table contains a 32-bit index into the pool of section numbers. For unused
12041 hash table slots, the corresponding entry in the parallel table will be 0.
12043 The pool of section numbers begins immediately following the hash table
12044 (at offset 16 + 12 * M from the beginning of the section). The pool of
12045 section numbers consists of an array of 32-bit words (using the byte order
12046 of the application binary). Each item in the array is indexed starting
12047 from 0. The hash table entry provides the index of the first section
12048 number in the set. Additional section numbers in the set follow, and the
12049 set is terminated by a 0 entry (section number 0 is not used in ELF).
12051 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12052 section must be the first entry in the set, and the .debug_abbrev.dwo must
12053 be the second entry. Other members of the set may follow in any order.
12059 DWP Version 2 combines all the .debug_info, etc. sections into one,
12060 and the entries in the index tables are now offsets into these sections.
12061 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12064 Index Section Contents:
12066 Hash Table of Signatures dwp_hash_table.hash_table
12067 Parallel Table of Indices dwp_hash_table.unit_table
12068 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12069 Table of Section Sizes dwp_hash_table.v2.sizes
12071 The index section header consists of:
12073 V, 32 bit version number
12074 L, 32 bit number of columns in the table of section offsets
12075 N, 32 bit number of compilation units or type units in the index
12076 M, 32 bit number of slots in the hash table
12078 Numbers are recorded using the byte order of the application binary.
12080 The hash table has the same format as version 1.
12081 The parallel table of indices has the same format as version 1,
12082 except that the entries are origin-1 indices into the table of sections
12083 offsets and the table of section sizes.
12085 The table of offsets begins immediately following the parallel table
12086 (at offset 16 + 12 * M from the beginning of the section). The table is
12087 a two-dimensional array of 32-bit words (using the byte order of the
12088 application binary), with L columns and N+1 rows, in row-major order.
12089 Each row in the array is indexed starting from 0. The first row provides
12090 a key to the remaining rows: each column in this row provides an identifier
12091 for a debug section, and the offsets in the same column of subsequent rows
12092 refer to that section. The section identifiers are:
12094 DW_SECT_INFO 1 .debug_info.dwo
12095 DW_SECT_TYPES 2 .debug_types.dwo
12096 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12097 DW_SECT_LINE 4 .debug_line.dwo
12098 DW_SECT_LOC 5 .debug_loc.dwo
12099 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12100 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12101 DW_SECT_MACRO 8 .debug_macro.dwo
12103 The offsets provided by the CU and TU index sections are the base offsets
12104 for the contributions made by each CU or TU to the corresponding section
12105 in the package file. Each CU and TU header contains an abbrev_offset
12106 field, used to find the abbreviations table for that CU or TU within the
12107 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12108 be interpreted as relative to the base offset given in the index section.
12109 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12110 should be interpreted as relative to the base offset for .debug_line.dwo,
12111 and offsets into other debug sections obtained from DWARF attributes should
12112 also be interpreted as relative to the corresponding base offset.
12114 The table of sizes begins immediately following the table of offsets.
12115 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12116 with L columns and N rows, in row-major order. Each row in the array is
12117 indexed starting from 1 (row 0 is shared by the two tables).
12121 Hash table lookup is handled the same in version 1 and 2:
12123 We assume that N and M will not exceed 2^32 - 1.
12124 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12126 Given a 64-bit compilation unit signature or a type signature S, an entry
12127 in the hash table is located as follows:
12129 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12130 the low-order k bits all set to 1.
12132 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12134 3) If the hash table entry at index H matches the signature, use that
12135 entry. If the hash table entry at index H is unused (all zeroes),
12136 terminate the search: the signature is not present in the table.
12138 4) Let H = (H + H') modulo M. Repeat at Step 3.
12140 Because M > N and H' and M are relatively prime, the search is guaranteed
12141 to stop at an unused slot or find the match. */
12143 /* Create a hash table to map DWO IDs to their CU/TU entry in
12144 .debug_{info,types}.dwo in DWP_FILE.
12145 Returns NULL if there isn't one.
12146 Note: This function processes DWP files only, not DWO files. */
12148 static struct dwp_hash_table *
12149 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12150 struct dwp_file *dwp_file, int is_debug_types)
12152 struct objfile *objfile = dwarf2_per_objfile->objfile;
12153 bfd *dbfd = dwp_file->dbfd.get ();
12154 const gdb_byte *index_ptr, *index_end;
12155 struct dwarf2_section_info *index;
12156 uint32_t version, nr_columns, nr_units, nr_slots;
12157 struct dwp_hash_table *htab;
12159 if (is_debug_types)
12160 index = &dwp_file->sections.tu_index;
12162 index = &dwp_file->sections.cu_index;
12164 if (dwarf2_section_empty_p (index))
12166 dwarf2_read_section (objfile, index);
12168 index_ptr = index->buffer;
12169 index_end = index_ptr + index->size;
12171 version = read_4_bytes (dbfd, index_ptr);
12174 nr_columns = read_4_bytes (dbfd, index_ptr);
12178 nr_units = read_4_bytes (dbfd, index_ptr);
12180 nr_slots = read_4_bytes (dbfd, index_ptr);
12183 if (version != 1 && version != 2)
12185 error (_("Dwarf Error: unsupported DWP file version (%s)"
12186 " [in module %s]"),
12187 pulongest (version), dwp_file->name);
12189 if (nr_slots != (nr_slots & -nr_slots))
12191 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12192 " is not power of 2 [in module %s]"),
12193 pulongest (nr_slots), dwp_file->name);
12196 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12197 htab->version = version;
12198 htab->nr_columns = nr_columns;
12199 htab->nr_units = nr_units;
12200 htab->nr_slots = nr_slots;
12201 htab->hash_table = index_ptr;
12202 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12204 /* Exit early if the table is empty. */
12205 if (nr_slots == 0 || nr_units == 0
12206 || (version == 2 && nr_columns == 0))
12208 /* All must be zero. */
12209 if (nr_slots != 0 || nr_units != 0
12210 || (version == 2 && nr_columns != 0))
12212 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12213 " all zero [in modules %s]"),
12221 htab->section_pool.v1.indices =
12222 htab->unit_table + sizeof (uint32_t) * nr_slots;
12223 /* It's harder to decide whether the section is too small in v1.
12224 V1 is deprecated anyway so we punt. */
12228 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12229 int *ids = htab->section_pool.v2.section_ids;
12230 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12231 /* Reverse map for error checking. */
12232 int ids_seen[DW_SECT_MAX + 1];
12235 if (nr_columns < 2)
12237 error (_("Dwarf Error: bad DWP hash table, too few columns"
12238 " in section table [in module %s]"),
12241 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12243 error (_("Dwarf Error: bad DWP hash table, too many columns"
12244 " in section table [in module %s]"),
12247 memset (ids, 255, sizeof_ids);
12248 memset (ids_seen, 255, sizeof (ids_seen));
12249 for (i = 0; i < nr_columns; ++i)
12251 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12253 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12255 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12256 " in section table [in module %s]"),
12257 id, dwp_file->name);
12259 if (ids_seen[id] != -1)
12261 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12262 " id %d in section table [in module %s]"),
12263 id, dwp_file->name);
12268 /* Must have exactly one info or types section. */
12269 if (((ids_seen[DW_SECT_INFO] != -1)
12270 + (ids_seen[DW_SECT_TYPES] != -1))
12273 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12274 " DWO info/types section [in module %s]"),
12277 /* Must have an abbrev section. */
12278 if (ids_seen[DW_SECT_ABBREV] == -1)
12280 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12281 " section [in module %s]"),
12284 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12285 htab->section_pool.v2.sizes =
12286 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12287 * nr_units * nr_columns);
12288 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12289 * nr_units * nr_columns))
12292 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12293 " [in module %s]"),
12301 /* Update SECTIONS with the data from SECTP.
12303 This function is like the other "locate" section routines that are
12304 passed to bfd_map_over_sections, but in this context the sections to
12305 read comes from the DWP V1 hash table, not the full ELF section table.
12307 The result is non-zero for success, or zero if an error was found. */
12310 locate_v1_virtual_dwo_sections (asection *sectp,
12311 struct virtual_v1_dwo_sections *sections)
12313 const struct dwop_section_names *names = &dwop_section_names;
12315 if (section_is_p (sectp->name, &names->abbrev_dwo))
12317 /* There can be only one. */
12318 if (sections->abbrev.s.section != NULL)
12320 sections->abbrev.s.section = sectp;
12321 sections->abbrev.size = bfd_section_size (sectp);
12323 else if (section_is_p (sectp->name, &names->info_dwo)
12324 || section_is_p (sectp->name, &names->types_dwo))
12326 /* There can be only one. */
12327 if (sections->info_or_types.s.section != NULL)
12329 sections->info_or_types.s.section = sectp;
12330 sections->info_or_types.size = bfd_section_size (sectp);
12332 else if (section_is_p (sectp->name, &names->line_dwo))
12334 /* There can be only one. */
12335 if (sections->line.s.section != NULL)
12337 sections->line.s.section = sectp;
12338 sections->line.size = bfd_section_size (sectp);
12340 else if (section_is_p (sectp->name, &names->loc_dwo))
12342 /* There can be only one. */
12343 if (sections->loc.s.section != NULL)
12345 sections->loc.s.section = sectp;
12346 sections->loc.size = bfd_section_size (sectp);
12348 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12350 /* There can be only one. */
12351 if (sections->macinfo.s.section != NULL)
12353 sections->macinfo.s.section = sectp;
12354 sections->macinfo.size = bfd_section_size (sectp);
12356 else if (section_is_p (sectp->name, &names->macro_dwo))
12358 /* There can be only one. */
12359 if (sections->macro.s.section != NULL)
12361 sections->macro.s.section = sectp;
12362 sections->macro.size = bfd_section_size (sectp);
12364 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12366 /* There can be only one. */
12367 if (sections->str_offsets.s.section != NULL)
12369 sections->str_offsets.s.section = sectp;
12370 sections->str_offsets.size = bfd_section_size (sectp);
12374 /* No other kind of section is valid. */
12381 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12382 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12383 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12384 This is for DWP version 1 files. */
12386 static struct dwo_unit *
12387 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12388 struct dwp_file *dwp_file,
12389 uint32_t unit_index,
12390 const char *comp_dir,
12391 ULONGEST signature, int is_debug_types)
12393 struct objfile *objfile = dwarf2_per_objfile->objfile;
12394 const struct dwp_hash_table *dwp_htab =
12395 is_debug_types ? dwp_file->tus : dwp_file->cus;
12396 bfd *dbfd = dwp_file->dbfd.get ();
12397 const char *kind = is_debug_types ? "TU" : "CU";
12398 struct dwo_file *dwo_file;
12399 struct dwo_unit *dwo_unit;
12400 struct virtual_v1_dwo_sections sections;
12401 void **dwo_file_slot;
12404 gdb_assert (dwp_file->version == 1);
12406 if (dwarf_read_debug)
12408 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12410 pulongest (unit_index), hex_string (signature),
12414 /* Fetch the sections of this DWO unit.
12415 Put a limit on the number of sections we look for so that bad data
12416 doesn't cause us to loop forever. */
12418 #define MAX_NR_V1_DWO_SECTIONS \
12419 (1 /* .debug_info or .debug_types */ \
12420 + 1 /* .debug_abbrev */ \
12421 + 1 /* .debug_line */ \
12422 + 1 /* .debug_loc */ \
12423 + 1 /* .debug_str_offsets */ \
12424 + 1 /* .debug_macro or .debug_macinfo */ \
12425 + 1 /* trailing zero */)
12427 memset (§ions, 0, sizeof (sections));
12429 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12432 uint32_t section_nr =
12433 read_4_bytes (dbfd,
12434 dwp_htab->section_pool.v1.indices
12435 + (unit_index + i) * sizeof (uint32_t));
12437 if (section_nr == 0)
12439 if (section_nr >= dwp_file->num_sections)
12441 error (_("Dwarf Error: bad DWP hash table, section number too large"
12442 " [in module %s]"),
12446 sectp = dwp_file->elf_sections[section_nr];
12447 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
12449 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12450 " [in module %s]"),
12456 || dwarf2_section_empty_p (§ions.info_or_types)
12457 || dwarf2_section_empty_p (§ions.abbrev))
12459 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12460 " [in module %s]"),
12463 if (i == MAX_NR_V1_DWO_SECTIONS)
12465 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12466 " [in module %s]"),
12470 /* It's easier for the rest of the code if we fake a struct dwo_file and
12471 have dwo_unit "live" in that. At least for now.
12473 The DWP file can be made up of a random collection of CUs and TUs.
12474 However, for each CU + set of TUs that came from the same original DWO
12475 file, we can combine them back into a virtual DWO file to save space
12476 (fewer struct dwo_file objects to allocate). Remember that for really
12477 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12479 std::string virtual_dwo_name =
12480 string_printf ("virtual-dwo/%d-%d-%d-%d",
12481 get_section_id (§ions.abbrev),
12482 get_section_id (§ions.line),
12483 get_section_id (§ions.loc),
12484 get_section_id (§ions.str_offsets));
12485 /* Can we use an existing virtual DWO file? */
12486 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12487 virtual_dwo_name.c_str (),
12489 /* Create one if necessary. */
12490 if (*dwo_file_slot == NULL)
12492 if (dwarf_read_debug)
12494 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12495 virtual_dwo_name.c_str ());
12497 dwo_file = new struct dwo_file;
12498 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12500 dwo_file->comp_dir = comp_dir;
12501 dwo_file->sections.abbrev = sections.abbrev;
12502 dwo_file->sections.line = sections.line;
12503 dwo_file->sections.loc = sections.loc;
12504 dwo_file->sections.macinfo = sections.macinfo;
12505 dwo_file->sections.macro = sections.macro;
12506 dwo_file->sections.str_offsets = sections.str_offsets;
12507 /* The "str" section is global to the entire DWP file. */
12508 dwo_file->sections.str = dwp_file->sections.str;
12509 /* The info or types section is assigned below to dwo_unit,
12510 there's no need to record it in dwo_file.
12511 Also, we can't simply record type sections in dwo_file because
12512 we record a pointer into the vector in dwo_unit. As we collect more
12513 types we'll grow the vector and eventually have to reallocate space
12514 for it, invalidating all copies of pointers into the previous
12516 *dwo_file_slot = dwo_file;
12520 if (dwarf_read_debug)
12522 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12523 virtual_dwo_name.c_str ());
12525 dwo_file = (struct dwo_file *) *dwo_file_slot;
12528 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12529 dwo_unit->dwo_file = dwo_file;
12530 dwo_unit->signature = signature;
12531 dwo_unit->section =
12532 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12533 *dwo_unit->section = sections.info_or_types;
12534 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12539 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12540 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12541 piece within that section used by a TU/CU, return a virtual section
12542 of just that piece. */
12544 static struct dwarf2_section_info
12545 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12546 struct dwarf2_section_info *section,
12547 bfd_size_type offset, bfd_size_type size)
12549 struct dwarf2_section_info result;
12552 gdb_assert (section != NULL);
12553 gdb_assert (!section->is_virtual);
12555 memset (&result, 0, sizeof (result));
12556 result.s.containing_section = section;
12557 result.is_virtual = true;
12562 sectp = get_section_bfd_section (section);
12564 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12565 bounds of the real section. This is a pretty-rare event, so just
12566 flag an error (easier) instead of a warning and trying to cope. */
12568 || offset + size > bfd_section_size (sectp))
12570 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12571 " in section %s [in module %s]"),
12572 sectp ? bfd_section_name (sectp) : "<unknown>",
12573 objfile_name (dwarf2_per_objfile->objfile));
12576 result.virtual_offset = offset;
12577 result.size = size;
12581 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12582 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12583 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12584 This is for DWP version 2 files. */
12586 static struct dwo_unit *
12587 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12588 struct dwp_file *dwp_file,
12589 uint32_t unit_index,
12590 const char *comp_dir,
12591 ULONGEST signature, int is_debug_types)
12593 struct objfile *objfile = dwarf2_per_objfile->objfile;
12594 const struct dwp_hash_table *dwp_htab =
12595 is_debug_types ? dwp_file->tus : dwp_file->cus;
12596 bfd *dbfd = dwp_file->dbfd.get ();
12597 const char *kind = is_debug_types ? "TU" : "CU";
12598 struct dwo_file *dwo_file;
12599 struct dwo_unit *dwo_unit;
12600 struct virtual_v2_dwo_sections sections;
12601 void **dwo_file_slot;
12604 gdb_assert (dwp_file->version == 2);
12606 if (dwarf_read_debug)
12608 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12610 pulongest (unit_index), hex_string (signature),
12614 /* Fetch the section offsets of this DWO unit. */
12616 memset (§ions, 0, sizeof (sections));
12618 for (i = 0; i < dwp_htab->nr_columns; ++i)
12620 uint32_t offset = read_4_bytes (dbfd,
12621 dwp_htab->section_pool.v2.offsets
12622 + (((unit_index - 1) * dwp_htab->nr_columns
12624 * sizeof (uint32_t)));
12625 uint32_t size = read_4_bytes (dbfd,
12626 dwp_htab->section_pool.v2.sizes
12627 + (((unit_index - 1) * dwp_htab->nr_columns
12629 * sizeof (uint32_t)));
12631 switch (dwp_htab->section_pool.v2.section_ids[i])
12634 case DW_SECT_TYPES:
12635 sections.info_or_types_offset = offset;
12636 sections.info_or_types_size = size;
12638 case DW_SECT_ABBREV:
12639 sections.abbrev_offset = offset;
12640 sections.abbrev_size = size;
12643 sections.line_offset = offset;
12644 sections.line_size = size;
12647 sections.loc_offset = offset;
12648 sections.loc_size = size;
12650 case DW_SECT_STR_OFFSETS:
12651 sections.str_offsets_offset = offset;
12652 sections.str_offsets_size = size;
12654 case DW_SECT_MACINFO:
12655 sections.macinfo_offset = offset;
12656 sections.macinfo_size = size;
12658 case DW_SECT_MACRO:
12659 sections.macro_offset = offset;
12660 sections.macro_size = size;
12665 /* It's easier for the rest of the code if we fake a struct dwo_file and
12666 have dwo_unit "live" in that. At least for now.
12668 The DWP file can be made up of a random collection of CUs and TUs.
12669 However, for each CU + set of TUs that came from the same original DWO
12670 file, we can combine them back into a virtual DWO file to save space
12671 (fewer struct dwo_file objects to allocate). Remember that for really
12672 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12674 std::string virtual_dwo_name =
12675 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12676 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12677 (long) (sections.line_size ? sections.line_offset : 0),
12678 (long) (sections.loc_size ? sections.loc_offset : 0),
12679 (long) (sections.str_offsets_size
12680 ? sections.str_offsets_offset : 0));
12681 /* Can we use an existing virtual DWO file? */
12682 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12683 virtual_dwo_name.c_str (),
12685 /* Create one if necessary. */
12686 if (*dwo_file_slot == NULL)
12688 if (dwarf_read_debug)
12690 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12691 virtual_dwo_name.c_str ());
12693 dwo_file = new struct dwo_file;
12694 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12696 dwo_file->comp_dir = comp_dir;
12697 dwo_file->sections.abbrev =
12698 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12699 sections.abbrev_offset, sections.abbrev_size);
12700 dwo_file->sections.line =
12701 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12702 sections.line_offset, sections.line_size);
12703 dwo_file->sections.loc =
12704 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12705 sections.loc_offset, sections.loc_size);
12706 dwo_file->sections.macinfo =
12707 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12708 sections.macinfo_offset, sections.macinfo_size);
12709 dwo_file->sections.macro =
12710 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12711 sections.macro_offset, sections.macro_size);
12712 dwo_file->sections.str_offsets =
12713 create_dwp_v2_section (dwarf2_per_objfile,
12714 &dwp_file->sections.str_offsets,
12715 sections.str_offsets_offset,
12716 sections.str_offsets_size);
12717 /* The "str" section is global to the entire DWP file. */
12718 dwo_file->sections.str = dwp_file->sections.str;
12719 /* The info or types section is assigned below to dwo_unit,
12720 there's no need to record it in dwo_file.
12721 Also, we can't simply record type sections in dwo_file because
12722 we record a pointer into the vector in dwo_unit. As we collect more
12723 types we'll grow the vector and eventually have to reallocate space
12724 for it, invalidating all copies of pointers into the previous
12726 *dwo_file_slot = dwo_file;
12730 if (dwarf_read_debug)
12732 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12733 virtual_dwo_name.c_str ());
12735 dwo_file = (struct dwo_file *) *dwo_file_slot;
12738 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12739 dwo_unit->dwo_file = dwo_file;
12740 dwo_unit->signature = signature;
12741 dwo_unit->section =
12742 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12743 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12745 ? &dwp_file->sections.types
12746 : &dwp_file->sections.info,
12747 sections.info_or_types_offset,
12748 sections.info_or_types_size);
12749 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12754 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12755 Returns NULL if the signature isn't found. */
12757 static struct dwo_unit *
12758 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12759 struct dwp_file *dwp_file, const char *comp_dir,
12760 ULONGEST signature, int is_debug_types)
12762 const struct dwp_hash_table *dwp_htab =
12763 is_debug_types ? dwp_file->tus : dwp_file->cus;
12764 bfd *dbfd = dwp_file->dbfd.get ();
12765 uint32_t mask = dwp_htab->nr_slots - 1;
12766 uint32_t hash = signature & mask;
12767 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12770 struct dwo_unit find_dwo_cu;
12772 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12773 find_dwo_cu.signature = signature;
12774 slot = htab_find_slot (is_debug_types
12775 ? dwp_file->loaded_tus
12776 : dwp_file->loaded_cus,
12777 &find_dwo_cu, INSERT);
12780 return (struct dwo_unit *) *slot;
12782 /* Use a for loop so that we don't loop forever on bad debug info. */
12783 for (i = 0; i < dwp_htab->nr_slots; ++i)
12785 ULONGEST signature_in_table;
12787 signature_in_table =
12788 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12789 if (signature_in_table == signature)
12791 uint32_t unit_index =
12792 read_4_bytes (dbfd,
12793 dwp_htab->unit_table + hash * sizeof (uint32_t));
12795 if (dwp_file->version == 1)
12797 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12798 dwp_file, unit_index,
12799 comp_dir, signature,
12804 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12805 dwp_file, unit_index,
12806 comp_dir, signature,
12809 return (struct dwo_unit *) *slot;
12811 if (signature_in_table == 0)
12813 hash = (hash + hash2) & mask;
12816 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12817 " [in module %s]"),
12821 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12822 Open the file specified by FILE_NAME and hand it off to BFD for
12823 preliminary analysis. Return a newly initialized bfd *, which
12824 includes a canonicalized copy of FILE_NAME.
12825 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12826 SEARCH_CWD is true if the current directory is to be searched.
12827 It will be searched before debug-file-directory.
12828 If successful, the file is added to the bfd include table of the
12829 objfile's bfd (see gdb_bfd_record_inclusion).
12830 If unable to find/open the file, return NULL.
12831 NOTE: This function is derived from symfile_bfd_open. */
12833 static gdb_bfd_ref_ptr
12834 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12835 const char *file_name, int is_dwp, int search_cwd)
12838 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12839 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12840 to debug_file_directory. */
12841 const char *search_path;
12842 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12844 gdb::unique_xmalloc_ptr<char> search_path_holder;
12847 if (*debug_file_directory != '\0')
12849 search_path_holder.reset (concat (".", dirname_separator_string,
12850 debug_file_directory,
12852 search_path = search_path_holder.get ();
12858 search_path = debug_file_directory;
12860 openp_flags flags = OPF_RETURN_REALPATH;
12862 flags |= OPF_SEARCH_IN_PATH;
12864 gdb::unique_xmalloc_ptr<char> absolute_name;
12865 desc = openp (search_path, flags, file_name,
12866 O_RDONLY | O_BINARY, &absolute_name);
12870 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12872 if (sym_bfd == NULL)
12874 bfd_set_cacheable (sym_bfd.get (), 1);
12876 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12879 /* Success. Record the bfd as having been included by the objfile's bfd.
12880 This is important because things like demangled_names_hash lives in the
12881 objfile's per_bfd space and may have references to things like symbol
12882 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12883 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12888 /* Try to open DWO file FILE_NAME.
12889 COMP_DIR is the DW_AT_comp_dir attribute.
12890 The result is the bfd handle of the file.
12891 If there is a problem finding or opening the file, return NULL.
12892 Upon success, the canonicalized path of the file is stored in the bfd,
12893 same as symfile_bfd_open. */
12895 static gdb_bfd_ref_ptr
12896 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12897 const char *file_name, const char *comp_dir)
12899 if (IS_ABSOLUTE_PATH (file_name))
12900 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12901 0 /*is_dwp*/, 0 /*search_cwd*/);
12903 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12905 if (comp_dir != NULL)
12907 char *path_to_try = concat (comp_dir, SLASH_STRING,
12908 file_name, (char *) NULL);
12910 /* NOTE: If comp_dir is a relative path, this will also try the
12911 search path, which seems useful. */
12912 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12915 1 /*search_cwd*/));
12916 xfree (path_to_try);
12921 /* That didn't work, try debug-file-directory, which, despite its name,
12922 is a list of paths. */
12924 if (*debug_file_directory == '\0')
12927 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12928 0 /*is_dwp*/, 1 /*search_cwd*/);
12931 /* This function is mapped across the sections and remembers the offset and
12932 size of each of the DWO debugging sections we are interested in. */
12935 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12937 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12938 const struct dwop_section_names *names = &dwop_section_names;
12940 if (section_is_p (sectp->name, &names->abbrev_dwo))
12942 dwo_sections->abbrev.s.section = sectp;
12943 dwo_sections->abbrev.size = bfd_section_size (sectp);
12945 else if (section_is_p (sectp->name, &names->info_dwo))
12947 dwo_sections->info.s.section = sectp;
12948 dwo_sections->info.size = bfd_section_size (sectp);
12950 else if (section_is_p (sectp->name, &names->line_dwo))
12952 dwo_sections->line.s.section = sectp;
12953 dwo_sections->line.size = bfd_section_size (sectp);
12955 else if (section_is_p (sectp->name, &names->loc_dwo))
12957 dwo_sections->loc.s.section = sectp;
12958 dwo_sections->loc.size = bfd_section_size (sectp);
12960 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12962 dwo_sections->macinfo.s.section = sectp;
12963 dwo_sections->macinfo.size = bfd_section_size (sectp);
12965 else if (section_is_p (sectp->name, &names->macro_dwo))
12967 dwo_sections->macro.s.section = sectp;
12968 dwo_sections->macro.size = bfd_section_size (sectp);
12970 else if (section_is_p (sectp->name, &names->str_dwo))
12972 dwo_sections->str.s.section = sectp;
12973 dwo_sections->str.size = bfd_section_size (sectp);
12975 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12977 dwo_sections->str_offsets.s.section = sectp;
12978 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12980 else if (section_is_p (sectp->name, &names->types_dwo))
12982 struct dwarf2_section_info type_section;
12984 memset (&type_section, 0, sizeof (type_section));
12985 type_section.s.section = sectp;
12986 type_section.size = bfd_section_size (sectp);
12987 dwo_sections->types.push_back (type_section);
12991 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12992 by PER_CU. This is for the non-DWP case.
12993 The result is NULL if DWO_NAME can't be found. */
12995 static struct dwo_file *
12996 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12997 const char *dwo_name, const char *comp_dir)
12999 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
13001 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
13004 if (dwarf_read_debug)
13005 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13009 dwo_file_up dwo_file (new struct dwo_file);
13010 dwo_file->dwo_name = dwo_name;
13011 dwo_file->comp_dir = comp_dir;
13012 dwo_file->dbfd = std::move (dbfd);
13014 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
13015 &dwo_file->sections);
13017 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13020 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13021 dwo_file->sections.types, dwo_file->tus);
13023 if (dwarf_read_debug)
13024 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13026 return dwo_file.release ();
13029 /* This function is mapped across the sections and remembers the offset and
13030 size of each of the DWP debugging sections common to version 1 and 2 that
13031 we are interested in. */
13034 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13035 void *dwp_file_ptr)
13037 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13038 const struct dwop_section_names *names = &dwop_section_names;
13039 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13041 /* Record the ELF section number for later lookup: this is what the
13042 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13043 gdb_assert (elf_section_nr < dwp_file->num_sections);
13044 dwp_file->elf_sections[elf_section_nr] = sectp;
13046 /* Look for specific sections that we need. */
13047 if (section_is_p (sectp->name, &names->str_dwo))
13049 dwp_file->sections.str.s.section = sectp;
13050 dwp_file->sections.str.size = bfd_section_size (sectp);
13052 else if (section_is_p (sectp->name, &names->cu_index))
13054 dwp_file->sections.cu_index.s.section = sectp;
13055 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
13057 else if (section_is_p (sectp->name, &names->tu_index))
13059 dwp_file->sections.tu_index.s.section = sectp;
13060 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
13064 /* This function is mapped across the sections and remembers the offset and
13065 size of each of the DWP version 2 debugging sections that we are interested
13066 in. This is split into a separate function because we don't know if we
13067 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13070 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13072 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13073 const struct dwop_section_names *names = &dwop_section_names;
13074 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13076 /* Record the ELF section number for later lookup: this is what the
13077 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13078 gdb_assert (elf_section_nr < dwp_file->num_sections);
13079 dwp_file->elf_sections[elf_section_nr] = sectp;
13081 /* Look for specific sections that we need. */
13082 if (section_is_p (sectp->name, &names->abbrev_dwo))
13084 dwp_file->sections.abbrev.s.section = sectp;
13085 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
13087 else if (section_is_p (sectp->name, &names->info_dwo))
13089 dwp_file->sections.info.s.section = sectp;
13090 dwp_file->sections.info.size = bfd_section_size (sectp);
13092 else if (section_is_p (sectp->name, &names->line_dwo))
13094 dwp_file->sections.line.s.section = sectp;
13095 dwp_file->sections.line.size = bfd_section_size (sectp);
13097 else if (section_is_p (sectp->name, &names->loc_dwo))
13099 dwp_file->sections.loc.s.section = sectp;
13100 dwp_file->sections.loc.size = bfd_section_size (sectp);
13102 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13104 dwp_file->sections.macinfo.s.section = sectp;
13105 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
13107 else if (section_is_p (sectp->name, &names->macro_dwo))
13109 dwp_file->sections.macro.s.section = sectp;
13110 dwp_file->sections.macro.size = bfd_section_size (sectp);
13112 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13114 dwp_file->sections.str_offsets.s.section = sectp;
13115 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
13117 else if (section_is_p (sectp->name, &names->types_dwo))
13119 dwp_file->sections.types.s.section = sectp;
13120 dwp_file->sections.types.size = bfd_section_size (sectp);
13124 /* Hash function for dwp_file loaded CUs/TUs. */
13127 hash_dwp_loaded_cutus (const void *item)
13129 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13131 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13132 return dwo_unit->signature;
13135 /* Equality function for dwp_file loaded CUs/TUs. */
13138 eq_dwp_loaded_cutus (const void *a, const void *b)
13140 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13141 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13143 return dua->signature == dub->signature;
13146 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13149 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13151 return htab_create_alloc_ex (3,
13152 hash_dwp_loaded_cutus,
13153 eq_dwp_loaded_cutus,
13155 &objfile->objfile_obstack,
13156 hashtab_obstack_allocate,
13157 dummy_obstack_deallocate);
13160 /* Try to open DWP file FILE_NAME.
13161 The result is the bfd handle of the file.
13162 If there is a problem finding or opening the file, return NULL.
13163 Upon success, the canonicalized path of the file is stored in the bfd,
13164 same as symfile_bfd_open. */
13166 static gdb_bfd_ref_ptr
13167 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13168 const char *file_name)
13170 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13172 1 /*search_cwd*/));
13176 /* Work around upstream bug 15652.
13177 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13178 [Whether that's a "bug" is debatable, but it is getting in our way.]
13179 We have no real idea where the dwp file is, because gdb's realpath-ing
13180 of the executable's path may have discarded the needed info.
13181 [IWBN if the dwp file name was recorded in the executable, akin to
13182 .gnu_debuglink, but that doesn't exist yet.]
13183 Strip the directory from FILE_NAME and search again. */
13184 if (*debug_file_directory != '\0')
13186 /* Don't implicitly search the current directory here.
13187 If the user wants to search "." to handle this case,
13188 it must be added to debug-file-directory. */
13189 return try_open_dwop_file (dwarf2_per_objfile,
13190 lbasename (file_name), 1 /*is_dwp*/,
13197 /* Initialize the use of the DWP file for the current objfile.
13198 By convention the name of the DWP file is ${objfile}.dwp.
13199 The result is NULL if it can't be found. */
13201 static std::unique_ptr<struct dwp_file>
13202 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13204 struct objfile *objfile = dwarf2_per_objfile->objfile;
13206 /* Try to find first .dwp for the binary file before any symbolic links
13209 /* If the objfile is a debug file, find the name of the real binary
13210 file and get the name of dwp file from there. */
13211 std::string dwp_name;
13212 if (objfile->separate_debug_objfile_backlink != NULL)
13214 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13215 const char *backlink_basename = lbasename (backlink->original_name);
13217 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13220 dwp_name = objfile->original_name;
13222 dwp_name += ".dwp";
13224 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13226 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13228 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13229 dwp_name = objfile_name (objfile);
13230 dwp_name += ".dwp";
13231 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13236 if (dwarf_read_debug)
13237 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13238 return std::unique_ptr<dwp_file> ();
13241 const char *name = bfd_get_filename (dbfd.get ());
13242 std::unique_ptr<struct dwp_file> dwp_file
13243 (new struct dwp_file (name, std::move (dbfd)));
13245 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13246 dwp_file->elf_sections =
13247 OBSTACK_CALLOC (&objfile->objfile_obstack,
13248 dwp_file->num_sections, asection *);
13250 bfd_map_over_sections (dwp_file->dbfd.get (),
13251 dwarf2_locate_common_dwp_sections,
13254 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13257 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13260 /* The DWP file version is stored in the hash table. Oh well. */
13261 if (dwp_file->cus && dwp_file->tus
13262 && dwp_file->cus->version != dwp_file->tus->version)
13264 /* Technically speaking, we should try to limp along, but this is
13265 pretty bizarre. We use pulongest here because that's the established
13266 portability solution (e.g, we cannot use %u for uint32_t). */
13267 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13268 " TU version %s [in DWP file %s]"),
13269 pulongest (dwp_file->cus->version),
13270 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13274 dwp_file->version = dwp_file->cus->version;
13275 else if (dwp_file->tus)
13276 dwp_file->version = dwp_file->tus->version;
13278 dwp_file->version = 2;
13280 if (dwp_file->version == 2)
13281 bfd_map_over_sections (dwp_file->dbfd.get (),
13282 dwarf2_locate_v2_dwp_sections,
13285 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13286 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13288 if (dwarf_read_debug)
13290 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13291 fprintf_unfiltered (gdb_stdlog,
13292 " %s CUs, %s TUs\n",
13293 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13294 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13300 /* Wrapper around open_and_init_dwp_file, only open it once. */
13302 static struct dwp_file *
13303 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13305 if (! dwarf2_per_objfile->dwp_checked)
13307 dwarf2_per_objfile->dwp_file
13308 = open_and_init_dwp_file (dwarf2_per_objfile);
13309 dwarf2_per_objfile->dwp_checked = 1;
13311 return dwarf2_per_objfile->dwp_file.get ();
13314 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13315 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13316 or in the DWP file for the objfile, referenced by THIS_UNIT.
13317 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13318 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13320 This is called, for example, when wanting to read a variable with a
13321 complex location. Therefore we don't want to do file i/o for every call.
13322 Therefore we don't want to look for a DWO file on every call.
13323 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13324 then we check if we've already seen DWO_NAME, and only THEN do we check
13327 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13328 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13330 static struct dwo_unit *
13331 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13332 const char *dwo_name, const char *comp_dir,
13333 ULONGEST signature, int is_debug_types)
13335 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13336 struct objfile *objfile = dwarf2_per_objfile->objfile;
13337 const char *kind = is_debug_types ? "TU" : "CU";
13338 void **dwo_file_slot;
13339 struct dwo_file *dwo_file;
13340 struct dwp_file *dwp_file;
13342 /* First see if there's a DWP file.
13343 If we have a DWP file but didn't find the DWO inside it, don't
13344 look for the original DWO file. It makes gdb behave differently
13345 depending on whether one is debugging in the build tree. */
13347 dwp_file = get_dwp_file (dwarf2_per_objfile);
13348 if (dwp_file != NULL)
13350 const struct dwp_hash_table *dwp_htab =
13351 is_debug_types ? dwp_file->tus : dwp_file->cus;
13353 if (dwp_htab != NULL)
13355 struct dwo_unit *dwo_cutu =
13356 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13357 signature, is_debug_types);
13359 if (dwo_cutu != NULL)
13361 if (dwarf_read_debug)
13363 fprintf_unfiltered (gdb_stdlog,
13364 "Virtual DWO %s %s found: @%s\n",
13365 kind, hex_string (signature),
13366 host_address_to_string (dwo_cutu));
13374 /* No DWP file, look for the DWO file. */
13376 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13377 dwo_name, comp_dir);
13378 if (*dwo_file_slot == NULL)
13380 /* Read in the file and build a table of the CUs/TUs it contains. */
13381 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13383 /* NOTE: This will be NULL if unable to open the file. */
13384 dwo_file = (struct dwo_file *) *dwo_file_slot;
13386 if (dwo_file != NULL)
13388 struct dwo_unit *dwo_cutu = NULL;
13390 if (is_debug_types && dwo_file->tus)
13392 struct dwo_unit find_dwo_cutu;
13394 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13395 find_dwo_cutu.signature = signature;
13397 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13399 else if (!is_debug_types && dwo_file->cus)
13401 struct dwo_unit find_dwo_cutu;
13403 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13404 find_dwo_cutu.signature = signature;
13405 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13409 if (dwo_cutu != NULL)
13411 if (dwarf_read_debug)
13413 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13414 kind, dwo_name, hex_string (signature),
13415 host_address_to_string (dwo_cutu));
13422 /* We didn't find it. This could mean a dwo_id mismatch, or
13423 someone deleted the DWO/DWP file, or the search path isn't set up
13424 correctly to find the file. */
13426 if (dwarf_read_debug)
13428 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13429 kind, dwo_name, hex_string (signature));
13432 /* This is a warning and not a complaint because it can be caused by
13433 pilot error (e.g., user accidentally deleting the DWO). */
13435 /* Print the name of the DWP file if we looked there, helps the user
13436 better diagnose the problem. */
13437 std::string dwp_text;
13439 if (dwp_file != NULL)
13440 dwp_text = string_printf (" [in DWP file %s]",
13441 lbasename (dwp_file->name));
13443 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13444 " [in module %s]"),
13445 kind, dwo_name, hex_string (signature),
13447 this_unit->is_debug_types ? "TU" : "CU",
13448 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13453 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13454 See lookup_dwo_cutu_unit for details. */
13456 static struct dwo_unit *
13457 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13458 const char *dwo_name, const char *comp_dir,
13459 ULONGEST signature)
13461 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13464 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13465 See lookup_dwo_cutu_unit for details. */
13467 static struct dwo_unit *
13468 lookup_dwo_type_unit (struct signatured_type *this_tu,
13469 const char *dwo_name, const char *comp_dir)
13471 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13474 /* Traversal function for queue_and_load_all_dwo_tus. */
13477 queue_and_load_dwo_tu (void **slot, void *info)
13479 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13480 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13481 ULONGEST signature = dwo_unit->signature;
13482 struct signatured_type *sig_type =
13483 lookup_dwo_signatured_type (per_cu->cu, signature);
13485 if (sig_type != NULL)
13487 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13489 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13490 a real dependency of PER_CU on SIG_TYPE. That is detected later
13491 while processing PER_CU. */
13492 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13493 load_full_type_unit (sig_cu);
13494 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13500 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13501 The DWO may have the only definition of the type, though it may not be
13502 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13503 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13506 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13508 struct dwo_unit *dwo_unit;
13509 struct dwo_file *dwo_file;
13511 gdb_assert (!per_cu->is_debug_types);
13512 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13513 gdb_assert (per_cu->cu != NULL);
13515 dwo_unit = per_cu->cu->dwo_unit;
13516 gdb_assert (dwo_unit != NULL);
13518 dwo_file = dwo_unit->dwo_file;
13519 if (dwo_file->tus != NULL)
13520 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13523 /* Read in various DIEs. */
13525 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13526 Inherit only the children of the DW_AT_abstract_origin DIE not being
13527 already referenced by DW_AT_abstract_origin from the children of the
13531 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13533 struct die_info *child_die;
13534 sect_offset *offsetp;
13535 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13536 struct die_info *origin_die;
13537 /* Iterator of the ORIGIN_DIE children. */
13538 struct die_info *origin_child_die;
13539 struct attribute *attr;
13540 struct dwarf2_cu *origin_cu;
13541 struct pending **origin_previous_list_in_scope;
13543 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13547 /* Note that following die references may follow to a die in a
13551 origin_die = follow_die_ref (die, attr, &origin_cu);
13553 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13555 origin_previous_list_in_scope = origin_cu->list_in_scope;
13556 origin_cu->list_in_scope = cu->list_in_scope;
13558 if (die->tag != origin_die->tag
13559 && !(die->tag == DW_TAG_inlined_subroutine
13560 && origin_die->tag == DW_TAG_subprogram))
13561 complaint (_("DIE %s and its abstract origin %s have different tags"),
13562 sect_offset_str (die->sect_off),
13563 sect_offset_str (origin_die->sect_off));
13565 std::vector<sect_offset> offsets;
13567 for (child_die = die->child;
13568 child_die && child_die->tag;
13569 child_die = sibling_die (child_die))
13571 struct die_info *child_origin_die;
13572 struct dwarf2_cu *child_origin_cu;
13574 /* We are trying to process concrete instance entries:
13575 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13576 it's not relevant to our analysis here. i.e. detecting DIEs that are
13577 present in the abstract instance but not referenced in the concrete
13579 if (child_die->tag == DW_TAG_call_site
13580 || child_die->tag == DW_TAG_GNU_call_site)
13583 /* For each CHILD_DIE, find the corresponding child of
13584 ORIGIN_DIE. If there is more than one layer of
13585 DW_AT_abstract_origin, follow them all; there shouldn't be,
13586 but GCC versions at least through 4.4 generate this (GCC PR
13588 child_origin_die = child_die;
13589 child_origin_cu = cu;
13592 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13596 child_origin_die = follow_die_ref (child_origin_die, attr,
13600 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13601 counterpart may exist. */
13602 if (child_origin_die != child_die)
13604 if (child_die->tag != child_origin_die->tag
13605 && !(child_die->tag == DW_TAG_inlined_subroutine
13606 && child_origin_die->tag == DW_TAG_subprogram))
13607 complaint (_("Child DIE %s and its abstract origin %s have "
13609 sect_offset_str (child_die->sect_off),
13610 sect_offset_str (child_origin_die->sect_off));
13611 if (child_origin_die->parent != origin_die)
13612 complaint (_("Child DIE %s and its abstract origin %s have "
13613 "different parents"),
13614 sect_offset_str (child_die->sect_off),
13615 sect_offset_str (child_origin_die->sect_off));
13617 offsets.push_back (child_origin_die->sect_off);
13620 std::sort (offsets.begin (), offsets.end ());
13621 sect_offset *offsets_end = offsets.data () + offsets.size ();
13622 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13623 if (offsetp[-1] == *offsetp)
13624 complaint (_("Multiple children of DIE %s refer "
13625 "to DIE %s as their abstract origin"),
13626 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13628 offsetp = offsets.data ();
13629 origin_child_die = origin_die->child;
13630 while (origin_child_die && origin_child_die->tag)
13632 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13633 while (offsetp < offsets_end
13634 && *offsetp < origin_child_die->sect_off)
13636 if (offsetp >= offsets_end
13637 || *offsetp > origin_child_die->sect_off)
13639 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13640 Check whether we're already processing ORIGIN_CHILD_DIE.
13641 This can happen with mutually referenced abstract_origins.
13643 if (!origin_child_die->in_process)
13644 process_die (origin_child_die, origin_cu);
13646 origin_child_die = sibling_die (origin_child_die);
13648 origin_cu->list_in_scope = origin_previous_list_in_scope;
13652 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13654 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13655 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13656 struct context_stack *newobj;
13659 struct die_info *child_die;
13660 struct attribute *attr, *call_line, *call_file;
13662 CORE_ADDR baseaddr;
13663 struct block *block;
13664 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13665 std::vector<struct symbol *> template_args;
13666 struct template_symbol *templ_func = NULL;
13670 /* If we do not have call site information, we can't show the
13671 caller of this inlined function. That's too confusing, so
13672 only use the scope for local variables. */
13673 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13674 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13675 if (call_line == NULL || call_file == NULL)
13677 read_lexical_block_scope (die, cu);
13682 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13684 name = dwarf2_name (die, cu);
13686 /* Ignore functions with missing or empty names. These are actually
13687 illegal according to the DWARF standard. */
13690 complaint (_("missing name for subprogram DIE at %s"),
13691 sect_offset_str (die->sect_off));
13695 /* Ignore functions with missing or invalid low and high pc attributes. */
13696 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13697 <= PC_BOUNDS_INVALID)
13699 attr = dwarf2_attr (die, DW_AT_external, cu);
13700 if (!attr || !DW_UNSND (attr))
13701 complaint (_("cannot get low and high bounds "
13702 "for subprogram DIE at %s"),
13703 sect_offset_str (die->sect_off));
13707 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13708 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13710 /* If we have any template arguments, then we must allocate a
13711 different sort of symbol. */
13712 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13714 if (child_die->tag == DW_TAG_template_type_param
13715 || child_die->tag == DW_TAG_template_value_param)
13717 templ_func = allocate_template_symbol (objfile);
13718 templ_func->subclass = SYMBOL_TEMPLATE;
13723 newobj = cu->get_builder ()->push_context (0, lowpc);
13724 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13725 (struct symbol *) templ_func);
13727 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13728 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13731 /* If there is a location expression for DW_AT_frame_base, record
13733 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13735 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13737 /* If there is a location for the static link, record it. */
13738 newobj->static_link = NULL;
13739 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13742 newobj->static_link
13743 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13744 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13745 dwarf2_per_cu_addr_type (cu->per_cu));
13748 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13750 if (die->child != NULL)
13752 child_die = die->child;
13753 while (child_die && child_die->tag)
13755 if (child_die->tag == DW_TAG_template_type_param
13756 || child_die->tag == DW_TAG_template_value_param)
13758 struct symbol *arg = new_symbol (child_die, NULL, cu);
13761 template_args.push_back (arg);
13764 process_die (child_die, cu);
13765 child_die = sibling_die (child_die);
13769 inherit_abstract_dies (die, cu);
13771 /* If we have a DW_AT_specification, we might need to import using
13772 directives from the context of the specification DIE. See the
13773 comment in determine_prefix. */
13774 if (cu->language == language_cplus
13775 && dwarf2_attr (die, DW_AT_specification, cu))
13777 struct dwarf2_cu *spec_cu = cu;
13778 struct die_info *spec_die = die_specification (die, &spec_cu);
13782 child_die = spec_die->child;
13783 while (child_die && child_die->tag)
13785 if (child_die->tag == DW_TAG_imported_module)
13786 process_die (child_die, spec_cu);
13787 child_die = sibling_die (child_die);
13790 /* In some cases, GCC generates specification DIEs that
13791 themselves contain DW_AT_specification attributes. */
13792 spec_die = die_specification (spec_die, &spec_cu);
13796 struct context_stack cstk = cu->get_builder ()->pop_context ();
13797 /* Make a block for the local symbols within. */
13798 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13799 cstk.static_link, lowpc, highpc);
13801 /* For C++, set the block's scope. */
13802 if ((cu->language == language_cplus
13803 || cu->language == language_fortran
13804 || cu->language == language_d
13805 || cu->language == language_rust)
13806 && cu->processing_has_namespace_info)
13807 block_set_scope (block, determine_prefix (die, cu),
13808 &objfile->objfile_obstack);
13810 /* If we have address ranges, record them. */
13811 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13813 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13815 /* Attach template arguments to function. */
13816 if (!template_args.empty ())
13818 gdb_assert (templ_func != NULL);
13820 templ_func->n_template_arguments = template_args.size ();
13821 templ_func->template_arguments
13822 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13823 templ_func->n_template_arguments);
13824 memcpy (templ_func->template_arguments,
13825 template_args.data (),
13826 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13828 /* Make sure that the symtab is set on the new symbols. Even
13829 though they don't appear in this symtab directly, other parts
13830 of gdb assume that symbols do, and this is reasonably
13832 for (symbol *sym : template_args)
13833 symbol_set_symtab (sym, symbol_symtab (templ_func));
13836 /* In C++, we can have functions nested inside functions (e.g., when
13837 a function declares a class that has methods). This means that
13838 when we finish processing a function scope, we may need to go
13839 back to building a containing block's symbol lists. */
13840 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13841 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13843 /* If we've finished processing a top-level function, subsequent
13844 symbols go in the file symbol list. */
13845 if (cu->get_builder ()->outermost_context_p ())
13846 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13849 /* Process all the DIES contained within a lexical block scope. Start
13850 a new scope, process the dies, and then close the scope. */
13853 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13855 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13856 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13857 CORE_ADDR lowpc, highpc;
13858 struct die_info *child_die;
13859 CORE_ADDR baseaddr;
13861 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13863 /* Ignore blocks with missing or invalid low and high pc attributes. */
13864 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13865 as multiple lexical blocks? Handling children in a sane way would
13866 be nasty. Might be easier to properly extend generic blocks to
13867 describe ranges. */
13868 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13870 case PC_BOUNDS_NOT_PRESENT:
13871 /* DW_TAG_lexical_block has no attributes, process its children as if
13872 there was no wrapping by that DW_TAG_lexical_block.
13873 GCC does no longer produces such DWARF since GCC r224161. */
13874 for (child_die = die->child;
13875 child_die != NULL && child_die->tag;
13876 child_die = sibling_die (child_die))
13877 process_die (child_die, cu);
13879 case PC_BOUNDS_INVALID:
13882 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13883 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13885 cu->get_builder ()->push_context (0, lowpc);
13886 if (die->child != NULL)
13888 child_die = die->child;
13889 while (child_die && child_die->tag)
13891 process_die (child_die, cu);
13892 child_die = sibling_die (child_die);
13895 inherit_abstract_dies (die, cu);
13896 struct context_stack cstk = cu->get_builder ()->pop_context ();
13898 if (*cu->get_builder ()->get_local_symbols () != NULL
13899 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13901 struct block *block
13902 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13903 cstk.start_addr, highpc);
13905 /* Note that recording ranges after traversing children, as we
13906 do here, means that recording a parent's ranges entails
13907 walking across all its children's ranges as they appear in
13908 the address map, which is quadratic behavior.
13910 It would be nicer to record the parent's ranges before
13911 traversing its children, simply overriding whatever you find
13912 there. But since we don't even decide whether to create a
13913 block until after we've traversed its children, that's hard
13915 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13917 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13918 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13921 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13924 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13926 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13928 CORE_ADDR pc, baseaddr;
13929 struct attribute *attr;
13930 struct call_site *call_site, call_site_local;
13933 struct die_info *child_die;
13935 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13937 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13940 /* This was a pre-DWARF-5 GNU extension alias
13941 for DW_AT_call_return_pc. */
13942 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13946 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13947 "DIE %s [in module %s]"),
13948 sect_offset_str (die->sect_off), objfile_name (objfile));
13951 pc = attr_value_as_address (attr) + baseaddr;
13952 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13954 if (cu->call_site_htab == NULL)
13955 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13956 NULL, &objfile->objfile_obstack,
13957 hashtab_obstack_allocate, NULL);
13958 call_site_local.pc = pc;
13959 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13962 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13963 "DIE %s [in module %s]"),
13964 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13965 objfile_name (objfile));
13969 /* Count parameters at the caller. */
13972 for (child_die = die->child; child_die && child_die->tag;
13973 child_die = sibling_die (child_die))
13975 if (child_die->tag != DW_TAG_call_site_parameter
13976 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13978 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13979 "DW_TAG_call_site child DIE %s [in module %s]"),
13980 child_die->tag, sect_offset_str (child_die->sect_off),
13981 objfile_name (objfile));
13989 = ((struct call_site *)
13990 obstack_alloc (&objfile->objfile_obstack,
13991 sizeof (*call_site)
13992 + (sizeof (*call_site->parameter) * (nparams - 1))));
13994 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13995 call_site->pc = pc;
13997 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13998 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14000 struct die_info *func_die;
14002 /* Skip also over DW_TAG_inlined_subroutine. */
14003 for (func_die = die->parent;
14004 func_die && func_die->tag != DW_TAG_subprogram
14005 && func_die->tag != DW_TAG_subroutine_type;
14006 func_die = func_die->parent);
14008 /* DW_AT_call_all_calls is a superset
14009 of DW_AT_call_all_tail_calls. */
14011 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14012 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14013 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14014 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14016 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14017 not complete. But keep CALL_SITE for look ups via call_site_htab,
14018 both the initial caller containing the real return address PC and
14019 the final callee containing the current PC of a chain of tail
14020 calls do not need to have the tail call list complete. But any
14021 function candidate for a virtual tail call frame searched via
14022 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14023 determined unambiguously. */
14027 struct type *func_type = NULL;
14030 func_type = get_die_type (func_die, cu);
14031 if (func_type != NULL)
14033 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14035 /* Enlist this call site to the function. */
14036 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14037 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14040 complaint (_("Cannot find function owning DW_TAG_call_site "
14041 "DIE %s [in module %s]"),
14042 sect_offset_str (die->sect_off), objfile_name (objfile));
14046 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14048 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14050 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14053 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14054 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14056 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14057 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14058 /* Keep NULL DWARF_BLOCK. */;
14059 else if (attr_form_is_block (attr))
14061 struct dwarf2_locexpr_baton *dlbaton;
14063 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14064 dlbaton->data = DW_BLOCK (attr)->data;
14065 dlbaton->size = DW_BLOCK (attr)->size;
14066 dlbaton->per_cu = cu->per_cu;
14068 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14070 else if (attr_form_is_ref (attr))
14072 struct dwarf2_cu *target_cu = cu;
14073 struct die_info *target_die;
14075 target_die = follow_die_ref (die, attr, &target_cu);
14076 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14077 if (die_is_declaration (target_die, target_cu))
14079 const char *target_physname;
14081 /* Prefer the mangled name; otherwise compute the demangled one. */
14082 target_physname = dw2_linkage_name (target_die, target_cu);
14083 if (target_physname == NULL)
14084 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14085 if (target_physname == NULL)
14086 complaint (_("DW_AT_call_target target DIE has invalid "
14087 "physname, for referencing DIE %s [in module %s]"),
14088 sect_offset_str (die->sect_off), objfile_name (objfile));
14090 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14096 /* DW_AT_entry_pc should be preferred. */
14097 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14098 <= PC_BOUNDS_INVALID)
14099 complaint (_("DW_AT_call_target target DIE has invalid "
14100 "low pc, for referencing DIE %s [in module %s]"),
14101 sect_offset_str (die->sect_off), objfile_name (objfile));
14104 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14105 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14110 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14111 "block nor reference, for DIE %s [in module %s]"),
14112 sect_offset_str (die->sect_off), objfile_name (objfile));
14114 call_site->per_cu = cu->per_cu;
14116 for (child_die = die->child;
14117 child_die && child_die->tag;
14118 child_die = sibling_die (child_die))
14120 struct call_site_parameter *parameter;
14121 struct attribute *loc, *origin;
14123 if (child_die->tag != DW_TAG_call_site_parameter
14124 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14126 /* Already printed the complaint above. */
14130 gdb_assert (call_site->parameter_count < nparams);
14131 parameter = &call_site->parameter[call_site->parameter_count];
14133 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14134 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14135 register is contained in DW_AT_call_value. */
14137 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14138 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14139 if (origin == NULL)
14141 /* This was a pre-DWARF-5 GNU extension alias
14142 for DW_AT_call_parameter. */
14143 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14145 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14147 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14149 sect_offset sect_off
14150 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14151 if (!offset_in_cu_p (&cu->header, sect_off))
14153 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14154 binding can be done only inside one CU. Such referenced DIE
14155 therefore cannot be even moved to DW_TAG_partial_unit. */
14156 complaint (_("DW_AT_call_parameter offset is not in CU for "
14157 "DW_TAG_call_site child DIE %s [in module %s]"),
14158 sect_offset_str (child_die->sect_off),
14159 objfile_name (objfile));
14162 parameter->u.param_cu_off
14163 = (cu_offset) (sect_off - cu->header.sect_off);
14165 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14167 complaint (_("No DW_FORM_block* DW_AT_location for "
14168 "DW_TAG_call_site child DIE %s [in module %s]"),
14169 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14174 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14175 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14176 if (parameter->u.dwarf_reg != -1)
14177 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14178 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14179 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14180 ¶meter->u.fb_offset))
14181 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14184 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14185 "for DW_FORM_block* DW_AT_location is supported for "
14186 "DW_TAG_call_site child DIE %s "
14188 sect_offset_str (child_die->sect_off),
14189 objfile_name (objfile));
14194 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14196 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14197 if (!attr_form_is_block (attr))
14199 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14200 "DW_TAG_call_site child DIE %s [in module %s]"),
14201 sect_offset_str (child_die->sect_off),
14202 objfile_name (objfile));
14205 parameter->value = DW_BLOCK (attr)->data;
14206 parameter->value_size = DW_BLOCK (attr)->size;
14208 /* Parameters are not pre-cleared by memset above. */
14209 parameter->data_value = NULL;
14210 parameter->data_value_size = 0;
14211 call_site->parameter_count++;
14213 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14215 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14218 if (!attr_form_is_block (attr))
14219 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14220 "DW_TAG_call_site child DIE %s [in module %s]"),
14221 sect_offset_str (child_die->sect_off),
14222 objfile_name (objfile));
14225 parameter->data_value = DW_BLOCK (attr)->data;
14226 parameter->data_value_size = DW_BLOCK (attr)->size;
14232 /* Helper function for read_variable. If DIE represents a virtual
14233 table, then return the type of the concrete object that is
14234 associated with the virtual table. Otherwise, return NULL. */
14236 static struct type *
14237 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14239 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14243 /* Find the type DIE. */
14244 struct die_info *type_die = NULL;
14245 struct dwarf2_cu *type_cu = cu;
14247 if (attr_form_is_ref (attr))
14248 type_die = follow_die_ref (die, attr, &type_cu);
14249 if (type_die == NULL)
14252 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14254 return die_containing_type (type_die, type_cu);
14257 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14260 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14262 struct rust_vtable_symbol *storage = NULL;
14264 if (cu->language == language_rust)
14266 struct type *containing_type = rust_containing_type (die, cu);
14268 if (containing_type != NULL)
14270 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14272 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14273 struct rust_vtable_symbol);
14274 initialize_objfile_symbol (storage);
14275 storage->concrete_type = containing_type;
14276 storage->subclass = SYMBOL_RUST_VTABLE;
14280 struct symbol *res = new_symbol (die, NULL, cu, storage);
14281 struct attribute *abstract_origin
14282 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14283 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14284 if (res == NULL && loc && abstract_origin)
14286 /* We have a variable without a name, but with a location and an abstract
14287 origin. This may be a concrete instance of an abstract variable
14288 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14290 struct dwarf2_cu *origin_cu = cu;
14291 struct die_info *origin_die
14292 = follow_die_ref (die, abstract_origin, &origin_cu);
14293 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14294 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14298 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14299 reading .debug_rnglists.
14300 Callback's type should be:
14301 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14302 Return true if the attributes are present and valid, otherwise,
14305 template <typename Callback>
14307 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14308 Callback &&callback)
14310 struct dwarf2_per_objfile *dwarf2_per_objfile
14311 = cu->per_cu->dwarf2_per_objfile;
14312 struct objfile *objfile = dwarf2_per_objfile->objfile;
14313 bfd *obfd = objfile->obfd;
14314 /* Base address selection entry. */
14317 const gdb_byte *buffer;
14318 CORE_ADDR baseaddr;
14319 bool overflow = false;
14321 found_base = cu->base_known;
14322 base = cu->base_address;
14324 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14325 if (offset >= dwarf2_per_objfile->rnglists.size)
14327 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14331 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14333 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14337 /* Initialize it due to a false compiler warning. */
14338 CORE_ADDR range_beginning = 0, range_end = 0;
14339 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14340 + dwarf2_per_objfile->rnglists.size);
14341 unsigned int bytes_read;
14343 if (buffer == buf_end)
14348 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14351 case DW_RLE_end_of_list:
14353 case DW_RLE_base_address:
14354 if (buffer + cu->header.addr_size > buf_end)
14359 base = read_address (obfd, buffer, cu, &bytes_read);
14361 buffer += bytes_read;
14363 case DW_RLE_start_length:
14364 if (buffer + cu->header.addr_size > buf_end)
14369 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14370 buffer += bytes_read;
14371 range_end = (range_beginning
14372 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14373 buffer += bytes_read;
14374 if (buffer > buf_end)
14380 case DW_RLE_offset_pair:
14381 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14382 buffer += bytes_read;
14383 if (buffer > buf_end)
14388 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14389 buffer += bytes_read;
14390 if (buffer > buf_end)
14396 case DW_RLE_start_end:
14397 if (buffer + 2 * cu->header.addr_size > buf_end)
14402 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14403 buffer += bytes_read;
14404 range_end = read_address (obfd, buffer, cu, &bytes_read);
14405 buffer += bytes_read;
14408 complaint (_("Invalid .debug_rnglists data (no base address)"));
14411 if (rlet == DW_RLE_end_of_list || overflow)
14413 if (rlet == DW_RLE_base_address)
14418 /* We have no valid base address for the ranges
14420 complaint (_("Invalid .debug_rnglists data (no base address)"));
14424 if (range_beginning > range_end)
14426 /* Inverted range entries are invalid. */
14427 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14431 /* Empty range entries have no effect. */
14432 if (range_beginning == range_end)
14435 range_beginning += base;
14438 /* A not-uncommon case of bad debug info.
14439 Don't pollute the addrmap with bad data. */
14440 if (range_beginning + baseaddr == 0
14441 && !dwarf2_per_objfile->has_section_at_zero)
14443 complaint (_(".debug_rnglists entry has start address of zero"
14444 " [in module %s]"), objfile_name (objfile));
14448 callback (range_beginning, range_end);
14453 complaint (_("Offset %d is not terminated "
14454 "for DW_AT_ranges attribute"),
14462 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14463 Callback's type should be:
14464 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14465 Return 1 if the attributes are present and valid, otherwise, return 0. */
14467 template <typename Callback>
14469 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14470 Callback &&callback)
14472 struct dwarf2_per_objfile *dwarf2_per_objfile
14473 = cu->per_cu->dwarf2_per_objfile;
14474 struct objfile *objfile = dwarf2_per_objfile->objfile;
14475 struct comp_unit_head *cu_header = &cu->header;
14476 bfd *obfd = objfile->obfd;
14477 unsigned int addr_size = cu_header->addr_size;
14478 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14479 /* Base address selection entry. */
14482 unsigned int dummy;
14483 const gdb_byte *buffer;
14484 CORE_ADDR baseaddr;
14486 if (cu_header->version >= 5)
14487 return dwarf2_rnglists_process (offset, cu, callback);
14489 found_base = cu->base_known;
14490 base = cu->base_address;
14492 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14493 if (offset >= dwarf2_per_objfile->ranges.size)
14495 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14499 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14501 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14505 CORE_ADDR range_beginning, range_end;
14507 range_beginning = read_address (obfd, buffer, cu, &dummy);
14508 buffer += addr_size;
14509 range_end = read_address (obfd, buffer, cu, &dummy);
14510 buffer += addr_size;
14511 offset += 2 * addr_size;
14513 /* An end of list marker is a pair of zero addresses. */
14514 if (range_beginning == 0 && range_end == 0)
14515 /* Found the end of list entry. */
14518 /* Each base address selection entry is a pair of 2 values.
14519 The first is the largest possible address, the second is
14520 the base address. Check for a base address here. */
14521 if ((range_beginning & mask) == mask)
14523 /* If we found the largest possible address, then we already
14524 have the base address in range_end. */
14532 /* We have no valid base address for the ranges
14534 complaint (_("Invalid .debug_ranges data (no base address)"));
14538 if (range_beginning > range_end)
14540 /* Inverted range entries are invalid. */
14541 complaint (_("Invalid .debug_ranges data (inverted range)"));
14545 /* Empty range entries have no effect. */
14546 if (range_beginning == range_end)
14549 range_beginning += base;
14552 /* A not-uncommon case of bad debug info.
14553 Don't pollute the addrmap with bad data. */
14554 if (range_beginning + baseaddr == 0
14555 && !dwarf2_per_objfile->has_section_at_zero)
14557 complaint (_(".debug_ranges entry has start address of zero"
14558 " [in module %s]"), objfile_name (objfile));
14562 callback (range_beginning, range_end);
14568 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14569 Return 1 if the attributes are present and valid, otherwise, return 0.
14570 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14573 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14574 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14575 struct partial_symtab *ranges_pst)
14577 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14578 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14579 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14580 SECT_OFF_TEXT (objfile));
14583 CORE_ADDR high = 0;
14586 retval = dwarf2_ranges_process (offset, cu,
14587 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14589 if (ranges_pst != NULL)
14594 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14595 range_beginning + baseaddr)
14597 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14598 range_end + baseaddr)
14600 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14601 lowpc, highpc - 1, ranges_pst);
14604 /* FIXME: This is recording everything as a low-high
14605 segment of consecutive addresses. We should have a
14606 data structure for discontiguous block ranges
14610 low = range_beginning;
14616 if (range_beginning < low)
14617 low = range_beginning;
14618 if (range_end > high)
14626 /* If the first entry is an end-of-list marker, the range
14627 describes an empty scope, i.e. no instructions. */
14633 *high_return = high;
14637 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14638 definition for the return value. *LOWPC and *HIGHPC are set iff
14639 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14641 static enum pc_bounds_kind
14642 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14643 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14644 struct partial_symtab *pst)
14646 struct dwarf2_per_objfile *dwarf2_per_objfile
14647 = cu->per_cu->dwarf2_per_objfile;
14648 struct attribute *attr;
14649 struct attribute *attr_high;
14651 CORE_ADDR high = 0;
14652 enum pc_bounds_kind ret;
14654 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14657 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14660 low = attr_value_as_address (attr);
14661 high = attr_value_as_address (attr_high);
14662 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14666 /* Found high w/o low attribute. */
14667 return PC_BOUNDS_INVALID;
14669 /* Found consecutive range of addresses. */
14670 ret = PC_BOUNDS_HIGH_LOW;
14674 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14677 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14678 We take advantage of the fact that DW_AT_ranges does not appear
14679 in DW_TAG_compile_unit of DWO files. */
14680 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14681 unsigned int ranges_offset = (DW_UNSND (attr)
14682 + (need_ranges_base
14686 /* Value of the DW_AT_ranges attribute is the offset in the
14687 .debug_ranges section. */
14688 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14689 return PC_BOUNDS_INVALID;
14690 /* Found discontinuous range of addresses. */
14691 ret = PC_BOUNDS_RANGES;
14694 return PC_BOUNDS_NOT_PRESENT;
14697 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14699 return PC_BOUNDS_INVALID;
14701 /* When using the GNU linker, .gnu.linkonce. sections are used to
14702 eliminate duplicate copies of functions and vtables and such.
14703 The linker will arbitrarily choose one and discard the others.
14704 The AT_*_pc values for such functions refer to local labels in
14705 these sections. If the section from that file was discarded, the
14706 labels are not in the output, so the relocs get a value of 0.
14707 If this is a discarded function, mark the pc bounds as invalid,
14708 so that GDB will ignore it. */
14709 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14710 return PC_BOUNDS_INVALID;
14718 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14719 its low and high PC addresses. Do nothing if these addresses could not
14720 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14721 and HIGHPC to the high address if greater than HIGHPC. */
14724 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14725 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14726 struct dwarf2_cu *cu)
14728 CORE_ADDR low, high;
14729 struct die_info *child = die->child;
14731 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14733 *lowpc = std::min (*lowpc, low);
14734 *highpc = std::max (*highpc, high);
14737 /* If the language does not allow nested subprograms (either inside
14738 subprograms or lexical blocks), we're done. */
14739 if (cu->language != language_ada)
14742 /* Check all the children of the given DIE. If it contains nested
14743 subprograms, then check their pc bounds. Likewise, we need to
14744 check lexical blocks as well, as they may also contain subprogram
14746 while (child && child->tag)
14748 if (child->tag == DW_TAG_subprogram
14749 || child->tag == DW_TAG_lexical_block)
14750 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14751 child = sibling_die (child);
14755 /* Get the low and high pc's represented by the scope DIE, and store
14756 them in *LOWPC and *HIGHPC. If the correct values can't be
14757 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14760 get_scope_pc_bounds (struct die_info *die,
14761 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14762 struct dwarf2_cu *cu)
14764 CORE_ADDR best_low = (CORE_ADDR) -1;
14765 CORE_ADDR best_high = (CORE_ADDR) 0;
14766 CORE_ADDR current_low, current_high;
14768 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)
14769 >= PC_BOUNDS_RANGES)
14771 best_low = current_low;
14772 best_high = current_high;
14776 struct die_info *child = die->child;
14778 while (child && child->tag)
14780 switch (child->tag) {
14781 case DW_TAG_subprogram:
14782 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14784 case DW_TAG_namespace:
14785 case DW_TAG_module:
14786 /* FIXME: carlton/2004-01-16: Should we do this for
14787 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14788 that current GCC's always emit the DIEs corresponding
14789 to definitions of methods of classes as children of a
14790 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14791 the DIEs giving the declarations, which could be
14792 anywhere). But I don't see any reason why the
14793 standards says that they have to be there. */
14794 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
14796 if (current_low != ((CORE_ADDR) -1))
14798 best_low = std::min (best_low, current_low);
14799 best_high = std::max (best_high, current_high);
14807 child = sibling_die (child);
14812 *highpc = best_high;
14815 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14819 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14820 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14822 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14823 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14824 struct attribute *attr;
14825 struct attribute *attr_high;
14827 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14830 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14833 CORE_ADDR low = attr_value_as_address (attr);
14834 CORE_ADDR high = attr_value_as_address (attr_high);
14836 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14839 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14840 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14841 cu->get_builder ()->record_block_range (block, low, high - 1);
14845 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14848 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14849 We take advantage of the fact that DW_AT_ranges does not appear
14850 in DW_TAG_compile_unit of DWO files. */
14851 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14853 /* The value of the DW_AT_ranges attribute is the offset of the
14854 address range list in the .debug_ranges section. */
14855 unsigned long offset = (DW_UNSND (attr)
14856 + (need_ranges_base ? cu->ranges_base : 0));
14858 std::vector<blockrange> blockvec;
14859 dwarf2_ranges_process (offset, cu,
14860 [&] (CORE_ADDR start, CORE_ADDR end)
14864 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14865 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14866 cu->get_builder ()->record_block_range (block, start, end - 1);
14867 blockvec.emplace_back (start, end);
14870 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14874 /* Check whether the producer field indicates either of GCC < 4.6, or the
14875 Intel C/C++ compiler, and cache the result in CU. */
14878 check_producer (struct dwarf2_cu *cu)
14882 if (cu->producer == NULL)
14884 /* For unknown compilers expect their behavior is DWARF version
14887 GCC started to support .debug_types sections by -gdwarf-4 since
14888 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14889 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14890 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14891 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14893 else if (producer_is_gcc (cu->producer, &major, &minor))
14895 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14896 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14898 else if (producer_is_icc (cu->producer, &major, &minor))
14900 cu->producer_is_icc = true;
14901 cu->producer_is_icc_lt_14 = major < 14;
14903 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14904 cu->producer_is_codewarrior = true;
14907 /* For other non-GCC compilers, expect their behavior is DWARF version
14911 cu->checked_producer = true;
14914 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14915 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14916 during 4.6.0 experimental. */
14919 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14921 if (!cu->checked_producer)
14922 check_producer (cu);
14924 return cu->producer_is_gxx_lt_4_6;
14928 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14929 with incorrect is_stmt attributes. */
14932 producer_is_codewarrior (struct dwarf2_cu *cu)
14934 if (!cu->checked_producer)
14935 check_producer (cu);
14937 return cu->producer_is_codewarrior;
14940 /* Return the default accessibility type if it is not overriden by
14941 DW_AT_accessibility. */
14943 static enum dwarf_access_attribute
14944 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14946 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14948 /* The default DWARF 2 accessibility for members is public, the default
14949 accessibility for inheritance is private. */
14951 if (die->tag != DW_TAG_inheritance)
14952 return DW_ACCESS_public;
14954 return DW_ACCESS_private;
14958 /* DWARF 3+ defines the default accessibility a different way. The same
14959 rules apply now for DW_TAG_inheritance as for the members and it only
14960 depends on the container kind. */
14962 if (die->parent->tag == DW_TAG_class_type)
14963 return DW_ACCESS_private;
14965 return DW_ACCESS_public;
14969 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14970 offset. If the attribute was not found return 0, otherwise return
14971 1. If it was found but could not properly be handled, set *OFFSET
14975 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14978 struct attribute *attr;
14980 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14985 /* Note that we do not check for a section offset first here.
14986 This is because DW_AT_data_member_location is new in DWARF 4,
14987 so if we see it, we can assume that a constant form is really
14988 a constant and not a section offset. */
14989 if (attr_form_is_constant (attr))
14990 *offset = dwarf2_get_attr_constant_value (attr, 0);
14991 else if (attr_form_is_section_offset (attr))
14992 dwarf2_complex_location_expr_complaint ();
14993 else if (attr_form_is_block (attr))
14994 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14996 dwarf2_complex_location_expr_complaint ();
15004 /* Add an aggregate field to the field list. */
15007 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15008 struct dwarf2_cu *cu)
15010 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15011 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15012 struct nextfield *new_field;
15013 struct attribute *attr;
15015 const char *fieldname = "";
15017 if (die->tag == DW_TAG_inheritance)
15019 fip->baseclasses.emplace_back ();
15020 new_field = &fip->baseclasses.back ();
15024 fip->fields.emplace_back ();
15025 new_field = &fip->fields.back ();
15030 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15032 new_field->accessibility = DW_UNSND (attr);
15034 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15035 if (new_field->accessibility != DW_ACCESS_public)
15036 fip->non_public_fields = 1;
15038 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15040 new_field->virtuality = DW_UNSND (attr);
15042 new_field->virtuality = DW_VIRTUALITY_none;
15044 fp = &new_field->field;
15046 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15050 /* Data member other than a C++ static data member. */
15052 /* Get type of field. */
15053 fp->type = die_type (die, cu);
15055 SET_FIELD_BITPOS (*fp, 0);
15057 /* Get bit size of field (zero if none). */
15058 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15061 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15065 FIELD_BITSIZE (*fp) = 0;
15068 /* Get bit offset of field. */
15069 if (handle_data_member_location (die, cu, &offset))
15070 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15071 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15074 if (gdbarch_bits_big_endian (gdbarch))
15076 /* For big endian bits, the DW_AT_bit_offset gives the
15077 additional bit offset from the MSB of the containing
15078 anonymous object to the MSB of the field. We don't
15079 have to do anything special since we don't need to
15080 know the size of the anonymous object. */
15081 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15085 /* For little endian bits, compute the bit offset to the
15086 MSB of the anonymous object, subtract off the number of
15087 bits from the MSB of the field to the MSB of the
15088 object, and then subtract off the number of bits of
15089 the field itself. The result is the bit offset of
15090 the LSB of the field. */
15091 int anonymous_size;
15092 int bit_offset = DW_UNSND (attr);
15094 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15097 /* The size of the anonymous object containing
15098 the bit field is explicit, so use the
15099 indicated size (in bytes). */
15100 anonymous_size = DW_UNSND (attr);
15104 /* The size of the anonymous object containing
15105 the bit field must be inferred from the type
15106 attribute of the data member containing the
15108 anonymous_size = TYPE_LENGTH (fp->type);
15110 SET_FIELD_BITPOS (*fp,
15111 (FIELD_BITPOS (*fp)
15112 + anonymous_size * bits_per_byte
15113 - bit_offset - FIELD_BITSIZE (*fp)));
15116 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15118 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15119 + dwarf2_get_attr_constant_value (attr, 0)));
15121 /* Get name of field. */
15122 fieldname = dwarf2_name (die, cu);
15123 if (fieldname == NULL)
15126 /* The name is already allocated along with this objfile, so we don't
15127 need to duplicate it for the type. */
15128 fp->name = fieldname;
15130 /* Change accessibility for artificial fields (e.g. virtual table
15131 pointer or virtual base class pointer) to private. */
15132 if (dwarf2_attr (die, DW_AT_artificial, cu))
15134 FIELD_ARTIFICIAL (*fp) = 1;
15135 new_field->accessibility = DW_ACCESS_private;
15136 fip->non_public_fields = 1;
15139 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15141 /* C++ static member. */
15143 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15144 is a declaration, but all versions of G++ as of this writing
15145 (so through at least 3.2.1) incorrectly generate
15146 DW_TAG_variable tags. */
15148 const char *physname;
15150 /* Get name of field. */
15151 fieldname = dwarf2_name (die, cu);
15152 if (fieldname == NULL)
15155 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15157 /* Only create a symbol if this is an external value.
15158 new_symbol checks this and puts the value in the global symbol
15159 table, which we want. If it is not external, new_symbol
15160 will try to put the value in cu->list_in_scope which is wrong. */
15161 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15163 /* A static const member, not much different than an enum as far as
15164 we're concerned, except that we can support more types. */
15165 new_symbol (die, NULL, cu);
15168 /* Get physical name. */
15169 physname = dwarf2_physname (fieldname, die, cu);
15171 /* The name is already allocated along with this objfile, so we don't
15172 need to duplicate it for the type. */
15173 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15174 FIELD_TYPE (*fp) = die_type (die, cu);
15175 FIELD_NAME (*fp) = fieldname;
15177 else if (die->tag == DW_TAG_inheritance)
15181 /* C++ base class field. */
15182 if (handle_data_member_location (die, cu, &offset))
15183 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15184 FIELD_BITSIZE (*fp) = 0;
15185 FIELD_TYPE (*fp) = die_type (die, cu);
15186 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15188 else if (die->tag == DW_TAG_variant_part)
15190 /* process_structure_scope will treat this DIE as a union. */
15191 process_structure_scope (die, cu);
15193 /* The variant part is relative to the start of the enclosing
15195 SET_FIELD_BITPOS (*fp, 0);
15196 fp->type = get_die_type (die, cu);
15197 fp->artificial = 1;
15198 fp->name = "<<variant>>";
15200 /* Normally a DW_TAG_variant_part won't have a size, but our
15201 representation requires one, so set it to the maximum of the
15203 if (TYPE_LENGTH (fp->type) == 0)
15206 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15207 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15208 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15209 TYPE_LENGTH (fp->type) = max;
15213 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15216 /* Can the type given by DIE define another type? */
15219 type_can_define_types (const struct die_info *die)
15223 case DW_TAG_typedef:
15224 case DW_TAG_class_type:
15225 case DW_TAG_structure_type:
15226 case DW_TAG_union_type:
15227 case DW_TAG_enumeration_type:
15235 /* Add a type definition defined in the scope of the FIP's class. */
15238 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15239 struct dwarf2_cu *cu)
15241 struct decl_field fp;
15242 memset (&fp, 0, sizeof (fp));
15244 gdb_assert (type_can_define_types (die));
15246 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15247 fp.name = dwarf2_name (die, cu);
15248 fp.type = read_type_die (die, cu);
15250 /* Save accessibility. */
15251 enum dwarf_access_attribute accessibility;
15252 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15254 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15256 accessibility = dwarf2_default_access_attribute (die, cu);
15257 switch (accessibility)
15259 case DW_ACCESS_public:
15260 /* The assumed value if neither private nor protected. */
15262 case DW_ACCESS_private:
15265 case DW_ACCESS_protected:
15266 fp.is_protected = 1;
15269 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15272 if (die->tag == DW_TAG_typedef)
15273 fip->typedef_field_list.push_back (fp);
15275 fip->nested_types_list.push_back (fp);
15278 /* Create the vector of fields, and attach it to the type. */
15281 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15282 struct dwarf2_cu *cu)
15284 int nfields = fip->nfields;
15286 /* Record the field count, allocate space for the array of fields,
15287 and create blank accessibility bitfields if necessary. */
15288 TYPE_NFIELDS (type) = nfields;
15289 TYPE_FIELDS (type) = (struct field *)
15290 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15292 if (fip->non_public_fields && cu->language != language_ada)
15294 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15296 TYPE_FIELD_PRIVATE_BITS (type) =
15297 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15298 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15300 TYPE_FIELD_PROTECTED_BITS (type) =
15301 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15302 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15304 TYPE_FIELD_IGNORE_BITS (type) =
15305 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15306 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15309 /* If the type has baseclasses, allocate and clear a bit vector for
15310 TYPE_FIELD_VIRTUAL_BITS. */
15311 if (!fip->baseclasses.empty () && cu->language != language_ada)
15313 int num_bytes = B_BYTES (fip->baseclasses.size ());
15314 unsigned char *pointer;
15316 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15317 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15318 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15319 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15320 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15323 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15325 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15327 for (int index = 0; index < nfields; ++index)
15329 struct nextfield &field = fip->fields[index];
15331 if (field.variant.is_discriminant)
15332 di->discriminant_index = index;
15333 else if (field.variant.default_branch)
15334 di->default_index = index;
15336 di->discriminants[index] = field.variant.discriminant_value;
15340 /* Copy the saved-up fields into the field vector. */
15341 for (int i = 0; i < nfields; ++i)
15343 struct nextfield &field
15344 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15345 : fip->fields[i - fip->baseclasses.size ()]);
15347 TYPE_FIELD (type, i) = field.field;
15348 switch (field.accessibility)
15350 case DW_ACCESS_private:
15351 if (cu->language != language_ada)
15352 SET_TYPE_FIELD_PRIVATE (type, i);
15355 case DW_ACCESS_protected:
15356 if (cu->language != language_ada)
15357 SET_TYPE_FIELD_PROTECTED (type, i);
15360 case DW_ACCESS_public:
15364 /* Unknown accessibility. Complain and treat it as public. */
15366 complaint (_("unsupported accessibility %d"),
15367 field.accessibility);
15371 if (i < fip->baseclasses.size ())
15373 switch (field.virtuality)
15375 case DW_VIRTUALITY_virtual:
15376 case DW_VIRTUALITY_pure_virtual:
15377 if (cu->language == language_ada)
15378 error (_("unexpected virtuality in component of Ada type"));
15379 SET_TYPE_FIELD_VIRTUAL (type, i);
15386 /* Return true if this member function is a constructor, false
15390 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15392 const char *fieldname;
15393 const char *type_name;
15396 if (die->parent == NULL)
15399 if (die->parent->tag != DW_TAG_structure_type
15400 && die->parent->tag != DW_TAG_union_type
15401 && die->parent->tag != DW_TAG_class_type)
15404 fieldname = dwarf2_name (die, cu);
15405 type_name = dwarf2_name (die->parent, cu);
15406 if (fieldname == NULL || type_name == NULL)
15409 len = strlen (fieldname);
15410 return (strncmp (fieldname, type_name, len) == 0
15411 && (type_name[len] == '\0' || type_name[len] == '<'));
15414 /* Add a member function to the proper fieldlist. */
15417 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15418 struct type *type, struct dwarf2_cu *cu)
15420 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15421 struct attribute *attr;
15423 struct fnfieldlist *flp = nullptr;
15424 struct fn_field *fnp;
15425 const char *fieldname;
15426 struct type *this_type;
15427 enum dwarf_access_attribute accessibility;
15429 if (cu->language == language_ada)
15430 error (_("unexpected member function in Ada type"));
15432 /* Get name of member function. */
15433 fieldname = dwarf2_name (die, cu);
15434 if (fieldname == NULL)
15437 /* Look up member function name in fieldlist. */
15438 for (i = 0; i < fip->fnfieldlists.size (); i++)
15440 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15442 flp = &fip->fnfieldlists[i];
15447 /* Create a new fnfieldlist if necessary. */
15448 if (flp == nullptr)
15450 fip->fnfieldlists.emplace_back ();
15451 flp = &fip->fnfieldlists.back ();
15452 flp->name = fieldname;
15453 i = fip->fnfieldlists.size () - 1;
15456 /* Create a new member function field and add it to the vector of
15458 flp->fnfields.emplace_back ();
15459 fnp = &flp->fnfields.back ();
15461 /* Delay processing of the physname until later. */
15462 if (cu->language == language_cplus)
15463 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15467 const char *physname = dwarf2_physname (fieldname, die, cu);
15468 fnp->physname = physname ? physname : "";
15471 fnp->type = alloc_type (objfile);
15472 this_type = read_type_die (die, cu);
15473 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15475 int nparams = TYPE_NFIELDS (this_type);
15477 /* TYPE is the domain of this method, and THIS_TYPE is the type
15478 of the method itself (TYPE_CODE_METHOD). */
15479 smash_to_method_type (fnp->type, type,
15480 TYPE_TARGET_TYPE (this_type),
15481 TYPE_FIELDS (this_type),
15482 TYPE_NFIELDS (this_type),
15483 TYPE_VARARGS (this_type));
15485 /* Handle static member functions.
15486 Dwarf2 has no clean way to discern C++ static and non-static
15487 member functions. G++ helps GDB by marking the first
15488 parameter for non-static member functions (which is the this
15489 pointer) as artificial. We obtain this information from
15490 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15491 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15492 fnp->voffset = VOFFSET_STATIC;
15495 complaint (_("member function type missing for '%s'"),
15496 dwarf2_full_name (fieldname, die, cu));
15498 /* Get fcontext from DW_AT_containing_type if present. */
15499 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15500 fnp->fcontext = die_containing_type (die, cu);
15502 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15503 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15505 /* Get accessibility. */
15506 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15508 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15510 accessibility = dwarf2_default_access_attribute (die, cu);
15511 switch (accessibility)
15513 case DW_ACCESS_private:
15514 fnp->is_private = 1;
15516 case DW_ACCESS_protected:
15517 fnp->is_protected = 1;
15521 /* Check for artificial methods. */
15522 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15523 if (attr && DW_UNSND (attr) != 0)
15524 fnp->is_artificial = 1;
15526 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15528 /* Get index in virtual function table if it is a virtual member
15529 function. For older versions of GCC, this is an offset in the
15530 appropriate virtual table, as specified by DW_AT_containing_type.
15531 For everyone else, it is an expression to be evaluated relative
15532 to the object address. */
15534 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15537 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15539 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15541 /* Old-style GCC. */
15542 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15544 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15545 || (DW_BLOCK (attr)->size > 1
15546 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15547 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15549 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15550 if ((fnp->voffset % cu->header.addr_size) != 0)
15551 dwarf2_complex_location_expr_complaint ();
15553 fnp->voffset /= cu->header.addr_size;
15557 dwarf2_complex_location_expr_complaint ();
15559 if (!fnp->fcontext)
15561 /* If there is no `this' field and no DW_AT_containing_type,
15562 we cannot actually find a base class context for the
15564 if (TYPE_NFIELDS (this_type) == 0
15565 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15567 complaint (_("cannot determine context for virtual member "
15568 "function \"%s\" (offset %s)"),
15569 fieldname, sect_offset_str (die->sect_off));
15574 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15578 else if (attr_form_is_section_offset (attr))
15580 dwarf2_complex_location_expr_complaint ();
15584 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15590 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15591 if (attr && DW_UNSND (attr))
15593 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15594 complaint (_("Member function \"%s\" (offset %s) is virtual "
15595 "but the vtable offset is not specified"),
15596 fieldname, sect_offset_str (die->sect_off));
15597 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15598 TYPE_CPLUS_DYNAMIC (type) = 1;
15603 /* Create the vector of member function fields, and attach it to the type. */
15606 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15607 struct dwarf2_cu *cu)
15609 if (cu->language == language_ada)
15610 error (_("unexpected member functions in Ada type"));
15612 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15613 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15615 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15617 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15619 struct fnfieldlist &nf = fip->fnfieldlists[i];
15620 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15622 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15623 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15624 fn_flp->fn_fields = (struct fn_field *)
15625 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15627 for (int k = 0; k < nf.fnfields.size (); ++k)
15628 fn_flp->fn_fields[k] = nf.fnfields[k];
15631 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15634 /* Returns non-zero if NAME is the name of a vtable member in CU's
15635 language, zero otherwise. */
15637 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15639 static const char vptr[] = "_vptr";
15641 /* Look for the C++ form of the vtable. */
15642 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15648 /* GCC outputs unnamed structures that are really pointers to member
15649 functions, with the ABI-specified layout. If TYPE describes
15650 such a structure, smash it into a member function type.
15652 GCC shouldn't do this; it should just output pointer to member DIEs.
15653 This is GCC PR debug/28767. */
15656 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15658 struct type *pfn_type, *self_type, *new_type;
15660 /* Check for a structure with no name and two children. */
15661 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15664 /* Check for __pfn and __delta members. */
15665 if (TYPE_FIELD_NAME (type, 0) == NULL
15666 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15667 || TYPE_FIELD_NAME (type, 1) == NULL
15668 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15671 /* Find the type of the method. */
15672 pfn_type = TYPE_FIELD_TYPE (type, 0);
15673 if (pfn_type == NULL
15674 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15675 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15678 /* Look for the "this" argument. */
15679 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15680 if (TYPE_NFIELDS (pfn_type) == 0
15681 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15682 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15685 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15686 new_type = alloc_type (objfile);
15687 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15688 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15689 TYPE_VARARGS (pfn_type));
15690 smash_to_methodptr_type (type, new_type);
15693 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15694 appropriate error checking and issuing complaints if there is a
15698 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15700 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15702 if (attr == nullptr)
15705 if (!attr_form_is_constant (attr))
15707 complaint (_("DW_AT_alignment must have constant form"
15708 " - DIE at %s [in module %s]"),
15709 sect_offset_str (die->sect_off),
15710 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15715 if (attr->form == DW_FORM_sdata)
15717 LONGEST val = DW_SND (attr);
15720 complaint (_("DW_AT_alignment value must not be negative"
15721 " - DIE at %s [in module %s]"),
15722 sect_offset_str (die->sect_off),
15723 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15729 align = DW_UNSND (attr);
15733 complaint (_("DW_AT_alignment value must not be zero"
15734 " - DIE at %s [in module %s]"),
15735 sect_offset_str (die->sect_off),
15736 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15739 if ((align & (align - 1)) != 0)
15741 complaint (_("DW_AT_alignment value must be a power of 2"
15742 " - DIE at %s [in module %s]"),
15743 sect_offset_str (die->sect_off),
15744 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15751 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15752 the alignment for TYPE. */
15755 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15758 if (!set_type_align (type, get_alignment (cu, die)))
15759 complaint (_("DW_AT_alignment value too large"
15760 " - DIE at %s [in module %s]"),
15761 sect_offset_str (die->sect_off),
15762 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15765 /* Called when we find the DIE that starts a structure or union scope
15766 (definition) to create a type for the structure or union. Fill in
15767 the type's name and general properties; the members will not be
15768 processed until process_structure_scope. A symbol table entry for
15769 the type will also not be done until process_structure_scope (assuming
15770 the type has a name).
15772 NOTE: we need to call these functions regardless of whether or not the
15773 DIE has a DW_AT_name attribute, since it might be an anonymous
15774 structure or union. This gets the type entered into our set of
15775 user defined types. */
15777 static struct type *
15778 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15780 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15782 struct attribute *attr;
15785 /* If the definition of this type lives in .debug_types, read that type.
15786 Don't follow DW_AT_specification though, that will take us back up
15787 the chain and we want to go down. */
15788 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15791 type = get_DW_AT_signature_type (die, attr, cu);
15793 /* The type's CU may not be the same as CU.
15794 Ensure TYPE is recorded with CU in die_type_hash. */
15795 return set_die_type (die, type, cu);
15798 type = alloc_type (objfile);
15799 INIT_CPLUS_SPECIFIC (type);
15801 name = dwarf2_name (die, cu);
15804 if (cu->language == language_cplus
15805 || cu->language == language_d
15806 || cu->language == language_rust)
15808 const char *full_name = dwarf2_full_name (name, die, cu);
15810 /* dwarf2_full_name might have already finished building the DIE's
15811 type. If so, there is no need to continue. */
15812 if (get_die_type (die, cu) != NULL)
15813 return get_die_type (die, cu);
15815 TYPE_NAME (type) = full_name;
15819 /* The name is already allocated along with this objfile, so
15820 we don't need to duplicate it for the type. */
15821 TYPE_NAME (type) = name;
15825 if (die->tag == DW_TAG_structure_type)
15827 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15829 else if (die->tag == DW_TAG_union_type)
15831 TYPE_CODE (type) = TYPE_CODE_UNION;
15833 else if (die->tag == DW_TAG_variant_part)
15835 TYPE_CODE (type) = TYPE_CODE_UNION;
15836 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15840 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15843 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15844 TYPE_DECLARED_CLASS (type) = 1;
15846 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15849 if (attr_form_is_constant (attr))
15850 TYPE_LENGTH (type) = DW_UNSND (attr);
15853 /* For the moment, dynamic type sizes are not supported
15854 by GDB's struct type. The actual size is determined
15855 on-demand when resolving the type of a given object,
15856 so set the type's length to zero for now. Otherwise,
15857 we record an expression as the length, and that expression
15858 could lead to a very large value, which could eventually
15859 lead to us trying to allocate that much memory when creating
15860 a value of that type. */
15861 TYPE_LENGTH (type) = 0;
15866 TYPE_LENGTH (type) = 0;
15869 maybe_set_alignment (cu, die, type);
15871 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15873 /* ICC<14 does not output the required DW_AT_declaration on
15874 incomplete types, but gives them a size of zero. */
15875 TYPE_STUB (type) = 1;
15878 TYPE_STUB_SUPPORTED (type) = 1;
15880 if (die_is_declaration (die, cu))
15881 TYPE_STUB (type) = 1;
15882 else if (attr == NULL && die->child == NULL
15883 && producer_is_realview (cu->producer))
15884 /* RealView does not output the required DW_AT_declaration
15885 on incomplete types. */
15886 TYPE_STUB (type) = 1;
15888 /* We need to add the type field to the die immediately so we don't
15889 infinitely recurse when dealing with pointers to the structure
15890 type within the structure itself. */
15891 set_die_type (die, type, cu);
15893 /* set_die_type should be already done. */
15894 set_descriptive_type (type, die, cu);
15899 /* A helper for process_structure_scope that handles a single member
15903 handle_struct_member_die (struct die_info *child_die, struct type *type,
15904 struct field_info *fi,
15905 std::vector<struct symbol *> *template_args,
15906 struct dwarf2_cu *cu)
15908 if (child_die->tag == DW_TAG_member
15909 || child_die->tag == DW_TAG_variable
15910 || child_die->tag == DW_TAG_variant_part)
15912 /* NOTE: carlton/2002-11-05: A C++ static data member
15913 should be a DW_TAG_member that is a declaration, but
15914 all versions of G++ as of this writing (so through at
15915 least 3.2.1) incorrectly generate DW_TAG_variable
15916 tags for them instead. */
15917 dwarf2_add_field (fi, child_die, cu);
15919 else if (child_die->tag == DW_TAG_subprogram)
15921 /* Rust doesn't have member functions in the C++ sense.
15922 However, it does emit ordinary functions as children
15923 of a struct DIE. */
15924 if (cu->language == language_rust)
15925 read_func_scope (child_die, cu);
15928 /* C++ member function. */
15929 dwarf2_add_member_fn (fi, child_die, type, cu);
15932 else if (child_die->tag == DW_TAG_inheritance)
15934 /* C++ base class field. */
15935 dwarf2_add_field (fi, child_die, cu);
15937 else if (type_can_define_types (child_die))
15938 dwarf2_add_type_defn (fi, child_die, cu);
15939 else if (child_die->tag == DW_TAG_template_type_param
15940 || child_die->tag == DW_TAG_template_value_param)
15942 struct symbol *arg = new_symbol (child_die, NULL, cu);
15945 template_args->push_back (arg);
15947 else if (child_die->tag == DW_TAG_variant)
15949 /* In a variant we want to get the discriminant and also add a
15950 field for our sole member child. */
15951 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15953 for (die_info *variant_child = child_die->child;
15954 variant_child != NULL;
15955 variant_child = sibling_die (variant_child))
15957 if (variant_child->tag == DW_TAG_member)
15959 handle_struct_member_die (variant_child, type, fi,
15960 template_args, cu);
15961 /* Only handle the one. */
15966 /* We don't handle this but we might as well report it if we see
15968 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15969 complaint (_("DW_AT_discr_list is not supported yet"
15970 " - DIE at %s [in module %s]"),
15971 sect_offset_str (child_die->sect_off),
15972 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15974 /* The first field was just added, so we can stash the
15975 discriminant there. */
15976 gdb_assert (!fi->fields.empty ());
15978 fi->fields.back ().variant.default_branch = true;
15980 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15984 /* Finish creating a structure or union type, including filling in
15985 its members and creating a symbol for it. */
15988 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15990 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15991 struct die_info *child_die;
15994 type = get_die_type (die, cu);
15996 type = read_structure_type (die, cu);
15998 /* When reading a DW_TAG_variant_part, we need to notice when we
15999 read the discriminant member, so we can record it later in the
16000 discriminant_info. */
16001 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16002 sect_offset discr_offset;
16003 bool has_template_parameters = false;
16005 if (is_variant_part)
16007 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16010 /* Maybe it's a univariant form, an extension we support.
16011 In this case arrange not to check the offset. */
16012 is_variant_part = false;
16014 else if (attr_form_is_ref (discr))
16016 struct dwarf2_cu *target_cu = cu;
16017 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16019 discr_offset = target_die->sect_off;
16023 complaint (_("DW_AT_discr does not have DIE reference form"
16024 " - DIE at %s [in module %s]"),
16025 sect_offset_str (die->sect_off),
16026 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16027 is_variant_part = false;
16031 if (die->child != NULL && ! die_is_declaration (die, cu))
16033 struct field_info fi;
16034 std::vector<struct symbol *> template_args;
16036 child_die = die->child;
16038 while (child_die && child_die->tag)
16040 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16042 if (is_variant_part && discr_offset == child_die->sect_off)
16043 fi.fields.back ().variant.is_discriminant = true;
16045 child_die = sibling_die (child_die);
16048 /* Attach template arguments to type. */
16049 if (!template_args.empty ())
16051 has_template_parameters = true;
16052 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16053 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16054 TYPE_TEMPLATE_ARGUMENTS (type)
16055 = XOBNEWVEC (&objfile->objfile_obstack,
16057 TYPE_N_TEMPLATE_ARGUMENTS (type));
16058 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16059 template_args.data (),
16060 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16061 * sizeof (struct symbol *)));
16064 /* Attach fields and member functions to the type. */
16066 dwarf2_attach_fields_to_type (&fi, type, cu);
16067 if (!fi.fnfieldlists.empty ())
16069 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16071 /* Get the type which refers to the base class (possibly this
16072 class itself) which contains the vtable pointer for the current
16073 class from the DW_AT_containing_type attribute. This use of
16074 DW_AT_containing_type is a GNU extension. */
16076 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16078 struct type *t = die_containing_type (die, cu);
16080 set_type_vptr_basetype (type, t);
16085 /* Our own class provides vtbl ptr. */
16086 for (i = TYPE_NFIELDS (t) - 1;
16087 i >= TYPE_N_BASECLASSES (t);
16090 const char *fieldname = TYPE_FIELD_NAME (t, i);
16092 if (is_vtable_name (fieldname, cu))
16094 set_type_vptr_fieldno (type, i);
16099 /* Complain if virtual function table field not found. */
16100 if (i < TYPE_N_BASECLASSES (t))
16101 complaint (_("virtual function table pointer "
16102 "not found when defining class '%s'"),
16103 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16107 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16110 else if (cu->producer
16111 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16113 /* The IBM XLC compiler does not provide direct indication
16114 of the containing type, but the vtable pointer is
16115 always named __vfp. */
16119 for (i = TYPE_NFIELDS (type) - 1;
16120 i >= TYPE_N_BASECLASSES (type);
16123 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16125 set_type_vptr_fieldno (type, i);
16126 set_type_vptr_basetype (type, type);
16133 /* Copy fi.typedef_field_list linked list elements content into the
16134 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16135 if (!fi.typedef_field_list.empty ())
16137 int count = fi.typedef_field_list.size ();
16139 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16140 TYPE_TYPEDEF_FIELD_ARRAY (type)
16141 = ((struct decl_field *)
16143 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16144 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16146 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16147 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16150 /* Copy fi.nested_types_list linked list elements content into the
16151 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16152 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16154 int count = fi.nested_types_list.size ();
16156 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16157 TYPE_NESTED_TYPES_ARRAY (type)
16158 = ((struct decl_field *)
16159 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16160 TYPE_NESTED_TYPES_COUNT (type) = count;
16162 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16163 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16167 quirk_gcc_member_function_pointer (type, objfile);
16168 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16169 cu->rust_unions.push_back (type);
16171 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16172 snapshots) has been known to create a die giving a declaration
16173 for a class that has, as a child, a die giving a definition for a
16174 nested class. So we have to process our children even if the
16175 current die is a declaration. Normally, of course, a declaration
16176 won't have any children at all. */
16178 child_die = die->child;
16180 while (child_die != NULL && child_die->tag)
16182 if (child_die->tag == DW_TAG_member
16183 || child_die->tag == DW_TAG_variable
16184 || child_die->tag == DW_TAG_inheritance
16185 || child_die->tag == DW_TAG_template_value_param
16186 || child_die->tag == DW_TAG_template_type_param)
16191 process_die (child_die, cu);
16193 child_die = sibling_die (child_die);
16196 /* Do not consider external references. According to the DWARF standard,
16197 these DIEs are identified by the fact that they have no byte_size
16198 attribute, and a declaration attribute. */
16199 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16200 || !die_is_declaration (die, cu))
16202 struct symbol *sym = new_symbol (die, type, cu);
16204 if (has_template_parameters)
16206 struct symtab *symtab;
16207 if (sym != nullptr)
16208 symtab = symbol_symtab (sym);
16209 else if (cu->line_header != nullptr)
16211 /* Any related symtab will do. */
16213 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16218 complaint (_("could not find suitable "
16219 "symtab for template parameter"
16220 " - DIE at %s [in module %s]"),
16221 sect_offset_str (die->sect_off),
16222 objfile_name (objfile));
16225 if (symtab != nullptr)
16227 /* Make sure that the symtab is set on the new symbols.
16228 Even though they don't appear in this symtab directly,
16229 other parts of gdb assume that symbols do, and this is
16230 reasonably true. */
16231 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16232 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16238 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16239 update TYPE using some information only available in DIE's children. */
16242 update_enumeration_type_from_children (struct die_info *die,
16244 struct dwarf2_cu *cu)
16246 struct die_info *child_die;
16247 int unsigned_enum = 1;
16251 auto_obstack obstack;
16253 for (child_die = die->child;
16254 child_die != NULL && child_die->tag;
16255 child_die = sibling_die (child_die))
16257 struct attribute *attr;
16259 const gdb_byte *bytes;
16260 struct dwarf2_locexpr_baton *baton;
16263 if (child_die->tag != DW_TAG_enumerator)
16266 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16270 name = dwarf2_name (child_die, cu);
16272 name = "<anonymous enumerator>";
16274 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16275 &value, &bytes, &baton);
16281 else if ((mask & value) != 0)
16286 /* If we already know that the enum type is neither unsigned, nor
16287 a flag type, no need to look at the rest of the enumerates. */
16288 if (!unsigned_enum && !flag_enum)
16293 TYPE_UNSIGNED (type) = 1;
16295 TYPE_FLAG_ENUM (type) = 1;
16298 /* Given a DW_AT_enumeration_type die, set its type. We do not
16299 complete the type's fields yet, or create any symbols. */
16301 static struct type *
16302 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16304 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16306 struct attribute *attr;
16309 /* If the definition of this type lives in .debug_types, read that type.
16310 Don't follow DW_AT_specification though, that will take us back up
16311 the chain and we want to go down. */
16312 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16315 type = get_DW_AT_signature_type (die, attr, cu);
16317 /* The type's CU may not be the same as CU.
16318 Ensure TYPE is recorded with CU in die_type_hash. */
16319 return set_die_type (die, type, cu);
16322 type = alloc_type (objfile);
16324 TYPE_CODE (type) = TYPE_CODE_ENUM;
16325 name = dwarf2_full_name (NULL, die, cu);
16327 TYPE_NAME (type) = name;
16329 attr = dwarf2_attr (die, DW_AT_type, cu);
16332 struct type *underlying_type = die_type (die, cu);
16334 TYPE_TARGET_TYPE (type) = underlying_type;
16337 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16340 TYPE_LENGTH (type) = DW_UNSND (attr);
16344 TYPE_LENGTH (type) = 0;
16347 maybe_set_alignment (cu, die, type);
16349 /* The enumeration DIE can be incomplete. In Ada, any type can be
16350 declared as private in the package spec, and then defined only
16351 inside the package body. Such types are known as Taft Amendment
16352 Types. When another package uses such a type, an incomplete DIE
16353 may be generated by the compiler. */
16354 if (die_is_declaration (die, cu))
16355 TYPE_STUB (type) = 1;
16357 /* Finish the creation of this type by using the enum's children.
16358 We must call this even when the underlying type has been provided
16359 so that we can determine if we're looking at a "flag" enum. */
16360 update_enumeration_type_from_children (die, type, cu);
16362 /* If this type has an underlying type that is not a stub, then we
16363 may use its attributes. We always use the "unsigned" attribute
16364 in this situation, because ordinarily we guess whether the type
16365 is unsigned -- but the guess can be wrong and the underlying type
16366 can tell us the reality. However, we defer to a local size
16367 attribute if one exists, because this lets the compiler override
16368 the underlying type if needed. */
16369 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16371 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16372 if (TYPE_LENGTH (type) == 0)
16373 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16374 if (TYPE_RAW_ALIGN (type) == 0
16375 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16376 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16379 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16381 return set_die_type (die, type, cu);
16384 /* Given a pointer to a die which begins an enumeration, process all
16385 the dies that define the members of the enumeration, and create the
16386 symbol for the enumeration type.
16388 NOTE: We reverse the order of the element list. */
16391 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16393 struct type *this_type;
16395 this_type = get_die_type (die, cu);
16396 if (this_type == NULL)
16397 this_type = read_enumeration_type (die, cu);
16399 if (die->child != NULL)
16401 struct die_info *child_die;
16402 struct symbol *sym;
16403 struct field *fields = NULL;
16404 int num_fields = 0;
16407 child_die = die->child;
16408 while (child_die && child_die->tag)
16410 if (child_die->tag != DW_TAG_enumerator)
16412 process_die (child_die, cu);
16416 name = dwarf2_name (child_die, cu);
16419 sym = new_symbol (child_die, this_type, cu);
16421 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16423 fields = (struct field *)
16425 (num_fields + DW_FIELD_ALLOC_CHUNK)
16426 * sizeof (struct field));
16429 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16430 FIELD_TYPE (fields[num_fields]) = NULL;
16431 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16432 FIELD_BITSIZE (fields[num_fields]) = 0;
16438 child_die = sibling_die (child_die);
16443 TYPE_NFIELDS (this_type) = num_fields;
16444 TYPE_FIELDS (this_type) = (struct field *)
16445 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16446 memcpy (TYPE_FIELDS (this_type), fields,
16447 sizeof (struct field) * num_fields);
16452 /* If we are reading an enum from a .debug_types unit, and the enum
16453 is a declaration, and the enum is not the signatured type in the
16454 unit, then we do not want to add a symbol for it. Adding a
16455 symbol would in some cases obscure the true definition of the
16456 enum, giving users an incomplete type when the definition is
16457 actually available. Note that we do not want to do this for all
16458 enums which are just declarations, because C++0x allows forward
16459 enum declarations. */
16460 if (cu->per_cu->is_debug_types
16461 && die_is_declaration (die, cu))
16463 struct signatured_type *sig_type;
16465 sig_type = (struct signatured_type *) cu->per_cu;
16466 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16467 if (sig_type->type_offset_in_section != die->sect_off)
16471 new_symbol (die, this_type, cu);
16474 /* Extract all information from a DW_TAG_array_type DIE and put it in
16475 the DIE's type field. For now, this only handles one dimensional
16478 static struct type *
16479 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16481 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16482 struct die_info *child_die;
16484 struct type *element_type, *range_type, *index_type;
16485 struct attribute *attr;
16487 struct dynamic_prop *byte_stride_prop = NULL;
16488 unsigned int bit_stride = 0;
16490 element_type = die_type (die, cu);
16492 /* The die_type call above may have already set the type for this DIE. */
16493 type = get_die_type (die, cu);
16497 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16501 struct type *prop_type
16502 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16505 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16506 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16510 complaint (_("unable to read array DW_AT_byte_stride "
16511 " - DIE at %s [in module %s]"),
16512 sect_offset_str (die->sect_off),
16513 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16514 /* Ignore this attribute. We will likely not be able to print
16515 arrays of this type correctly, but there is little we can do
16516 to help if we cannot read the attribute's value. */
16517 byte_stride_prop = NULL;
16521 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16523 bit_stride = DW_UNSND (attr);
16525 /* Irix 6.2 native cc creates array types without children for
16526 arrays with unspecified length. */
16527 if (die->child == NULL)
16529 index_type = objfile_type (objfile)->builtin_int;
16530 range_type = create_static_range_type (NULL, index_type, 0, -1);
16531 type = create_array_type_with_stride (NULL, element_type, range_type,
16532 byte_stride_prop, bit_stride);
16533 return set_die_type (die, type, cu);
16536 std::vector<struct type *> range_types;
16537 child_die = die->child;
16538 while (child_die && child_die->tag)
16540 if (child_die->tag == DW_TAG_subrange_type)
16542 struct type *child_type = read_type_die (child_die, cu);
16544 if (child_type != NULL)
16546 /* The range type was succesfully read. Save it for the
16547 array type creation. */
16548 range_types.push_back (child_type);
16551 child_die = sibling_die (child_die);
16554 /* Dwarf2 dimensions are output from left to right, create the
16555 necessary array types in backwards order. */
16557 type = element_type;
16559 if (read_array_order (die, cu) == DW_ORD_col_major)
16563 while (i < range_types.size ())
16564 type = create_array_type_with_stride (NULL, type, range_types[i++],
16565 byte_stride_prop, bit_stride);
16569 size_t ndim = range_types.size ();
16571 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16572 byte_stride_prop, bit_stride);
16575 /* Understand Dwarf2 support for vector types (like they occur on
16576 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16577 array type. This is not part of the Dwarf2/3 standard yet, but a
16578 custom vendor extension. The main difference between a regular
16579 array and the vector variant is that vectors are passed by value
16581 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16583 make_vector_type (type);
16585 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16586 implementation may choose to implement triple vectors using this
16588 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16591 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16592 TYPE_LENGTH (type) = DW_UNSND (attr);
16594 complaint (_("DW_AT_byte_size for array type smaller "
16595 "than the total size of elements"));
16598 name = dwarf2_name (die, cu);
16600 TYPE_NAME (type) = name;
16602 maybe_set_alignment (cu, die, type);
16604 /* Install the type in the die. */
16605 set_die_type (die, type, cu);
16607 /* set_die_type should be already done. */
16608 set_descriptive_type (type, die, cu);
16613 static enum dwarf_array_dim_ordering
16614 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16616 struct attribute *attr;
16618 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16621 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16623 /* GNU F77 is a special case, as at 08/2004 array type info is the
16624 opposite order to the dwarf2 specification, but data is still
16625 laid out as per normal fortran.
16627 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16628 version checking. */
16630 if (cu->language == language_fortran
16631 && cu->producer && strstr (cu->producer, "GNU F77"))
16633 return DW_ORD_row_major;
16636 switch (cu->language_defn->la_array_ordering)
16638 case array_column_major:
16639 return DW_ORD_col_major;
16640 case array_row_major:
16642 return DW_ORD_row_major;
16646 /* Extract all information from a DW_TAG_set_type DIE and put it in
16647 the DIE's type field. */
16649 static struct type *
16650 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16652 struct type *domain_type, *set_type;
16653 struct attribute *attr;
16655 domain_type = die_type (die, cu);
16657 /* The die_type call above may have already set the type for this DIE. */
16658 set_type = get_die_type (die, cu);
16662 set_type = create_set_type (NULL, domain_type);
16664 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16666 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16668 maybe_set_alignment (cu, die, set_type);
16670 return set_die_type (die, set_type, cu);
16673 /* A helper for read_common_block that creates a locexpr baton.
16674 SYM is the symbol which we are marking as computed.
16675 COMMON_DIE is the DIE for the common block.
16676 COMMON_LOC is the location expression attribute for the common
16678 MEMBER_LOC is the location expression attribute for the particular
16679 member of the common block that we are processing.
16680 CU is the CU from which the above come. */
16683 mark_common_block_symbol_computed (struct symbol *sym,
16684 struct die_info *common_die,
16685 struct attribute *common_loc,
16686 struct attribute *member_loc,
16687 struct dwarf2_cu *cu)
16689 struct dwarf2_per_objfile *dwarf2_per_objfile
16690 = cu->per_cu->dwarf2_per_objfile;
16691 struct objfile *objfile = dwarf2_per_objfile->objfile;
16692 struct dwarf2_locexpr_baton *baton;
16694 unsigned int cu_off;
16695 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16696 LONGEST offset = 0;
16698 gdb_assert (common_loc && member_loc);
16699 gdb_assert (attr_form_is_block (common_loc));
16700 gdb_assert (attr_form_is_block (member_loc)
16701 || attr_form_is_constant (member_loc));
16703 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16704 baton->per_cu = cu->per_cu;
16705 gdb_assert (baton->per_cu);
16707 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16709 if (attr_form_is_constant (member_loc))
16711 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16712 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16715 baton->size += DW_BLOCK (member_loc)->size;
16717 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16720 *ptr++ = DW_OP_call4;
16721 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16722 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16725 if (attr_form_is_constant (member_loc))
16727 *ptr++ = DW_OP_addr;
16728 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16729 ptr += cu->header.addr_size;
16733 /* We have to copy the data here, because DW_OP_call4 will only
16734 use a DW_AT_location attribute. */
16735 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16736 ptr += DW_BLOCK (member_loc)->size;
16739 *ptr++ = DW_OP_plus;
16740 gdb_assert (ptr - baton->data == baton->size);
16742 SYMBOL_LOCATION_BATON (sym) = baton;
16743 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16746 /* Create appropriate locally-scoped variables for all the
16747 DW_TAG_common_block entries. Also create a struct common_block
16748 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16749 is used to sepate the common blocks name namespace from regular
16753 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16755 struct attribute *attr;
16757 attr = dwarf2_attr (die, DW_AT_location, cu);
16760 /* Support the .debug_loc offsets. */
16761 if (attr_form_is_block (attr))
16765 else if (attr_form_is_section_offset (attr))
16767 dwarf2_complex_location_expr_complaint ();
16772 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16773 "common block member");
16778 if (die->child != NULL)
16780 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16781 struct die_info *child_die;
16782 size_t n_entries = 0, size;
16783 struct common_block *common_block;
16784 struct symbol *sym;
16786 for (child_die = die->child;
16787 child_die && child_die->tag;
16788 child_die = sibling_die (child_die))
16791 size = (sizeof (struct common_block)
16792 + (n_entries - 1) * sizeof (struct symbol *));
16794 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16796 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16797 common_block->n_entries = 0;
16799 for (child_die = die->child;
16800 child_die && child_die->tag;
16801 child_die = sibling_die (child_die))
16803 /* Create the symbol in the DW_TAG_common_block block in the current
16805 sym = new_symbol (child_die, NULL, cu);
16808 struct attribute *member_loc;
16810 common_block->contents[common_block->n_entries++] = sym;
16812 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16816 /* GDB has handled this for a long time, but it is
16817 not specified by DWARF. It seems to have been
16818 emitted by gfortran at least as recently as:
16819 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16820 complaint (_("Variable in common block has "
16821 "DW_AT_data_member_location "
16822 "- DIE at %s [in module %s]"),
16823 sect_offset_str (child_die->sect_off),
16824 objfile_name (objfile));
16826 if (attr_form_is_section_offset (member_loc))
16827 dwarf2_complex_location_expr_complaint ();
16828 else if (attr_form_is_constant (member_loc)
16829 || attr_form_is_block (member_loc))
16832 mark_common_block_symbol_computed (sym, die, attr,
16836 dwarf2_complex_location_expr_complaint ();
16841 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16842 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16846 /* Create a type for a C++ namespace. */
16848 static struct type *
16849 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16851 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16852 const char *previous_prefix, *name;
16856 /* For extensions, reuse the type of the original namespace. */
16857 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16859 struct die_info *ext_die;
16860 struct dwarf2_cu *ext_cu = cu;
16862 ext_die = dwarf2_extension (die, &ext_cu);
16863 type = read_type_die (ext_die, ext_cu);
16865 /* EXT_CU may not be the same as CU.
16866 Ensure TYPE is recorded with CU in die_type_hash. */
16867 return set_die_type (die, type, cu);
16870 name = namespace_name (die, &is_anonymous, cu);
16872 /* Now build the name of the current namespace. */
16874 previous_prefix = determine_prefix (die, cu);
16875 if (previous_prefix[0] != '\0')
16876 name = typename_concat (&objfile->objfile_obstack,
16877 previous_prefix, name, 0, cu);
16879 /* Create the type. */
16880 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16882 return set_die_type (die, type, cu);
16885 /* Read a namespace scope. */
16888 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16890 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16893 /* Add a symbol associated to this if we haven't seen the namespace
16894 before. Also, add a using directive if it's an anonymous
16897 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16901 type = read_type_die (die, cu);
16902 new_symbol (die, type, cu);
16904 namespace_name (die, &is_anonymous, cu);
16907 const char *previous_prefix = determine_prefix (die, cu);
16909 std::vector<const char *> excludes;
16910 add_using_directive (using_directives (cu),
16911 previous_prefix, TYPE_NAME (type), NULL,
16912 NULL, excludes, 0, &objfile->objfile_obstack);
16916 if (die->child != NULL)
16918 struct die_info *child_die = die->child;
16920 while (child_die && child_die->tag)
16922 process_die (child_die, cu);
16923 child_die = sibling_die (child_die);
16928 /* Read a Fortran module as type. This DIE can be only a declaration used for
16929 imported module. Still we need that type as local Fortran "use ... only"
16930 declaration imports depend on the created type in determine_prefix. */
16932 static struct type *
16933 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16935 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16936 const char *module_name;
16939 module_name = dwarf2_name (die, cu);
16940 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16942 return set_die_type (die, type, cu);
16945 /* Read a Fortran module. */
16948 read_module (struct die_info *die, struct dwarf2_cu *cu)
16950 struct die_info *child_die = die->child;
16953 type = read_type_die (die, cu);
16954 new_symbol (die, type, cu);
16956 while (child_die && child_die->tag)
16958 process_die (child_die, cu);
16959 child_die = sibling_die (child_die);
16963 /* Return the name of the namespace represented by DIE. Set
16964 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16967 static const char *
16968 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16970 struct die_info *current_die;
16971 const char *name = NULL;
16973 /* Loop through the extensions until we find a name. */
16975 for (current_die = die;
16976 current_die != NULL;
16977 current_die = dwarf2_extension (die, &cu))
16979 /* We don't use dwarf2_name here so that we can detect the absence
16980 of a name -> anonymous namespace. */
16981 name = dwarf2_string_attr (die, DW_AT_name, cu);
16987 /* Is it an anonymous namespace? */
16989 *is_anonymous = (name == NULL);
16991 name = CP_ANONYMOUS_NAMESPACE_STR;
16996 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16997 the user defined type vector. */
16999 static struct type *
17000 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17002 struct gdbarch *gdbarch
17003 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17004 struct comp_unit_head *cu_header = &cu->header;
17006 struct attribute *attr_byte_size;
17007 struct attribute *attr_address_class;
17008 int byte_size, addr_class;
17009 struct type *target_type;
17011 target_type = die_type (die, cu);
17013 /* The die_type call above may have already set the type for this DIE. */
17014 type = get_die_type (die, cu);
17018 type = lookup_pointer_type (target_type);
17020 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17021 if (attr_byte_size)
17022 byte_size = DW_UNSND (attr_byte_size);
17024 byte_size = cu_header->addr_size;
17026 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17027 if (attr_address_class)
17028 addr_class = DW_UNSND (attr_address_class);
17030 addr_class = DW_ADDR_none;
17032 ULONGEST alignment = get_alignment (cu, die);
17034 /* If the pointer size, alignment, or address class is different
17035 than the default, create a type variant marked as such and set
17036 the length accordingly. */
17037 if (TYPE_LENGTH (type) != byte_size
17038 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17039 && alignment != TYPE_RAW_ALIGN (type))
17040 || addr_class != DW_ADDR_none)
17042 if (gdbarch_address_class_type_flags_p (gdbarch))
17046 type_flags = gdbarch_address_class_type_flags
17047 (gdbarch, byte_size, addr_class);
17048 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17050 type = make_type_with_address_space (type, type_flags);
17052 else if (TYPE_LENGTH (type) != byte_size)
17054 complaint (_("invalid pointer size %d"), byte_size);
17056 else if (TYPE_RAW_ALIGN (type) != alignment)
17058 complaint (_("Invalid DW_AT_alignment"
17059 " - DIE at %s [in module %s]"),
17060 sect_offset_str (die->sect_off),
17061 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17065 /* Should we also complain about unhandled address classes? */
17069 TYPE_LENGTH (type) = byte_size;
17070 set_type_align (type, alignment);
17071 return set_die_type (die, type, cu);
17074 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17075 the user defined type vector. */
17077 static struct type *
17078 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17081 struct type *to_type;
17082 struct type *domain;
17084 to_type = die_type (die, cu);
17085 domain = die_containing_type (die, cu);
17087 /* The calls above may have already set the type for this DIE. */
17088 type = get_die_type (die, cu);
17092 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17093 type = lookup_methodptr_type (to_type);
17094 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17096 struct type *new_type
17097 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17099 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17100 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17101 TYPE_VARARGS (to_type));
17102 type = lookup_methodptr_type (new_type);
17105 type = lookup_memberptr_type (to_type, domain);
17107 return set_die_type (die, type, cu);
17110 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17111 the user defined type vector. */
17113 static struct type *
17114 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17115 enum type_code refcode)
17117 struct comp_unit_head *cu_header = &cu->header;
17118 struct type *type, *target_type;
17119 struct attribute *attr;
17121 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17123 target_type = die_type (die, cu);
17125 /* The die_type call above may have already set the type for this DIE. */
17126 type = get_die_type (die, cu);
17130 type = lookup_reference_type (target_type, refcode);
17131 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17134 TYPE_LENGTH (type) = DW_UNSND (attr);
17138 TYPE_LENGTH (type) = cu_header->addr_size;
17140 maybe_set_alignment (cu, die, type);
17141 return set_die_type (die, type, cu);
17144 /* Add the given cv-qualifiers to the element type of the array. GCC
17145 outputs DWARF type qualifiers that apply to an array, not the
17146 element type. But GDB relies on the array element type to carry
17147 the cv-qualifiers. This mimics section 6.7.3 of the C99
17150 static struct type *
17151 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17152 struct type *base_type, int cnst, int voltl)
17154 struct type *el_type, *inner_array;
17156 base_type = copy_type (base_type);
17157 inner_array = base_type;
17159 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17161 TYPE_TARGET_TYPE (inner_array) =
17162 copy_type (TYPE_TARGET_TYPE (inner_array));
17163 inner_array = TYPE_TARGET_TYPE (inner_array);
17166 el_type = TYPE_TARGET_TYPE (inner_array);
17167 cnst |= TYPE_CONST (el_type);
17168 voltl |= TYPE_VOLATILE (el_type);
17169 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17171 return set_die_type (die, base_type, cu);
17174 static struct type *
17175 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17177 struct type *base_type, *cv_type;
17179 base_type = die_type (die, cu);
17181 /* The die_type call above may have already set the type for this DIE. */
17182 cv_type = get_die_type (die, cu);
17186 /* In case the const qualifier is applied to an array type, the element type
17187 is so qualified, not the array type (section 6.7.3 of C99). */
17188 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17189 return add_array_cv_type (die, cu, base_type, 1, 0);
17191 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17192 return set_die_type (die, cv_type, cu);
17195 static struct type *
17196 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17198 struct type *base_type, *cv_type;
17200 base_type = die_type (die, cu);
17202 /* The die_type call above may have already set the type for this DIE. */
17203 cv_type = get_die_type (die, cu);
17207 /* In case the volatile qualifier is applied to an array type, the
17208 element type is so qualified, not the array type (section 6.7.3
17210 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17211 return add_array_cv_type (die, cu, base_type, 0, 1);
17213 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17214 return set_die_type (die, cv_type, cu);
17217 /* Handle DW_TAG_restrict_type. */
17219 static struct type *
17220 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17222 struct type *base_type, *cv_type;
17224 base_type = die_type (die, cu);
17226 /* The die_type call above may have already set the type for this DIE. */
17227 cv_type = get_die_type (die, cu);
17231 cv_type = make_restrict_type (base_type);
17232 return set_die_type (die, cv_type, cu);
17235 /* Handle DW_TAG_atomic_type. */
17237 static struct type *
17238 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17240 struct type *base_type, *cv_type;
17242 base_type = die_type (die, cu);
17244 /* The die_type call above may have already set the type for this DIE. */
17245 cv_type = get_die_type (die, cu);
17249 cv_type = make_atomic_type (base_type);
17250 return set_die_type (die, cv_type, cu);
17253 /* Extract all information from a DW_TAG_string_type DIE and add to
17254 the user defined type vector. It isn't really a user defined type,
17255 but it behaves like one, with other DIE's using an AT_user_def_type
17256 attribute to reference it. */
17258 static struct type *
17259 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17261 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17263 struct type *type, *range_type, *index_type, *char_type;
17264 struct attribute *attr;
17265 unsigned int length;
17267 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17270 length = DW_UNSND (attr);
17274 /* Check for the DW_AT_byte_size attribute. */
17275 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17278 length = DW_UNSND (attr);
17286 index_type = objfile_type (objfile)->builtin_int;
17287 range_type = create_static_range_type (NULL, index_type, 1, length);
17288 char_type = language_string_char_type (cu->language_defn, gdbarch);
17289 type = create_string_type (NULL, char_type, range_type);
17291 return set_die_type (die, type, cu);
17294 /* Assuming that DIE corresponds to a function, returns nonzero
17295 if the function is prototyped. */
17298 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17300 struct attribute *attr;
17302 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17303 if (attr && (DW_UNSND (attr) != 0))
17306 /* The DWARF standard implies that the DW_AT_prototyped attribute
17307 is only meaninful for C, but the concept also extends to other
17308 languages that allow unprototyped functions (Eg: Objective C).
17309 For all other languages, assume that functions are always
17311 if (cu->language != language_c
17312 && cu->language != language_objc
17313 && cu->language != language_opencl)
17316 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17317 prototyped and unprototyped functions; default to prototyped,
17318 since that is more common in modern code (and RealView warns
17319 about unprototyped functions). */
17320 if (producer_is_realview (cu->producer))
17326 /* Handle DIES due to C code like:
17330 int (*funcp)(int a, long l);
17334 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17336 static struct type *
17337 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17339 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17340 struct type *type; /* Type that this function returns. */
17341 struct type *ftype; /* Function that returns above type. */
17342 struct attribute *attr;
17344 type = die_type (die, cu);
17346 /* The die_type call above may have already set the type for this DIE. */
17347 ftype = get_die_type (die, cu);
17351 ftype = lookup_function_type (type);
17353 if (prototyped_function_p (die, cu))
17354 TYPE_PROTOTYPED (ftype) = 1;
17356 /* Store the calling convention in the type if it's available in
17357 the subroutine die. Otherwise set the calling convention to
17358 the default value DW_CC_normal. */
17359 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17361 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17362 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17363 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17365 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17367 /* Record whether the function returns normally to its caller or not
17368 if the DWARF producer set that information. */
17369 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17370 if (attr && (DW_UNSND (attr) != 0))
17371 TYPE_NO_RETURN (ftype) = 1;
17373 /* We need to add the subroutine type to the die immediately so
17374 we don't infinitely recurse when dealing with parameters
17375 declared as the same subroutine type. */
17376 set_die_type (die, ftype, cu);
17378 if (die->child != NULL)
17380 struct type *void_type = objfile_type (objfile)->builtin_void;
17381 struct die_info *child_die;
17382 int nparams, iparams;
17384 /* Count the number of parameters.
17385 FIXME: GDB currently ignores vararg functions, but knows about
17386 vararg member functions. */
17388 child_die = die->child;
17389 while (child_die && child_die->tag)
17391 if (child_die->tag == DW_TAG_formal_parameter)
17393 else if (child_die->tag == DW_TAG_unspecified_parameters)
17394 TYPE_VARARGS (ftype) = 1;
17395 child_die = sibling_die (child_die);
17398 /* Allocate storage for parameters and fill them in. */
17399 TYPE_NFIELDS (ftype) = nparams;
17400 TYPE_FIELDS (ftype) = (struct field *)
17401 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17403 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17404 even if we error out during the parameters reading below. */
17405 for (iparams = 0; iparams < nparams; iparams++)
17406 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17409 child_die = die->child;
17410 while (child_die && child_die->tag)
17412 if (child_die->tag == DW_TAG_formal_parameter)
17414 struct type *arg_type;
17416 /* DWARF version 2 has no clean way to discern C++
17417 static and non-static member functions. G++ helps
17418 GDB by marking the first parameter for non-static
17419 member functions (which is the this pointer) as
17420 artificial. We pass this information to
17421 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17423 DWARF version 3 added DW_AT_object_pointer, which GCC
17424 4.5 does not yet generate. */
17425 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17427 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17429 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17430 arg_type = die_type (child_die, cu);
17432 /* RealView does not mark THIS as const, which the testsuite
17433 expects. GCC marks THIS as const in method definitions,
17434 but not in the class specifications (GCC PR 43053). */
17435 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17436 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17439 struct dwarf2_cu *arg_cu = cu;
17440 const char *name = dwarf2_name (child_die, cu);
17442 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17445 /* If the compiler emits this, use it. */
17446 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17449 else if (name && strcmp (name, "this") == 0)
17450 /* Function definitions will have the argument names. */
17452 else if (name == NULL && iparams == 0)
17453 /* Declarations may not have the names, so like
17454 elsewhere in GDB, assume an artificial first
17455 argument is "this". */
17459 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17463 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17466 child_die = sibling_die (child_die);
17473 static struct type *
17474 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17476 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17477 const char *name = NULL;
17478 struct type *this_type, *target_type;
17480 name = dwarf2_full_name (NULL, die, cu);
17481 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17482 TYPE_TARGET_STUB (this_type) = 1;
17483 set_die_type (die, this_type, cu);
17484 target_type = die_type (die, cu);
17485 if (target_type != this_type)
17486 TYPE_TARGET_TYPE (this_type) = target_type;
17489 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17490 spec and cause infinite loops in GDB. */
17491 complaint (_("Self-referential DW_TAG_typedef "
17492 "- DIE at %s [in module %s]"),
17493 sect_offset_str (die->sect_off), objfile_name (objfile));
17494 TYPE_TARGET_TYPE (this_type) = NULL;
17499 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17500 (which may be different from NAME) to the architecture back-end to allow
17501 it to guess the correct format if necessary. */
17503 static struct type *
17504 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17505 const char *name_hint)
17507 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17508 const struct floatformat **format;
17511 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17513 type = init_float_type (objfile, bits, name, format);
17515 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17520 /* Allocate an integer type of size BITS and name NAME. */
17522 static struct type *
17523 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17524 int bits, int unsigned_p, const char *name)
17528 /* Versions of Intel's C Compiler generate an integer type called "void"
17529 instead of using DW_TAG_unspecified_type. This has been seen on
17530 at least versions 14, 17, and 18. */
17531 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17532 && strcmp (name, "void") == 0)
17533 type = objfile_type (objfile)->builtin_void;
17535 type = init_integer_type (objfile, bits, unsigned_p, name);
17540 /* Initialise and return a floating point type of size BITS suitable for
17541 use as a component of a complex number. The NAME_HINT is passed through
17542 when initialising the floating point type and is the name of the complex
17545 As DWARF doesn't currently provide an explicit name for the components
17546 of a complex number, but it can be helpful to have these components
17547 named, we try to select a suitable name based on the size of the
17549 static struct type *
17550 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17551 struct objfile *objfile,
17552 int bits, const char *name_hint)
17554 gdbarch *gdbarch = get_objfile_arch (objfile);
17555 struct type *tt = nullptr;
17557 /* Try to find a suitable floating point builtin type of size BITS.
17558 We're going to use the name of this type as the name for the complex
17559 target type that we are about to create. */
17560 switch (cu->language)
17562 case language_fortran:
17566 tt = builtin_f_type (gdbarch)->builtin_real;
17569 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17571 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17573 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17581 tt = builtin_type (gdbarch)->builtin_float;
17584 tt = builtin_type (gdbarch)->builtin_double;
17586 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17588 tt = builtin_type (gdbarch)->builtin_long_double;
17594 /* If the type we found doesn't match the size we were looking for, then
17595 pretend we didn't find a type at all, the complex target type we
17596 create will then be nameless. */
17597 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17600 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17601 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17604 /* Find a representation of a given base type and install
17605 it in the TYPE field of the die. */
17607 static struct type *
17608 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17610 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17612 struct attribute *attr;
17613 int encoding = 0, bits = 0;
17616 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17619 encoding = DW_UNSND (attr);
17621 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17624 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17626 name = dwarf2_name (die, cu);
17629 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17634 case DW_ATE_address:
17635 /* Turn DW_ATE_address into a void * pointer. */
17636 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17637 type = init_pointer_type (objfile, bits, name, type);
17639 case DW_ATE_boolean:
17640 type = init_boolean_type (objfile, bits, 1, name);
17642 case DW_ATE_complex_float:
17643 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17644 type = init_complex_type (objfile, name, type);
17646 case DW_ATE_decimal_float:
17647 type = init_decfloat_type (objfile, bits, name);
17650 type = dwarf2_init_float_type (objfile, bits, name, name);
17652 case DW_ATE_signed:
17653 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17655 case DW_ATE_unsigned:
17656 if (cu->language == language_fortran
17658 && startswith (name, "character("))
17659 type = init_character_type (objfile, bits, 1, name);
17661 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17663 case DW_ATE_signed_char:
17664 if (cu->language == language_ada || cu->language == language_m2
17665 || cu->language == language_pascal
17666 || cu->language == language_fortran)
17667 type = init_character_type (objfile, bits, 0, name);
17669 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17671 case DW_ATE_unsigned_char:
17672 if (cu->language == language_ada || cu->language == language_m2
17673 || cu->language == language_pascal
17674 || cu->language == language_fortran
17675 || cu->language == language_rust)
17676 type = init_character_type (objfile, bits, 1, name);
17678 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17682 gdbarch *arch = get_objfile_arch (objfile);
17685 type = builtin_type (arch)->builtin_char16;
17686 else if (bits == 32)
17687 type = builtin_type (arch)->builtin_char32;
17690 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17692 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17694 return set_die_type (die, type, cu);
17699 complaint (_("unsupported DW_AT_encoding: '%s'"),
17700 dwarf_type_encoding_name (encoding));
17701 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17705 if (name && strcmp (name, "char") == 0)
17706 TYPE_NOSIGN (type) = 1;
17708 maybe_set_alignment (cu, die, type);
17710 return set_die_type (die, type, cu);
17713 /* Parse dwarf attribute if it's a block, reference or constant and put the
17714 resulting value of the attribute into struct bound_prop.
17715 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17718 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17719 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17720 struct type *default_type)
17722 struct dwarf2_property_baton *baton;
17723 struct obstack *obstack
17724 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17726 gdb_assert (default_type != NULL);
17728 if (attr == NULL || prop == NULL)
17731 if (attr_form_is_block (attr))
17733 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17734 baton->property_type = default_type;
17735 baton->locexpr.per_cu = cu->per_cu;
17736 baton->locexpr.size = DW_BLOCK (attr)->size;
17737 baton->locexpr.data = DW_BLOCK (attr)->data;
17738 baton->locexpr.is_reference = false;
17739 prop->data.baton = baton;
17740 prop->kind = PROP_LOCEXPR;
17741 gdb_assert (prop->data.baton != NULL);
17743 else if (attr_form_is_ref (attr))
17745 struct dwarf2_cu *target_cu = cu;
17746 struct die_info *target_die;
17747 struct attribute *target_attr;
17749 target_die = follow_die_ref (die, attr, &target_cu);
17750 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17751 if (target_attr == NULL)
17752 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17754 if (target_attr == NULL)
17757 switch (target_attr->name)
17759 case DW_AT_location:
17760 if (attr_form_is_section_offset (target_attr))
17762 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17763 baton->property_type = die_type (target_die, target_cu);
17764 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17765 prop->data.baton = baton;
17766 prop->kind = PROP_LOCLIST;
17767 gdb_assert (prop->data.baton != NULL);
17769 else if (attr_form_is_block (target_attr))
17771 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17772 baton->property_type = die_type (target_die, target_cu);
17773 baton->locexpr.per_cu = cu->per_cu;
17774 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17775 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17776 baton->locexpr.is_reference = true;
17777 prop->data.baton = baton;
17778 prop->kind = PROP_LOCEXPR;
17779 gdb_assert (prop->data.baton != NULL);
17783 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17784 "dynamic property");
17788 case DW_AT_data_member_location:
17792 if (!handle_data_member_location (target_die, target_cu,
17796 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17797 baton->property_type = read_type_die (target_die->parent,
17799 baton->offset_info.offset = offset;
17800 baton->offset_info.type = die_type (target_die, target_cu);
17801 prop->data.baton = baton;
17802 prop->kind = PROP_ADDR_OFFSET;
17807 else if (attr_form_is_constant (attr))
17809 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17810 prop->kind = PROP_CONST;
17814 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17815 dwarf2_name (die, cu));
17822 /* Find an integer type the same size as the address size given in the
17823 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17824 is unsigned or not. */
17826 static struct type *
17827 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17830 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17831 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17832 struct type *int_type;
17834 /* Helper macro to examine the various builtin types. */
17835 #define TRY_TYPE(F) \
17836 int_type = (unsigned_p \
17837 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17838 : objfile_type (objfile)->builtin_ ## F); \
17839 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17846 TRY_TYPE (long_long);
17850 gdb_assert_not_reached ("unable to find suitable integer type");
17853 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17854 present (which is valid) then compute the default type based on the
17855 compilation units address size. */
17857 static struct type *
17858 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17860 struct type *index_type = die_type (die, cu);
17862 /* Dwarf-2 specifications explicitly allows to create subrange types
17863 without specifying a base type.
17864 In that case, the base type must be set to the type of
17865 the lower bound, upper bound or count, in that order, if any of these
17866 three attributes references an object that has a type.
17867 If no base type is found, the Dwarf-2 specifications say that
17868 a signed integer type of size equal to the size of an address should
17870 For the following C code: `extern char gdb_int [];'
17871 GCC produces an empty range DIE.
17872 FIXME: muller/2010-05-28: Possible references to object for low bound,
17873 high bound or count are not yet handled by this code. */
17874 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17875 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17880 /* Read the given DW_AT_subrange DIE. */
17882 static struct type *
17883 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17885 struct type *base_type, *orig_base_type;
17886 struct type *range_type;
17887 struct attribute *attr;
17888 struct dynamic_prop low, high;
17889 int low_default_is_valid;
17890 int high_bound_is_count = 0;
17892 ULONGEST negative_mask;
17894 orig_base_type = read_subrange_index_type (die, cu);
17896 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17897 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17898 creating the range type, but we use the result of check_typedef
17899 when examining properties of the type. */
17900 base_type = check_typedef (orig_base_type);
17902 /* The die_type call above may have already set the type for this DIE. */
17903 range_type = get_die_type (die, cu);
17907 low.kind = PROP_CONST;
17908 high.kind = PROP_CONST;
17909 high.data.const_val = 0;
17911 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17912 omitting DW_AT_lower_bound. */
17913 switch (cu->language)
17916 case language_cplus:
17917 low.data.const_val = 0;
17918 low_default_is_valid = 1;
17920 case language_fortran:
17921 low.data.const_val = 1;
17922 low_default_is_valid = 1;
17925 case language_objc:
17926 case language_rust:
17927 low.data.const_val = 0;
17928 low_default_is_valid = (cu->header.version >= 4);
17932 case language_pascal:
17933 low.data.const_val = 1;
17934 low_default_is_valid = (cu->header.version >= 4);
17937 low.data.const_val = 0;
17938 low_default_is_valid = 0;
17942 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17944 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17945 else if (!low_default_is_valid)
17946 complaint (_("Missing DW_AT_lower_bound "
17947 "- DIE at %s [in module %s]"),
17948 sect_offset_str (die->sect_off),
17949 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17951 struct attribute *attr_ub, *attr_count;
17952 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17953 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17955 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17956 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17958 /* If bounds are constant do the final calculation here. */
17959 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17960 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17962 high_bound_is_count = 1;
17966 if (attr_ub != NULL)
17967 complaint (_("Unresolved DW_AT_upper_bound "
17968 "- DIE at %s [in module %s]"),
17969 sect_offset_str (die->sect_off),
17970 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17971 if (attr_count != NULL)
17972 complaint (_("Unresolved DW_AT_count "
17973 "- DIE at %s [in module %s]"),
17974 sect_offset_str (die->sect_off),
17975 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17980 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17981 if (bias_attr != nullptr && attr_form_is_constant (bias_attr))
17982 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17984 /* Normally, the DWARF producers are expected to use a signed
17985 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17986 But this is unfortunately not always the case, as witnessed
17987 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17988 is used instead. To work around that ambiguity, we treat
17989 the bounds as signed, and thus sign-extend their values, when
17990 the base type is signed. */
17992 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17993 if (low.kind == PROP_CONST
17994 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17995 low.data.const_val |= negative_mask;
17996 if (high.kind == PROP_CONST
17997 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17998 high.data.const_val |= negative_mask;
18000 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
18002 if (high_bound_is_count)
18003 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
18005 /* Ada expects an empty array on no boundary attributes. */
18006 if (attr == NULL && cu->language != language_ada)
18007 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
18009 name = dwarf2_name (die, cu);
18011 TYPE_NAME (range_type) = name;
18013 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18015 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18017 maybe_set_alignment (cu, die, range_type);
18019 set_die_type (die, range_type, cu);
18021 /* set_die_type should be already done. */
18022 set_descriptive_type (range_type, die, cu);
18027 static struct type *
18028 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18032 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18034 TYPE_NAME (type) = dwarf2_name (die, cu);
18036 /* In Ada, an unspecified type is typically used when the description
18037 of the type is defered to a different unit. When encountering
18038 such a type, we treat it as a stub, and try to resolve it later on,
18040 if (cu->language == language_ada)
18041 TYPE_STUB (type) = 1;
18043 return set_die_type (die, type, cu);
18046 /* Read a single die and all its descendents. Set the die's sibling
18047 field to NULL; set other fields in the die correctly, and set all
18048 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18049 location of the info_ptr after reading all of those dies. PARENT
18050 is the parent of the die in question. */
18052 static struct die_info *
18053 read_die_and_children (const struct die_reader_specs *reader,
18054 const gdb_byte *info_ptr,
18055 const gdb_byte **new_info_ptr,
18056 struct die_info *parent)
18058 struct die_info *die;
18059 const gdb_byte *cur_ptr;
18062 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18065 *new_info_ptr = cur_ptr;
18068 store_in_ref_table (die, reader->cu);
18071 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18075 *new_info_ptr = cur_ptr;
18078 die->sibling = NULL;
18079 die->parent = parent;
18083 /* Read a die, all of its descendents, and all of its siblings; set
18084 all of the fields of all of the dies correctly. Arguments are as
18085 in read_die_and_children. */
18087 static struct die_info *
18088 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18089 const gdb_byte *info_ptr,
18090 const gdb_byte **new_info_ptr,
18091 struct die_info *parent)
18093 struct die_info *first_die, *last_sibling;
18094 const gdb_byte *cur_ptr;
18096 cur_ptr = info_ptr;
18097 first_die = last_sibling = NULL;
18101 struct die_info *die
18102 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18106 *new_info_ptr = cur_ptr;
18113 last_sibling->sibling = die;
18115 last_sibling = die;
18119 /* Read a die, all of its descendents, and all of its siblings; set
18120 all of the fields of all of the dies correctly. Arguments are as
18121 in read_die_and_children.
18122 This the main entry point for reading a DIE and all its children. */
18124 static struct die_info *
18125 read_die_and_siblings (const struct die_reader_specs *reader,
18126 const gdb_byte *info_ptr,
18127 const gdb_byte **new_info_ptr,
18128 struct die_info *parent)
18130 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18131 new_info_ptr, parent);
18133 if (dwarf_die_debug)
18135 fprintf_unfiltered (gdb_stdlog,
18136 "Read die from %s@0x%x of %s:\n",
18137 get_section_name (reader->die_section),
18138 (unsigned) (info_ptr - reader->die_section->buffer),
18139 bfd_get_filename (reader->abfd));
18140 dump_die (die, dwarf_die_debug);
18146 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18148 The caller is responsible for filling in the extra attributes
18149 and updating (*DIEP)->num_attrs.
18150 Set DIEP to point to a newly allocated die with its information,
18151 except for its child, sibling, and parent fields.
18152 Set HAS_CHILDREN to tell whether the die has children or not. */
18154 static const gdb_byte *
18155 read_full_die_1 (const struct die_reader_specs *reader,
18156 struct die_info **diep, const gdb_byte *info_ptr,
18157 int *has_children, int num_extra_attrs)
18159 unsigned int abbrev_number, bytes_read, i;
18160 struct abbrev_info *abbrev;
18161 struct die_info *die;
18162 struct dwarf2_cu *cu = reader->cu;
18163 bfd *abfd = reader->abfd;
18165 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18166 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18167 info_ptr += bytes_read;
18168 if (!abbrev_number)
18175 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18177 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18179 bfd_get_filename (abfd));
18181 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18182 die->sect_off = sect_off;
18183 die->tag = abbrev->tag;
18184 die->abbrev = abbrev_number;
18186 /* Make the result usable.
18187 The caller needs to update num_attrs after adding the extra
18189 die->num_attrs = abbrev->num_attrs;
18191 for (i = 0; i < abbrev->num_attrs; ++i)
18192 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18196 *has_children = abbrev->has_children;
18200 /* Read a die and all its attributes.
18201 Set DIEP to point to a newly allocated die with its information,
18202 except for its child, sibling, and parent fields.
18203 Set HAS_CHILDREN to tell whether the die has children or not. */
18205 static const gdb_byte *
18206 read_full_die (const struct die_reader_specs *reader,
18207 struct die_info **diep, const gdb_byte *info_ptr,
18210 const gdb_byte *result;
18212 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18214 if (dwarf_die_debug)
18216 fprintf_unfiltered (gdb_stdlog,
18217 "Read die from %s@0x%x of %s:\n",
18218 get_section_name (reader->die_section),
18219 (unsigned) (info_ptr - reader->die_section->buffer),
18220 bfd_get_filename (reader->abfd));
18221 dump_die (*diep, dwarf_die_debug);
18227 /* Abbreviation tables.
18229 In DWARF version 2, the description of the debugging information is
18230 stored in a separate .debug_abbrev section. Before we read any
18231 dies from a section we read in all abbreviations and install them
18232 in a hash table. */
18234 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18236 struct abbrev_info *
18237 abbrev_table::alloc_abbrev ()
18239 struct abbrev_info *abbrev;
18241 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18242 memset (abbrev, 0, sizeof (struct abbrev_info));
18247 /* Add an abbreviation to the table. */
18250 abbrev_table::add_abbrev (unsigned int abbrev_number,
18251 struct abbrev_info *abbrev)
18253 unsigned int hash_number;
18255 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18256 abbrev->next = m_abbrevs[hash_number];
18257 m_abbrevs[hash_number] = abbrev;
18260 /* Look up an abbrev in the table.
18261 Returns NULL if the abbrev is not found. */
18263 struct abbrev_info *
18264 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18266 unsigned int hash_number;
18267 struct abbrev_info *abbrev;
18269 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18270 abbrev = m_abbrevs[hash_number];
18274 if (abbrev->number == abbrev_number)
18276 abbrev = abbrev->next;
18281 /* Read in an abbrev table. */
18283 static abbrev_table_up
18284 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18285 struct dwarf2_section_info *section,
18286 sect_offset sect_off)
18288 struct objfile *objfile = dwarf2_per_objfile->objfile;
18289 bfd *abfd = get_section_bfd_owner (section);
18290 const gdb_byte *abbrev_ptr;
18291 struct abbrev_info *cur_abbrev;
18292 unsigned int abbrev_number, bytes_read, abbrev_name;
18293 unsigned int abbrev_form;
18294 struct attr_abbrev *cur_attrs;
18295 unsigned int allocated_attrs;
18297 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18299 dwarf2_read_section (objfile, section);
18300 abbrev_ptr = section->buffer + to_underlying (sect_off);
18301 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18302 abbrev_ptr += bytes_read;
18304 allocated_attrs = ATTR_ALLOC_CHUNK;
18305 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18307 /* Loop until we reach an abbrev number of 0. */
18308 while (abbrev_number)
18310 cur_abbrev = abbrev_table->alloc_abbrev ();
18312 /* read in abbrev header */
18313 cur_abbrev->number = abbrev_number;
18315 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18316 abbrev_ptr += bytes_read;
18317 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18320 /* now read in declarations */
18323 LONGEST implicit_const;
18325 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18326 abbrev_ptr += bytes_read;
18327 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18328 abbrev_ptr += bytes_read;
18329 if (abbrev_form == DW_FORM_implicit_const)
18331 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18333 abbrev_ptr += bytes_read;
18337 /* Initialize it due to a false compiler warning. */
18338 implicit_const = -1;
18341 if (abbrev_name == 0)
18344 if (cur_abbrev->num_attrs == allocated_attrs)
18346 allocated_attrs += ATTR_ALLOC_CHUNK;
18348 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18351 cur_attrs[cur_abbrev->num_attrs].name
18352 = (enum dwarf_attribute) abbrev_name;
18353 cur_attrs[cur_abbrev->num_attrs].form
18354 = (enum dwarf_form) abbrev_form;
18355 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18356 ++cur_abbrev->num_attrs;
18359 cur_abbrev->attrs =
18360 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18361 cur_abbrev->num_attrs);
18362 memcpy (cur_abbrev->attrs, cur_attrs,
18363 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18365 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18367 /* Get next abbreviation.
18368 Under Irix6 the abbreviations for a compilation unit are not
18369 always properly terminated with an abbrev number of 0.
18370 Exit loop if we encounter an abbreviation which we have
18371 already read (which means we are about to read the abbreviations
18372 for the next compile unit) or if the end of the abbreviation
18373 table is reached. */
18374 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18376 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18377 abbrev_ptr += bytes_read;
18378 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18383 return abbrev_table;
18386 /* Returns nonzero if TAG represents a type that we might generate a partial
18390 is_type_tag_for_partial (int tag)
18395 /* Some types that would be reasonable to generate partial symbols for,
18396 that we don't at present. */
18397 case DW_TAG_array_type:
18398 case DW_TAG_file_type:
18399 case DW_TAG_ptr_to_member_type:
18400 case DW_TAG_set_type:
18401 case DW_TAG_string_type:
18402 case DW_TAG_subroutine_type:
18404 case DW_TAG_base_type:
18405 case DW_TAG_class_type:
18406 case DW_TAG_interface_type:
18407 case DW_TAG_enumeration_type:
18408 case DW_TAG_structure_type:
18409 case DW_TAG_subrange_type:
18410 case DW_TAG_typedef:
18411 case DW_TAG_union_type:
18418 /* Load all DIEs that are interesting for partial symbols into memory. */
18420 static struct partial_die_info *
18421 load_partial_dies (const struct die_reader_specs *reader,
18422 const gdb_byte *info_ptr, int building_psymtab)
18424 struct dwarf2_cu *cu = reader->cu;
18425 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18426 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18427 unsigned int bytes_read;
18428 unsigned int load_all = 0;
18429 int nesting_level = 1;
18434 gdb_assert (cu->per_cu != NULL);
18435 if (cu->per_cu->load_all_dies)
18439 = htab_create_alloc_ex (cu->header.length / 12,
18443 &cu->comp_unit_obstack,
18444 hashtab_obstack_allocate,
18445 dummy_obstack_deallocate);
18449 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18451 /* A NULL abbrev means the end of a series of children. */
18452 if (abbrev == NULL)
18454 if (--nesting_level == 0)
18457 info_ptr += bytes_read;
18458 last_die = parent_die;
18459 parent_die = parent_die->die_parent;
18463 /* Check for template arguments. We never save these; if
18464 they're seen, we just mark the parent, and go on our way. */
18465 if (parent_die != NULL
18466 && cu->language == language_cplus
18467 && (abbrev->tag == DW_TAG_template_type_param
18468 || abbrev->tag == DW_TAG_template_value_param))
18470 parent_die->has_template_arguments = 1;
18474 /* We don't need a partial DIE for the template argument. */
18475 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18480 /* We only recurse into c++ subprograms looking for template arguments.
18481 Skip their other children. */
18483 && cu->language == language_cplus
18484 && parent_die != NULL
18485 && parent_die->tag == DW_TAG_subprogram)
18487 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18491 /* Check whether this DIE is interesting enough to save. Normally
18492 we would not be interested in members here, but there may be
18493 later variables referencing them via DW_AT_specification (for
18494 static members). */
18496 && !is_type_tag_for_partial (abbrev->tag)
18497 && abbrev->tag != DW_TAG_constant
18498 && abbrev->tag != DW_TAG_enumerator
18499 && abbrev->tag != DW_TAG_subprogram
18500 && abbrev->tag != DW_TAG_inlined_subroutine
18501 && abbrev->tag != DW_TAG_lexical_block
18502 && abbrev->tag != DW_TAG_variable
18503 && abbrev->tag != DW_TAG_namespace
18504 && abbrev->tag != DW_TAG_module
18505 && abbrev->tag != DW_TAG_member
18506 && abbrev->tag != DW_TAG_imported_unit
18507 && abbrev->tag != DW_TAG_imported_declaration)
18509 /* Otherwise we skip to the next sibling, if any. */
18510 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18514 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18517 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18519 /* This two-pass algorithm for processing partial symbols has a
18520 high cost in cache pressure. Thus, handle some simple cases
18521 here which cover the majority of C partial symbols. DIEs
18522 which neither have specification tags in them, nor could have
18523 specification tags elsewhere pointing at them, can simply be
18524 processed and discarded.
18526 This segment is also optional; scan_partial_symbols and
18527 add_partial_symbol will handle these DIEs if we chain
18528 them in normally. When compilers which do not emit large
18529 quantities of duplicate debug information are more common,
18530 this code can probably be removed. */
18532 /* Any complete simple types at the top level (pretty much all
18533 of them, for a language without namespaces), can be processed
18535 if (parent_die == NULL
18536 && pdi.has_specification == 0
18537 && pdi.is_declaration == 0
18538 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18539 || pdi.tag == DW_TAG_base_type
18540 || pdi.tag == DW_TAG_subrange_type))
18542 if (building_psymtab && pdi.name != NULL)
18543 add_psymbol_to_list (pdi.name, strlen (pdi.name), false,
18544 VAR_DOMAIN, LOC_TYPEDEF, -1,
18545 psymbol_placement::STATIC,
18546 0, cu->language, objfile);
18547 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18551 /* The exception for DW_TAG_typedef with has_children above is
18552 a workaround of GCC PR debug/47510. In the case of this complaint
18553 type_name_or_error will error on such types later.
18555 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18556 it could not find the child DIEs referenced later, this is checked
18557 above. In correct DWARF DW_TAG_typedef should have no children. */
18559 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18560 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18561 "- DIE at %s [in module %s]"),
18562 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18564 /* If we're at the second level, and we're an enumerator, and
18565 our parent has no specification (meaning possibly lives in a
18566 namespace elsewhere), then we can add the partial symbol now
18567 instead of queueing it. */
18568 if (pdi.tag == DW_TAG_enumerator
18569 && parent_die != NULL
18570 && parent_die->die_parent == NULL
18571 && parent_die->tag == DW_TAG_enumeration_type
18572 && parent_die->has_specification == 0)
18574 if (pdi.name == NULL)
18575 complaint (_("malformed enumerator DIE ignored"));
18576 else if (building_psymtab)
18577 add_psymbol_to_list (pdi.name, strlen (pdi.name), false,
18578 VAR_DOMAIN, LOC_CONST, -1,
18579 cu->language == language_cplus
18580 ? psymbol_placement::GLOBAL
18581 : psymbol_placement::STATIC,
18582 0, cu->language, objfile);
18584 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18588 struct partial_die_info *part_die
18589 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18591 /* We'll save this DIE so link it in. */
18592 part_die->die_parent = parent_die;
18593 part_die->die_sibling = NULL;
18594 part_die->die_child = NULL;
18596 if (last_die && last_die == parent_die)
18597 last_die->die_child = part_die;
18599 last_die->die_sibling = part_die;
18601 last_die = part_die;
18603 if (first_die == NULL)
18604 first_die = part_die;
18606 /* Maybe add the DIE to the hash table. Not all DIEs that we
18607 find interesting need to be in the hash table, because we
18608 also have the parent/sibling/child chains; only those that we
18609 might refer to by offset later during partial symbol reading.
18611 For now this means things that might have be the target of a
18612 DW_AT_specification, DW_AT_abstract_origin, or
18613 DW_AT_extension. DW_AT_extension will refer only to
18614 namespaces; DW_AT_abstract_origin refers to functions (and
18615 many things under the function DIE, but we do not recurse
18616 into function DIEs during partial symbol reading) and
18617 possibly variables as well; DW_AT_specification refers to
18618 declarations. Declarations ought to have the DW_AT_declaration
18619 flag. It happens that GCC forgets to put it in sometimes, but
18620 only for functions, not for types.
18622 Adding more things than necessary to the hash table is harmless
18623 except for the performance cost. Adding too few will result in
18624 wasted time in find_partial_die, when we reread the compilation
18625 unit with load_all_dies set. */
18628 || abbrev->tag == DW_TAG_constant
18629 || abbrev->tag == DW_TAG_subprogram
18630 || abbrev->tag == DW_TAG_variable
18631 || abbrev->tag == DW_TAG_namespace
18632 || part_die->is_declaration)
18636 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18637 to_underlying (part_die->sect_off),
18642 /* For some DIEs we want to follow their children (if any). For C
18643 we have no reason to follow the children of structures; for other
18644 languages we have to, so that we can get at method physnames
18645 to infer fully qualified class names, for DW_AT_specification,
18646 and for C++ template arguments. For C++, we also look one level
18647 inside functions to find template arguments (if the name of the
18648 function does not already contain the template arguments).
18650 For Ada, we need to scan the children of subprograms and lexical
18651 blocks as well because Ada allows the definition of nested
18652 entities that could be interesting for the debugger, such as
18653 nested subprograms for instance. */
18654 if (last_die->has_children
18656 || last_die->tag == DW_TAG_namespace
18657 || last_die->tag == DW_TAG_module
18658 || last_die->tag == DW_TAG_enumeration_type
18659 || (cu->language == language_cplus
18660 && last_die->tag == DW_TAG_subprogram
18661 && (last_die->name == NULL
18662 || strchr (last_die->name, '<') == NULL))
18663 || (cu->language != language_c
18664 && (last_die->tag == DW_TAG_class_type
18665 || last_die->tag == DW_TAG_interface_type
18666 || last_die->tag == DW_TAG_structure_type
18667 || last_die->tag == DW_TAG_union_type))
18668 || (cu->language == language_ada
18669 && (last_die->tag == DW_TAG_subprogram
18670 || last_die->tag == DW_TAG_lexical_block))))
18673 parent_die = last_die;
18677 /* Otherwise we skip to the next sibling, if any. */
18678 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18680 /* Back to the top, do it again. */
18684 partial_die_info::partial_die_info (sect_offset sect_off_,
18685 struct abbrev_info *abbrev)
18686 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18690 /* Read a minimal amount of information into the minimal die structure.
18691 INFO_PTR should point just after the initial uleb128 of a DIE. */
18694 partial_die_info::read (const struct die_reader_specs *reader,
18695 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18697 struct dwarf2_cu *cu = reader->cu;
18698 struct dwarf2_per_objfile *dwarf2_per_objfile
18699 = cu->per_cu->dwarf2_per_objfile;
18701 int has_low_pc_attr = 0;
18702 int has_high_pc_attr = 0;
18703 int high_pc_relative = 0;
18705 for (i = 0; i < abbrev.num_attrs; ++i)
18707 struct attribute attr;
18709 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18711 /* Store the data if it is of an attribute we want to keep in a
18712 partial symbol table. */
18718 case DW_TAG_compile_unit:
18719 case DW_TAG_partial_unit:
18720 case DW_TAG_type_unit:
18721 /* Compilation units have a DW_AT_name that is a filename, not
18722 a source language identifier. */
18723 case DW_TAG_enumeration_type:
18724 case DW_TAG_enumerator:
18725 /* These tags always have simple identifiers already; no need
18726 to canonicalize them. */
18727 name = DW_STRING (&attr);
18731 struct objfile *objfile = dwarf2_per_objfile->objfile;
18734 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18735 &objfile->per_bfd->storage_obstack);
18740 case DW_AT_linkage_name:
18741 case DW_AT_MIPS_linkage_name:
18742 /* Note that both forms of linkage name might appear. We
18743 assume they will be the same, and we only store the last
18745 linkage_name = DW_STRING (&attr);
18748 has_low_pc_attr = 1;
18749 lowpc = attr_value_as_address (&attr);
18751 case DW_AT_high_pc:
18752 has_high_pc_attr = 1;
18753 highpc = attr_value_as_address (&attr);
18754 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18755 high_pc_relative = 1;
18757 case DW_AT_location:
18758 /* Support the .debug_loc offsets. */
18759 if (attr_form_is_block (&attr))
18761 d.locdesc = DW_BLOCK (&attr);
18763 else if (attr_form_is_section_offset (&attr))
18765 dwarf2_complex_location_expr_complaint ();
18769 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18770 "partial symbol information");
18773 case DW_AT_external:
18774 is_external = DW_UNSND (&attr);
18776 case DW_AT_declaration:
18777 is_declaration = DW_UNSND (&attr);
18782 case DW_AT_abstract_origin:
18783 case DW_AT_specification:
18784 case DW_AT_extension:
18785 has_specification = 1;
18786 spec_offset = dwarf2_get_ref_die_offset (&attr);
18787 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18788 || cu->per_cu->is_dwz);
18790 case DW_AT_sibling:
18791 /* Ignore absolute siblings, they might point outside of
18792 the current compile unit. */
18793 if (attr.form == DW_FORM_ref_addr)
18794 complaint (_("ignoring absolute DW_AT_sibling"));
18797 const gdb_byte *buffer = reader->buffer;
18798 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18799 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18801 if (sibling_ptr < info_ptr)
18802 complaint (_("DW_AT_sibling points backwards"));
18803 else if (sibling_ptr > reader->buffer_end)
18804 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18806 sibling = sibling_ptr;
18809 case DW_AT_byte_size:
18812 case DW_AT_const_value:
18813 has_const_value = 1;
18815 case DW_AT_calling_convention:
18816 /* DWARF doesn't provide a way to identify a program's source-level
18817 entry point. DW_AT_calling_convention attributes are only meant
18818 to describe functions' calling conventions.
18820 However, because it's a necessary piece of information in
18821 Fortran, and before DWARF 4 DW_CC_program was the only
18822 piece of debugging information whose definition refers to
18823 a 'main program' at all, several compilers marked Fortran
18824 main programs with DW_CC_program --- even when those
18825 functions use the standard calling conventions.
18827 Although DWARF now specifies a way to provide this
18828 information, we support this practice for backward
18830 if (DW_UNSND (&attr) == DW_CC_program
18831 && cu->language == language_fortran)
18832 main_subprogram = 1;
18835 if (DW_UNSND (&attr) == DW_INL_inlined
18836 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18837 may_be_inlined = 1;
18841 if (tag == DW_TAG_imported_unit)
18843 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18844 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18845 || cu->per_cu->is_dwz);
18849 case DW_AT_main_subprogram:
18850 main_subprogram = DW_UNSND (&attr);
18855 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18856 but that requires a full DIE, so instead we just
18858 int need_ranges_base = tag != DW_TAG_compile_unit;
18859 unsigned int ranges_offset = (DW_UNSND (&attr)
18860 + (need_ranges_base
18864 /* Value of the DW_AT_ranges attribute is the offset in the
18865 .debug_ranges section. */
18866 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18877 /* For Ada, if both the name and the linkage name appear, we prefer
18878 the latter. This lets "catch exception" work better, regardless
18879 of the order in which the name and linkage name were emitted.
18880 Really, though, this is just a workaround for the fact that gdb
18881 doesn't store both the name and the linkage name. */
18882 if (cu->language == language_ada && linkage_name != nullptr)
18883 name = linkage_name;
18885 if (high_pc_relative)
18888 if (has_low_pc_attr && has_high_pc_attr)
18890 /* When using the GNU linker, .gnu.linkonce. sections are used to
18891 eliminate duplicate copies of functions and vtables and such.
18892 The linker will arbitrarily choose one and discard the others.
18893 The AT_*_pc values for such functions refer to local labels in
18894 these sections. If the section from that file was discarded, the
18895 labels are not in the output, so the relocs get a value of 0.
18896 If this is a discarded function, mark the pc bounds as invalid,
18897 so that GDB will ignore it. */
18898 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18900 struct objfile *objfile = dwarf2_per_objfile->objfile;
18901 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18903 complaint (_("DW_AT_low_pc %s is zero "
18904 "for DIE at %s [in module %s]"),
18905 paddress (gdbarch, lowpc),
18906 sect_offset_str (sect_off),
18907 objfile_name (objfile));
18909 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18910 else if (lowpc >= highpc)
18912 struct objfile *objfile = dwarf2_per_objfile->objfile;
18913 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18915 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18916 "for DIE at %s [in module %s]"),
18917 paddress (gdbarch, lowpc),
18918 paddress (gdbarch, highpc),
18919 sect_offset_str (sect_off),
18920 objfile_name (objfile));
18929 /* Find a cached partial DIE at OFFSET in CU. */
18931 struct partial_die_info *
18932 dwarf2_cu::find_partial_die (sect_offset sect_off)
18934 struct partial_die_info *lookup_die = NULL;
18935 struct partial_die_info part_die (sect_off);
18937 lookup_die = ((struct partial_die_info *)
18938 htab_find_with_hash (partial_dies, &part_die,
18939 to_underlying (sect_off)));
18944 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18945 except in the case of .debug_types DIEs which do not reference
18946 outside their CU (they do however referencing other types via
18947 DW_FORM_ref_sig8). */
18949 static const struct cu_partial_die_info
18950 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18952 struct dwarf2_per_objfile *dwarf2_per_objfile
18953 = cu->per_cu->dwarf2_per_objfile;
18954 struct objfile *objfile = dwarf2_per_objfile->objfile;
18955 struct dwarf2_per_cu_data *per_cu = NULL;
18956 struct partial_die_info *pd = NULL;
18958 if (offset_in_dwz == cu->per_cu->is_dwz
18959 && offset_in_cu_p (&cu->header, sect_off))
18961 pd = cu->find_partial_die (sect_off);
18964 /* We missed recording what we needed.
18965 Load all dies and try again. */
18966 per_cu = cu->per_cu;
18970 /* TUs don't reference other CUs/TUs (except via type signatures). */
18971 if (cu->per_cu->is_debug_types)
18973 error (_("Dwarf Error: Type Unit at offset %s contains"
18974 " external reference to offset %s [in module %s].\n"),
18975 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18976 bfd_get_filename (objfile->obfd));
18978 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18979 dwarf2_per_objfile);
18981 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18982 load_partial_comp_unit (per_cu);
18984 per_cu->cu->last_used = 0;
18985 pd = per_cu->cu->find_partial_die (sect_off);
18988 /* If we didn't find it, and not all dies have been loaded,
18989 load them all and try again. */
18991 if (pd == NULL && per_cu->load_all_dies == 0)
18993 per_cu->load_all_dies = 1;
18995 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18996 THIS_CU->cu may already be in use. So we can't just free it and
18997 replace its DIEs with the ones we read in. Instead, we leave those
18998 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18999 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19001 load_partial_comp_unit (per_cu);
19003 pd = per_cu->cu->find_partial_die (sect_off);
19007 internal_error (__FILE__, __LINE__,
19008 _("could not find partial DIE %s "
19009 "in cache [from module %s]\n"),
19010 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19011 return { per_cu->cu, pd };
19014 /* See if we can figure out if the class lives in a namespace. We do
19015 this by looking for a member function; its demangled name will
19016 contain namespace info, if there is any. */
19019 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19020 struct dwarf2_cu *cu)
19022 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19023 what template types look like, because the demangler
19024 frequently doesn't give the same name as the debug info. We
19025 could fix this by only using the demangled name to get the
19026 prefix (but see comment in read_structure_type). */
19028 struct partial_die_info *real_pdi;
19029 struct partial_die_info *child_pdi;
19031 /* If this DIE (this DIE's specification, if any) has a parent, then
19032 we should not do this. We'll prepend the parent's fully qualified
19033 name when we create the partial symbol. */
19035 real_pdi = struct_pdi;
19036 while (real_pdi->has_specification)
19038 auto res = find_partial_die (real_pdi->spec_offset,
19039 real_pdi->spec_is_dwz, cu);
19040 real_pdi = res.pdi;
19044 if (real_pdi->die_parent != NULL)
19047 for (child_pdi = struct_pdi->die_child;
19049 child_pdi = child_pdi->die_sibling)
19051 if (child_pdi->tag == DW_TAG_subprogram
19052 && child_pdi->linkage_name != NULL)
19054 char *actual_class_name
19055 = language_class_name_from_physname (cu->language_defn,
19056 child_pdi->linkage_name);
19057 if (actual_class_name != NULL)
19059 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19061 = obstack_strdup (&objfile->per_bfd->storage_obstack,
19062 actual_class_name);
19063 xfree (actual_class_name);
19071 partial_die_info::fixup (struct dwarf2_cu *cu)
19073 /* Once we've fixed up a die, there's no point in doing so again.
19074 This also avoids a memory leak if we were to call
19075 guess_partial_die_structure_name multiple times. */
19079 /* If we found a reference attribute and the DIE has no name, try
19080 to find a name in the referred to DIE. */
19082 if (name == NULL && has_specification)
19084 struct partial_die_info *spec_die;
19086 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19087 spec_die = res.pdi;
19090 spec_die->fixup (cu);
19092 if (spec_die->name)
19094 name = spec_die->name;
19096 /* Copy DW_AT_external attribute if it is set. */
19097 if (spec_die->is_external)
19098 is_external = spec_die->is_external;
19102 /* Set default names for some unnamed DIEs. */
19104 if (name == NULL && tag == DW_TAG_namespace)
19105 name = CP_ANONYMOUS_NAMESPACE_STR;
19107 /* If there is no parent die to provide a namespace, and there are
19108 children, see if we can determine the namespace from their linkage
19110 if (cu->language == language_cplus
19111 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19112 && die_parent == NULL
19114 && (tag == DW_TAG_class_type
19115 || tag == DW_TAG_structure_type
19116 || tag == DW_TAG_union_type))
19117 guess_partial_die_structure_name (this, cu);
19119 /* GCC might emit a nameless struct or union that has a linkage
19120 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19122 && (tag == DW_TAG_class_type
19123 || tag == DW_TAG_interface_type
19124 || tag == DW_TAG_structure_type
19125 || tag == DW_TAG_union_type)
19126 && linkage_name != NULL)
19130 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19135 /* Strip any leading namespaces/classes, keep only the base name.
19136 DW_AT_name for named DIEs does not contain the prefixes. */
19137 base = strrchr (demangled, ':');
19138 if (base && base > demangled && base[-1] == ':')
19143 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19144 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
19152 /* Read an attribute value described by an attribute form. */
19154 static const gdb_byte *
19155 read_attribute_value (const struct die_reader_specs *reader,
19156 struct attribute *attr, unsigned form,
19157 LONGEST implicit_const, const gdb_byte *info_ptr)
19159 struct dwarf2_cu *cu = reader->cu;
19160 struct dwarf2_per_objfile *dwarf2_per_objfile
19161 = cu->per_cu->dwarf2_per_objfile;
19162 struct objfile *objfile = dwarf2_per_objfile->objfile;
19163 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19164 bfd *abfd = reader->abfd;
19165 struct comp_unit_head *cu_header = &cu->header;
19166 unsigned int bytes_read;
19167 struct dwarf_block *blk;
19169 attr->form = (enum dwarf_form) form;
19172 case DW_FORM_ref_addr:
19173 if (cu->header.version == 2)
19174 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19176 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19177 &cu->header, &bytes_read);
19178 info_ptr += bytes_read;
19180 case DW_FORM_GNU_ref_alt:
19181 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19182 info_ptr += bytes_read;
19185 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19186 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19187 info_ptr += bytes_read;
19189 case DW_FORM_block2:
19190 blk = dwarf_alloc_block (cu);
19191 blk->size = read_2_bytes (abfd, info_ptr);
19193 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19194 info_ptr += blk->size;
19195 DW_BLOCK (attr) = blk;
19197 case DW_FORM_block4:
19198 blk = dwarf_alloc_block (cu);
19199 blk->size = read_4_bytes (abfd, info_ptr);
19201 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19202 info_ptr += blk->size;
19203 DW_BLOCK (attr) = blk;
19205 case DW_FORM_data2:
19206 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19209 case DW_FORM_data4:
19210 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19213 case DW_FORM_data8:
19214 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19217 case DW_FORM_data16:
19218 blk = dwarf_alloc_block (cu);
19220 blk->data = read_n_bytes (abfd, info_ptr, 16);
19222 DW_BLOCK (attr) = blk;
19224 case DW_FORM_sec_offset:
19225 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19226 info_ptr += bytes_read;
19228 case DW_FORM_string:
19229 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19230 DW_STRING_IS_CANONICAL (attr) = 0;
19231 info_ptr += bytes_read;
19234 if (!cu->per_cu->is_dwz)
19236 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19237 abfd, info_ptr, cu_header,
19239 DW_STRING_IS_CANONICAL (attr) = 0;
19240 info_ptr += bytes_read;
19244 case DW_FORM_line_strp:
19245 if (!cu->per_cu->is_dwz)
19247 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19249 cu_header, &bytes_read);
19250 DW_STRING_IS_CANONICAL (attr) = 0;
19251 info_ptr += bytes_read;
19255 case DW_FORM_GNU_strp_alt:
19257 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19258 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19261 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19263 DW_STRING_IS_CANONICAL (attr) = 0;
19264 info_ptr += bytes_read;
19267 case DW_FORM_exprloc:
19268 case DW_FORM_block:
19269 blk = dwarf_alloc_block (cu);
19270 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19271 info_ptr += bytes_read;
19272 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19273 info_ptr += blk->size;
19274 DW_BLOCK (attr) = blk;
19276 case DW_FORM_block1:
19277 blk = dwarf_alloc_block (cu);
19278 blk->size = read_1_byte (abfd, info_ptr);
19280 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19281 info_ptr += blk->size;
19282 DW_BLOCK (attr) = blk;
19284 case DW_FORM_data1:
19285 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19289 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19292 case DW_FORM_flag_present:
19293 DW_UNSND (attr) = 1;
19295 case DW_FORM_sdata:
19296 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19297 info_ptr += bytes_read;
19299 case DW_FORM_udata:
19300 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19301 info_ptr += bytes_read;
19304 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19305 + read_1_byte (abfd, info_ptr));
19309 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19310 + read_2_bytes (abfd, info_ptr));
19314 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19315 + read_4_bytes (abfd, info_ptr));
19319 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19320 + read_8_bytes (abfd, info_ptr));
19323 case DW_FORM_ref_sig8:
19324 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19327 case DW_FORM_ref_udata:
19328 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19329 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19330 info_ptr += bytes_read;
19332 case DW_FORM_indirect:
19333 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19334 info_ptr += bytes_read;
19335 if (form == DW_FORM_implicit_const)
19337 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19338 info_ptr += bytes_read;
19340 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19343 case DW_FORM_implicit_const:
19344 DW_SND (attr) = implicit_const;
19346 case DW_FORM_addrx:
19347 case DW_FORM_GNU_addr_index:
19348 if (reader->dwo_file == NULL)
19350 /* For now flag a hard error.
19351 Later we can turn this into a complaint. */
19352 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19353 dwarf_form_name (form),
19354 bfd_get_filename (abfd));
19356 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19357 info_ptr += bytes_read;
19360 case DW_FORM_strx1:
19361 case DW_FORM_strx2:
19362 case DW_FORM_strx3:
19363 case DW_FORM_strx4:
19364 case DW_FORM_GNU_str_index:
19365 if (reader->dwo_file == NULL)
19367 /* For now flag a hard error.
19368 Later we can turn this into a complaint if warranted. */
19369 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19370 dwarf_form_name (form),
19371 bfd_get_filename (abfd));
19374 ULONGEST str_index;
19375 if (form == DW_FORM_strx1)
19377 str_index = read_1_byte (abfd, info_ptr);
19380 else if (form == DW_FORM_strx2)
19382 str_index = read_2_bytes (abfd, info_ptr);
19385 else if (form == DW_FORM_strx3)
19387 str_index = read_3_bytes (abfd, info_ptr);
19390 else if (form == DW_FORM_strx4)
19392 str_index = read_4_bytes (abfd, info_ptr);
19397 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19398 info_ptr += bytes_read;
19400 DW_STRING (attr) = read_str_index (reader, str_index);
19401 DW_STRING_IS_CANONICAL (attr) = 0;
19405 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19406 dwarf_form_name (form),
19407 bfd_get_filename (abfd));
19411 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19412 attr->form = DW_FORM_GNU_ref_alt;
19414 /* We have seen instances where the compiler tried to emit a byte
19415 size attribute of -1 which ended up being encoded as an unsigned
19416 0xffffffff. Although 0xffffffff is technically a valid size value,
19417 an object of this size seems pretty unlikely so we can relatively
19418 safely treat these cases as if the size attribute was invalid and
19419 treat them as zero by default. */
19420 if (attr->name == DW_AT_byte_size
19421 && form == DW_FORM_data4
19422 && DW_UNSND (attr) >= 0xffffffff)
19425 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19426 hex_string (DW_UNSND (attr)));
19427 DW_UNSND (attr) = 0;
19433 /* Read an attribute described by an abbreviated attribute. */
19435 static const gdb_byte *
19436 read_attribute (const struct die_reader_specs *reader,
19437 struct attribute *attr, struct attr_abbrev *abbrev,
19438 const gdb_byte *info_ptr)
19440 attr->name = abbrev->name;
19441 return read_attribute_value (reader, attr, abbrev->form,
19442 abbrev->implicit_const, info_ptr);
19445 /* Read dwarf information from a buffer. */
19447 static unsigned int
19448 read_1_byte (bfd *abfd, const gdb_byte *buf)
19450 return bfd_get_8 (abfd, buf);
19454 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19456 return bfd_get_signed_8 (abfd, buf);
19459 static unsigned int
19460 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19462 return bfd_get_16 (abfd, buf);
19466 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19468 return bfd_get_signed_16 (abfd, buf);
19471 static unsigned int
19472 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19474 unsigned int result = 0;
19475 for (int i = 0; i < 3; ++i)
19477 unsigned char byte = bfd_get_8 (abfd, buf);
19479 result |= ((unsigned int) byte << (i * 8));
19484 static unsigned int
19485 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19487 return bfd_get_32 (abfd, buf);
19491 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19493 return bfd_get_signed_32 (abfd, buf);
19497 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19499 return bfd_get_64 (abfd, buf);
19503 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19504 unsigned int *bytes_read)
19506 struct comp_unit_head *cu_header = &cu->header;
19507 CORE_ADDR retval = 0;
19509 if (cu_header->signed_addr_p)
19511 switch (cu_header->addr_size)
19514 retval = bfd_get_signed_16 (abfd, buf);
19517 retval = bfd_get_signed_32 (abfd, buf);
19520 retval = bfd_get_signed_64 (abfd, buf);
19523 internal_error (__FILE__, __LINE__,
19524 _("read_address: bad switch, signed [in module %s]"),
19525 bfd_get_filename (abfd));
19530 switch (cu_header->addr_size)
19533 retval = bfd_get_16 (abfd, buf);
19536 retval = bfd_get_32 (abfd, buf);
19539 retval = bfd_get_64 (abfd, buf);
19542 internal_error (__FILE__, __LINE__,
19543 _("read_address: bad switch, "
19544 "unsigned [in module %s]"),
19545 bfd_get_filename (abfd));
19549 *bytes_read = cu_header->addr_size;
19553 /* Read the initial length from a section. The (draft) DWARF 3
19554 specification allows the initial length to take up either 4 bytes
19555 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19556 bytes describe the length and all offsets will be 8 bytes in length
19559 An older, non-standard 64-bit format is also handled by this
19560 function. The older format in question stores the initial length
19561 as an 8-byte quantity without an escape value. Lengths greater
19562 than 2^32 aren't very common which means that the initial 4 bytes
19563 is almost always zero. Since a length value of zero doesn't make
19564 sense for the 32-bit format, this initial zero can be considered to
19565 be an escape value which indicates the presence of the older 64-bit
19566 format. As written, the code can't detect (old format) lengths
19567 greater than 4GB. If it becomes necessary to handle lengths
19568 somewhat larger than 4GB, we could allow other small values (such
19569 as the non-sensical values of 1, 2, and 3) to also be used as
19570 escape values indicating the presence of the old format.
19572 The value returned via bytes_read should be used to increment the
19573 relevant pointer after calling read_initial_length().
19575 [ Note: read_initial_length() and read_offset() are based on the
19576 document entitled "DWARF Debugging Information Format", revision
19577 3, draft 8, dated November 19, 2001. This document was obtained
19580 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19582 This document is only a draft and is subject to change. (So beware.)
19584 Details regarding the older, non-standard 64-bit format were
19585 determined empirically by examining 64-bit ELF files produced by
19586 the SGI toolchain on an IRIX 6.5 machine.
19588 - Kevin, July 16, 2002
19592 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19594 LONGEST length = bfd_get_32 (abfd, buf);
19596 if (length == 0xffffffff)
19598 length = bfd_get_64 (abfd, buf + 4);
19601 else if (length == 0)
19603 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19604 length = bfd_get_64 (abfd, buf);
19615 /* Cover function for read_initial_length.
19616 Returns the length of the object at BUF, and stores the size of the
19617 initial length in *BYTES_READ and stores the size that offsets will be in
19619 If the initial length size is not equivalent to that specified in
19620 CU_HEADER then issue a complaint.
19621 This is useful when reading non-comp-unit headers. */
19624 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19625 const struct comp_unit_head *cu_header,
19626 unsigned int *bytes_read,
19627 unsigned int *offset_size)
19629 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19631 gdb_assert (cu_header->initial_length_size == 4
19632 || cu_header->initial_length_size == 8
19633 || cu_header->initial_length_size == 12);
19635 if (cu_header->initial_length_size != *bytes_read)
19636 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19638 *offset_size = (*bytes_read == 4) ? 4 : 8;
19642 /* Read an offset from the data stream. The size of the offset is
19643 given by cu_header->offset_size. */
19646 read_offset (bfd *abfd, const gdb_byte *buf,
19647 const struct comp_unit_head *cu_header,
19648 unsigned int *bytes_read)
19650 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19652 *bytes_read = cu_header->offset_size;
19656 /* Read an offset from the data stream. */
19659 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19661 LONGEST retval = 0;
19663 switch (offset_size)
19666 retval = bfd_get_32 (abfd, buf);
19669 retval = bfd_get_64 (abfd, buf);
19672 internal_error (__FILE__, __LINE__,
19673 _("read_offset_1: bad switch [in module %s]"),
19674 bfd_get_filename (abfd));
19680 static const gdb_byte *
19681 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19683 /* If the size of a host char is 8 bits, we can return a pointer
19684 to the buffer, otherwise we have to copy the data to a buffer
19685 allocated on the temporary obstack. */
19686 gdb_assert (HOST_CHAR_BIT == 8);
19690 static const char *
19691 read_direct_string (bfd *abfd, const gdb_byte *buf,
19692 unsigned int *bytes_read_ptr)
19694 /* If the size of a host char is 8 bits, we can return a pointer
19695 to the string, otherwise we have to copy the string to a buffer
19696 allocated on the temporary obstack. */
19697 gdb_assert (HOST_CHAR_BIT == 8);
19700 *bytes_read_ptr = 1;
19703 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19704 return (const char *) buf;
19707 /* Return pointer to string at section SECT offset STR_OFFSET with error
19708 reporting strings FORM_NAME and SECT_NAME. */
19710 static const char *
19711 read_indirect_string_at_offset_from (struct objfile *objfile,
19712 bfd *abfd, LONGEST str_offset,
19713 struct dwarf2_section_info *sect,
19714 const char *form_name,
19715 const char *sect_name)
19717 dwarf2_read_section (objfile, sect);
19718 if (sect->buffer == NULL)
19719 error (_("%s used without %s section [in module %s]"),
19720 form_name, sect_name, bfd_get_filename (abfd));
19721 if (str_offset >= sect->size)
19722 error (_("%s pointing outside of %s section [in module %s]"),
19723 form_name, sect_name, bfd_get_filename (abfd));
19724 gdb_assert (HOST_CHAR_BIT == 8);
19725 if (sect->buffer[str_offset] == '\0')
19727 return (const char *) (sect->buffer + str_offset);
19730 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19732 static const char *
19733 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19734 bfd *abfd, LONGEST str_offset)
19736 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19738 &dwarf2_per_objfile->str,
19739 "DW_FORM_strp", ".debug_str");
19742 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19744 static const char *
19745 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19746 bfd *abfd, LONGEST str_offset)
19748 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19750 &dwarf2_per_objfile->line_str,
19751 "DW_FORM_line_strp",
19752 ".debug_line_str");
19755 /* Read a string at offset STR_OFFSET in the .debug_str section from
19756 the .dwz file DWZ. Throw an error if the offset is too large. If
19757 the string consists of a single NUL byte, return NULL; otherwise
19758 return a pointer to the string. */
19760 static const char *
19761 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19762 LONGEST str_offset)
19764 dwarf2_read_section (objfile, &dwz->str);
19766 if (dwz->str.buffer == NULL)
19767 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19768 "section [in module %s]"),
19769 bfd_get_filename (dwz->dwz_bfd.get ()));
19770 if (str_offset >= dwz->str.size)
19771 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19772 ".debug_str section [in module %s]"),
19773 bfd_get_filename (dwz->dwz_bfd.get ()));
19774 gdb_assert (HOST_CHAR_BIT == 8);
19775 if (dwz->str.buffer[str_offset] == '\0')
19777 return (const char *) (dwz->str.buffer + str_offset);
19780 /* Return pointer to string at .debug_str offset as read from BUF.
19781 BUF is assumed to be in a compilation unit described by CU_HEADER.
19782 Return *BYTES_READ_PTR count of bytes read from BUF. */
19784 static const char *
19785 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19786 const gdb_byte *buf,
19787 const struct comp_unit_head *cu_header,
19788 unsigned int *bytes_read_ptr)
19790 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19792 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19795 /* Return pointer to string at .debug_line_str offset as read from BUF.
19796 BUF is assumed to be in a compilation unit described by CU_HEADER.
19797 Return *BYTES_READ_PTR count of bytes read from BUF. */
19799 static const char *
19800 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19801 bfd *abfd, const gdb_byte *buf,
19802 const struct comp_unit_head *cu_header,
19803 unsigned int *bytes_read_ptr)
19805 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19807 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19812 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19813 unsigned int *bytes_read_ptr)
19816 unsigned int num_read;
19818 unsigned char byte;
19825 byte = bfd_get_8 (abfd, buf);
19828 result |= ((ULONGEST) (byte & 127) << shift);
19829 if ((byte & 128) == 0)
19835 *bytes_read_ptr = num_read;
19840 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19841 unsigned int *bytes_read_ptr)
19844 int shift, num_read;
19845 unsigned char byte;
19852 byte = bfd_get_8 (abfd, buf);
19855 result |= ((ULONGEST) (byte & 127) << shift);
19857 if ((byte & 128) == 0)
19862 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19863 result |= -(((ULONGEST) 1) << shift);
19864 *bytes_read_ptr = num_read;
19868 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19869 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19870 ADDR_SIZE is the size of addresses from the CU header. */
19873 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19874 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19876 struct objfile *objfile = dwarf2_per_objfile->objfile;
19877 bfd *abfd = objfile->obfd;
19878 const gdb_byte *info_ptr;
19880 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19881 if (dwarf2_per_objfile->addr.buffer == NULL)
19882 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19883 objfile_name (objfile));
19884 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19885 error (_("DW_FORM_addr_index pointing outside of "
19886 ".debug_addr section [in module %s]"),
19887 objfile_name (objfile));
19888 info_ptr = (dwarf2_per_objfile->addr.buffer
19889 + addr_base + addr_index * addr_size);
19890 if (addr_size == 4)
19891 return bfd_get_32 (abfd, info_ptr);
19893 return bfd_get_64 (abfd, info_ptr);
19896 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19899 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19901 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19902 cu->addr_base, cu->header.addr_size);
19905 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19908 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19909 unsigned int *bytes_read)
19911 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19912 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19914 return read_addr_index (cu, addr_index);
19917 /* Data structure to pass results from dwarf2_read_addr_index_reader
19918 back to dwarf2_read_addr_index. */
19920 struct dwarf2_read_addr_index_data
19922 ULONGEST addr_base;
19926 /* die_reader_func for dwarf2_read_addr_index. */
19929 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19930 const gdb_byte *info_ptr,
19931 struct die_info *comp_unit_die,
19935 struct dwarf2_cu *cu = reader->cu;
19936 struct dwarf2_read_addr_index_data *aidata =
19937 (struct dwarf2_read_addr_index_data *) data;
19939 aidata->addr_base = cu->addr_base;
19940 aidata->addr_size = cu->header.addr_size;
19943 /* Given an index in .debug_addr, fetch the value.
19944 NOTE: This can be called during dwarf expression evaluation,
19945 long after the debug information has been read, and thus per_cu->cu
19946 may no longer exist. */
19949 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19950 unsigned int addr_index)
19952 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19953 struct dwarf2_cu *cu = per_cu->cu;
19954 ULONGEST addr_base;
19957 /* We need addr_base and addr_size.
19958 If we don't have PER_CU->cu, we have to get it.
19959 Nasty, but the alternative is storing the needed info in PER_CU,
19960 which at this point doesn't seem justified: it's not clear how frequently
19961 it would get used and it would increase the size of every PER_CU.
19962 Entry points like dwarf2_per_cu_addr_size do a similar thing
19963 so we're not in uncharted territory here.
19964 Alas we need to be a bit more complicated as addr_base is contained
19967 We don't need to read the entire CU(/TU).
19968 We just need the header and top level die.
19970 IWBN to use the aging mechanism to let us lazily later discard the CU.
19971 For now we skip this optimization. */
19975 addr_base = cu->addr_base;
19976 addr_size = cu->header.addr_size;
19980 struct dwarf2_read_addr_index_data aidata;
19982 /* Note: We can't use init_cutu_and_read_dies_simple here,
19983 we need addr_base. */
19984 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19985 dwarf2_read_addr_index_reader, &aidata);
19986 addr_base = aidata.addr_base;
19987 addr_size = aidata.addr_size;
19990 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19994 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19995 This is only used by the Fission support. */
19997 static const char *
19998 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20000 struct dwarf2_cu *cu = reader->cu;
20001 struct dwarf2_per_objfile *dwarf2_per_objfile
20002 = cu->per_cu->dwarf2_per_objfile;
20003 struct objfile *objfile = dwarf2_per_objfile->objfile;
20004 const char *objf_name = objfile_name (objfile);
20005 bfd *abfd = objfile->obfd;
20006 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
20007 struct dwarf2_section_info *str_offsets_section =
20008 &reader->dwo_file->sections.str_offsets;
20009 const gdb_byte *info_ptr;
20010 ULONGEST str_offset;
20011 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20013 dwarf2_read_section (objfile, str_section);
20014 dwarf2_read_section (objfile, str_offsets_section);
20015 if (str_section->buffer == NULL)
20016 error (_("%s used without .debug_str.dwo section"
20017 " in CU at offset %s [in module %s]"),
20018 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20019 if (str_offsets_section->buffer == NULL)
20020 error (_("%s used without .debug_str_offsets.dwo section"
20021 " in CU at offset %s [in module %s]"),
20022 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20023 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20024 error (_("%s pointing outside of .debug_str_offsets.dwo"
20025 " section in CU at offset %s [in module %s]"),
20026 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20027 info_ptr = (str_offsets_section->buffer
20028 + str_index * cu->header.offset_size);
20029 if (cu->header.offset_size == 4)
20030 str_offset = bfd_get_32 (abfd, info_ptr);
20032 str_offset = bfd_get_64 (abfd, info_ptr);
20033 if (str_offset >= str_section->size)
20034 error (_("Offset from %s pointing outside of"
20035 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20036 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20037 return (const char *) (str_section->buffer + str_offset);
20040 /* Return the length of an LEB128 number in BUF. */
20043 leb128_size (const gdb_byte *buf)
20045 const gdb_byte *begin = buf;
20051 if ((byte & 128) == 0)
20052 return buf - begin;
20057 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20066 cu->language = language_c;
20069 case DW_LANG_C_plus_plus:
20070 case DW_LANG_C_plus_plus_11:
20071 case DW_LANG_C_plus_plus_14:
20072 cu->language = language_cplus;
20075 cu->language = language_d;
20077 case DW_LANG_Fortran77:
20078 case DW_LANG_Fortran90:
20079 case DW_LANG_Fortran95:
20080 case DW_LANG_Fortran03:
20081 case DW_LANG_Fortran08:
20082 cu->language = language_fortran;
20085 cu->language = language_go;
20087 case DW_LANG_Mips_Assembler:
20088 cu->language = language_asm;
20090 case DW_LANG_Ada83:
20091 case DW_LANG_Ada95:
20092 cu->language = language_ada;
20094 case DW_LANG_Modula2:
20095 cu->language = language_m2;
20097 case DW_LANG_Pascal83:
20098 cu->language = language_pascal;
20101 cu->language = language_objc;
20104 case DW_LANG_Rust_old:
20105 cu->language = language_rust;
20107 case DW_LANG_Cobol74:
20108 case DW_LANG_Cobol85:
20110 cu->language = language_minimal;
20113 cu->language_defn = language_def (cu->language);
20116 /* Return the named attribute or NULL if not there. */
20118 static struct attribute *
20119 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20124 struct attribute *spec = NULL;
20126 for (i = 0; i < die->num_attrs; ++i)
20128 if (die->attrs[i].name == name)
20129 return &die->attrs[i];
20130 if (die->attrs[i].name == DW_AT_specification
20131 || die->attrs[i].name == DW_AT_abstract_origin)
20132 spec = &die->attrs[i];
20138 die = follow_die_ref (die, spec, &cu);
20144 /* Return the named attribute or NULL if not there,
20145 but do not follow DW_AT_specification, etc.
20146 This is for use in contexts where we're reading .debug_types dies.
20147 Following DW_AT_specification, DW_AT_abstract_origin will take us
20148 back up the chain, and we want to go down. */
20150 static struct attribute *
20151 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20155 for (i = 0; i < die->num_attrs; ++i)
20156 if (die->attrs[i].name == name)
20157 return &die->attrs[i];
20162 /* Return the string associated with a string-typed attribute, or NULL if it
20163 is either not found or is of an incorrect type. */
20165 static const char *
20166 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20168 struct attribute *attr;
20169 const char *str = NULL;
20171 attr = dwarf2_attr (die, name, cu);
20175 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20176 || attr->form == DW_FORM_string
20177 || attr->form == DW_FORM_strx
20178 || attr->form == DW_FORM_strx1
20179 || attr->form == DW_FORM_strx2
20180 || attr->form == DW_FORM_strx3
20181 || attr->form == DW_FORM_strx4
20182 || attr->form == DW_FORM_GNU_str_index
20183 || attr->form == DW_FORM_GNU_strp_alt)
20184 str = DW_STRING (attr);
20186 complaint (_("string type expected for attribute %s for "
20187 "DIE at %s in module %s"),
20188 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20189 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20195 /* Return the dwo name or NULL if not present. If present, it is in either
20196 DW_AT_GNU_dwo_name or DW_AT_dwo_name atrribute. */
20197 static const char *
20198 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20200 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20201 if (dwo_name == nullptr)
20202 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20206 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20207 and holds a non-zero value. This function should only be used for
20208 DW_FORM_flag or DW_FORM_flag_present attributes. */
20211 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20213 struct attribute *attr = dwarf2_attr (die, name, cu);
20215 return (attr && DW_UNSND (attr));
20219 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20221 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20222 which value is non-zero. However, we have to be careful with
20223 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20224 (via dwarf2_flag_true_p) follows this attribute. So we may
20225 end up accidently finding a declaration attribute that belongs
20226 to a different DIE referenced by the specification attribute,
20227 even though the given DIE does not have a declaration attribute. */
20228 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20229 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20232 /* Return the die giving the specification for DIE, if there is
20233 one. *SPEC_CU is the CU containing DIE on input, and the CU
20234 containing the return value on output. If there is no
20235 specification, but there is an abstract origin, that is
20238 static struct die_info *
20239 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20241 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20244 if (spec_attr == NULL)
20245 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20247 if (spec_attr == NULL)
20250 return follow_die_ref (die, spec_attr, spec_cu);
20253 /* Stub for free_line_header to match void * callback types. */
20256 free_line_header_voidp (void *arg)
20258 struct line_header *lh = (struct line_header *) arg;
20264 line_header::add_include_dir (const char *include_dir)
20266 if (dwarf_line_debug >= 2)
20267 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20268 include_dirs.size () + 1, include_dir);
20270 include_dirs.push_back (include_dir);
20274 line_header::add_file_name (const char *name,
20276 unsigned int mod_time,
20277 unsigned int length)
20279 if (dwarf_line_debug >= 2)
20280 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20281 (unsigned) file_names.size () + 1, name);
20283 file_names.emplace_back (name, d_index, mod_time, length);
20286 /* A convenience function to find the proper .debug_line section for a CU. */
20288 static struct dwarf2_section_info *
20289 get_debug_line_section (struct dwarf2_cu *cu)
20291 struct dwarf2_section_info *section;
20292 struct dwarf2_per_objfile *dwarf2_per_objfile
20293 = cu->per_cu->dwarf2_per_objfile;
20295 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20297 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20298 section = &cu->dwo_unit->dwo_file->sections.line;
20299 else if (cu->per_cu->is_dwz)
20301 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20303 section = &dwz->line;
20306 section = &dwarf2_per_objfile->line;
20311 /* Read directory or file name entry format, starting with byte of
20312 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20313 entries count and the entries themselves in the described entry
20317 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20318 bfd *abfd, const gdb_byte **bufp,
20319 struct line_header *lh,
20320 const struct comp_unit_head *cu_header,
20321 void (*callback) (struct line_header *lh,
20324 unsigned int mod_time,
20325 unsigned int length))
20327 gdb_byte format_count, formati;
20328 ULONGEST data_count, datai;
20329 const gdb_byte *buf = *bufp;
20330 const gdb_byte *format_header_data;
20331 unsigned int bytes_read;
20333 format_count = read_1_byte (abfd, buf);
20335 format_header_data = buf;
20336 for (formati = 0; formati < format_count; formati++)
20338 read_unsigned_leb128 (abfd, buf, &bytes_read);
20340 read_unsigned_leb128 (abfd, buf, &bytes_read);
20344 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20346 for (datai = 0; datai < data_count; datai++)
20348 const gdb_byte *format = format_header_data;
20349 struct file_entry fe;
20351 for (formati = 0; formati < format_count; formati++)
20353 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20354 format += bytes_read;
20356 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20357 format += bytes_read;
20359 gdb::optional<const char *> string;
20360 gdb::optional<unsigned int> uint;
20364 case DW_FORM_string:
20365 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20369 case DW_FORM_line_strp:
20370 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20377 case DW_FORM_data1:
20378 uint.emplace (read_1_byte (abfd, buf));
20382 case DW_FORM_data2:
20383 uint.emplace (read_2_bytes (abfd, buf));
20387 case DW_FORM_data4:
20388 uint.emplace (read_4_bytes (abfd, buf));
20392 case DW_FORM_data8:
20393 uint.emplace (read_8_bytes (abfd, buf));
20397 case DW_FORM_udata:
20398 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20402 case DW_FORM_block:
20403 /* It is valid only for DW_LNCT_timestamp which is ignored by
20408 switch (content_type)
20411 if (string.has_value ())
20414 case DW_LNCT_directory_index:
20415 if (uint.has_value ())
20416 fe.d_index = (dir_index) *uint;
20418 case DW_LNCT_timestamp:
20419 if (uint.has_value ())
20420 fe.mod_time = *uint;
20423 if (uint.has_value ())
20429 complaint (_("Unknown format content type %s"),
20430 pulongest (content_type));
20434 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20440 /* Read the statement program header starting at OFFSET in
20441 .debug_line, or .debug_line.dwo. Return a pointer
20442 to a struct line_header, allocated using xmalloc.
20443 Returns NULL if there is a problem reading the header, e.g., if it
20444 has a version we don't understand.
20446 NOTE: the strings in the include directory and file name tables of
20447 the returned object point into the dwarf line section buffer,
20448 and must not be freed. */
20450 static line_header_up
20451 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20453 const gdb_byte *line_ptr;
20454 unsigned int bytes_read, offset_size;
20456 const char *cur_dir, *cur_file;
20457 struct dwarf2_section_info *section;
20459 struct dwarf2_per_objfile *dwarf2_per_objfile
20460 = cu->per_cu->dwarf2_per_objfile;
20462 section = get_debug_line_section (cu);
20463 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20464 if (section->buffer == NULL)
20466 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20467 complaint (_("missing .debug_line.dwo section"));
20469 complaint (_("missing .debug_line section"));
20473 /* We can't do this until we know the section is non-empty.
20474 Only then do we know we have such a section. */
20475 abfd = get_section_bfd_owner (section);
20477 /* Make sure that at least there's room for the total_length field.
20478 That could be 12 bytes long, but we're just going to fudge that. */
20479 if (to_underlying (sect_off) + 4 >= section->size)
20481 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20485 line_header_up lh (new line_header ());
20487 lh->sect_off = sect_off;
20488 lh->offset_in_dwz = cu->per_cu->is_dwz;
20490 line_ptr = section->buffer + to_underlying (sect_off);
20492 /* Read in the header. */
20494 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20495 &bytes_read, &offset_size);
20496 line_ptr += bytes_read;
20497 if (line_ptr + lh->total_length > (section->buffer + section->size))
20499 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20502 lh->statement_program_end = line_ptr + lh->total_length;
20503 lh->version = read_2_bytes (abfd, line_ptr);
20505 if (lh->version > 5)
20507 /* This is a version we don't understand. The format could have
20508 changed in ways we don't handle properly so just punt. */
20509 complaint (_("unsupported version in .debug_line section"));
20512 if (lh->version >= 5)
20514 gdb_byte segment_selector_size;
20516 /* Skip address size. */
20517 read_1_byte (abfd, line_ptr);
20520 segment_selector_size = read_1_byte (abfd, line_ptr);
20522 if (segment_selector_size != 0)
20524 complaint (_("unsupported segment selector size %u "
20525 "in .debug_line section"),
20526 segment_selector_size);
20530 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20531 line_ptr += offset_size;
20532 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20534 if (lh->version >= 4)
20536 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20540 lh->maximum_ops_per_instruction = 1;
20542 if (lh->maximum_ops_per_instruction == 0)
20544 lh->maximum_ops_per_instruction = 1;
20545 complaint (_("invalid maximum_ops_per_instruction "
20546 "in `.debug_line' section"));
20549 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20551 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20553 lh->line_range = read_1_byte (abfd, line_ptr);
20555 lh->opcode_base = read_1_byte (abfd, line_ptr);
20557 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20559 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20560 for (i = 1; i < lh->opcode_base; ++i)
20562 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20566 if (lh->version >= 5)
20568 /* Read directory table. */
20569 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20571 [] (struct line_header *header, const char *name,
20572 dir_index d_index, unsigned int mod_time,
20573 unsigned int length)
20575 header->add_include_dir (name);
20578 /* Read file name table. */
20579 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20581 [] (struct line_header *header, const char *name,
20582 dir_index d_index, unsigned int mod_time,
20583 unsigned int length)
20585 header->add_file_name (name, d_index, mod_time, length);
20590 /* Read directory table. */
20591 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20593 line_ptr += bytes_read;
20594 lh->add_include_dir (cur_dir);
20596 line_ptr += bytes_read;
20598 /* Read file name table. */
20599 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20601 unsigned int mod_time, length;
20604 line_ptr += bytes_read;
20605 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20606 line_ptr += bytes_read;
20607 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20608 line_ptr += bytes_read;
20609 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20610 line_ptr += bytes_read;
20612 lh->add_file_name (cur_file, d_index, mod_time, length);
20614 line_ptr += bytes_read;
20616 lh->statement_program_start = line_ptr;
20618 if (line_ptr > (section->buffer + section->size))
20619 complaint (_("line number info header doesn't "
20620 "fit in `.debug_line' section"));
20625 /* Subroutine of dwarf_decode_lines to simplify it.
20626 Return the file name of the psymtab for included file FILE_INDEX
20627 in line header LH of PST.
20628 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20629 If space for the result is malloc'd, *NAME_HOLDER will be set.
20630 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20632 static const char *
20633 psymtab_include_file_name (const struct line_header *lh, int file_index,
20634 const struct partial_symtab *pst,
20635 const char *comp_dir,
20636 gdb::unique_xmalloc_ptr<char> *name_holder)
20638 const file_entry &fe = lh->file_names[file_index];
20639 const char *include_name = fe.name;
20640 const char *include_name_to_compare = include_name;
20641 const char *pst_filename;
20644 const char *dir_name = fe.include_dir (lh);
20646 gdb::unique_xmalloc_ptr<char> hold_compare;
20647 if (!IS_ABSOLUTE_PATH (include_name)
20648 && (dir_name != NULL || comp_dir != NULL))
20650 /* Avoid creating a duplicate psymtab for PST.
20651 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20652 Before we do the comparison, however, we need to account
20653 for DIR_NAME and COMP_DIR.
20654 First prepend dir_name (if non-NULL). If we still don't
20655 have an absolute path prepend comp_dir (if non-NULL).
20656 However, the directory we record in the include-file's
20657 psymtab does not contain COMP_DIR (to match the
20658 corresponding symtab(s)).
20663 bash$ gcc -g ./hello.c
20664 include_name = "hello.c"
20666 DW_AT_comp_dir = comp_dir = "/tmp"
20667 DW_AT_name = "./hello.c"
20671 if (dir_name != NULL)
20673 name_holder->reset (concat (dir_name, SLASH_STRING,
20674 include_name, (char *) NULL));
20675 include_name = name_holder->get ();
20676 include_name_to_compare = include_name;
20678 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20680 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20681 include_name, (char *) NULL));
20682 include_name_to_compare = hold_compare.get ();
20686 pst_filename = pst->filename;
20687 gdb::unique_xmalloc_ptr<char> copied_name;
20688 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20690 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20691 pst_filename, (char *) NULL));
20692 pst_filename = copied_name.get ();
20695 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20699 return include_name;
20702 /* State machine to track the state of the line number program. */
20704 class lnp_state_machine
20707 /* Initialize a machine state for the start of a line number
20709 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20710 bool record_lines_p);
20712 file_entry *current_file ()
20714 /* lh->file_names is 0-based, but the file name numbers in the
20715 statement program are 1-based. */
20716 return m_line_header->file_name_at (m_file);
20719 /* Record the line in the state machine. END_SEQUENCE is true if
20720 we're processing the end of a sequence. */
20721 void record_line (bool end_sequence);
20723 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20724 nop-out rest of the lines in this sequence. */
20725 void check_line_address (struct dwarf2_cu *cu,
20726 const gdb_byte *line_ptr,
20727 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20729 void handle_set_discriminator (unsigned int discriminator)
20731 m_discriminator = discriminator;
20732 m_line_has_non_zero_discriminator |= discriminator != 0;
20735 /* Handle DW_LNE_set_address. */
20736 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20739 address += baseaddr;
20740 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20743 /* Handle DW_LNS_advance_pc. */
20744 void handle_advance_pc (CORE_ADDR adjust);
20746 /* Handle a special opcode. */
20747 void handle_special_opcode (unsigned char op_code);
20749 /* Handle DW_LNS_advance_line. */
20750 void handle_advance_line (int line_delta)
20752 advance_line (line_delta);
20755 /* Handle DW_LNS_set_file. */
20756 void handle_set_file (file_name_index file);
20758 /* Handle DW_LNS_negate_stmt. */
20759 void handle_negate_stmt ()
20761 m_is_stmt = !m_is_stmt;
20764 /* Handle DW_LNS_const_add_pc. */
20765 void handle_const_add_pc ();
20767 /* Handle DW_LNS_fixed_advance_pc. */
20768 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20770 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20774 /* Handle DW_LNS_copy. */
20775 void handle_copy ()
20777 record_line (false);
20778 m_discriminator = 0;
20781 /* Handle DW_LNE_end_sequence. */
20782 void handle_end_sequence ()
20784 m_currently_recording_lines = true;
20788 /* Advance the line by LINE_DELTA. */
20789 void advance_line (int line_delta)
20791 m_line += line_delta;
20793 if (line_delta != 0)
20794 m_line_has_non_zero_discriminator = m_discriminator != 0;
20797 struct dwarf2_cu *m_cu;
20799 gdbarch *m_gdbarch;
20801 /* True if we're recording lines.
20802 Otherwise we're building partial symtabs and are just interested in
20803 finding include files mentioned by the line number program. */
20804 bool m_record_lines_p;
20806 /* The line number header. */
20807 line_header *m_line_header;
20809 /* These are part of the standard DWARF line number state machine,
20810 and initialized according to the DWARF spec. */
20812 unsigned char m_op_index = 0;
20813 /* The line table index (1-based) of the current file. */
20814 file_name_index m_file = (file_name_index) 1;
20815 unsigned int m_line = 1;
20817 /* These are initialized in the constructor. */
20819 CORE_ADDR m_address;
20821 unsigned int m_discriminator;
20823 /* Additional bits of state we need to track. */
20825 /* The last file that we called dwarf2_start_subfile for.
20826 This is only used for TLLs. */
20827 unsigned int m_last_file = 0;
20828 /* The last file a line number was recorded for. */
20829 struct subfile *m_last_subfile = NULL;
20831 /* When true, record the lines we decode. */
20832 bool m_currently_recording_lines = false;
20834 /* The last line number that was recorded, used to coalesce
20835 consecutive entries for the same line. This can happen, for
20836 example, when discriminators are present. PR 17276. */
20837 unsigned int m_last_line = 0;
20838 bool m_line_has_non_zero_discriminator = false;
20842 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20844 CORE_ADDR addr_adj = (((m_op_index + adjust)
20845 / m_line_header->maximum_ops_per_instruction)
20846 * m_line_header->minimum_instruction_length);
20847 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20848 m_op_index = ((m_op_index + adjust)
20849 % m_line_header->maximum_ops_per_instruction);
20853 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20855 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20856 CORE_ADDR addr_adj = (((m_op_index
20857 + (adj_opcode / m_line_header->line_range))
20858 / m_line_header->maximum_ops_per_instruction)
20859 * m_line_header->minimum_instruction_length);
20860 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20861 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20862 % m_line_header->maximum_ops_per_instruction);
20864 int line_delta = (m_line_header->line_base
20865 + (adj_opcode % m_line_header->line_range));
20866 advance_line (line_delta);
20867 record_line (false);
20868 m_discriminator = 0;
20872 lnp_state_machine::handle_set_file (file_name_index file)
20876 const file_entry *fe = current_file ();
20878 dwarf2_debug_line_missing_file_complaint ();
20879 else if (m_record_lines_p)
20881 const char *dir = fe->include_dir (m_line_header);
20883 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20884 m_line_has_non_zero_discriminator = m_discriminator != 0;
20885 dwarf2_start_subfile (m_cu, fe->name, dir);
20890 lnp_state_machine::handle_const_add_pc ()
20893 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20896 = (((m_op_index + adjust)
20897 / m_line_header->maximum_ops_per_instruction)
20898 * m_line_header->minimum_instruction_length);
20900 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20901 m_op_index = ((m_op_index + adjust)
20902 % m_line_header->maximum_ops_per_instruction);
20905 /* Return non-zero if we should add LINE to the line number table.
20906 LINE is the line to add, LAST_LINE is the last line that was added,
20907 LAST_SUBFILE is the subfile for LAST_LINE.
20908 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20909 had a non-zero discriminator.
20911 We have to be careful in the presence of discriminators.
20912 E.g., for this line:
20914 for (i = 0; i < 100000; i++);
20916 clang can emit four line number entries for that one line,
20917 each with a different discriminator.
20918 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20920 However, we want gdb to coalesce all four entries into one.
20921 Otherwise the user could stepi into the middle of the line and
20922 gdb would get confused about whether the pc really was in the
20923 middle of the line.
20925 Things are further complicated by the fact that two consecutive
20926 line number entries for the same line is a heuristic used by gcc
20927 to denote the end of the prologue. So we can't just discard duplicate
20928 entries, we have to be selective about it. The heuristic we use is
20929 that we only collapse consecutive entries for the same line if at least
20930 one of those entries has a non-zero discriminator. PR 17276.
20932 Note: Addresses in the line number state machine can never go backwards
20933 within one sequence, thus this coalescing is ok. */
20936 dwarf_record_line_p (struct dwarf2_cu *cu,
20937 unsigned int line, unsigned int last_line,
20938 int line_has_non_zero_discriminator,
20939 struct subfile *last_subfile)
20941 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20943 if (line != last_line)
20945 /* Same line for the same file that we've seen already.
20946 As a last check, for pr 17276, only record the line if the line
20947 has never had a non-zero discriminator. */
20948 if (!line_has_non_zero_discriminator)
20953 /* Use the CU's builder to record line number LINE beginning at
20954 address ADDRESS in the line table of subfile SUBFILE. */
20957 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20958 unsigned int line, CORE_ADDR address,
20959 struct dwarf2_cu *cu)
20961 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20963 if (dwarf_line_debug)
20965 fprintf_unfiltered (gdb_stdlog,
20966 "Recording line %u, file %s, address %s\n",
20967 line, lbasename (subfile->name),
20968 paddress (gdbarch, address));
20972 cu->get_builder ()->record_line (subfile, line, addr);
20975 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20976 Mark the end of a set of line number records.
20977 The arguments are the same as for dwarf_record_line_1.
20978 If SUBFILE is NULL the request is ignored. */
20981 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20982 CORE_ADDR address, struct dwarf2_cu *cu)
20984 if (subfile == NULL)
20987 if (dwarf_line_debug)
20989 fprintf_unfiltered (gdb_stdlog,
20990 "Finishing current line, file %s, address %s\n",
20991 lbasename (subfile->name),
20992 paddress (gdbarch, address));
20995 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20999 lnp_state_machine::record_line (bool end_sequence)
21001 if (dwarf_line_debug)
21003 fprintf_unfiltered (gdb_stdlog,
21004 "Processing actual line %u: file %u,"
21005 " address %s, is_stmt %u, discrim %u\n",
21006 m_line, to_underlying (m_file),
21007 paddress (m_gdbarch, m_address),
21008 m_is_stmt, m_discriminator);
21011 file_entry *fe = current_file ();
21014 dwarf2_debug_line_missing_file_complaint ();
21015 /* For now we ignore lines not starting on an instruction boundary.
21016 But not when processing end_sequence for compatibility with the
21017 previous version of the code. */
21018 else if (m_op_index == 0 || end_sequence)
21020 fe->included_p = 1;
21021 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
21023 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
21026 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21027 m_currently_recording_lines ? m_cu : nullptr);
21032 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21033 m_line_has_non_zero_discriminator,
21036 buildsym_compunit *builder = m_cu->get_builder ();
21037 dwarf_record_line_1 (m_gdbarch,
21038 builder->get_current_subfile (),
21040 m_currently_recording_lines ? m_cu : nullptr);
21042 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21043 m_last_line = m_line;
21049 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21050 line_header *lh, bool record_lines_p)
21054 m_record_lines_p = record_lines_p;
21055 m_line_header = lh;
21057 m_currently_recording_lines = true;
21059 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21060 was a line entry for it so that the backend has a chance to adjust it
21061 and also record it in case it needs it. This is currently used by MIPS
21062 code, cf. `mips_adjust_dwarf2_line'. */
21063 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21064 m_is_stmt = lh->default_is_stmt;
21065 m_discriminator = 0;
21069 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21070 const gdb_byte *line_ptr,
21071 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21073 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21074 the pc range of the CU. However, we restrict the test to only ADDRESS
21075 values of zero to preserve GDB's previous behaviour which is to handle
21076 the specific case of a function being GC'd by the linker. */
21078 if (address == 0 && address < unrelocated_lowpc)
21080 /* This line table is for a function which has been
21081 GCd by the linker. Ignore it. PR gdb/12528 */
21083 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21084 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21086 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21087 line_offset, objfile_name (objfile));
21088 m_currently_recording_lines = false;
21089 /* Note: m_currently_recording_lines is left as false until we see
21090 DW_LNE_end_sequence. */
21094 /* Subroutine of dwarf_decode_lines to simplify it.
21095 Process the line number information in LH.
21096 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21097 program in order to set included_p for every referenced header. */
21100 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21101 const int decode_for_pst_p, CORE_ADDR lowpc)
21103 const gdb_byte *line_ptr, *extended_end;
21104 const gdb_byte *line_end;
21105 unsigned int bytes_read, extended_len;
21106 unsigned char op_code, extended_op;
21107 CORE_ADDR baseaddr;
21108 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21109 bfd *abfd = objfile->obfd;
21110 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21111 /* True if we're recording line info (as opposed to building partial
21112 symtabs and just interested in finding include files mentioned by
21113 the line number program). */
21114 bool record_lines_p = !decode_for_pst_p;
21116 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21118 line_ptr = lh->statement_program_start;
21119 line_end = lh->statement_program_end;
21121 /* Read the statement sequences until there's nothing left. */
21122 while (line_ptr < line_end)
21124 /* The DWARF line number program state machine. Reset the state
21125 machine at the start of each sequence. */
21126 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21127 bool end_sequence = false;
21129 if (record_lines_p)
21131 /* Start a subfile for the current file of the state
21133 const file_entry *fe = state_machine.current_file ();
21136 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21139 /* Decode the table. */
21140 while (line_ptr < line_end && !end_sequence)
21142 op_code = read_1_byte (abfd, line_ptr);
21145 if (op_code >= lh->opcode_base)
21147 /* Special opcode. */
21148 state_machine.handle_special_opcode (op_code);
21150 else switch (op_code)
21152 case DW_LNS_extended_op:
21153 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21155 line_ptr += bytes_read;
21156 extended_end = line_ptr + extended_len;
21157 extended_op = read_1_byte (abfd, line_ptr);
21159 switch (extended_op)
21161 case DW_LNE_end_sequence:
21162 state_machine.handle_end_sequence ();
21163 end_sequence = true;
21165 case DW_LNE_set_address:
21168 = read_address (abfd, line_ptr, cu, &bytes_read);
21169 line_ptr += bytes_read;
21171 state_machine.check_line_address (cu, line_ptr,
21172 lowpc - baseaddr, address);
21173 state_machine.handle_set_address (baseaddr, address);
21176 case DW_LNE_define_file:
21178 const char *cur_file;
21179 unsigned int mod_time, length;
21182 cur_file = read_direct_string (abfd, line_ptr,
21184 line_ptr += bytes_read;
21185 dindex = (dir_index)
21186 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21187 line_ptr += bytes_read;
21189 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21190 line_ptr += bytes_read;
21192 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21193 line_ptr += bytes_read;
21194 lh->add_file_name (cur_file, dindex, mod_time, length);
21197 case DW_LNE_set_discriminator:
21199 /* The discriminator is not interesting to the
21200 debugger; just ignore it. We still need to
21201 check its value though:
21202 if there are consecutive entries for the same
21203 (non-prologue) line we want to coalesce them.
21206 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21207 line_ptr += bytes_read;
21209 state_machine.handle_set_discriminator (discr);
21213 complaint (_("mangled .debug_line section"));
21216 /* Make sure that we parsed the extended op correctly. If e.g.
21217 we expected a different address size than the producer used,
21218 we may have read the wrong number of bytes. */
21219 if (line_ptr != extended_end)
21221 complaint (_("mangled .debug_line section"));
21226 state_machine.handle_copy ();
21228 case DW_LNS_advance_pc:
21231 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21232 line_ptr += bytes_read;
21234 state_machine.handle_advance_pc (adjust);
21237 case DW_LNS_advance_line:
21240 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21241 line_ptr += bytes_read;
21243 state_machine.handle_advance_line (line_delta);
21246 case DW_LNS_set_file:
21248 file_name_index file
21249 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21251 line_ptr += bytes_read;
21253 state_machine.handle_set_file (file);
21256 case DW_LNS_set_column:
21257 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21258 line_ptr += bytes_read;
21260 case DW_LNS_negate_stmt:
21261 state_machine.handle_negate_stmt ();
21263 case DW_LNS_set_basic_block:
21265 /* Add to the address register of the state machine the
21266 address increment value corresponding to special opcode
21267 255. I.e., this value is scaled by the minimum
21268 instruction length since special opcode 255 would have
21269 scaled the increment. */
21270 case DW_LNS_const_add_pc:
21271 state_machine.handle_const_add_pc ();
21273 case DW_LNS_fixed_advance_pc:
21275 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21278 state_machine.handle_fixed_advance_pc (addr_adj);
21283 /* Unknown standard opcode, ignore it. */
21286 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21288 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21289 line_ptr += bytes_read;
21296 dwarf2_debug_line_missing_end_sequence_complaint ();
21298 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21299 in which case we still finish recording the last line). */
21300 state_machine.record_line (true);
21304 /* Decode the Line Number Program (LNP) for the given line_header
21305 structure and CU. The actual information extracted and the type
21306 of structures created from the LNP depends on the value of PST.
21308 1. If PST is NULL, then this procedure uses the data from the program
21309 to create all necessary symbol tables, and their linetables.
21311 2. If PST is not NULL, this procedure reads the program to determine
21312 the list of files included by the unit represented by PST, and
21313 builds all the associated partial symbol tables.
21315 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21316 It is used for relative paths in the line table.
21317 NOTE: When processing partial symtabs (pst != NULL),
21318 comp_dir == pst->dirname.
21320 NOTE: It is important that psymtabs have the same file name (via strcmp)
21321 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21322 symtab we don't use it in the name of the psymtabs we create.
21323 E.g. expand_line_sal requires this when finding psymtabs to expand.
21324 A good testcase for this is mb-inline.exp.
21326 LOWPC is the lowest address in CU (or 0 if not known).
21328 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21329 for its PC<->lines mapping information. Otherwise only the filename
21330 table is read in. */
21333 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21334 struct dwarf2_cu *cu, struct partial_symtab *pst,
21335 CORE_ADDR lowpc, int decode_mapping)
21337 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21338 const int decode_for_pst_p = (pst != NULL);
21340 if (decode_mapping)
21341 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21343 if (decode_for_pst_p)
21347 /* Now that we're done scanning the Line Header Program, we can
21348 create the psymtab of each included file. */
21349 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21350 if (lh->file_names[file_index].included_p == 1)
21352 gdb::unique_xmalloc_ptr<char> name_holder;
21353 const char *include_name =
21354 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21356 if (include_name != NULL)
21357 dwarf2_create_include_psymtab (include_name, pst, objfile);
21362 /* Make sure a symtab is created for every file, even files
21363 which contain only variables (i.e. no code with associated
21365 buildsym_compunit *builder = cu->get_builder ();
21366 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21369 for (i = 0; i < lh->file_names.size (); i++)
21371 file_entry &fe = lh->file_names[i];
21373 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21375 if (builder->get_current_subfile ()->symtab == NULL)
21377 builder->get_current_subfile ()->symtab
21378 = allocate_symtab (cust,
21379 builder->get_current_subfile ()->name);
21381 fe.symtab = builder->get_current_subfile ()->symtab;
21386 /* Start a subfile for DWARF. FILENAME is the name of the file and
21387 DIRNAME the name of the source directory which contains FILENAME
21388 or NULL if not known.
21389 This routine tries to keep line numbers from identical absolute and
21390 relative file names in a common subfile.
21392 Using the `list' example from the GDB testsuite, which resides in
21393 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21394 of /srcdir/list0.c yields the following debugging information for list0.c:
21396 DW_AT_name: /srcdir/list0.c
21397 DW_AT_comp_dir: /compdir
21398 files.files[0].name: list0.h
21399 files.files[0].dir: /srcdir
21400 files.files[1].name: list0.c
21401 files.files[1].dir: /srcdir
21403 The line number information for list0.c has to end up in a single
21404 subfile, so that `break /srcdir/list0.c:1' works as expected.
21405 start_subfile will ensure that this happens provided that we pass the
21406 concatenation of files.files[1].dir and files.files[1].name as the
21410 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21411 const char *dirname)
21415 /* In order not to lose the line information directory,
21416 we concatenate it to the filename when it makes sense.
21417 Note that the Dwarf3 standard says (speaking of filenames in line
21418 information): ``The directory index is ignored for file names
21419 that represent full path names''. Thus ignoring dirname in the
21420 `else' branch below isn't an issue. */
21422 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21424 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21428 cu->get_builder ()->start_subfile (filename);
21434 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21435 buildsym_compunit constructor. */
21437 struct compunit_symtab *
21438 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21441 gdb_assert (m_builder == nullptr);
21443 m_builder.reset (new struct buildsym_compunit
21444 (per_cu->dwarf2_per_objfile->objfile,
21445 name, comp_dir, language, low_pc));
21447 list_in_scope = get_builder ()->get_file_symbols ();
21449 get_builder ()->record_debugformat ("DWARF 2");
21450 get_builder ()->record_producer (producer);
21452 processing_has_namespace_info = false;
21454 return get_builder ()->get_compunit_symtab ();
21458 var_decode_location (struct attribute *attr, struct symbol *sym,
21459 struct dwarf2_cu *cu)
21461 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21462 struct comp_unit_head *cu_header = &cu->header;
21464 /* NOTE drow/2003-01-30: There used to be a comment and some special
21465 code here to turn a symbol with DW_AT_external and a
21466 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21467 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21468 with some versions of binutils) where shared libraries could have
21469 relocations against symbols in their debug information - the
21470 minimal symbol would have the right address, but the debug info
21471 would not. It's no longer necessary, because we will explicitly
21472 apply relocations when we read in the debug information now. */
21474 /* A DW_AT_location attribute with no contents indicates that a
21475 variable has been optimized away. */
21476 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21478 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21482 /* Handle one degenerate form of location expression specially, to
21483 preserve GDB's previous behavior when section offsets are
21484 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21485 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21487 if (attr_form_is_block (attr)
21488 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21489 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21490 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21491 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21492 && (DW_BLOCK (attr)->size
21493 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21495 unsigned int dummy;
21497 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21498 SET_SYMBOL_VALUE_ADDRESS (sym,
21499 read_address (objfile->obfd,
21500 DW_BLOCK (attr)->data + 1,
21503 SET_SYMBOL_VALUE_ADDRESS
21504 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
21506 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21507 fixup_symbol_section (sym, objfile);
21508 SET_SYMBOL_VALUE_ADDRESS (sym,
21509 SYMBOL_VALUE_ADDRESS (sym)
21510 + ANOFFSET (objfile->section_offsets,
21511 SYMBOL_SECTION (sym)));
21515 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21516 expression evaluator, and use LOC_COMPUTED only when necessary
21517 (i.e. when the value of a register or memory location is
21518 referenced, or a thread-local block, etc.). Then again, it might
21519 not be worthwhile. I'm assuming that it isn't unless performance
21520 or memory numbers show me otherwise. */
21522 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21524 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21525 cu->has_loclist = true;
21528 /* Given a pointer to a DWARF information entry, figure out if we need
21529 to make a symbol table entry for it, and if so, create a new entry
21530 and return a pointer to it.
21531 If TYPE is NULL, determine symbol type from the die, otherwise
21532 used the passed type.
21533 If SPACE is not NULL, use it to hold the new symbol. If it is
21534 NULL, allocate a new symbol on the objfile's obstack. */
21536 static struct symbol *
21537 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21538 struct symbol *space)
21540 struct dwarf2_per_objfile *dwarf2_per_objfile
21541 = cu->per_cu->dwarf2_per_objfile;
21542 struct objfile *objfile = dwarf2_per_objfile->objfile;
21543 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21544 struct symbol *sym = NULL;
21546 struct attribute *attr = NULL;
21547 struct attribute *attr2 = NULL;
21548 CORE_ADDR baseaddr;
21549 struct pending **list_to_add = NULL;
21551 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21553 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21555 name = dwarf2_name (die, cu);
21558 const char *linkagename;
21559 int suppress_add = 0;
21564 sym = allocate_symbol (objfile);
21565 OBJSTAT (objfile, n_syms++);
21567 /* Cache this symbol's name and the name's demangled form (if any). */
21568 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21569 linkagename = dwarf2_physname (name, die, cu);
21570 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21572 /* Fortran does not have mangling standard and the mangling does differ
21573 between gfortran, iFort etc. */
21574 if (cu->language == language_fortran
21575 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21576 symbol_set_demangled_name (&(sym->ginfo),
21577 dwarf2_full_name (name, die, cu),
21580 /* Default assumptions.
21581 Use the passed type or decode it from the die. */
21582 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21583 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21585 SYMBOL_TYPE (sym) = type;
21587 SYMBOL_TYPE (sym) = die_type (die, cu);
21588 attr = dwarf2_attr (die,
21589 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21593 SYMBOL_LINE (sym) = DW_UNSND (attr);
21596 attr = dwarf2_attr (die,
21597 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21601 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21602 struct file_entry *fe;
21604 if (cu->line_header != NULL)
21605 fe = cu->line_header->file_name_at (file_index);
21610 complaint (_("file index out of range"));
21612 symbol_set_symtab (sym, fe->symtab);
21618 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21623 addr = attr_value_as_address (attr);
21624 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21625 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21627 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21628 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21629 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21630 add_symbol_to_list (sym, cu->list_in_scope);
21632 case DW_TAG_subprogram:
21633 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21635 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21636 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21637 if ((attr2 && (DW_UNSND (attr2) != 0))
21638 || cu->language == language_ada)
21640 /* Subprograms marked external are stored as a global symbol.
21641 Ada subprograms, whether marked external or not, are always
21642 stored as a global symbol, because we want to be able to
21643 access them globally. For instance, we want to be able
21644 to break on a nested subprogram without having to
21645 specify the context. */
21646 list_to_add = cu->get_builder ()->get_global_symbols ();
21650 list_to_add = cu->list_in_scope;
21653 case DW_TAG_inlined_subroutine:
21654 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21656 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21657 SYMBOL_INLINED (sym) = 1;
21658 list_to_add = cu->list_in_scope;
21660 case DW_TAG_template_value_param:
21662 /* Fall through. */
21663 case DW_TAG_constant:
21664 case DW_TAG_variable:
21665 case DW_TAG_member:
21666 /* Compilation with minimal debug info may result in
21667 variables with missing type entries. Change the
21668 misleading `void' type to something sensible. */
21669 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21670 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21672 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21673 /* In the case of DW_TAG_member, we should only be called for
21674 static const members. */
21675 if (die->tag == DW_TAG_member)
21677 /* dwarf2_add_field uses die_is_declaration,
21678 so we do the same. */
21679 gdb_assert (die_is_declaration (die, cu));
21684 dwarf2_const_value (attr, sym, cu);
21685 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21688 if (attr2 && (DW_UNSND (attr2) != 0))
21689 list_to_add = cu->get_builder ()->get_global_symbols ();
21691 list_to_add = cu->list_in_scope;
21695 attr = dwarf2_attr (die, DW_AT_location, cu);
21698 var_decode_location (attr, sym, cu);
21699 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21701 /* Fortran explicitly imports any global symbols to the local
21702 scope by DW_TAG_common_block. */
21703 if (cu->language == language_fortran && die->parent
21704 && die->parent->tag == DW_TAG_common_block)
21707 if (SYMBOL_CLASS (sym) == LOC_STATIC
21708 && SYMBOL_VALUE_ADDRESS (sym) == 0
21709 && !dwarf2_per_objfile->has_section_at_zero)
21711 /* When a static variable is eliminated by the linker,
21712 the corresponding debug information is not stripped
21713 out, but the variable address is set to null;
21714 do not add such variables into symbol table. */
21716 else if (attr2 && (DW_UNSND (attr2) != 0))
21718 /* Workaround gfortran PR debug/40040 - it uses
21719 DW_AT_location for variables in -fPIC libraries which may
21720 get overriden by other libraries/executable and get
21721 a different address. Resolve it by the minimal symbol
21722 which may come from inferior's executable using copy
21723 relocation. Make this workaround only for gfortran as for
21724 other compilers GDB cannot guess the minimal symbol
21725 Fortran mangling kind. */
21726 if (cu->language == language_fortran && die->parent
21727 && die->parent->tag == DW_TAG_module
21729 && startswith (cu->producer, "GNU Fortran"))
21730 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21732 /* A variable with DW_AT_external is never static,
21733 but it may be block-scoped. */
21735 = ((cu->list_in_scope
21736 == cu->get_builder ()->get_file_symbols ())
21737 ? cu->get_builder ()->get_global_symbols ()
21738 : cu->list_in_scope);
21741 list_to_add = cu->list_in_scope;
21745 /* We do not know the address of this symbol.
21746 If it is an external symbol and we have type information
21747 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21748 The address of the variable will then be determined from
21749 the minimal symbol table whenever the variable is
21751 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21753 /* Fortran explicitly imports any global symbols to the local
21754 scope by DW_TAG_common_block. */
21755 if (cu->language == language_fortran && die->parent
21756 && die->parent->tag == DW_TAG_common_block)
21758 /* SYMBOL_CLASS doesn't matter here because
21759 read_common_block is going to reset it. */
21761 list_to_add = cu->list_in_scope;
21763 else if (attr2 && (DW_UNSND (attr2) != 0)
21764 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21766 /* A variable with DW_AT_external is never static, but it
21767 may be block-scoped. */
21769 = ((cu->list_in_scope
21770 == cu->get_builder ()->get_file_symbols ())
21771 ? cu->get_builder ()->get_global_symbols ()
21772 : cu->list_in_scope);
21774 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21776 else if (!die_is_declaration (die, cu))
21778 /* Use the default LOC_OPTIMIZED_OUT class. */
21779 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21781 list_to_add = cu->list_in_scope;
21785 case DW_TAG_formal_parameter:
21787 /* If we are inside a function, mark this as an argument. If
21788 not, we might be looking at an argument to an inlined function
21789 when we do not have enough information to show inlined frames;
21790 pretend it's a local variable in that case so that the user can
21792 struct context_stack *curr
21793 = cu->get_builder ()->get_current_context_stack ();
21794 if (curr != nullptr && curr->name != nullptr)
21795 SYMBOL_IS_ARGUMENT (sym) = 1;
21796 attr = dwarf2_attr (die, DW_AT_location, cu);
21799 var_decode_location (attr, sym, cu);
21801 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21804 dwarf2_const_value (attr, sym, cu);
21807 list_to_add = cu->list_in_scope;
21810 case DW_TAG_unspecified_parameters:
21811 /* From varargs functions; gdb doesn't seem to have any
21812 interest in this information, so just ignore it for now.
21815 case DW_TAG_template_type_param:
21817 /* Fall through. */
21818 case DW_TAG_class_type:
21819 case DW_TAG_interface_type:
21820 case DW_TAG_structure_type:
21821 case DW_TAG_union_type:
21822 case DW_TAG_set_type:
21823 case DW_TAG_enumeration_type:
21824 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21825 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21828 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21829 really ever be static objects: otherwise, if you try
21830 to, say, break of a class's method and you're in a file
21831 which doesn't mention that class, it won't work unless
21832 the check for all static symbols in lookup_symbol_aux
21833 saves you. See the OtherFileClass tests in
21834 gdb.c++/namespace.exp. */
21838 buildsym_compunit *builder = cu->get_builder ();
21840 = (cu->list_in_scope == builder->get_file_symbols ()
21841 && cu->language == language_cplus
21842 ? builder->get_global_symbols ()
21843 : cu->list_in_scope);
21845 /* The semantics of C++ state that "struct foo {
21846 ... }" also defines a typedef for "foo". */
21847 if (cu->language == language_cplus
21848 || cu->language == language_ada
21849 || cu->language == language_d
21850 || cu->language == language_rust)
21852 /* The symbol's name is already allocated along
21853 with this objfile, so we don't need to
21854 duplicate it for the type. */
21855 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21856 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21861 case DW_TAG_typedef:
21862 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21863 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21864 list_to_add = cu->list_in_scope;
21866 case DW_TAG_base_type:
21867 case DW_TAG_subrange_type:
21868 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21869 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21870 list_to_add = cu->list_in_scope;
21872 case DW_TAG_enumerator:
21873 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21876 dwarf2_const_value (attr, sym, cu);
21879 /* NOTE: carlton/2003-11-10: See comment above in the
21880 DW_TAG_class_type, etc. block. */
21883 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21884 && cu->language == language_cplus
21885 ? cu->get_builder ()->get_global_symbols ()
21886 : cu->list_in_scope);
21889 case DW_TAG_imported_declaration:
21890 case DW_TAG_namespace:
21891 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21892 list_to_add = cu->get_builder ()->get_global_symbols ();
21894 case DW_TAG_module:
21895 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21896 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21897 list_to_add = cu->get_builder ()->get_global_symbols ();
21899 case DW_TAG_common_block:
21900 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21901 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21902 add_symbol_to_list (sym, cu->list_in_scope);
21905 /* Not a tag we recognize. Hopefully we aren't processing
21906 trash data, but since we must specifically ignore things
21907 we don't recognize, there is nothing else we should do at
21909 complaint (_("unsupported tag: '%s'"),
21910 dwarf_tag_name (die->tag));
21916 sym->hash_next = objfile->template_symbols;
21917 objfile->template_symbols = sym;
21918 list_to_add = NULL;
21921 if (list_to_add != NULL)
21922 add_symbol_to_list (sym, list_to_add);
21924 /* For the benefit of old versions of GCC, check for anonymous
21925 namespaces based on the demangled name. */
21926 if (!cu->processing_has_namespace_info
21927 && cu->language == language_cplus)
21928 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21933 /* Given an attr with a DW_FORM_dataN value in host byte order,
21934 zero-extend it as appropriate for the symbol's type. The DWARF
21935 standard (v4) is not entirely clear about the meaning of using
21936 DW_FORM_dataN for a constant with a signed type, where the type is
21937 wider than the data. The conclusion of a discussion on the DWARF
21938 list was that this is unspecified. We choose to always zero-extend
21939 because that is the interpretation long in use by GCC. */
21942 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21943 struct dwarf2_cu *cu, LONGEST *value, int bits)
21945 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21946 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21947 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21948 LONGEST l = DW_UNSND (attr);
21950 if (bits < sizeof (*value) * 8)
21952 l &= ((LONGEST) 1 << bits) - 1;
21955 else if (bits == sizeof (*value) * 8)
21959 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21960 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21967 /* Read a constant value from an attribute. Either set *VALUE, or if
21968 the value does not fit in *VALUE, set *BYTES - either already
21969 allocated on the objfile obstack, or newly allocated on OBSTACK,
21970 or, set *BATON, if we translated the constant to a location
21974 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21975 const char *name, struct obstack *obstack,
21976 struct dwarf2_cu *cu,
21977 LONGEST *value, const gdb_byte **bytes,
21978 struct dwarf2_locexpr_baton **baton)
21980 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21981 struct comp_unit_head *cu_header = &cu->header;
21982 struct dwarf_block *blk;
21983 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21984 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21990 switch (attr->form)
21993 case DW_FORM_addrx:
21994 case DW_FORM_GNU_addr_index:
21998 if (TYPE_LENGTH (type) != cu_header->addr_size)
21999 dwarf2_const_value_length_mismatch_complaint (name,
22000 cu_header->addr_size,
22001 TYPE_LENGTH (type));
22002 /* Symbols of this form are reasonably rare, so we just
22003 piggyback on the existing location code rather than writing
22004 a new implementation of symbol_computed_ops. */
22005 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
22006 (*baton)->per_cu = cu->per_cu;
22007 gdb_assert ((*baton)->per_cu);
22009 (*baton)->size = 2 + cu_header->addr_size;
22010 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
22011 (*baton)->data = data;
22013 data[0] = DW_OP_addr;
22014 store_unsigned_integer (&data[1], cu_header->addr_size,
22015 byte_order, DW_ADDR (attr));
22016 data[cu_header->addr_size + 1] = DW_OP_stack_value;
22019 case DW_FORM_string:
22022 case DW_FORM_GNU_str_index:
22023 case DW_FORM_GNU_strp_alt:
22024 /* DW_STRING is already allocated on the objfile obstack, point
22026 *bytes = (const gdb_byte *) DW_STRING (attr);
22028 case DW_FORM_block1:
22029 case DW_FORM_block2:
22030 case DW_FORM_block4:
22031 case DW_FORM_block:
22032 case DW_FORM_exprloc:
22033 case DW_FORM_data16:
22034 blk = DW_BLOCK (attr);
22035 if (TYPE_LENGTH (type) != blk->size)
22036 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22037 TYPE_LENGTH (type));
22038 *bytes = blk->data;
22041 /* The DW_AT_const_value attributes are supposed to carry the
22042 symbol's value "represented as it would be on the target
22043 architecture." By the time we get here, it's already been
22044 converted to host endianness, so we just need to sign- or
22045 zero-extend it as appropriate. */
22046 case DW_FORM_data1:
22047 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22049 case DW_FORM_data2:
22050 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22052 case DW_FORM_data4:
22053 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22055 case DW_FORM_data8:
22056 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22059 case DW_FORM_sdata:
22060 case DW_FORM_implicit_const:
22061 *value = DW_SND (attr);
22064 case DW_FORM_udata:
22065 *value = DW_UNSND (attr);
22069 complaint (_("unsupported const value attribute form: '%s'"),
22070 dwarf_form_name (attr->form));
22077 /* Copy constant value from an attribute to a symbol. */
22080 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22081 struct dwarf2_cu *cu)
22083 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22085 const gdb_byte *bytes;
22086 struct dwarf2_locexpr_baton *baton;
22088 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22089 SYMBOL_PRINT_NAME (sym),
22090 &objfile->objfile_obstack, cu,
22091 &value, &bytes, &baton);
22095 SYMBOL_LOCATION_BATON (sym) = baton;
22096 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22098 else if (bytes != NULL)
22100 SYMBOL_VALUE_BYTES (sym) = bytes;
22101 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22105 SYMBOL_VALUE (sym) = value;
22106 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22110 /* Return the type of the die in question using its DW_AT_type attribute. */
22112 static struct type *
22113 die_type (struct die_info *die, struct dwarf2_cu *cu)
22115 struct attribute *type_attr;
22117 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22120 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22121 /* A missing DW_AT_type represents a void type. */
22122 return objfile_type (objfile)->builtin_void;
22125 return lookup_die_type (die, type_attr, cu);
22128 /* True iff CU's producer generates GNAT Ada auxiliary information
22129 that allows to find parallel types through that information instead
22130 of having to do expensive parallel lookups by type name. */
22133 need_gnat_info (struct dwarf2_cu *cu)
22135 /* Assume that the Ada compiler was GNAT, which always produces
22136 the auxiliary information. */
22137 return (cu->language == language_ada);
22140 /* Return the auxiliary type of the die in question using its
22141 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22142 attribute is not present. */
22144 static struct type *
22145 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22147 struct attribute *type_attr;
22149 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22153 return lookup_die_type (die, type_attr, cu);
22156 /* If DIE has a descriptive_type attribute, then set the TYPE's
22157 descriptive type accordingly. */
22160 set_descriptive_type (struct type *type, struct die_info *die,
22161 struct dwarf2_cu *cu)
22163 struct type *descriptive_type = die_descriptive_type (die, cu);
22165 if (descriptive_type)
22167 ALLOCATE_GNAT_AUX_TYPE (type);
22168 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22172 /* Return the containing type of the die in question using its
22173 DW_AT_containing_type attribute. */
22175 static struct type *
22176 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22178 struct attribute *type_attr;
22179 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22181 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22183 error (_("Dwarf Error: Problem turning containing type into gdb type "
22184 "[in module %s]"), objfile_name (objfile));
22186 return lookup_die_type (die, type_attr, cu);
22189 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22191 static struct type *
22192 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22194 struct dwarf2_per_objfile *dwarf2_per_objfile
22195 = cu->per_cu->dwarf2_per_objfile;
22196 struct objfile *objfile = dwarf2_per_objfile->objfile;
22199 std::string message
22200 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22201 objfile_name (objfile),
22202 sect_offset_str (cu->header.sect_off),
22203 sect_offset_str (die->sect_off));
22204 saved = obstack_strdup (&objfile->objfile_obstack, message);
22206 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22209 /* Look up the type of DIE in CU using its type attribute ATTR.
22210 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22211 DW_AT_containing_type.
22212 If there is no type substitute an error marker. */
22214 static struct type *
22215 lookup_die_type (struct die_info *die, const struct attribute *attr,
22216 struct dwarf2_cu *cu)
22218 struct dwarf2_per_objfile *dwarf2_per_objfile
22219 = cu->per_cu->dwarf2_per_objfile;
22220 struct objfile *objfile = dwarf2_per_objfile->objfile;
22221 struct type *this_type;
22223 gdb_assert (attr->name == DW_AT_type
22224 || attr->name == DW_AT_GNAT_descriptive_type
22225 || attr->name == DW_AT_containing_type);
22227 /* First see if we have it cached. */
22229 if (attr->form == DW_FORM_GNU_ref_alt)
22231 struct dwarf2_per_cu_data *per_cu;
22232 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22234 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22235 dwarf2_per_objfile);
22236 this_type = get_die_type_at_offset (sect_off, per_cu);
22238 else if (attr_form_is_ref (attr))
22240 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22242 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22244 else if (attr->form == DW_FORM_ref_sig8)
22246 ULONGEST signature = DW_SIGNATURE (attr);
22248 return get_signatured_type (die, signature, cu);
22252 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22253 " at %s [in module %s]"),
22254 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22255 objfile_name (objfile));
22256 return build_error_marker_type (cu, die);
22259 /* If not cached we need to read it in. */
22261 if (this_type == NULL)
22263 struct die_info *type_die = NULL;
22264 struct dwarf2_cu *type_cu = cu;
22266 if (attr_form_is_ref (attr))
22267 type_die = follow_die_ref (die, attr, &type_cu);
22268 if (type_die == NULL)
22269 return build_error_marker_type (cu, die);
22270 /* If we find the type now, it's probably because the type came
22271 from an inter-CU reference and the type's CU got expanded before
22273 this_type = read_type_die (type_die, type_cu);
22276 /* If we still don't have a type use an error marker. */
22278 if (this_type == NULL)
22279 return build_error_marker_type (cu, die);
22284 /* Return the type in DIE, CU.
22285 Returns NULL for invalid types.
22287 This first does a lookup in die_type_hash,
22288 and only reads the die in if necessary.
22290 NOTE: This can be called when reading in partial or full symbols. */
22292 static struct type *
22293 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22295 struct type *this_type;
22297 this_type = get_die_type (die, cu);
22301 return read_type_die_1 (die, cu);
22304 /* Read the type in DIE, CU.
22305 Returns NULL for invalid types. */
22307 static struct type *
22308 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22310 struct type *this_type = NULL;
22314 case DW_TAG_class_type:
22315 case DW_TAG_interface_type:
22316 case DW_TAG_structure_type:
22317 case DW_TAG_union_type:
22318 this_type = read_structure_type (die, cu);
22320 case DW_TAG_enumeration_type:
22321 this_type = read_enumeration_type (die, cu);
22323 case DW_TAG_subprogram:
22324 case DW_TAG_subroutine_type:
22325 case DW_TAG_inlined_subroutine:
22326 this_type = read_subroutine_type (die, cu);
22328 case DW_TAG_array_type:
22329 this_type = read_array_type (die, cu);
22331 case DW_TAG_set_type:
22332 this_type = read_set_type (die, cu);
22334 case DW_TAG_pointer_type:
22335 this_type = read_tag_pointer_type (die, cu);
22337 case DW_TAG_ptr_to_member_type:
22338 this_type = read_tag_ptr_to_member_type (die, cu);
22340 case DW_TAG_reference_type:
22341 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22343 case DW_TAG_rvalue_reference_type:
22344 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22346 case DW_TAG_const_type:
22347 this_type = read_tag_const_type (die, cu);
22349 case DW_TAG_volatile_type:
22350 this_type = read_tag_volatile_type (die, cu);
22352 case DW_TAG_restrict_type:
22353 this_type = read_tag_restrict_type (die, cu);
22355 case DW_TAG_string_type:
22356 this_type = read_tag_string_type (die, cu);
22358 case DW_TAG_typedef:
22359 this_type = read_typedef (die, cu);
22361 case DW_TAG_subrange_type:
22362 this_type = read_subrange_type (die, cu);
22364 case DW_TAG_base_type:
22365 this_type = read_base_type (die, cu);
22367 case DW_TAG_unspecified_type:
22368 this_type = read_unspecified_type (die, cu);
22370 case DW_TAG_namespace:
22371 this_type = read_namespace_type (die, cu);
22373 case DW_TAG_module:
22374 this_type = read_module_type (die, cu);
22376 case DW_TAG_atomic_type:
22377 this_type = read_tag_atomic_type (die, cu);
22380 complaint (_("unexpected tag in read_type_die: '%s'"),
22381 dwarf_tag_name (die->tag));
22388 /* See if we can figure out if the class lives in a namespace. We do
22389 this by looking for a member function; its demangled name will
22390 contain namespace info, if there is any.
22391 Return the computed name or NULL.
22392 Space for the result is allocated on the objfile's obstack.
22393 This is the full-die version of guess_partial_die_structure_name.
22394 In this case we know DIE has no useful parent. */
22397 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22399 struct die_info *spec_die;
22400 struct dwarf2_cu *spec_cu;
22401 struct die_info *child;
22402 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22405 spec_die = die_specification (die, &spec_cu);
22406 if (spec_die != NULL)
22412 for (child = die->child;
22414 child = child->sibling)
22416 if (child->tag == DW_TAG_subprogram)
22418 const char *linkage_name = dw2_linkage_name (child, cu);
22420 if (linkage_name != NULL)
22423 = language_class_name_from_physname (cu->language_defn,
22427 if (actual_name != NULL)
22429 const char *die_name = dwarf2_name (die, cu);
22431 if (die_name != NULL
22432 && strcmp (die_name, actual_name) != 0)
22434 /* Strip off the class name from the full name.
22435 We want the prefix. */
22436 int die_name_len = strlen (die_name);
22437 int actual_name_len = strlen (actual_name);
22439 /* Test for '::' as a sanity check. */
22440 if (actual_name_len > die_name_len + 2
22441 && actual_name[actual_name_len
22442 - die_name_len - 1] == ':')
22443 name = obstack_strndup (
22444 &objfile->per_bfd->storage_obstack,
22445 actual_name, actual_name_len - die_name_len - 2);
22448 xfree (actual_name);
22457 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22458 prefix part in such case. See
22459 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22461 static const char *
22462 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22464 struct attribute *attr;
22467 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22468 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22471 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22474 attr = dw2_linkage_name_attr (die, cu);
22475 if (attr == NULL || DW_STRING (attr) == NULL)
22478 /* dwarf2_name had to be already called. */
22479 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22481 /* Strip the base name, keep any leading namespaces/classes. */
22482 base = strrchr (DW_STRING (attr), ':');
22483 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22486 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22487 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22489 &base[-1] - DW_STRING (attr));
22492 /* Return the name of the namespace/class that DIE is defined within,
22493 or "" if we can't tell. The caller should not xfree the result.
22495 For example, if we're within the method foo() in the following
22505 then determine_prefix on foo's die will return "N::C". */
22507 static const char *
22508 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22510 struct dwarf2_per_objfile *dwarf2_per_objfile
22511 = cu->per_cu->dwarf2_per_objfile;
22512 struct die_info *parent, *spec_die;
22513 struct dwarf2_cu *spec_cu;
22514 struct type *parent_type;
22515 const char *retval;
22517 if (cu->language != language_cplus
22518 && cu->language != language_fortran && cu->language != language_d
22519 && cu->language != language_rust)
22522 retval = anonymous_struct_prefix (die, cu);
22526 /* We have to be careful in the presence of DW_AT_specification.
22527 For example, with GCC 3.4, given the code
22531 // Definition of N::foo.
22535 then we'll have a tree of DIEs like this:
22537 1: DW_TAG_compile_unit
22538 2: DW_TAG_namespace // N
22539 3: DW_TAG_subprogram // declaration of N::foo
22540 4: DW_TAG_subprogram // definition of N::foo
22541 DW_AT_specification // refers to die #3
22543 Thus, when processing die #4, we have to pretend that we're in
22544 the context of its DW_AT_specification, namely the contex of die
22547 spec_die = die_specification (die, &spec_cu);
22548 if (spec_die == NULL)
22549 parent = die->parent;
22552 parent = spec_die->parent;
22556 if (parent == NULL)
22558 else if (parent->building_fullname)
22561 const char *parent_name;
22563 /* It has been seen on RealView 2.2 built binaries,
22564 DW_TAG_template_type_param types actually _defined_ as
22565 children of the parent class:
22568 template class <class Enum> Class{};
22569 Class<enum E> class_e;
22571 1: DW_TAG_class_type (Class)
22572 2: DW_TAG_enumeration_type (E)
22573 3: DW_TAG_enumerator (enum1:0)
22574 3: DW_TAG_enumerator (enum2:1)
22576 2: DW_TAG_template_type_param
22577 DW_AT_type DW_FORM_ref_udata (E)
22579 Besides being broken debug info, it can put GDB into an
22580 infinite loop. Consider:
22582 When we're building the full name for Class<E>, we'll start
22583 at Class, and go look over its template type parameters,
22584 finding E. We'll then try to build the full name of E, and
22585 reach here. We're now trying to build the full name of E,
22586 and look over the parent DIE for containing scope. In the
22587 broken case, if we followed the parent DIE of E, we'd again
22588 find Class, and once again go look at its template type
22589 arguments, etc., etc. Simply don't consider such parent die
22590 as source-level parent of this die (it can't be, the language
22591 doesn't allow it), and break the loop here. */
22592 name = dwarf2_name (die, cu);
22593 parent_name = dwarf2_name (parent, cu);
22594 complaint (_("template param type '%s' defined within parent '%s'"),
22595 name ? name : "<unknown>",
22596 parent_name ? parent_name : "<unknown>");
22600 switch (parent->tag)
22602 case DW_TAG_namespace:
22603 parent_type = read_type_die (parent, cu);
22604 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22605 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22606 Work around this problem here. */
22607 if (cu->language == language_cplus
22608 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22610 /* We give a name to even anonymous namespaces. */
22611 return TYPE_NAME (parent_type);
22612 case DW_TAG_class_type:
22613 case DW_TAG_interface_type:
22614 case DW_TAG_structure_type:
22615 case DW_TAG_union_type:
22616 case DW_TAG_module:
22617 parent_type = read_type_die (parent, cu);
22618 if (TYPE_NAME (parent_type) != NULL)
22619 return TYPE_NAME (parent_type);
22621 /* An anonymous structure is only allowed non-static data
22622 members; no typedefs, no member functions, et cetera.
22623 So it does not need a prefix. */
22625 case DW_TAG_compile_unit:
22626 case DW_TAG_partial_unit:
22627 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22628 if (cu->language == language_cplus
22629 && !dwarf2_per_objfile->types.empty ()
22630 && die->child != NULL
22631 && (die->tag == DW_TAG_class_type
22632 || die->tag == DW_TAG_structure_type
22633 || die->tag == DW_TAG_union_type))
22635 char *name = guess_full_die_structure_name (die, cu);
22640 case DW_TAG_enumeration_type:
22641 parent_type = read_type_die (parent, cu);
22642 if (TYPE_DECLARED_CLASS (parent_type))
22644 if (TYPE_NAME (parent_type) != NULL)
22645 return TYPE_NAME (parent_type);
22648 /* Fall through. */
22650 return determine_prefix (parent, cu);
22654 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22655 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22656 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22657 an obconcat, otherwise allocate storage for the result. The CU argument is
22658 used to determine the language and hence, the appropriate separator. */
22660 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22663 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22664 int physname, struct dwarf2_cu *cu)
22666 const char *lead = "";
22669 if (suffix == NULL || suffix[0] == '\0'
22670 || prefix == NULL || prefix[0] == '\0')
22672 else if (cu->language == language_d)
22674 /* For D, the 'main' function could be defined in any module, but it
22675 should never be prefixed. */
22676 if (strcmp (suffix, "D main") == 0)
22684 else if (cu->language == language_fortran && physname)
22686 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22687 DW_AT_MIPS_linkage_name is preferred and used instead. */
22695 if (prefix == NULL)
22697 if (suffix == NULL)
22704 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22706 strcpy (retval, lead);
22707 strcat (retval, prefix);
22708 strcat (retval, sep);
22709 strcat (retval, suffix);
22714 /* We have an obstack. */
22715 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22719 /* Return sibling of die, NULL if no sibling. */
22721 static struct die_info *
22722 sibling_die (struct die_info *die)
22724 return die->sibling;
22727 /* Get name of a die, return NULL if not found. */
22729 static const char *
22730 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22731 struct obstack *obstack)
22733 if (name && cu->language == language_cplus)
22735 std::string canon_name = cp_canonicalize_string (name);
22737 if (!canon_name.empty ())
22739 if (canon_name != name)
22740 name = obstack_strdup (obstack, canon_name);
22747 /* Get name of a die, return NULL if not found.
22748 Anonymous namespaces are converted to their magic string. */
22750 static const char *
22751 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22753 struct attribute *attr;
22754 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22756 attr = dwarf2_attr (die, DW_AT_name, cu);
22757 if ((!attr || !DW_STRING (attr))
22758 && die->tag != DW_TAG_namespace
22759 && die->tag != DW_TAG_class_type
22760 && die->tag != DW_TAG_interface_type
22761 && die->tag != DW_TAG_structure_type
22762 && die->tag != DW_TAG_union_type)
22767 case DW_TAG_compile_unit:
22768 case DW_TAG_partial_unit:
22769 /* Compilation units have a DW_AT_name that is a filename, not
22770 a source language identifier. */
22771 case DW_TAG_enumeration_type:
22772 case DW_TAG_enumerator:
22773 /* These tags always have simple identifiers already; no need
22774 to canonicalize them. */
22775 return DW_STRING (attr);
22777 case DW_TAG_namespace:
22778 if (attr != NULL && DW_STRING (attr) != NULL)
22779 return DW_STRING (attr);
22780 return CP_ANONYMOUS_NAMESPACE_STR;
22782 case DW_TAG_class_type:
22783 case DW_TAG_interface_type:
22784 case DW_TAG_structure_type:
22785 case DW_TAG_union_type:
22786 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22787 structures or unions. These were of the form "._%d" in GCC 4.1,
22788 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22789 and GCC 4.4. We work around this problem by ignoring these. */
22790 if (attr && DW_STRING (attr)
22791 && (startswith (DW_STRING (attr), "._")
22792 || startswith (DW_STRING (attr), "<anonymous")))
22795 /* GCC might emit a nameless typedef that has a linkage name. See
22796 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22797 if (!attr || DW_STRING (attr) == NULL)
22799 char *demangled = NULL;
22801 attr = dw2_linkage_name_attr (die, cu);
22802 if (attr == NULL || DW_STRING (attr) == NULL)
22805 /* Avoid demangling DW_STRING (attr) the second time on a second
22806 call for the same DIE. */
22807 if (!DW_STRING_IS_CANONICAL (attr))
22808 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22814 /* FIXME: we already did this for the partial symbol... */
22816 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22818 DW_STRING_IS_CANONICAL (attr) = 1;
22821 /* Strip any leading namespaces/classes, keep only the base name.
22822 DW_AT_name for named DIEs does not contain the prefixes. */
22823 base = strrchr (DW_STRING (attr), ':');
22824 if (base && base > DW_STRING (attr) && base[-1] == ':')
22827 return DW_STRING (attr);
22836 if (!DW_STRING_IS_CANONICAL (attr))
22839 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22840 &objfile->per_bfd->storage_obstack);
22841 DW_STRING_IS_CANONICAL (attr) = 1;
22843 return DW_STRING (attr);
22846 /* Return the die that this die in an extension of, or NULL if there
22847 is none. *EXT_CU is the CU containing DIE on input, and the CU
22848 containing the return value on output. */
22850 static struct die_info *
22851 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22853 struct attribute *attr;
22855 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22859 return follow_die_ref (die, attr, ext_cu);
22862 /* A convenience function that returns an "unknown" DWARF name,
22863 including the value of V. STR is the name of the entity being
22864 printed, e.g., "TAG". */
22866 static const char *
22867 dwarf_unknown (const char *str, unsigned v)
22869 char *cell = get_print_cell ();
22870 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22874 /* Convert a DIE tag into its string name. */
22876 static const char *
22877 dwarf_tag_name (unsigned tag)
22879 const char *name = get_DW_TAG_name (tag);
22882 return dwarf_unknown ("TAG", tag);
22887 /* Convert a DWARF attribute code into its string name. */
22889 static const char *
22890 dwarf_attr_name (unsigned attr)
22894 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22895 if (attr == DW_AT_MIPS_fde)
22896 return "DW_AT_MIPS_fde";
22898 if (attr == DW_AT_HP_block_index)
22899 return "DW_AT_HP_block_index";
22902 name = get_DW_AT_name (attr);
22905 return dwarf_unknown ("AT", attr);
22910 /* Convert a unit type to corresponding DW_UT name. */
22912 static const char *
22913 dwarf_unit_type_name (int unit_type) {
22917 return "DW_UT_compile (0x01)";
22919 return "DW_UT_type (0x02)";
22921 return "DW_UT_partial (0x03)";
22923 return "DW_UT_skeleton (0x04)";
22925 return "DW_UT_split_compile (0x05)";
22927 return "DW_UT_split_type (0x06)";
22929 return "DW_UT_lo_user (0x80)";
22931 return "DW_UT_hi_user (0xff)";
22937 /* Convert a DWARF value form code into its string name. */
22939 static const char *
22940 dwarf_form_name (unsigned form)
22942 const char *name = get_DW_FORM_name (form);
22945 return dwarf_unknown ("FORM", form);
22950 static const char *
22951 dwarf_bool_name (unsigned mybool)
22959 /* Convert a DWARF type code into its string name. */
22961 static const char *
22962 dwarf_type_encoding_name (unsigned enc)
22964 const char *name = get_DW_ATE_name (enc);
22967 return dwarf_unknown ("ATE", enc);
22973 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22977 print_spaces (indent, f);
22978 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22979 dwarf_tag_name (die->tag), die->abbrev,
22980 sect_offset_str (die->sect_off));
22982 if (die->parent != NULL)
22984 print_spaces (indent, f);
22985 fprintf_unfiltered (f, " parent at offset: %s\n",
22986 sect_offset_str (die->parent->sect_off));
22989 print_spaces (indent, f);
22990 fprintf_unfiltered (f, " has children: %s\n",
22991 dwarf_bool_name (die->child != NULL));
22993 print_spaces (indent, f);
22994 fprintf_unfiltered (f, " attributes:\n");
22996 for (i = 0; i < die->num_attrs; ++i)
22998 print_spaces (indent, f);
22999 fprintf_unfiltered (f, " %s (%s) ",
23000 dwarf_attr_name (die->attrs[i].name),
23001 dwarf_form_name (die->attrs[i].form));
23003 switch (die->attrs[i].form)
23006 case DW_FORM_addrx:
23007 case DW_FORM_GNU_addr_index:
23008 fprintf_unfiltered (f, "address: ");
23009 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
23011 case DW_FORM_block2:
23012 case DW_FORM_block4:
23013 case DW_FORM_block:
23014 case DW_FORM_block1:
23015 fprintf_unfiltered (f, "block: size %s",
23016 pulongest (DW_BLOCK (&die->attrs[i])->size));
23018 case DW_FORM_exprloc:
23019 fprintf_unfiltered (f, "expression: size %s",
23020 pulongest (DW_BLOCK (&die->attrs[i])->size));
23022 case DW_FORM_data16:
23023 fprintf_unfiltered (f, "constant of 16 bytes");
23025 case DW_FORM_ref_addr:
23026 fprintf_unfiltered (f, "ref address: ");
23027 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23029 case DW_FORM_GNU_ref_alt:
23030 fprintf_unfiltered (f, "alt ref address: ");
23031 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23037 case DW_FORM_ref_udata:
23038 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
23039 (long) (DW_UNSND (&die->attrs[i])));
23041 case DW_FORM_data1:
23042 case DW_FORM_data2:
23043 case DW_FORM_data4:
23044 case DW_FORM_data8:
23045 case DW_FORM_udata:
23046 case DW_FORM_sdata:
23047 fprintf_unfiltered (f, "constant: %s",
23048 pulongest (DW_UNSND (&die->attrs[i])));
23050 case DW_FORM_sec_offset:
23051 fprintf_unfiltered (f, "section offset: %s",
23052 pulongest (DW_UNSND (&die->attrs[i])));
23054 case DW_FORM_ref_sig8:
23055 fprintf_unfiltered (f, "signature: %s",
23056 hex_string (DW_SIGNATURE (&die->attrs[i])));
23058 case DW_FORM_string:
23060 case DW_FORM_line_strp:
23062 case DW_FORM_GNU_str_index:
23063 case DW_FORM_GNU_strp_alt:
23064 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23065 DW_STRING (&die->attrs[i])
23066 ? DW_STRING (&die->attrs[i]) : "",
23067 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23070 if (DW_UNSND (&die->attrs[i]))
23071 fprintf_unfiltered (f, "flag: TRUE");
23073 fprintf_unfiltered (f, "flag: FALSE");
23075 case DW_FORM_flag_present:
23076 fprintf_unfiltered (f, "flag: TRUE");
23078 case DW_FORM_indirect:
23079 /* The reader will have reduced the indirect form to
23080 the "base form" so this form should not occur. */
23081 fprintf_unfiltered (f,
23082 "unexpected attribute form: DW_FORM_indirect");
23084 case DW_FORM_implicit_const:
23085 fprintf_unfiltered (f, "constant: %s",
23086 plongest (DW_SND (&die->attrs[i])));
23089 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23090 die->attrs[i].form);
23093 fprintf_unfiltered (f, "\n");
23098 dump_die_for_error (struct die_info *die)
23100 dump_die_shallow (gdb_stderr, 0, die);
23104 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23106 int indent = level * 4;
23108 gdb_assert (die != NULL);
23110 if (level >= max_level)
23113 dump_die_shallow (f, indent, die);
23115 if (die->child != NULL)
23117 print_spaces (indent, f);
23118 fprintf_unfiltered (f, " Children:");
23119 if (level + 1 < max_level)
23121 fprintf_unfiltered (f, "\n");
23122 dump_die_1 (f, level + 1, max_level, die->child);
23126 fprintf_unfiltered (f,
23127 " [not printed, max nesting level reached]\n");
23131 if (die->sibling != NULL && level > 0)
23133 dump_die_1 (f, level, max_level, die->sibling);
23137 /* This is called from the pdie macro in gdbinit.in.
23138 It's not static so gcc will keep a copy callable from gdb. */
23141 dump_die (struct die_info *die, int max_level)
23143 dump_die_1 (gdb_stdlog, 0, max_level, die);
23147 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23151 slot = htab_find_slot_with_hash (cu->die_hash, die,
23152 to_underlying (die->sect_off),
23158 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23162 dwarf2_get_ref_die_offset (const struct attribute *attr)
23164 if (attr_form_is_ref (attr))
23165 return (sect_offset) DW_UNSND (attr);
23167 complaint (_("unsupported die ref attribute form: '%s'"),
23168 dwarf_form_name (attr->form));
23172 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23173 * the value held by the attribute is not constant. */
23176 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23178 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23179 return DW_SND (attr);
23180 else if (attr->form == DW_FORM_udata
23181 || attr->form == DW_FORM_data1
23182 || attr->form == DW_FORM_data2
23183 || attr->form == DW_FORM_data4
23184 || attr->form == DW_FORM_data8)
23185 return DW_UNSND (attr);
23188 /* For DW_FORM_data16 see attr_form_is_constant. */
23189 complaint (_("Attribute value is not a constant (%s)"),
23190 dwarf_form_name (attr->form));
23191 return default_value;
23195 /* Follow reference or signature attribute ATTR of SRC_DIE.
23196 On entry *REF_CU is the CU of SRC_DIE.
23197 On exit *REF_CU is the CU of the result. */
23199 static struct die_info *
23200 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23201 struct dwarf2_cu **ref_cu)
23203 struct die_info *die;
23205 if (attr_form_is_ref (attr))
23206 die = follow_die_ref (src_die, attr, ref_cu);
23207 else if (attr->form == DW_FORM_ref_sig8)
23208 die = follow_die_sig (src_die, attr, ref_cu);
23211 dump_die_for_error (src_die);
23212 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23213 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23219 /* Follow reference OFFSET.
23220 On entry *REF_CU is the CU of the source die referencing OFFSET.
23221 On exit *REF_CU is the CU of the result.
23222 Returns NULL if OFFSET is invalid. */
23224 static struct die_info *
23225 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23226 struct dwarf2_cu **ref_cu)
23228 struct die_info temp_die;
23229 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23230 struct dwarf2_per_objfile *dwarf2_per_objfile
23231 = cu->per_cu->dwarf2_per_objfile;
23233 gdb_assert (cu->per_cu != NULL);
23237 if (cu->per_cu->is_debug_types)
23239 /* .debug_types CUs cannot reference anything outside their CU.
23240 If they need to, they have to reference a signatured type via
23241 DW_FORM_ref_sig8. */
23242 if (!offset_in_cu_p (&cu->header, sect_off))
23245 else if (offset_in_dwz != cu->per_cu->is_dwz
23246 || !offset_in_cu_p (&cu->header, sect_off))
23248 struct dwarf2_per_cu_data *per_cu;
23250 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23251 dwarf2_per_objfile);
23253 /* If necessary, add it to the queue and load its DIEs. */
23254 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23255 load_full_comp_unit (per_cu, false, cu->language);
23257 target_cu = per_cu->cu;
23259 else if (cu->dies == NULL)
23261 /* We're loading full DIEs during partial symbol reading. */
23262 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23263 load_full_comp_unit (cu->per_cu, false, language_minimal);
23266 *ref_cu = target_cu;
23267 temp_die.sect_off = sect_off;
23269 if (target_cu != cu)
23270 target_cu->ancestor = cu;
23272 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23274 to_underlying (sect_off));
23277 /* Follow reference attribute ATTR of SRC_DIE.
23278 On entry *REF_CU is the CU of SRC_DIE.
23279 On exit *REF_CU is the CU of the result. */
23281 static struct die_info *
23282 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23283 struct dwarf2_cu **ref_cu)
23285 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23286 struct dwarf2_cu *cu = *ref_cu;
23287 struct die_info *die;
23289 die = follow_die_offset (sect_off,
23290 (attr->form == DW_FORM_GNU_ref_alt
23291 || cu->per_cu->is_dwz),
23294 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23295 "at %s [in module %s]"),
23296 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23297 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23302 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23303 Returned value is intended for DW_OP_call*. Returned
23304 dwarf2_locexpr_baton->data has lifetime of
23305 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23307 struct dwarf2_locexpr_baton
23308 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23309 struct dwarf2_per_cu_data *per_cu,
23310 CORE_ADDR (*get_frame_pc) (void *baton),
23311 void *baton, bool resolve_abstract_p)
23313 struct dwarf2_cu *cu;
23314 struct die_info *die;
23315 struct attribute *attr;
23316 struct dwarf2_locexpr_baton retval;
23317 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23318 struct objfile *objfile = dwarf2_per_objfile->objfile;
23320 if (per_cu->cu == NULL)
23321 load_cu (per_cu, false);
23325 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23326 Instead just throw an error, not much else we can do. */
23327 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23328 sect_offset_str (sect_off), objfile_name (objfile));
23331 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23333 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23334 sect_offset_str (sect_off), objfile_name (objfile));
23336 attr = dwarf2_attr (die, DW_AT_location, cu);
23337 if (!attr && resolve_abstract_p
23338 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23339 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23341 CORE_ADDR pc = (*get_frame_pc) (baton);
23343 = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23344 struct gdbarch *gdbarch = get_objfile_arch (objfile);
23346 for (const auto &cand_off
23347 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23349 struct dwarf2_cu *cand_cu = cu;
23350 struct die_info *cand
23351 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23354 || cand->parent->tag != DW_TAG_subprogram)
23357 CORE_ADDR pc_low, pc_high;
23358 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23359 if (pc_low == ((CORE_ADDR) -1))
23361 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23362 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23363 if (!(pc_low <= pc && pc < pc_high))
23367 attr = dwarf2_attr (die, DW_AT_location, cu);
23374 /* DWARF: "If there is no such attribute, then there is no effect.".
23375 DATA is ignored if SIZE is 0. */
23377 retval.data = NULL;
23380 else if (attr_form_is_section_offset (attr))
23382 struct dwarf2_loclist_baton loclist_baton;
23383 CORE_ADDR pc = (*get_frame_pc) (baton);
23386 fill_in_loclist_baton (cu, &loclist_baton, attr);
23388 retval.data = dwarf2_find_location_expression (&loclist_baton,
23390 retval.size = size;
23394 if (!attr_form_is_block (attr))
23395 error (_("Dwarf Error: DIE at %s referenced in module %s "
23396 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23397 sect_offset_str (sect_off), objfile_name (objfile));
23399 retval.data = DW_BLOCK (attr)->data;
23400 retval.size = DW_BLOCK (attr)->size;
23402 retval.per_cu = cu->per_cu;
23404 age_cached_comp_units (dwarf2_per_objfile);
23409 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23412 struct dwarf2_locexpr_baton
23413 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23414 struct dwarf2_per_cu_data *per_cu,
23415 CORE_ADDR (*get_frame_pc) (void *baton),
23418 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23420 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23423 /* Write a constant of a given type as target-ordered bytes into
23426 static const gdb_byte *
23427 write_constant_as_bytes (struct obstack *obstack,
23428 enum bfd_endian byte_order,
23435 *len = TYPE_LENGTH (type);
23436 result = (gdb_byte *) obstack_alloc (obstack, *len);
23437 store_unsigned_integer (result, *len, byte_order, value);
23442 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23443 pointer to the constant bytes and set LEN to the length of the
23444 data. If memory is needed, allocate it on OBSTACK. If the DIE
23445 does not have a DW_AT_const_value, return NULL. */
23448 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23449 struct dwarf2_per_cu_data *per_cu,
23450 struct obstack *obstack,
23453 struct dwarf2_cu *cu;
23454 struct die_info *die;
23455 struct attribute *attr;
23456 const gdb_byte *result = NULL;
23459 enum bfd_endian byte_order;
23460 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23462 if (per_cu->cu == NULL)
23463 load_cu (per_cu, false);
23467 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23468 Instead just throw an error, not much else we can do. */
23469 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23470 sect_offset_str (sect_off), objfile_name (objfile));
23473 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23475 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23476 sect_offset_str (sect_off), objfile_name (objfile));
23478 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23482 byte_order = (bfd_big_endian (objfile->obfd)
23483 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23485 switch (attr->form)
23488 case DW_FORM_addrx:
23489 case DW_FORM_GNU_addr_index:
23493 *len = cu->header.addr_size;
23494 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23495 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23499 case DW_FORM_string:
23502 case DW_FORM_GNU_str_index:
23503 case DW_FORM_GNU_strp_alt:
23504 /* DW_STRING is already allocated on the objfile obstack, point
23506 result = (const gdb_byte *) DW_STRING (attr);
23507 *len = strlen (DW_STRING (attr));
23509 case DW_FORM_block1:
23510 case DW_FORM_block2:
23511 case DW_FORM_block4:
23512 case DW_FORM_block:
23513 case DW_FORM_exprloc:
23514 case DW_FORM_data16:
23515 result = DW_BLOCK (attr)->data;
23516 *len = DW_BLOCK (attr)->size;
23519 /* The DW_AT_const_value attributes are supposed to carry the
23520 symbol's value "represented as it would be on the target
23521 architecture." By the time we get here, it's already been
23522 converted to host endianness, so we just need to sign- or
23523 zero-extend it as appropriate. */
23524 case DW_FORM_data1:
23525 type = die_type (die, cu);
23526 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23527 if (result == NULL)
23528 result = write_constant_as_bytes (obstack, byte_order,
23531 case DW_FORM_data2:
23532 type = die_type (die, cu);
23533 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23534 if (result == NULL)
23535 result = write_constant_as_bytes (obstack, byte_order,
23538 case DW_FORM_data4:
23539 type = die_type (die, cu);
23540 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23541 if (result == NULL)
23542 result = write_constant_as_bytes (obstack, byte_order,
23545 case DW_FORM_data8:
23546 type = die_type (die, cu);
23547 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23548 if (result == NULL)
23549 result = write_constant_as_bytes (obstack, byte_order,
23553 case DW_FORM_sdata:
23554 case DW_FORM_implicit_const:
23555 type = die_type (die, cu);
23556 result = write_constant_as_bytes (obstack, byte_order,
23557 type, DW_SND (attr), len);
23560 case DW_FORM_udata:
23561 type = die_type (die, cu);
23562 result = write_constant_as_bytes (obstack, byte_order,
23563 type, DW_UNSND (attr), len);
23567 complaint (_("unsupported const value attribute form: '%s'"),
23568 dwarf_form_name (attr->form));
23575 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23576 valid type for this die is found. */
23579 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23580 struct dwarf2_per_cu_data *per_cu)
23582 struct dwarf2_cu *cu;
23583 struct die_info *die;
23585 if (per_cu->cu == NULL)
23586 load_cu (per_cu, false);
23591 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23595 return die_type (die, cu);
23598 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23602 dwarf2_get_die_type (cu_offset die_offset,
23603 struct dwarf2_per_cu_data *per_cu)
23605 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23606 return get_die_type_at_offset (die_offset_sect, per_cu);
23609 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23610 On entry *REF_CU is the CU of SRC_DIE.
23611 On exit *REF_CU is the CU of the result.
23612 Returns NULL if the referenced DIE isn't found. */
23614 static struct die_info *
23615 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23616 struct dwarf2_cu **ref_cu)
23618 struct die_info temp_die;
23619 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23620 struct die_info *die;
23622 /* While it might be nice to assert sig_type->type == NULL here,
23623 we can get here for DW_AT_imported_declaration where we need
23624 the DIE not the type. */
23626 /* If necessary, add it to the queue and load its DIEs. */
23628 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23629 read_signatured_type (sig_type);
23631 sig_cu = sig_type->per_cu.cu;
23632 gdb_assert (sig_cu != NULL);
23633 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23634 temp_die.sect_off = sig_type->type_offset_in_section;
23635 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23636 to_underlying (temp_die.sect_off));
23639 struct dwarf2_per_objfile *dwarf2_per_objfile
23640 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23642 /* For .gdb_index version 7 keep track of included TUs.
23643 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23644 if (dwarf2_per_objfile->index_table != NULL
23645 && dwarf2_per_objfile->index_table->version <= 7)
23647 VEC_safe_push (dwarf2_per_cu_ptr,
23648 (*ref_cu)->per_cu->imported_symtabs,
23654 sig_cu->ancestor = cu;
23662 /* Follow signatured type referenced by ATTR in SRC_DIE.
23663 On entry *REF_CU is the CU of SRC_DIE.
23664 On exit *REF_CU is the CU of the result.
23665 The result is the DIE of the type.
23666 If the referenced type cannot be found an error is thrown. */
23668 static struct die_info *
23669 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23670 struct dwarf2_cu **ref_cu)
23672 ULONGEST signature = DW_SIGNATURE (attr);
23673 struct signatured_type *sig_type;
23674 struct die_info *die;
23676 gdb_assert (attr->form == DW_FORM_ref_sig8);
23678 sig_type = lookup_signatured_type (*ref_cu, signature);
23679 /* sig_type will be NULL if the signatured type is missing from
23681 if (sig_type == NULL)
23683 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23684 " from DIE at %s [in module %s]"),
23685 hex_string (signature), sect_offset_str (src_die->sect_off),
23686 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23689 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23692 dump_die_for_error (src_die);
23693 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23694 " from DIE at %s [in module %s]"),
23695 hex_string (signature), sect_offset_str (src_die->sect_off),
23696 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23702 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23703 reading in and processing the type unit if necessary. */
23705 static struct type *
23706 get_signatured_type (struct die_info *die, ULONGEST signature,
23707 struct dwarf2_cu *cu)
23709 struct dwarf2_per_objfile *dwarf2_per_objfile
23710 = cu->per_cu->dwarf2_per_objfile;
23711 struct signatured_type *sig_type;
23712 struct dwarf2_cu *type_cu;
23713 struct die_info *type_die;
23716 sig_type = lookup_signatured_type (cu, signature);
23717 /* sig_type will be NULL if the signatured type is missing from
23719 if (sig_type == NULL)
23721 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23722 " from DIE at %s [in module %s]"),
23723 hex_string (signature), sect_offset_str (die->sect_off),
23724 objfile_name (dwarf2_per_objfile->objfile));
23725 return build_error_marker_type (cu, die);
23728 /* If we already know the type we're done. */
23729 if (sig_type->type != NULL)
23730 return sig_type->type;
23733 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23734 if (type_die != NULL)
23736 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23737 is created. This is important, for example, because for c++ classes
23738 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23739 type = read_type_die (type_die, type_cu);
23742 complaint (_("Dwarf Error: Cannot build signatured type %s"
23743 " referenced from DIE at %s [in module %s]"),
23744 hex_string (signature), sect_offset_str (die->sect_off),
23745 objfile_name (dwarf2_per_objfile->objfile));
23746 type = build_error_marker_type (cu, die);
23751 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23752 " from DIE at %s [in module %s]"),
23753 hex_string (signature), sect_offset_str (die->sect_off),
23754 objfile_name (dwarf2_per_objfile->objfile));
23755 type = build_error_marker_type (cu, die);
23757 sig_type->type = type;
23762 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23763 reading in and processing the type unit if necessary. */
23765 static struct type *
23766 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23767 struct dwarf2_cu *cu) /* ARI: editCase function */
23769 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23770 if (attr_form_is_ref (attr))
23772 struct dwarf2_cu *type_cu = cu;
23773 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23775 return read_type_die (type_die, type_cu);
23777 else if (attr->form == DW_FORM_ref_sig8)
23779 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23783 struct dwarf2_per_objfile *dwarf2_per_objfile
23784 = cu->per_cu->dwarf2_per_objfile;
23786 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23787 " at %s [in module %s]"),
23788 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23789 objfile_name (dwarf2_per_objfile->objfile));
23790 return build_error_marker_type (cu, die);
23794 /* Load the DIEs associated with type unit PER_CU into memory. */
23797 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23799 struct signatured_type *sig_type;
23801 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23802 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23804 /* We have the per_cu, but we need the signatured_type.
23805 Fortunately this is an easy translation. */
23806 gdb_assert (per_cu->is_debug_types);
23807 sig_type = (struct signatured_type *) per_cu;
23809 gdb_assert (per_cu->cu == NULL);
23811 read_signatured_type (sig_type);
23813 gdb_assert (per_cu->cu != NULL);
23816 /* die_reader_func for read_signatured_type.
23817 This is identical to load_full_comp_unit_reader,
23818 but is kept separate for now. */
23821 read_signatured_type_reader (const struct die_reader_specs *reader,
23822 const gdb_byte *info_ptr,
23823 struct die_info *comp_unit_die,
23827 struct dwarf2_cu *cu = reader->cu;
23829 gdb_assert (cu->die_hash == NULL);
23831 htab_create_alloc_ex (cu->header.length / 12,
23835 &cu->comp_unit_obstack,
23836 hashtab_obstack_allocate,
23837 dummy_obstack_deallocate);
23840 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23841 &info_ptr, comp_unit_die);
23842 cu->dies = comp_unit_die;
23843 /* comp_unit_die is not stored in die_hash, no need. */
23845 /* We try not to read any attributes in this function, because not
23846 all CUs needed for references have been loaded yet, and symbol
23847 table processing isn't initialized. But we have to set the CU language,
23848 or we won't be able to build types correctly.
23849 Similarly, if we do not read the producer, we can not apply
23850 producer-specific interpretation. */
23851 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23854 /* Read in a signatured type and build its CU and DIEs.
23855 If the type is a stub for the real type in a DWO file,
23856 read in the real type from the DWO file as well. */
23859 read_signatured_type (struct signatured_type *sig_type)
23861 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23863 gdb_assert (per_cu->is_debug_types);
23864 gdb_assert (per_cu->cu == NULL);
23866 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23867 read_signatured_type_reader, NULL);
23868 sig_type->per_cu.tu_read = 1;
23871 /* Decode simple location descriptions.
23872 Given a pointer to a dwarf block that defines a location, compute
23873 the location and return the value.
23875 NOTE drow/2003-11-18: This function is called in two situations
23876 now: for the address of static or global variables (partial symbols
23877 only) and for offsets into structures which are expected to be
23878 (more or less) constant. The partial symbol case should go away,
23879 and only the constant case should remain. That will let this
23880 function complain more accurately. A few special modes are allowed
23881 without complaint for global variables (for instance, global
23882 register values and thread-local values).
23884 A location description containing no operations indicates that the
23885 object is optimized out. The return value is 0 for that case.
23886 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23887 callers will only want a very basic result and this can become a
23890 Note that stack[0] is unused except as a default error return. */
23893 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23895 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23897 size_t size = blk->size;
23898 const gdb_byte *data = blk->data;
23899 CORE_ADDR stack[64];
23901 unsigned int bytes_read, unsnd;
23907 stack[++stacki] = 0;
23946 stack[++stacki] = op - DW_OP_lit0;
23981 stack[++stacki] = op - DW_OP_reg0;
23983 dwarf2_complex_location_expr_complaint ();
23987 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23989 stack[++stacki] = unsnd;
23991 dwarf2_complex_location_expr_complaint ();
23995 stack[++stacki] = read_address (objfile->obfd, &data[i],
24000 case DW_OP_const1u:
24001 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
24005 case DW_OP_const1s:
24006 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
24010 case DW_OP_const2u:
24011 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
24015 case DW_OP_const2s:
24016 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
24020 case DW_OP_const4u:
24021 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
24025 case DW_OP_const4s:
24026 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
24030 case DW_OP_const8u:
24031 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
24036 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
24042 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
24047 stack[stacki + 1] = stack[stacki];
24052 stack[stacki - 1] += stack[stacki];
24056 case DW_OP_plus_uconst:
24057 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24063 stack[stacki - 1] -= stack[stacki];
24068 /* If we're not the last op, then we definitely can't encode
24069 this using GDB's address_class enum. This is valid for partial
24070 global symbols, although the variable's address will be bogus
24073 dwarf2_complex_location_expr_complaint ();
24076 case DW_OP_GNU_push_tls_address:
24077 case DW_OP_form_tls_address:
24078 /* The top of the stack has the offset from the beginning
24079 of the thread control block at which the variable is located. */
24080 /* Nothing should follow this operator, so the top of stack would
24082 /* This is valid for partial global symbols, but the variable's
24083 address will be bogus in the psymtab. Make it always at least
24084 non-zero to not look as a variable garbage collected by linker
24085 which have DW_OP_addr 0. */
24087 dwarf2_complex_location_expr_complaint ();
24091 case DW_OP_GNU_uninit:
24095 case DW_OP_GNU_addr_index:
24096 case DW_OP_GNU_const_index:
24097 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24104 const char *name = get_DW_OP_name (op);
24107 complaint (_("unsupported stack op: '%s'"),
24110 complaint (_("unsupported stack op: '%02x'"),
24114 return (stack[stacki]);
24117 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24118 outside of the allocated space. Also enforce minimum>0. */
24119 if (stacki >= ARRAY_SIZE (stack) - 1)
24121 complaint (_("location description stack overflow"));
24127 complaint (_("location description stack underflow"));
24131 return (stack[stacki]);
24134 /* memory allocation interface */
24136 static struct dwarf_block *
24137 dwarf_alloc_block (struct dwarf2_cu *cu)
24139 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24142 static struct die_info *
24143 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24145 struct die_info *die;
24146 size_t size = sizeof (struct die_info);
24149 size += (num_attrs - 1) * sizeof (struct attribute);
24151 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24152 memset (die, 0, sizeof (struct die_info));
24157 /* Macro support. */
24159 /* Return file name relative to the compilation directory of file number I in
24160 *LH's file name table. The result is allocated using xmalloc; the caller is
24161 responsible for freeing it. */
24164 file_file_name (int file, struct line_header *lh)
24166 /* Is the file number a valid index into the line header's file name
24167 table? Remember that file numbers start with one, not zero. */
24168 if (1 <= file && file <= lh->file_names.size ())
24170 const file_entry &fe = lh->file_names[file - 1];
24172 if (!IS_ABSOLUTE_PATH (fe.name))
24174 const char *dir = fe.include_dir (lh);
24176 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24178 return xstrdup (fe.name);
24182 /* The compiler produced a bogus file number. We can at least
24183 record the macro definitions made in the file, even if we
24184 won't be able to find the file by name. */
24185 char fake_name[80];
24187 xsnprintf (fake_name, sizeof (fake_name),
24188 "<bad macro file number %d>", file);
24190 complaint (_("bad file number in macro information (%d)"),
24193 return xstrdup (fake_name);
24197 /* Return the full name of file number I in *LH's file name table.
24198 Use COMP_DIR as the name of the current directory of the
24199 compilation. The result is allocated using xmalloc; the caller is
24200 responsible for freeing it. */
24202 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24204 /* Is the file number a valid index into the line header's file name
24205 table? Remember that file numbers start with one, not zero. */
24206 if (1 <= file && file <= lh->file_names.size ())
24208 char *relative = file_file_name (file, lh);
24210 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24212 return reconcat (relative, comp_dir, SLASH_STRING,
24213 relative, (char *) NULL);
24216 return file_file_name (file, lh);
24220 static struct macro_source_file *
24221 macro_start_file (struct dwarf2_cu *cu,
24222 int file, int line,
24223 struct macro_source_file *current_file,
24224 struct line_header *lh)
24226 /* File name relative to the compilation directory of this source file. */
24227 char *file_name = file_file_name (file, lh);
24229 if (! current_file)
24231 /* Note: We don't create a macro table for this compilation unit
24232 at all until we actually get a filename. */
24233 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24235 /* If we have no current file, then this must be the start_file
24236 directive for the compilation unit's main source file. */
24237 current_file = macro_set_main (macro_table, file_name);
24238 macro_define_special (macro_table);
24241 current_file = macro_include (current_file, line, file_name);
24245 return current_file;
24248 static const char *
24249 consume_improper_spaces (const char *p, const char *body)
24253 complaint (_("macro definition contains spaces "
24254 "in formal argument list:\n`%s'"),
24266 parse_macro_definition (struct macro_source_file *file, int line,
24271 /* The body string takes one of two forms. For object-like macro
24272 definitions, it should be:
24274 <macro name> " " <definition>
24276 For function-like macro definitions, it should be:
24278 <macro name> "() " <definition>
24280 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24282 Spaces may appear only where explicitly indicated, and in the
24285 The Dwarf 2 spec says that an object-like macro's name is always
24286 followed by a space, but versions of GCC around March 2002 omit
24287 the space when the macro's definition is the empty string.
24289 The Dwarf 2 spec says that there should be no spaces between the
24290 formal arguments in a function-like macro's formal argument list,
24291 but versions of GCC around March 2002 include spaces after the
24295 /* Find the extent of the macro name. The macro name is terminated
24296 by either a space or null character (for an object-like macro) or
24297 an opening paren (for a function-like macro). */
24298 for (p = body; *p; p++)
24299 if (*p == ' ' || *p == '(')
24302 if (*p == ' ' || *p == '\0')
24304 /* It's an object-like macro. */
24305 int name_len = p - body;
24306 char *name = savestring (body, name_len);
24307 const char *replacement;
24310 replacement = body + name_len + 1;
24313 dwarf2_macro_malformed_definition_complaint (body);
24314 replacement = body + name_len;
24317 macro_define_object (file, line, name, replacement);
24321 else if (*p == '(')
24323 /* It's a function-like macro. */
24324 char *name = savestring (body, p - body);
24327 char **argv = XNEWVEC (char *, argv_size);
24331 p = consume_improper_spaces (p, body);
24333 /* Parse the formal argument list. */
24334 while (*p && *p != ')')
24336 /* Find the extent of the current argument name. */
24337 const char *arg_start = p;
24339 while (*p && *p != ',' && *p != ')' && *p != ' ')
24342 if (! *p || p == arg_start)
24343 dwarf2_macro_malformed_definition_complaint (body);
24346 /* Make sure argv has room for the new argument. */
24347 if (argc >= argv_size)
24350 argv = XRESIZEVEC (char *, argv, argv_size);
24353 argv[argc++] = savestring (arg_start, p - arg_start);
24356 p = consume_improper_spaces (p, body);
24358 /* Consume the comma, if present. */
24363 p = consume_improper_spaces (p, body);
24372 /* Perfectly formed definition, no complaints. */
24373 macro_define_function (file, line, name,
24374 argc, (const char **) argv,
24376 else if (*p == '\0')
24378 /* Complain, but do define it. */
24379 dwarf2_macro_malformed_definition_complaint (body);
24380 macro_define_function (file, line, name,
24381 argc, (const char **) argv,
24385 /* Just complain. */
24386 dwarf2_macro_malformed_definition_complaint (body);
24389 /* Just complain. */
24390 dwarf2_macro_malformed_definition_complaint (body);
24396 for (i = 0; i < argc; i++)
24402 dwarf2_macro_malformed_definition_complaint (body);
24405 /* Skip some bytes from BYTES according to the form given in FORM.
24406 Returns the new pointer. */
24408 static const gdb_byte *
24409 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24410 enum dwarf_form form,
24411 unsigned int offset_size,
24412 struct dwarf2_section_info *section)
24414 unsigned int bytes_read;
24418 case DW_FORM_data1:
24423 case DW_FORM_data2:
24427 case DW_FORM_data4:
24431 case DW_FORM_data8:
24435 case DW_FORM_data16:
24439 case DW_FORM_string:
24440 read_direct_string (abfd, bytes, &bytes_read);
24441 bytes += bytes_read;
24444 case DW_FORM_sec_offset:
24446 case DW_FORM_GNU_strp_alt:
24447 bytes += offset_size;
24450 case DW_FORM_block:
24451 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24452 bytes += bytes_read;
24455 case DW_FORM_block1:
24456 bytes += 1 + read_1_byte (abfd, bytes);
24458 case DW_FORM_block2:
24459 bytes += 2 + read_2_bytes (abfd, bytes);
24461 case DW_FORM_block4:
24462 bytes += 4 + read_4_bytes (abfd, bytes);
24465 case DW_FORM_addrx:
24466 case DW_FORM_sdata:
24468 case DW_FORM_udata:
24469 case DW_FORM_GNU_addr_index:
24470 case DW_FORM_GNU_str_index:
24471 bytes = gdb_skip_leb128 (bytes, buffer_end);
24474 dwarf2_section_buffer_overflow_complaint (section);
24479 case DW_FORM_implicit_const:
24484 complaint (_("invalid form 0x%x in `%s'"),
24485 form, get_section_name (section));
24493 /* A helper for dwarf_decode_macros that handles skipping an unknown
24494 opcode. Returns an updated pointer to the macro data buffer; or,
24495 on error, issues a complaint and returns NULL. */
24497 static const gdb_byte *
24498 skip_unknown_opcode (unsigned int opcode,
24499 const gdb_byte **opcode_definitions,
24500 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24502 unsigned int offset_size,
24503 struct dwarf2_section_info *section)
24505 unsigned int bytes_read, i;
24507 const gdb_byte *defn;
24509 if (opcode_definitions[opcode] == NULL)
24511 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24516 defn = opcode_definitions[opcode];
24517 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24518 defn += bytes_read;
24520 for (i = 0; i < arg; ++i)
24522 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24523 (enum dwarf_form) defn[i], offset_size,
24525 if (mac_ptr == NULL)
24527 /* skip_form_bytes already issued the complaint. */
24535 /* A helper function which parses the header of a macro section.
24536 If the macro section is the extended (for now called "GNU") type,
24537 then this updates *OFFSET_SIZE. Returns a pointer to just after
24538 the header, or issues a complaint and returns NULL on error. */
24540 static const gdb_byte *
24541 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24543 const gdb_byte *mac_ptr,
24544 unsigned int *offset_size,
24545 int section_is_gnu)
24547 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24549 if (section_is_gnu)
24551 unsigned int version, flags;
24553 version = read_2_bytes (abfd, mac_ptr);
24554 if (version != 4 && version != 5)
24556 complaint (_("unrecognized version `%d' in .debug_macro section"),
24562 flags = read_1_byte (abfd, mac_ptr);
24564 *offset_size = (flags & 1) ? 8 : 4;
24566 if ((flags & 2) != 0)
24567 /* We don't need the line table offset. */
24568 mac_ptr += *offset_size;
24570 /* Vendor opcode descriptions. */
24571 if ((flags & 4) != 0)
24573 unsigned int i, count;
24575 count = read_1_byte (abfd, mac_ptr);
24577 for (i = 0; i < count; ++i)
24579 unsigned int opcode, bytes_read;
24582 opcode = read_1_byte (abfd, mac_ptr);
24584 opcode_definitions[opcode] = mac_ptr;
24585 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24586 mac_ptr += bytes_read;
24595 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24596 including DW_MACRO_import. */
24599 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24601 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24602 struct macro_source_file *current_file,
24603 struct line_header *lh,
24604 struct dwarf2_section_info *section,
24605 int section_is_gnu, int section_is_dwz,
24606 unsigned int offset_size,
24607 htab_t include_hash)
24609 struct dwarf2_per_objfile *dwarf2_per_objfile
24610 = cu->per_cu->dwarf2_per_objfile;
24611 struct objfile *objfile = dwarf2_per_objfile->objfile;
24612 enum dwarf_macro_record_type macinfo_type;
24613 int at_commandline;
24614 const gdb_byte *opcode_definitions[256];
24616 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24617 &offset_size, section_is_gnu);
24618 if (mac_ptr == NULL)
24620 /* We already issued a complaint. */
24624 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24625 GDB is still reading the definitions from command line. First
24626 DW_MACINFO_start_file will need to be ignored as it was already executed
24627 to create CURRENT_FILE for the main source holding also the command line
24628 definitions. On first met DW_MACINFO_start_file this flag is reset to
24629 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24631 at_commandline = 1;
24635 /* Do we at least have room for a macinfo type byte? */
24636 if (mac_ptr >= mac_end)
24638 dwarf2_section_buffer_overflow_complaint (section);
24642 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24645 /* Note that we rely on the fact that the corresponding GNU and
24646 DWARF constants are the same. */
24648 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24649 switch (macinfo_type)
24651 /* A zero macinfo type indicates the end of the macro
24656 case DW_MACRO_define:
24657 case DW_MACRO_undef:
24658 case DW_MACRO_define_strp:
24659 case DW_MACRO_undef_strp:
24660 case DW_MACRO_define_sup:
24661 case DW_MACRO_undef_sup:
24663 unsigned int bytes_read;
24668 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24669 mac_ptr += bytes_read;
24671 if (macinfo_type == DW_MACRO_define
24672 || macinfo_type == DW_MACRO_undef)
24674 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24675 mac_ptr += bytes_read;
24679 LONGEST str_offset;
24681 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24682 mac_ptr += offset_size;
24684 if (macinfo_type == DW_MACRO_define_sup
24685 || macinfo_type == DW_MACRO_undef_sup
24688 struct dwz_file *dwz
24689 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24691 body = read_indirect_string_from_dwz (objfile,
24695 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24699 is_define = (macinfo_type == DW_MACRO_define
24700 || macinfo_type == DW_MACRO_define_strp
24701 || macinfo_type == DW_MACRO_define_sup);
24702 if (! current_file)
24704 /* DWARF violation as no main source is present. */
24705 complaint (_("debug info with no main source gives macro %s "
24707 is_define ? _("definition") : _("undefinition"),
24711 if ((line == 0 && !at_commandline)
24712 || (line != 0 && at_commandline))
24713 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24714 at_commandline ? _("command-line") : _("in-file"),
24715 is_define ? _("definition") : _("undefinition"),
24716 line == 0 ? _("zero") : _("non-zero"), line, body);
24720 /* Fedora's rpm-build's "debugedit" binary
24721 corrupted .debug_macro sections.
24724 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24725 complaint (_("debug info gives %s invalid macro %s "
24726 "without body (corrupted?) at line %d "
24728 at_commandline ? _("command-line") : _("in-file"),
24729 is_define ? _("definition") : _("undefinition"),
24730 line, current_file->filename);
24732 else if (is_define)
24733 parse_macro_definition (current_file, line, body);
24736 gdb_assert (macinfo_type == DW_MACRO_undef
24737 || macinfo_type == DW_MACRO_undef_strp
24738 || macinfo_type == DW_MACRO_undef_sup);
24739 macro_undef (current_file, line, body);
24744 case DW_MACRO_start_file:
24746 unsigned int bytes_read;
24749 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24750 mac_ptr += bytes_read;
24751 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24752 mac_ptr += bytes_read;
24754 if ((line == 0 && !at_commandline)
24755 || (line != 0 && at_commandline))
24756 complaint (_("debug info gives source %d included "
24757 "from %s at %s line %d"),
24758 file, at_commandline ? _("command-line") : _("file"),
24759 line == 0 ? _("zero") : _("non-zero"), line);
24761 if (at_commandline)
24763 /* This DW_MACRO_start_file was executed in the
24765 at_commandline = 0;
24768 current_file = macro_start_file (cu, file, line, current_file,
24773 case DW_MACRO_end_file:
24774 if (! current_file)
24775 complaint (_("macro debug info has an unmatched "
24776 "`close_file' directive"));
24779 current_file = current_file->included_by;
24780 if (! current_file)
24782 enum dwarf_macro_record_type next_type;
24784 /* GCC circa March 2002 doesn't produce the zero
24785 type byte marking the end of the compilation
24786 unit. Complain if it's not there, but exit no
24789 /* Do we at least have room for a macinfo type byte? */
24790 if (mac_ptr >= mac_end)
24792 dwarf2_section_buffer_overflow_complaint (section);
24796 /* We don't increment mac_ptr here, so this is just
24799 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24801 if (next_type != 0)
24802 complaint (_("no terminating 0-type entry for "
24803 "macros in `.debug_macinfo' section"));
24810 case DW_MACRO_import:
24811 case DW_MACRO_import_sup:
24815 bfd *include_bfd = abfd;
24816 struct dwarf2_section_info *include_section = section;
24817 const gdb_byte *include_mac_end = mac_end;
24818 int is_dwz = section_is_dwz;
24819 const gdb_byte *new_mac_ptr;
24821 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24822 mac_ptr += offset_size;
24824 if (macinfo_type == DW_MACRO_import_sup)
24826 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24828 dwarf2_read_section (objfile, &dwz->macro);
24830 include_section = &dwz->macro;
24831 include_bfd = get_section_bfd_owner (include_section);
24832 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24836 new_mac_ptr = include_section->buffer + offset;
24837 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24841 /* This has actually happened; see
24842 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24843 complaint (_("recursive DW_MACRO_import in "
24844 ".debug_macro section"));
24848 *slot = (void *) new_mac_ptr;
24850 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24851 include_mac_end, current_file, lh,
24852 section, section_is_gnu, is_dwz,
24853 offset_size, include_hash);
24855 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24860 case DW_MACINFO_vendor_ext:
24861 if (!section_is_gnu)
24863 unsigned int bytes_read;
24865 /* This reads the constant, but since we don't recognize
24866 any vendor extensions, we ignore it. */
24867 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24868 mac_ptr += bytes_read;
24869 read_direct_string (abfd, mac_ptr, &bytes_read);
24870 mac_ptr += bytes_read;
24872 /* We don't recognize any vendor extensions. */
24878 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24879 mac_ptr, mac_end, abfd, offset_size,
24881 if (mac_ptr == NULL)
24886 } while (macinfo_type != 0);
24890 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24891 int section_is_gnu)
24893 struct dwarf2_per_objfile *dwarf2_per_objfile
24894 = cu->per_cu->dwarf2_per_objfile;
24895 struct objfile *objfile = dwarf2_per_objfile->objfile;
24896 struct line_header *lh = cu->line_header;
24898 const gdb_byte *mac_ptr, *mac_end;
24899 struct macro_source_file *current_file = 0;
24900 enum dwarf_macro_record_type macinfo_type;
24901 unsigned int offset_size = cu->header.offset_size;
24902 const gdb_byte *opcode_definitions[256];
24904 struct dwarf2_section_info *section;
24905 const char *section_name;
24907 if (cu->dwo_unit != NULL)
24909 if (section_is_gnu)
24911 section = &cu->dwo_unit->dwo_file->sections.macro;
24912 section_name = ".debug_macro.dwo";
24916 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24917 section_name = ".debug_macinfo.dwo";
24922 if (section_is_gnu)
24924 section = &dwarf2_per_objfile->macro;
24925 section_name = ".debug_macro";
24929 section = &dwarf2_per_objfile->macinfo;
24930 section_name = ".debug_macinfo";
24934 dwarf2_read_section (objfile, section);
24935 if (section->buffer == NULL)
24937 complaint (_("missing %s section"), section_name);
24940 abfd = get_section_bfd_owner (section);
24942 /* First pass: Find the name of the base filename.
24943 This filename is needed in order to process all macros whose definition
24944 (or undefinition) comes from the command line. These macros are defined
24945 before the first DW_MACINFO_start_file entry, and yet still need to be
24946 associated to the base file.
24948 To determine the base file name, we scan the macro definitions until we
24949 reach the first DW_MACINFO_start_file entry. We then initialize
24950 CURRENT_FILE accordingly so that any macro definition found before the
24951 first DW_MACINFO_start_file can still be associated to the base file. */
24953 mac_ptr = section->buffer + offset;
24954 mac_end = section->buffer + section->size;
24956 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24957 &offset_size, section_is_gnu);
24958 if (mac_ptr == NULL)
24960 /* We already issued a complaint. */
24966 /* Do we at least have room for a macinfo type byte? */
24967 if (mac_ptr >= mac_end)
24969 /* Complaint is printed during the second pass as GDB will probably
24970 stop the first pass earlier upon finding
24971 DW_MACINFO_start_file. */
24975 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24978 /* Note that we rely on the fact that the corresponding GNU and
24979 DWARF constants are the same. */
24981 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24982 switch (macinfo_type)
24984 /* A zero macinfo type indicates the end of the macro
24989 case DW_MACRO_define:
24990 case DW_MACRO_undef:
24991 /* Only skip the data by MAC_PTR. */
24993 unsigned int bytes_read;
24995 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24996 mac_ptr += bytes_read;
24997 read_direct_string (abfd, mac_ptr, &bytes_read);
24998 mac_ptr += bytes_read;
25002 case DW_MACRO_start_file:
25004 unsigned int bytes_read;
25007 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25008 mac_ptr += bytes_read;
25009 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25010 mac_ptr += bytes_read;
25012 current_file = macro_start_file (cu, file, line, current_file, lh);
25016 case DW_MACRO_end_file:
25017 /* No data to skip by MAC_PTR. */
25020 case DW_MACRO_define_strp:
25021 case DW_MACRO_undef_strp:
25022 case DW_MACRO_define_sup:
25023 case DW_MACRO_undef_sup:
25025 unsigned int bytes_read;
25027 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25028 mac_ptr += bytes_read;
25029 mac_ptr += offset_size;
25033 case DW_MACRO_import:
25034 case DW_MACRO_import_sup:
25035 /* Note that, according to the spec, a transparent include
25036 chain cannot call DW_MACRO_start_file. So, we can just
25037 skip this opcode. */
25038 mac_ptr += offset_size;
25041 case DW_MACINFO_vendor_ext:
25042 /* Only skip the data by MAC_PTR. */
25043 if (!section_is_gnu)
25045 unsigned int bytes_read;
25047 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25048 mac_ptr += bytes_read;
25049 read_direct_string (abfd, mac_ptr, &bytes_read);
25050 mac_ptr += bytes_read;
25055 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
25056 mac_ptr, mac_end, abfd, offset_size,
25058 if (mac_ptr == NULL)
25063 } while (macinfo_type != 0 && current_file == NULL);
25065 /* Second pass: Process all entries.
25067 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25068 command-line macro definitions/undefinitions. This flag is unset when we
25069 reach the first DW_MACINFO_start_file entry. */
25071 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25073 NULL, xcalloc, xfree));
25074 mac_ptr = section->buffer + offset;
25075 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25076 *slot = (void *) mac_ptr;
25077 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
25078 current_file, lh, section,
25079 section_is_gnu, 0, offset_size,
25080 include_hash.get ());
25083 /* Check if the attribute's form is a DW_FORM_block*
25084 if so return true else false. */
25087 attr_form_is_block (const struct attribute *attr)
25089 return (attr == NULL ? 0 :
25090 attr->form == DW_FORM_block1
25091 || attr->form == DW_FORM_block2
25092 || attr->form == DW_FORM_block4
25093 || attr->form == DW_FORM_block
25094 || attr->form == DW_FORM_exprloc);
25097 /* Return non-zero if ATTR's value is a section offset --- classes
25098 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25099 You may use DW_UNSND (attr) to retrieve such offsets.
25101 Section 7.5.4, "Attribute Encodings", explains that no attribute
25102 may have a value that belongs to more than one of these classes; it
25103 would be ambiguous if we did, because we use the same forms for all
25107 attr_form_is_section_offset (const struct attribute *attr)
25109 return (attr->form == DW_FORM_data4
25110 || attr->form == DW_FORM_data8
25111 || attr->form == DW_FORM_sec_offset);
25114 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25115 zero otherwise. When this function returns true, you can apply
25116 dwarf2_get_attr_constant_value to it.
25118 However, note that for some attributes you must check
25119 attr_form_is_section_offset before using this test. DW_FORM_data4
25120 and DW_FORM_data8 are members of both the constant class, and of
25121 the classes that contain offsets into other debug sections
25122 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25123 that, if an attribute's can be either a constant or one of the
25124 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25125 taken as section offsets, not constants.
25127 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25128 cannot handle that. */
25131 attr_form_is_constant (const struct attribute *attr)
25133 switch (attr->form)
25135 case DW_FORM_sdata:
25136 case DW_FORM_udata:
25137 case DW_FORM_data1:
25138 case DW_FORM_data2:
25139 case DW_FORM_data4:
25140 case DW_FORM_data8:
25141 case DW_FORM_implicit_const:
25149 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25150 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25153 attr_form_is_ref (const struct attribute *attr)
25155 switch (attr->form)
25157 case DW_FORM_ref_addr:
25162 case DW_FORM_ref_udata:
25163 case DW_FORM_GNU_ref_alt:
25170 /* Return the .debug_loc section to use for CU.
25171 For DWO files use .debug_loc.dwo. */
25173 static struct dwarf2_section_info *
25174 cu_debug_loc_section (struct dwarf2_cu *cu)
25176 struct dwarf2_per_objfile *dwarf2_per_objfile
25177 = cu->per_cu->dwarf2_per_objfile;
25181 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25183 return cu->header.version >= 5 ? §ions->loclists : §ions->loc;
25185 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25186 : &dwarf2_per_objfile->loc);
25189 /* A helper function that fills in a dwarf2_loclist_baton. */
25192 fill_in_loclist_baton (struct dwarf2_cu *cu,
25193 struct dwarf2_loclist_baton *baton,
25194 const struct attribute *attr)
25196 struct dwarf2_per_objfile *dwarf2_per_objfile
25197 = cu->per_cu->dwarf2_per_objfile;
25198 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25200 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25202 baton->per_cu = cu->per_cu;
25203 gdb_assert (baton->per_cu);
25204 /* We don't know how long the location list is, but make sure we
25205 don't run off the edge of the section. */
25206 baton->size = section->size - DW_UNSND (attr);
25207 baton->data = section->buffer + DW_UNSND (attr);
25208 baton->base_address = cu->base_address;
25209 baton->from_dwo = cu->dwo_unit != NULL;
25213 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25214 struct dwarf2_cu *cu, int is_block)
25216 struct dwarf2_per_objfile *dwarf2_per_objfile
25217 = cu->per_cu->dwarf2_per_objfile;
25218 struct objfile *objfile = dwarf2_per_objfile->objfile;
25219 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25221 if (attr_form_is_section_offset (attr)
25222 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25223 the section. If so, fall through to the complaint in the
25225 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25227 struct dwarf2_loclist_baton *baton;
25229 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25231 fill_in_loclist_baton (cu, baton, attr);
25233 if (cu->base_known == 0)
25234 complaint (_("Location list used without "
25235 "specifying the CU base address."));
25237 SYMBOL_ACLASS_INDEX (sym) = (is_block
25238 ? dwarf2_loclist_block_index
25239 : dwarf2_loclist_index);
25240 SYMBOL_LOCATION_BATON (sym) = baton;
25244 struct dwarf2_locexpr_baton *baton;
25246 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25247 baton->per_cu = cu->per_cu;
25248 gdb_assert (baton->per_cu);
25250 if (attr_form_is_block (attr))
25252 /* Note that we're just copying the block's data pointer
25253 here, not the actual data. We're still pointing into the
25254 info_buffer for SYM's objfile; right now we never release
25255 that buffer, but when we do clean up properly this may
25257 baton->size = DW_BLOCK (attr)->size;
25258 baton->data = DW_BLOCK (attr)->data;
25262 dwarf2_invalid_attrib_class_complaint ("location description",
25263 SYMBOL_NATURAL_NAME (sym));
25267 SYMBOL_ACLASS_INDEX (sym) = (is_block
25268 ? dwarf2_locexpr_block_index
25269 : dwarf2_locexpr_index);
25270 SYMBOL_LOCATION_BATON (sym) = baton;
25274 /* Return the OBJFILE associated with the compilation unit CU. If CU
25275 came from a separate debuginfo file, then the master objfile is
25279 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25281 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25283 /* Return the master objfile, so that we can report and look up the
25284 correct file containing this variable. */
25285 if (objfile->separate_debug_objfile_backlink)
25286 objfile = objfile->separate_debug_objfile_backlink;
25291 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25292 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25293 CU_HEADERP first. */
25295 static const struct comp_unit_head *
25296 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25297 struct dwarf2_per_cu_data *per_cu)
25299 const gdb_byte *info_ptr;
25302 return &per_cu->cu->header;
25304 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25306 memset (cu_headerp, 0, sizeof (*cu_headerp));
25307 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25308 rcuh_kind::COMPILE);
25313 /* Return the address size given in the compilation unit header for CU. */
25316 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25318 struct comp_unit_head cu_header_local;
25319 const struct comp_unit_head *cu_headerp;
25321 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25323 return cu_headerp->addr_size;
25326 /* Return the offset size given in the compilation unit header for CU. */
25329 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25331 struct comp_unit_head cu_header_local;
25332 const struct comp_unit_head *cu_headerp;
25334 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25336 return cu_headerp->offset_size;
25339 /* See its dwarf2loc.h declaration. */
25342 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25344 struct comp_unit_head cu_header_local;
25345 const struct comp_unit_head *cu_headerp;
25347 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25349 if (cu_headerp->version == 2)
25350 return cu_headerp->addr_size;
25352 return cu_headerp->offset_size;
25355 /* Return the text offset of the CU. The returned offset comes from
25356 this CU's objfile. If this objfile came from a separate debuginfo
25357 file, then the offset may be different from the corresponding
25358 offset in the parent objfile. */
25361 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25363 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25365 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25368 /* Return a type that is a generic pointer type, the size of which matches
25369 the address size given in the compilation unit header for PER_CU. */
25370 static struct type *
25371 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25373 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25374 struct type *void_type = objfile_type (objfile)->builtin_void;
25375 struct type *addr_type = lookup_pointer_type (void_type);
25376 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25378 if (TYPE_LENGTH (addr_type) == addr_size)
25382 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25386 /* Return DWARF version number of PER_CU. */
25389 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25391 return per_cu->dwarf_version;
25394 /* Locate the .debug_info compilation unit from CU's objfile which contains
25395 the DIE at OFFSET. Raises an error on failure. */
25397 static struct dwarf2_per_cu_data *
25398 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25399 unsigned int offset_in_dwz,
25400 struct dwarf2_per_objfile *dwarf2_per_objfile)
25402 struct dwarf2_per_cu_data *this_cu;
25406 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25409 struct dwarf2_per_cu_data *mid_cu;
25410 int mid = low + (high - low) / 2;
25412 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25413 if (mid_cu->is_dwz > offset_in_dwz
25414 || (mid_cu->is_dwz == offset_in_dwz
25415 && mid_cu->sect_off + mid_cu->length >= sect_off))
25420 gdb_assert (low == high);
25421 this_cu = dwarf2_per_objfile->all_comp_units[low];
25422 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25424 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25425 error (_("Dwarf Error: could not find partial DIE containing "
25426 "offset %s [in module %s]"),
25427 sect_offset_str (sect_off),
25428 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25430 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25432 return dwarf2_per_objfile->all_comp_units[low-1];
25436 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25437 && sect_off >= this_cu->sect_off + this_cu->length)
25438 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25439 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25444 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25446 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25447 : per_cu (per_cu_),
25449 has_loclist (false),
25450 checked_producer (false),
25451 producer_is_gxx_lt_4_6 (false),
25452 producer_is_gcc_lt_4_3 (false),
25453 producer_is_icc (false),
25454 producer_is_icc_lt_14 (false),
25455 producer_is_codewarrior (false),
25456 processing_has_namespace_info (false)
25461 /* Destroy a dwarf2_cu. */
25463 dwarf2_cu::~dwarf2_cu ()
25468 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25471 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25472 enum language pretend_language)
25474 struct attribute *attr;
25476 /* Set the language we're debugging. */
25477 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25479 set_cu_language (DW_UNSND (attr), cu);
25482 cu->language = pretend_language;
25483 cu->language_defn = language_def (cu->language);
25486 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25489 /* Increase the age counter on each cached compilation unit, and free
25490 any that are too old. */
25493 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25495 struct dwarf2_per_cu_data *per_cu, **last_chain;
25497 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25498 per_cu = dwarf2_per_objfile->read_in_chain;
25499 while (per_cu != NULL)
25501 per_cu->cu->last_used ++;
25502 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25503 dwarf2_mark (per_cu->cu);
25504 per_cu = per_cu->cu->read_in_chain;
25507 per_cu = dwarf2_per_objfile->read_in_chain;
25508 last_chain = &dwarf2_per_objfile->read_in_chain;
25509 while (per_cu != NULL)
25511 struct dwarf2_per_cu_data *next_cu;
25513 next_cu = per_cu->cu->read_in_chain;
25515 if (!per_cu->cu->mark)
25518 *last_chain = next_cu;
25521 last_chain = &per_cu->cu->read_in_chain;
25527 /* Remove a single compilation unit from the cache. */
25530 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25532 struct dwarf2_per_cu_data *per_cu, **last_chain;
25533 struct dwarf2_per_objfile *dwarf2_per_objfile
25534 = target_per_cu->dwarf2_per_objfile;
25536 per_cu = dwarf2_per_objfile->read_in_chain;
25537 last_chain = &dwarf2_per_objfile->read_in_chain;
25538 while (per_cu != NULL)
25540 struct dwarf2_per_cu_data *next_cu;
25542 next_cu = per_cu->cu->read_in_chain;
25544 if (per_cu == target_per_cu)
25548 *last_chain = next_cu;
25552 last_chain = &per_cu->cu->read_in_chain;
25558 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25559 We store these in a hash table separate from the DIEs, and preserve them
25560 when the DIEs are flushed out of cache.
25562 The CU "per_cu" pointer is needed because offset alone is not enough to
25563 uniquely identify the type. A file may have multiple .debug_types sections,
25564 or the type may come from a DWO file. Furthermore, while it's more logical
25565 to use per_cu->section+offset, with Fission the section with the data is in
25566 the DWO file but we don't know that section at the point we need it.
25567 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25568 because we can enter the lookup routine, get_die_type_at_offset, from
25569 outside this file, and thus won't necessarily have PER_CU->cu.
25570 Fortunately, PER_CU is stable for the life of the objfile. */
25572 struct dwarf2_per_cu_offset_and_type
25574 const struct dwarf2_per_cu_data *per_cu;
25575 sect_offset sect_off;
25579 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25582 per_cu_offset_and_type_hash (const void *item)
25584 const struct dwarf2_per_cu_offset_and_type *ofs
25585 = (const struct dwarf2_per_cu_offset_and_type *) item;
25587 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25590 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25593 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25595 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25596 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25597 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25598 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25600 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25601 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25604 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25605 table if necessary. For convenience, return TYPE.
25607 The DIEs reading must have careful ordering to:
25608 * Not cause infite loops trying to read in DIEs as a prerequisite for
25609 reading current DIE.
25610 * Not trying to dereference contents of still incompletely read in types
25611 while reading in other DIEs.
25612 * Enable referencing still incompletely read in types just by a pointer to
25613 the type without accessing its fields.
25615 Therefore caller should follow these rules:
25616 * Try to fetch any prerequisite types we may need to build this DIE type
25617 before building the type and calling set_die_type.
25618 * After building type call set_die_type for current DIE as soon as
25619 possible before fetching more types to complete the current type.
25620 * Make the type as complete as possible before fetching more types. */
25622 static struct type *
25623 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25625 struct dwarf2_per_objfile *dwarf2_per_objfile
25626 = cu->per_cu->dwarf2_per_objfile;
25627 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25628 struct objfile *objfile = dwarf2_per_objfile->objfile;
25629 struct attribute *attr;
25630 struct dynamic_prop prop;
25632 /* For Ada types, make sure that the gnat-specific data is always
25633 initialized (if not already set). There are a few types where
25634 we should not be doing so, because the type-specific area is
25635 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25636 where the type-specific area is used to store the floatformat).
25637 But this is not a problem, because the gnat-specific information
25638 is actually not needed for these types. */
25639 if (need_gnat_info (cu)
25640 && TYPE_CODE (type) != TYPE_CODE_FUNC
25641 && TYPE_CODE (type) != TYPE_CODE_FLT
25642 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25643 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25644 && TYPE_CODE (type) != TYPE_CODE_METHOD
25645 && !HAVE_GNAT_AUX_INFO (type))
25646 INIT_GNAT_SPECIFIC (type);
25648 /* Read DW_AT_allocated and set in type. */
25649 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25650 if (attr_form_is_block (attr))
25652 struct type *prop_type
25653 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25654 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25655 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25657 else if (attr != NULL)
25659 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25660 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25661 sect_offset_str (die->sect_off));
25664 /* Read DW_AT_associated and set in type. */
25665 attr = dwarf2_attr (die, DW_AT_associated, cu);
25666 if (attr_form_is_block (attr))
25668 struct type *prop_type
25669 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25670 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25671 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25673 else if (attr != NULL)
25675 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25676 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25677 sect_offset_str (die->sect_off));
25680 /* Read DW_AT_data_location and set in type. */
25681 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25682 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25683 dwarf2_per_cu_addr_type (cu->per_cu)))
25684 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25686 if (dwarf2_per_objfile->die_type_hash == NULL)
25688 dwarf2_per_objfile->die_type_hash =
25689 htab_create_alloc_ex (127,
25690 per_cu_offset_and_type_hash,
25691 per_cu_offset_and_type_eq,
25693 &objfile->objfile_obstack,
25694 hashtab_obstack_allocate,
25695 dummy_obstack_deallocate);
25698 ofs.per_cu = cu->per_cu;
25699 ofs.sect_off = die->sect_off;
25701 slot = (struct dwarf2_per_cu_offset_and_type **)
25702 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25704 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25705 sect_offset_str (die->sect_off));
25706 *slot = XOBNEW (&objfile->objfile_obstack,
25707 struct dwarf2_per_cu_offset_and_type);
25712 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25713 or return NULL if the die does not have a saved type. */
25715 static struct type *
25716 get_die_type_at_offset (sect_offset sect_off,
25717 struct dwarf2_per_cu_data *per_cu)
25719 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25720 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25722 if (dwarf2_per_objfile->die_type_hash == NULL)
25725 ofs.per_cu = per_cu;
25726 ofs.sect_off = sect_off;
25727 slot = ((struct dwarf2_per_cu_offset_and_type *)
25728 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25735 /* Look up the type for DIE in CU in die_type_hash,
25736 or return NULL if DIE does not have a saved type. */
25738 static struct type *
25739 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25741 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25744 /* Add a dependence relationship from CU to REF_PER_CU. */
25747 dwarf2_add_dependence (struct dwarf2_cu *cu,
25748 struct dwarf2_per_cu_data *ref_per_cu)
25752 if (cu->dependencies == NULL)
25754 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25755 NULL, &cu->comp_unit_obstack,
25756 hashtab_obstack_allocate,
25757 dummy_obstack_deallocate);
25759 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25761 *slot = ref_per_cu;
25764 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25765 Set the mark field in every compilation unit in the
25766 cache that we must keep because we are keeping CU. */
25769 dwarf2_mark_helper (void **slot, void *data)
25771 struct dwarf2_per_cu_data *per_cu;
25773 per_cu = (struct dwarf2_per_cu_data *) *slot;
25775 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25776 reading of the chain. As such dependencies remain valid it is not much
25777 useful to track and undo them during QUIT cleanups. */
25778 if (per_cu->cu == NULL)
25781 if (per_cu->cu->mark)
25783 per_cu->cu->mark = true;
25785 if (per_cu->cu->dependencies != NULL)
25786 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25791 /* Set the mark field in CU and in every other compilation unit in the
25792 cache that we must keep because we are keeping CU. */
25795 dwarf2_mark (struct dwarf2_cu *cu)
25800 if (cu->dependencies != NULL)
25801 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25805 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25809 per_cu->cu->mark = false;
25810 per_cu = per_cu->cu->read_in_chain;
25814 /* Trivial hash function for partial_die_info: the hash value of a DIE
25815 is its offset in .debug_info for this objfile. */
25818 partial_die_hash (const void *item)
25820 const struct partial_die_info *part_die
25821 = (const struct partial_die_info *) item;
25823 return to_underlying (part_die->sect_off);
25826 /* Trivial comparison function for partial_die_info structures: two DIEs
25827 are equal if they have the same offset. */
25830 partial_die_eq (const void *item_lhs, const void *item_rhs)
25832 const struct partial_die_info *part_die_lhs
25833 = (const struct partial_die_info *) item_lhs;
25834 const struct partial_die_info *part_die_rhs
25835 = (const struct partial_die_info *) item_rhs;
25837 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25840 struct cmd_list_element *set_dwarf_cmdlist;
25841 struct cmd_list_element *show_dwarf_cmdlist;
25844 set_dwarf_cmd (const char *args, int from_tty)
25846 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25851 show_dwarf_cmd (const char *args, int from_tty)
25853 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25856 bool dwarf_always_disassemble;
25859 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25860 struct cmd_list_element *c, const char *value)
25862 fprintf_filtered (file,
25863 _("Whether to always disassemble "
25864 "DWARF expressions is %s.\n"),
25869 show_check_physname (struct ui_file *file, int from_tty,
25870 struct cmd_list_element *c, const char *value)
25872 fprintf_filtered (file,
25873 _("Whether to check \"physname\" is %s.\n"),
25878 _initialize_dwarf2_read (void)
25880 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25881 Set DWARF specific variables.\n\
25882 Configure DWARF variables such as the cache size."),
25883 &set_dwarf_cmdlist, "maintenance set dwarf ",
25884 0/*allow-unknown*/, &maintenance_set_cmdlist);
25886 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25887 Show DWARF specific variables.\n\
25888 Show DWARF variables such as the cache size."),
25889 &show_dwarf_cmdlist, "maintenance show dwarf ",
25890 0/*allow-unknown*/, &maintenance_show_cmdlist);
25892 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25893 &dwarf_max_cache_age, _("\
25894 Set the upper bound on the age of cached DWARF compilation units."), _("\
25895 Show the upper bound on the age of cached DWARF compilation units."), _("\
25896 A higher limit means that cached compilation units will be stored\n\
25897 in memory longer, and more total memory will be used. Zero disables\n\
25898 caching, which can slow down startup."),
25900 show_dwarf_max_cache_age,
25901 &set_dwarf_cmdlist,
25902 &show_dwarf_cmdlist);
25904 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25905 &dwarf_always_disassemble, _("\
25906 Set whether `info address' always disassembles DWARF expressions."), _("\
25907 Show whether `info address' always disassembles DWARF expressions."), _("\
25908 When enabled, DWARF expressions are always printed in an assembly-like\n\
25909 syntax. When disabled, expressions will be printed in a more\n\
25910 conversational style, when possible."),
25912 show_dwarf_always_disassemble,
25913 &set_dwarf_cmdlist,
25914 &show_dwarf_cmdlist);
25916 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25917 Set debugging of the DWARF reader."), _("\
25918 Show debugging of the DWARF reader."), _("\
25919 When enabled (non-zero), debugging messages are printed during DWARF\n\
25920 reading and symtab expansion. A value of 1 (one) provides basic\n\
25921 information. A value greater than 1 provides more verbose information."),
25924 &setdebuglist, &showdebuglist);
25926 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25927 Set debugging of the DWARF DIE reader."), _("\
25928 Show debugging of the DWARF DIE reader."), _("\
25929 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25930 The value is the maximum depth to print."),
25933 &setdebuglist, &showdebuglist);
25935 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25936 Set debugging of the dwarf line reader."), _("\
25937 Show debugging of the dwarf line reader."), _("\
25938 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25939 A value of 1 (one) provides basic information.\n\
25940 A value greater than 1 provides more verbose information."),
25943 &setdebuglist, &showdebuglist);
25945 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25946 Set cross-checking of \"physname\" code against demangler."), _("\
25947 Show cross-checking of \"physname\" code against demangler."), _("\
25948 When enabled, GDB's internal \"physname\" code is checked against\n\
25950 NULL, show_check_physname,
25951 &setdebuglist, &showdebuglist);
25953 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25954 no_class, &use_deprecated_index_sections, _("\
25955 Set whether to use deprecated gdb_index sections."), _("\
25956 Show whether to use deprecated gdb_index sections."), _("\
25957 When enabled, deprecated .gdb_index sections are used anyway.\n\
25958 Normally they are ignored either because of a missing feature or\n\
25959 performance issue.\n\
25960 Warning: This option must be enabled before gdb reads the file."),
25963 &setlist, &showlist);
25965 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25966 &dwarf2_locexpr_funcs);
25967 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25968 &dwarf2_loclist_funcs);
25970 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25971 &dwarf2_block_frame_base_locexpr_funcs);
25972 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25973 &dwarf2_block_frame_base_loclist_funcs);
25976 selftests::register_test ("dw2_expand_symtabs_matching",
25977 selftests::dw2_expand_symtabs_matching::run_test);