1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
25 #include "bfd.h" /* Binary File Description */
29 #include "gdb-stabs.h"
32 #include <sys/types.h>
36 #include "gdb_string.h"
38 /* Prototypes for local functions */
40 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
43 open_existing_mapped_file PARAMS ((char *, long, int));
46 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
49 map_to_file PARAMS ((int));
51 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
54 add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
56 /* Externally visible variables that are owned by this module.
57 See declarations in objfile.h for more info. */
59 struct objfile *object_files; /* Linked list of all objfiles */
60 struct objfile *current_objfile; /* For symbol file being read in */
61 struct objfile *symfile_objfile; /* Main symbol table loaded from */
62 struct objfile *rt_common_objfile; /* For runtime common symbols */
64 int mapped_symbol_files; /* Try to use mapped symbol files */
66 /* Locate all mappable sections of a BFD file.
67 objfile_p_char is a char * to get it through
68 bfd_map_over_sections; we cast it back to its proper type. */
71 add_to_objfile_sections (abfd, asect, objfile_p_char)
76 struct objfile *objfile = (struct objfile *) objfile_p_char;
77 struct obj_section section;
80 aflag = bfd_get_section_flags (abfd, asect);
81 if (!(aflag & SEC_ALLOC))
83 if (0 == bfd_section_size (abfd, asect))
86 section.objfile = objfile;
87 section.the_bfd_section = asect;
88 section.addr = bfd_section_vma (abfd, asect);
89 section.endaddr = section.addr + bfd_section_size (abfd, asect);
90 obstack_grow (&objfile->psymbol_obstack, (char *) §ion, sizeof(section));
91 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
94 /* Builds a section table for OBJFILE.
95 Returns 0 if OK, 1 on error (in which case bfd_error contains the
99 build_objfile_section_table (objfile)
100 struct objfile *objfile;
102 /* objfile->sections can be already set when reading a mapped symbol
103 file. I believe that we do need to rebuild the section table in
104 this case (we rebuild other things derived from the bfd), but we
105 can't free the old one (it's in the psymbol_obstack). So we just
106 waste some memory. */
108 objfile->sections_end = 0;
109 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
110 objfile->sections = (struct obj_section *)
111 obstack_finish (&objfile->psymbol_obstack);
112 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
116 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
117 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
118 struct, fill it in as best we can, link it into the list of all known
119 objfiles, and return a pointer to the new objfile struct. */
122 allocate_objfile (abfd, mapped)
126 struct objfile *objfile = NULL;
127 struct objfile *last_one = NULL;
129 mapped |= mapped_symbol_files;
131 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
134 /* If we can support mapped symbol files, try to open/reopen the
135 mapped file that corresponds to the file from which we wish to
136 read symbols. If the objfile is to be mapped, we must malloc
137 the structure itself using the mmap version, and arrange that
138 all memory allocation for the objfile uses the mmap routines.
139 If we are reusing an existing mapped file, from which we get
140 our objfile pointer, we have to make sure that we update the
141 pointers to the alloc/free functions in the obstack, in case
142 these functions have moved within the current gdb. */
146 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
152 if ((md = map_to_file (fd)) == NULL)
156 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
158 /* Update memory corruption handler function addresses. */
161 objfile -> mmfd = fd;
162 /* Update pointers to functions to *our* copies */
163 obstack_chunkfun (&objfile -> psymbol_cache.cache, xmmalloc);
164 obstack_freefun (&objfile -> psymbol_cache.cache, mfree);
165 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
166 obstack_freefun (&objfile -> psymbol_obstack, mfree);
167 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
168 obstack_freefun (&objfile -> symbol_obstack, mfree);
169 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
170 obstack_freefun (&objfile -> type_obstack, mfree);
171 /* If already in objfile list, unlink it. */
172 unlink_objfile (objfile);
173 /* Forget things specific to a particular gdb, may have changed. */
174 objfile -> sf = NULL;
179 /* Set up to detect internal memory corruption. MUST be
180 done before the first malloc. See comments in
181 init_malloc() and mmcheck(). */
185 objfile = (struct objfile *)
186 xmmalloc (md, sizeof (struct objfile));
187 memset (objfile, 0, sizeof (struct objfile));
189 objfile -> mmfd = fd;
190 objfile -> flags |= OBJF_MAPPED;
191 mmalloc_setkey (objfile -> md, 0, objfile);
192 obstack_specify_allocation_with_arg (&objfile -> psymbol_cache.cache,
193 0, 0, xmmalloc, mfree,
195 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
196 0, 0, xmmalloc, mfree,
198 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
199 0, 0, xmmalloc, mfree,
201 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
202 0, 0, xmmalloc, mfree,
207 if (mapped && (objfile == NULL))
209 warning ("symbol table for '%s' will not be mapped",
210 bfd_get_filename (abfd));
213 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
217 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
219 /* Turn off the global flag so we don't try to do mapped symbol tables
220 any more, which shuts up gdb unless the user specifically gives the
221 "mapped" keyword again. */
223 mapped_symbol_files = 0;
226 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
228 /* If we don't support mapped symbol files, didn't ask for the file to be
229 mapped, or failed to open the mapped file for some reason, then revert
230 back to an unmapped objfile. */
234 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
235 memset (objfile, 0, sizeof (struct objfile));
236 objfile -> md = NULL;
237 obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0,
239 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
241 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
243 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
247 /* Update the per-objfile information that comes from the bfd, ensuring
248 that any data that is reference is saved in the per-objfile data
251 objfile -> obfd = abfd;
252 if (objfile -> name != NULL)
254 mfree (objfile -> md, objfile -> name);
256 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
257 objfile -> mtime = bfd_get_mtime (abfd);
259 /* Build section table. */
261 if (build_objfile_section_table (objfile))
263 error ("Can't find the file sections in `%s': %s",
264 objfile -> name, bfd_errmsg (bfd_get_error ()));
267 /* Add this file onto the tail of the linked list of other such files. */
269 objfile -> next = NULL;
270 if (object_files == NULL)
271 object_files = objfile;
274 for (last_one = object_files;
276 last_one = last_one -> next);
277 last_one -> next = objfile;
282 /* Put OBJFILE at the front of the list. */
285 objfile_to_front (objfile)
286 struct objfile *objfile;
288 struct objfile **objp;
289 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
291 if (*objp == objfile)
293 /* Unhook it from where it is. */
294 *objp = objfile->next;
295 /* Put it in the front. */
296 objfile->next = object_files;
297 object_files = objfile;
303 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
306 It is not a bug, or error, to call this function if OBJFILE is not known
307 to be in the current list. This is done in the case of mapped objfiles,
308 for example, just to ensure that the mapped objfile doesn't appear twice
309 in the list. Since the list is threaded, linking in a mapped objfile
310 twice would create a circular list.
312 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
313 unlinking it, just to ensure that we have completely severed any linkages
314 between the OBJFILE and the list. */
317 unlink_objfile (objfile)
318 struct objfile *objfile;
320 struct objfile** objpp;
322 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
324 if (*objpp == objfile)
326 *objpp = (*objpp) -> next;
327 objfile -> next = NULL;
334 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
335 that as much as possible is allocated on the symbol_obstack and
336 psymbol_obstack, so that the memory can be efficiently freed.
338 Things which we do NOT free because they are not in malloc'd memory
339 or not in memory specific to the objfile include:
343 FIXME: If the objfile is using reusable symbol information (via mmalloc),
344 then we need to take into account the fact that more than one process
345 may be using the symbol information at the same time (when mmalloc is
346 extended to support cooperative locking). When more than one process
347 is using the mapped symbol info, we need to be more careful about when
348 we free objects in the reusable area. */
351 free_objfile (objfile)
352 struct objfile *objfile;
354 /* First do any symbol file specific actions required when we are
355 finished with a particular symbol file. Note that if the objfile
356 is using reusable symbol information (via mmalloc) then each of
357 these routines is responsible for doing the correct thing, either
358 freeing things which are valid only during this particular gdb
359 execution, or leaving them to be reused during the next one. */
361 if (objfile -> sf != NULL)
363 (*objfile -> sf -> sym_finish) (objfile);
366 /* We always close the bfd. */
368 if (objfile -> obfd != NULL)
370 char *name = bfd_get_filename (objfile->obfd);
371 if (!bfd_close (objfile -> obfd))
372 warning ("cannot close \"%s\": %s",
373 name, bfd_errmsg (bfd_get_error ()));
377 /* Remove it from the chain of all objfiles. */
379 unlink_objfile (objfile);
381 /* If we are going to free the runtime common objfile, mark it
384 if (objfile == rt_common_objfile)
385 rt_common_objfile = NULL;
387 /* Before the symbol table code was redone to make it easier to
388 selectively load and remove information particular to a specific
389 linkage unit, gdb used to do these things whenever the monolithic
390 symbol table was blown away. How much still needs to be done
391 is unknown, but we play it safe for now and keep each action until
392 it is shown to be no longer needed. */
394 #if defined (CLEAR_SOLIB)
396 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
397 the to_sections for a core file might refer to those bfd's. So
398 detach any core file. */
400 struct target_ops *t = find_core_target ();
402 (t->to_detach) (NULL, 0);
405 /* I *think* all our callers call clear_symtab_users. If so, no need
406 to call this here. */
407 clear_pc_function_cache ();
409 /* The last thing we do is free the objfile struct itself for the
410 non-reusable case, or detach from the mapped file for the reusable
411 case. Note that the mmalloc_detach or the mfree is the last thing
412 we can do with this objfile. */
414 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
416 if (objfile -> flags & OBJF_MAPPED)
418 /* Remember the fd so we can close it. We can't close it before
419 doing the detach, and after the detach the objfile is gone. */
422 mmfd = objfile -> mmfd;
423 mmalloc_detach (objfile -> md);
428 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
430 /* If we still have an objfile, then either we don't support reusable
431 objfiles or this one was not reusable. So free it normally. */
435 if (objfile -> name != NULL)
437 mfree (objfile -> md, objfile -> name);
439 if (objfile->global_psymbols.list)
440 mfree (objfile->md, objfile->global_psymbols.list);
441 if (objfile->static_psymbols.list)
442 mfree (objfile->md, objfile->static_psymbols.list);
443 /* Free the obstacks for non-reusable objfiles */
444 obstack_free (&objfile -> psymbol_cache.cache, 0);
445 obstack_free (&objfile -> psymbol_obstack, 0);
446 obstack_free (&objfile -> symbol_obstack, 0);
447 obstack_free (&objfile -> type_obstack, 0);
448 mfree (objfile -> md, objfile);
454 /* Free all the object files at once and clean up their users. */
459 struct objfile *objfile, *temp;
461 ALL_OBJFILES_SAFE (objfile, temp)
463 free_objfile (objfile);
465 clear_symtab_users ();
468 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
469 entries in new_offsets. */
471 objfile_relocate (objfile, new_offsets)
472 struct objfile *objfile;
473 struct section_offsets *new_offsets;
475 struct section_offsets *delta = (struct section_offsets *) alloca
476 (sizeof (struct section_offsets)
477 + objfile->num_sections * sizeof (delta->offsets));
481 int something_changed = 0;
482 for (i = 0; i < objfile->num_sections; ++i)
484 ANOFFSET (delta, i) =
485 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
486 if (ANOFFSET (delta, i) != 0)
487 something_changed = 1;
489 if (!something_changed)
493 /* OK, get all the symtabs. */
497 ALL_OBJFILE_SYMTABS (objfile, s)
500 struct blockvector *bv;
503 /* First the line table. */
507 for (i = 0; i < l->nitems; ++i)
508 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
511 /* Don't relocate a shared blockvector more than once. */
515 bv = BLOCKVECTOR (s);
516 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
521 b = BLOCKVECTOR_BLOCK (bv, i);
522 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
523 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
525 for (j = 0; j < BLOCK_NSYMS (b); ++j)
527 struct symbol *sym = BLOCK_SYM (b, j);
528 /* The RS6000 code from which this was taken skipped
529 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
530 But I'm leaving out that test, on the theory that
531 they can't possibly pass the tests below. */
532 if ((SYMBOL_CLASS (sym) == LOC_LABEL
533 || SYMBOL_CLASS (sym) == LOC_STATIC)
534 && SYMBOL_SECTION (sym) >= 0)
536 SYMBOL_VALUE_ADDRESS (sym) +=
537 ANOFFSET (delta, SYMBOL_SECTION (sym));
539 #ifdef MIPS_EFI_SYMBOL_NAME
540 /* Relocate Extra Function Info for ecoff. */
543 if (SYMBOL_CLASS (sym) == LOC_CONST
544 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
545 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
546 ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section));
554 struct partial_symtab *p;
556 ALL_OBJFILE_PSYMTABS (objfile, p)
558 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
559 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
564 struct partial_symbol **psym;
566 for (psym = objfile->global_psymbols.list;
567 psym < objfile->global_psymbols.next;
569 if (SYMBOL_SECTION (*psym) >= 0)
570 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, SYMBOL_SECTION (*psym));
571 for (psym = objfile->static_psymbols.list;
572 psym < objfile->static_psymbols.next;
574 if (SYMBOL_SECTION (*psym) >= 0)
575 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, SYMBOL_SECTION (*psym));
579 struct minimal_symbol *msym;
580 ALL_OBJFILE_MSYMBOLS (objfile, msym)
581 if (SYMBOL_SECTION (msym) >= 0)
582 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
584 /* Relocating different sections by different amounts may cause the symbols
585 to be out of order. */
586 msymbols_sort (objfile);
590 for (i = 0; i < objfile->num_sections; ++i)
591 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
595 struct obj_section *s;
598 abfd = objfile->obfd;
600 for (s = objfile->sections;
601 s < objfile->sections_end; ++s)
605 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
607 if (flags & SEC_CODE)
609 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
610 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
612 else if (flags & (SEC_DATA | SEC_LOAD))
614 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
615 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
617 else if (flags & SEC_ALLOC)
619 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
620 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
625 if (objfile->ei.entry_point != ~0)
626 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
628 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
630 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
631 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
634 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
636 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
637 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
640 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
642 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
643 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
647 /* Many places in gdb want to test just to see if we have any partial
648 symbols available. This function returns zero if none are currently
649 available, nonzero otherwise. */
652 have_partial_symbols ()
658 if (ofp -> psymtabs != NULL)
666 /* Many places in gdb want to test just to see if we have any full
667 symbols available. This function returns zero if none are currently
668 available, nonzero otherwise. */
677 if (ofp -> symtabs != NULL)
685 /* Many places in gdb want to test just to see if we have any minimal
686 symbols available. This function returns zero if none are currently
687 available, nonzero otherwise. */
690 have_minimal_symbols ()
696 if (ofp -> msymbols != NULL)
704 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
706 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
707 of the corresponding symbol file in MTIME, try to open an existing file
708 with the name SYMSFILENAME and verify it is more recent than the base
709 file by checking it's timestamp against MTIME.
711 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
713 If SYMSFILENAME does exist, but is out of date, we check to see if the
714 user has specified creation of a mapped file. If so, we don't issue
715 any warning message because we will be creating a new mapped file anyway,
716 overwriting the old one. If not, then we issue a warning message so that
717 the user will know why we aren't using this existing mapped symbol file.
718 In either case, we return -1.
720 If SYMSFILENAME does exist and is not out of date, but can't be opened for
721 some reason, then prints an appropriate system error message and returns -1.
723 Otherwise, returns the open file descriptor. */
726 open_existing_mapped_file (symsfilename, mtime, mapped)
734 if (stat (symsfilename, &sbuf) == 0)
736 if (sbuf.st_mtime < mtime)
740 warning ("mapped symbol file `%s' is out of date, ignored it",
744 else if ((fd = open (symsfilename, O_RDWR)) < 0)
748 printf_unfiltered (error_pre_print);
750 print_sys_errmsg (symsfilename, errno);
756 /* Look for a mapped symbol file that corresponds to FILENAME and is more
757 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
758 use a mapped symbol file for this file, so create a new one if one does
761 If found, then return an open file descriptor for the file, otherwise
764 This routine is responsible for implementing the policy that generates
765 the name of the mapped symbol file from the name of a file containing
766 symbols that gdb would like to read. Currently this policy is to append
767 ".syms" to the name of the file.
769 This routine is also responsible for implementing the policy that
770 determines where the mapped symbol file is found (the search path).
771 This policy is that when reading an existing mapped file, a file of
772 the correct name in the current directory takes precedence over a
773 file of the correct name in the same directory as the symbol file.
774 When creating a new mapped file, it is always created in the current
775 directory. This helps to minimize the chances of a user unknowingly
776 creating big mapped files in places like /bin and /usr/local/bin, and
777 allows a local copy to override a manually installed global copy (in
778 /bin for example). */
781 open_mapped_file (filename, mtime, mapped)
789 /* First try to open an existing file in the current directory, and
790 then try the directory where the symbol file is located. */
792 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
793 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
796 symsfilename = concat (filename, ".syms", (char *) NULL);
797 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
800 /* If we don't have an open file by now, then either the file does not
801 already exist, or the base file has changed since it was created. In
802 either case, if the user has specified use of a mapped file, then
803 create a new mapped file, truncating any existing one. If we can't
804 create one, print a system error message saying why we can't.
806 By default the file is rw for everyone, with the user's umask taking
807 care of turning off the permissions the user wants off. */
809 if ((fd < 0) && mapped)
812 symsfilename = concat ("./", basename (filename), ".syms",
814 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
818 printf_unfiltered (error_pre_print);
820 print_sys_errmsg (symsfilename, errno);
835 md = mmalloc_attach (fd, (PTR) 0);
838 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
839 md = mmalloc_detach (md);
842 /* FIXME: should figure out why detach failed */
845 else if (mapto != (CORE_ADDR) NULL)
847 /* This mapping file needs to be remapped at "mapto" */
848 md = mmalloc_attach (fd, (PTR) mapto);
852 /* This is a freshly created mapping file. */
853 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
856 /* To avoid reusing the freshly created mapping file, at the
857 address selected by mmap, we must truncate it before trying
858 to do an attach at the address we want. */
860 md = mmalloc_attach (fd, (PTR) mapto);
863 mmalloc_setkey (md, 1, (PTR) mapto);
871 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
873 /* Returns a section whose range includes PC or NULL if none found. */
879 struct obj_section *s;
880 struct objfile *objfile;
882 ALL_OBJFILES (objfile)
883 for (s = objfile->sections; s < objfile->sections_end; ++s)
891 /* In SVR4, we recognize a trampoline by it's section name.
892 That is, if the pc is in a section named ".plt" then we are in
896 in_plt_section(pc, name)
900 struct obj_section *s;
903 s = find_pc_section(pc);
906 && s->the_bfd_section->name != NULL
907 && STREQ (s->the_bfd_section->name, ".plt"));