1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdbsupport/gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdbsupport/gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 static struct type *desc_base_type (struct type *);
73 static struct type *desc_bounds_type (struct type *);
75 static struct value *desc_bounds (struct value *);
77 static int fat_pntr_bounds_bitpos (struct type *);
79 static int fat_pntr_bounds_bitsize (struct type *);
81 static struct type *desc_data_target_type (struct type *);
83 static struct value *desc_data (struct value *);
85 static int fat_pntr_data_bitpos (struct type *);
87 static int fat_pntr_data_bitsize (struct type *);
89 static struct value *desc_one_bound (struct value *, int, int);
91 static int desc_bound_bitpos (struct type *, int, int);
93 static int desc_bound_bitsize (struct type *, int, int);
95 static struct type *desc_index_type (struct type *, int);
97 static int desc_arity (struct type *);
99 static int ada_args_match (struct symbol *, struct value **, int);
101 static struct value *make_array_descriptor (struct type *, struct value *);
103 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
108 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
109 const struct block *,
110 const lookup_name_info &lookup_name,
111 domain_enum, int, int *);
113 static int is_nonfunction (const std::vector<struct block_symbol> &);
115 static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 const struct block *);
119 static int possible_user_operator_p (enum exp_opcode, struct value **);
121 static const char *ada_decoded_op_name (enum exp_opcode);
123 static int numeric_type_p (struct type *);
125 static int integer_type_p (struct type *);
127 static int scalar_type_p (struct type *);
129 static int discrete_type_p (struct type *);
131 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
134 static struct type *ada_find_parallel_type_with_name (struct type *,
137 static int is_dynamic_field (struct type *, int);
139 static struct type *to_fixed_variant_branch_type (struct type *,
141 CORE_ADDR, struct value *);
143 static struct type *to_fixed_array_type (struct type *, struct value *, int);
145 static struct type *to_fixed_range_type (struct type *, struct value *);
147 static struct type *to_static_fixed_type (struct type *);
148 static struct type *static_unwrap_type (struct type *type);
150 static struct value *unwrap_value (struct value *);
152 static struct type *constrained_packed_array_type (struct type *, long *);
154 static struct type *decode_constrained_packed_array_type (struct type *);
156 static long decode_packed_array_bitsize (struct type *);
158 static struct value *decode_constrained_packed_array (struct value *);
160 static int ada_is_unconstrained_packed_array_type (struct type *);
162 static struct value *value_subscript_packed (struct value *, int,
165 static struct value *coerce_unspec_val_to_type (struct value *,
168 static int lesseq_defined_than (struct symbol *, struct symbol *);
170 static int equiv_types (struct type *, struct type *);
172 static int is_name_suffix (const char *);
174 static int advance_wild_match (const char **, const char *, char);
176 static bool wild_match (const char *name, const char *patn);
178 static struct value *ada_coerce_ref (struct value *);
180 static LONGEST pos_atr (struct value *);
182 static struct value *val_atr (struct type *, LONGEST);
184 static struct symbol *standard_lookup (const char *, const struct block *,
187 static struct value *ada_search_struct_field (const char *, struct value *, int,
190 static int find_struct_field (const char *, struct type *, int,
191 struct type **, int *, int *, int *, int *);
193 static int ada_resolve_function (std::vector<struct block_symbol> &,
194 struct value **, int, const char *,
195 struct type *, bool);
197 static int ada_is_direct_array_type (struct type *);
199 static struct value *ada_index_struct_field (int, struct value *, int,
202 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
205 static struct type *ada_find_any_type (const char *name);
207 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
208 (const lookup_name_info &lookup_name);
212 /* The result of a symbol lookup to be stored in our symbol cache. */
216 /* The name used to perform the lookup. */
218 /* The namespace used during the lookup. */
220 /* The symbol returned by the lookup, or NULL if no matching symbol
223 /* The block where the symbol was found, or NULL if no matching
225 const struct block *block;
226 /* A pointer to the next entry with the same hash. */
227 struct cache_entry *next;
230 /* The Ada symbol cache, used to store the result of Ada-mode symbol
231 lookups in the course of executing the user's commands.
233 The cache is implemented using a simple, fixed-sized hash.
234 The size is fixed on the grounds that there are not likely to be
235 all that many symbols looked up during any given session, regardless
236 of the size of the symbol table. If we decide to go to a resizable
237 table, let's just use the stuff from libiberty instead. */
239 #define HASH_SIZE 1009
241 struct ada_symbol_cache
243 /* An obstack used to store the entries in our cache. */
244 struct auto_obstack cache_space;
246 /* The root of the hash table used to implement our symbol cache. */
247 struct cache_entry *root[HASH_SIZE] {};
250 static const char ada_completer_word_break_characters[] =
252 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
254 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
257 /* The name of the symbol to use to get the name of the main subprogram. */
258 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
259 = "__gnat_ada_main_program_name";
261 /* Limit on the number of warnings to raise per expression evaluation. */
262 static int warning_limit = 2;
264 /* Number of warning messages issued; reset to 0 by cleanups after
265 expression evaluation. */
266 static int warnings_issued = 0;
268 static const char * const known_runtime_file_name_patterns[] = {
269 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
272 static const char * const known_auxiliary_function_name_patterns[] = {
273 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
276 /* Maintenance-related settings for this module. */
278 static struct cmd_list_element *maint_set_ada_cmdlist;
279 static struct cmd_list_element *maint_show_ada_cmdlist;
281 /* The "maintenance ada set/show ignore-descriptive-type" value. */
283 static bool ada_ignore_descriptive_types_p = false;
285 /* Inferior-specific data. */
287 /* Per-inferior data for this module. */
289 struct ada_inferior_data
291 /* The ada__tags__type_specific_data type, which is used when decoding
292 tagged types. With older versions of GNAT, this type was directly
293 accessible through a component ("tsd") in the object tag. But this
294 is no longer the case, so we cache it for each inferior. */
295 struct type *tsd_type = nullptr;
297 /* The exception_support_info data. This data is used to determine
298 how to implement support for Ada exception catchpoints in a given
300 const struct exception_support_info *exception_info = nullptr;
303 /* Our key to this module's inferior data. */
304 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
306 /* Return our inferior data for the given inferior (INF).
308 This function always returns a valid pointer to an allocated
309 ada_inferior_data structure. If INF's inferior data has not
310 been previously set, this functions creates a new one with all
311 fields set to zero, sets INF's inferior to it, and then returns
312 a pointer to that newly allocated ada_inferior_data. */
314 static struct ada_inferior_data *
315 get_ada_inferior_data (struct inferior *inf)
317 struct ada_inferior_data *data;
319 data = ada_inferior_data.get (inf);
321 data = ada_inferior_data.emplace (inf);
326 /* Perform all necessary cleanups regarding our module's inferior data
327 that is required after the inferior INF just exited. */
330 ada_inferior_exit (struct inferior *inf)
332 ada_inferior_data.clear (inf);
336 /* program-space-specific data. */
338 /* This module's per-program-space data. */
339 struct ada_pspace_data
341 /* The Ada symbol cache. */
342 std::unique_ptr<ada_symbol_cache> sym_cache;
345 /* Key to our per-program-space data. */
346 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
348 /* Return this module's data for the given program space (PSPACE).
349 If not is found, add a zero'ed one now.
351 This function always returns a valid object. */
353 static struct ada_pspace_data *
354 get_ada_pspace_data (struct program_space *pspace)
356 struct ada_pspace_data *data;
358 data = ada_pspace_data_handle.get (pspace);
360 data = ada_pspace_data_handle.emplace (pspace);
367 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
368 all typedef layers have been peeled. Otherwise, return TYPE.
370 Normally, we really expect a typedef type to only have 1 typedef layer.
371 In other words, we really expect the target type of a typedef type to be
372 a non-typedef type. This is particularly true for Ada units, because
373 the language does not have a typedef vs not-typedef distinction.
374 In that respect, the Ada compiler has been trying to eliminate as many
375 typedef definitions in the debugging information, since they generally
376 do not bring any extra information (we still use typedef under certain
377 circumstances related mostly to the GNAT encoding).
379 Unfortunately, we have seen situations where the debugging information
380 generated by the compiler leads to such multiple typedef layers. For
381 instance, consider the following example with stabs:
383 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
384 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
386 This is an error in the debugging information which causes type
387 pck__float_array___XUP to be defined twice, and the second time,
388 it is defined as a typedef of a typedef.
390 This is on the fringe of legality as far as debugging information is
391 concerned, and certainly unexpected. But it is easy to handle these
392 situations correctly, so we can afford to be lenient in this case. */
395 ada_typedef_target_type (struct type *type)
397 while (type->code () == TYPE_CODE_TYPEDEF)
398 type = TYPE_TARGET_TYPE (type);
402 /* Given DECODED_NAME a string holding a symbol name in its
403 decoded form (ie using the Ada dotted notation), returns
404 its unqualified name. */
407 ada_unqualified_name (const char *decoded_name)
411 /* If the decoded name starts with '<', it means that the encoded
412 name does not follow standard naming conventions, and thus that
413 it is not your typical Ada symbol name. Trying to unqualify it
414 is therefore pointless and possibly erroneous. */
415 if (decoded_name[0] == '<')
418 result = strrchr (decoded_name, '.');
420 result++; /* Skip the dot... */
422 result = decoded_name;
427 /* Return a string starting with '<', followed by STR, and '>'. */
430 add_angle_brackets (const char *str)
432 return string_printf ("<%s>", str);
435 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
436 suffix of FIELD_NAME beginning "___". */
439 field_name_match (const char *field_name, const char *target)
441 int len = strlen (target);
444 (strncmp (field_name, target, len) == 0
445 && (field_name[len] == '\0'
446 || (startswith (field_name + len, "___")
447 && strcmp (field_name + strlen (field_name) - 6,
452 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
453 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
454 and return its index. This function also handles fields whose name
455 have ___ suffixes because the compiler sometimes alters their name
456 by adding such a suffix to represent fields with certain constraints.
457 If the field could not be found, return a negative number if
458 MAYBE_MISSING is set. Otherwise raise an error. */
461 ada_get_field_index (const struct type *type, const char *field_name,
465 struct type *struct_type = check_typedef ((struct type *) type);
467 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
468 if (field_name_match (struct_type->field (fieldno).name (), field_name))
472 error (_("Unable to find field %s in struct %s. Aborting"),
473 field_name, struct_type->name ());
478 /* The length of the prefix of NAME prior to any "___" suffix. */
481 ada_name_prefix_len (const char *name)
487 const char *p = strstr (name, "___");
490 return strlen (name);
496 /* Return non-zero if SUFFIX is a suffix of STR.
497 Return zero if STR is null. */
500 is_suffix (const char *str, const char *suffix)
507 len2 = strlen (suffix);
508 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
511 /* The contents of value VAL, treated as a value of type TYPE. The
512 result is an lval in memory if VAL is. */
514 static struct value *
515 coerce_unspec_val_to_type (struct value *val, struct type *type)
517 type = ada_check_typedef (type);
518 if (value_type (val) == type)
522 struct value *result;
524 if (value_optimized_out (val))
525 result = allocate_optimized_out_value (type);
526 else if (value_lazy (val)
527 /* Be careful not to make a lazy not_lval value. */
528 || (VALUE_LVAL (val) != not_lval
529 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
530 result = allocate_value_lazy (type);
533 result = allocate_value (type);
534 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
536 set_value_component_location (result, val);
537 set_value_bitsize (result, value_bitsize (val));
538 set_value_bitpos (result, value_bitpos (val));
539 if (VALUE_LVAL (result) == lval_memory)
540 set_value_address (result, value_address (val));
545 static const gdb_byte *
546 cond_offset_host (const gdb_byte *valaddr, long offset)
551 return valaddr + offset;
555 cond_offset_target (CORE_ADDR address, long offset)
560 return address + offset;
563 /* Issue a warning (as for the definition of warning in utils.c, but
564 with exactly one argument rather than ...), unless the limit on the
565 number of warnings has passed during the evaluation of the current
568 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
569 provided by "complaint". */
570 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
573 lim_warning (const char *format, ...)
577 va_start (args, format);
578 warnings_issued += 1;
579 if (warnings_issued <= warning_limit)
580 vwarning (format, args);
585 /* Maximum value of a SIZE-byte signed integer type. */
587 max_of_size (int size)
589 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
591 return top_bit | (top_bit - 1);
594 /* Minimum value of a SIZE-byte signed integer type. */
596 min_of_size (int size)
598 return -max_of_size (size) - 1;
601 /* Maximum value of a SIZE-byte unsigned integer type. */
603 umax_of_size (int size)
605 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
607 return top_bit | (top_bit - 1);
610 /* Maximum value of integral type T, as a signed quantity. */
612 max_of_type (struct type *t)
614 if (t->is_unsigned ())
615 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
617 return max_of_size (TYPE_LENGTH (t));
620 /* Minimum value of integral type T, as a signed quantity. */
622 min_of_type (struct type *t)
624 if (t->is_unsigned ())
627 return min_of_size (TYPE_LENGTH (t));
630 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
632 ada_discrete_type_high_bound (struct type *type)
634 type = resolve_dynamic_type (type, {}, 0);
635 switch (type->code ())
637 case TYPE_CODE_RANGE:
639 const dynamic_prop &high = type->bounds ()->high;
641 if (high.kind () == PROP_CONST)
642 return high.const_val ();
645 gdb_assert (high.kind () == PROP_UNDEFINED);
647 /* This happens when trying to evaluate a type's dynamic bound
648 without a live target. There is nothing relevant for us to
649 return here, so return 0. */
654 return type->field (type->num_fields () - 1).loc_enumval ();
659 return max_of_type (type);
661 error (_("Unexpected type in ada_discrete_type_high_bound."));
665 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
667 ada_discrete_type_low_bound (struct type *type)
669 type = resolve_dynamic_type (type, {}, 0);
670 switch (type->code ())
672 case TYPE_CODE_RANGE:
674 const dynamic_prop &low = type->bounds ()->low;
676 if (low.kind () == PROP_CONST)
677 return low.const_val ();
680 gdb_assert (low.kind () == PROP_UNDEFINED);
682 /* This happens when trying to evaluate a type's dynamic bound
683 without a live target. There is nothing relevant for us to
684 return here, so return 0. */
689 return type->field (0).loc_enumval ();
694 return min_of_type (type);
696 error (_("Unexpected type in ada_discrete_type_low_bound."));
700 /* The identity on non-range types. For range types, the underlying
701 non-range scalar type. */
704 get_base_type (struct type *type)
706 while (type != NULL && type->code () == TYPE_CODE_RANGE)
708 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
710 type = TYPE_TARGET_TYPE (type);
715 /* Return a decoded version of the given VALUE. This means returning
716 a value whose type is obtained by applying all the GNAT-specific
717 encodings, making the resulting type a static but standard description
718 of the initial type. */
721 ada_get_decoded_value (struct value *value)
723 struct type *type = ada_check_typedef (value_type (value));
725 if (ada_is_array_descriptor_type (type)
726 || (ada_is_constrained_packed_array_type (type)
727 && type->code () != TYPE_CODE_PTR))
729 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
730 value = ada_coerce_to_simple_array_ptr (value);
732 value = ada_coerce_to_simple_array (value);
735 value = ada_to_fixed_value (value);
740 /* Same as ada_get_decoded_value, but with the given TYPE.
741 Because there is no associated actual value for this type,
742 the resulting type might be a best-effort approximation in
743 the case of dynamic types. */
746 ada_get_decoded_type (struct type *type)
748 type = to_static_fixed_type (type);
749 if (ada_is_constrained_packed_array_type (type))
750 type = ada_coerce_to_simple_array_type (type);
756 /* Language Selection */
758 /* If the main program is in Ada, return language_ada, otherwise return LANG
759 (the main program is in Ada iif the adainit symbol is found). */
762 ada_update_initial_language (enum language lang)
764 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
770 /* If the main procedure is written in Ada, then return its name.
771 The result is good until the next call. Return NULL if the main
772 procedure doesn't appear to be in Ada. */
777 struct bound_minimal_symbol msym;
778 static gdb::unique_xmalloc_ptr<char> main_program_name;
780 /* For Ada, the name of the main procedure is stored in a specific
781 string constant, generated by the binder. Look for that symbol,
782 extract its address, and then read that string. If we didn't find
783 that string, then most probably the main procedure is not written
785 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
787 if (msym.minsym != NULL)
789 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
790 if (main_program_name_addr == 0)
791 error (_("Invalid address for Ada main program name."));
793 main_program_name = target_read_string (main_program_name_addr, 1024);
794 return main_program_name.get ();
797 /* The main procedure doesn't seem to be in Ada. */
803 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
806 const struct ada_opname_map ada_opname_table[] = {
807 {"Oadd", "\"+\"", BINOP_ADD},
808 {"Osubtract", "\"-\"", BINOP_SUB},
809 {"Omultiply", "\"*\"", BINOP_MUL},
810 {"Odivide", "\"/\"", BINOP_DIV},
811 {"Omod", "\"mod\"", BINOP_MOD},
812 {"Orem", "\"rem\"", BINOP_REM},
813 {"Oexpon", "\"**\"", BINOP_EXP},
814 {"Olt", "\"<\"", BINOP_LESS},
815 {"Ole", "\"<=\"", BINOP_LEQ},
816 {"Ogt", "\">\"", BINOP_GTR},
817 {"Oge", "\">=\"", BINOP_GEQ},
818 {"Oeq", "\"=\"", BINOP_EQUAL},
819 {"One", "\"/=\"", BINOP_NOTEQUAL},
820 {"Oand", "\"and\"", BINOP_BITWISE_AND},
821 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
822 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
823 {"Oconcat", "\"&\"", BINOP_CONCAT},
824 {"Oabs", "\"abs\"", UNOP_ABS},
825 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
826 {"Oadd", "\"+\"", UNOP_PLUS},
827 {"Osubtract", "\"-\"", UNOP_NEG},
831 /* If STR is a decoded version of a compiler-provided suffix (like the
832 "[cold]" in "symbol[cold]"), return true. Otherwise, return
836 is_compiler_suffix (const char *str)
838 gdb_assert (*str == '[');
840 while (*str != '\0' && isalpha (*str))
842 /* We accept a missing "]" in order to support completion. */
843 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
846 /* The "encoded" form of DECODED, according to GNAT conventions. If
847 THROW_ERRORS, throw an error if invalid operator name is found.
848 Otherwise, return the empty string in that case. */
851 ada_encode_1 (const char *decoded, bool throw_errors)
856 std::string encoding_buffer;
857 for (const char *p = decoded; *p != '\0'; p += 1)
860 encoding_buffer.append ("__");
861 else if (*p == '[' && is_compiler_suffix (p))
863 encoding_buffer = encoding_buffer + "." + (p + 1);
864 if (encoding_buffer.back () == ']')
865 encoding_buffer.pop_back ();
870 const struct ada_opname_map *mapping;
872 for (mapping = ada_opname_table;
873 mapping->encoded != NULL
874 && !startswith (p, mapping->decoded); mapping += 1)
876 if (mapping->encoded == NULL)
879 error (_("invalid Ada operator name: %s"), p);
883 encoding_buffer.append (mapping->encoded);
887 encoding_buffer.push_back (*p);
890 return encoding_buffer;
893 /* The "encoded" form of DECODED, according to GNAT conventions. */
896 ada_encode (const char *decoded)
898 return ada_encode_1 (decoded, true);
901 /* Return NAME folded to lower case, or, if surrounded by single
902 quotes, unfolded, but with the quotes stripped away. Result good
906 ada_fold_name (gdb::string_view name)
908 static std::string fold_storage;
910 if (!name.empty () && name[0] == '\'')
911 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
914 fold_storage = gdb::to_string (name);
915 for (int i = 0; i < name.size (); i += 1)
916 fold_storage[i] = tolower (fold_storage[i]);
919 return fold_storage.c_str ();
922 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
925 is_lower_alphanum (const char c)
927 return (isdigit (c) || (isalpha (c) && islower (c)));
930 /* ENCODED is the linkage name of a symbol and LEN contains its length.
931 This function saves in LEN the length of that same symbol name but
932 without either of these suffixes:
938 These are suffixes introduced by the compiler for entities such as
939 nested subprogram for instance, in order to avoid name clashes.
940 They do not serve any purpose for the debugger. */
943 ada_remove_trailing_digits (const char *encoded, int *len)
945 if (*len > 1 && isdigit (encoded[*len - 1]))
949 while (i > 0 && isdigit (encoded[i]))
951 if (i >= 0 && encoded[i] == '.')
953 else if (i >= 0 && encoded[i] == '$')
955 else if (i >= 2 && startswith (encoded + i - 2, "___"))
957 else if (i >= 1 && startswith (encoded + i - 1, "__"))
962 /* Remove the suffix introduced by the compiler for protected object
966 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
968 /* Remove trailing N. */
970 /* Protected entry subprograms are broken into two
971 separate subprograms: The first one is unprotected, and has
972 a 'N' suffix; the second is the protected version, and has
973 the 'P' suffix. The second calls the first one after handling
974 the protection. Since the P subprograms are internally generated,
975 we leave these names undecoded, giving the user a clue that this
976 entity is internal. */
979 && encoded[*len - 1] == 'N'
980 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
984 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
985 then update *LEN to remove the suffix and return the offset of the
986 character just past the ".". Otherwise, return -1. */
989 remove_compiler_suffix (const char *encoded, int *len)
991 int offset = *len - 1;
992 while (offset > 0 && isalpha (encoded[offset]))
994 if (offset > 0 && encoded[offset] == '.')
1002 /* See ada-lang.h. */
1005 ada_decode (const char *encoded, bool wrap)
1011 std::string decoded;
1014 /* With function descriptors on PPC64, the value of a symbol named
1015 ".FN", if it exists, is the entry point of the function "FN". */
1016 if (encoded[0] == '.')
1019 /* The name of the Ada main procedure starts with "_ada_".
1020 This prefix is not part of the decoded name, so skip this part
1021 if we see this prefix. */
1022 if (startswith (encoded, "_ada_"))
1025 /* If the name starts with '_', then it is not a properly encoded
1026 name, so do not attempt to decode it. Similarly, if the name
1027 starts with '<', the name should not be decoded. */
1028 if (encoded[0] == '_' || encoded[0] == '<')
1031 len0 = strlen (encoded);
1033 suffix = remove_compiler_suffix (encoded, &len0);
1035 ada_remove_trailing_digits (encoded, &len0);
1036 ada_remove_po_subprogram_suffix (encoded, &len0);
1038 /* Remove the ___X.* suffix if present. Do not forget to verify that
1039 the suffix is located before the current "end" of ENCODED. We want
1040 to avoid re-matching parts of ENCODED that have previously been
1041 marked as discarded (by decrementing LEN0). */
1042 p = strstr (encoded, "___");
1043 if (p != NULL && p - encoded < len0 - 3)
1051 /* Remove any trailing TKB suffix. It tells us that this symbol
1052 is for the body of a task, but that information does not actually
1053 appear in the decoded name. */
1055 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1058 /* Remove any trailing TB suffix. The TB suffix is slightly different
1059 from the TKB suffix because it is used for non-anonymous task
1062 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1065 /* Remove trailing "B" suffixes. */
1066 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1068 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1071 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1073 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1076 while ((i >= 0 && isdigit (encoded[i]))
1077 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1079 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1081 else if (encoded[i] == '$')
1085 /* The first few characters that are not alphabetic are not part
1086 of any encoding we use, so we can copy them over verbatim. */
1088 for (i = 0; i < len0 && !isalpha (encoded[i]); i += 1)
1089 decoded.push_back (encoded[i]);
1094 /* Is this a symbol function? */
1095 if (at_start_name && encoded[i] == 'O')
1099 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1101 int op_len = strlen (ada_opname_table[k].encoded);
1102 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1104 && !isalnum (encoded[i + op_len]))
1106 decoded.append (ada_opname_table[k].decoded);
1112 if (ada_opname_table[k].encoded != NULL)
1117 /* Replace "TK__" with "__", which will eventually be translated
1118 into "." (just below). */
1120 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1123 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1124 be translated into "." (just below). These are internal names
1125 generated for anonymous blocks inside which our symbol is nested. */
1127 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1128 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1129 && isdigit (encoded [i+4]))
1133 while (k < len0 && isdigit (encoded[k]))
1134 k++; /* Skip any extra digit. */
1136 /* Double-check that the "__B_{DIGITS}+" sequence we found
1137 is indeed followed by "__". */
1138 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1142 /* Remove _E{DIGITS}+[sb] */
1144 /* Just as for protected object subprograms, there are 2 categories
1145 of subprograms created by the compiler for each entry. The first
1146 one implements the actual entry code, and has a suffix following
1147 the convention above; the second one implements the barrier and
1148 uses the same convention as above, except that the 'E' is replaced
1151 Just as above, we do not decode the name of barrier functions
1152 to give the user a clue that the code he is debugging has been
1153 internally generated. */
1155 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1156 && isdigit (encoded[i+2]))
1160 while (k < len0 && isdigit (encoded[k]))
1164 && (encoded[k] == 'b' || encoded[k] == 's'))
1167 /* Just as an extra precaution, make sure that if this
1168 suffix is followed by anything else, it is a '_'.
1169 Otherwise, we matched this sequence by accident. */
1171 || (k < len0 && encoded[k] == '_'))
1176 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1177 the GNAT front-end in protected object subprograms. */
1180 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1182 /* Backtrack a bit up until we reach either the begining of
1183 the encoded name, or "__". Make sure that we only find
1184 digits or lowercase characters. */
1185 const char *ptr = encoded + i - 1;
1187 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1190 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1194 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1196 /* This is a X[bn]* sequence not separated from the previous
1197 part of the name with a non-alpha-numeric character (in other
1198 words, immediately following an alpha-numeric character), then
1199 verify that it is placed at the end of the encoded name. If
1200 not, then the encoding is not valid and we should abort the
1201 decoding. Otherwise, just skip it, it is used in body-nested
1205 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1209 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1211 /* Replace '__' by '.'. */
1212 decoded.push_back ('.');
1218 /* It's a character part of the decoded name, so just copy it
1220 decoded.push_back (encoded[i]);
1225 /* Decoded names should never contain any uppercase character.
1226 Double-check this, and abort the decoding if we find one. */
1228 for (i = 0; i < decoded.length(); ++i)
1229 if (isupper (decoded[i]) || decoded[i] == ' ')
1232 /* If the compiler added a suffix, append it now. */
1234 decoded = decoded + "[" + &encoded[suffix] + "]";
1242 if (encoded[0] == '<')
1245 decoded = '<' + std::string(encoded) + '>';
1249 /* Table for keeping permanent unique copies of decoded names. Once
1250 allocated, names in this table are never released. While this is a
1251 storage leak, it should not be significant unless there are massive
1252 changes in the set of decoded names in successive versions of a
1253 symbol table loaded during a single session. */
1254 static struct htab *decoded_names_store;
1256 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1257 in the language-specific part of GSYMBOL, if it has not been
1258 previously computed. Tries to save the decoded name in the same
1259 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1260 in any case, the decoded symbol has a lifetime at least that of
1262 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1263 const, but nevertheless modified to a semantically equivalent form
1264 when a decoded name is cached in it. */
1267 ada_decode_symbol (const struct general_symbol_info *arg)
1269 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1270 const char **resultp =
1271 &gsymbol->language_specific.demangled_name;
1273 if (!gsymbol->ada_mangled)
1275 std::string decoded = ada_decode (gsymbol->linkage_name ());
1276 struct obstack *obstack = gsymbol->language_specific.obstack;
1278 gsymbol->ada_mangled = 1;
1280 if (obstack != NULL)
1281 *resultp = obstack_strdup (obstack, decoded.c_str ());
1284 /* Sometimes, we can't find a corresponding objfile, in
1285 which case, we put the result on the heap. Since we only
1286 decode when needed, we hope this usually does not cause a
1287 significant memory leak (FIXME). */
1289 char **slot = (char **) htab_find_slot (decoded_names_store,
1290 decoded.c_str (), INSERT);
1293 *slot = xstrdup (decoded.c_str ());
1305 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1306 generated by the GNAT compiler to describe the index type used
1307 for each dimension of an array, check whether it follows the latest
1308 known encoding. If not, fix it up to conform to the latest encoding.
1309 Otherwise, do nothing. This function also does nothing if
1310 INDEX_DESC_TYPE is NULL.
1312 The GNAT encoding used to describe the array index type evolved a bit.
1313 Initially, the information would be provided through the name of each
1314 field of the structure type only, while the type of these fields was
1315 described as unspecified and irrelevant. The debugger was then expected
1316 to perform a global type lookup using the name of that field in order
1317 to get access to the full index type description. Because these global
1318 lookups can be very expensive, the encoding was later enhanced to make
1319 the global lookup unnecessary by defining the field type as being
1320 the full index type description.
1322 The purpose of this routine is to allow us to support older versions
1323 of the compiler by detecting the use of the older encoding, and by
1324 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1325 we essentially replace each field's meaningless type by the associated
1329 ada_fixup_array_indexes_type (struct type *index_desc_type)
1333 if (index_desc_type == NULL)
1335 gdb_assert (index_desc_type->num_fields () > 0);
1337 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1338 to check one field only, no need to check them all). If not, return
1341 If our INDEX_DESC_TYPE was generated using the older encoding,
1342 the field type should be a meaningless integer type whose name
1343 is not equal to the field name. */
1344 if (index_desc_type->field (0).type ()->name () != NULL
1345 && strcmp (index_desc_type->field (0).type ()->name (),
1346 index_desc_type->field (0).name ()) == 0)
1349 /* Fixup each field of INDEX_DESC_TYPE. */
1350 for (i = 0; i < index_desc_type->num_fields (); i++)
1352 const char *name = index_desc_type->field (i).name ();
1353 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1356 index_desc_type->field (i).set_type (raw_type);
1360 /* The desc_* routines return primitive portions of array descriptors
1363 /* The descriptor or array type, if any, indicated by TYPE; removes
1364 level of indirection, if needed. */
1366 static struct type *
1367 desc_base_type (struct type *type)
1371 type = ada_check_typedef (type);
1372 if (type->code () == TYPE_CODE_TYPEDEF)
1373 type = ada_typedef_target_type (type);
1376 && (type->code () == TYPE_CODE_PTR
1377 || type->code () == TYPE_CODE_REF))
1378 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1383 /* True iff TYPE indicates a "thin" array pointer type. */
1386 is_thin_pntr (struct type *type)
1389 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1390 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1393 /* The descriptor type for thin pointer type TYPE. */
1395 static struct type *
1396 thin_descriptor_type (struct type *type)
1398 struct type *base_type = desc_base_type (type);
1400 if (base_type == NULL)
1402 if (is_suffix (ada_type_name (base_type), "___XVE"))
1406 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1408 if (alt_type == NULL)
1415 /* A pointer to the array data for thin-pointer value VAL. */
1417 static struct value *
1418 thin_data_pntr (struct value *val)
1420 struct type *type = ada_check_typedef (value_type (val));
1421 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1423 data_type = lookup_pointer_type (data_type);
1425 if (type->code () == TYPE_CODE_PTR)
1426 return value_cast (data_type, value_copy (val));
1428 return value_from_longest (data_type, value_address (val));
1431 /* True iff TYPE indicates a "thick" array pointer type. */
1434 is_thick_pntr (struct type *type)
1436 type = desc_base_type (type);
1437 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1438 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1441 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1442 pointer to one, the type of its bounds data; otherwise, NULL. */
1444 static struct type *
1445 desc_bounds_type (struct type *type)
1449 type = desc_base_type (type);
1453 else if (is_thin_pntr (type))
1455 type = thin_descriptor_type (type);
1458 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1460 return ada_check_typedef (r);
1462 else if (type->code () == TYPE_CODE_STRUCT)
1464 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1466 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1471 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1472 one, a pointer to its bounds data. Otherwise NULL. */
1474 static struct value *
1475 desc_bounds (struct value *arr)
1477 struct type *type = ada_check_typedef (value_type (arr));
1479 if (is_thin_pntr (type))
1481 struct type *bounds_type =
1482 desc_bounds_type (thin_descriptor_type (type));
1485 if (bounds_type == NULL)
1486 error (_("Bad GNAT array descriptor"));
1488 /* NOTE: The following calculation is not really kosher, but
1489 since desc_type is an XVE-encoded type (and shouldn't be),
1490 the correct calculation is a real pain. FIXME (and fix GCC). */
1491 if (type->code () == TYPE_CODE_PTR)
1492 addr = value_as_long (arr);
1494 addr = value_address (arr);
1497 value_from_longest (lookup_pointer_type (bounds_type),
1498 addr - TYPE_LENGTH (bounds_type));
1501 else if (is_thick_pntr (type))
1503 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1504 _("Bad GNAT array descriptor"));
1505 struct type *p_bounds_type = value_type (p_bounds);
1508 && p_bounds_type->code () == TYPE_CODE_PTR)
1510 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1512 if (target_type->is_stub ())
1513 p_bounds = value_cast (lookup_pointer_type
1514 (ada_check_typedef (target_type)),
1518 error (_("Bad GNAT array descriptor"));
1526 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1527 position of the field containing the address of the bounds data. */
1530 fat_pntr_bounds_bitpos (struct type *type)
1532 return desc_base_type (type)->field (1).loc_bitpos ();
1535 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1536 size of the field containing the address of the bounds data. */
1539 fat_pntr_bounds_bitsize (struct type *type)
1541 type = desc_base_type (type);
1543 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1544 return TYPE_FIELD_BITSIZE (type, 1);
1546 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1549 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1550 pointer to one, the type of its array data (a array-with-no-bounds type);
1551 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1554 static struct type *
1555 desc_data_target_type (struct type *type)
1557 type = desc_base_type (type);
1559 /* NOTE: The following is bogus; see comment in desc_bounds. */
1560 if (is_thin_pntr (type))
1561 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1562 else if (is_thick_pntr (type))
1564 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1567 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1568 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1574 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1577 static struct value *
1578 desc_data (struct value *arr)
1580 struct type *type = value_type (arr);
1582 if (is_thin_pntr (type))
1583 return thin_data_pntr (arr);
1584 else if (is_thick_pntr (type))
1585 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1586 _("Bad GNAT array descriptor"));
1592 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1593 position of the field containing the address of the data. */
1596 fat_pntr_data_bitpos (struct type *type)
1598 return desc_base_type (type)->field (0).loc_bitpos ();
1601 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 size of the field containing the address of the data. */
1605 fat_pntr_data_bitsize (struct type *type)
1607 type = desc_base_type (type);
1609 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1610 return TYPE_FIELD_BITSIZE (type, 0);
1612 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1615 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1616 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1617 bound, if WHICH is 1. The first bound is I=1. */
1619 static struct value *
1620 desc_one_bound (struct value *bounds, int i, int which)
1622 char bound_name[20];
1623 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1624 which ? 'U' : 'L', i - 1);
1625 return value_struct_elt (&bounds, {}, bound_name, NULL,
1626 _("Bad GNAT array descriptor bounds"));
1629 /* If BOUNDS is an array-bounds structure type, return the bit position
1630 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1631 bound, if WHICH is 1. The first bound is I=1. */
1634 desc_bound_bitpos (struct type *type, int i, int which)
1636 return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
1639 /* If BOUNDS is an array-bounds structure type, return the bit field size
1640 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1641 bound, if WHICH is 1. The first bound is I=1. */
1644 desc_bound_bitsize (struct type *type, int i, int which)
1646 type = desc_base_type (type);
1648 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1649 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1651 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1654 /* If TYPE is the type of an array-bounds structure, the type of its
1655 Ith bound (numbering from 1). Otherwise, NULL. */
1657 static struct type *
1658 desc_index_type (struct type *type, int i)
1660 type = desc_base_type (type);
1662 if (type->code () == TYPE_CODE_STRUCT)
1664 char bound_name[20];
1665 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1666 return lookup_struct_elt_type (type, bound_name, 1);
1672 /* The number of index positions in the array-bounds type TYPE.
1673 Return 0 if TYPE is NULL. */
1676 desc_arity (struct type *type)
1678 type = desc_base_type (type);
1681 return type->num_fields () / 2;
1685 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1686 an array descriptor type (representing an unconstrained array
1690 ada_is_direct_array_type (struct type *type)
1694 type = ada_check_typedef (type);
1695 return (type->code () == TYPE_CODE_ARRAY
1696 || ada_is_array_descriptor_type (type));
1699 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1703 ada_is_array_type (struct type *type)
1706 && (type->code () == TYPE_CODE_PTR
1707 || type->code () == TYPE_CODE_REF))
1708 type = TYPE_TARGET_TYPE (type);
1709 return ada_is_direct_array_type (type);
1712 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1715 ada_is_simple_array_type (struct type *type)
1719 type = ada_check_typedef (type);
1720 return (type->code () == TYPE_CODE_ARRAY
1721 || (type->code () == TYPE_CODE_PTR
1722 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1723 == TYPE_CODE_ARRAY)));
1726 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1729 ada_is_array_descriptor_type (struct type *type)
1731 struct type *data_type = desc_data_target_type (type);
1735 type = ada_check_typedef (type);
1736 return (data_type != NULL
1737 && data_type->code () == TYPE_CODE_ARRAY
1738 && desc_arity (desc_bounds_type (type)) > 0);
1741 /* Non-zero iff type is a partially mal-formed GNAT array
1742 descriptor. FIXME: This is to compensate for some problems with
1743 debugging output from GNAT. Re-examine periodically to see if it
1747 ada_is_bogus_array_descriptor (struct type *type)
1751 && type->code () == TYPE_CODE_STRUCT
1752 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1753 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1754 && !ada_is_array_descriptor_type (type);
1758 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1759 (fat pointer) returns the type of the array data described---specifically,
1760 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1761 in from the descriptor; otherwise, they are left unspecified. If
1762 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1763 returns NULL. The result is simply the type of ARR if ARR is not
1766 static struct type *
1767 ada_type_of_array (struct value *arr, int bounds)
1769 if (ada_is_constrained_packed_array_type (value_type (arr)))
1770 return decode_constrained_packed_array_type (value_type (arr));
1772 if (!ada_is_array_descriptor_type (value_type (arr)))
1773 return value_type (arr);
1777 struct type *array_type =
1778 ada_check_typedef (desc_data_target_type (value_type (arr)));
1780 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1781 TYPE_FIELD_BITSIZE (array_type, 0) =
1782 decode_packed_array_bitsize (value_type (arr));
1788 struct type *elt_type;
1790 struct value *descriptor;
1792 elt_type = ada_array_element_type (value_type (arr), -1);
1793 arity = ada_array_arity (value_type (arr));
1795 if (elt_type == NULL || arity == 0)
1796 return ada_check_typedef (value_type (arr));
1798 descriptor = desc_bounds (arr);
1799 if (value_as_long (descriptor) == 0)
1803 struct type *range_type = alloc_type_copy (value_type (arr));
1804 struct type *array_type = alloc_type_copy (value_type (arr));
1805 struct value *low = desc_one_bound (descriptor, arity, 0);
1806 struct value *high = desc_one_bound (descriptor, arity, 1);
1809 create_static_range_type (range_type, value_type (low),
1810 longest_to_int (value_as_long (low)),
1811 longest_to_int (value_as_long (high)));
1812 elt_type = create_array_type (array_type, elt_type, range_type);
1814 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1816 /* We need to store the element packed bitsize, as well as
1817 recompute the array size, because it was previously
1818 computed based on the unpacked element size. */
1819 LONGEST lo = value_as_long (low);
1820 LONGEST hi = value_as_long (high);
1822 TYPE_FIELD_BITSIZE (elt_type, 0) =
1823 decode_packed_array_bitsize (value_type (arr));
1824 /* If the array has no element, then the size is already
1825 zero, and does not need to be recomputed. */
1829 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1831 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1836 return lookup_pointer_type (elt_type);
1840 /* If ARR does not represent an array, returns ARR unchanged.
1841 Otherwise, returns either a standard GDB array with bounds set
1842 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1843 GDB array. Returns NULL if ARR is a null fat pointer. */
1846 ada_coerce_to_simple_array_ptr (struct value *arr)
1848 if (ada_is_array_descriptor_type (value_type (arr)))
1850 struct type *arrType = ada_type_of_array (arr, 1);
1852 if (arrType == NULL)
1854 return value_cast (arrType, value_copy (desc_data (arr)));
1856 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1857 return decode_constrained_packed_array (arr);
1862 /* If ARR does not represent an array, returns ARR unchanged.
1863 Otherwise, returns a standard GDB array describing ARR (which may
1864 be ARR itself if it already is in the proper form). */
1867 ada_coerce_to_simple_array (struct value *arr)
1869 if (ada_is_array_descriptor_type (value_type (arr)))
1871 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1874 error (_("Bounds unavailable for null array pointer."));
1875 return value_ind (arrVal);
1877 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1878 return decode_constrained_packed_array (arr);
1883 /* If TYPE represents a GNAT array type, return it translated to an
1884 ordinary GDB array type (possibly with BITSIZE fields indicating
1885 packing). For other types, is the identity. */
1888 ada_coerce_to_simple_array_type (struct type *type)
1890 if (ada_is_constrained_packed_array_type (type))
1891 return decode_constrained_packed_array_type (type);
1893 if (ada_is_array_descriptor_type (type))
1894 return ada_check_typedef (desc_data_target_type (type));
1899 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1902 ada_is_gnat_encoded_packed_array_type (struct type *type)
1906 type = desc_base_type (type);
1907 type = ada_check_typedef (type);
1909 ada_type_name (type) != NULL
1910 && strstr (ada_type_name (type), "___XP") != NULL;
1913 /* Non-zero iff TYPE represents a standard GNAT constrained
1914 packed-array type. */
1917 ada_is_constrained_packed_array_type (struct type *type)
1919 return ada_is_gnat_encoded_packed_array_type (type)
1920 && !ada_is_array_descriptor_type (type);
1923 /* Non-zero iff TYPE represents an array descriptor for a
1924 unconstrained packed-array type. */
1927 ada_is_unconstrained_packed_array_type (struct type *type)
1929 if (!ada_is_array_descriptor_type (type))
1932 if (ada_is_gnat_encoded_packed_array_type (type))
1935 /* If we saw GNAT encodings, then the above code is sufficient.
1936 However, with minimal encodings, we will just have a thick
1938 if (is_thick_pntr (type))
1940 type = desc_base_type (type);
1941 /* The structure's first field is a pointer to an array, so this
1942 fetches the array type. */
1943 type = TYPE_TARGET_TYPE (type->field (0).type ());
1944 if (type->code () == TYPE_CODE_TYPEDEF)
1945 type = ada_typedef_target_type (type);
1946 /* Now we can see if the array elements are packed. */
1947 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1953 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1954 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1957 ada_is_any_packed_array_type (struct type *type)
1959 return (ada_is_constrained_packed_array_type (type)
1960 || (type->code () == TYPE_CODE_ARRAY
1961 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1964 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1965 return the size of its elements in bits. */
1968 decode_packed_array_bitsize (struct type *type)
1970 const char *raw_name;
1974 /* Access to arrays implemented as fat pointers are encoded as a typedef
1975 of the fat pointer type. We need the name of the fat pointer type
1976 to do the decoding, so strip the typedef layer. */
1977 if (type->code () == TYPE_CODE_TYPEDEF)
1978 type = ada_typedef_target_type (type);
1980 raw_name = ada_type_name (ada_check_typedef (type));
1982 raw_name = ada_type_name (desc_base_type (type));
1987 tail = strstr (raw_name, "___XP");
1988 if (tail == nullptr)
1990 gdb_assert (is_thick_pntr (type));
1991 /* The structure's first field is a pointer to an array, so this
1992 fetches the array type. */
1993 type = TYPE_TARGET_TYPE (type->field (0).type ());
1994 /* Now we can see if the array elements are packed. */
1995 return TYPE_FIELD_BITSIZE (type, 0);
1998 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2001 (_("could not understand bit size information on packed array"));
2008 /* Given that TYPE is a standard GDB array type with all bounds filled
2009 in, and that the element size of its ultimate scalar constituents
2010 (that is, either its elements, or, if it is an array of arrays, its
2011 elements' elements, etc.) is *ELT_BITS, return an identical type,
2012 but with the bit sizes of its elements (and those of any
2013 constituent arrays) recorded in the BITSIZE components of its
2014 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2017 Note that, for arrays whose index type has an XA encoding where
2018 a bound references a record discriminant, getting that discriminant,
2019 and therefore the actual value of that bound, is not possible
2020 because none of the given parameters gives us access to the record.
2021 This function assumes that it is OK in the context where it is being
2022 used to return an array whose bounds are still dynamic and where
2023 the length is arbitrary. */
2025 static struct type *
2026 constrained_packed_array_type (struct type *type, long *elt_bits)
2028 struct type *new_elt_type;
2029 struct type *new_type;
2030 struct type *index_type_desc;
2031 struct type *index_type;
2032 LONGEST low_bound, high_bound;
2034 type = ada_check_typedef (type);
2035 if (type->code () != TYPE_CODE_ARRAY)
2038 index_type_desc = ada_find_parallel_type (type, "___XA");
2039 if (index_type_desc)
2040 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2043 index_type = type->index_type ();
2045 new_type = alloc_type_copy (type);
2047 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2049 create_array_type (new_type, new_elt_type, index_type);
2050 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2051 new_type->set_name (ada_type_name (type));
2053 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2054 && is_dynamic_type (check_typedef (index_type)))
2055 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2056 low_bound = high_bound = 0;
2057 if (high_bound < low_bound)
2058 *elt_bits = TYPE_LENGTH (new_type) = 0;
2061 *elt_bits *= (high_bound - low_bound + 1);
2062 TYPE_LENGTH (new_type) =
2063 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2066 new_type->set_is_fixed_instance (true);
2070 /* The array type encoded by TYPE, where
2071 ada_is_constrained_packed_array_type (TYPE). */
2073 static struct type *
2074 decode_constrained_packed_array_type (struct type *type)
2076 const char *raw_name = ada_type_name (ada_check_typedef (type));
2079 struct type *shadow_type;
2083 raw_name = ada_type_name (desc_base_type (type));
2088 name = (char *) alloca (strlen (raw_name) + 1);
2089 tail = strstr (raw_name, "___XP");
2090 type = desc_base_type (type);
2092 memcpy (name, raw_name, tail - raw_name);
2093 name[tail - raw_name] = '\000';
2095 shadow_type = ada_find_parallel_type_with_name (type, name);
2097 if (shadow_type == NULL)
2099 lim_warning (_("could not find bounds information on packed array"));
2102 shadow_type = check_typedef (shadow_type);
2104 if (shadow_type->code () != TYPE_CODE_ARRAY)
2106 lim_warning (_("could not understand bounds "
2107 "information on packed array"));
2111 bits = decode_packed_array_bitsize (type);
2112 return constrained_packed_array_type (shadow_type, &bits);
2115 /* Helper function for decode_constrained_packed_array. Set the field
2116 bitsize on a series of packed arrays. Returns the number of
2117 elements in TYPE. */
2120 recursively_update_array_bitsize (struct type *type)
2122 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2125 if (!get_discrete_bounds (type->index_type (), &low, &high)
2128 LONGEST our_len = high - low + 1;
2130 struct type *elt_type = TYPE_TARGET_TYPE (type);
2131 if (elt_type->code () == TYPE_CODE_ARRAY)
2133 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2134 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2135 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2137 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2144 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2145 array, returns a simple array that denotes that array. Its type is a
2146 standard GDB array type except that the BITSIZEs of the array
2147 target types are set to the number of bits in each element, and the
2148 type length is set appropriately. */
2150 static struct value *
2151 decode_constrained_packed_array (struct value *arr)
2155 /* If our value is a pointer, then dereference it. Likewise if
2156 the value is a reference. Make sure that this operation does not
2157 cause the target type to be fixed, as this would indirectly cause
2158 this array to be decoded. The rest of the routine assumes that
2159 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2160 and "value_ind" routines to perform the dereferencing, as opposed
2161 to using "ada_coerce_ref" or "ada_value_ind". */
2162 arr = coerce_ref (arr);
2163 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2164 arr = value_ind (arr);
2166 type = decode_constrained_packed_array_type (value_type (arr));
2169 error (_("can't unpack array"));
2173 /* Decoding the packed array type could not correctly set the field
2174 bitsizes for any dimension except the innermost, because the
2175 bounds may be variable and were not passed to that function. So,
2176 we further resolve the array bounds here and then update the
2178 const gdb_byte *valaddr = value_contents_for_printing (arr).data ();
2179 CORE_ADDR address = value_address (arr);
2180 gdb::array_view<const gdb_byte> view
2181 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2182 type = resolve_dynamic_type (type, view, address);
2183 recursively_update_array_bitsize (type);
2185 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2186 && ada_is_modular_type (value_type (arr)))
2188 /* This is a (right-justified) modular type representing a packed
2189 array with no wrapper. In order to interpret the value through
2190 the (left-justified) packed array type we just built, we must
2191 first left-justify it. */
2192 int bit_size, bit_pos;
2195 mod = ada_modulus (value_type (arr)) - 1;
2202 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2203 arr = ada_value_primitive_packed_val (arr, NULL,
2204 bit_pos / HOST_CHAR_BIT,
2205 bit_pos % HOST_CHAR_BIT,
2210 return coerce_unspec_val_to_type (arr, type);
2214 /* The value of the element of packed array ARR at the ARITY indices
2215 given in IND. ARR must be a simple array. */
2217 static struct value *
2218 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2221 int bits, elt_off, bit_off;
2222 long elt_total_bit_offset;
2223 struct type *elt_type;
2227 elt_total_bit_offset = 0;
2228 elt_type = ada_check_typedef (value_type (arr));
2229 for (i = 0; i < arity; i += 1)
2231 if (elt_type->code () != TYPE_CODE_ARRAY
2232 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2234 (_("attempt to do packed indexing of "
2235 "something other than a packed array"));
2238 struct type *range_type = elt_type->index_type ();
2239 LONGEST lowerbound, upperbound;
2242 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2244 lim_warning (_("don't know bounds of array"));
2245 lowerbound = upperbound = 0;
2248 idx = pos_atr (ind[i]);
2249 if (idx < lowerbound || idx > upperbound)
2250 lim_warning (_("packed array index %ld out of bounds"),
2252 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2253 elt_total_bit_offset += (idx - lowerbound) * bits;
2254 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2257 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2258 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2260 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2265 /* Non-zero iff TYPE includes negative integer values. */
2268 has_negatives (struct type *type)
2270 switch (type->code ())
2275 return !type->is_unsigned ();
2276 case TYPE_CODE_RANGE:
2277 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2281 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2282 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2283 the unpacked buffer.
2285 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2286 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2288 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2291 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2293 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2296 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2297 gdb_byte *unpacked, int unpacked_len,
2298 int is_big_endian, int is_signed_type,
2301 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2302 int src_idx; /* Index into the source area */
2303 int src_bytes_left; /* Number of source bytes left to process. */
2304 int srcBitsLeft; /* Number of source bits left to move */
2305 int unusedLS; /* Number of bits in next significant
2306 byte of source that are unused */
2308 int unpacked_idx; /* Index into the unpacked buffer */
2309 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2311 unsigned long accum; /* Staging area for bits being transferred */
2312 int accumSize; /* Number of meaningful bits in accum */
2315 /* Transmit bytes from least to most significant; delta is the direction
2316 the indices move. */
2317 int delta = is_big_endian ? -1 : 1;
2319 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2321 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2322 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2323 bit_size, unpacked_len);
2325 srcBitsLeft = bit_size;
2326 src_bytes_left = src_len;
2327 unpacked_bytes_left = unpacked_len;
2332 src_idx = src_len - 1;
2334 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2338 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2344 unpacked_idx = unpacked_len - 1;
2348 /* Non-scalar values must be aligned at a byte boundary... */
2350 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2351 /* ... And are placed at the beginning (most-significant) bytes
2353 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2354 unpacked_bytes_left = unpacked_idx + 1;
2359 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2361 src_idx = unpacked_idx = 0;
2362 unusedLS = bit_offset;
2365 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2370 while (src_bytes_left > 0)
2372 /* Mask for removing bits of the next source byte that are not
2373 part of the value. */
2374 unsigned int unusedMSMask =
2375 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2377 /* Sign-extend bits for this byte. */
2378 unsigned int signMask = sign & ~unusedMSMask;
2381 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2382 accumSize += HOST_CHAR_BIT - unusedLS;
2383 if (accumSize >= HOST_CHAR_BIT)
2385 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2386 accumSize -= HOST_CHAR_BIT;
2387 accum >>= HOST_CHAR_BIT;
2388 unpacked_bytes_left -= 1;
2389 unpacked_idx += delta;
2391 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2393 src_bytes_left -= 1;
2396 while (unpacked_bytes_left > 0)
2398 accum |= sign << accumSize;
2399 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2400 accumSize -= HOST_CHAR_BIT;
2403 accum >>= HOST_CHAR_BIT;
2404 unpacked_bytes_left -= 1;
2405 unpacked_idx += delta;
2409 /* Create a new value of type TYPE from the contents of OBJ starting
2410 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2411 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2412 assigning through the result will set the field fetched from.
2413 VALADDR is ignored unless OBJ is NULL, in which case,
2414 VALADDR+OFFSET must address the start of storage containing the
2415 packed value. The value returned in this case is never an lval.
2416 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2419 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2420 long offset, int bit_offset, int bit_size,
2424 const gdb_byte *src; /* First byte containing data to unpack */
2426 const int is_scalar = is_scalar_type (type);
2427 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2428 gdb::byte_vector staging;
2430 type = ada_check_typedef (type);
2433 src = valaddr + offset;
2435 src = value_contents (obj).data () + offset;
2437 if (is_dynamic_type (type))
2439 /* The length of TYPE might by dynamic, so we need to resolve
2440 TYPE in order to know its actual size, which we then use
2441 to create the contents buffer of the value we return.
2442 The difficulty is that the data containing our object is
2443 packed, and therefore maybe not at a byte boundary. So, what
2444 we do, is unpack the data into a byte-aligned buffer, and then
2445 use that buffer as our object's value for resolving the type. */
2446 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2447 staging.resize (staging_len);
2449 ada_unpack_from_contents (src, bit_offset, bit_size,
2450 staging.data (), staging.size (),
2451 is_big_endian, has_negatives (type),
2453 type = resolve_dynamic_type (type, staging, 0);
2454 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2456 /* This happens when the length of the object is dynamic,
2457 and is actually smaller than the space reserved for it.
2458 For instance, in an array of variant records, the bit_size
2459 we're given is the array stride, which is constant and
2460 normally equal to the maximum size of its element.
2461 But, in reality, each element only actually spans a portion
2463 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2469 v = allocate_value (type);
2470 src = valaddr + offset;
2472 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2474 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2477 v = value_at (type, value_address (obj) + offset);
2478 buf = (gdb_byte *) alloca (src_len);
2479 read_memory (value_address (v), buf, src_len);
2484 v = allocate_value (type);
2485 src = value_contents (obj).data () + offset;
2490 long new_offset = offset;
2492 set_value_component_location (v, obj);
2493 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2494 set_value_bitsize (v, bit_size);
2495 if (value_bitpos (v) >= HOST_CHAR_BIT)
2498 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2500 set_value_offset (v, new_offset);
2502 /* Also set the parent value. This is needed when trying to
2503 assign a new value (in inferior memory). */
2504 set_value_parent (v, obj);
2507 set_value_bitsize (v, bit_size);
2508 unpacked = value_contents_writeable (v).data ();
2512 memset (unpacked, 0, TYPE_LENGTH (type));
2516 if (staging.size () == TYPE_LENGTH (type))
2518 /* Small short-cut: If we've unpacked the data into a buffer
2519 of the same size as TYPE's length, then we can reuse that,
2520 instead of doing the unpacking again. */
2521 memcpy (unpacked, staging.data (), staging.size ());
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
2525 unpacked, TYPE_LENGTH (type),
2526 is_big_endian, has_negatives (type), is_scalar);
2531 /* Store the contents of FROMVAL into the location of TOVAL.
2532 Return a new value with the location of TOVAL and contents of
2533 FROMVAL. Handles assignment into packed fields that have
2534 floating-point or non-scalar types. */
2536 static struct value *
2537 ada_value_assign (struct value *toval, struct value *fromval)
2539 struct type *type = value_type (toval);
2540 int bits = value_bitsize (toval);
2542 toval = ada_coerce_ref (toval);
2543 fromval = ada_coerce_ref (fromval);
2545 if (ada_is_direct_array_type (value_type (toval)))
2546 toval = ada_coerce_to_simple_array (toval);
2547 if (ada_is_direct_array_type (value_type (fromval)))
2548 fromval = ada_coerce_to_simple_array (fromval);
2550 if (!deprecated_value_modifiable (toval))
2551 error (_("Left operand of assignment is not a modifiable lvalue."));
2553 if (VALUE_LVAL (toval) == lval_memory
2555 && (type->code () == TYPE_CODE_FLT
2556 || type->code () == TYPE_CODE_STRUCT))
2558 int len = (value_bitpos (toval)
2559 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2561 gdb_byte *buffer = (gdb_byte *) alloca (len);
2563 CORE_ADDR to_addr = value_address (toval);
2565 if (type->code () == TYPE_CODE_FLT)
2566 fromval = value_cast (type, fromval);
2568 read_memory (to_addr, buffer, len);
2569 from_size = value_bitsize (fromval);
2571 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2573 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2574 ULONGEST from_offset = 0;
2575 if (is_big_endian && is_scalar_type (value_type (fromval)))
2576 from_offset = from_size - bits;
2577 copy_bitwise (buffer, value_bitpos (toval),
2578 value_contents (fromval).data (), from_offset,
2579 bits, is_big_endian);
2580 write_memory_with_notification (to_addr, buffer, len);
2582 val = value_copy (toval);
2583 memcpy (value_contents_raw (val).data (),
2584 value_contents (fromval).data (),
2585 TYPE_LENGTH (type));
2586 deprecated_set_value_type (val, type);
2591 return value_assign (toval, fromval);
2595 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2596 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2597 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2598 COMPONENT, and not the inferior's memory. The current contents
2599 of COMPONENT are ignored.
2601 Although not part of the initial design, this function also works
2602 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2603 had a null address, and COMPONENT had an address which is equal to
2604 its offset inside CONTAINER. */
2607 value_assign_to_component (struct value *container, struct value *component,
2610 LONGEST offset_in_container =
2611 (LONGEST) (value_address (component) - value_address (container));
2612 int bit_offset_in_container =
2613 value_bitpos (component) - value_bitpos (container);
2616 val = value_cast (value_type (component), val);
2618 if (value_bitsize (component) == 0)
2619 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2621 bits = value_bitsize (component);
2623 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2627 if (is_scalar_type (check_typedef (value_type (component))))
2629 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2632 copy_bitwise ((value_contents_writeable (container).data ()
2633 + offset_in_container),
2634 value_bitpos (container) + bit_offset_in_container,
2635 value_contents (val).data (), src_offset, bits, 1);
2638 copy_bitwise ((value_contents_writeable (container).data ()
2639 + offset_in_container),
2640 value_bitpos (container) + bit_offset_in_container,
2641 value_contents (val).data (), 0, bits, 0);
2644 /* Determine if TYPE is an access to an unconstrained array. */
2647 ada_is_access_to_unconstrained_array (struct type *type)
2649 return (type->code () == TYPE_CODE_TYPEDEF
2650 && is_thick_pntr (ada_typedef_target_type (type)));
2653 /* The value of the element of array ARR at the ARITY indices given in IND.
2654 ARR may be either a simple array, GNAT array descriptor, or pointer
2658 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2662 struct type *elt_type;
2664 elt = ada_coerce_to_simple_array (arr);
2666 elt_type = ada_check_typedef (value_type (elt));
2667 if (elt_type->code () == TYPE_CODE_ARRAY
2668 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2669 return value_subscript_packed (elt, arity, ind);
2671 for (k = 0; k < arity; k += 1)
2673 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2675 if (elt_type->code () != TYPE_CODE_ARRAY)
2676 error (_("too many subscripts (%d expected)"), k);
2678 elt = value_subscript (elt, pos_atr (ind[k]));
2680 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2681 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2683 /* The element is a typedef to an unconstrained array,
2684 except that the value_subscript call stripped the
2685 typedef layer. The typedef layer is GNAT's way to
2686 specify that the element is, at the source level, an
2687 access to the unconstrained array, rather than the
2688 unconstrained array. So, we need to restore that
2689 typedef layer, which we can do by forcing the element's
2690 type back to its original type. Otherwise, the returned
2691 value is going to be printed as the array, rather
2692 than as an access. Another symptom of the same issue
2693 would be that an expression trying to dereference the
2694 element would also be improperly rejected. */
2695 deprecated_set_value_type (elt, saved_elt_type);
2698 elt_type = ada_check_typedef (value_type (elt));
2704 /* Assuming ARR is a pointer to a GDB array, the value of the element
2705 of *ARR at the ARITY indices given in IND.
2706 Does not read the entire array into memory.
2708 Note: Unlike what one would expect, this function is used instead of
2709 ada_value_subscript for basically all non-packed array types. The reason
2710 for this is that a side effect of doing our own pointer arithmetics instead
2711 of relying on value_subscript is that there is no implicit typedef peeling.
2712 This is important for arrays of array accesses, where it allows us to
2713 preserve the fact that the array's element is an array access, where the
2714 access part os encoded in a typedef layer. */
2716 static struct value *
2717 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2720 struct value *array_ind = ada_value_ind (arr);
2722 = check_typedef (value_enclosing_type (array_ind));
2724 if (type->code () == TYPE_CODE_ARRAY
2725 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2726 return value_subscript_packed (array_ind, arity, ind);
2728 for (k = 0; k < arity; k += 1)
2732 if (type->code () != TYPE_CODE_ARRAY)
2733 error (_("too many subscripts (%d expected)"), k);
2734 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2736 get_discrete_bounds (type->index_type (), &lwb, &upb);
2737 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2738 type = TYPE_TARGET_TYPE (type);
2741 return value_ind (arr);
2744 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2745 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2746 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2747 this array is LOW, as per Ada rules. */
2748 static struct value *
2749 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2752 struct type *type0 = ada_check_typedef (type);
2753 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2754 struct type *index_type
2755 = create_static_range_type (NULL, base_index_type, low, high);
2756 struct type *slice_type = create_array_type_with_stride
2757 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2758 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2759 TYPE_FIELD_BITSIZE (type0, 0));
2760 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2761 gdb::optional<LONGEST> base_low_pos, low_pos;
2764 low_pos = discrete_position (base_index_type, low);
2765 base_low_pos = discrete_position (base_index_type, base_low);
2767 if (!low_pos.has_value () || !base_low_pos.has_value ())
2769 warning (_("unable to get positions in slice, use bounds instead"));
2771 base_low_pos = base_low;
2774 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2776 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2778 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2779 return value_at_lazy (slice_type, base);
2783 static struct value *
2784 ada_value_slice (struct value *array, int low, int high)
2786 struct type *type = ada_check_typedef (value_type (array));
2787 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2788 struct type *index_type
2789 = create_static_range_type (NULL, type->index_type (), low, high);
2790 struct type *slice_type = create_array_type_with_stride
2791 (NULL, TYPE_TARGET_TYPE (type), index_type,
2792 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2793 TYPE_FIELD_BITSIZE (type, 0));
2794 gdb::optional<LONGEST> low_pos, high_pos;
2797 low_pos = discrete_position (base_index_type, low);
2798 high_pos = discrete_position (base_index_type, high);
2800 if (!low_pos.has_value () || !high_pos.has_value ())
2802 warning (_("unable to get positions in slice, use bounds instead"));
2807 return value_cast (slice_type,
2808 value_slice (array, low, *high_pos - *low_pos + 1));
2811 /* If type is a record type in the form of a standard GNAT array
2812 descriptor, returns the number of dimensions for type. If arr is a
2813 simple array, returns the number of "array of"s that prefix its
2814 type designation. Otherwise, returns 0. */
2817 ada_array_arity (struct type *type)
2824 type = desc_base_type (type);
2827 if (type->code () == TYPE_CODE_STRUCT)
2828 return desc_arity (desc_bounds_type (type));
2830 while (type->code () == TYPE_CODE_ARRAY)
2833 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2839 /* If TYPE is a record type in the form of a standard GNAT array
2840 descriptor or a simple array type, returns the element type for
2841 TYPE after indexing by NINDICES indices, or by all indices if
2842 NINDICES is -1. Otherwise, returns NULL. */
2845 ada_array_element_type (struct type *type, int nindices)
2847 type = desc_base_type (type);
2849 if (type->code () == TYPE_CODE_STRUCT)
2852 struct type *p_array_type;
2854 p_array_type = desc_data_target_type (type);
2856 k = ada_array_arity (type);
2860 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2861 if (nindices >= 0 && k > nindices)
2863 while (k > 0 && p_array_type != NULL)
2865 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2868 return p_array_type;
2870 else if (type->code () == TYPE_CODE_ARRAY)
2872 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2874 type = TYPE_TARGET_TYPE (type);
2883 /* See ada-lang.h. */
2886 ada_index_type (struct type *type, int n, const char *name)
2888 struct type *result_type;
2890 type = desc_base_type (type);
2892 if (n < 0 || n > ada_array_arity (type))
2893 error (_("invalid dimension number to '%s"), name);
2895 if (ada_is_simple_array_type (type))
2899 for (i = 1; i < n; i += 1)
2901 type = ada_check_typedef (type);
2902 type = TYPE_TARGET_TYPE (type);
2904 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
2905 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2906 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2907 perhaps stabsread.c would make more sense. */
2908 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2913 result_type = desc_index_type (desc_bounds_type (type), n);
2914 if (result_type == NULL)
2915 error (_("attempt to take bound of something that is not an array"));
2921 /* Given that arr is an array type, returns the lower bound of the
2922 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2923 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2924 array-descriptor type. It works for other arrays with bounds supplied
2925 by run-time quantities other than discriminants. */
2928 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2930 struct type *type, *index_type_desc, *index_type;
2933 gdb_assert (which == 0 || which == 1);
2935 if (ada_is_constrained_packed_array_type (arr_type))
2936 arr_type = decode_constrained_packed_array_type (arr_type);
2938 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2939 return (LONGEST) - which;
2941 if (arr_type->code () == TYPE_CODE_PTR)
2942 type = TYPE_TARGET_TYPE (arr_type);
2946 if (type->is_fixed_instance ())
2948 /* The array has already been fixed, so we do not need to
2949 check the parallel ___XA type again. That encoding has
2950 already been applied, so ignore it now. */
2951 index_type_desc = NULL;
2955 index_type_desc = ada_find_parallel_type (type, "___XA");
2956 ada_fixup_array_indexes_type (index_type_desc);
2959 if (index_type_desc != NULL)
2960 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2964 struct type *elt_type = check_typedef (type);
2966 for (i = 1; i < n; i++)
2967 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2969 index_type = elt_type->index_type ();
2973 (LONGEST) (which == 0
2974 ? ada_discrete_type_low_bound (index_type)
2975 : ada_discrete_type_high_bound (index_type));
2978 /* Given that arr is an array value, returns the lower bound of the
2979 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2980 WHICH is 1. This routine will also work for arrays with bounds
2981 supplied by run-time quantities other than discriminants. */
2984 ada_array_bound (struct value *arr, int n, int which)
2986 struct type *arr_type;
2988 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2989 arr = value_ind (arr);
2990 arr_type = value_enclosing_type (arr);
2992 if (ada_is_constrained_packed_array_type (arr_type))
2993 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2994 else if (ada_is_simple_array_type (arr_type))
2995 return ada_array_bound_from_type (arr_type, n, which);
2997 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3000 /* Given that arr is an array value, returns the length of the
3001 nth index. This routine will also work for arrays with bounds
3002 supplied by run-time quantities other than discriminants.
3003 Does not work for arrays indexed by enumeration types with representation
3004 clauses at the moment. */
3007 ada_array_length (struct value *arr, int n)
3009 struct type *arr_type, *index_type;
3012 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3013 arr = value_ind (arr);
3014 arr_type = value_enclosing_type (arr);
3016 if (ada_is_constrained_packed_array_type (arr_type))
3017 return ada_array_length (decode_constrained_packed_array (arr), n);
3019 if (ada_is_simple_array_type (arr_type))
3021 low = ada_array_bound_from_type (arr_type, n, 0);
3022 high = ada_array_bound_from_type (arr_type, n, 1);
3026 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3027 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3030 arr_type = check_typedef (arr_type);
3031 index_type = ada_index_type (arr_type, n, "length");
3032 if (index_type != NULL)
3034 struct type *base_type;
3035 if (index_type->code () == TYPE_CODE_RANGE)
3036 base_type = TYPE_TARGET_TYPE (index_type);
3038 base_type = index_type;
3040 low = pos_atr (value_from_longest (base_type, low));
3041 high = pos_atr (value_from_longest (base_type, high));
3043 return high - low + 1;
3046 /* An array whose type is that of ARR_TYPE (an array type), with
3047 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3048 less than LOW, then LOW-1 is used. */
3050 static struct value *
3051 empty_array (struct type *arr_type, int low, int high)
3053 struct type *arr_type0 = ada_check_typedef (arr_type);
3054 struct type *index_type
3055 = create_static_range_type
3056 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3057 high < low ? low - 1 : high);
3058 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3060 return allocate_value (create_array_type (NULL, elt_type, index_type));
3064 /* Name resolution */
3066 /* The "decoded" name for the user-definable Ada operator corresponding
3070 ada_decoded_op_name (enum exp_opcode op)
3074 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3076 if (ada_opname_table[i].op == op)
3077 return ada_opname_table[i].decoded;
3079 error (_("Could not find operator name for opcode"));
3082 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3083 in a listing of choices during disambiguation (see sort_choices, below).
3084 The idea is that overloadings of a subprogram name from the
3085 same package should sort in their source order. We settle for ordering
3086 such symbols by their trailing number (__N or $N). */
3089 encoded_ordered_before (const char *N0, const char *N1)
3093 else if (N0 == NULL)
3099 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3101 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3103 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3104 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3109 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3112 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3114 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3115 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3117 return (strcmp (N0, N1) < 0);
3121 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3125 sort_choices (struct block_symbol syms[], int nsyms)
3129 for (i = 1; i < nsyms; i += 1)
3131 struct block_symbol sym = syms[i];
3134 for (j = i - 1; j >= 0; j -= 1)
3136 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3137 sym.symbol->linkage_name ()))
3139 syms[j + 1] = syms[j];
3145 /* Whether GDB should display formals and return types for functions in the
3146 overloads selection menu. */
3147 static bool print_signatures = true;
3149 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3150 all but functions, the signature is just the name of the symbol. For
3151 functions, this is the name of the function, the list of types for formals
3152 and the return type (if any). */
3155 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3156 const struct type_print_options *flags)
3158 struct type *type = sym->type ();
3160 fprintf_filtered (stream, "%s", sym->print_name ());
3161 if (!print_signatures
3163 || type->code () != TYPE_CODE_FUNC)
3166 if (type->num_fields () > 0)
3170 fprintf_filtered (stream, " (");
3171 for (i = 0; i < type->num_fields (); ++i)
3174 fprintf_filtered (stream, "; ");
3175 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3178 fprintf_filtered (stream, ")");
3180 if (TYPE_TARGET_TYPE (type) != NULL
3181 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3183 fprintf_filtered (stream, " return ");
3184 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3188 /* Read and validate a set of numeric choices from the user in the
3189 range 0 .. N_CHOICES-1. Place the results in increasing
3190 order in CHOICES[0 .. N-1], and return N.
3192 The user types choices as a sequence of numbers on one line
3193 separated by blanks, encoding them as follows:
3195 + A choice of 0 means to cancel the selection, throwing an error.
3196 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3197 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3199 The user is not allowed to choose more than MAX_RESULTS values.
3201 ANNOTATION_SUFFIX, if present, is used to annotate the input
3202 prompts (for use with the -f switch). */
3205 get_selections (int *choices, int n_choices, int max_results,
3206 int is_all_choice, const char *annotation_suffix)
3211 int first_choice = is_all_choice ? 2 : 1;
3213 prompt = getenv ("PS2");
3217 args = command_line_input (prompt, annotation_suffix);
3220 error_no_arg (_("one or more choice numbers"));
3224 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3225 order, as given in args. Choices are validated. */
3231 args = skip_spaces (args);
3232 if (*args == '\0' && n_chosen == 0)
3233 error_no_arg (_("one or more choice numbers"));
3234 else if (*args == '\0')
3237 choice = strtol (args, &args2, 10);
3238 if (args == args2 || choice < 0
3239 || choice > n_choices + first_choice - 1)
3240 error (_("Argument must be choice number"));
3244 error (_("cancelled"));
3246 if (choice < first_choice)
3248 n_chosen = n_choices;
3249 for (j = 0; j < n_choices; j += 1)
3253 choice -= first_choice;
3255 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3259 if (j < 0 || choice != choices[j])
3263 for (k = n_chosen - 1; k > j; k -= 1)
3264 choices[k + 1] = choices[k];
3265 choices[j + 1] = choice;
3270 if (n_chosen > max_results)
3271 error (_("Select no more than %d of the above"), max_results);
3276 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3277 by asking the user (if necessary), returning the number selected,
3278 and setting the first elements of SYMS items. Error if no symbols
3281 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3282 to be re-integrated one of these days. */
3285 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3288 int *chosen = XALLOCAVEC (int , nsyms);
3290 int first_choice = (max_results == 1) ? 1 : 2;
3291 const char *select_mode = multiple_symbols_select_mode ();
3293 if (max_results < 1)
3294 error (_("Request to select 0 symbols!"));
3298 if (select_mode == multiple_symbols_cancel)
3300 canceled because the command is ambiguous\n\
3301 See set/show multiple-symbol."));
3303 /* If select_mode is "all", then return all possible symbols.
3304 Only do that if more than one symbol can be selected, of course.
3305 Otherwise, display the menu as usual. */
3306 if (select_mode == multiple_symbols_all && max_results > 1)
3309 printf_filtered (_("[0] cancel\n"));
3310 if (max_results > 1)
3311 printf_filtered (_("[1] all\n"));
3313 sort_choices (syms, nsyms);
3315 for (i = 0; i < nsyms; i += 1)
3317 if (syms[i].symbol == NULL)
3320 if (syms[i].symbol->aclass () == LOC_BLOCK)
3322 struct symtab_and_line sal =
3323 find_function_start_sal (syms[i].symbol, 1);
3325 printf_filtered ("[%d] ", i + first_choice);
3326 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3327 &type_print_raw_options);
3328 if (sal.symtab == NULL)
3329 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3330 metadata_style.style ().ptr (), nullptr, sal.line);
3334 styled_string (file_name_style.style (),
3335 symtab_to_filename_for_display (sal.symtab)),
3342 (syms[i].symbol->aclass () == LOC_CONST
3343 && syms[i].symbol->type () != NULL
3344 && syms[i].symbol->type ()->code () == TYPE_CODE_ENUM);
3345 struct symtab *symtab = NULL;
3347 if (syms[i].symbol->is_objfile_owned ())
3348 symtab = symbol_symtab (syms[i].symbol);
3350 if (syms[i].symbol->line () != 0 && symtab != NULL)
3352 printf_filtered ("[%d] ", i + first_choice);
3353 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3354 &type_print_raw_options);
3355 printf_filtered (_(" at %s:%d\n"),
3356 symtab_to_filename_for_display (symtab),
3357 syms[i].symbol->line ());
3359 else if (is_enumeral
3360 && syms[i].symbol->type ()->name () != NULL)
3362 printf_filtered (("[%d] "), i + first_choice);
3363 ada_print_type (syms[i].symbol->type (), NULL,
3364 gdb_stdout, -1, 0, &type_print_raw_options);
3365 printf_filtered (_("'(%s) (enumeral)\n"),
3366 syms[i].symbol->print_name ());
3370 printf_filtered ("[%d] ", i + first_choice);
3371 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3372 &type_print_raw_options);
3375 printf_filtered (is_enumeral
3376 ? _(" in %s (enumeral)\n")
3378 symtab_to_filename_for_display (symtab));
3380 printf_filtered (is_enumeral
3381 ? _(" (enumeral)\n")
3387 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3390 for (i = 0; i < n_chosen; i += 1)
3391 syms[i] = syms[chosen[i]];
3396 /* See ada-lang.h. */
3399 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3400 int nargs, value *argvec[])
3402 if (possible_user_operator_p (op, argvec))
3404 std::vector<struct block_symbol> candidates
3405 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3408 int i = ada_resolve_function (candidates, argvec,
3409 nargs, ada_decoded_op_name (op), NULL,
3412 return candidates[i];
3417 /* See ada-lang.h. */
3420 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3421 struct type *context_type,
3422 bool parse_completion,
3423 int nargs, value *argvec[],
3424 innermost_block_tracker *tracker)
3426 std::vector<struct block_symbol> candidates
3427 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3430 if (candidates.size () == 1)
3434 i = ada_resolve_function
3437 sym->linkage_name (),
3438 context_type, parse_completion);
3440 error (_("Could not find a match for %s"), sym->print_name ());
3443 tracker->update (candidates[i]);
3444 return candidates[i];
3447 /* Resolve a mention of a name where the context type is an
3448 enumeration type. */
3451 ada_resolve_enum (std::vector<struct block_symbol> &syms,
3452 const char *name, struct type *context_type,
3453 bool parse_completion)
3455 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3456 context_type = ada_check_typedef (context_type);
3458 for (int i = 0; i < syms.size (); ++i)
3460 /* We already know the name matches, so we're just looking for
3461 an element of the correct enum type. */
3462 if (ada_check_typedef (syms[i].symbol->type ()) == context_type)
3466 error (_("No name '%s' in enumeration type '%s'"), name,
3467 ada_type_name (context_type));
3470 /* See ada-lang.h. */
3473 ada_resolve_variable (struct symbol *sym, const struct block *block,
3474 struct type *context_type,
3475 bool parse_completion,
3477 innermost_block_tracker *tracker)
3479 std::vector<struct block_symbol> candidates
3480 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3482 if (std::any_of (candidates.begin (),
3484 [] (block_symbol &bsym)
3486 switch (bsym.symbol->aclass ())
3491 case LOC_REGPARM_ADDR:
3500 /* Types tend to get re-introduced locally, so if there
3501 are any local symbols that are not types, first filter
3505 (candidates.begin (),
3507 [] (block_symbol &bsym)
3509 return bsym.symbol->aclass () == LOC_TYPEDEF;
3514 /* Filter out artificial symbols. */
3517 (candidates.begin (),
3519 [] (block_symbol &bsym)
3521 return bsym.symbol->artificial;
3526 if (candidates.empty ())
3527 error (_("No definition found for %s"), sym->print_name ());
3528 else if (candidates.size () == 1)
3530 else if (context_type != nullptr
3531 && context_type->code () == TYPE_CODE_ENUM)
3532 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3534 else if (deprocedure_p && !is_nonfunction (candidates))
3536 i = ada_resolve_function
3537 (candidates, NULL, 0,
3538 sym->linkage_name (),
3539 context_type, parse_completion);
3541 error (_("Could not find a match for %s"), sym->print_name ());
3545 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3546 user_select_syms (candidates.data (), candidates.size (), 1);
3550 tracker->update (candidates[i]);
3551 return candidates[i];
3554 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3555 /* The term "match" here is rather loose. The match is heuristic and
3559 ada_type_match (struct type *ftype, struct type *atype)
3561 ftype = ada_check_typedef (ftype);
3562 atype = ada_check_typedef (atype);
3564 if (ftype->code () == TYPE_CODE_REF)
3565 ftype = TYPE_TARGET_TYPE (ftype);
3566 if (atype->code () == TYPE_CODE_REF)
3567 atype = TYPE_TARGET_TYPE (atype);
3569 switch (ftype->code ())
3572 return ftype->code () == atype->code ();
3574 if (atype->code () != TYPE_CODE_PTR)
3576 atype = TYPE_TARGET_TYPE (atype);
3577 /* This can only happen if the actual argument is 'null'. */
3578 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3580 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3582 case TYPE_CODE_ENUM:
3583 case TYPE_CODE_RANGE:
3584 switch (atype->code ())
3587 case TYPE_CODE_ENUM:
3588 case TYPE_CODE_RANGE:
3594 case TYPE_CODE_ARRAY:
3595 return (atype->code () == TYPE_CODE_ARRAY
3596 || ada_is_array_descriptor_type (atype));
3598 case TYPE_CODE_STRUCT:
3599 if (ada_is_array_descriptor_type (ftype))
3600 return (atype->code () == TYPE_CODE_ARRAY
3601 || ada_is_array_descriptor_type (atype));
3603 return (atype->code () == TYPE_CODE_STRUCT
3604 && !ada_is_array_descriptor_type (atype));
3606 case TYPE_CODE_UNION:
3608 return (atype->code () == ftype->code ());
3612 /* Return non-zero if the formals of FUNC "sufficiently match" the
3613 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3614 may also be an enumeral, in which case it is treated as a 0-
3615 argument function. */
3618 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3621 struct type *func_type = func->type ();
3623 if (func->aclass () == LOC_CONST
3624 && func_type->code () == TYPE_CODE_ENUM)
3625 return (n_actuals == 0);
3626 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3629 if (func_type->num_fields () != n_actuals)
3632 for (i = 0; i < n_actuals; i += 1)
3634 if (actuals[i] == NULL)
3638 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3639 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3641 if (!ada_type_match (ftype, atype))
3648 /* False iff function type FUNC_TYPE definitely does not produce a value
3649 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3650 FUNC_TYPE is not a valid function type with a non-null return type
3651 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3654 return_match (struct type *func_type, struct type *context_type)
3656 struct type *return_type;
3658 if (func_type == NULL)
3661 if (func_type->code () == TYPE_CODE_FUNC)
3662 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3664 return_type = get_base_type (func_type);
3665 if (return_type == NULL)
3668 context_type = get_base_type (context_type);
3670 if (return_type->code () == TYPE_CODE_ENUM)
3671 return context_type == NULL || return_type == context_type;
3672 else if (context_type == NULL)
3673 return return_type->code () != TYPE_CODE_VOID;
3675 return return_type->code () == context_type->code ();
3679 /* Returns the index in SYMS that contains the symbol for the
3680 function (if any) that matches the types of the NARGS arguments in
3681 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3682 that returns that type, then eliminate matches that don't. If
3683 CONTEXT_TYPE is void and there is at least one match that does not
3684 return void, eliminate all matches that do.
3686 Asks the user if there is more than one match remaining. Returns -1
3687 if there is no such symbol or none is selected. NAME is used
3688 solely for messages. May re-arrange and modify SYMS in
3689 the process; the index returned is for the modified vector. */
3692 ada_resolve_function (std::vector<struct block_symbol> &syms,
3693 struct value **args, int nargs,
3694 const char *name, struct type *context_type,
3695 bool parse_completion)
3699 int m; /* Number of hits */
3702 /* In the first pass of the loop, we only accept functions matching
3703 context_type. If none are found, we add a second pass of the loop
3704 where every function is accepted. */
3705 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3707 for (k = 0; k < syms.size (); k += 1)
3709 struct type *type = ada_check_typedef (syms[k].symbol->type ());
3711 if (ada_args_match (syms[k].symbol, args, nargs)
3712 && (fallback || return_match (type, context_type)))
3720 /* If we got multiple matches, ask the user which one to use. Don't do this
3721 interactive thing during completion, though, as the purpose of the
3722 completion is providing a list of all possible matches. Prompting the
3723 user to filter it down would be completely unexpected in this case. */
3726 else if (m > 1 && !parse_completion)
3728 printf_filtered (_("Multiple matches for %s\n"), name);
3729 user_select_syms (syms.data (), m, 1);
3735 /* Type-class predicates */
3737 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3741 numeric_type_p (struct type *type)
3747 switch (type->code ())
3751 case TYPE_CODE_FIXED_POINT:
3753 case TYPE_CODE_RANGE:
3754 return (type == TYPE_TARGET_TYPE (type)
3755 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3762 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3765 integer_type_p (struct type *type)
3771 switch (type->code ())
3775 case TYPE_CODE_RANGE:
3776 return (type == TYPE_TARGET_TYPE (type)
3777 || integer_type_p (TYPE_TARGET_TYPE (type)));
3784 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3787 scalar_type_p (struct type *type)
3793 switch (type->code ())
3796 case TYPE_CODE_RANGE:
3797 case TYPE_CODE_ENUM:
3799 case TYPE_CODE_FIXED_POINT:
3807 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3810 discrete_type_p (struct type *type)
3816 switch (type->code ())
3819 case TYPE_CODE_RANGE:
3820 case TYPE_CODE_ENUM:
3821 case TYPE_CODE_BOOL:
3829 /* Returns non-zero if OP with operands in the vector ARGS could be
3830 a user-defined function. Errs on the side of pre-defined operators
3831 (i.e., result 0). */
3834 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3836 struct type *type0 =
3837 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3838 struct type *type1 =
3839 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3853 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3857 case BINOP_BITWISE_AND:
3858 case BINOP_BITWISE_IOR:
3859 case BINOP_BITWISE_XOR:
3860 return (!(integer_type_p (type0) && integer_type_p (type1)));
3863 case BINOP_NOTEQUAL:
3868 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3871 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3874 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3878 case UNOP_LOGICAL_NOT:
3880 return (!numeric_type_p (type0));
3889 1. In the following, we assume that a renaming type's name may
3890 have an ___XD suffix. It would be nice if this went away at some
3892 2. We handle both the (old) purely type-based representation of
3893 renamings and the (new) variable-based encoding. At some point,
3894 it is devoutly to be hoped that the former goes away
3895 (FIXME: hilfinger-2007-07-09).
3896 3. Subprogram renamings are not implemented, although the XRS
3897 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3899 /* If SYM encodes a renaming,
3901 <renaming> renames <renamed entity>,
3903 sets *LEN to the length of the renamed entity's name,
3904 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3905 the string describing the subcomponent selected from the renamed
3906 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3907 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3908 are undefined). Otherwise, returns a value indicating the category
3909 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3910 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3911 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3912 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3913 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3914 may be NULL, in which case they are not assigned.
3916 [Currently, however, GCC does not generate subprogram renamings.] */
3918 enum ada_renaming_category
3919 ada_parse_renaming (struct symbol *sym,
3920 const char **renamed_entity, int *len,
3921 const char **renaming_expr)
3923 enum ada_renaming_category kind;
3928 return ADA_NOT_RENAMING;
3929 switch (sym->aclass ())
3932 return ADA_NOT_RENAMING;
3936 case LOC_OPTIMIZED_OUT:
3937 info = strstr (sym->linkage_name (), "___XR");
3939 return ADA_NOT_RENAMING;
3943 kind = ADA_OBJECT_RENAMING;
3947 kind = ADA_EXCEPTION_RENAMING;
3951 kind = ADA_PACKAGE_RENAMING;
3955 kind = ADA_SUBPROGRAM_RENAMING;
3959 return ADA_NOT_RENAMING;
3963 if (renamed_entity != NULL)
3964 *renamed_entity = info;
3965 suffix = strstr (info, "___XE");
3966 if (suffix == NULL || suffix == info)
3967 return ADA_NOT_RENAMING;
3969 *len = strlen (info) - strlen (suffix);
3971 if (renaming_expr != NULL)
3972 *renaming_expr = suffix;
3976 /* Compute the value of the given RENAMING_SYM, which is expected to
3977 be a symbol encoding a renaming expression. BLOCK is the block
3978 used to evaluate the renaming. */
3980 static struct value *
3981 ada_read_renaming_var_value (struct symbol *renaming_sym,
3982 const struct block *block)
3984 const char *sym_name;
3986 sym_name = renaming_sym->linkage_name ();
3987 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3988 return evaluate_expression (expr.get ());
3992 /* Evaluation: Function Calls */
3994 /* Return an lvalue containing the value VAL. This is the identity on
3995 lvalues, and otherwise has the side-effect of allocating memory
3996 in the inferior where a copy of the value contents is copied. */
3998 static struct value *
3999 ensure_lval (struct value *val)
4001 if (VALUE_LVAL (val) == not_lval
4002 || VALUE_LVAL (val) == lval_internalvar)
4004 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4005 const CORE_ADDR addr =
4006 value_as_long (value_allocate_space_in_inferior (len));
4008 VALUE_LVAL (val) = lval_memory;
4009 set_value_address (val, addr);
4010 write_memory (addr, value_contents (val).data (), len);
4016 /* Given ARG, a value of type (pointer or reference to a)*
4017 structure/union, extract the component named NAME from the ultimate
4018 target structure/union and return it as a value with its
4021 The routine searches for NAME among all members of the structure itself
4022 and (recursively) among all members of any wrapper members
4025 If NO_ERR, then simply return NULL in case of error, rather than
4028 static struct value *
4029 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4031 struct type *t, *t1;
4036 t1 = t = ada_check_typedef (value_type (arg));
4037 if (t->code () == TYPE_CODE_REF)
4039 t1 = TYPE_TARGET_TYPE (t);
4042 t1 = ada_check_typedef (t1);
4043 if (t1->code () == TYPE_CODE_PTR)
4045 arg = coerce_ref (arg);
4050 while (t->code () == TYPE_CODE_PTR)
4052 t1 = TYPE_TARGET_TYPE (t);
4055 t1 = ada_check_typedef (t1);
4056 if (t1->code () == TYPE_CODE_PTR)
4058 arg = value_ind (arg);
4065 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4069 v = ada_search_struct_field (name, arg, 0, t);
4072 int bit_offset, bit_size, byte_offset;
4073 struct type *field_type;
4076 if (t->code () == TYPE_CODE_PTR)
4077 address = value_address (ada_value_ind (arg));
4079 address = value_address (ada_coerce_ref (arg));
4081 /* Check to see if this is a tagged type. We also need to handle
4082 the case where the type is a reference to a tagged type, but
4083 we have to be careful to exclude pointers to tagged types.
4084 The latter should be shown as usual (as a pointer), whereas
4085 a reference should mostly be transparent to the user. */
4087 if (ada_is_tagged_type (t1, 0)
4088 || (t1->code () == TYPE_CODE_REF
4089 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4091 /* We first try to find the searched field in the current type.
4092 If not found then let's look in the fixed type. */
4094 if (!find_struct_field (name, t1, 0,
4095 nullptr, nullptr, nullptr,
4104 /* Convert to fixed type in all cases, so that we have proper
4105 offsets to each field in unconstrained record types. */
4106 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4107 address, NULL, check_tag);
4109 /* Resolve the dynamic type as well. */
4110 arg = value_from_contents_and_address (t1, nullptr, address);
4111 t1 = value_type (arg);
4113 if (find_struct_field (name, t1, 0,
4114 &field_type, &byte_offset, &bit_offset,
4119 if (t->code () == TYPE_CODE_REF)
4120 arg = ada_coerce_ref (arg);
4122 arg = ada_value_ind (arg);
4123 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4124 bit_offset, bit_size,
4128 v = value_at_lazy (field_type, address + byte_offset);
4132 if (v != NULL || no_err)
4135 error (_("There is no member named %s."), name);
4141 error (_("Attempt to extract a component of "
4142 "a value that is not a record."));
4145 /* Return the value ACTUAL, converted to be an appropriate value for a
4146 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4147 allocating any necessary descriptors (fat pointers), or copies of
4148 values not residing in memory, updating it as needed. */
4151 ada_convert_actual (struct value *actual, struct type *formal_type0)
4153 struct type *actual_type = ada_check_typedef (value_type (actual));
4154 struct type *formal_type = ada_check_typedef (formal_type0);
4155 struct type *formal_target =
4156 formal_type->code () == TYPE_CODE_PTR
4157 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4158 struct type *actual_target =
4159 actual_type->code () == TYPE_CODE_PTR
4160 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4162 if (ada_is_array_descriptor_type (formal_target)
4163 && actual_target->code () == TYPE_CODE_ARRAY)
4164 return make_array_descriptor (formal_type, actual);
4165 else if (formal_type->code () == TYPE_CODE_PTR
4166 || formal_type->code () == TYPE_CODE_REF)
4168 struct value *result;
4170 if (formal_target->code () == TYPE_CODE_ARRAY
4171 && ada_is_array_descriptor_type (actual_target))
4172 result = desc_data (actual);
4173 else if (formal_type->code () != TYPE_CODE_PTR)
4175 if (VALUE_LVAL (actual) != lval_memory)
4179 actual_type = ada_check_typedef (value_type (actual));
4180 val = allocate_value (actual_type);
4181 copy (value_contents (actual), value_contents_raw (val));
4182 actual = ensure_lval (val);
4184 result = value_addr (actual);
4188 return value_cast_pointers (formal_type, result, 0);
4190 else if (actual_type->code () == TYPE_CODE_PTR)
4191 return ada_value_ind (actual);
4192 else if (ada_is_aligner_type (formal_type))
4194 /* We need to turn this parameter into an aligner type
4196 struct value *aligner = allocate_value (formal_type);
4197 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4199 value_assign_to_component (aligner, component, actual);
4206 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4207 type TYPE. This is usually an inefficient no-op except on some targets
4208 (such as AVR) where the representation of a pointer and an address
4212 value_pointer (struct value *value, struct type *type)
4214 unsigned len = TYPE_LENGTH (type);
4215 gdb_byte *buf = (gdb_byte *) alloca (len);
4218 addr = value_address (value);
4219 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4220 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4225 /* Push a descriptor of type TYPE for array value ARR on the stack at
4226 *SP, updating *SP to reflect the new descriptor. Return either
4227 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4228 to-descriptor type rather than a descriptor type), a struct value *
4229 representing a pointer to this descriptor. */
4231 static struct value *
4232 make_array_descriptor (struct type *type, struct value *arr)
4234 struct type *bounds_type = desc_bounds_type (type);
4235 struct type *desc_type = desc_base_type (type);
4236 struct value *descriptor = allocate_value (desc_type);
4237 struct value *bounds = allocate_value (bounds_type);
4240 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4243 modify_field (value_type (bounds),
4244 value_contents_writeable (bounds).data (),
4245 ada_array_bound (arr, i, 0),
4246 desc_bound_bitpos (bounds_type, i, 0),
4247 desc_bound_bitsize (bounds_type, i, 0));
4248 modify_field (value_type (bounds),
4249 value_contents_writeable (bounds).data (),
4250 ada_array_bound (arr, i, 1),
4251 desc_bound_bitpos (bounds_type, i, 1),
4252 desc_bound_bitsize (bounds_type, i, 1));
4255 bounds = ensure_lval (bounds);
4257 modify_field (value_type (descriptor),
4258 value_contents_writeable (descriptor).data (),
4259 value_pointer (ensure_lval (arr),
4260 desc_type->field (0).type ()),
4261 fat_pntr_data_bitpos (desc_type),
4262 fat_pntr_data_bitsize (desc_type));
4264 modify_field (value_type (descriptor),
4265 value_contents_writeable (descriptor).data (),
4266 value_pointer (bounds,
4267 desc_type->field (1).type ()),
4268 fat_pntr_bounds_bitpos (desc_type),
4269 fat_pntr_bounds_bitsize (desc_type));
4271 descriptor = ensure_lval (descriptor);
4273 if (type->code () == TYPE_CODE_PTR)
4274 return value_addr (descriptor);
4279 /* Symbol Cache Module */
4281 /* Performance measurements made as of 2010-01-15 indicate that
4282 this cache does bring some noticeable improvements. Depending
4283 on the type of entity being printed, the cache can make it as much
4284 as an order of magnitude faster than without it.
4286 The descriptive type DWARF extension has significantly reduced
4287 the need for this cache, at least when DWARF is being used. However,
4288 even in this case, some expensive name-based symbol searches are still
4289 sometimes necessary - to find an XVZ variable, mostly. */
4291 /* Return the symbol cache associated to the given program space PSPACE.
4292 If not allocated for this PSPACE yet, allocate and initialize one. */
4294 static struct ada_symbol_cache *
4295 ada_get_symbol_cache (struct program_space *pspace)
4297 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4299 if (pspace_data->sym_cache == nullptr)
4300 pspace_data->sym_cache.reset (new ada_symbol_cache);
4302 return pspace_data->sym_cache.get ();
4305 /* Clear all entries from the symbol cache. */
4308 ada_clear_symbol_cache ()
4310 struct ada_pspace_data *pspace_data
4311 = get_ada_pspace_data (current_program_space);
4313 if (pspace_data->sym_cache != nullptr)
4314 pspace_data->sym_cache.reset ();
4317 /* Search our cache for an entry matching NAME and DOMAIN.
4318 Return it if found, or NULL otherwise. */
4320 static struct cache_entry **
4321 find_entry (const char *name, domain_enum domain)
4323 struct ada_symbol_cache *sym_cache
4324 = ada_get_symbol_cache (current_program_space);
4325 int h = msymbol_hash (name) % HASH_SIZE;
4326 struct cache_entry **e;
4328 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4330 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4336 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4337 Return 1 if found, 0 otherwise.
4339 If an entry was found and SYM is not NULL, set *SYM to the entry's
4340 SYM. Same principle for BLOCK if not NULL. */
4343 lookup_cached_symbol (const char *name, domain_enum domain,
4344 struct symbol **sym, const struct block **block)
4346 struct cache_entry **e = find_entry (name, domain);
4353 *block = (*e)->block;
4357 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4358 in domain DOMAIN, save this result in our symbol cache. */
4361 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4362 const struct block *block)
4364 struct ada_symbol_cache *sym_cache
4365 = ada_get_symbol_cache (current_program_space);
4367 struct cache_entry *e;
4369 /* Symbols for builtin types don't have a block.
4370 For now don't cache such symbols. */
4371 if (sym != NULL && !sym->is_objfile_owned ())
4374 /* If the symbol is a local symbol, then do not cache it, as a search
4375 for that symbol depends on the context. To determine whether
4376 the symbol is local or not, we check the block where we found it
4377 against the global and static blocks of its associated symtab. */
4379 && BLOCKVECTOR_BLOCK (symbol_symtab (sym)->blockvector (),
4380 GLOBAL_BLOCK) != block
4381 && BLOCKVECTOR_BLOCK (symbol_symtab (sym)->blockvector (),
4382 STATIC_BLOCK) != block)
4385 h = msymbol_hash (name) % HASH_SIZE;
4386 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4387 e->next = sym_cache->root[h];
4388 sym_cache->root[h] = e;
4389 e->name = obstack_strdup (&sym_cache->cache_space, name);
4397 /* Return the symbol name match type that should be used used when
4398 searching for all symbols matching LOOKUP_NAME.
4400 LOOKUP_NAME is expected to be a symbol name after transformation
4403 static symbol_name_match_type
4404 name_match_type_from_name (const char *lookup_name)
4406 return (strstr (lookup_name, "__") == NULL
4407 ? symbol_name_match_type::WILD
4408 : symbol_name_match_type::FULL);
4411 /* Return the result of a standard (literal, C-like) lookup of NAME in
4412 given DOMAIN, visible from lexical block BLOCK. */
4414 static struct symbol *
4415 standard_lookup (const char *name, const struct block *block,
4418 /* Initialize it just to avoid a GCC false warning. */
4419 struct block_symbol sym = {};
4421 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4423 ada_lookup_encoded_symbol (name, block, domain, &sym);
4424 cache_symbol (name, domain, sym.symbol, sym.block);
4429 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4430 in the symbol fields of SYMS. We treat enumerals as functions,
4431 since they contend in overloading in the same way. */
4433 is_nonfunction (const std::vector<struct block_symbol> &syms)
4435 for (const block_symbol &sym : syms)
4436 if (sym.symbol->type ()->code () != TYPE_CODE_FUNC
4437 && (sym.symbol->type ()->code () != TYPE_CODE_ENUM
4438 || sym.symbol->aclass () != LOC_CONST))
4444 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4445 struct types. Otherwise, they may not. */
4448 equiv_types (struct type *type0, struct type *type1)
4452 if (type0 == NULL || type1 == NULL
4453 || type0->code () != type1->code ())
4455 if ((type0->code () == TYPE_CODE_STRUCT
4456 || type0->code () == TYPE_CODE_ENUM)
4457 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4458 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4464 /* True iff SYM0 represents the same entity as SYM1, or one that is
4465 no more defined than that of SYM1. */
4468 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4472 if (sym0->domain () != sym1->domain ()
4473 || sym0->aclass () != sym1->aclass ())
4476 switch (sym0->aclass ())
4482 struct type *type0 = sym0->type ();
4483 struct type *type1 = sym1->type ();
4484 const char *name0 = sym0->linkage_name ();
4485 const char *name1 = sym1->linkage_name ();
4486 int len0 = strlen (name0);
4489 type0->code () == type1->code ()
4490 && (equiv_types (type0, type1)
4491 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4492 && startswith (name1 + len0, "___XV")));
4495 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4496 && equiv_types (sym0->type (), sym1->type ());
4500 const char *name0 = sym0->linkage_name ();
4501 const char *name1 = sym1->linkage_name ();
4502 return (strcmp (name0, name1) == 0
4503 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4511 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4512 records in RESULT. Do nothing if SYM is a duplicate. */
4515 add_defn_to_vec (std::vector<struct block_symbol> &result,
4517 const struct block *block)
4519 /* Do not try to complete stub types, as the debugger is probably
4520 already scanning all symbols matching a certain name at the
4521 time when this function is called. Trying to replace the stub
4522 type by its associated full type will cause us to restart a scan
4523 which may lead to an infinite recursion. Instead, the client
4524 collecting the matching symbols will end up collecting several
4525 matches, with at least one of them complete. It can then filter
4526 out the stub ones if needed. */
4528 for (int i = result.size () - 1; i >= 0; i -= 1)
4530 if (lesseq_defined_than (sym, result[i].symbol))
4532 else if (lesseq_defined_than (result[i].symbol, sym))
4534 result[i].symbol = sym;
4535 result[i].block = block;
4540 struct block_symbol info;
4543 result.push_back (info);
4546 /* Return a bound minimal symbol matching NAME according to Ada
4547 decoding rules. Returns an invalid symbol if there is no such
4548 minimal symbol. Names prefixed with "standard__" are handled
4549 specially: "standard__" is first stripped off, and only static and
4550 global symbols are searched. */
4552 struct bound_minimal_symbol
4553 ada_lookup_simple_minsym (const char *name)
4555 struct bound_minimal_symbol result;
4557 symbol_name_match_type match_type = name_match_type_from_name (name);
4558 lookup_name_info lookup_name (name, match_type);
4560 symbol_name_matcher_ftype *match_name
4561 = ada_get_symbol_name_matcher (lookup_name);
4563 for (objfile *objfile : current_program_space->objfiles ())
4565 for (minimal_symbol *msymbol : objfile->msymbols ())
4567 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4568 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4570 result.minsym = msymbol;
4571 result.objfile = objfile;
4580 /* True if TYPE is definitely an artificial type supplied to a symbol
4581 for which no debugging information was given in the symbol file. */
4584 is_nondebugging_type (struct type *type)
4586 const char *name = ada_type_name (type);
4588 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4591 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4592 that are deemed "identical" for practical purposes.
4594 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4595 types and that their number of enumerals is identical (in other
4596 words, type1->num_fields () == type2->num_fields ()). */
4599 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4603 /* The heuristic we use here is fairly conservative. We consider
4604 that 2 enumerate types are identical if they have the same
4605 number of enumerals and that all enumerals have the same
4606 underlying value and name. */
4608 /* All enums in the type should have an identical underlying value. */
4609 for (i = 0; i < type1->num_fields (); i++)
4610 if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
4613 /* All enumerals should also have the same name (modulo any numerical
4615 for (i = 0; i < type1->num_fields (); i++)
4617 const char *name_1 = type1->field (i).name ();
4618 const char *name_2 = type2->field (i).name ();
4619 int len_1 = strlen (name_1);
4620 int len_2 = strlen (name_2);
4622 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4623 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
4625 || strncmp (type1->field (i).name (),
4626 type2->field (i).name (),
4634 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4635 that are deemed "identical" for practical purposes. Sometimes,
4636 enumerals are not strictly identical, but their types are so similar
4637 that they can be considered identical.
4639 For instance, consider the following code:
4641 type Color is (Black, Red, Green, Blue, White);
4642 type RGB_Color is new Color range Red .. Blue;
4644 Type RGB_Color is a subrange of an implicit type which is a copy
4645 of type Color. If we call that implicit type RGB_ColorB ("B" is
4646 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4647 As a result, when an expression references any of the enumeral
4648 by name (Eg. "print green"), the expression is technically
4649 ambiguous and the user should be asked to disambiguate. But
4650 doing so would only hinder the user, since it wouldn't matter
4651 what choice he makes, the outcome would always be the same.
4652 So, for practical purposes, we consider them as the same. */
4655 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4659 /* Before performing a thorough comparison check of each type,
4660 we perform a series of inexpensive checks. We expect that these
4661 checks will quickly fail in the vast majority of cases, and thus
4662 help prevent the unnecessary use of a more expensive comparison.
4663 Said comparison also expects us to make some of these checks
4664 (see ada_identical_enum_types_p). */
4666 /* Quick check: All symbols should have an enum type. */
4667 for (i = 0; i < syms.size (); i++)
4668 if (syms[i].symbol->type ()->code () != TYPE_CODE_ENUM)
4671 /* Quick check: They should all have the same value. */
4672 for (i = 1; i < syms.size (); i++)
4673 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4676 /* Quick check: They should all have the same number of enumerals. */
4677 for (i = 1; i < syms.size (); i++)
4678 if (syms[i].symbol->type ()->num_fields ()
4679 != syms[0].symbol->type ()->num_fields ())
4682 /* All the sanity checks passed, so we might have a set of
4683 identical enumeration types. Perform a more complete
4684 comparison of the type of each symbol. */
4685 for (i = 1; i < syms.size (); i++)
4686 if (!ada_identical_enum_types_p (syms[i].symbol->type (),
4687 syms[0].symbol->type ()))
4693 /* Remove any non-debugging symbols in SYMS that definitely
4694 duplicate other symbols in the list (The only case I know of where
4695 this happens is when object files containing stabs-in-ecoff are
4696 linked with files containing ordinary ecoff debugging symbols (or no
4697 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4700 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4704 /* We should never be called with less than 2 symbols, as there
4705 cannot be any extra symbol in that case. But it's easy to
4706 handle, since we have nothing to do in that case. */
4707 if (syms->size () < 2)
4711 while (i < syms->size ())
4715 /* If two symbols have the same name and one of them is a stub type,
4716 the get rid of the stub. */
4718 if ((*syms)[i].symbol->type ()->is_stub ()
4719 && (*syms)[i].symbol->linkage_name () != NULL)
4721 for (j = 0; j < syms->size (); j++)
4724 && !(*syms)[j].symbol->type ()->is_stub ()
4725 && (*syms)[j].symbol->linkage_name () != NULL
4726 && strcmp ((*syms)[i].symbol->linkage_name (),
4727 (*syms)[j].symbol->linkage_name ()) == 0)
4732 /* Two symbols with the same name, same class and same address
4733 should be identical. */
4735 else if ((*syms)[i].symbol->linkage_name () != NULL
4736 && (*syms)[i].symbol->aclass () == LOC_STATIC
4737 && is_nondebugging_type ((*syms)[i].symbol->type ()))
4739 for (j = 0; j < syms->size (); j += 1)
4742 && (*syms)[j].symbol->linkage_name () != NULL
4743 && strcmp ((*syms)[i].symbol->linkage_name (),
4744 (*syms)[j].symbol->linkage_name ()) == 0
4745 && ((*syms)[i].symbol->aclass ()
4746 == (*syms)[j].symbol->aclass ())
4747 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4748 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4754 syms->erase (syms->begin () + i);
4759 /* If all the remaining symbols are identical enumerals, then
4760 just keep the first one and discard the rest.
4762 Unlike what we did previously, we do not discard any entry
4763 unless they are ALL identical. This is because the symbol
4764 comparison is not a strict comparison, but rather a practical
4765 comparison. If all symbols are considered identical, then
4766 we can just go ahead and use the first one and discard the rest.
4767 But if we cannot reduce the list to a single element, we have
4768 to ask the user to disambiguate anyways. And if we have to
4769 present a multiple-choice menu, it's less confusing if the list
4770 isn't missing some choices that were identical and yet distinct. */
4771 if (symbols_are_identical_enums (*syms))
4775 /* Given a type that corresponds to a renaming entity, use the type name
4776 to extract the scope (package name or function name, fully qualified,
4777 and following the GNAT encoding convention) where this renaming has been
4781 xget_renaming_scope (struct type *renaming_type)
4783 /* The renaming types adhere to the following convention:
4784 <scope>__<rename>___<XR extension>.
4785 So, to extract the scope, we search for the "___XR" extension,
4786 and then backtrack until we find the first "__". */
4788 const char *name = renaming_type->name ();
4789 const char *suffix = strstr (name, "___XR");
4792 /* Now, backtrack a bit until we find the first "__". Start looking
4793 at suffix - 3, as the <rename> part is at least one character long. */
4795 for (last = suffix - 3; last > name; last--)
4796 if (last[0] == '_' && last[1] == '_')
4799 /* Make a copy of scope and return it. */
4800 return std::string (name, last);
4803 /* Return nonzero if NAME corresponds to a package name. */
4806 is_package_name (const char *name)
4808 /* Here, We take advantage of the fact that no symbols are generated
4809 for packages, while symbols are generated for each function.
4810 So the condition for NAME represent a package becomes equivalent
4811 to NAME not existing in our list of symbols. There is only one
4812 small complication with library-level functions (see below). */
4814 /* If it is a function that has not been defined at library level,
4815 then we should be able to look it up in the symbols. */
4816 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4819 /* Library-level function names start with "_ada_". See if function
4820 "_ada_" followed by NAME can be found. */
4822 /* Do a quick check that NAME does not contain "__", since library-level
4823 functions names cannot contain "__" in them. */
4824 if (strstr (name, "__") != NULL)
4827 std::string fun_name = string_printf ("_ada_%s", name);
4829 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4832 /* Return nonzero if SYM corresponds to a renaming entity that is
4833 not visible from FUNCTION_NAME. */
4836 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4838 if (sym->aclass () != LOC_TYPEDEF)
4841 std::string scope = xget_renaming_scope (sym->type ());
4843 /* If the rename has been defined in a package, then it is visible. */
4844 if (is_package_name (scope.c_str ()))
4847 /* Check that the rename is in the current function scope by checking
4848 that its name starts with SCOPE. */
4850 /* If the function name starts with "_ada_", it means that it is
4851 a library-level function. Strip this prefix before doing the
4852 comparison, as the encoding for the renaming does not contain
4854 if (startswith (function_name, "_ada_"))
4857 return !startswith (function_name, scope.c_str ());
4860 /* Remove entries from SYMS that corresponds to a renaming entity that
4861 is not visible from the function associated with CURRENT_BLOCK or
4862 that is superfluous due to the presence of more specific renaming
4863 information. Places surviving symbols in the initial entries of
4867 First, in cases where an object renaming is implemented as a
4868 reference variable, GNAT may produce both the actual reference
4869 variable and the renaming encoding. In this case, we discard the
4872 Second, GNAT emits a type following a specified encoding for each renaming
4873 entity. Unfortunately, STABS currently does not support the definition
4874 of types that are local to a given lexical block, so all renamings types
4875 are emitted at library level. As a consequence, if an application
4876 contains two renaming entities using the same name, and a user tries to
4877 print the value of one of these entities, the result of the ada symbol
4878 lookup will also contain the wrong renaming type.
4880 This function partially covers for this limitation by attempting to
4881 remove from the SYMS list renaming symbols that should be visible
4882 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4883 method with the current information available. The implementation
4884 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4886 - When the user tries to print a rename in a function while there
4887 is another rename entity defined in a package: Normally, the
4888 rename in the function has precedence over the rename in the
4889 package, so the latter should be removed from the list. This is
4890 currently not the case.
4892 - This function will incorrectly remove valid renames if
4893 the CURRENT_BLOCK corresponds to a function which symbol name
4894 has been changed by an "Export" pragma. As a consequence,
4895 the user will be unable to print such rename entities. */
4898 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4899 const struct block *current_block)
4901 struct symbol *current_function;
4902 const char *current_function_name;
4904 int is_new_style_renaming;
4906 /* If there is both a renaming foo___XR... encoded as a variable and
4907 a simple variable foo in the same block, discard the latter.
4908 First, zero out such symbols, then compress. */
4909 is_new_style_renaming = 0;
4910 for (i = 0; i < syms->size (); i += 1)
4912 struct symbol *sym = (*syms)[i].symbol;
4913 const struct block *block = (*syms)[i].block;
4917 if (sym == NULL || sym->aclass () == LOC_TYPEDEF)
4919 name = sym->linkage_name ();
4920 suffix = strstr (name, "___XR");
4924 int name_len = suffix - name;
4927 is_new_style_renaming = 1;
4928 for (j = 0; j < syms->size (); j += 1)
4929 if (i != j && (*syms)[j].symbol != NULL
4930 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4932 && block == (*syms)[j].block)
4933 (*syms)[j].symbol = NULL;
4936 if (is_new_style_renaming)
4940 for (j = k = 0; j < syms->size (); j += 1)
4941 if ((*syms)[j].symbol != NULL)
4943 (*syms)[k] = (*syms)[j];
4950 /* Extract the function name associated to CURRENT_BLOCK.
4951 Abort if unable to do so. */
4953 if (current_block == NULL)
4956 current_function = block_linkage_function (current_block);
4957 if (current_function == NULL)
4960 current_function_name = current_function->linkage_name ();
4961 if (current_function_name == NULL)
4964 /* Check each of the symbols, and remove it from the list if it is
4965 a type corresponding to a renaming that is out of the scope of
4966 the current block. */
4969 while (i < syms->size ())
4971 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4972 == ADA_OBJECT_RENAMING
4973 && old_renaming_is_invisible ((*syms)[i].symbol,
4974 current_function_name))
4975 syms->erase (syms->begin () + i);
4981 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
4982 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
4984 Note: This function assumes that RESULT is empty. */
4987 ada_add_local_symbols (std::vector<struct block_symbol> &result,
4988 const lookup_name_info &lookup_name,
4989 const struct block *block, domain_enum domain)
4991 while (block != NULL)
4993 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4995 /* If we found a non-function match, assume that's the one. We
4996 only check this when finding a function boundary, so that we
4997 can accumulate all results from intervening blocks first. */
4998 if (BLOCK_FUNCTION (block) != nullptr && is_nonfunction (result))
5001 block = BLOCK_SUPERBLOCK (block);
5005 /* An object of this type is used as the callback argument when
5006 calling the map_matching_symbols method. */
5010 explicit match_data (std::vector<struct block_symbol> *rp)
5014 DISABLE_COPY_AND_ASSIGN (match_data);
5016 bool operator() (struct block_symbol *bsym);
5018 struct objfile *objfile = nullptr;
5019 std::vector<struct block_symbol> *resultp;
5020 struct symbol *arg_sym = nullptr;
5021 bool found_sym = false;
5024 /* A callback for add_nonlocal_symbols that adds symbol, found in
5025 BSYM, to a list of symbols. */
5028 match_data::operator() (struct block_symbol *bsym)
5030 const struct block *block = bsym->block;
5031 struct symbol *sym = bsym->symbol;
5035 if (!found_sym && arg_sym != NULL)
5036 add_defn_to_vec (*resultp,
5037 fixup_symbol_section (arg_sym, objfile),
5044 if (sym->aclass () == LOC_UNRESOLVED)
5046 else if (sym->is_argument ())
5051 add_defn_to_vec (*resultp,
5052 fixup_symbol_section (sym, objfile),
5059 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5060 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5061 symbols to RESULT. Return whether we found such symbols. */
5064 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5065 const struct block *block,
5066 const lookup_name_info &lookup_name,
5069 struct using_direct *renaming;
5070 int defns_mark = result.size ();
5072 symbol_name_matcher_ftype *name_match
5073 = ada_get_symbol_name_matcher (lookup_name);
5075 for (renaming = block_using (block);
5077 renaming = renaming->next)
5081 /* Avoid infinite recursions: skip this renaming if we are actually
5082 already traversing it.
5084 Currently, symbol lookup in Ada don't use the namespace machinery from
5085 C++/Fortran support: skip namespace imports that use them. */
5086 if (renaming->searched
5087 || (renaming->import_src != NULL
5088 && renaming->import_src[0] != '\0')
5089 || (renaming->import_dest != NULL
5090 && renaming->import_dest[0] != '\0'))
5092 renaming->searched = 1;
5094 /* TODO: here, we perform another name-based symbol lookup, which can
5095 pull its own multiple overloads. In theory, we should be able to do
5096 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5097 not a simple name. But in order to do this, we would need to enhance
5098 the DWARF reader to associate a symbol to this renaming, instead of a
5099 name. So, for now, we do something simpler: re-use the C++/Fortran
5100 namespace machinery. */
5101 r_name = (renaming->alias != NULL
5103 : renaming->declaration);
5104 if (name_match (r_name, lookup_name, NULL))
5106 lookup_name_info decl_lookup_name (renaming->declaration,
5107 lookup_name.match_type ());
5108 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5111 renaming->searched = 0;
5113 return result.size () != defns_mark;
5116 /* Implements compare_names, but only applying the comparision using
5117 the given CASING. */
5120 compare_names_with_case (const char *string1, const char *string2,
5121 enum case_sensitivity casing)
5123 while (*string1 != '\0' && *string2 != '\0')
5127 if (isspace (*string1) || isspace (*string2))
5128 return strcmp_iw_ordered (string1, string2);
5130 if (casing == case_sensitive_off)
5132 c1 = tolower (*string1);
5133 c2 = tolower (*string2);
5150 return strcmp_iw_ordered (string1, string2);
5152 if (*string2 == '\0')
5154 if (is_name_suffix (string1))
5161 if (*string2 == '(')
5162 return strcmp_iw_ordered (string1, string2);
5165 if (casing == case_sensitive_off)
5166 return tolower (*string1) - tolower (*string2);
5168 return *string1 - *string2;
5173 /* Compare STRING1 to STRING2, with results as for strcmp.
5174 Compatible with strcmp_iw_ordered in that...
5176 strcmp_iw_ordered (STRING1, STRING2) <= 0
5180 compare_names (STRING1, STRING2) <= 0
5182 (they may differ as to what symbols compare equal). */
5185 compare_names (const char *string1, const char *string2)
5189 /* Similar to what strcmp_iw_ordered does, we need to perform
5190 a case-insensitive comparison first, and only resort to
5191 a second, case-sensitive, comparison if the first one was
5192 not sufficient to differentiate the two strings. */
5194 result = compare_names_with_case (string1, string2, case_sensitive_off);
5196 result = compare_names_with_case (string1, string2, case_sensitive_on);
5201 /* Convenience function to get at the Ada encoded lookup name for
5202 LOOKUP_NAME, as a C string. */
5205 ada_lookup_name (const lookup_name_info &lookup_name)
5207 return lookup_name.ada ().lookup_name ().c_str ();
5210 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5211 for OBJFILE, then walk the objfile's symtabs and update the
5215 map_matching_symbols (struct objfile *objfile,
5216 const lookup_name_info &lookup_name,
5222 data.objfile = objfile;
5223 objfile->expand_matching_symbols (lookup_name, domain, global,
5224 is_wild_match ? nullptr : compare_names);
5226 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5227 for (compunit_symtab *symtab : objfile->compunits ())
5229 const struct block *block
5230 = BLOCKVECTOR_BLOCK (symtab->blockvector (), block_kind);
5231 if (!iterate_over_symbols_terminated (block, lookup_name,
5237 /* Add to RESULT all non-local symbols whose name and domain match
5238 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5239 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5240 symbols otherwise. */
5243 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5244 const lookup_name_info &lookup_name,
5245 domain_enum domain, int global)
5247 struct match_data data (&result);
5249 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5251 for (objfile *objfile : current_program_space->objfiles ())
5253 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5256 for (compunit_symtab *cu : objfile->compunits ())
5258 const struct block *global_block
5259 = BLOCKVECTOR_BLOCK (cu->blockvector (), GLOBAL_BLOCK);
5261 if (ada_add_block_renamings (result, global_block, lookup_name,
5263 data.found_sym = true;
5267 if (result.empty () && global && !is_wild_match)
5269 const char *name = ada_lookup_name (lookup_name);
5270 std::string bracket_name = std::string ("<_ada_") + name + '>';
5271 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5273 for (objfile *objfile : current_program_space->objfiles ())
5274 map_matching_symbols (objfile, name1, false, domain, global, data);
5278 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5279 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5280 returning the number of matches. Add these to RESULT.
5282 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5283 symbol match within the nest of blocks whose innermost member is BLOCK,
5284 is the one match returned (no other matches in that or
5285 enclosing blocks is returned). If there are any matches in or
5286 surrounding BLOCK, then these alone are returned.
5288 Names prefixed with "standard__" are handled specially:
5289 "standard__" is first stripped off (by the lookup_name
5290 constructor), and only static and global symbols are searched.
5292 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5293 to lookup global symbols. */
5296 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5297 const struct block *block,
5298 const lookup_name_info &lookup_name,
5301 int *made_global_lookup_p)
5305 if (made_global_lookup_p)
5306 *made_global_lookup_p = 0;
5308 /* Special case: If the user specifies a symbol name inside package
5309 Standard, do a non-wild matching of the symbol name without
5310 the "standard__" prefix. This was primarily introduced in order
5311 to allow the user to specifically access the standard exceptions
5312 using, for instance, Standard.Constraint_Error when Constraint_Error
5313 is ambiguous (due to the user defining its own Constraint_Error
5314 entity inside its program). */
5315 if (lookup_name.ada ().standard_p ())
5318 /* Check the non-global symbols. If we have ANY match, then we're done. */
5323 ada_add_local_symbols (result, lookup_name, block, domain);
5326 /* In the !full_search case we're are being called by
5327 iterate_over_symbols, and we don't want to search
5329 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5331 if (!result.empty () || !full_search)
5335 /* No non-global symbols found. Check our cache to see if we have
5336 already performed this search before. If we have, then return
5339 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5340 domain, &sym, &block))
5343 add_defn_to_vec (result, sym, block);
5347 if (made_global_lookup_p)
5348 *made_global_lookup_p = 1;
5350 /* Search symbols from all global blocks. */
5352 add_nonlocal_symbols (result, lookup_name, domain, 1);
5354 /* Now add symbols from all per-file blocks if we've gotten no hits
5355 (not strictly correct, but perhaps better than an error). */
5357 if (result.empty ())
5358 add_nonlocal_symbols (result, lookup_name, domain, 0);
5361 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5362 is non-zero, enclosing scope and in global scopes.
5364 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5365 blocks and symbol tables (if any) in which they were found.
5367 When full_search is non-zero, any non-function/non-enumeral
5368 symbol match within the nest of blocks whose innermost member is BLOCK,
5369 is the one match returned (no other matches in that or
5370 enclosing blocks is returned). If there are any matches in or
5371 surrounding BLOCK, then these alone are returned.
5373 Names prefixed with "standard__" are handled specially: "standard__"
5374 is first stripped off, and only static and global symbols are searched. */
5376 static std::vector<struct block_symbol>
5377 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5378 const struct block *block,
5382 int syms_from_global_search;
5383 std::vector<struct block_symbol> results;
5385 ada_add_all_symbols (results, block, lookup_name,
5386 domain, full_search, &syms_from_global_search);
5388 remove_extra_symbols (&results);
5390 if (results.empty () && full_search && syms_from_global_search)
5391 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5393 if (results.size () == 1 && full_search && syms_from_global_search)
5394 cache_symbol (ada_lookup_name (lookup_name), domain,
5395 results[0].symbol, results[0].block);
5397 remove_irrelevant_renamings (&results, block);
5401 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5402 in global scopes, returning (SYM,BLOCK) tuples.
5404 See ada_lookup_symbol_list_worker for further details. */
5406 std::vector<struct block_symbol>
5407 ada_lookup_symbol_list (const char *name, const struct block *block,
5410 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5411 lookup_name_info lookup_name (name, name_match_type);
5413 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5416 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5417 to 1, but choosing the first symbol found if there are multiple
5420 The result is stored in *INFO, which must be non-NULL.
5421 If no match is found, INFO->SYM is set to NULL. */
5424 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5426 struct block_symbol *info)
5428 /* Since we already have an encoded name, wrap it in '<>' to force a
5429 verbatim match. Otherwise, if the name happens to not look like
5430 an encoded name (because it doesn't include a "__"),
5431 ada_lookup_name_info would re-encode/fold it again, and that
5432 would e.g., incorrectly lowercase object renaming names like
5433 "R28b" -> "r28b". */
5434 std::string verbatim = add_angle_brackets (name);
5436 gdb_assert (info != NULL);
5437 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5440 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5441 scope and in global scopes, or NULL if none. NAME is folded and
5442 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5443 choosing the first symbol if there are multiple choices. */
5446 ada_lookup_symbol (const char *name, const struct block *block0,
5449 std::vector<struct block_symbol> candidates
5450 = ada_lookup_symbol_list (name, block0, domain);
5452 if (candidates.empty ())
5455 block_symbol info = candidates[0];
5456 info.symbol = fixup_symbol_section (info.symbol, NULL);
5461 /* True iff STR is a possible encoded suffix of a normal Ada name
5462 that is to be ignored for matching purposes. Suffixes of parallel
5463 names (e.g., XVE) are not included here. Currently, the possible suffixes
5464 are given by any of the regular expressions:
5466 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5467 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5468 TKB [subprogram suffix for task bodies]
5469 _E[0-9]+[bs]$ [protected object entry suffixes]
5470 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5472 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5473 match is performed. This sequence is used to differentiate homonyms,
5474 is an optional part of a valid name suffix. */
5477 is_name_suffix (const char *str)
5480 const char *matching;
5481 const int len = strlen (str);
5483 /* Skip optional leading __[0-9]+. */
5485 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5488 while (isdigit (str[0]))
5494 if (str[0] == '.' || str[0] == '$')
5497 while (isdigit (matching[0]))
5499 if (matching[0] == '\0')
5505 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5508 while (isdigit (matching[0]))
5510 if (matching[0] == '\0')
5514 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5516 if (strcmp (str, "TKB") == 0)
5520 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5521 with a N at the end. Unfortunately, the compiler uses the same
5522 convention for other internal types it creates. So treating
5523 all entity names that end with an "N" as a name suffix causes
5524 some regressions. For instance, consider the case of an enumerated
5525 type. To support the 'Image attribute, it creates an array whose
5527 Having a single character like this as a suffix carrying some
5528 information is a bit risky. Perhaps we should change the encoding
5529 to be something like "_N" instead. In the meantime, do not do
5530 the following check. */
5531 /* Protected Object Subprograms */
5532 if (len == 1 && str [0] == 'N')
5537 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5540 while (isdigit (matching[0]))
5542 if ((matching[0] == 'b' || matching[0] == 's')
5543 && matching [1] == '\0')
5547 /* ??? We should not modify STR directly, as we are doing below. This
5548 is fine in this case, but may become problematic later if we find
5549 that this alternative did not work, and want to try matching
5550 another one from the begining of STR. Since we modified it, we
5551 won't be able to find the begining of the string anymore! */
5555 while (str[0] != '_' && str[0] != '\0')
5557 if (str[0] != 'n' && str[0] != 'b')
5563 if (str[0] == '\000')
5568 if (str[1] != '_' || str[2] == '\000')
5572 if (strcmp (str + 3, "JM") == 0)
5574 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5575 the LJM suffix in favor of the JM one. But we will
5576 still accept LJM as a valid suffix for a reasonable
5577 amount of time, just to allow ourselves to debug programs
5578 compiled using an older version of GNAT. */
5579 if (strcmp (str + 3, "LJM") == 0)
5583 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5584 || str[4] == 'U' || str[4] == 'P')
5586 if (str[4] == 'R' && str[5] != 'T')
5590 if (!isdigit (str[2]))
5592 for (k = 3; str[k] != '\0'; k += 1)
5593 if (!isdigit (str[k]) && str[k] != '_')
5597 if (str[0] == '$' && isdigit (str[1]))
5599 for (k = 2; str[k] != '\0'; k += 1)
5600 if (!isdigit (str[k]) && str[k] != '_')
5607 /* Return non-zero if the string starting at NAME and ending before
5608 NAME_END contains no capital letters. */
5611 is_valid_name_for_wild_match (const char *name0)
5613 std::string decoded_name = ada_decode (name0);
5616 /* If the decoded name starts with an angle bracket, it means that
5617 NAME0 does not follow the GNAT encoding format. It should then
5618 not be allowed as a possible wild match. */
5619 if (decoded_name[0] == '<')
5622 for (i=0; decoded_name[i] != '\0'; i++)
5623 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5629 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5630 character which could start a simple name. Assumes that *NAMEP points
5631 somewhere inside the string beginning at NAME0. */
5634 advance_wild_match (const char **namep, const char *name0, char target0)
5636 const char *name = *namep;
5646 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5649 if (name == name0 + 5 && startswith (name0, "_ada"))
5654 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5655 || name[2] == target0))
5660 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5662 /* Names like "pkg__B_N__name", where N is a number, are
5663 block-local. We can handle these by simply skipping
5670 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5680 /* Return true iff NAME encodes a name of the form prefix.PATN.
5681 Ignores any informational suffixes of NAME (i.e., for which
5682 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5686 wild_match (const char *name, const char *patn)
5689 const char *name0 = name;
5693 const char *match = name;
5697 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5700 if (*p == '\0' && is_name_suffix (name))
5701 return match == name0 || is_valid_name_for_wild_match (name0);
5703 if (name[-1] == '_')
5706 if (!advance_wild_match (&name, name0, *patn))
5711 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5712 necessary). OBJFILE is the section containing BLOCK. */
5715 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5716 const struct block *block,
5717 const lookup_name_info &lookup_name,
5718 domain_enum domain, struct objfile *objfile)
5720 struct block_iterator iter;
5721 /* A matching argument symbol, if any. */
5722 struct symbol *arg_sym;
5723 /* Set true when we find a matching non-argument symbol. */
5729 for (sym = block_iter_match_first (block, lookup_name, &iter);
5731 sym = block_iter_match_next (lookup_name, &iter))
5733 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
5735 if (sym->aclass () != LOC_UNRESOLVED)
5737 if (sym->is_argument ())
5742 add_defn_to_vec (result,
5743 fixup_symbol_section (sym, objfile),
5750 /* Handle renamings. */
5752 if (ada_add_block_renamings (result, block, lookup_name, domain))
5755 if (!found_sym && arg_sym != NULL)
5757 add_defn_to_vec (result,
5758 fixup_symbol_section (arg_sym, objfile),
5762 if (!lookup_name.ada ().wild_match_p ())
5766 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5767 const char *name = ada_lookup_name.c_str ();
5768 size_t name_len = ada_lookup_name.size ();
5770 ALL_BLOCK_SYMBOLS (block, iter, sym)
5772 if (symbol_matches_domain (sym->language (),
5773 sym->domain (), domain))
5777 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5780 cmp = !startswith (sym->linkage_name (), "_ada_");
5782 cmp = strncmp (name, sym->linkage_name () + 5,
5787 && is_name_suffix (sym->linkage_name () + name_len + 5))
5789 if (sym->aclass () != LOC_UNRESOLVED)
5791 if (sym->is_argument ())
5796 add_defn_to_vec (result,
5797 fixup_symbol_section (sym, objfile),
5805 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5806 They aren't parameters, right? */
5807 if (!found_sym && arg_sym != NULL)
5809 add_defn_to_vec (result,
5810 fixup_symbol_section (arg_sym, objfile),
5817 /* Symbol Completion */
5822 ada_lookup_name_info::matches
5823 (const char *sym_name,
5824 symbol_name_match_type match_type,
5825 completion_match_result *comp_match_res) const
5828 const char *text = m_encoded_name.c_str ();
5829 size_t text_len = m_encoded_name.size ();
5831 /* First, test against the fully qualified name of the symbol. */
5833 if (strncmp (sym_name, text, text_len) == 0)
5836 std::string decoded_name = ada_decode (sym_name);
5837 if (match && !m_encoded_p)
5839 /* One needed check before declaring a positive match is to verify
5840 that iff we are doing a verbatim match, the decoded version
5841 of the symbol name starts with '<'. Otherwise, this symbol name
5842 is not a suitable completion. */
5844 bool has_angle_bracket = (decoded_name[0] == '<');
5845 match = (has_angle_bracket == m_verbatim_p);
5848 if (match && !m_verbatim_p)
5850 /* When doing non-verbatim match, another check that needs to
5851 be done is to verify that the potentially matching symbol name
5852 does not include capital letters, because the ada-mode would
5853 not be able to understand these symbol names without the
5854 angle bracket notation. */
5857 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5862 /* Second: Try wild matching... */
5864 if (!match && m_wild_match_p)
5866 /* Since we are doing wild matching, this means that TEXT
5867 may represent an unqualified symbol name. We therefore must
5868 also compare TEXT against the unqualified name of the symbol. */
5869 sym_name = ada_unqualified_name (decoded_name.c_str ());
5871 if (strncmp (sym_name, text, text_len) == 0)
5875 /* Finally: If we found a match, prepare the result to return. */
5880 if (comp_match_res != NULL)
5882 std::string &match_str = comp_match_res->match.storage ();
5885 match_str = ada_decode (sym_name);
5889 match_str = add_angle_brackets (sym_name);
5891 match_str = sym_name;
5895 comp_match_res->set_match (match_str.c_str ());
5903 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5904 for tagged types. */
5907 ada_is_dispatch_table_ptr_type (struct type *type)
5911 if (type->code () != TYPE_CODE_PTR)
5914 name = TYPE_TARGET_TYPE (type)->name ();
5918 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5921 /* Return non-zero if TYPE is an interface tag. */
5924 ada_is_interface_tag (struct type *type)
5926 const char *name = type->name ();
5931 return (strcmp (name, "ada__tags__interface_tag") == 0);
5934 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5935 to be invisible to users. */
5938 ada_is_ignored_field (struct type *type, int field_num)
5940 if (field_num < 0 || field_num > type->num_fields ())
5943 /* Check the name of that field. */
5945 const char *name = type->field (field_num).name ();
5947 /* Anonymous field names should not be printed.
5948 brobecker/2007-02-20: I don't think this can actually happen
5949 but we don't want to print the value of anonymous fields anyway. */
5953 /* Normally, fields whose name start with an underscore ("_")
5954 are fields that have been internally generated by the compiler,
5955 and thus should not be printed. The "_parent" field is special,
5956 however: This is a field internally generated by the compiler
5957 for tagged types, and it contains the components inherited from
5958 the parent type. This field should not be printed as is, but
5959 should not be ignored either. */
5960 if (name[0] == '_' && !startswith (name, "_parent"))
5964 /* If this is the dispatch table of a tagged type or an interface tag,
5966 if (ada_is_tagged_type (type, 1)
5967 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5968 || ada_is_interface_tag (type->field (field_num).type ())))
5971 /* Not a special field, so it should not be ignored. */
5975 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5976 pointer or reference type whose ultimate target has a tag field. */
5979 ada_is_tagged_type (struct type *type, int refok)
5981 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
5984 /* True iff TYPE represents the type of X'Tag */
5987 ada_is_tag_type (struct type *type)
5989 type = ada_check_typedef (type);
5991 if (type == NULL || type->code () != TYPE_CODE_PTR)
5995 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5997 return (name != NULL
5998 && strcmp (name, "ada__tags__dispatch_table") == 0);
6002 /* The type of the tag on VAL. */
6004 static struct type *
6005 ada_tag_type (struct value *val)
6007 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6010 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6011 retired at Ada 05). */
6014 is_ada95_tag (struct value *tag)
6016 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6019 /* The value of the tag on VAL. */
6021 static struct value *
6022 ada_value_tag (struct value *val)
6024 return ada_value_struct_elt (val, "_tag", 0);
6027 /* The value of the tag on the object of type TYPE whose contents are
6028 saved at VALADDR, if it is non-null, or is at memory address
6031 static struct value *
6032 value_tag_from_contents_and_address (struct type *type,
6033 const gdb_byte *valaddr,
6036 int tag_byte_offset;
6037 struct type *tag_type;
6039 gdb::array_view<const gdb_byte> contents;
6040 if (valaddr != nullptr)
6041 contents = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
6042 struct type *resolved_type = resolve_dynamic_type (type, contents, address);
6043 if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
6046 const gdb_byte *valaddr1 = ((valaddr == NULL)
6048 : valaddr + tag_byte_offset);
6049 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6051 return value_from_contents_and_address (tag_type, valaddr1, address1);
6056 static struct type *
6057 type_from_tag (struct value *tag)
6059 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6061 if (type_name != NULL)
6062 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6066 /* Given a value OBJ of a tagged type, return a value of this
6067 type at the base address of the object. The base address, as
6068 defined in Ada.Tags, it is the address of the primary tag of
6069 the object, and therefore where the field values of its full
6070 view can be fetched. */
6073 ada_tag_value_at_base_address (struct value *obj)
6076 LONGEST offset_to_top = 0;
6077 struct type *ptr_type, *obj_type;
6079 CORE_ADDR base_address;
6081 obj_type = value_type (obj);
6083 /* It is the responsability of the caller to deref pointers. */
6085 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6088 tag = ada_value_tag (obj);
6092 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6094 if (is_ada95_tag (tag))
6097 ptr_type = language_lookup_primitive_type
6098 (language_def (language_ada), target_gdbarch(), "storage_offset");
6099 ptr_type = lookup_pointer_type (ptr_type);
6100 val = value_cast (ptr_type, tag);
6104 /* It is perfectly possible that an exception be raised while
6105 trying to determine the base address, just like for the tag;
6106 see ada_tag_name for more details. We do not print the error
6107 message for the same reason. */
6111 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6114 catch (const gdb_exception_error &e)
6119 /* If offset is null, nothing to do. */
6121 if (offset_to_top == 0)
6124 /* -1 is a special case in Ada.Tags; however, what should be done
6125 is not quite clear from the documentation. So do nothing for
6128 if (offset_to_top == -1)
6131 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6132 from the base address. This was however incompatible with
6133 C++ dispatch table: C++ uses a *negative* value to *add*
6134 to the base address. Ada's convention has therefore been
6135 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6136 use the same convention. Here, we support both cases by
6137 checking the sign of OFFSET_TO_TOP. */
6139 if (offset_to_top > 0)
6140 offset_to_top = -offset_to_top;
6142 base_address = value_address (obj) + offset_to_top;
6143 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6145 /* Make sure that we have a proper tag at the new address.
6146 Otherwise, offset_to_top is bogus (which can happen when
6147 the object is not initialized yet). */
6152 obj_type = type_from_tag (tag);
6157 return value_from_contents_and_address (obj_type, NULL, base_address);
6160 /* Return the "ada__tags__type_specific_data" type. */
6162 static struct type *
6163 ada_get_tsd_type (struct inferior *inf)
6165 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6167 if (data->tsd_type == 0)
6168 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6169 return data->tsd_type;
6172 /* Return the TSD (type-specific data) associated to the given TAG.
6173 TAG is assumed to be the tag of a tagged-type entity.
6175 May return NULL if we are unable to get the TSD. */
6177 static struct value *
6178 ada_get_tsd_from_tag (struct value *tag)
6183 /* First option: The TSD is simply stored as a field of our TAG.
6184 Only older versions of GNAT would use this format, but we have
6185 to test it first, because there are no visible markers for
6186 the current approach except the absence of that field. */
6188 val = ada_value_struct_elt (tag, "tsd", 1);
6192 /* Try the second representation for the dispatch table (in which
6193 there is no explicit 'tsd' field in the referent of the tag pointer,
6194 and instead the tsd pointer is stored just before the dispatch
6197 type = ada_get_tsd_type (current_inferior());
6200 type = lookup_pointer_type (lookup_pointer_type (type));
6201 val = value_cast (type, tag);
6204 return value_ind (value_ptradd (val, -1));
6207 /* Given the TSD of a tag (type-specific data), return a string
6208 containing the name of the associated type.
6210 May return NULL if we are unable to determine the tag name. */
6212 static gdb::unique_xmalloc_ptr<char>
6213 ada_tag_name_from_tsd (struct value *tsd)
6218 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6221 gdb::unique_xmalloc_ptr<char> buffer
6222 = target_read_string (value_as_address (val), INT_MAX);
6223 if (buffer == nullptr)
6226 for (p = buffer.get (); *p != '\0'; ++p)
6235 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6238 Return NULL if the TAG is not an Ada tag, or if we were unable to
6239 determine the name of that tag. */
6241 gdb::unique_xmalloc_ptr<char>
6242 ada_tag_name (struct value *tag)
6244 gdb::unique_xmalloc_ptr<char> name;
6246 if (!ada_is_tag_type (value_type (tag)))
6249 /* It is perfectly possible that an exception be raised while trying
6250 to determine the TAG's name, even under normal circumstances:
6251 The associated variable may be uninitialized or corrupted, for
6252 instance. We do not let any exception propagate past this point.
6253 instead we return NULL.
6255 We also do not print the error message either (which often is very
6256 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6257 the caller print a more meaningful message if necessary. */
6260 struct value *tsd = ada_get_tsd_from_tag (tag);
6263 name = ada_tag_name_from_tsd (tsd);
6265 catch (const gdb_exception_error &e)
6272 /* The parent type of TYPE, or NULL if none. */
6275 ada_parent_type (struct type *type)
6279 type = ada_check_typedef (type);
6281 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6284 for (i = 0; i < type->num_fields (); i += 1)
6285 if (ada_is_parent_field (type, i))
6287 struct type *parent_type = type->field (i).type ();
6289 /* If the _parent field is a pointer, then dereference it. */
6290 if (parent_type->code () == TYPE_CODE_PTR)
6291 parent_type = TYPE_TARGET_TYPE (parent_type);
6292 /* If there is a parallel XVS type, get the actual base type. */
6293 parent_type = ada_get_base_type (parent_type);
6295 return ada_check_typedef (parent_type);
6301 /* True iff field number FIELD_NUM of structure type TYPE contains the
6302 parent-type (inherited) fields of a derived type. Assumes TYPE is
6303 a structure type with at least FIELD_NUM+1 fields. */
6306 ada_is_parent_field (struct type *type, int field_num)
6308 const char *name = ada_check_typedef (type)->field (field_num).name ();
6310 return (name != NULL
6311 && (startswith (name, "PARENT")
6312 || startswith (name, "_parent")));
6315 /* True iff field number FIELD_NUM of structure type TYPE is a
6316 transparent wrapper field (which should be silently traversed when doing
6317 field selection and flattened when printing). Assumes TYPE is a
6318 structure type with at least FIELD_NUM+1 fields. Such fields are always
6322 ada_is_wrapper_field (struct type *type, int field_num)
6324 const char *name = type->field (field_num).name ();
6326 if (name != NULL && strcmp (name, "RETVAL") == 0)
6328 /* This happens in functions with "out" or "in out" parameters
6329 which are passed by copy. For such functions, GNAT describes
6330 the function's return type as being a struct where the return
6331 value is in a field called RETVAL, and where the other "out"
6332 or "in out" parameters are fields of that struct. This is not
6337 return (name != NULL
6338 && (startswith (name, "PARENT")
6339 || strcmp (name, "REP") == 0
6340 || startswith (name, "_parent")
6341 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6344 /* True iff field number FIELD_NUM of structure or union type TYPE
6345 is a variant wrapper. Assumes TYPE is a structure type with at least
6346 FIELD_NUM+1 fields. */
6349 ada_is_variant_part (struct type *type, int field_num)
6351 /* Only Ada types are eligible. */
6352 if (!ADA_TYPE_P (type))
6355 struct type *field_type = type->field (field_num).type ();
6357 return (field_type->code () == TYPE_CODE_UNION
6358 || (is_dynamic_field (type, field_num)
6359 && (TYPE_TARGET_TYPE (field_type)->code ()
6360 == TYPE_CODE_UNION)));
6363 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6364 whose discriminants are contained in the record type OUTER_TYPE,
6365 returns the type of the controlling discriminant for the variant.
6366 May return NULL if the type could not be found. */
6369 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6371 const char *name = ada_variant_discrim_name (var_type);
6373 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6376 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6377 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6378 represents a 'when others' clause; otherwise 0. */
6381 ada_is_others_clause (struct type *type, int field_num)
6383 const char *name = type->field (field_num).name ();
6385 return (name != NULL && name[0] == 'O');
6388 /* Assuming that TYPE0 is the type of the variant part of a record,
6389 returns the name of the discriminant controlling the variant.
6390 The value is valid until the next call to ada_variant_discrim_name. */
6393 ada_variant_discrim_name (struct type *type0)
6395 static std::string result;
6398 const char *discrim_end;
6399 const char *discrim_start;
6401 if (type0->code () == TYPE_CODE_PTR)
6402 type = TYPE_TARGET_TYPE (type0);
6406 name = ada_type_name (type);
6408 if (name == NULL || name[0] == '\000')
6411 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6414 if (startswith (discrim_end, "___XVN"))
6417 if (discrim_end == name)
6420 for (discrim_start = discrim_end; discrim_start != name + 3;
6423 if (discrim_start == name + 1)
6425 if ((discrim_start > name + 3
6426 && startswith (discrim_start - 3, "___"))
6427 || discrim_start[-1] == '.')
6431 result = std::string (discrim_start, discrim_end - discrim_start);
6432 return result.c_str ();
6435 /* Scan STR for a subtype-encoded number, beginning at position K.
6436 Put the position of the character just past the number scanned in
6437 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6438 Return 1 if there was a valid number at the given position, and 0
6439 otherwise. A "subtype-encoded" number consists of the absolute value
6440 in decimal, followed by the letter 'm' to indicate a negative number.
6441 Assumes 0m does not occur. */
6444 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6448 if (!isdigit (str[k]))
6451 /* Do it the hard way so as not to make any assumption about
6452 the relationship of unsigned long (%lu scan format code) and
6455 while (isdigit (str[k]))
6457 RU = RU * 10 + (str[k] - '0');
6464 *R = (-(LONGEST) (RU - 1)) - 1;
6470 /* NOTE on the above: Technically, C does not say what the results of
6471 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6472 number representable as a LONGEST (although either would probably work
6473 in most implementations). When RU>0, the locution in the then branch
6474 above is always equivalent to the negative of RU. */
6481 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6482 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6483 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6486 ada_in_variant (LONGEST val, struct type *type, int field_num)
6488 const char *name = type->field (field_num).name ();
6502 if (!ada_scan_number (name, p + 1, &W, &p))
6512 if (!ada_scan_number (name, p + 1, &L, &p)
6513 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6515 if (val >= L && val <= U)
6527 /* FIXME: Lots of redundancy below. Try to consolidate. */
6529 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6530 ARG_TYPE, extract and return the value of one of its (non-static)
6531 fields. FIELDNO says which field. Differs from value_primitive_field
6532 only in that it can handle packed values of arbitrary type. */
6535 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6536 struct type *arg_type)
6540 arg_type = ada_check_typedef (arg_type);
6541 type = arg_type->field (fieldno).type ();
6543 /* Handle packed fields. It might be that the field is not packed
6544 relative to its containing structure, but the structure itself is
6545 packed; in this case we must take the bit-field path. */
6546 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6548 int bit_pos = arg_type->field (fieldno).loc_bitpos ();
6549 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6551 return ada_value_primitive_packed_val (arg1,
6552 value_contents (arg1).data (),
6553 offset + bit_pos / 8,
6554 bit_pos % 8, bit_size, type);
6557 return value_primitive_field (arg1, offset, fieldno, arg_type);
6560 /* Find field with name NAME in object of type TYPE. If found,
6561 set the following for each argument that is non-null:
6562 - *FIELD_TYPE_P to the field's type;
6563 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6564 an object of that type;
6565 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6566 - *BIT_SIZE_P to its size in bits if the field is packed, and
6568 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6569 fields up to but not including the desired field, or by the total
6570 number of fields if not found. A NULL value of NAME never
6571 matches; the function just counts visible fields in this case.
6573 Notice that we need to handle when a tagged record hierarchy
6574 has some components with the same name, like in this scenario:
6576 type Top_T is tagged record
6582 type Middle_T is new Top.Top_T with record
6583 N : Character := 'a';
6587 type Bottom_T is new Middle.Middle_T with record
6589 C : Character := '5';
6591 A : Character := 'J';
6594 Let's say we now have a variable declared and initialized as follow:
6596 TC : Top_A := new Bottom_T;
6598 And then we use this variable to call this function
6600 procedure Assign (Obj: in out Top_T; TV : Integer);
6604 Assign (Top_T (B), 12);
6606 Now, we're in the debugger, and we're inside that procedure
6607 then and we want to print the value of obj.c:
6609 Usually, the tagged record or one of the parent type owns the
6610 component to print and there's no issue but in this particular
6611 case, what does it mean to ask for Obj.C? Since the actual
6612 type for object is type Bottom_T, it could mean two things: type
6613 component C from the Middle_T view, but also component C from
6614 Bottom_T. So in that "undefined" case, when the component is
6615 not found in the non-resolved type (which includes all the
6616 components of the parent type), then resolve it and see if we
6617 get better luck once expanded.
6619 In the case of homonyms in the derived tagged type, we don't
6620 guaranty anything, and pick the one that's easiest for us
6623 Returns 1 if found, 0 otherwise. */
6626 find_struct_field (const char *name, struct type *type, int offset,
6627 struct type **field_type_p,
6628 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6632 int parent_offset = -1;
6634 type = ada_check_typedef (type);
6636 if (field_type_p != NULL)
6637 *field_type_p = NULL;
6638 if (byte_offset_p != NULL)
6640 if (bit_offset_p != NULL)
6642 if (bit_size_p != NULL)
6645 for (i = 0; i < type->num_fields (); i += 1)
6647 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
6648 type. However, we only need the values to be correct when
6649 the caller asks for them. */
6650 int bit_pos = 0, fld_offset = 0;
6651 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
6653 bit_pos = type->field (i).loc_bitpos ();
6654 fld_offset = offset + bit_pos / 8;
6657 const char *t_field_name = type->field (i).name ();
6659 if (t_field_name == NULL)
6662 else if (ada_is_parent_field (type, i))
6664 /* This is a field pointing us to the parent type of a tagged
6665 type. As hinted in this function's documentation, we give
6666 preference to fields in the current record first, so what
6667 we do here is just record the index of this field before
6668 we skip it. If it turns out we couldn't find our field
6669 in the current record, then we'll get back to it and search
6670 inside it whether the field might exist in the parent. */
6676 else if (name != NULL && field_name_match (t_field_name, name))
6678 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6680 if (field_type_p != NULL)
6681 *field_type_p = type->field (i).type ();
6682 if (byte_offset_p != NULL)
6683 *byte_offset_p = fld_offset;
6684 if (bit_offset_p != NULL)
6685 *bit_offset_p = bit_pos % 8;
6686 if (bit_size_p != NULL)
6687 *bit_size_p = bit_size;
6690 else if (ada_is_wrapper_field (type, i))
6692 if (find_struct_field (name, type->field (i).type (), fld_offset,
6693 field_type_p, byte_offset_p, bit_offset_p,
6694 bit_size_p, index_p))
6697 else if (ada_is_variant_part (type, i))
6699 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6702 struct type *field_type
6703 = ada_check_typedef (type->field (i).type ());
6705 for (j = 0; j < field_type->num_fields (); j += 1)
6707 if (find_struct_field (name, field_type->field (j).type (),
6709 + field_type->field (j).loc_bitpos () / 8,
6710 field_type_p, byte_offset_p,
6711 bit_offset_p, bit_size_p, index_p))
6715 else if (index_p != NULL)
6719 /* Field not found so far. If this is a tagged type which
6720 has a parent, try finding that field in the parent now. */
6722 if (parent_offset != -1)
6724 /* As above, only compute the offset when truly needed. */
6725 int fld_offset = offset;
6726 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
6728 int bit_pos = type->field (parent_offset).loc_bitpos ();
6729 fld_offset += bit_pos / 8;
6732 if (find_struct_field (name, type->field (parent_offset).type (),
6733 fld_offset, field_type_p, byte_offset_p,
6734 bit_offset_p, bit_size_p, index_p))
6741 /* Number of user-visible fields in record type TYPE. */
6744 num_visible_fields (struct type *type)
6749 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6753 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6754 and search in it assuming it has (class) type TYPE.
6755 If found, return value, else return NULL.
6757 Searches recursively through wrapper fields (e.g., '_parent').
6759 In the case of homonyms in the tagged types, please refer to the
6760 long explanation in find_struct_field's function documentation. */
6762 static struct value *
6763 ada_search_struct_field (const char *name, struct value *arg, int offset,
6767 int parent_offset = -1;
6769 type = ada_check_typedef (type);
6770 for (i = 0; i < type->num_fields (); i += 1)
6772 const char *t_field_name = type->field (i).name ();
6774 if (t_field_name == NULL)
6777 else if (ada_is_parent_field (type, i))
6779 /* This is a field pointing us to the parent type of a tagged
6780 type. As hinted in this function's documentation, we give
6781 preference to fields in the current record first, so what
6782 we do here is just record the index of this field before
6783 we skip it. If it turns out we couldn't find our field
6784 in the current record, then we'll get back to it and search
6785 inside it whether the field might exist in the parent. */
6791 else if (field_name_match (t_field_name, name))
6792 return ada_value_primitive_field (arg, offset, i, type);
6794 else if (ada_is_wrapper_field (type, i))
6796 struct value *v = /* Do not let indent join lines here. */
6797 ada_search_struct_field (name, arg,
6798 offset + type->field (i).loc_bitpos () / 8,
6799 type->field (i).type ());
6805 else if (ada_is_variant_part (type, i))
6807 /* PNH: Do we ever get here? See find_struct_field. */
6809 struct type *field_type = ada_check_typedef (type->field (i).type ());
6810 int var_offset = offset + type->field (i).loc_bitpos () / 8;
6812 for (j = 0; j < field_type->num_fields (); j += 1)
6814 struct value *v = ada_search_struct_field /* Force line
6817 var_offset + field_type->field (j).loc_bitpos () / 8,
6818 field_type->field (j).type ());
6826 /* Field not found so far. If this is a tagged type which
6827 has a parent, try finding that field in the parent now. */
6829 if (parent_offset != -1)
6831 struct value *v = ada_search_struct_field (
6832 name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
6833 type->field (parent_offset).type ());
6842 static struct value *ada_index_struct_field_1 (int *, struct value *,
6843 int, struct type *);
6846 /* Return field #INDEX in ARG, where the index is that returned by
6847 * find_struct_field through its INDEX_P argument. Adjust the address
6848 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6849 * If found, return value, else return NULL. */
6851 static struct value *
6852 ada_index_struct_field (int index, struct value *arg, int offset,
6855 return ada_index_struct_field_1 (&index, arg, offset, type);
6859 /* Auxiliary function for ada_index_struct_field. Like
6860 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6863 static struct value *
6864 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6868 type = ada_check_typedef (type);
6870 for (i = 0; i < type->num_fields (); i += 1)
6872 if (type->field (i).name () == NULL)
6874 else if (ada_is_wrapper_field (type, i))
6876 struct value *v = /* Do not let indent join lines here. */
6877 ada_index_struct_field_1 (index_p, arg,
6878 offset + type->field (i).loc_bitpos () / 8,
6879 type->field (i).type ());
6885 else if (ada_is_variant_part (type, i))
6887 /* PNH: Do we ever get here? See ada_search_struct_field,
6888 find_struct_field. */
6889 error (_("Cannot assign this kind of variant record"));
6891 else if (*index_p == 0)
6892 return ada_value_primitive_field (arg, offset, i, type);
6899 /* Return a string representation of type TYPE. */
6902 type_as_string (struct type *type)
6904 string_file tmp_stream;
6906 type_print (type, "", &tmp_stream, -1);
6908 return tmp_stream.release ();
6911 /* Given a type TYPE, look up the type of the component of type named NAME.
6912 If DISPP is non-null, add its byte displacement from the beginning of a
6913 structure (pointed to by a value) of type TYPE to *DISPP (does not
6914 work for packed fields).
6916 Matches any field whose name has NAME as a prefix, possibly
6919 TYPE can be either a struct or union. If REFOK, TYPE may also
6920 be a (pointer or reference)+ to a struct or union, and the
6921 ultimate target type will be searched.
6923 Looks recursively into variant clauses and parent types.
6925 In the case of homonyms in the tagged types, please refer to the
6926 long explanation in find_struct_field's function documentation.
6928 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6929 TYPE is not a type of the right kind. */
6931 static struct type *
6932 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6936 int parent_offset = -1;
6941 if (refok && type != NULL)
6944 type = ada_check_typedef (type);
6945 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6947 type = TYPE_TARGET_TYPE (type);
6951 || (type->code () != TYPE_CODE_STRUCT
6952 && type->code () != TYPE_CODE_UNION))
6957 error (_("Type %s is not a structure or union type"),
6958 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6961 type = to_static_fixed_type (type);
6963 for (i = 0; i < type->num_fields (); i += 1)
6965 const char *t_field_name = type->field (i).name ();
6968 if (t_field_name == NULL)
6971 else if (ada_is_parent_field (type, i))
6973 /* This is a field pointing us to the parent type of a tagged
6974 type. As hinted in this function's documentation, we give
6975 preference to fields in the current record first, so what
6976 we do here is just record the index of this field before
6977 we skip it. If it turns out we couldn't find our field
6978 in the current record, then we'll get back to it and search
6979 inside it whether the field might exist in the parent. */
6985 else if (field_name_match (t_field_name, name))
6986 return type->field (i).type ();
6988 else if (ada_is_wrapper_field (type, i))
6990 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
6996 else if (ada_is_variant_part (type, i))
6999 struct type *field_type = ada_check_typedef (type->field (i).type ());
7001 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7003 /* FIXME pnh 2008/01/26: We check for a field that is
7004 NOT wrapped in a struct, since the compiler sometimes
7005 generates these for unchecked variant types. Revisit
7006 if the compiler changes this practice. */
7007 const char *v_field_name = field_type->field (j).name ();
7009 if (v_field_name != NULL
7010 && field_name_match (v_field_name, name))
7011 t = field_type->field (j).type ();
7013 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7023 /* Field not found so far. If this is a tagged type which
7024 has a parent, try finding that field in the parent now. */
7026 if (parent_offset != -1)
7030 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7039 const char *name_str = name != NULL ? name : _("<null>");
7041 error (_("Type %s has no component named %s"),
7042 type_as_string (type).c_str (), name_str);
7048 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7049 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7050 represents an unchecked union (that is, the variant part of a
7051 record that is named in an Unchecked_Union pragma). */
7054 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7056 const char *discrim_name = ada_variant_discrim_name (var_type);
7058 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7062 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7063 within OUTER, determine which variant clause (field number in VAR_TYPE,
7064 numbering from 0) is applicable. Returns -1 if none are. */
7067 ada_which_variant_applies (struct type *var_type, struct value *outer)
7071 const char *discrim_name = ada_variant_discrim_name (var_type);
7072 struct value *discrim;
7073 LONGEST discrim_val;
7075 /* Using plain value_from_contents_and_address here causes problems
7076 because we will end up trying to resolve a type that is currently
7077 being constructed. */
7078 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7079 if (discrim == NULL)
7081 discrim_val = value_as_long (discrim);
7084 for (i = 0; i < var_type->num_fields (); i += 1)
7086 if (ada_is_others_clause (var_type, i))
7088 else if (ada_in_variant (discrim_val, var_type, i))
7092 return others_clause;
7097 /* Dynamic-Sized Records */
7099 /* Strategy: The type ostensibly attached to a value with dynamic size
7100 (i.e., a size that is not statically recorded in the debugging
7101 data) does not accurately reflect the size or layout of the value.
7102 Our strategy is to convert these values to values with accurate,
7103 conventional types that are constructed on the fly. */
7105 /* There is a subtle and tricky problem here. In general, we cannot
7106 determine the size of dynamic records without its data. However,
7107 the 'struct value' data structure, which GDB uses to represent
7108 quantities in the inferior process (the target), requires the size
7109 of the type at the time of its allocation in order to reserve space
7110 for GDB's internal copy of the data. That's why the
7111 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7112 rather than struct value*s.
7114 However, GDB's internal history variables ($1, $2, etc.) are
7115 struct value*s containing internal copies of the data that are not, in
7116 general, the same as the data at their corresponding addresses in
7117 the target. Fortunately, the types we give to these values are all
7118 conventional, fixed-size types (as per the strategy described
7119 above), so that we don't usually have to perform the
7120 'to_fixed_xxx_type' conversions to look at their values.
7121 Unfortunately, there is one exception: if one of the internal
7122 history variables is an array whose elements are unconstrained
7123 records, then we will need to create distinct fixed types for each
7124 element selected. */
7126 /* The upshot of all of this is that many routines take a (type, host
7127 address, target address) triple as arguments to represent a value.
7128 The host address, if non-null, is supposed to contain an internal
7129 copy of the relevant data; otherwise, the program is to consult the
7130 target at the target address. */
7132 /* Assuming that VAL0 represents a pointer value, the result of
7133 dereferencing it. Differs from value_ind in its treatment of
7134 dynamic-sized types. */
7137 ada_value_ind (struct value *val0)
7139 struct value *val = value_ind (val0);
7141 if (ada_is_tagged_type (value_type (val), 0))
7142 val = ada_tag_value_at_base_address (val);
7144 return ada_to_fixed_value (val);
7147 /* The value resulting from dereferencing any "reference to"
7148 qualifiers on VAL0. */
7150 static struct value *
7151 ada_coerce_ref (struct value *val0)
7153 if (value_type (val0)->code () == TYPE_CODE_REF)
7155 struct value *val = val0;
7157 val = coerce_ref (val);
7159 if (ada_is_tagged_type (value_type (val), 0))
7160 val = ada_tag_value_at_base_address (val);
7162 return ada_to_fixed_value (val);
7168 /* Return the bit alignment required for field #F of template type TYPE. */
7171 field_alignment (struct type *type, int f)
7173 const char *name = type->field (f).name ();
7177 /* The field name should never be null, unless the debugging information
7178 is somehow malformed. In this case, we assume the field does not
7179 require any alignment. */
7183 len = strlen (name);
7185 if (!isdigit (name[len - 1]))
7188 if (isdigit (name[len - 2]))
7189 align_offset = len - 2;
7191 align_offset = len - 1;
7193 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7194 return TARGET_CHAR_BIT;
7196 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7199 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7201 static struct symbol *
7202 ada_find_any_type_symbol (const char *name)
7206 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7207 if (sym != NULL && sym->aclass () == LOC_TYPEDEF)
7210 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7214 /* Find a type named NAME. Ignores ambiguity. This routine will look
7215 solely for types defined by debug info, it will not search the GDB
7218 static struct type *
7219 ada_find_any_type (const char *name)
7221 struct symbol *sym = ada_find_any_type_symbol (name);
7224 return sym->type ();
7229 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7230 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7231 symbol, in which case it is returned. Otherwise, this looks for
7232 symbols whose name is that of NAME_SYM suffixed with "___XR".
7233 Return symbol if found, and NULL otherwise. */
7236 ada_is_renaming_symbol (struct symbol *name_sym)
7238 const char *name = name_sym->linkage_name ();
7239 return strstr (name, "___XR") != NULL;
7242 /* Because of GNAT encoding conventions, several GDB symbols may match a
7243 given type name. If the type denoted by TYPE0 is to be preferred to
7244 that of TYPE1 for purposes of type printing, return non-zero;
7245 otherwise return 0. */
7248 ada_prefer_type (struct type *type0, struct type *type1)
7252 else if (type0 == NULL)
7254 else if (type1->code () == TYPE_CODE_VOID)
7256 else if (type0->code () == TYPE_CODE_VOID)
7258 else if (type1->name () == NULL && type0->name () != NULL)
7260 else if (ada_is_constrained_packed_array_type (type0))
7262 else if (ada_is_array_descriptor_type (type0)
7263 && !ada_is_array_descriptor_type (type1))
7267 const char *type0_name = type0->name ();
7268 const char *type1_name = type1->name ();
7270 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7271 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7277 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7281 ada_type_name (struct type *type)
7285 return type->name ();
7288 /* Search the list of "descriptive" types associated to TYPE for a type
7289 whose name is NAME. */
7291 static struct type *
7292 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7294 struct type *result, *tmp;
7296 if (ada_ignore_descriptive_types_p)
7299 /* If there no descriptive-type info, then there is no parallel type
7301 if (!HAVE_GNAT_AUX_INFO (type))
7304 result = TYPE_DESCRIPTIVE_TYPE (type);
7305 while (result != NULL)
7307 const char *result_name = ada_type_name (result);
7309 if (result_name == NULL)
7311 warning (_("unexpected null name on descriptive type"));
7315 /* If the names match, stop. */
7316 if (strcmp (result_name, name) == 0)
7319 /* Otherwise, look at the next item on the list, if any. */
7320 if (HAVE_GNAT_AUX_INFO (result))
7321 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7325 /* If not found either, try after having resolved the typedef. */
7330 result = check_typedef (result);
7331 if (HAVE_GNAT_AUX_INFO (result))
7332 result = TYPE_DESCRIPTIVE_TYPE (result);
7338 /* If we didn't find a match, see whether this is a packed array. With
7339 older compilers, the descriptive type information is either absent or
7340 irrelevant when it comes to packed arrays so the above lookup fails.
7341 Fall back to using a parallel lookup by name in this case. */
7342 if (result == NULL && ada_is_constrained_packed_array_type (type))
7343 return ada_find_any_type (name);
7348 /* Find a parallel type to TYPE with the specified NAME, using the
7349 descriptive type taken from the debugging information, if available,
7350 and otherwise using the (slower) name-based method. */
7352 static struct type *
7353 ada_find_parallel_type_with_name (struct type *type, const char *name)
7355 struct type *result = NULL;
7357 if (HAVE_GNAT_AUX_INFO (type))
7358 result = find_parallel_type_by_descriptive_type (type, name);
7360 result = ada_find_any_type (name);
7365 /* Same as above, but specify the name of the parallel type by appending
7366 SUFFIX to the name of TYPE. */
7369 ada_find_parallel_type (struct type *type, const char *suffix)
7372 const char *type_name = ada_type_name (type);
7375 if (type_name == NULL)
7378 len = strlen (type_name);
7380 name = (char *) alloca (len + strlen (suffix) + 1);
7382 strcpy (name, type_name);
7383 strcpy (name + len, suffix);
7385 return ada_find_parallel_type_with_name (type, name);
7388 /* If TYPE is a variable-size record type, return the corresponding template
7389 type describing its fields. Otherwise, return NULL. */
7391 static struct type *
7392 dynamic_template_type (struct type *type)
7394 type = ada_check_typedef (type);
7396 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7397 || ada_type_name (type) == NULL)
7401 int len = strlen (ada_type_name (type));
7403 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7406 return ada_find_parallel_type (type, "___XVE");
7410 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7411 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7414 is_dynamic_field (struct type *templ_type, int field_num)
7416 const char *name = templ_type->field (field_num).name ();
7419 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7420 && strstr (name, "___XVL") != NULL;
7423 /* The index of the variant field of TYPE, or -1 if TYPE does not
7424 represent a variant record type. */
7427 variant_field_index (struct type *type)
7431 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7434 for (f = 0; f < type->num_fields (); f += 1)
7436 if (ada_is_variant_part (type, f))
7442 /* A record type with no fields. */
7444 static struct type *
7445 empty_record (struct type *templ)
7447 struct type *type = alloc_type_copy (templ);
7449 type->set_code (TYPE_CODE_STRUCT);
7450 INIT_NONE_SPECIFIC (type);
7451 type->set_name ("<empty>");
7452 TYPE_LENGTH (type) = 0;
7456 /* An ordinary record type (with fixed-length fields) that describes
7457 the value of type TYPE at VALADDR or ADDRESS (see comments at
7458 the beginning of this section) VAL according to GNAT conventions.
7459 DVAL0 should describe the (portion of a) record that contains any
7460 necessary discriminants. It should be NULL if value_type (VAL) is
7461 an outer-level type (i.e., as opposed to a branch of a variant.) A
7462 variant field (unless unchecked) is replaced by a particular branch
7465 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7466 length are not statically known are discarded. As a consequence,
7467 VALADDR, ADDRESS and DVAL0 are ignored.
7469 NOTE: Limitations: For now, we assume that dynamic fields and
7470 variants occupy whole numbers of bytes. However, they need not be
7474 ada_template_to_fixed_record_type_1 (struct type *type,
7475 const gdb_byte *valaddr,
7476 CORE_ADDR address, struct value *dval0,
7477 int keep_dynamic_fields)
7479 struct value *mark = value_mark ();
7482 int nfields, bit_len;
7488 /* Compute the number of fields in this record type that are going
7489 to be processed: unless keep_dynamic_fields, this includes only
7490 fields whose position and length are static will be processed. */
7491 if (keep_dynamic_fields)
7492 nfields = type->num_fields ();
7496 while (nfields < type->num_fields ()
7497 && !ada_is_variant_part (type, nfields)
7498 && !is_dynamic_field (type, nfields))
7502 rtype = alloc_type_copy (type);
7503 rtype->set_code (TYPE_CODE_STRUCT);
7504 INIT_NONE_SPECIFIC (rtype);
7505 rtype->set_num_fields (nfields);
7507 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7508 rtype->set_name (ada_type_name (type));
7509 rtype->set_is_fixed_instance (true);
7515 for (f = 0; f < nfields; f += 1)
7517 off = align_up (off, field_alignment (type, f))
7518 + type->field (f).loc_bitpos ();
7519 rtype->field (f).set_loc_bitpos (off);
7520 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7522 if (ada_is_variant_part (type, f))
7527 else if (is_dynamic_field (type, f))
7529 const gdb_byte *field_valaddr = valaddr;
7530 CORE_ADDR field_address = address;
7531 struct type *field_type =
7532 TYPE_TARGET_TYPE (type->field (f).type ());
7536 /* Using plain value_from_contents_and_address here
7537 causes problems because we will end up trying to
7538 resolve a type that is currently being
7540 dval = value_from_contents_and_address_unresolved (rtype,
7543 rtype = value_type (dval);
7548 /* If the type referenced by this field is an aligner type, we need
7549 to unwrap that aligner type, because its size might not be set.
7550 Keeping the aligner type would cause us to compute the wrong
7551 size for this field, impacting the offset of the all the fields
7552 that follow this one. */
7553 if (ada_is_aligner_type (field_type))
7555 long field_offset = type->field (f).loc_bitpos ();
7557 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7558 field_address = cond_offset_target (field_address, field_offset);
7559 field_type = ada_aligned_type (field_type);
7562 field_valaddr = cond_offset_host (field_valaddr,
7563 off / TARGET_CHAR_BIT);
7564 field_address = cond_offset_target (field_address,
7565 off / TARGET_CHAR_BIT);
7567 /* Get the fixed type of the field. Note that, in this case,
7568 we do not want to get the real type out of the tag: if
7569 the current field is the parent part of a tagged record,
7570 we will get the tag of the object. Clearly wrong: the real
7571 type of the parent is not the real type of the child. We
7572 would end up in an infinite loop. */
7573 field_type = ada_get_base_type (field_type);
7574 field_type = ada_to_fixed_type (field_type, field_valaddr,
7575 field_address, dval, 0);
7577 rtype->field (f).set_type (field_type);
7578 rtype->field (f).set_name (type->field (f).name ());
7579 /* The multiplication can potentially overflow. But because
7580 the field length has been size-checked just above, and
7581 assuming that the maximum size is a reasonable value,
7582 an overflow should not happen in practice. So rather than
7583 adding overflow recovery code to this already complex code,
7584 we just assume that it's not going to happen. */
7586 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7590 /* Note: If this field's type is a typedef, it is important
7591 to preserve the typedef layer.
7593 Otherwise, we might be transforming a typedef to a fat
7594 pointer (encoding a pointer to an unconstrained array),
7595 into a basic fat pointer (encoding an unconstrained
7596 array). As both types are implemented using the same
7597 structure, the typedef is the only clue which allows us
7598 to distinguish between the two options. Stripping it
7599 would prevent us from printing this field appropriately. */
7600 rtype->field (f).set_type (type->field (f).type ());
7601 rtype->field (f).set_name (type->field (f).name ());
7602 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7604 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7607 struct type *field_type = type->field (f).type ();
7609 /* We need to be careful of typedefs when computing
7610 the length of our field. If this is a typedef,
7611 get the length of the target type, not the length
7613 if (field_type->code () == TYPE_CODE_TYPEDEF)
7614 field_type = ada_typedef_target_type (field_type);
7617 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7620 if (off + fld_bit_len > bit_len)
7621 bit_len = off + fld_bit_len;
7623 TYPE_LENGTH (rtype) =
7624 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7627 /* We handle the variant part, if any, at the end because of certain
7628 odd cases in which it is re-ordered so as NOT to be the last field of
7629 the record. This can happen in the presence of representation
7631 if (variant_field >= 0)
7633 struct type *branch_type;
7635 off = rtype->field (variant_field).loc_bitpos ();
7639 /* Using plain value_from_contents_and_address here causes
7640 problems because we will end up trying to resolve a type
7641 that is currently being constructed. */
7642 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7644 rtype = value_type (dval);
7650 to_fixed_variant_branch_type
7651 (type->field (variant_field).type (),
7652 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7653 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7654 if (branch_type == NULL)
7656 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7657 rtype->field (f - 1) = rtype->field (f);
7658 rtype->set_num_fields (rtype->num_fields () - 1);
7662 rtype->field (variant_field).set_type (branch_type);
7663 rtype->field (variant_field).set_name ("S");
7665 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7667 if (off + fld_bit_len > bit_len)
7668 bit_len = off + fld_bit_len;
7669 TYPE_LENGTH (rtype) =
7670 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7674 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7675 should contain the alignment of that record, which should be a strictly
7676 positive value. If null or negative, then something is wrong, most
7677 probably in the debug info. In that case, we don't round up the size
7678 of the resulting type. If this record is not part of another structure,
7679 the current RTYPE length might be good enough for our purposes. */
7680 if (TYPE_LENGTH (type) <= 0)
7683 warning (_("Invalid type size for `%s' detected: %s."),
7684 rtype->name (), pulongest (TYPE_LENGTH (type)));
7686 warning (_("Invalid type size for <unnamed> detected: %s."),
7687 pulongest (TYPE_LENGTH (type)));
7691 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7692 TYPE_LENGTH (type));
7695 value_free_to_mark (mark);
7699 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7702 static struct type *
7703 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7704 CORE_ADDR address, struct value *dval0)
7706 return ada_template_to_fixed_record_type_1 (type, valaddr,
7710 /* An ordinary record type in which ___XVL-convention fields and
7711 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7712 static approximations, containing all possible fields. Uses
7713 no runtime values. Useless for use in values, but that's OK,
7714 since the results are used only for type determinations. Works on both
7715 structs and unions. Representation note: to save space, we memorize
7716 the result of this function in the TYPE_TARGET_TYPE of the
7719 static struct type *
7720 template_to_static_fixed_type (struct type *type0)
7726 /* No need no do anything if the input type is already fixed. */
7727 if (type0->is_fixed_instance ())
7730 /* Likewise if we already have computed the static approximation. */
7731 if (TYPE_TARGET_TYPE (type0) != NULL)
7732 return TYPE_TARGET_TYPE (type0);
7734 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7736 nfields = type0->num_fields ();
7738 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7739 recompute all over next time. */
7740 TYPE_TARGET_TYPE (type0) = type;
7742 for (f = 0; f < nfields; f += 1)
7744 struct type *field_type = type0->field (f).type ();
7745 struct type *new_type;
7747 if (is_dynamic_field (type0, f))
7749 field_type = ada_check_typedef (field_type);
7750 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7753 new_type = static_unwrap_type (field_type);
7755 if (new_type != field_type)
7757 /* Clone TYPE0 only the first time we get a new field type. */
7760 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7761 type->set_code (type0->code ());
7762 INIT_NONE_SPECIFIC (type);
7763 type->set_num_fields (nfields);
7767 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7768 memcpy (fields, type0->fields (),
7769 sizeof (struct field) * nfields);
7770 type->set_fields (fields);
7772 type->set_name (ada_type_name (type0));
7773 type->set_is_fixed_instance (true);
7774 TYPE_LENGTH (type) = 0;
7776 type->field (f).set_type (new_type);
7777 type->field (f).set_name (type0->field (f).name ());
7784 /* Given an object of type TYPE whose contents are at VALADDR and
7785 whose address in memory is ADDRESS, returns a revision of TYPE,
7786 which should be a non-dynamic-sized record, in which the variant
7787 part, if any, is replaced with the appropriate branch. Looks
7788 for discriminant values in DVAL0, which can be NULL if the record
7789 contains the necessary discriminant values. */
7791 static struct type *
7792 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7793 CORE_ADDR address, struct value *dval0)
7795 struct value *mark = value_mark ();
7798 struct type *branch_type;
7799 int nfields = type->num_fields ();
7800 int variant_field = variant_field_index (type);
7802 if (variant_field == -1)
7807 dval = value_from_contents_and_address (type, valaddr, address);
7808 type = value_type (dval);
7813 rtype = alloc_type_copy (type);
7814 rtype->set_code (TYPE_CODE_STRUCT);
7815 INIT_NONE_SPECIFIC (rtype);
7816 rtype->set_num_fields (nfields);
7819 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7820 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7821 rtype->set_fields (fields);
7823 rtype->set_name (ada_type_name (type));
7824 rtype->set_is_fixed_instance (true);
7825 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7827 branch_type = to_fixed_variant_branch_type
7828 (type->field (variant_field).type (),
7829 cond_offset_host (valaddr,
7830 type->field (variant_field).loc_bitpos ()
7832 cond_offset_target (address,
7833 type->field (variant_field).loc_bitpos ()
7834 / TARGET_CHAR_BIT), dval);
7835 if (branch_type == NULL)
7839 for (f = variant_field + 1; f < nfields; f += 1)
7840 rtype->field (f - 1) = rtype->field (f);
7841 rtype->set_num_fields (rtype->num_fields () - 1);
7845 rtype->field (variant_field).set_type (branch_type);
7846 rtype->field (variant_field).set_name ("S");
7847 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7848 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7850 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7852 value_free_to_mark (mark);
7856 /* An ordinary record type (with fixed-length fields) that describes
7857 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7858 beginning of this section]. Any necessary discriminants' values
7859 should be in DVAL, a record value; it may be NULL if the object
7860 at ADDR itself contains any necessary discriminant values.
7861 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7862 values from the record are needed. Except in the case that DVAL,
7863 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7864 unchecked) is replaced by a particular branch of the variant.
7866 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7867 is questionable and may be removed. It can arise during the
7868 processing of an unconstrained-array-of-record type where all the
7869 variant branches have exactly the same size. This is because in
7870 such cases, the compiler does not bother to use the XVS convention
7871 when encoding the record. I am currently dubious of this
7872 shortcut and suspect the compiler should be altered. FIXME. */
7874 static struct type *
7875 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7876 CORE_ADDR address, struct value *dval)
7878 struct type *templ_type;
7880 if (type0->is_fixed_instance ())
7883 templ_type = dynamic_template_type (type0);
7885 if (templ_type != NULL)
7886 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7887 else if (variant_field_index (type0) >= 0)
7889 if (dval == NULL && valaddr == NULL && address == 0)
7891 return to_record_with_fixed_variant_part (type0, valaddr, address,
7896 type0->set_is_fixed_instance (true);
7902 /* An ordinary record type (with fixed-length fields) that describes
7903 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7904 union type. Any necessary discriminants' values should be in DVAL,
7905 a record value. That is, this routine selects the appropriate
7906 branch of the union at ADDR according to the discriminant value
7907 indicated in the union's type name. Returns VAR_TYPE0 itself if
7908 it represents a variant subject to a pragma Unchecked_Union. */
7910 static struct type *
7911 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7912 CORE_ADDR address, struct value *dval)
7915 struct type *templ_type;
7916 struct type *var_type;
7918 if (var_type0->code () == TYPE_CODE_PTR)
7919 var_type = TYPE_TARGET_TYPE (var_type0);
7921 var_type = var_type0;
7923 templ_type = ada_find_parallel_type (var_type, "___XVU");
7925 if (templ_type != NULL)
7926 var_type = templ_type;
7928 if (is_unchecked_variant (var_type, value_type (dval)))
7930 which = ada_which_variant_applies (var_type, dval);
7933 return empty_record (var_type);
7934 else if (is_dynamic_field (var_type, which))
7935 return to_fixed_record_type
7936 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7937 valaddr, address, dval);
7938 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7940 to_fixed_record_type
7941 (var_type->field (which).type (), valaddr, address, dval);
7943 return var_type->field (which).type ();
7946 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7947 ENCODING_TYPE, a type following the GNAT conventions for discrete
7948 type encodings, only carries redundant information. */
7951 ada_is_redundant_range_encoding (struct type *range_type,
7952 struct type *encoding_type)
7954 const char *bounds_str;
7958 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7960 if (get_base_type (range_type)->code ()
7961 != get_base_type (encoding_type)->code ())
7963 /* The compiler probably used a simple base type to describe
7964 the range type instead of the range's actual base type,
7965 expecting us to get the real base type from the encoding
7966 anyway. In this situation, the encoding cannot be ignored
7971 if (is_dynamic_type (range_type))
7974 if (encoding_type->name () == NULL)
7977 bounds_str = strstr (encoding_type->name (), "___XDLU_");
7978 if (bounds_str == NULL)
7981 n = 8; /* Skip "___XDLU_". */
7982 if (!ada_scan_number (bounds_str, n, &lo, &n))
7984 if (range_type->bounds ()->low.const_val () != lo)
7987 n += 2; /* Skip the "__" separator between the two bounds. */
7988 if (!ada_scan_number (bounds_str, n, &hi, &n))
7990 if (range_type->bounds ()->high.const_val () != hi)
7996 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
7997 a type following the GNAT encoding for describing array type
7998 indices, only carries redundant information. */
8001 ada_is_redundant_index_type_desc (struct type *array_type,
8002 struct type *desc_type)
8004 struct type *this_layer = check_typedef (array_type);
8007 for (i = 0; i < desc_type->num_fields (); i++)
8009 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8010 desc_type->field (i).type ()))
8012 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8018 /* Assuming that TYPE0 is an array type describing the type of a value
8019 at ADDR, and that DVAL describes a record containing any
8020 discriminants used in TYPE0, returns a type for the value that
8021 contains no dynamic components (that is, no components whose sizes
8022 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8023 true, gives an error message if the resulting type's size is over
8026 static struct type *
8027 to_fixed_array_type (struct type *type0, struct value *dval,
8030 struct type *index_type_desc;
8031 struct type *result;
8032 int constrained_packed_array_p;
8033 static const char *xa_suffix = "___XA";
8035 type0 = ada_check_typedef (type0);
8036 if (type0->is_fixed_instance ())
8039 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8040 if (constrained_packed_array_p)
8042 type0 = decode_constrained_packed_array_type (type0);
8043 if (type0 == nullptr)
8044 error (_("could not decode constrained packed array type"));
8047 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8049 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8050 encoding suffixed with 'P' may still be generated. If so,
8051 it should be used to find the XA type. */
8053 if (index_type_desc == NULL)
8055 const char *type_name = ada_type_name (type0);
8057 if (type_name != NULL)
8059 const int len = strlen (type_name);
8060 char *name = (char *) alloca (len + strlen (xa_suffix));
8062 if (type_name[len - 1] == 'P')
8064 strcpy (name, type_name);
8065 strcpy (name + len - 1, xa_suffix);
8066 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8071 ada_fixup_array_indexes_type (index_type_desc);
8072 if (index_type_desc != NULL
8073 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8075 /* Ignore this ___XA parallel type, as it does not bring any
8076 useful information. This allows us to avoid creating fixed
8077 versions of the array's index types, which would be identical
8078 to the original ones. This, in turn, can also help avoid
8079 the creation of fixed versions of the array itself. */
8080 index_type_desc = NULL;
8083 if (index_type_desc == NULL)
8085 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8087 /* NOTE: elt_type---the fixed version of elt_type0---should never
8088 depend on the contents of the array in properly constructed
8090 /* Create a fixed version of the array element type.
8091 We're not providing the address of an element here,
8092 and thus the actual object value cannot be inspected to do
8093 the conversion. This should not be a problem, since arrays of
8094 unconstrained objects are not allowed. In particular, all
8095 the elements of an array of a tagged type should all be of
8096 the same type specified in the debugging info. No need to
8097 consult the object tag. */
8098 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8100 /* Make sure we always create a new array type when dealing with
8101 packed array types, since we're going to fix-up the array
8102 type length and element bitsize a little further down. */
8103 if (elt_type0 == elt_type && !constrained_packed_array_p)
8106 result = create_array_type (alloc_type_copy (type0),
8107 elt_type, type0->index_type ());
8112 struct type *elt_type0;
8115 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8116 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8118 /* NOTE: result---the fixed version of elt_type0---should never
8119 depend on the contents of the array in properly constructed
8121 /* Create a fixed version of the array element type.
8122 We're not providing the address of an element here,
8123 and thus the actual object value cannot be inspected to do
8124 the conversion. This should not be a problem, since arrays of
8125 unconstrained objects are not allowed. In particular, all
8126 the elements of an array of a tagged type should all be of
8127 the same type specified in the debugging info. No need to
8128 consult the object tag. */
8130 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8133 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8135 struct type *range_type =
8136 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8138 result = create_array_type (alloc_type_copy (elt_type0),
8139 result, range_type);
8140 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8144 /* We want to preserve the type name. This can be useful when
8145 trying to get the type name of a value that has already been
8146 printed (for instance, if the user did "print VAR; whatis $". */
8147 result->set_name (type0->name ());
8149 if (constrained_packed_array_p)
8151 /* So far, the resulting type has been created as if the original
8152 type was a regular (non-packed) array type. As a result, the
8153 bitsize of the array elements needs to be set again, and the array
8154 length needs to be recomputed based on that bitsize. */
8155 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8156 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8158 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8159 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8160 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8161 TYPE_LENGTH (result)++;
8164 result->set_is_fixed_instance (true);
8169 /* A standard type (containing no dynamically sized components)
8170 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8171 DVAL describes a record containing any discriminants used in TYPE0,
8172 and may be NULL if there are none, or if the object of type TYPE at
8173 ADDRESS or in VALADDR contains these discriminants.
8175 If CHECK_TAG is not null, in the case of tagged types, this function
8176 attempts to locate the object's tag and use it to compute the actual
8177 type. However, when ADDRESS is null, we cannot use it to determine the
8178 location of the tag, and therefore compute the tagged type's actual type.
8179 So we return the tagged type without consulting the tag. */
8181 static struct type *
8182 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8183 CORE_ADDR address, struct value *dval, int check_tag)
8185 type = ada_check_typedef (type);
8187 /* Only un-fixed types need to be handled here. */
8188 if (!HAVE_GNAT_AUX_INFO (type))
8191 switch (type->code ())
8195 case TYPE_CODE_STRUCT:
8197 struct type *static_type = to_static_fixed_type (type);
8198 struct type *fixed_record_type =
8199 to_fixed_record_type (type, valaddr, address, NULL);
8201 /* If STATIC_TYPE is a tagged type and we know the object's address,
8202 then we can determine its tag, and compute the object's actual
8203 type from there. Note that we have to use the fixed record
8204 type (the parent part of the record may have dynamic fields
8205 and the way the location of _tag is expressed may depend on
8208 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8211 value_tag_from_contents_and_address
8215 struct type *real_type = type_from_tag (tag);
8217 value_from_contents_and_address (fixed_record_type,
8220 fixed_record_type = value_type (obj);
8221 if (real_type != NULL)
8222 return to_fixed_record_type
8224 value_address (ada_tag_value_at_base_address (obj)), NULL);
8227 /* Check to see if there is a parallel ___XVZ variable.
8228 If there is, then it provides the actual size of our type. */
8229 else if (ada_type_name (fixed_record_type) != NULL)
8231 const char *name = ada_type_name (fixed_record_type);
8233 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8234 bool xvz_found = false;
8237 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8240 xvz_found = get_int_var_value (xvz_name, size);
8242 catch (const gdb_exception_error &except)
8244 /* We found the variable, but somehow failed to read
8245 its value. Rethrow the same error, but with a little
8246 bit more information, to help the user understand
8247 what went wrong (Eg: the variable might have been
8249 throw_error (except.error,
8250 _("unable to read value of %s (%s)"),
8251 xvz_name, except.what ());
8254 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8256 fixed_record_type = copy_type (fixed_record_type);
8257 TYPE_LENGTH (fixed_record_type) = size;
8259 /* The FIXED_RECORD_TYPE may have be a stub. We have
8260 observed this when the debugging info is STABS, and
8261 apparently it is something that is hard to fix.
8263 In practice, we don't need the actual type definition
8264 at all, because the presence of the XVZ variable allows us
8265 to assume that there must be a XVS type as well, which we
8266 should be able to use later, when we need the actual type
8269 In the meantime, pretend that the "fixed" type we are
8270 returning is NOT a stub, because this can cause trouble
8271 when using this type to create new types targeting it.
8272 Indeed, the associated creation routines often check
8273 whether the target type is a stub and will try to replace
8274 it, thus using a type with the wrong size. This, in turn,
8275 might cause the new type to have the wrong size too.
8276 Consider the case of an array, for instance, where the size
8277 of the array is computed from the number of elements in
8278 our array multiplied by the size of its element. */
8279 fixed_record_type->set_is_stub (false);
8282 return fixed_record_type;
8284 case TYPE_CODE_ARRAY:
8285 return to_fixed_array_type (type, dval, 1);
8286 case TYPE_CODE_UNION:
8290 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8294 /* The same as ada_to_fixed_type_1, except that it preserves the type
8295 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8297 The typedef layer needs be preserved in order to differentiate between
8298 arrays and array pointers when both types are implemented using the same
8299 fat pointer. In the array pointer case, the pointer is encoded as
8300 a typedef of the pointer type. For instance, considering:
8302 type String_Access is access String;
8303 S1 : String_Access := null;
8305 To the debugger, S1 is defined as a typedef of type String. But
8306 to the user, it is a pointer. So if the user tries to print S1,
8307 we should not dereference the array, but print the array address
8310 If we didn't preserve the typedef layer, we would lose the fact that
8311 the type is to be presented as a pointer (needs de-reference before
8312 being printed). And we would also use the source-level type name. */
8315 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8316 CORE_ADDR address, struct value *dval, int check_tag)
8319 struct type *fixed_type =
8320 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8322 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8323 then preserve the typedef layer.
8325 Implementation note: We can only check the main-type portion of
8326 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8327 from TYPE now returns a type that has the same instance flags
8328 as TYPE. For instance, if TYPE is a "typedef const", and its
8329 target type is a "struct", then the typedef elimination will return
8330 a "const" version of the target type. See check_typedef for more
8331 details about how the typedef layer elimination is done.
8333 brobecker/2010-11-19: It seems to me that the only case where it is
8334 useful to preserve the typedef layer is when dealing with fat pointers.
8335 Perhaps, we could add a check for that and preserve the typedef layer
8336 only in that situation. But this seems unnecessary so far, probably
8337 because we call check_typedef/ada_check_typedef pretty much everywhere.
8339 if (type->code () == TYPE_CODE_TYPEDEF
8340 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8341 == TYPE_MAIN_TYPE (fixed_type)))
8347 /* A standard (static-sized) type corresponding as well as possible to
8348 TYPE0, but based on no runtime data. */
8350 static struct type *
8351 to_static_fixed_type (struct type *type0)
8358 if (type0->is_fixed_instance ())
8361 type0 = ada_check_typedef (type0);
8363 switch (type0->code ())
8367 case TYPE_CODE_STRUCT:
8368 type = dynamic_template_type (type0);
8370 return template_to_static_fixed_type (type);
8372 return template_to_static_fixed_type (type0);
8373 case TYPE_CODE_UNION:
8374 type = ada_find_parallel_type (type0, "___XVU");
8376 return template_to_static_fixed_type (type);
8378 return template_to_static_fixed_type (type0);
8382 /* A static approximation of TYPE with all type wrappers removed. */
8384 static struct type *
8385 static_unwrap_type (struct type *type)
8387 if (ada_is_aligner_type (type))
8389 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8390 if (ada_type_name (type1) == NULL)
8391 type1->set_name (ada_type_name (type));
8393 return static_unwrap_type (type1);
8397 struct type *raw_real_type = ada_get_base_type (type);
8399 if (raw_real_type == type)
8402 return to_static_fixed_type (raw_real_type);
8406 /* In some cases, incomplete and private types require
8407 cross-references that are not resolved as records (for example,
8409 type FooP is access Foo;
8411 type Foo is array ...;
8412 ). In these cases, since there is no mechanism for producing
8413 cross-references to such types, we instead substitute for FooP a
8414 stub enumeration type that is nowhere resolved, and whose tag is
8415 the name of the actual type. Call these types "non-record stubs". */
8417 /* A type equivalent to TYPE that is not a non-record stub, if one
8418 exists, otherwise TYPE. */
8421 ada_check_typedef (struct type *type)
8426 /* If our type is an access to an unconstrained array, which is encoded
8427 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8428 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8429 what allows us to distinguish between fat pointers that represent
8430 array types, and fat pointers that represent array access types
8431 (in both cases, the compiler implements them as fat pointers). */
8432 if (ada_is_access_to_unconstrained_array (type))
8435 type = check_typedef (type);
8436 if (type == NULL || type->code () != TYPE_CODE_ENUM
8437 || !type->is_stub ()
8438 || type->name () == NULL)
8442 const char *name = type->name ();
8443 struct type *type1 = ada_find_any_type (name);
8448 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8449 stubs pointing to arrays, as we don't create symbols for array
8450 types, only for the typedef-to-array types). If that's the case,
8451 strip the typedef layer. */
8452 if (type1->code () == TYPE_CODE_TYPEDEF)
8453 type1 = ada_check_typedef (type1);
8459 /* A value representing the data at VALADDR/ADDRESS as described by
8460 type TYPE0, but with a standard (static-sized) type that correctly
8461 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8462 type, then return VAL0 [this feature is simply to avoid redundant
8463 creation of struct values]. */
8465 static struct value *
8466 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8469 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8471 if (type == type0 && val0 != NULL)
8474 if (VALUE_LVAL (val0) != lval_memory)
8476 /* Our value does not live in memory; it could be a convenience
8477 variable, for instance. Create a not_lval value using val0's
8479 return value_from_contents (type, value_contents (val0).data ());
8482 return value_from_contents_and_address (type, 0, address);
8485 /* A value representing VAL, but with a standard (static-sized) type
8486 that correctly describes it. Does not necessarily create a new
8490 ada_to_fixed_value (struct value *val)
8492 val = unwrap_value (val);
8493 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8500 /* Table mapping attribute numbers to names.
8501 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8503 static const char * const attribute_names[] = {
8521 ada_attribute_name (enum exp_opcode n)
8523 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8524 return attribute_names[n - OP_ATR_FIRST + 1];
8526 return attribute_names[0];
8529 /* Evaluate the 'POS attribute applied to ARG. */
8532 pos_atr (struct value *arg)
8534 struct value *val = coerce_ref (arg);
8535 struct type *type = value_type (val);
8537 if (!discrete_type_p (type))
8538 error (_("'POS only defined on discrete types"));
8540 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8541 if (!result.has_value ())
8542 error (_("enumeration value is invalid: can't find 'POS"));
8548 ada_pos_atr (struct type *expect_type,
8549 struct expression *exp,
8550 enum noside noside, enum exp_opcode op,
8553 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8554 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8555 return value_zero (type, not_lval);
8556 return value_from_longest (type, pos_atr (arg));
8559 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8561 static struct value *
8562 val_atr (struct type *type, LONGEST val)
8564 gdb_assert (discrete_type_p (type));
8565 if (type->code () == TYPE_CODE_RANGE)
8566 type = TYPE_TARGET_TYPE (type);
8567 if (type->code () == TYPE_CODE_ENUM)
8569 if (val < 0 || val >= type->num_fields ())
8570 error (_("argument to 'VAL out of range"));
8571 val = type->field (val).loc_enumval ();
8573 return value_from_longest (type, val);
8577 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8579 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8580 return value_zero (type, not_lval);
8582 if (!discrete_type_p (type))
8583 error (_("'VAL only defined on discrete types"));
8584 if (!integer_type_p (value_type (arg)))
8585 error (_("'VAL requires integral argument"));
8587 return val_atr (type, value_as_long (arg));
8593 /* True if TYPE appears to be an Ada character type.
8594 [At the moment, this is true only for Character and Wide_Character;
8595 It is a heuristic test that could stand improvement]. */
8598 ada_is_character_type (struct type *type)
8602 /* If the type code says it's a character, then assume it really is,
8603 and don't check any further. */
8604 if (type->code () == TYPE_CODE_CHAR)
8607 /* Otherwise, assume it's a character type iff it is a discrete type
8608 with a known character type name. */
8609 name = ada_type_name (type);
8610 return (name != NULL
8611 && (type->code () == TYPE_CODE_INT
8612 || type->code () == TYPE_CODE_RANGE)
8613 && (strcmp (name, "character") == 0
8614 || strcmp (name, "wide_character") == 0
8615 || strcmp (name, "wide_wide_character") == 0
8616 || strcmp (name, "unsigned char") == 0));
8619 /* True if TYPE appears to be an Ada string type. */
8622 ada_is_string_type (struct type *type)
8624 type = ada_check_typedef (type);
8626 && type->code () != TYPE_CODE_PTR
8627 && (ada_is_simple_array_type (type)
8628 || ada_is_array_descriptor_type (type))
8629 && ada_array_arity (type) == 1)
8631 struct type *elttype = ada_array_element_type (type, 1);
8633 return ada_is_character_type (elttype);
8639 /* The compiler sometimes provides a parallel XVS type for a given
8640 PAD type. Normally, it is safe to follow the PAD type directly,
8641 but older versions of the compiler have a bug that causes the offset
8642 of its "F" field to be wrong. Following that field in that case
8643 would lead to incorrect results, but this can be worked around
8644 by ignoring the PAD type and using the associated XVS type instead.
8646 Set to True if the debugger should trust the contents of PAD types.
8647 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8648 static bool trust_pad_over_xvs = true;
8650 /* True if TYPE is a struct type introduced by the compiler to force the
8651 alignment of a value. Such types have a single field with a
8652 distinctive name. */
8655 ada_is_aligner_type (struct type *type)
8657 type = ada_check_typedef (type);
8659 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8662 return (type->code () == TYPE_CODE_STRUCT
8663 && type->num_fields () == 1
8664 && strcmp (type->field (0).name (), "F") == 0);
8667 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8668 the parallel type. */
8671 ada_get_base_type (struct type *raw_type)
8673 struct type *real_type_namer;
8674 struct type *raw_real_type;
8676 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8679 if (ada_is_aligner_type (raw_type))
8680 /* The encoding specifies that we should always use the aligner type.
8681 So, even if this aligner type has an associated XVS type, we should
8684 According to the compiler gurus, an XVS type parallel to an aligner
8685 type may exist because of a stabs limitation. In stabs, aligner
8686 types are empty because the field has a variable-sized type, and
8687 thus cannot actually be used as an aligner type. As a result,
8688 we need the associated parallel XVS type to decode the type.
8689 Since the policy in the compiler is to not change the internal
8690 representation based on the debugging info format, we sometimes
8691 end up having a redundant XVS type parallel to the aligner type. */
8694 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8695 if (real_type_namer == NULL
8696 || real_type_namer->code () != TYPE_CODE_STRUCT
8697 || real_type_namer->num_fields () != 1)
8700 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8702 /* This is an older encoding form where the base type needs to be
8703 looked up by name. We prefer the newer encoding because it is
8705 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
8706 if (raw_real_type == NULL)
8709 return raw_real_type;
8712 /* The field in our XVS type is a reference to the base type. */
8713 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8716 /* The type of value designated by TYPE, with all aligners removed. */
8719 ada_aligned_type (struct type *type)
8721 if (ada_is_aligner_type (type))
8722 return ada_aligned_type (type->field (0).type ());
8724 return ada_get_base_type (type);
8728 /* The address of the aligned value in an object at address VALADDR
8729 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8732 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8734 if (ada_is_aligner_type (type))
8735 return ada_aligned_value_addr
8736 (type->field (0).type (),
8737 valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
8744 /* The printed representation of an enumeration literal with encoded
8745 name NAME. The value is good to the next call of ada_enum_name. */
8747 ada_enum_name (const char *name)
8749 static std::string storage;
8752 /* First, unqualify the enumeration name:
8753 1. Search for the last '.' character. If we find one, then skip
8754 all the preceding characters, the unqualified name starts
8755 right after that dot.
8756 2. Otherwise, we may be debugging on a target where the compiler
8757 translates dots into "__". Search forward for double underscores,
8758 but stop searching when we hit an overloading suffix, which is
8759 of the form "__" followed by digits. */
8761 tmp = strrchr (name, '.');
8766 while ((tmp = strstr (name, "__")) != NULL)
8768 if (isdigit (tmp[2]))
8779 if (name[1] == 'U' || name[1] == 'W')
8782 if (name[1] == 'W' && name[2] == 'W')
8784 /* Also handle the QWW case. */
8787 if (sscanf (name + offset, "%x", &v) != 1)
8790 else if (((name[1] >= '0' && name[1] <= '9')
8791 || (name[1] >= 'a' && name[1] <= 'z'))
8794 storage = string_printf ("'%c'", name[1]);
8795 return storage.c_str ();
8800 if (isascii (v) && isprint (v))
8801 storage = string_printf ("'%c'", v);
8802 else if (name[1] == 'U')
8803 storage = string_printf ("'[\"%02x\"]'", v);
8804 else if (name[2] != 'W')
8805 storage = string_printf ("'[\"%04x\"]'", v);
8807 storage = string_printf ("'[\"%06x\"]'", v);
8809 return storage.c_str ();
8813 tmp = strstr (name, "__");
8815 tmp = strstr (name, "$");
8818 storage = std::string (name, tmp - name);
8819 return storage.c_str ();
8826 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8829 static struct value *
8830 unwrap_value (struct value *val)
8832 struct type *type = ada_check_typedef (value_type (val));
8834 if (ada_is_aligner_type (type))
8836 struct value *v = ada_value_struct_elt (val, "F", 0);
8837 struct type *val_type = ada_check_typedef (value_type (v));
8839 if (ada_type_name (val_type) == NULL)
8840 val_type->set_name (ada_type_name (type));
8842 return unwrap_value (v);
8846 struct type *raw_real_type =
8847 ada_check_typedef (ada_get_base_type (type));
8849 /* If there is no parallel XVS or XVE type, then the value is
8850 already unwrapped. Return it without further modification. */
8851 if ((type == raw_real_type)
8852 && ada_find_parallel_type (type, "___XVE") == NULL)
8856 coerce_unspec_val_to_type
8857 (val, ada_to_fixed_type (raw_real_type, 0,
8858 value_address (val),
8863 /* Given two array types T1 and T2, return nonzero iff both arrays
8864 contain the same number of elements. */
8867 ada_same_array_size_p (struct type *t1, struct type *t2)
8869 LONGEST lo1, hi1, lo2, hi2;
8871 /* Get the array bounds in order to verify that the size of
8872 the two arrays match. */
8873 if (!get_array_bounds (t1, &lo1, &hi1)
8874 || !get_array_bounds (t2, &lo2, &hi2))
8875 error (_("unable to determine array bounds"));
8877 /* To make things easier for size comparison, normalize a bit
8878 the case of empty arrays by making sure that the difference
8879 between upper bound and lower bound is always -1. */
8885 return (hi1 - lo1 == hi2 - lo2);
8888 /* Assuming that VAL is an array of integrals, and TYPE represents
8889 an array with the same number of elements, but with wider integral
8890 elements, return an array "casted" to TYPE. In practice, this
8891 means that the returned array is built by casting each element
8892 of the original array into TYPE's (wider) element type. */
8894 static struct value *
8895 ada_promote_array_of_integrals (struct type *type, struct value *val)
8897 struct type *elt_type = TYPE_TARGET_TYPE (type);
8901 /* Verify that both val and type are arrays of scalars, and
8902 that the size of val's elements is smaller than the size
8903 of type's element. */
8904 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8905 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8906 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8907 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8908 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8909 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8911 if (!get_array_bounds (type, &lo, &hi))
8912 error (_("unable to determine array bounds"));
8914 value *res = allocate_value (type);
8915 gdb::array_view<gdb_byte> res_contents = value_contents_writeable (res);
8917 /* Promote each array element. */
8918 for (i = 0; i < hi - lo + 1; i++)
8920 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8921 int elt_len = TYPE_LENGTH (elt_type);
8923 copy (value_contents_all (elt), res_contents.slice (elt_len * i, elt_len));
8929 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8930 return the converted value. */
8932 static struct value *
8933 coerce_for_assign (struct type *type, struct value *val)
8935 struct type *type2 = value_type (val);
8940 type2 = ada_check_typedef (type2);
8941 type = ada_check_typedef (type);
8943 if (type2->code () == TYPE_CODE_PTR
8944 && type->code () == TYPE_CODE_ARRAY)
8946 val = ada_value_ind (val);
8947 type2 = value_type (val);
8950 if (type2->code () == TYPE_CODE_ARRAY
8951 && type->code () == TYPE_CODE_ARRAY)
8953 if (!ada_same_array_size_p (type, type2))
8954 error (_("cannot assign arrays of different length"));
8956 if (is_integral_type (TYPE_TARGET_TYPE (type))
8957 && is_integral_type (TYPE_TARGET_TYPE (type2))
8958 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8959 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8961 /* Allow implicit promotion of the array elements to
8963 return ada_promote_array_of_integrals (type, val);
8966 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8967 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8968 error (_("Incompatible types in assignment"));
8969 deprecated_set_value_type (val, type);
8974 static struct value *
8975 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8978 struct type *type1, *type2;
8981 arg1 = coerce_ref (arg1);
8982 arg2 = coerce_ref (arg2);
8983 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8984 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8986 if (type1->code () != TYPE_CODE_INT
8987 || type2->code () != TYPE_CODE_INT)
8988 return value_binop (arg1, arg2, op);
8997 return value_binop (arg1, arg2, op);
9000 v2 = value_as_long (arg2);
9004 if (op == BINOP_MOD)
9006 else if (op == BINOP_DIV)
9010 gdb_assert (op == BINOP_REM);
9014 error (_("second operand of %s must not be zero."), name);
9017 if (type1->is_unsigned () || op == BINOP_MOD)
9018 return value_binop (arg1, arg2, op);
9020 v1 = value_as_long (arg1);
9025 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9026 v += v > 0 ? -1 : 1;
9034 /* Should not reach this point. */
9038 val = allocate_value (type1);
9039 store_unsigned_integer (value_contents_raw (val).data (),
9040 TYPE_LENGTH (value_type (val)),
9041 type_byte_order (type1), v);
9046 ada_value_equal (struct value *arg1, struct value *arg2)
9048 if (ada_is_direct_array_type (value_type (arg1))
9049 || ada_is_direct_array_type (value_type (arg2)))
9051 struct type *arg1_type, *arg2_type;
9053 /* Automatically dereference any array reference before
9054 we attempt to perform the comparison. */
9055 arg1 = ada_coerce_ref (arg1);
9056 arg2 = ada_coerce_ref (arg2);
9058 arg1 = ada_coerce_to_simple_array (arg1);
9059 arg2 = ada_coerce_to_simple_array (arg2);
9061 arg1_type = ada_check_typedef (value_type (arg1));
9062 arg2_type = ada_check_typedef (value_type (arg2));
9064 if (arg1_type->code () != TYPE_CODE_ARRAY
9065 || arg2_type->code () != TYPE_CODE_ARRAY)
9066 error (_("Attempt to compare array with non-array"));
9067 /* FIXME: The following works only for types whose
9068 representations use all bits (no padding or undefined bits)
9069 and do not have user-defined equality. */
9070 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9071 && memcmp (value_contents (arg1).data (),
9072 value_contents (arg2).data (),
9073 TYPE_LENGTH (arg1_type)) == 0);
9075 return value_equal (arg1, arg2);
9082 check_objfile (const std::unique_ptr<ada_component> &comp,
9083 struct objfile *objfile)
9085 return comp->uses_objfile (objfile);
9088 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9089 component of LHS (a simple array or a record). Does not modify the
9090 inferior's memory, nor does it modify LHS (unless LHS ==
9094 assign_component (struct value *container, struct value *lhs, LONGEST index,
9095 struct expression *exp, operation_up &arg)
9097 scoped_value_mark mark;
9100 struct type *lhs_type = check_typedef (value_type (lhs));
9102 if (lhs_type->code () == TYPE_CODE_ARRAY)
9104 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9105 struct value *index_val = value_from_longest (index_type, index);
9107 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9111 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9112 elt = ada_to_fixed_value (elt);
9115 ada_aggregate_operation *ag_op
9116 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9117 if (ag_op != nullptr)
9118 ag_op->assign_aggregate (container, elt, exp);
9120 value_assign_to_component (container, elt,
9121 arg->evaluate (nullptr, exp,
9126 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9128 for (const auto &item : m_components)
9129 if (item->uses_objfile (objfile))
9135 ada_aggregate_component::dump (ui_file *stream, int depth)
9137 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9138 for (const auto &item : m_components)
9139 item->dump (stream, depth + 1);
9143 ada_aggregate_component::assign (struct value *container,
9144 struct value *lhs, struct expression *exp,
9145 std::vector<LONGEST> &indices,
9146 LONGEST low, LONGEST high)
9148 for (auto &item : m_components)
9149 item->assign (container, lhs, exp, indices, low, high);
9152 /* See ada-exp.h. */
9155 ada_aggregate_operation::assign_aggregate (struct value *container,
9157 struct expression *exp)
9159 struct type *lhs_type;
9160 LONGEST low_index, high_index;
9162 container = ada_coerce_ref (container);
9163 if (ada_is_direct_array_type (value_type (container)))
9164 container = ada_coerce_to_simple_array (container);
9165 lhs = ada_coerce_ref (lhs);
9166 if (!deprecated_value_modifiable (lhs))
9167 error (_("Left operand of assignment is not a modifiable lvalue."));
9169 lhs_type = check_typedef (value_type (lhs));
9170 if (ada_is_direct_array_type (lhs_type))
9172 lhs = ada_coerce_to_simple_array (lhs);
9173 lhs_type = check_typedef (value_type (lhs));
9174 low_index = lhs_type->bounds ()->low.const_val ();
9175 high_index = lhs_type->bounds ()->high.const_val ();
9177 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9180 high_index = num_visible_fields (lhs_type) - 1;
9183 error (_("Left-hand side must be array or record."));
9185 std::vector<LONGEST> indices (4);
9186 indices[0] = indices[1] = low_index - 1;
9187 indices[2] = indices[3] = high_index + 1;
9189 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9190 low_index, high_index);
9196 ada_positional_component::uses_objfile (struct objfile *objfile)
9198 return m_op->uses_objfile (objfile);
9202 ada_positional_component::dump (ui_file *stream, int depth)
9204 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9205 depth, "", m_index);
9206 m_op->dump (stream, depth + 1);
9209 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9210 construct, given that the positions are relative to lower bound
9211 LOW, where HIGH is the upper bound. Record the position in
9212 INDICES. CONTAINER is as for assign_aggregate. */
9214 ada_positional_component::assign (struct value *container,
9215 struct value *lhs, struct expression *exp,
9216 std::vector<LONGEST> &indices,
9217 LONGEST low, LONGEST high)
9219 LONGEST ind = m_index + low;
9221 if (ind - 1 == high)
9222 warning (_("Extra components in aggregate ignored."));
9225 add_component_interval (ind, ind, indices);
9226 assign_component (container, lhs, ind, exp, m_op);
9231 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9233 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9237 ada_discrete_range_association::dump (ui_file *stream, int depth)
9239 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9240 m_low->dump (stream, depth + 1);
9241 m_high->dump (stream, depth + 1);
9245 ada_discrete_range_association::assign (struct value *container,
9247 struct expression *exp,
9248 std::vector<LONGEST> &indices,
9249 LONGEST low, LONGEST high,
9252 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9253 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9255 if (lower <= upper && (lower < low || upper > high))
9256 error (_("Index in component association out of bounds."));
9258 add_component_interval (lower, upper, indices);
9259 while (lower <= upper)
9261 assign_component (container, lhs, lower, exp, op);
9267 ada_name_association::uses_objfile (struct objfile *objfile)
9269 return m_val->uses_objfile (objfile);
9273 ada_name_association::dump (ui_file *stream, int depth)
9275 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9276 m_val->dump (stream, depth + 1);
9280 ada_name_association::assign (struct value *container,
9282 struct expression *exp,
9283 std::vector<LONGEST> &indices,
9284 LONGEST low, LONGEST high,
9289 if (ada_is_direct_array_type (value_type (lhs)))
9290 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9294 ada_string_operation *strop
9295 = dynamic_cast<ada_string_operation *> (m_val.get ());
9298 if (strop != nullptr)
9299 name = strop->get_name ();
9302 ada_var_value_operation *vvo
9303 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9305 error (_("Invalid record component association."));
9306 name = vvo->get_symbol ()->natural_name ();
9310 if (! find_struct_field (name, value_type (lhs), 0,
9311 NULL, NULL, NULL, NULL, &index))
9312 error (_("Unknown component name: %s."), name);
9315 add_component_interval (index, index, indices);
9316 assign_component (container, lhs, index, exp, op);
9320 ada_choices_component::uses_objfile (struct objfile *objfile)
9322 if (m_op->uses_objfile (objfile))
9324 for (const auto &item : m_assocs)
9325 if (item->uses_objfile (objfile))
9331 ada_choices_component::dump (ui_file *stream, int depth)
9333 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9334 m_op->dump (stream, depth + 1);
9335 for (const auto &item : m_assocs)
9336 item->dump (stream, depth + 1);
9339 /* Assign into the components of LHS indexed by the OP_CHOICES
9340 construct at *POS, updating *POS past the construct, given that
9341 the allowable indices are LOW..HIGH. Record the indices assigned
9342 to in INDICES. CONTAINER is as for assign_aggregate. */
9344 ada_choices_component::assign (struct value *container,
9345 struct value *lhs, struct expression *exp,
9346 std::vector<LONGEST> &indices,
9347 LONGEST low, LONGEST high)
9349 for (auto &item : m_assocs)
9350 item->assign (container, lhs, exp, indices, low, high, m_op);
9354 ada_others_component::uses_objfile (struct objfile *objfile)
9356 return m_op->uses_objfile (objfile);
9360 ada_others_component::dump (ui_file *stream, int depth)
9362 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9363 m_op->dump (stream, depth + 1);
9366 /* Assign the value of the expression in the OP_OTHERS construct in
9367 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9368 have not been previously assigned. The index intervals already assigned
9369 are in INDICES. CONTAINER is as for assign_aggregate. */
9371 ada_others_component::assign (struct value *container,
9372 struct value *lhs, struct expression *exp,
9373 std::vector<LONGEST> &indices,
9374 LONGEST low, LONGEST high)
9376 int num_indices = indices.size ();
9377 for (int i = 0; i < num_indices - 2; i += 2)
9379 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9380 assign_component (container, lhs, ind, exp, m_op);
9385 ada_assign_operation::evaluate (struct type *expect_type,
9386 struct expression *exp,
9389 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9391 ada_aggregate_operation *ag_op
9392 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9393 if (ag_op != nullptr)
9395 if (noside != EVAL_NORMAL)
9398 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9399 return ada_value_assign (arg1, arg1);
9401 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9402 except if the lhs of our assignment is a convenience variable.
9403 In the case of assigning to a convenience variable, the lhs
9404 should be exactly the result of the evaluation of the rhs. */
9405 struct type *type = value_type (arg1);
9406 if (VALUE_LVAL (arg1) == lval_internalvar)
9408 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9409 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9411 if (VALUE_LVAL (arg1) == lval_internalvar)
9416 arg2 = coerce_for_assign (value_type (arg1), arg2);
9417 return ada_value_assign (arg1, arg2);
9420 } /* namespace expr */
9422 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9423 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9426 add_component_interval (LONGEST low, LONGEST high,
9427 std::vector<LONGEST> &indices)
9431 int size = indices.size ();
9432 for (i = 0; i < size; i += 2) {
9433 if (high >= indices[i] && low <= indices[i + 1])
9437 for (kh = i + 2; kh < size; kh += 2)
9438 if (high < indices[kh])
9440 if (low < indices[i])
9442 indices[i + 1] = indices[kh - 1];
9443 if (high > indices[i + 1])
9444 indices[i + 1] = high;
9445 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9446 indices.resize (kh - i - 2);
9449 else if (high < indices[i])
9453 indices.resize (indices.size () + 2);
9454 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9455 indices[j] = indices[j - 2];
9457 indices[i + 1] = high;
9460 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9463 static struct value *
9464 ada_value_cast (struct type *type, struct value *arg2)
9466 if (type == ada_check_typedef (value_type (arg2)))
9469 return value_cast (type, arg2);
9472 /* Evaluating Ada expressions, and printing their result.
9473 ------------------------------------------------------
9478 We usually evaluate an Ada expression in order to print its value.
9479 We also evaluate an expression in order to print its type, which
9480 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9481 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9482 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9483 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9486 Evaluating expressions is a little more complicated for Ada entities
9487 than it is for entities in languages such as C. The main reason for
9488 this is that Ada provides types whose definition might be dynamic.
9489 One example of such types is variant records. Or another example
9490 would be an array whose bounds can only be known at run time.
9492 The following description is a general guide as to what should be
9493 done (and what should NOT be done) in order to evaluate an expression
9494 involving such types, and when. This does not cover how the semantic
9495 information is encoded by GNAT as this is covered separatly. For the
9496 document used as the reference for the GNAT encoding, see exp_dbug.ads
9497 in the GNAT sources.
9499 Ideally, we should embed each part of this description next to its
9500 associated code. Unfortunately, the amount of code is so vast right
9501 now that it's hard to see whether the code handling a particular
9502 situation might be duplicated or not. One day, when the code is
9503 cleaned up, this guide might become redundant with the comments
9504 inserted in the code, and we might want to remove it.
9506 2. ``Fixing'' an Entity, the Simple Case:
9507 -----------------------------------------
9509 When evaluating Ada expressions, the tricky issue is that they may
9510 reference entities whose type contents and size are not statically
9511 known. Consider for instance a variant record:
9513 type Rec (Empty : Boolean := True) is record
9516 when False => Value : Integer;
9519 Yes : Rec := (Empty => False, Value => 1);
9520 No : Rec := (empty => True);
9522 The size and contents of that record depends on the value of the
9523 descriminant (Rec.Empty). At this point, neither the debugging
9524 information nor the associated type structure in GDB are able to
9525 express such dynamic types. So what the debugger does is to create
9526 "fixed" versions of the type that applies to the specific object.
9527 We also informally refer to this operation as "fixing" an object,
9528 which means creating its associated fixed type.
9530 Example: when printing the value of variable "Yes" above, its fixed
9531 type would look like this:
9538 On the other hand, if we printed the value of "No", its fixed type
9545 Things become a little more complicated when trying to fix an entity
9546 with a dynamic type that directly contains another dynamic type,
9547 such as an array of variant records, for instance. There are
9548 two possible cases: Arrays, and records.
9550 3. ``Fixing'' Arrays:
9551 ---------------------
9553 The type structure in GDB describes an array in terms of its bounds,
9554 and the type of its elements. By design, all elements in the array
9555 have the same type and we cannot represent an array of variant elements
9556 using the current type structure in GDB. When fixing an array,
9557 we cannot fix the array element, as we would potentially need one
9558 fixed type per element of the array. As a result, the best we can do
9559 when fixing an array is to produce an array whose bounds and size
9560 are correct (allowing us to read it from memory), but without having
9561 touched its element type. Fixing each element will be done later,
9562 when (if) necessary.
9564 Arrays are a little simpler to handle than records, because the same
9565 amount of memory is allocated for each element of the array, even if
9566 the amount of space actually used by each element differs from element
9567 to element. Consider for instance the following array of type Rec:
9569 type Rec_Array is array (1 .. 2) of Rec;
9571 The actual amount of memory occupied by each element might be different
9572 from element to element, depending on the value of their discriminant.
9573 But the amount of space reserved for each element in the array remains
9574 fixed regardless. So we simply need to compute that size using
9575 the debugging information available, from which we can then determine
9576 the array size (we multiply the number of elements of the array by
9577 the size of each element).
9579 The simplest case is when we have an array of a constrained element
9580 type. For instance, consider the following type declarations:
9582 type Bounded_String (Max_Size : Integer) is
9584 Buffer : String (1 .. Max_Size);
9586 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9588 In this case, the compiler describes the array as an array of
9589 variable-size elements (identified by its XVS suffix) for which
9590 the size can be read in the parallel XVZ variable.
9592 In the case of an array of an unconstrained element type, the compiler
9593 wraps the array element inside a private PAD type. This type should not
9594 be shown to the user, and must be "unwrap"'ed before printing. Note
9595 that we also use the adjective "aligner" in our code to designate
9596 these wrapper types.
9598 In some cases, the size allocated for each element is statically
9599 known. In that case, the PAD type already has the correct size,
9600 and the array element should remain unfixed.
9602 But there are cases when this size is not statically known.
9603 For instance, assuming that "Five" is an integer variable:
9605 type Dynamic is array (1 .. Five) of Integer;
9606 type Wrapper (Has_Length : Boolean := False) is record
9609 when True => Length : Integer;
9613 type Wrapper_Array is array (1 .. 2) of Wrapper;
9615 Hello : Wrapper_Array := (others => (Has_Length => True,
9616 Data => (others => 17),
9620 The debugging info would describe variable Hello as being an
9621 array of a PAD type. The size of that PAD type is not statically
9622 known, but can be determined using a parallel XVZ variable.
9623 In that case, a copy of the PAD type with the correct size should
9624 be used for the fixed array.
9626 3. ``Fixing'' record type objects:
9627 ----------------------------------
9629 Things are slightly different from arrays in the case of dynamic
9630 record types. In this case, in order to compute the associated
9631 fixed type, we need to determine the size and offset of each of
9632 its components. This, in turn, requires us to compute the fixed
9633 type of each of these components.
9635 Consider for instance the example:
9637 type Bounded_String (Max_Size : Natural) is record
9638 Str : String (1 .. Max_Size);
9641 My_String : Bounded_String (Max_Size => 10);
9643 In that case, the position of field "Length" depends on the size
9644 of field Str, which itself depends on the value of the Max_Size
9645 discriminant. In order to fix the type of variable My_String,
9646 we need to fix the type of field Str. Therefore, fixing a variant
9647 record requires us to fix each of its components.
9649 However, if a component does not have a dynamic size, the component
9650 should not be fixed. In particular, fields that use a PAD type
9651 should not fixed. Here is an example where this might happen
9652 (assuming type Rec above):
9654 type Container (Big : Boolean) is record
9658 when True => Another : Integer;
9662 My_Container : Container := (Big => False,
9663 First => (Empty => True),
9666 In that example, the compiler creates a PAD type for component First,
9667 whose size is constant, and then positions the component After just
9668 right after it. The offset of component After is therefore constant
9671 The debugger computes the position of each field based on an algorithm
9672 that uses, among other things, the actual position and size of the field
9673 preceding it. Let's now imagine that the user is trying to print
9674 the value of My_Container. If the type fixing was recursive, we would
9675 end up computing the offset of field After based on the size of the
9676 fixed version of field First. And since in our example First has
9677 only one actual field, the size of the fixed type is actually smaller
9678 than the amount of space allocated to that field, and thus we would
9679 compute the wrong offset of field After.
9681 To make things more complicated, we need to watch out for dynamic
9682 components of variant records (identified by the ___XVL suffix in
9683 the component name). Even if the target type is a PAD type, the size
9684 of that type might not be statically known. So the PAD type needs
9685 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9686 we might end up with the wrong size for our component. This can be
9687 observed with the following type declarations:
9689 type Octal is new Integer range 0 .. 7;
9690 type Octal_Array is array (Positive range <>) of Octal;
9691 pragma Pack (Octal_Array);
9693 type Octal_Buffer (Size : Positive) is record
9694 Buffer : Octal_Array (1 .. Size);
9698 In that case, Buffer is a PAD type whose size is unset and needs
9699 to be computed by fixing the unwrapped type.
9701 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9702 ----------------------------------------------------------
9704 Lastly, when should the sub-elements of an entity that remained unfixed
9705 thus far, be actually fixed?
9707 The answer is: Only when referencing that element. For instance
9708 when selecting one component of a record, this specific component
9709 should be fixed at that point in time. Or when printing the value
9710 of a record, each component should be fixed before its value gets
9711 printed. Similarly for arrays, the element of the array should be
9712 fixed when printing each element of the array, or when extracting
9713 one element out of that array. On the other hand, fixing should
9714 not be performed on the elements when taking a slice of an array!
9716 Note that one of the side effects of miscomputing the offset and
9717 size of each field is that we end up also miscomputing the size
9718 of the containing type. This can have adverse results when computing
9719 the value of an entity. GDB fetches the value of an entity based
9720 on the size of its type, and thus a wrong size causes GDB to fetch
9721 the wrong amount of memory. In the case where the computed size is
9722 too small, GDB fetches too little data to print the value of our
9723 entity. Results in this case are unpredictable, as we usually read
9724 past the buffer containing the data =:-o. */
9726 /* A helper function for TERNOP_IN_RANGE. */
9729 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9731 value *arg1, value *arg2, value *arg3)
9733 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9734 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9735 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9737 value_from_longest (type,
9738 (value_less (arg1, arg3)
9739 || value_equal (arg1, arg3))
9740 && (value_less (arg2, arg1)
9741 || value_equal (arg2, arg1)));
9744 /* A helper function for UNOP_NEG. */
9747 ada_unop_neg (struct type *expect_type,
9748 struct expression *exp,
9749 enum noside noside, enum exp_opcode op,
9752 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9753 return value_neg (arg1);
9756 /* A helper function for UNOP_IN_RANGE. */
9759 ada_unop_in_range (struct type *expect_type,
9760 struct expression *exp,
9761 enum noside noside, enum exp_opcode op,
9762 struct value *arg1, struct type *type)
9764 struct value *arg2, *arg3;
9765 switch (type->code ())
9768 lim_warning (_("Membership test incompletely implemented; "
9769 "always returns true"));
9770 type = language_bool_type (exp->language_defn, exp->gdbarch);
9771 return value_from_longest (type, (LONGEST) 1);
9773 case TYPE_CODE_RANGE:
9774 arg2 = value_from_longest (type,
9775 type->bounds ()->low.const_val ());
9776 arg3 = value_from_longest (type,
9777 type->bounds ()->high.const_val ());
9778 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9779 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9780 type = language_bool_type (exp->language_defn, exp->gdbarch);
9782 value_from_longest (type,
9783 (value_less (arg1, arg3)
9784 || value_equal (arg1, arg3))
9785 && (value_less (arg2, arg1)
9786 || value_equal (arg2, arg1)));
9790 /* A helper function for OP_ATR_TAG. */
9793 ada_atr_tag (struct type *expect_type,
9794 struct expression *exp,
9795 enum noside noside, enum exp_opcode op,
9798 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9799 return value_zero (ada_tag_type (arg1), not_lval);
9801 return ada_value_tag (arg1);
9804 /* A helper function for OP_ATR_SIZE. */
9807 ada_atr_size (struct type *expect_type,
9808 struct expression *exp,
9809 enum noside noside, enum exp_opcode op,
9812 struct type *type = value_type (arg1);
9814 /* If the argument is a reference, then dereference its type, since
9815 the user is really asking for the size of the actual object,
9816 not the size of the pointer. */
9817 if (type->code () == TYPE_CODE_REF)
9818 type = TYPE_TARGET_TYPE (type);
9820 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9821 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9823 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9824 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9827 /* A helper function for UNOP_ABS. */
9830 ada_abs (struct type *expect_type,
9831 struct expression *exp,
9832 enum noside noside, enum exp_opcode op,
9835 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9836 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9837 return value_neg (arg1);
9842 /* A helper function for BINOP_MUL. */
9845 ada_mult_binop (struct type *expect_type,
9846 struct expression *exp,
9847 enum noside noside, enum exp_opcode op,
9848 struct value *arg1, struct value *arg2)
9850 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9852 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9853 return value_zero (value_type (arg1), not_lval);
9857 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9858 return ada_value_binop (arg1, arg2, op);
9862 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9865 ada_equal_binop (struct type *expect_type,
9866 struct expression *exp,
9867 enum noside noside, enum exp_opcode op,
9868 struct value *arg1, struct value *arg2)
9871 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9875 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9876 tem = ada_value_equal (arg1, arg2);
9878 if (op == BINOP_NOTEQUAL)
9880 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9881 return value_from_longest (type, (LONGEST) tem);
9884 /* A helper function for TERNOP_SLICE. */
9887 ada_ternop_slice (struct expression *exp,
9889 struct value *array, struct value *low_bound_val,
9890 struct value *high_bound_val)
9895 low_bound_val = coerce_ref (low_bound_val);
9896 high_bound_val = coerce_ref (high_bound_val);
9897 low_bound = value_as_long (low_bound_val);
9898 high_bound = value_as_long (high_bound_val);
9900 /* If this is a reference to an aligner type, then remove all
9902 if (value_type (array)->code () == TYPE_CODE_REF
9903 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9904 TYPE_TARGET_TYPE (value_type (array)) =
9905 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9907 if (ada_is_any_packed_array_type (value_type (array)))
9908 error (_("cannot slice a packed array"));
9910 /* If this is a reference to an array or an array lvalue,
9911 convert to a pointer. */
9912 if (value_type (array)->code () == TYPE_CODE_REF
9913 || (value_type (array)->code () == TYPE_CODE_ARRAY
9914 && VALUE_LVAL (array) == lval_memory))
9915 array = value_addr (array);
9917 if (noside == EVAL_AVOID_SIDE_EFFECTS
9918 && ada_is_array_descriptor_type (ada_check_typedef
9919 (value_type (array))))
9920 return empty_array (ada_type_of_array (array, 0), low_bound,
9923 array = ada_coerce_to_simple_array_ptr (array);
9925 /* If we have more than one level of pointer indirection,
9926 dereference the value until we get only one level. */
9927 while (value_type (array)->code () == TYPE_CODE_PTR
9928 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9930 array = value_ind (array);
9932 /* Make sure we really do have an array type before going further,
9933 to avoid a SEGV when trying to get the index type or the target
9934 type later down the road if the debug info generated by
9935 the compiler is incorrect or incomplete. */
9936 if (!ada_is_simple_array_type (value_type (array)))
9937 error (_("cannot take slice of non-array"));
9939 if (ada_check_typedef (value_type (array))->code ()
9942 struct type *type0 = ada_check_typedef (value_type (array));
9944 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9945 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9948 struct type *arr_type0 =
9949 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9951 return ada_value_slice_from_ptr (array, arr_type0,
9952 longest_to_int (low_bound),
9953 longest_to_int (high_bound));
9956 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9958 else if (high_bound < low_bound)
9959 return empty_array (value_type (array), low_bound, high_bound);
9961 return ada_value_slice (array, longest_to_int (low_bound),
9962 longest_to_int (high_bound));
9965 /* A helper function for BINOP_IN_BOUNDS. */
9968 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9969 struct value *arg1, struct value *arg2, int n)
9971 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9973 struct type *type = language_bool_type (exp->language_defn,
9975 return value_zero (type, not_lval);
9978 struct type *type = ada_index_type (value_type (arg2), n, "range");
9980 type = value_type (arg1);
9982 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9983 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9985 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9986 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9987 type = language_bool_type (exp->language_defn, exp->gdbarch);
9988 return value_from_longest (type,
9989 (value_less (arg1, arg3)
9990 || value_equal (arg1, arg3))
9991 && (value_less (arg2, arg1)
9992 || value_equal (arg2, arg1)));
9995 /* A helper function for some attribute operations. */
9998 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
9999 struct value *arg1, struct type *type_arg, int tem)
10001 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10003 if (type_arg == NULL)
10004 type_arg = value_type (arg1);
10006 if (ada_is_constrained_packed_array_type (type_arg))
10007 type_arg = decode_constrained_packed_array_type (type_arg);
10009 if (!discrete_type_p (type_arg))
10013 default: /* Should never happen. */
10014 error (_("unexpected attribute encountered"));
10017 type_arg = ada_index_type (type_arg, tem,
10018 ada_attribute_name (op));
10020 case OP_ATR_LENGTH:
10021 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10026 return value_zero (type_arg, not_lval);
10028 else if (type_arg == NULL)
10030 arg1 = ada_coerce_ref (arg1);
10032 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10033 arg1 = ada_coerce_to_simple_array (arg1);
10036 if (op == OP_ATR_LENGTH)
10037 type = builtin_type (exp->gdbarch)->builtin_int;
10040 type = ada_index_type (value_type (arg1), tem,
10041 ada_attribute_name (op));
10043 type = builtin_type (exp->gdbarch)->builtin_int;
10048 default: /* Should never happen. */
10049 error (_("unexpected attribute encountered"));
10051 return value_from_longest
10052 (type, ada_array_bound (arg1, tem, 0));
10054 return value_from_longest
10055 (type, ada_array_bound (arg1, tem, 1));
10056 case OP_ATR_LENGTH:
10057 return value_from_longest
10058 (type, ada_array_length (arg1, tem));
10061 else if (discrete_type_p (type_arg))
10063 struct type *range_type;
10064 const char *name = ada_type_name (type_arg);
10067 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10068 range_type = to_fixed_range_type (type_arg, NULL);
10069 if (range_type == NULL)
10070 range_type = type_arg;
10074 error (_("unexpected attribute encountered"));
10076 return value_from_longest
10077 (range_type, ada_discrete_type_low_bound (range_type));
10079 return value_from_longest
10080 (range_type, ada_discrete_type_high_bound (range_type));
10081 case OP_ATR_LENGTH:
10082 error (_("the 'length attribute applies only to array types"));
10085 else if (type_arg->code () == TYPE_CODE_FLT)
10086 error (_("unimplemented type attribute"));
10091 if (ada_is_constrained_packed_array_type (type_arg))
10092 type_arg = decode_constrained_packed_array_type (type_arg);
10095 if (op == OP_ATR_LENGTH)
10096 type = builtin_type (exp->gdbarch)->builtin_int;
10099 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10101 type = builtin_type (exp->gdbarch)->builtin_int;
10107 error (_("unexpected attribute encountered"));
10109 low = ada_array_bound_from_type (type_arg, tem, 0);
10110 return value_from_longest (type, low);
10112 high = ada_array_bound_from_type (type_arg, tem, 1);
10113 return value_from_longest (type, high);
10114 case OP_ATR_LENGTH:
10115 low = ada_array_bound_from_type (type_arg, tem, 0);
10116 high = ada_array_bound_from_type (type_arg, tem, 1);
10117 return value_from_longest (type, high - low + 1);
10122 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10125 ada_binop_minmax (struct type *expect_type,
10126 struct expression *exp,
10127 enum noside noside, enum exp_opcode op,
10128 struct value *arg1, struct value *arg2)
10130 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10131 return value_zero (value_type (arg1), not_lval);
10134 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10135 return value_binop (arg1, arg2, op);
10139 /* A helper function for BINOP_EXP. */
10142 ada_binop_exp (struct type *expect_type,
10143 struct expression *exp,
10144 enum noside noside, enum exp_opcode op,
10145 struct value *arg1, struct value *arg2)
10147 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10148 return value_zero (value_type (arg1), not_lval);
10151 /* For integer exponentiation operations,
10152 only promote the first argument. */
10153 if (is_integral_type (value_type (arg2)))
10154 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10156 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10158 return value_binop (arg1, arg2, op);
10165 /* See ada-exp.h. */
10168 ada_resolvable::replace (operation_up &&owner,
10169 struct expression *exp,
10170 bool deprocedure_p,
10171 bool parse_completion,
10172 innermost_block_tracker *tracker,
10173 struct type *context_type)
10175 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10176 return (make_operation<ada_funcall_operation>
10177 (std::move (owner),
10178 std::vector<operation_up> ()));
10179 return std::move (owner);
10182 /* Convert the character literal whose value would be VAL to the
10183 appropriate value of type TYPE, if there is a translation.
10184 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10185 the literal 'A' (VAL == 65), returns 0. */
10188 convert_char_literal (struct type *type, LONGEST val)
10195 type = check_typedef (type);
10196 if (type->code () != TYPE_CODE_ENUM)
10199 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10200 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10201 else if (val >= 0 && val < 256)
10202 xsnprintf (name, sizeof (name), "QU%02x", (unsigned) val);
10203 else if (val >= 0 && val < 0x10000)
10204 xsnprintf (name, sizeof (name), "QW%04x", (unsigned) val);
10206 xsnprintf (name, sizeof (name), "QWW%08lx", (unsigned long) val);
10207 size_t len = strlen (name);
10208 for (f = 0; f < type->num_fields (); f += 1)
10210 /* Check the suffix because an enum constant in a package will
10211 have a name like "pkg__QUxx". This is safe enough because we
10212 already have the correct type, and because mangling means
10213 there can't be clashes. */
10214 const char *ename = type->field (f).name ();
10215 size_t elen = strlen (ename);
10217 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10218 return type->field (f).loc_enumval ();
10223 /* See ada-exp.h. */
10226 ada_char_operation::replace (operation_up &&owner,
10227 struct expression *exp,
10228 bool deprocedure_p,
10229 bool parse_completion,
10230 innermost_block_tracker *tracker,
10231 struct type *context_type)
10233 operation_up result = std::move (owner);
10235 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10237 gdb_assert (result.get () == this);
10238 std::get<0> (m_storage) = context_type;
10239 std::get<1> (m_storage)
10240 = convert_char_literal (context_type, std::get<1> (m_storage));
10243 return make_operation<ada_wrapped_operation> (std::move (result));
10247 ada_wrapped_operation::evaluate (struct type *expect_type,
10248 struct expression *exp,
10249 enum noside noside)
10251 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10252 if (noside == EVAL_NORMAL)
10253 result = unwrap_value (result);
10255 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10256 then we need to perform the conversion manually, because
10257 evaluate_subexp_standard doesn't do it. This conversion is
10258 necessary in Ada because the different kinds of float/fixed
10259 types in Ada have different representations.
10261 Similarly, we need to perform the conversion from OP_LONG
10263 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10264 result = ada_value_cast (expect_type, result);
10270 ada_string_operation::evaluate (struct type *expect_type,
10271 struct expression *exp,
10272 enum noside noside)
10274 value *result = string_operation::evaluate (expect_type, exp, noside);
10275 /* The result type will have code OP_STRING, bashed there from
10276 OP_ARRAY. Bash it back. */
10277 if (value_type (result)->code () == TYPE_CODE_STRING)
10278 value_type (result)->set_code (TYPE_CODE_ARRAY);
10283 ada_qual_operation::evaluate (struct type *expect_type,
10284 struct expression *exp,
10285 enum noside noside)
10287 struct type *type = std::get<1> (m_storage);
10288 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10292 ada_ternop_range_operation::evaluate (struct type *expect_type,
10293 struct expression *exp,
10294 enum noside noside)
10296 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10297 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10298 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10299 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10303 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10304 struct expression *exp,
10305 enum noside noside)
10307 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10308 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10310 auto do_op = [=] (LONGEST x, LONGEST y)
10312 if (std::get<0> (m_storage) == BINOP_ADD)
10317 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10318 return (value_from_longest
10319 (value_type (arg1),
10320 do_op (value_as_long (arg1), value_as_long (arg2))));
10321 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10322 return (value_from_longest
10323 (value_type (arg2),
10324 do_op (value_as_long (arg1), value_as_long (arg2))));
10325 /* Preserve the original type for use by the range case below.
10326 We cannot cast the result to a reference type, so if ARG1 is
10327 a reference type, find its underlying type. */
10328 struct type *type = value_type (arg1);
10329 while (type->code () == TYPE_CODE_REF)
10330 type = TYPE_TARGET_TYPE (type);
10331 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10332 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10333 /* We need to special-case the result with a range.
10334 This is done for the benefit of "ptype". gdb's Ada support
10335 historically used the LHS to set the result type here, so
10336 preserve this behavior. */
10337 if (type->code () == TYPE_CODE_RANGE)
10338 arg1 = value_cast (type, arg1);
10343 ada_unop_atr_operation::evaluate (struct type *expect_type,
10344 struct expression *exp,
10345 enum noside noside)
10347 struct type *type_arg = nullptr;
10348 value *val = nullptr;
10350 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10352 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10353 EVAL_AVOID_SIDE_EFFECTS);
10354 type_arg = value_type (tem);
10357 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10359 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10360 val, type_arg, std::get<2> (m_storage));
10364 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10365 struct expression *exp,
10366 enum noside noside)
10368 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10369 return value_zero (expect_type, not_lval);
10371 const bound_minimal_symbol &b = std::get<0> (m_storage);
10372 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10374 val = ada_value_cast (expect_type, val);
10376 /* Follow the Ada language semantics that do not allow taking
10377 an address of the result of a cast (view conversion in Ada). */
10378 if (VALUE_LVAL (val) == lval_memory)
10380 if (value_lazy (val))
10381 value_fetch_lazy (val);
10382 VALUE_LVAL (val) = not_lval;
10388 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10389 struct expression *exp,
10390 enum noside noside)
10392 value *val = evaluate_var_value (noside,
10393 std::get<0> (m_storage).block,
10394 std::get<0> (m_storage).symbol);
10396 val = ada_value_cast (expect_type, val);
10398 /* Follow the Ada language semantics that do not allow taking
10399 an address of the result of a cast (view conversion in Ada). */
10400 if (VALUE_LVAL (val) == lval_memory)
10402 if (value_lazy (val))
10403 value_fetch_lazy (val);
10404 VALUE_LVAL (val) = not_lval;
10410 ada_var_value_operation::evaluate (struct type *expect_type,
10411 struct expression *exp,
10412 enum noside noside)
10414 symbol *sym = std::get<0> (m_storage).symbol;
10416 if (sym->domain () == UNDEF_DOMAIN)
10417 /* Only encountered when an unresolved symbol occurs in a
10418 context other than a function call, in which case, it is
10420 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10421 sym->print_name ());
10423 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10425 struct type *type = static_unwrap_type (sym->type ());
10426 /* Check to see if this is a tagged type. We also need to handle
10427 the case where the type is a reference to a tagged type, but
10428 we have to be careful to exclude pointers to tagged types.
10429 The latter should be shown as usual (as a pointer), whereas
10430 a reference should mostly be transparent to the user. */
10431 if (ada_is_tagged_type (type, 0)
10432 || (type->code () == TYPE_CODE_REF
10433 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10435 /* Tagged types are a little special in the fact that the real
10436 type is dynamic and can only be determined by inspecting the
10437 object's tag. This means that we need to get the object's
10438 value first (EVAL_NORMAL) and then extract the actual object
10441 Note that we cannot skip the final step where we extract
10442 the object type from its tag, because the EVAL_NORMAL phase
10443 results in dynamic components being resolved into fixed ones.
10444 This can cause problems when trying to print the type
10445 description of tagged types whose parent has a dynamic size:
10446 We use the type name of the "_parent" component in order
10447 to print the name of the ancestor type in the type description.
10448 If that component had a dynamic size, the resolution into
10449 a fixed type would result in the loss of that type name,
10450 thus preventing us from printing the name of the ancestor
10451 type in the type description. */
10452 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10454 if (type->code () != TYPE_CODE_REF)
10456 struct type *actual_type;
10458 actual_type = type_from_tag (ada_value_tag (arg1));
10459 if (actual_type == NULL)
10460 /* If, for some reason, we were unable to determine
10461 the actual type from the tag, then use the static
10462 approximation that we just computed as a fallback.
10463 This can happen if the debugging information is
10464 incomplete, for instance. */
10465 actual_type = type;
10466 return value_zero (actual_type, not_lval);
10470 /* In the case of a ref, ada_coerce_ref takes care
10471 of determining the actual type. But the evaluation
10472 should return a ref as it should be valid to ask
10473 for its address; so rebuild a ref after coerce. */
10474 arg1 = ada_coerce_ref (arg1);
10475 return value_ref (arg1, TYPE_CODE_REF);
10479 /* Records and unions for which GNAT encodings have been
10480 generated need to be statically fixed as well.
10481 Otherwise, non-static fixing produces a type where
10482 all dynamic properties are removed, which prevents "ptype"
10483 from being able to completely describe the type.
10484 For instance, a case statement in a variant record would be
10485 replaced by the relevant components based on the actual
10486 value of the discriminants. */
10487 if ((type->code () == TYPE_CODE_STRUCT
10488 && dynamic_template_type (type) != NULL)
10489 || (type->code () == TYPE_CODE_UNION
10490 && ada_find_parallel_type (type, "___XVU") != NULL))
10491 return value_zero (to_static_fixed_type (type), not_lval);
10494 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10495 return ada_to_fixed_value (arg1);
10499 ada_var_value_operation::resolve (struct expression *exp,
10500 bool deprocedure_p,
10501 bool parse_completion,
10502 innermost_block_tracker *tracker,
10503 struct type *context_type)
10505 symbol *sym = std::get<0> (m_storage).symbol;
10506 if (sym->domain () == UNDEF_DOMAIN)
10508 block_symbol resolved
10509 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10510 context_type, parse_completion,
10511 deprocedure_p, tracker);
10512 std::get<0> (m_storage) = resolved;
10516 && (std::get<0> (m_storage).symbol->type ()->code ()
10517 == TYPE_CODE_FUNC))
10524 ada_atr_val_operation::evaluate (struct type *expect_type,
10525 struct expression *exp,
10526 enum noside noside)
10528 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10529 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10533 ada_unop_ind_operation::evaluate (struct type *expect_type,
10534 struct expression *exp,
10535 enum noside noside)
10537 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10539 struct type *type = ada_check_typedef (value_type (arg1));
10540 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10542 if (ada_is_array_descriptor_type (type))
10543 /* GDB allows dereferencing GNAT array descriptors. */
10545 struct type *arrType = ada_type_of_array (arg1, 0);
10547 if (arrType == NULL)
10548 error (_("Attempt to dereference null array pointer."));
10549 return value_at_lazy (arrType, 0);
10551 else if (type->code () == TYPE_CODE_PTR
10552 || type->code () == TYPE_CODE_REF
10553 /* In C you can dereference an array to get the 1st elt. */
10554 || type->code () == TYPE_CODE_ARRAY)
10556 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10557 only be determined by inspecting the object's tag.
10558 This means that we need to evaluate completely the
10559 expression in order to get its type. */
10561 if ((type->code () == TYPE_CODE_REF
10562 || type->code () == TYPE_CODE_PTR)
10563 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10565 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10567 type = value_type (ada_value_ind (arg1));
10571 type = to_static_fixed_type
10573 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10575 return value_zero (type, lval_memory);
10577 else if (type->code () == TYPE_CODE_INT)
10579 /* GDB allows dereferencing an int. */
10580 if (expect_type == NULL)
10581 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10586 to_static_fixed_type (ada_aligned_type (expect_type));
10587 return value_zero (expect_type, lval_memory);
10591 error (_("Attempt to take contents of a non-pointer value."));
10593 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10594 type = ada_check_typedef (value_type (arg1));
10596 if (type->code () == TYPE_CODE_INT)
10597 /* GDB allows dereferencing an int. If we were given
10598 the expect_type, then use that as the target type.
10599 Otherwise, assume that the target type is an int. */
10601 if (expect_type != NULL)
10602 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10605 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10606 (CORE_ADDR) value_as_address (arg1));
10609 if (ada_is_array_descriptor_type (type))
10610 /* GDB allows dereferencing GNAT array descriptors. */
10611 return ada_coerce_to_simple_array (arg1);
10613 return ada_value_ind (arg1);
10617 ada_structop_operation::evaluate (struct type *expect_type,
10618 struct expression *exp,
10619 enum noside noside)
10621 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10622 const char *str = std::get<1> (m_storage).c_str ();
10623 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10626 struct type *type1 = value_type (arg1);
10628 if (ada_is_tagged_type (type1, 1))
10630 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10632 /* If the field is not found, check if it exists in the
10633 extension of this object's type. This means that we
10634 need to evaluate completely the expression. */
10638 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10640 arg1 = ada_value_struct_elt (arg1, str, 0);
10641 arg1 = unwrap_value (arg1);
10642 type = value_type (ada_to_fixed_value (arg1));
10646 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10648 return value_zero (ada_aligned_type (type), lval_memory);
10652 arg1 = ada_value_struct_elt (arg1, str, 0);
10653 arg1 = unwrap_value (arg1);
10654 return ada_to_fixed_value (arg1);
10659 ada_funcall_operation::evaluate (struct type *expect_type,
10660 struct expression *exp,
10661 enum noside noside)
10663 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10664 int nargs = args_up.size ();
10665 std::vector<value *> argvec (nargs);
10666 operation_up &callee_op = std::get<0> (m_storage);
10668 ada_var_value_operation *avv
10669 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10671 && avv->get_symbol ()->domain () == UNDEF_DOMAIN)
10672 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10673 avv->get_symbol ()->print_name ());
10675 value *callee = callee_op->evaluate (nullptr, exp, noside);
10676 for (int i = 0; i < args_up.size (); ++i)
10677 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10679 if (ada_is_constrained_packed_array_type
10680 (desc_base_type (value_type (callee))))
10681 callee = ada_coerce_to_simple_array (callee);
10682 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10683 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10684 /* This is a packed array that has already been fixed, and
10685 therefore already coerced to a simple array. Nothing further
10688 else if (value_type (callee)->code () == TYPE_CODE_REF)
10690 /* Make sure we dereference references so that all the code below
10691 feels like it's really handling the referenced value. Wrapping
10692 types (for alignment) may be there, so make sure we strip them as
10694 callee = ada_to_fixed_value (coerce_ref (callee));
10696 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10697 && VALUE_LVAL (callee) == lval_memory)
10698 callee = value_addr (callee);
10700 struct type *type = ada_check_typedef (value_type (callee));
10702 /* Ada allows us to implicitly dereference arrays when subscripting
10703 them. So, if this is an array typedef (encoding use for array
10704 access types encoded as fat pointers), strip it now. */
10705 if (type->code () == TYPE_CODE_TYPEDEF)
10706 type = ada_typedef_target_type (type);
10708 if (type->code () == TYPE_CODE_PTR)
10710 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10712 case TYPE_CODE_FUNC:
10713 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10715 case TYPE_CODE_ARRAY:
10717 case TYPE_CODE_STRUCT:
10718 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10719 callee = ada_value_ind (callee);
10720 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10723 error (_("cannot subscript or call something of type `%s'"),
10724 ada_type_name (value_type (callee)));
10729 switch (type->code ())
10731 case TYPE_CODE_FUNC:
10732 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10734 if (TYPE_TARGET_TYPE (type) == NULL)
10735 error_call_unknown_return_type (NULL);
10736 return allocate_value (TYPE_TARGET_TYPE (type));
10738 return call_function_by_hand (callee, NULL, argvec);
10739 case TYPE_CODE_INTERNAL_FUNCTION:
10740 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10741 /* We don't know anything about what the internal
10742 function might return, but we have to return
10744 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10747 return call_internal_function (exp->gdbarch, exp->language_defn,
10751 case TYPE_CODE_STRUCT:
10755 arity = ada_array_arity (type);
10756 type = ada_array_element_type (type, nargs);
10758 error (_("cannot subscript or call a record"));
10759 if (arity != nargs)
10760 error (_("wrong number of subscripts; expecting %d"), arity);
10761 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10762 return value_zero (ada_aligned_type (type), lval_memory);
10764 unwrap_value (ada_value_subscript
10765 (callee, nargs, argvec.data ()));
10767 case TYPE_CODE_ARRAY:
10768 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10770 type = ada_array_element_type (type, nargs);
10772 error (_("element type of array unknown"));
10774 return value_zero (ada_aligned_type (type), lval_memory);
10777 unwrap_value (ada_value_subscript
10778 (ada_coerce_to_simple_array (callee),
10779 nargs, argvec.data ()));
10780 case TYPE_CODE_PTR: /* Pointer to array */
10781 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10783 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10784 type = ada_array_element_type (type, nargs);
10786 error (_("element type of array unknown"));
10788 return value_zero (ada_aligned_type (type), lval_memory);
10791 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10795 error (_("Attempt to index or call something other than an "
10796 "array or function"));
10801 ada_funcall_operation::resolve (struct expression *exp,
10802 bool deprocedure_p,
10803 bool parse_completion,
10804 innermost_block_tracker *tracker,
10805 struct type *context_type)
10807 operation_up &callee_op = std::get<0> (m_storage);
10809 ada_var_value_operation *avv
10810 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10811 if (avv == nullptr)
10814 symbol *sym = avv->get_symbol ();
10815 if (sym->domain () != UNDEF_DOMAIN)
10818 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10819 int nargs = args_up.size ();
10820 std::vector<value *> argvec (nargs);
10822 for (int i = 0; i < args_up.size (); ++i)
10823 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10825 const block *block = avv->get_block ();
10826 block_symbol resolved
10827 = ada_resolve_funcall (sym, block,
10828 context_type, parse_completion,
10829 nargs, argvec.data (),
10832 std::get<0> (m_storage)
10833 = make_operation<ada_var_value_operation> (resolved);
10838 ada_ternop_slice_operation::resolve (struct expression *exp,
10839 bool deprocedure_p,
10840 bool parse_completion,
10841 innermost_block_tracker *tracker,
10842 struct type *context_type)
10844 /* Historically this check was done during resolution, so we
10845 continue that here. */
10846 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10847 EVAL_AVOID_SIDE_EFFECTS);
10848 if (ada_is_any_packed_array_type (value_type (v)))
10849 error (_("cannot slice a packed array"));
10857 /* Return non-zero iff TYPE represents a System.Address type. */
10860 ada_is_system_address_type (struct type *type)
10862 return (type->name () && strcmp (type->name (), "system__address") == 0);
10869 /* Scan STR beginning at position K for a discriminant name, and
10870 return the value of that discriminant field of DVAL in *PX. If
10871 PNEW_K is not null, put the position of the character beyond the
10872 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10873 not alter *PX and *PNEW_K if unsuccessful. */
10876 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10879 static std::string storage;
10880 const char *pstart, *pend, *bound;
10881 struct value *bound_val;
10883 if (dval == NULL || str == NULL || str[k] == '\0')
10887 pend = strstr (pstart, "__");
10891 k += strlen (bound);
10895 int len = pend - pstart;
10897 /* Strip __ and beyond. */
10898 storage = std::string (pstart, len);
10899 bound = storage.c_str ();
10903 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10904 if (bound_val == NULL)
10907 *px = value_as_long (bound_val);
10908 if (pnew_k != NULL)
10913 /* Value of variable named NAME. Only exact matches are considered.
10914 If no such variable found, then if ERR_MSG is null, returns 0, and
10915 otherwise causes an error with message ERR_MSG. */
10917 static struct value *
10918 get_var_value (const char *name, const char *err_msg)
10920 std::string quoted_name = add_angle_brackets (name);
10922 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10924 std::vector<struct block_symbol> syms
10925 = ada_lookup_symbol_list_worker (lookup_name,
10926 get_selected_block (0),
10929 if (syms.size () != 1)
10931 if (err_msg == NULL)
10934 error (("%s"), err_msg);
10937 return value_of_variable (syms[0].symbol, syms[0].block);
10940 /* Value of integer variable named NAME in the current environment.
10941 If no such variable is found, returns false. Otherwise, sets VALUE
10942 to the variable's value and returns true. */
10945 get_int_var_value (const char *name, LONGEST &value)
10947 struct value *var_val = get_var_value (name, 0);
10952 value = value_as_long (var_val);
10957 /* Return a range type whose base type is that of the range type named
10958 NAME in the current environment, and whose bounds are calculated
10959 from NAME according to the GNAT range encoding conventions.
10960 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10961 corresponding range type from debug information; fall back to using it
10962 if symbol lookup fails. If a new type must be created, allocate it
10963 like ORIG_TYPE was. The bounds information, in general, is encoded
10964 in NAME, the base type given in the named range type. */
10966 static struct type *
10967 to_fixed_range_type (struct type *raw_type, struct value *dval)
10970 struct type *base_type;
10971 const char *subtype_info;
10973 gdb_assert (raw_type != NULL);
10974 gdb_assert (raw_type->name () != NULL);
10976 if (raw_type->code () == TYPE_CODE_RANGE)
10977 base_type = TYPE_TARGET_TYPE (raw_type);
10979 base_type = raw_type;
10981 name = raw_type->name ();
10982 subtype_info = strstr (name, "___XD");
10983 if (subtype_info == NULL)
10985 LONGEST L = ada_discrete_type_low_bound (raw_type);
10986 LONGEST U = ada_discrete_type_high_bound (raw_type);
10988 if (L < INT_MIN || U > INT_MAX)
10991 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10996 int prefix_len = subtype_info - name;
10999 const char *bounds_str;
11003 bounds_str = strchr (subtype_info, '_');
11006 if (*subtype_info == 'L')
11008 if (!ada_scan_number (bounds_str, n, &L, &n)
11009 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11011 if (bounds_str[n] == '_')
11013 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11019 std::string name_buf = std::string (name, prefix_len) + "___L";
11020 if (!get_int_var_value (name_buf.c_str (), L))
11022 lim_warning (_("Unknown lower bound, using 1."));
11027 if (*subtype_info == 'U')
11029 if (!ada_scan_number (bounds_str, n, &U, &n)
11030 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11035 std::string name_buf = std::string (name, prefix_len) + "___U";
11036 if (!get_int_var_value (name_buf.c_str (), U))
11038 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11043 type = create_static_range_type (alloc_type_copy (raw_type),
11045 /* create_static_range_type alters the resulting type's length
11046 to match the size of the base_type, which is not what we want.
11047 Set it back to the original range type's length. */
11048 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11049 type->set_name (name);
11054 /* True iff NAME is the name of a range type. */
11057 ada_is_range_type_name (const char *name)
11059 return (name != NULL && strstr (name, "___XD"));
11063 /* Modular types */
11065 /* True iff TYPE is an Ada modular type. */
11068 ada_is_modular_type (struct type *type)
11070 struct type *subranged_type = get_base_type (type);
11072 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11073 && subranged_type->code () == TYPE_CODE_INT
11074 && subranged_type->is_unsigned ());
11077 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11080 ada_modulus (struct type *type)
11082 const dynamic_prop &high = type->bounds ()->high;
11084 if (high.kind () == PROP_CONST)
11085 return (ULONGEST) high.const_val () + 1;
11087 /* If TYPE is unresolved, the high bound might be a location list. Return
11088 0, for lack of a better value to return. */
11093 /* Ada exception catchpoint support:
11094 ---------------------------------
11096 We support 3 kinds of exception catchpoints:
11097 . catchpoints on Ada exceptions
11098 . catchpoints on unhandled Ada exceptions
11099 . catchpoints on failed assertions
11101 Exceptions raised during failed assertions, or unhandled exceptions
11102 could perfectly be caught with the general catchpoint on Ada exceptions.
11103 However, we can easily differentiate these two special cases, and having
11104 the option to distinguish these two cases from the rest can be useful
11105 to zero-in on certain situations.
11107 Exception catchpoints are a specialized form of breakpoint,
11108 since they rely on inserting breakpoints inside known routines
11109 of the GNAT runtime. The implementation therefore uses a standard
11110 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11113 Support in the runtime for exception catchpoints have been changed
11114 a few times already, and these changes affect the implementation
11115 of these catchpoints. In order to be able to support several
11116 variants of the runtime, we use a sniffer that will determine
11117 the runtime variant used by the program being debugged. */
11119 /* Ada's standard exceptions.
11121 The Ada 83 standard also defined Numeric_Error. But there so many
11122 situations where it was unclear from the Ada 83 Reference Manual
11123 (RM) whether Constraint_Error or Numeric_Error should be raised,
11124 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11125 Interpretation saying that anytime the RM says that Numeric_Error
11126 should be raised, the implementation may raise Constraint_Error.
11127 Ada 95 went one step further and pretty much removed Numeric_Error
11128 from the list of standard exceptions (it made it a renaming of
11129 Constraint_Error, to help preserve compatibility when compiling
11130 an Ada83 compiler). As such, we do not include Numeric_Error from
11131 this list of standard exceptions. */
11133 static const char * const standard_exc[] = {
11134 "constraint_error",
11140 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11142 /* A structure that describes how to support exception catchpoints
11143 for a given executable. */
11145 struct exception_support_info
11147 /* The name of the symbol to break on in order to insert
11148 a catchpoint on exceptions. */
11149 const char *catch_exception_sym;
11151 /* The name of the symbol to break on in order to insert
11152 a catchpoint on unhandled exceptions. */
11153 const char *catch_exception_unhandled_sym;
11155 /* The name of the symbol to break on in order to insert
11156 a catchpoint on failed assertions. */
11157 const char *catch_assert_sym;
11159 /* The name of the symbol to break on in order to insert
11160 a catchpoint on exception handling. */
11161 const char *catch_handlers_sym;
11163 /* Assuming that the inferior just triggered an unhandled exception
11164 catchpoint, this function is responsible for returning the address
11165 in inferior memory where the name of that exception is stored.
11166 Return zero if the address could not be computed. */
11167 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11170 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11171 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11173 /* The following exception support info structure describes how to
11174 implement exception catchpoints with the latest version of the
11175 Ada runtime (as of 2019-08-??). */
11177 static const struct exception_support_info default_exception_support_info =
11179 "__gnat_debug_raise_exception", /* catch_exception_sym */
11180 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11181 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11182 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11183 ada_unhandled_exception_name_addr
11186 /* The following exception support info structure describes how to
11187 implement exception catchpoints with an earlier version of the
11188 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11190 static const struct exception_support_info exception_support_info_v0 =
11192 "__gnat_debug_raise_exception", /* catch_exception_sym */
11193 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11194 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11195 "__gnat_begin_handler", /* catch_handlers_sym */
11196 ada_unhandled_exception_name_addr
11199 /* The following exception support info structure describes how to
11200 implement exception catchpoints with a slightly older version
11201 of the Ada runtime. */
11203 static const struct exception_support_info exception_support_info_fallback =
11205 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11206 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11207 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11208 "__gnat_begin_handler", /* catch_handlers_sym */
11209 ada_unhandled_exception_name_addr_from_raise
11212 /* Return nonzero if we can detect the exception support routines
11213 described in EINFO.
11215 This function errors out if an abnormal situation is detected
11216 (for instance, if we find the exception support routines, but
11217 that support is found to be incomplete). */
11220 ada_has_this_exception_support (const struct exception_support_info *einfo)
11222 struct symbol *sym;
11224 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11225 that should be compiled with debugging information. As a result, we
11226 expect to find that symbol in the symtabs. */
11228 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11231 /* Perhaps we did not find our symbol because the Ada runtime was
11232 compiled without debugging info, or simply stripped of it.
11233 It happens on some GNU/Linux distributions for instance, where
11234 users have to install a separate debug package in order to get
11235 the runtime's debugging info. In that situation, let the user
11236 know why we cannot insert an Ada exception catchpoint.
11238 Note: Just for the purpose of inserting our Ada exception
11239 catchpoint, we could rely purely on the associated minimal symbol.
11240 But we would be operating in degraded mode anyway, since we are
11241 still lacking the debugging info needed later on to extract
11242 the name of the exception being raised (this name is printed in
11243 the catchpoint message, and is also used when trying to catch
11244 a specific exception). We do not handle this case for now. */
11245 struct bound_minimal_symbol msym
11246 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11248 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11249 error (_("Your Ada runtime appears to be missing some debugging "
11250 "information.\nCannot insert Ada exception catchpoint "
11251 "in this configuration."));
11256 /* Make sure that the symbol we found corresponds to a function. */
11258 if (sym->aclass () != LOC_BLOCK)
11260 error (_("Symbol \"%s\" is not a function (class = %d)"),
11261 sym->linkage_name (), sym->aclass ());
11265 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11268 struct bound_minimal_symbol msym
11269 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11271 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11272 error (_("Your Ada runtime appears to be missing some debugging "
11273 "information.\nCannot insert Ada exception catchpoint "
11274 "in this configuration."));
11279 /* Make sure that the symbol we found corresponds to a function. */
11281 if (sym->aclass () != LOC_BLOCK)
11283 error (_("Symbol \"%s\" is not a function (class = %d)"),
11284 sym->linkage_name (), sym->aclass ());
11291 /* Inspect the Ada runtime and determine which exception info structure
11292 should be used to provide support for exception catchpoints.
11294 This function will always set the per-inferior exception_info,
11295 or raise an error. */
11298 ada_exception_support_info_sniffer (void)
11300 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11302 /* If the exception info is already known, then no need to recompute it. */
11303 if (data->exception_info != NULL)
11306 /* Check the latest (default) exception support info. */
11307 if (ada_has_this_exception_support (&default_exception_support_info))
11309 data->exception_info = &default_exception_support_info;
11313 /* Try the v0 exception suport info. */
11314 if (ada_has_this_exception_support (&exception_support_info_v0))
11316 data->exception_info = &exception_support_info_v0;
11320 /* Try our fallback exception suport info. */
11321 if (ada_has_this_exception_support (&exception_support_info_fallback))
11323 data->exception_info = &exception_support_info_fallback;
11327 /* Sometimes, it is normal for us to not be able to find the routine
11328 we are looking for. This happens when the program is linked with
11329 the shared version of the GNAT runtime, and the program has not been
11330 started yet. Inform the user of these two possible causes if
11333 if (ada_update_initial_language (language_unknown) != language_ada)
11334 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11336 /* If the symbol does not exist, then check that the program is
11337 already started, to make sure that shared libraries have been
11338 loaded. If it is not started, this may mean that the symbol is
11339 in a shared library. */
11341 if (inferior_ptid.pid () == 0)
11342 error (_("Unable to insert catchpoint. Try to start the program first."));
11344 /* At this point, we know that we are debugging an Ada program and
11345 that the inferior has been started, but we still are not able to
11346 find the run-time symbols. That can mean that we are in
11347 configurable run time mode, or that a-except as been optimized
11348 out by the linker... In any case, at this point it is not worth
11349 supporting this feature. */
11351 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11354 /* True iff FRAME is very likely to be that of a function that is
11355 part of the runtime system. This is all very heuristic, but is
11356 intended to be used as advice as to what frames are uninteresting
11360 is_known_support_routine (struct frame_info *frame)
11362 enum language func_lang;
11364 const char *fullname;
11366 /* If this code does not have any debugging information (no symtab),
11367 This cannot be any user code. */
11369 symtab_and_line sal = find_frame_sal (frame);
11370 if (sal.symtab == NULL)
11373 /* If there is a symtab, but the associated source file cannot be
11374 located, then assume this is not user code: Selecting a frame
11375 for which we cannot display the code would not be very helpful
11376 for the user. This should also take care of case such as VxWorks
11377 where the kernel has some debugging info provided for a few units. */
11379 fullname = symtab_to_fullname (sal.symtab);
11380 if (access (fullname, R_OK) != 0)
11383 /* Check the unit filename against the Ada runtime file naming.
11384 We also check the name of the objfile against the name of some
11385 known system libraries that sometimes come with debugging info
11388 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11390 re_comp (known_runtime_file_name_patterns[i]);
11391 if (re_exec (lbasename (sal.symtab->filename)))
11393 if (sal.symtab->objfile () != NULL
11394 && re_exec (objfile_name (sal.symtab->objfile ())))
11398 /* Check whether the function is a GNAT-generated entity. */
11400 gdb::unique_xmalloc_ptr<char> func_name
11401 = find_frame_funname (frame, &func_lang, NULL);
11402 if (func_name == NULL)
11405 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11407 re_comp (known_auxiliary_function_name_patterns[i]);
11408 if (re_exec (func_name.get ()))
11415 /* Find the first frame that contains debugging information and that is not
11416 part of the Ada run-time, starting from FI and moving upward. */
11419 ada_find_printable_frame (struct frame_info *fi)
11421 for (; fi != NULL; fi = get_prev_frame (fi))
11423 if (!is_known_support_routine (fi))
11432 /* Assuming that the inferior just triggered an unhandled exception
11433 catchpoint, return the address in inferior memory where the name
11434 of the exception is stored.
11436 Return zero if the address could not be computed. */
11439 ada_unhandled_exception_name_addr (void)
11441 return parse_and_eval_address ("e.full_name");
11444 /* Same as ada_unhandled_exception_name_addr, except that this function
11445 should be used when the inferior uses an older version of the runtime,
11446 where the exception name needs to be extracted from a specific frame
11447 several frames up in the callstack. */
11450 ada_unhandled_exception_name_addr_from_raise (void)
11453 struct frame_info *fi;
11454 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11456 /* To determine the name of this exception, we need to select
11457 the frame corresponding to RAISE_SYM_NAME. This frame is
11458 at least 3 levels up, so we simply skip the first 3 frames
11459 without checking the name of their associated function. */
11460 fi = get_current_frame ();
11461 for (frame_level = 0; frame_level < 3; frame_level += 1)
11463 fi = get_prev_frame (fi);
11467 enum language func_lang;
11469 gdb::unique_xmalloc_ptr<char> func_name
11470 = find_frame_funname (fi, &func_lang, NULL);
11471 if (func_name != NULL)
11473 if (strcmp (func_name.get (),
11474 data->exception_info->catch_exception_sym) == 0)
11475 break; /* We found the frame we were looking for... */
11477 fi = get_prev_frame (fi);
11484 return parse_and_eval_address ("id.full_name");
11487 /* Assuming the inferior just triggered an Ada exception catchpoint
11488 (of any type), return the address in inferior memory where the name
11489 of the exception is stored, if applicable.
11491 Assumes the selected frame is the current frame.
11493 Return zero if the address could not be computed, or if not relevant. */
11496 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11497 struct breakpoint *b)
11499 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11503 case ada_catch_exception:
11504 return (parse_and_eval_address ("e.full_name"));
11507 case ada_catch_exception_unhandled:
11508 return data->exception_info->unhandled_exception_name_addr ();
11511 case ada_catch_handlers:
11512 return 0; /* The runtimes does not provide access to the exception
11516 case ada_catch_assert:
11517 return 0; /* Exception name is not relevant in this case. */
11521 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11525 return 0; /* Should never be reached. */
11528 /* Assuming the inferior is stopped at an exception catchpoint,
11529 return the message which was associated to the exception, if
11530 available. Return NULL if the message could not be retrieved.
11532 Note: The exception message can be associated to an exception
11533 either through the use of the Raise_Exception function, or
11534 more simply (Ada 2005 and later), via:
11536 raise Exception_Name with "exception message";
11540 static gdb::unique_xmalloc_ptr<char>
11541 ada_exception_message_1 (void)
11543 struct value *e_msg_val;
11546 /* For runtimes that support this feature, the exception message
11547 is passed as an unbounded string argument called "message". */
11548 e_msg_val = parse_and_eval ("message");
11549 if (e_msg_val == NULL)
11550 return NULL; /* Exception message not supported. */
11552 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11553 gdb_assert (e_msg_val != NULL);
11554 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11556 /* If the message string is empty, then treat it as if there was
11557 no exception message. */
11558 if (e_msg_len <= 0)
11561 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11562 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11564 e_msg.get ()[e_msg_len] = '\0';
11569 /* Same as ada_exception_message_1, except that all exceptions are
11570 contained here (returning NULL instead). */
11572 static gdb::unique_xmalloc_ptr<char>
11573 ada_exception_message (void)
11575 gdb::unique_xmalloc_ptr<char> e_msg;
11579 e_msg = ada_exception_message_1 ();
11581 catch (const gdb_exception_error &e)
11583 e_msg.reset (nullptr);
11589 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11590 any error that ada_exception_name_addr_1 might cause to be thrown.
11591 When an error is intercepted, a warning with the error message is printed,
11592 and zero is returned. */
11595 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11596 struct breakpoint *b)
11598 CORE_ADDR result = 0;
11602 result = ada_exception_name_addr_1 (ex, b);
11605 catch (const gdb_exception_error &e)
11607 warning (_("failed to get exception name: %s"), e.what ());
11614 static std::string ada_exception_catchpoint_cond_string
11615 (const char *excep_string,
11616 enum ada_exception_catchpoint_kind ex);
11618 /* Ada catchpoints.
11620 In the case of catchpoints on Ada exceptions, the catchpoint will
11621 stop the target on every exception the program throws. When a user
11622 specifies the name of a specific exception, we translate this
11623 request into a condition expression (in text form), and then parse
11624 it into an expression stored in each of the catchpoint's locations.
11625 We then use this condition to check whether the exception that was
11626 raised is the one the user is interested in. If not, then the
11627 target is resumed again. We store the name of the requested
11628 exception, in order to be able to re-set the condition expression
11629 when symbols change. */
11631 /* An instance of this type is used to represent an Ada catchpoint
11632 breakpoint location. */
11634 class ada_catchpoint_location : public bp_location
11637 ada_catchpoint_location (breakpoint *owner)
11638 : bp_location (owner, bp_loc_software_breakpoint)
11641 /* The condition that checks whether the exception that was raised
11642 is the specific exception the user specified on catchpoint
11644 expression_up excep_cond_expr;
11647 /* An instance of this type is used to represent an Ada catchpoint. */
11649 struct ada_catchpoint : public breakpoint
11651 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11656 /* The name of the specific exception the user specified. */
11657 std::string excep_string;
11659 /* What kind of catchpoint this is. */
11660 enum ada_exception_catchpoint_kind m_kind;
11663 /* Parse the exception condition string in the context of each of the
11664 catchpoint's locations, and store them for later evaluation. */
11667 create_excep_cond_exprs (struct ada_catchpoint *c,
11668 enum ada_exception_catchpoint_kind ex)
11670 /* Nothing to do if there's no specific exception to catch. */
11671 if (c->excep_string.empty ())
11674 /* Same if there are no locations... */
11675 if (c->loc == NULL)
11678 /* Compute the condition expression in text form, from the specific
11679 expection we want to catch. */
11680 std::string cond_string
11681 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11683 /* Iterate over all the catchpoint's locations, and parse an
11684 expression for each. */
11685 for (bp_location *bl : c->locations ())
11687 struct ada_catchpoint_location *ada_loc
11688 = (struct ada_catchpoint_location *) bl;
11691 if (!bl->shlib_disabled)
11695 s = cond_string.c_str ();
11698 exp = parse_exp_1 (&s, bl->address,
11699 block_for_pc (bl->address),
11702 catch (const gdb_exception_error &e)
11704 warning (_("failed to reevaluate internal exception condition "
11705 "for catchpoint %d: %s"),
11706 c->number, e.what ());
11710 ada_loc->excep_cond_expr = std::move (exp);
11714 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11715 structure for all exception catchpoint kinds. */
11717 static struct bp_location *
11718 allocate_location_exception (struct breakpoint *self)
11720 return new ada_catchpoint_location (self);
11723 /* Implement the RE_SET method in the breakpoint_ops structure for all
11724 exception catchpoint kinds. */
11727 re_set_exception (struct breakpoint *b)
11729 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11731 /* Call the base class's method. This updates the catchpoint's
11733 bkpt_breakpoint_ops.re_set (b);
11735 /* Reparse the exception conditional expressions. One for each
11737 create_excep_cond_exprs (c, c->m_kind);
11740 /* Returns true if we should stop for this breakpoint hit. If the
11741 user specified a specific exception, we only want to cause a stop
11742 if the program thrown that exception. */
11745 should_stop_exception (const struct bp_location *bl)
11747 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11748 const struct ada_catchpoint_location *ada_loc
11749 = (const struct ada_catchpoint_location *) bl;
11752 struct internalvar *var = lookup_internalvar ("_ada_exception");
11753 if (c->m_kind == ada_catch_assert)
11754 clear_internalvar (var);
11761 if (c->m_kind == ada_catch_handlers)
11762 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11763 ".all.occurrence.id");
11767 struct value *exc = parse_and_eval (expr);
11768 set_internalvar (var, exc);
11770 catch (const gdb_exception_error &ex)
11772 clear_internalvar (var);
11776 /* With no specific exception, should always stop. */
11777 if (c->excep_string.empty ())
11780 if (ada_loc->excep_cond_expr == NULL)
11782 /* We will have a NULL expression if back when we were creating
11783 the expressions, this location's had failed to parse. */
11790 struct value *mark;
11792 mark = value_mark ();
11793 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11794 value_free_to_mark (mark);
11796 catch (const gdb_exception &ex)
11798 exception_fprintf (gdb_stderr, ex,
11799 _("Error in testing exception condition:\n"));
11805 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11806 for all exception catchpoint kinds. */
11809 check_status_exception (bpstat *bs)
11811 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11814 /* Implement the PRINT_IT method in the breakpoint_ops structure
11815 for all exception catchpoint kinds. */
11817 static enum print_stop_action
11818 print_it_exception (bpstat *bs)
11820 struct ui_out *uiout = current_uiout;
11821 struct breakpoint *b = bs->breakpoint_at;
11823 annotate_catchpoint (b->number);
11825 if (uiout->is_mi_like_p ())
11827 uiout->field_string ("reason",
11828 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11829 uiout->field_string ("disp", bpdisp_text (b->disposition));
11832 uiout->text (b->disposition == disp_del
11833 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11834 uiout->field_signed ("bkptno", b->number);
11835 uiout->text (", ");
11837 /* ada_exception_name_addr relies on the selected frame being the
11838 current frame. Need to do this here because this function may be
11839 called more than once when printing a stop, and below, we'll
11840 select the first frame past the Ada run-time (see
11841 ada_find_printable_frame). */
11842 select_frame (get_current_frame ());
11844 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11847 case ada_catch_exception:
11848 case ada_catch_exception_unhandled:
11849 case ada_catch_handlers:
11851 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11852 char exception_name[256];
11856 read_memory (addr, (gdb_byte *) exception_name,
11857 sizeof (exception_name) - 1);
11858 exception_name [sizeof (exception_name) - 1] = '\0';
11862 /* For some reason, we were unable to read the exception
11863 name. This could happen if the Runtime was compiled
11864 without debugging info, for instance. In that case,
11865 just replace the exception name by the generic string
11866 "exception" - it will read as "an exception" in the
11867 notification we are about to print. */
11868 memcpy (exception_name, "exception", sizeof ("exception"));
11870 /* In the case of unhandled exception breakpoints, we print
11871 the exception name as "unhandled EXCEPTION_NAME", to make
11872 it clearer to the user which kind of catchpoint just got
11873 hit. We used ui_out_text to make sure that this extra
11874 info does not pollute the exception name in the MI case. */
11875 if (c->m_kind == ada_catch_exception_unhandled)
11876 uiout->text ("unhandled ");
11877 uiout->field_string ("exception-name", exception_name);
11880 case ada_catch_assert:
11881 /* In this case, the name of the exception is not really
11882 important. Just print "failed assertion" to make it clearer
11883 that his program just hit an assertion-failure catchpoint.
11884 We used ui_out_text because this info does not belong in
11886 uiout->text ("failed assertion");
11890 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11891 if (exception_message != NULL)
11893 uiout->text (" (");
11894 uiout->field_string ("exception-message", exception_message.get ());
11898 uiout->text (" at ");
11899 ada_find_printable_frame (get_current_frame ());
11901 return PRINT_SRC_AND_LOC;
11904 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11905 for all exception catchpoint kinds. */
11908 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11910 struct ui_out *uiout = current_uiout;
11911 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11912 struct value_print_options opts;
11914 get_user_print_options (&opts);
11916 if (opts.addressprint)
11917 uiout->field_skip ("addr");
11919 annotate_field (5);
11922 case ada_catch_exception:
11923 if (!c->excep_string.empty ())
11925 std::string msg = string_printf (_("`%s' Ada exception"),
11926 c->excep_string.c_str ());
11928 uiout->field_string ("what", msg);
11931 uiout->field_string ("what", "all Ada exceptions");
11935 case ada_catch_exception_unhandled:
11936 uiout->field_string ("what", "unhandled Ada exceptions");
11939 case ada_catch_handlers:
11940 if (!c->excep_string.empty ())
11942 uiout->field_fmt ("what",
11943 _("`%s' Ada exception handlers"),
11944 c->excep_string.c_str ());
11947 uiout->field_string ("what", "all Ada exceptions handlers");
11950 case ada_catch_assert:
11951 uiout->field_string ("what", "failed Ada assertions");
11955 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11960 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11961 for all exception catchpoint kinds. */
11964 print_mention_exception (struct breakpoint *b)
11966 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11967 struct ui_out *uiout = current_uiout;
11969 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11970 : _("Catchpoint "));
11971 uiout->field_signed ("bkptno", b->number);
11972 uiout->text (": ");
11976 case ada_catch_exception:
11977 if (!c->excep_string.empty ())
11979 std::string info = string_printf (_("`%s' Ada exception"),
11980 c->excep_string.c_str ());
11981 uiout->text (info);
11984 uiout->text (_("all Ada exceptions"));
11987 case ada_catch_exception_unhandled:
11988 uiout->text (_("unhandled Ada exceptions"));
11991 case ada_catch_handlers:
11992 if (!c->excep_string.empty ())
11995 = string_printf (_("`%s' Ada exception handlers"),
11996 c->excep_string.c_str ());
11997 uiout->text (info);
12000 uiout->text (_("all Ada exceptions handlers"));
12003 case ada_catch_assert:
12004 uiout->text (_("failed Ada assertions"));
12008 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12013 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12014 for all exception catchpoint kinds. */
12017 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12019 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12023 case ada_catch_exception:
12024 fprintf_filtered (fp, "catch exception");
12025 if (!c->excep_string.empty ())
12026 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12029 case ada_catch_exception_unhandled:
12030 fprintf_filtered (fp, "catch exception unhandled");
12033 case ada_catch_handlers:
12034 fprintf_filtered (fp, "catch handlers");
12037 case ada_catch_assert:
12038 fprintf_filtered (fp, "catch assert");
12042 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12044 print_recreate_thread (b, fp);
12047 /* Virtual table for breakpoint type. */
12048 static struct breakpoint_ops catch_exception_breakpoint_ops;
12050 /* See ada-lang.h. */
12053 is_ada_exception_catchpoint (breakpoint *bp)
12055 return bp->ops == &catch_exception_breakpoint_ops;
12058 /* Split the arguments specified in a "catch exception" command.
12059 Set EX to the appropriate catchpoint type.
12060 Set EXCEP_STRING to the name of the specific exception if
12061 specified by the user.
12062 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12063 "catch handlers" command. False otherwise.
12064 If a condition is found at the end of the arguments, the condition
12065 expression is stored in COND_STRING (memory must be deallocated
12066 after use). Otherwise COND_STRING is set to NULL. */
12069 catch_ada_exception_command_split (const char *args,
12070 bool is_catch_handlers_cmd,
12071 enum ada_exception_catchpoint_kind *ex,
12072 std::string *excep_string,
12073 std::string *cond_string)
12075 std::string exception_name;
12077 exception_name = extract_arg (&args);
12078 if (exception_name == "if")
12080 /* This is not an exception name; this is the start of a condition
12081 expression for a catchpoint on all exceptions. So, "un-get"
12082 this token, and set exception_name to NULL. */
12083 exception_name.clear ();
12087 /* Check to see if we have a condition. */
12089 args = skip_spaces (args);
12090 if (startswith (args, "if")
12091 && (isspace (args[2]) || args[2] == '\0'))
12094 args = skip_spaces (args);
12096 if (args[0] == '\0')
12097 error (_("Condition missing after `if' keyword"));
12098 *cond_string = args;
12100 args += strlen (args);
12103 /* Check that we do not have any more arguments. Anything else
12106 if (args[0] != '\0')
12107 error (_("Junk at end of expression"));
12109 if (is_catch_handlers_cmd)
12111 /* Catch handling of exceptions. */
12112 *ex = ada_catch_handlers;
12113 *excep_string = exception_name;
12115 else if (exception_name.empty ())
12117 /* Catch all exceptions. */
12118 *ex = ada_catch_exception;
12119 excep_string->clear ();
12121 else if (exception_name == "unhandled")
12123 /* Catch unhandled exceptions. */
12124 *ex = ada_catch_exception_unhandled;
12125 excep_string->clear ();
12129 /* Catch a specific exception. */
12130 *ex = ada_catch_exception;
12131 *excep_string = exception_name;
12135 /* Return the name of the symbol on which we should break in order to
12136 implement a catchpoint of the EX kind. */
12138 static const char *
12139 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12141 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12143 gdb_assert (data->exception_info != NULL);
12147 case ada_catch_exception:
12148 return (data->exception_info->catch_exception_sym);
12150 case ada_catch_exception_unhandled:
12151 return (data->exception_info->catch_exception_unhandled_sym);
12153 case ada_catch_assert:
12154 return (data->exception_info->catch_assert_sym);
12156 case ada_catch_handlers:
12157 return (data->exception_info->catch_handlers_sym);
12160 internal_error (__FILE__, __LINE__,
12161 _("unexpected catchpoint kind (%d)"), ex);
12165 /* Return the condition that will be used to match the current exception
12166 being raised with the exception that the user wants to catch. This
12167 assumes that this condition is used when the inferior just triggered
12168 an exception catchpoint.
12169 EX: the type of catchpoints used for catching Ada exceptions. */
12172 ada_exception_catchpoint_cond_string (const char *excep_string,
12173 enum ada_exception_catchpoint_kind ex)
12175 bool is_standard_exc = false;
12176 std::string result;
12178 if (ex == ada_catch_handlers)
12180 /* For exception handlers catchpoints, the condition string does
12181 not use the same parameter as for the other exceptions. */
12182 result = ("long_integer (GNAT_GCC_exception_Access"
12183 "(gcc_exception).all.occurrence.id)");
12186 result = "long_integer (e)";
12188 /* The standard exceptions are a special case. They are defined in
12189 runtime units that have been compiled without debugging info; if
12190 EXCEP_STRING is the not-fully-qualified name of a standard
12191 exception (e.g. "constraint_error") then, during the evaluation
12192 of the condition expression, the symbol lookup on this name would
12193 *not* return this standard exception. The catchpoint condition
12194 may then be set only on user-defined exceptions which have the
12195 same not-fully-qualified name (e.g. my_package.constraint_error).
12197 To avoid this unexcepted behavior, these standard exceptions are
12198 systematically prefixed by "standard". This means that "catch
12199 exception constraint_error" is rewritten into "catch exception
12200 standard.constraint_error".
12202 If an exception named constraint_error is defined in another package of
12203 the inferior program, then the only way to specify this exception as a
12204 breakpoint condition is to use its fully-qualified named:
12205 e.g. my_package.constraint_error. */
12207 for (const char *name : standard_exc)
12209 if (strcmp (name, excep_string) == 0)
12211 is_standard_exc = true;
12218 if (is_standard_exc)
12219 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12221 string_appendf (result, "long_integer (&%s)", excep_string);
12226 /* Return the symtab_and_line that should be used to insert an exception
12227 catchpoint of the TYPE kind.
12229 ADDR_STRING returns the name of the function where the real
12230 breakpoint that implements the catchpoints is set, depending on the
12231 type of catchpoint we need to create. */
12233 static struct symtab_and_line
12234 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12235 std::string *addr_string, const struct breakpoint_ops **ops)
12237 const char *sym_name;
12238 struct symbol *sym;
12240 /* First, find out which exception support info to use. */
12241 ada_exception_support_info_sniffer ();
12243 /* Then lookup the function on which we will break in order to catch
12244 the Ada exceptions requested by the user. */
12245 sym_name = ada_exception_sym_name (ex);
12246 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12249 error (_("Catchpoint symbol not found: %s"), sym_name);
12251 if (sym->aclass () != LOC_BLOCK)
12252 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12254 /* Set ADDR_STRING. */
12255 *addr_string = sym_name;
12258 *ops = &catch_exception_breakpoint_ops;
12260 return find_function_start_sal (sym, 1);
12263 /* Create an Ada exception catchpoint.
12265 EX_KIND is the kind of exception catchpoint to be created.
12267 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12268 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12269 of the exception to which this catchpoint applies.
12271 COND_STRING, if not empty, is the catchpoint condition.
12273 TEMPFLAG, if nonzero, means that the underlying breakpoint
12274 should be temporary.
12276 FROM_TTY is the usual argument passed to all commands implementations. */
12279 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12280 enum ada_exception_catchpoint_kind ex_kind,
12281 const std::string &excep_string,
12282 const std::string &cond_string,
12287 std::string addr_string;
12288 const struct breakpoint_ops *ops = NULL;
12289 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12291 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12292 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12293 ops, tempflag, disabled, from_tty);
12294 c->excep_string = excep_string;
12295 create_excep_cond_exprs (c.get (), ex_kind);
12296 if (!cond_string.empty ())
12297 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12298 install_breakpoint (0, std::move (c), 1);
12301 /* Implement the "catch exception" command. */
12304 catch_ada_exception_command (const char *arg_entry, int from_tty,
12305 struct cmd_list_element *command)
12307 const char *arg = arg_entry;
12308 struct gdbarch *gdbarch = get_current_arch ();
12310 enum ada_exception_catchpoint_kind ex_kind;
12311 std::string excep_string;
12312 std::string cond_string;
12314 tempflag = command->context () == CATCH_TEMPORARY;
12318 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12320 create_ada_exception_catchpoint (gdbarch, ex_kind,
12321 excep_string, cond_string,
12322 tempflag, 1 /* enabled */,
12326 /* Implement the "catch handlers" command. */
12329 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12330 struct cmd_list_element *command)
12332 const char *arg = arg_entry;
12333 struct gdbarch *gdbarch = get_current_arch ();
12335 enum ada_exception_catchpoint_kind ex_kind;
12336 std::string excep_string;
12337 std::string cond_string;
12339 tempflag = command->context () == CATCH_TEMPORARY;
12343 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12345 create_ada_exception_catchpoint (gdbarch, ex_kind,
12346 excep_string, cond_string,
12347 tempflag, 1 /* enabled */,
12351 /* Completion function for the Ada "catch" commands. */
12354 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12355 const char *text, const char *word)
12357 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12359 for (const ada_exc_info &info : exceptions)
12361 if (startswith (info.name, word))
12362 tracker.add_completion (make_unique_xstrdup (info.name));
12366 /* Split the arguments specified in a "catch assert" command.
12368 ARGS contains the command's arguments (or the empty string if
12369 no arguments were passed).
12371 If ARGS contains a condition, set COND_STRING to that condition
12372 (the memory needs to be deallocated after use). */
12375 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12377 args = skip_spaces (args);
12379 /* Check whether a condition was provided. */
12380 if (startswith (args, "if")
12381 && (isspace (args[2]) || args[2] == '\0'))
12384 args = skip_spaces (args);
12385 if (args[0] == '\0')
12386 error (_("condition missing after `if' keyword"));
12387 cond_string.assign (args);
12390 /* Otherwise, there should be no other argument at the end of
12392 else if (args[0] != '\0')
12393 error (_("Junk at end of arguments."));
12396 /* Implement the "catch assert" command. */
12399 catch_assert_command (const char *arg_entry, int from_tty,
12400 struct cmd_list_element *command)
12402 const char *arg = arg_entry;
12403 struct gdbarch *gdbarch = get_current_arch ();
12405 std::string cond_string;
12407 tempflag = command->context () == CATCH_TEMPORARY;
12411 catch_ada_assert_command_split (arg, cond_string);
12412 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12414 tempflag, 1 /* enabled */,
12418 /* Return non-zero if the symbol SYM is an Ada exception object. */
12421 ada_is_exception_sym (struct symbol *sym)
12423 const char *type_name = sym->type ()->name ();
12425 return (sym->aclass () != LOC_TYPEDEF
12426 && sym->aclass () != LOC_BLOCK
12427 && sym->aclass () != LOC_CONST
12428 && sym->aclass () != LOC_UNRESOLVED
12429 && type_name != NULL && strcmp (type_name, "exception") == 0);
12432 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12433 Ada exception object. This matches all exceptions except the ones
12434 defined by the Ada language. */
12437 ada_is_non_standard_exception_sym (struct symbol *sym)
12439 if (!ada_is_exception_sym (sym))
12442 for (const char *name : standard_exc)
12443 if (strcmp (sym->linkage_name (), name) == 0)
12444 return 0; /* A standard exception. */
12446 /* Numeric_Error is also a standard exception, so exclude it.
12447 See the STANDARD_EXC description for more details as to why
12448 this exception is not listed in that array. */
12449 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12455 /* A helper function for std::sort, comparing two struct ada_exc_info
12458 The comparison is determined first by exception name, and then
12459 by exception address. */
12462 ada_exc_info::operator< (const ada_exc_info &other) const
12466 result = strcmp (name, other.name);
12469 if (result == 0 && addr < other.addr)
12475 ada_exc_info::operator== (const ada_exc_info &other) const
12477 return addr == other.addr && strcmp (name, other.name) == 0;
12480 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12481 routine, but keeping the first SKIP elements untouched.
12483 All duplicates are also removed. */
12486 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12489 std::sort (exceptions->begin () + skip, exceptions->end ());
12490 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12491 exceptions->end ());
12494 /* Add all exceptions defined by the Ada standard whose name match
12495 a regular expression.
12497 If PREG is not NULL, then this regexp_t object is used to
12498 perform the symbol name matching. Otherwise, no name-based
12499 filtering is performed.
12501 EXCEPTIONS is a vector of exceptions to which matching exceptions
12505 ada_add_standard_exceptions (compiled_regex *preg,
12506 std::vector<ada_exc_info> *exceptions)
12508 for (const char *name : standard_exc)
12510 if (preg == NULL || preg->exec (name, 0, NULL, 0) == 0)
12512 struct bound_minimal_symbol msymbol
12513 = ada_lookup_simple_minsym (name);
12515 if (msymbol.minsym != NULL)
12517 struct ada_exc_info info
12518 = {name, BMSYMBOL_VALUE_ADDRESS (msymbol)};
12520 exceptions->push_back (info);
12526 /* Add all Ada exceptions defined locally and accessible from the given
12529 If PREG is not NULL, then this regexp_t object is used to
12530 perform the symbol name matching. Otherwise, no name-based
12531 filtering is performed.
12533 EXCEPTIONS is a vector of exceptions to which matching exceptions
12537 ada_add_exceptions_from_frame (compiled_regex *preg,
12538 struct frame_info *frame,
12539 std::vector<ada_exc_info> *exceptions)
12541 const struct block *block = get_frame_block (frame, 0);
12545 struct block_iterator iter;
12546 struct symbol *sym;
12548 ALL_BLOCK_SYMBOLS (block, iter, sym)
12550 switch (sym->aclass ())
12557 if (ada_is_exception_sym (sym))
12559 struct ada_exc_info info = {sym->print_name (),
12560 SYMBOL_VALUE_ADDRESS (sym)};
12562 exceptions->push_back (info);
12566 if (BLOCK_FUNCTION (block) != NULL)
12568 block = BLOCK_SUPERBLOCK (block);
12572 /* Return true if NAME matches PREG or if PREG is NULL. */
12575 name_matches_regex (const char *name, compiled_regex *preg)
12577 return (preg == NULL
12578 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12581 /* Add all exceptions defined globally whose name name match
12582 a regular expression, excluding standard exceptions.
12584 The reason we exclude standard exceptions is that they need
12585 to be handled separately: Standard exceptions are defined inside
12586 a runtime unit which is normally not compiled with debugging info,
12587 and thus usually do not show up in our symbol search. However,
12588 if the unit was in fact built with debugging info, we need to
12589 exclude them because they would duplicate the entry we found
12590 during the special loop that specifically searches for those
12591 standard exceptions.
12593 If PREG is not NULL, then this regexp_t object is used to
12594 perform the symbol name matching. Otherwise, no name-based
12595 filtering is performed.
12597 EXCEPTIONS is a vector of exceptions to which matching exceptions
12601 ada_add_global_exceptions (compiled_regex *preg,
12602 std::vector<ada_exc_info> *exceptions)
12604 /* In Ada, the symbol "search name" is a linkage name, whereas the
12605 regular expression used to do the matching refers to the natural
12606 name. So match against the decoded name. */
12607 expand_symtabs_matching (NULL,
12608 lookup_name_info::match_any (),
12609 [&] (const char *search_name)
12611 std::string decoded = ada_decode (search_name);
12612 return name_matches_regex (decoded.c_str (), preg);
12615 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
12618 for (objfile *objfile : current_program_space->objfiles ())
12620 for (compunit_symtab *s : objfile->compunits ())
12622 const struct blockvector *bv = s->blockvector ();
12625 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12627 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12628 struct block_iterator iter;
12629 struct symbol *sym;
12631 ALL_BLOCK_SYMBOLS (b, iter, sym)
12632 if (ada_is_non_standard_exception_sym (sym)
12633 && name_matches_regex (sym->natural_name (), preg))
12635 struct ada_exc_info info
12636 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12638 exceptions->push_back (info);
12645 /* Implements ada_exceptions_list with the regular expression passed
12646 as a regex_t, rather than a string.
12648 If not NULL, PREG is used to filter out exceptions whose names
12649 do not match. Otherwise, all exceptions are listed. */
12651 static std::vector<ada_exc_info>
12652 ada_exceptions_list_1 (compiled_regex *preg)
12654 std::vector<ada_exc_info> result;
12657 /* First, list the known standard exceptions. These exceptions
12658 need to be handled separately, as they are usually defined in
12659 runtime units that have been compiled without debugging info. */
12661 ada_add_standard_exceptions (preg, &result);
12663 /* Next, find all exceptions whose scope is local and accessible
12664 from the currently selected frame. */
12666 if (has_stack_frames ())
12668 prev_len = result.size ();
12669 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12671 if (result.size () > prev_len)
12672 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12675 /* Add all exceptions whose scope is global. */
12677 prev_len = result.size ();
12678 ada_add_global_exceptions (preg, &result);
12679 if (result.size () > prev_len)
12680 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12685 /* Return a vector of ada_exc_info.
12687 If REGEXP is NULL, all exceptions are included in the result.
12688 Otherwise, it should contain a valid regular expression,
12689 and only the exceptions whose names match that regular expression
12690 are included in the result.
12692 The exceptions are sorted in the following order:
12693 - Standard exceptions (defined by the Ada language), in
12694 alphabetical order;
12695 - Exceptions only visible from the current frame, in
12696 alphabetical order;
12697 - Exceptions whose scope is global, in alphabetical order. */
12699 std::vector<ada_exc_info>
12700 ada_exceptions_list (const char *regexp)
12702 if (regexp == NULL)
12703 return ada_exceptions_list_1 (NULL);
12705 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12706 return ada_exceptions_list_1 (®);
12709 /* Implement the "info exceptions" command. */
12712 info_exceptions_command (const char *regexp, int from_tty)
12714 struct gdbarch *gdbarch = get_current_arch ();
12716 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12718 if (regexp != NULL)
12720 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12722 printf_filtered (_("All defined Ada exceptions:\n"));
12724 for (const ada_exc_info &info : exceptions)
12725 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12729 /* Language vector */
12731 /* symbol_name_matcher_ftype adapter for wild_match. */
12734 do_wild_match (const char *symbol_search_name,
12735 const lookup_name_info &lookup_name,
12736 completion_match_result *comp_match_res)
12738 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12741 /* symbol_name_matcher_ftype adapter for full_match. */
12744 do_full_match (const char *symbol_search_name,
12745 const lookup_name_info &lookup_name,
12746 completion_match_result *comp_match_res)
12748 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12750 /* If both symbols start with "_ada_", just let the loop below
12751 handle the comparison. However, if only the symbol name starts
12752 with "_ada_", skip the prefix and let the match proceed as
12754 if (startswith (symbol_search_name, "_ada_")
12755 && !startswith (lname, "_ada"))
12756 symbol_search_name += 5;
12758 int uscore_count = 0;
12759 while (*lname != '\0')
12761 if (*symbol_search_name != *lname)
12763 if (*symbol_search_name == 'B' && uscore_count == 2
12764 && symbol_search_name[1] == '_')
12766 symbol_search_name += 2;
12767 while (isdigit (*symbol_search_name))
12768 ++symbol_search_name;
12769 if (symbol_search_name[0] == '_'
12770 && symbol_search_name[1] == '_')
12772 symbol_search_name += 2;
12779 if (*symbol_search_name == '_')
12784 ++symbol_search_name;
12788 return is_name_suffix (symbol_search_name);
12791 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12794 do_exact_match (const char *symbol_search_name,
12795 const lookup_name_info &lookup_name,
12796 completion_match_result *comp_match_res)
12798 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12801 /* Build the Ada lookup name for LOOKUP_NAME. */
12803 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12805 gdb::string_view user_name = lookup_name.name ();
12807 if (!user_name.empty () && user_name[0] == '<')
12809 if (user_name.back () == '>')
12811 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12814 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12815 m_encoded_p = true;
12816 m_verbatim_p = true;
12817 m_wild_match_p = false;
12818 m_standard_p = false;
12822 m_verbatim_p = false;
12824 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12828 const char *folded = ada_fold_name (user_name);
12829 m_encoded_name = ada_encode_1 (folded, false);
12830 if (m_encoded_name.empty ())
12831 m_encoded_name = gdb::to_string (user_name);
12834 m_encoded_name = gdb::to_string (user_name);
12836 /* Handle the 'package Standard' special case. See description
12837 of m_standard_p. */
12838 if (startswith (m_encoded_name.c_str (), "standard__"))
12840 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12841 m_standard_p = true;
12844 m_standard_p = false;
12846 /* If the name contains a ".", then the user is entering a fully
12847 qualified entity name, and the match must not be done in wild
12848 mode. Similarly, if the user wants to complete what looks
12849 like an encoded name, the match must not be done in wild
12850 mode. Also, in the standard__ special case always do
12851 non-wild matching. */
12853 = (lookup_name.match_type () != symbol_name_match_type::FULL
12856 && user_name.find ('.') == std::string::npos);
12860 /* symbol_name_matcher_ftype method for Ada. This only handles
12861 completion mode. */
12864 ada_symbol_name_matches (const char *symbol_search_name,
12865 const lookup_name_info &lookup_name,
12866 completion_match_result *comp_match_res)
12868 return lookup_name.ada ().matches (symbol_search_name,
12869 lookup_name.match_type (),
12873 /* A name matcher that matches the symbol name exactly, with
12877 literal_symbol_name_matcher (const char *symbol_search_name,
12878 const lookup_name_info &lookup_name,
12879 completion_match_result *comp_match_res)
12881 gdb::string_view name_view = lookup_name.name ();
12883 if (lookup_name.completion_mode ()
12884 ? (strncmp (symbol_search_name, name_view.data (),
12885 name_view.size ()) == 0)
12886 : symbol_search_name == name_view)
12888 if (comp_match_res != NULL)
12889 comp_match_res->set_match (symbol_search_name);
12896 /* Implement the "get_symbol_name_matcher" language_defn method for
12899 static symbol_name_matcher_ftype *
12900 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12902 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12903 return literal_symbol_name_matcher;
12905 if (lookup_name.completion_mode ())
12906 return ada_symbol_name_matches;
12909 if (lookup_name.ada ().wild_match_p ())
12910 return do_wild_match;
12911 else if (lookup_name.ada ().verbatim_p ())
12912 return do_exact_match;
12914 return do_full_match;
12918 /* Class representing the Ada language. */
12920 class ada_language : public language_defn
12924 : language_defn (language_ada)
12927 /* See language.h. */
12929 const char *name () const override
12932 /* See language.h. */
12934 const char *natural_name () const override
12937 /* See language.h. */
12939 const std::vector<const char *> &filename_extensions () const override
12941 static const std::vector<const char *> extensions
12942 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12946 /* Print an array element index using the Ada syntax. */
12948 void print_array_index (struct type *index_type,
12950 struct ui_file *stream,
12951 const value_print_options *options) const override
12953 struct value *index_value = val_atr (index_type, index);
12955 value_print (index_value, stream, options);
12956 fprintf_filtered (stream, " => ");
12959 /* Implement the "read_var_value" language_defn method for Ada. */
12961 struct value *read_var_value (struct symbol *var,
12962 const struct block *var_block,
12963 struct frame_info *frame) const override
12965 /* The only case where default_read_var_value is not sufficient
12966 is when VAR is a renaming... */
12967 if (frame != nullptr)
12969 const struct block *frame_block = get_frame_block (frame, NULL);
12970 if (frame_block != nullptr && ada_is_renaming_symbol (var))
12971 return ada_read_renaming_var_value (var, frame_block);
12974 /* This is a typical case where we expect the default_read_var_value
12975 function to work. */
12976 return language_defn::read_var_value (var, var_block, frame);
12979 /* See language.h. */
12980 virtual bool symbol_printing_suppressed (struct symbol *symbol) const override
12982 return symbol->artificial;
12985 /* See language.h. */
12986 void language_arch_info (struct gdbarch *gdbarch,
12987 struct language_arch_info *lai) const override
12989 const struct builtin_type *builtin = builtin_type (gdbarch);
12991 /* Helper function to allow shorter lines below. */
12992 auto add = [&] (struct type *t)
12994 lai->add_primitive_type (t);
12997 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12999 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13000 0, "long_integer"));
13001 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13002 0, "short_integer"));
13003 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13005 lai->set_string_char_type (char_type);
13007 add (arch_character_type (gdbarch, 16, 1, "wide_character"));
13008 add (arch_character_type (gdbarch, 32, 1, "wide_wide_character"));
13009 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13010 "float", gdbarch_float_format (gdbarch)));
13011 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13012 "long_float", gdbarch_double_format (gdbarch)));
13013 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13014 0, "long_long_integer"));
13015 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13017 gdbarch_long_double_format (gdbarch)));
13018 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13020 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13022 add (builtin->builtin_void);
13024 struct type *system_addr_ptr
13025 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13027 system_addr_ptr->set_name ("system__address");
13028 add (system_addr_ptr);
13030 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13031 type. This is a signed integral type whose size is the same as
13032 the size of addresses. */
13033 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13034 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13035 "storage_offset"));
13037 lai->set_bool_type (builtin->builtin_bool);
13040 /* See language.h. */
13042 bool iterate_over_symbols
13043 (const struct block *block, const lookup_name_info &name,
13044 domain_enum domain,
13045 gdb::function_view<symbol_found_callback_ftype> callback) const override
13047 std::vector<struct block_symbol> results
13048 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13049 for (block_symbol &sym : results)
13051 if (!callback (&sym))
13058 /* See language.h. */
13059 bool sniff_from_mangled_name
13060 (const char *mangled,
13061 gdb::unique_xmalloc_ptr<char> *out) const override
13063 std::string demangled = ada_decode (mangled);
13067 if (demangled != mangled && demangled[0] != '<')
13069 /* Set the gsymbol language to Ada, but still return 0.
13070 Two reasons for that:
13072 1. For Ada, we prefer computing the symbol's decoded name
13073 on the fly rather than pre-compute it, in order to save
13074 memory (Ada projects are typically very large).
13076 2. There are some areas in the definition of the GNAT
13077 encoding where, with a bit of bad luck, we might be able
13078 to decode a non-Ada symbol, generating an incorrect
13079 demangled name (Eg: names ending with "TB" for instance
13080 are identified as task bodies and so stripped from
13081 the decoded name returned).
13083 Returning true, here, but not setting *DEMANGLED, helps us get
13084 a little bit of the best of both worlds. Because we're last,
13085 we should not affect any of the other languages that were
13086 able to demangle the symbol before us; we get to correctly
13087 tag Ada symbols as such; and even if we incorrectly tagged a
13088 non-Ada symbol, which should be rare, any routing through the
13089 Ada language should be transparent (Ada tries to behave much
13090 like C/C++ with non-Ada symbols). */
13097 /* See language.h. */
13099 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13100 int options) const override
13102 return make_unique_xstrdup (ada_decode (mangled).c_str ());
13105 /* See language.h. */
13107 void print_type (struct type *type, const char *varstring,
13108 struct ui_file *stream, int show, int level,
13109 const struct type_print_options *flags) const override
13111 ada_print_type (type, varstring, stream, show, level, flags);
13114 /* See language.h. */
13116 const char *word_break_characters (void) const override
13118 return ada_completer_word_break_characters;
13121 /* See language.h. */
13123 void collect_symbol_completion_matches (completion_tracker &tracker,
13124 complete_symbol_mode mode,
13125 symbol_name_match_type name_match_type,
13126 const char *text, const char *word,
13127 enum type_code code) const override
13129 struct symbol *sym;
13130 const struct block *b, *surrounding_static_block = 0;
13131 struct block_iterator iter;
13133 gdb_assert (code == TYPE_CODE_UNDEF);
13135 lookup_name_info lookup_name (text, name_match_type, true);
13137 /* First, look at the partial symtab symbols. */
13138 expand_symtabs_matching (NULL,
13142 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13145 /* At this point scan through the misc symbol vectors and add each
13146 symbol you find to the list. Eventually we want to ignore
13147 anything that isn't a text symbol (everything else will be
13148 handled by the psymtab code above). */
13150 for (objfile *objfile : current_program_space->objfiles ())
13152 for (minimal_symbol *msymbol : objfile->msymbols ())
13156 if (completion_skip_symbol (mode, msymbol))
13159 language symbol_language = msymbol->language ();
13161 /* Ada minimal symbols won't have their language set to Ada. If
13162 we let completion_list_add_name compare using the
13163 default/C-like matcher, then when completing e.g., symbols in a
13164 package named "pck", we'd match internal Ada symbols like
13165 "pckS", which are invalid in an Ada expression, unless you wrap
13166 them in '<' '>' to request a verbatim match.
13168 Unfortunately, some Ada encoded names successfully demangle as
13169 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13170 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13171 with the wrong language set. Paper over that issue here. */
13172 if (symbol_language == language_auto
13173 || symbol_language == language_cplus)
13174 symbol_language = language_ada;
13176 completion_list_add_name (tracker,
13178 msymbol->linkage_name (),
13179 lookup_name, text, word);
13183 /* Search upwards from currently selected frame (so that we can
13184 complete on local vars. */
13186 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13188 if (!BLOCK_SUPERBLOCK (b))
13189 surrounding_static_block = b; /* For elmin of dups */
13191 ALL_BLOCK_SYMBOLS (b, iter, sym)
13193 if (completion_skip_symbol (mode, sym))
13196 completion_list_add_name (tracker,
13198 sym->linkage_name (),
13199 lookup_name, text, word);
13203 /* Go through the symtabs and check the externs and statics for
13204 symbols which match. */
13206 for (objfile *objfile : current_program_space->objfiles ())
13208 for (compunit_symtab *s : objfile->compunits ())
13211 b = BLOCKVECTOR_BLOCK (s->blockvector (), GLOBAL_BLOCK);
13212 ALL_BLOCK_SYMBOLS (b, iter, sym)
13214 if (completion_skip_symbol (mode, sym))
13217 completion_list_add_name (tracker,
13219 sym->linkage_name (),
13220 lookup_name, text, word);
13225 for (objfile *objfile : current_program_space->objfiles ())
13227 for (compunit_symtab *s : objfile->compunits ())
13230 b = BLOCKVECTOR_BLOCK (s->blockvector (), STATIC_BLOCK);
13231 /* Don't do this block twice. */
13232 if (b == surrounding_static_block)
13234 ALL_BLOCK_SYMBOLS (b, iter, sym)
13236 if (completion_skip_symbol (mode, sym))
13239 completion_list_add_name (tracker,
13241 sym->linkage_name (),
13242 lookup_name, text, word);
13248 /* See language.h. */
13250 gdb::unique_xmalloc_ptr<char> watch_location_expression
13251 (struct type *type, CORE_ADDR addr) const override
13253 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13254 std::string name = type_to_string (type);
13255 return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr));
13258 /* See language.h. */
13260 void value_print (struct value *val, struct ui_file *stream,
13261 const struct value_print_options *options) const override
13263 return ada_value_print (val, stream, options);
13266 /* See language.h. */
13268 void value_print_inner
13269 (struct value *val, struct ui_file *stream, int recurse,
13270 const struct value_print_options *options) const override
13272 return ada_value_print_inner (val, stream, recurse, options);
13275 /* See language.h. */
13277 struct block_symbol lookup_symbol_nonlocal
13278 (const char *name, const struct block *block,
13279 const domain_enum domain) const override
13281 struct block_symbol sym;
13283 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13284 if (sym.symbol != NULL)
13287 /* If we haven't found a match at this point, try the primitive
13288 types. In other languages, this search is performed before
13289 searching for global symbols in order to short-circuit that
13290 global-symbol search if it happens that the name corresponds
13291 to a primitive type. But we cannot do the same in Ada, because
13292 it is perfectly legitimate for a program to declare a type which
13293 has the same name as a standard type. If looking up a type in
13294 that situation, we have traditionally ignored the primitive type
13295 in favor of user-defined types. This is why, unlike most other
13296 languages, we search the primitive types this late and only after
13297 having searched the global symbols without success. */
13299 if (domain == VAR_DOMAIN)
13301 struct gdbarch *gdbarch;
13304 gdbarch = target_gdbarch ();
13306 gdbarch = block_gdbarch (block);
13308 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13309 if (sym.symbol != NULL)
13316 /* See language.h. */
13318 int parser (struct parser_state *ps) const override
13320 warnings_issued = 0;
13321 return ada_parse (ps);
13324 /* See language.h. */
13326 void emitchar (int ch, struct type *chtype,
13327 struct ui_file *stream, int quoter) const override
13329 ada_emit_char (ch, chtype, stream, quoter, 1);
13332 /* See language.h. */
13334 void printchar (int ch, struct type *chtype,
13335 struct ui_file *stream) const override
13337 ada_printchar (ch, chtype, stream);
13340 /* See language.h. */
13342 void printstr (struct ui_file *stream, struct type *elttype,
13343 const gdb_byte *string, unsigned int length,
13344 const char *encoding, int force_ellipses,
13345 const struct value_print_options *options) const override
13347 ada_printstr (stream, elttype, string, length, encoding,
13348 force_ellipses, options);
13351 /* See language.h. */
13353 void print_typedef (struct type *type, struct symbol *new_symbol,
13354 struct ui_file *stream) const override
13356 ada_print_typedef (type, new_symbol, stream);
13359 /* See language.h. */
13361 bool is_string_type_p (struct type *type) const override
13363 return ada_is_string_type (type);
13366 /* See language.h. */
13368 const char *struct_too_deep_ellipsis () const override
13369 { return "(...)"; }
13371 /* See language.h. */
13373 bool c_style_arrays_p () const override
13376 /* See language.h. */
13378 bool store_sym_names_in_linkage_form_p () const override
13381 /* See language.h. */
13383 const struct lang_varobj_ops *varobj_ops () const override
13384 { return &ada_varobj_ops; }
13387 /* See language.h. */
13389 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13390 (const lookup_name_info &lookup_name) const override
13392 return ada_get_symbol_name_matcher (lookup_name);
13396 /* Single instance of the Ada language class. */
13398 static ada_language ada_language_defn;
13400 /* Command-list for the "set/show ada" prefix command. */
13401 static struct cmd_list_element *set_ada_list;
13402 static struct cmd_list_element *show_ada_list;
13405 initialize_ada_catchpoint_ops (void)
13407 struct breakpoint_ops *ops;
13409 initialize_breakpoint_ops ();
13411 ops = &catch_exception_breakpoint_ops;
13412 *ops = bkpt_breakpoint_ops;
13413 ops->allocate_location = allocate_location_exception;
13414 ops->re_set = re_set_exception;
13415 ops->check_status = check_status_exception;
13416 ops->print_it = print_it_exception;
13417 ops->print_one = print_one_exception;
13418 ops->print_mention = print_mention_exception;
13419 ops->print_recreate = print_recreate_exception;
13422 /* This module's 'new_objfile' observer. */
13425 ada_new_objfile_observer (struct objfile *objfile)
13427 ada_clear_symbol_cache ();
13430 /* This module's 'free_objfile' observer. */
13433 ada_free_objfile_observer (struct objfile *objfile)
13435 ada_clear_symbol_cache ();
13438 void _initialize_ada_language ();
13440 _initialize_ada_language ()
13442 initialize_ada_catchpoint_ops ();
13444 add_setshow_prefix_cmd
13446 _("Prefix command for changing Ada-specific settings."),
13447 _("Generic command for showing Ada-specific settings."),
13448 &set_ada_list, &show_ada_list,
13449 &setlist, &showlist);
13451 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13452 &trust_pad_over_xvs, _("\
13453 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13454 Show whether an optimization trusting PAD types over XVS types is activated."),
13456 This is related to the encoding used by the GNAT compiler. The debugger\n\
13457 should normally trust the contents of PAD types, but certain older versions\n\
13458 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13459 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13460 work around this bug. It is always safe to turn this option \"off\", but\n\
13461 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13462 this option to \"off\" unless necessary."),
13463 NULL, NULL, &set_ada_list, &show_ada_list);
13465 add_setshow_boolean_cmd ("print-signatures", class_vars,
13466 &print_signatures, _("\
13467 Enable or disable the output of formal and return types for functions in the \
13468 overloads selection menu."), _("\
13469 Show whether the output of formal and return types for functions in the \
13470 overloads selection menu is activated."),
13471 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13473 add_catch_command ("exception", _("\
13474 Catch Ada exceptions, when raised.\n\
13475 Usage: catch exception [ARG] [if CONDITION]\n\
13476 Without any argument, stop when any Ada exception is raised.\n\
13477 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13478 being raised does not have a handler (and will therefore lead to the task's\n\
13480 Otherwise, the catchpoint only stops when the name of the exception being\n\
13481 raised is the same as ARG.\n\
13482 CONDITION is a boolean expression that is evaluated to see whether the\n\
13483 exception should cause a stop."),
13484 catch_ada_exception_command,
13485 catch_ada_completer,
13489 add_catch_command ("handlers", _("\
13490 Catch Ada exceptions, when handled.\n\
13491 Usage: catch handlers [ARG] [if CONDITION]\n\
13492 Without any argument, stop when any Ada exception is handled.\n\
13493 With an argument, catch only exceptions with the given name.\n\
13494 CONDITION is a boolean expression that is evaluated to see whether the\n\
13495 exception should cause a stop."),
13496 catch_ada_handlers_command,
13497 catch_ada_completer,
13500 add_catch_command ("assert", _("\
13501 Catch failed Ada assertions, when raised.\n\
13502 Usage: catch assert [if CONDITION]\n\
13503 CONDITION is a boolean expression that is evaluated to see whether the\n\
13504 exception should cause a stop."),
13505 catch_assert_command,
13510 add_info ("exceptions", info_exceptions_command,
13512 List all Ada exception names.\n\
13513 Usage: info exceptions [REGEXP]\n\
13514 If a regular expression is passed as an argument, only those matching\n\
13515 the regular expression are listed."));
13517 add_setshow_prefix_cmd ("ada", class_maintenance,
13518 _("Set Ada maintenance-related variables."),
13519 _("Show Ada maintenance-related variables."),
13520 &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
13521 &maintenance_set_cmdlist, &maintenance_show_cmdlist);
13523 add_setshow_boolean_cmd
13524 ("ignore-descriptive-types", class_maintenance,
13525 &ada_ignore_descriptive_types_p,
13526 _("Set whether descriptive types generated by GNAT should be ignored."),
13527 _("Show whether descriptive types generated by GNAT should be ignored."),
13529 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13530 DWARF attribute."),
13531 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13533 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13535 NULL, xcalloc, xfree);
13537 /* The ada-lang observers. */
13538 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13539 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13540 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");