3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6 # This file is part of GDB.
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 # Make certain that the script is running in an internationalized
25 LC_ALL=c ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
52 if test "${line}" = ""
55 elif test "${line}" = "#" -a "${comment}" = ""
58 elif expr "${line}" : "#" > /dev/null
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
79 if eval test \"\${${r}}\" = \"\ \"
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
104 if [ "${returntype}" = int ]
108 elif [ "${returntype}" = long ]
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
120 case "${invalid_p}" in
122 if test -n "${predefault}" -a "${predefault}" != "0"
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
132 echo "Predicate function ${function} with invalid_p." 1>&2
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
146 if [ -n "${postdefault}" ]
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
151 fallbackdefault="${predefault}"
156 #NOT YET: See gdbarch.log for basic verification of
171 fallback_default_p ()
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
177 class_is_variable_p ()
185 class_is_function_p ()
188 *f* | *F* | *m* | *M* ) true ;;
193 class_is_multiarch_p ()
201 class_is_predicate_p ()
204 *F* | *V* | *M* ) true ;;
218 # dump out/verify the doco
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
249 # The name of the MACRO that this method is to be accessed by.
253 # For functions, the return type; for variables, the data type
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
286 # If STATICDEFAULT is empty, zero is used.
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
295 # If PREDEFAULT is empty, zero is used.
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
301 # A zero PREDEFAULT function will force the fallback to call
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
313 # If POSTDEFAULT is empty, no post update is performed.
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
344 # See also PREDEFAULT and POSTDEFAULT.
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
352 # If FMT is empty, ``%ld'' is used.
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
359 # If PRINT is empty, ``(long)'' is used.
363 # An optional indicator for any predicte to wrap around the
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
370 # If PRINT_P is empty, ``1'' is always used.
377 echo "Bad field ${field}"
385 # See below (DOCO) for description of each field
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 f:2:TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
432 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
433 f:2:TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
434 # Function for getting target's idea of a frame pointer. FIXME: GDB's
435 # whole scheme for dealing with "frames" and "frame pointers" needs a
437 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
439 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
440 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
442 v:2:NUM_REGS:int:num_regs::::0:-1
443 # This macro gives the number of pseudo-registers that live in the
444 # register namespace but do not get fetched or stored on the target.
445 # These pseudo-registers may be aliases for other registers,
446 # combinations of other registers, or they may be computed by GDB.
447 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
454 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
455 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
456 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
457 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
458 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
459 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
460 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
461 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
463 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
464 # Convert from an sdb register number to an internal gdb register number.
465 # This should be defined in tm.h, if REGISTER_NAMES is not set up
466 # to map one to one onto the sdb register numbers.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
470 v:2:REGISTER_SIZE:int:register_size::::0:-1
471 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
472 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
473 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
474 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
475 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
477 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
478 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
479 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
480 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
482 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
483 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
484 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
485 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
487 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
488 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
489 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
490 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
492 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
493 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
494 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
495 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE have all being replaced
497 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
498 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
500 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
501 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
502 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
503 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
504 # MAP a GDB RAW register number onto a simulator register number. See
505 # also include/...-sim.h.
506 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
507 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
508 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
509 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
510 # setjmp/longjmp support.
511 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
513 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
514 # much better but at least they are vaguely consistent). The headers
515 # and body contain convoluted #if/#else sequences for determine how
516 # things should be compiled. Instead of trying to mimic that
517 # behaviour here (and hence entrench it further) gdbarch simply
518 # reqires that these methods be set up from the word go. This also
519 # avoids any potential problems with moving beyond multi-arch partial.
520 v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
522 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
523 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
524 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
525 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
526 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::gdbarch->call_dummy_length >= 0
527 # NOTE: cagney/2002-11-24: This function with predicate has a valid
528 # (callable) initial value. As a consequence, even when the predicate
529 # is false, the corresponding function works. This simplifies the
530 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
531 # doesn't need to be modified.
532 F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
533 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
534 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
535 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
536 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
537 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
538 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
539 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
540 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
542 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
543 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
544 F:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
546 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
547 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
548 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
550 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
551 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
552 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
554 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
555 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
556 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
558 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
559 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
560 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
561 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
562 F:2:POP_FRAME:void:pop_frame:void:-:::0
564 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
566 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
567 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
568 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
569 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
571 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
572 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
573 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
575 F:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame:::0
576 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
578 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
579 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
580 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
581 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
582 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
583 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
584 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
585 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
586 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
588 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
590 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
591 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
592 F:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
593 F:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
594 F:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
595 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
596 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
597 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
598 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
600 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
601 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
602 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
603 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
604 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
605 v:2:PARM_BOUNDARY:int:parm_boundary
607 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
608 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
609 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
610 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
611 # On some machines there are bits in addresses which are not really
612 # part of the address, but are used by the kernel, the hardware, etc.
613 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
614 # we get a "real" address such as one would find in a symbol table.
615 # This is used only for addresses of instructions, and even then I'm
616 # not sure it's used in all contexts. It exists to deal with there
617 # being a few stray bits in the PC which would mislead us, not as some
618 # sort of generic thing to handle alignment or segmentation (it's
619 # possible it should be in TARGET_READ_PC instead).
620 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
621 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
623 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
624 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
625 # the target needs software single step. An ISA method to implement it.
627 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
628 # using the breakpoint system instead of blatting memory directly (as with rs6000).
630 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
631 # single step. If not, then implement single step using breakpoints.
632 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
633 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
634 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
637 # For SVR4 shared libraries, each call goes through a small piece of
638 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
639 # to nonzero if we are currently stopped in one of these.
640 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
642 # Some systems also have trampoline code for returning from shared libs.
643 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
645 # Sigtramp is a routine that the kernel calls (which then calls the
646 # signal handler). On most machines it is a library routine that is
647 # linked into the executable.
649 # This macro, given a program counter value and the name of the
650 # function in which that PC resides (which can be null if the name is
651 # not known), returns nonzero if the PC and name show that we are in
654 # On most machines just see if the name is sigtramp (and if we have
655 # no name, assume we are not in sigtramp).
657 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
658 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
659 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
660 # own local NAME lookup.
662 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
663 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
665 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
666 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
667 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
668 # A target might have problems with watchpoints as soon as the stack
669 # frame of the current function has been destroyed. This mostly happens
670 # as the first action in a funtion's epilogue. in_function_epilogue_p()
671 # is defined to return a non-zero value if either the given addr is one
672 # instruction after the stack destroying instruction up to the trailing
673 # return instruction or if we can figure out that the stack frame has
674 # already been invalidated regardless of the value of addr. Targets
675 # which don't suffer from that problem could just let this functionality
677 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
678 # Given a vector of command-line arguments, return a newly allocated
679 # string which, when passed to the create_inferior function, will be
680 # parsed (on Unix systems, by the shell) to yield the same vector.
681 # This function should call error() if the argument vector is not
682 # representable for this target or if this target does not support
683 # command-line arguments.
684 # ARGC is the number of elements in the vector.
685 # ARGV is an array of strings, one per argument.
686 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
687 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
688 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
689 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
690 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
691 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
692 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
693 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
694 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
695 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
696 # Is a register in a group
697 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
704 exec > new-gdbarch.log
705 function_list | while do_read
708 ${class} ${macro}(${actual})
709 ${returntype} ${function} ($formal)${attrib}
713 eval echo \"\ \ \ \ ${r}=\${${r}}\"
715 if class_is_predicate_p && fallback_default_p
717 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
721 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
723 echo "Error: postdefault is useless when invalid_p=0" 1>&2
727 if class_is_multiarch_p
729 if class_is_predicate_p ; then :
730 elif test "x${predefault}" = "x"
732 echo "Error: pure multi-arch function must have a predefault" 1>&2
741 compare_new gdbarch.log
747 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
749 /* Dynamic architecture support for GDB, the GNU debugger.
750 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
752 This file is part of GDB.
754 This program is free software; you can redistribute it and/or modify
755 it under the terms of the GNU General Public License as published by
756 the Free Software Foundation; either version 2 of the License, or
757 (at your option) any later version.
759 This program is distributed in the hope that it will be useful,
760 but WITHOUT ANY WARRANTY; without even the implied warranty of
761 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
762 GNU General Public License for more details.
764 You should have received a copy of the GNU General Public License
765 along with this program; if not, write to the Free Software
766 Foundation, Inc., 59 Temple Place - Suite 330,
767 Boston, MA 02111-1307, USA. */
769 /* This file was created with the aid of \`\`gdbarch.sh''.
771 The Bourne shell script \`\`gdbarch.sh'' creates the files
772 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
773 against the existing \`\`gdbarch.[hc]''. Any differences found
776 If editing this file, please also run gdbarch.sh and merge any
777 changes into that script. Conversely, when making sweeping changes
778 to this file, modifying gdbarch.sh and using its output may prove
794 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
796 /* Pull in function declarations refered to, indirectly, via macros. */
797 #include "inferior.h" /* For unsigned_address_to_pointer(). */
803 struct minimal_symbol;
807 extern struct gdbarch *current_gdbarch;
810 /* If any of the following are defined, the target wasn't correctly
814 #if defined (EXTRA_FRAME_INFO)
815 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
820 #if defined (FRAME_FIND_SAVED_REGS)
821 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
825 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
826 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
833 printf "/* The following are pre-initialized by GDBARCH. */\n"
834 function_list | while do_read
839 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
840 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
841 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
842 printf "#error \"Non multi-arch definition of ${macro}\"\n"
844 printf "#if GDB_MULTI_ARCH\n"
845 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
846 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
855 printf "/* The following are initialized by the target dependent code. */\n"
856 function_list | while do_read
858 if [ -n "${comment}" ]
860 echo "${comment}" | sed \
865 if class_is_multiarch_p
867 if class_is_predicate_p
870 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
873 if class_is_predicate_p
876 printf "#if defined (${macro})\n"
877 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
878 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
879 printf "#if !defined (${macro}_P)\n"
880 printf "#define ${macro}_P() (1)\n"
884 printf "/* Default predicate for non- multi-arch targets. */\n"
885 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
886 printf "#define ${macro}_P() (0)\n"
889 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
890 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
891 printf "#error \"Non multi-arch definition of ${macro}\"\n"
893 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
894 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
898 if class_is_variable_p
900 if fallback_default_p || class_is_predicate_p
903 printf "/* Default (value) for non- multi-arch platforms. */\n"
904 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
905 echo "#define ${macro} (${fallbackdefault})" \
906 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
910 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
911 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
912 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
913 printf "#error \"Non multi-arch definition of ${macro}\"\n"
915 if test "${level}" = ""
917 printf "#if !defined (${macro})\n"
918 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
921 printf "#if GDB_MULTI_ARCH\n"
922 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
923 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
928 if class_is_function_p
930 if class_is_multiarch_p ; then :
931 elif fallback_default_p || class_is_predicate_p
934 printf "/* Default (function) for non- multi-arch platforms. */\n"
935 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
936 if [ "x${fallbackdefault}" = "x0" ]
938 if [ "x${actual}" = "x-" ]
940 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
941 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
943 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
946 # FIXME: Should be passing current_gdbarch through!
947 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
948 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
953 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
955 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
956 elif class_is_multiarch_p
958 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
960 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
962 if [ "x${formal}" = "xvoid" ]
964 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
966 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
968 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
969 if class_is_multiarch_p ; then :
971 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
972 printf "#error \"Non multi-arch definition of ${macro}\"\n"
974 printf "#if GDB_MULTI_ARCH\n"
975 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
976 if [ "x${actual}" = "x" ]
978 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
979 elif [ "x${actual}" = "x-" ]
981 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
983 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
994 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
997 /* Mechanism for co-ordinating the selection of a specific
1000 GDB targets (*-tdep.c) can register an interest in a specific
1001 architecture. Other GDB components can register a need to maintain
1002 per-architecture data.
1004 The mechanisms below ensures that there is only a loose connection
1005 between the set-architecture command and the various GDB
1006 components. Each component can independently register their need
1007 to maintain architecture specific data with gdbarch.
1011 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1014 The more traditional mega-struct containing architecture specific
1015 data for all the various GDB components was also considered. Since
1016 GDB is built from a variable number of (fairly independent)
1017 components it was determined that the global aproach was not
1021 /* Register a new architectural family with GDB.
1023 Register support for the specified ARCHITECTURE with GDB. When
1024 gdbarch determines that the specified architecture has been
1025 selected, the corresponding INIT function is called.
1029 The INIT function takes two parameters: INFO which contains the
1030 information available to gdbarch about the (possibly new)
1031 architecture; ARCHES which is a list of the previously created
1032 \`\`struct gdbarch'' for this architecture.
1034 The INFO parameter is, as far as possible, be pre-initialized with
1035 information obtained from INFO.ABFD or the previously selected
1038 The ARCHES parameter is a linked list (sorted most recently used)
1039 of all the previously created architures for this architecture
1040 family. The (possibly NULL) ARCHES->gdbarch can used to access
1041 values from the previously selected architecture for this
1042 architecture family. The global \`\`current_gdbarch'' shall not be
1045 The INIT function shall return any of: NULL - indicating that it
1046 doesn't recognize the selected architecture; an existing \`\`struct
1047 gdbarch'' from the ARCHES list - indicating that the new
1048 architecture is just a synonym for an earlier architecture (see
1049 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1050 - that describes the selected architecture (see gdbarch_alloc()).
1052 The DUMP_TDEP function shall print out all target specific values.
1053 Care should be taken to ensure that the function works in both the
1054 multi-arch and non- multi-arch cases. */
1058 struct gdbarch *gdbarch;
1059 struct gdbarch_list *next;
1064 /* Use default: NULL (ZERO). */
1065 const struct bfd_arch_info *bfd_arch_info;
1067 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1070 /* Use default: NULL (ZERO). */
1073 /* Use default: NULL (ZERO). */
1074 struct gdbarch_tdep_info *tdep_info;
1076 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1077 enum gdb_osabi osabi;
1080 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1081 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1083 /* DEPRECATED - use gdbarch_register() */
1084 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1086 extern void gdbarch_register (enum bfd_architecture architecture,
1087 gdbarch_init_ftype *,
1088 gdbarch_dump_tdep_ftype *);
1091 /* Return a freshly allocated, NULL terminated, array of the valid
1092 architecture names. Since architectures are registered during the
1093 _initialize phase this function only returns useful information
1094 once initialization has been completed. */
1096 extern const char **gdbarch_printable_names (void);
1099 /* Helper function. Search the list of ARCHES for a GDBARCH that
1100 matches the information provided by INFO. */
1102 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1105 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1106 basic initialization using values obtained from the INFO andTDEP
1107 parameters. set_gdbarch_*() functions are called to complete the
1108 initialization of the object. */
1110 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1113 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1114 It is assumed that the caller freeds the \`\`struct
1117 extern void gdbarch_free (struct gdbarch *);
1120 /* Helper function. Force an update of the current architecture.
1122 The actual architecture selected is determined by INFO, \`\`(gdb) set
1123 architecture'' et.al., the existing architecture and BFD's default
1124 architecture. INFO should be initialized to zero and then selected
1125 fields should be updated.
1127 Returns non-zero if the update succeeds */
1129 extern int gdbarch_update_p (struct gdbarch_info info);
1133 /* Register per-architecture data-pointer.
1135 Reserve space for a per-architecture data-pointer. An identifier
1136 for the reserved data-pointer is returned. That identifer should
1137 be saved in a local static variable.
1139 The per-architecture data-pointer is either initialized explicitly
1140 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1141 gdbarch_data()). FREE() is called to delete either an existing
1142 data-pointer overridden by set_gdbarch_data() or when the
1143 architecture object is being deleted.
1145 When a previously created architecture is re-selected, the
1146 per-architecture data-pointer for that previous architecture is
1147 restored. INIT() is not re-called.
1149 Multiple registrarants for any architecture are allowed (and
1150 strongly encouraged). */
1152 struct gdbarch_data;
1154 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1155 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1157 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1158 gdbarch_data_free_ftype *free);
1159 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1160 struct gdbarch_data *data,
1163 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1166 /* Register per-architecture memory region.
1168 Provide a memory-region swap mechanism. Per-architecture memory
1169 region are created. These memory regions are swapped whenever the
1170 architecture is changed. For a new architecture, the memory region
1171 is initialized with zero (0) and the INIT function is called.
1173 Memory regions are swapped / initialized in the order that they are
1174 registered. NULL DATA and/or INIT values can be specified.
1176 New code should use register_gdbarch_data(). */
1178 typedef void (gdbarch_swap_ftype) (void);
1179 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1180 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1184 /* The target-system-dependent byte order is dynamic */
1186 extern int target_byte_order;
1187 #ifndef TARGET_BYTE_ORDER
1188 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1191 extern int target_byte_order_auto;
1192 #ifndef TARGET_BYTE_ORDER_AUTO
1193 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1198 /* The target-system-dependent BFD architecture is dynamic */
1200 extern int target_architecture_auto;
1201 #ifndef TARGET_ARCHITECTURE_AUTO
1202 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1205 extern const struct bfd_arch_info *target_architecture;
1206 #ifndef TARGET_ARCHITECTURE
1207 #define TARGET_ARCHITECTURE (target_architecture + 0)
1211 /* The target-system-dependent disassembler is semi-dynamic */
1213 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1214 unsigned int len, disassemble_info *info);
1216 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1217 disassemble_info *info);
1219 extern void dis_asm_print_address (bfd_vma addr,
1220 disassemble_info *info);
1222 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1223 extern disassemble_info tm_print_insn_info;
1224 #ifndef TARGET_PRINT_INSN_INFO
1225 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1230 /* Set the dynamic target-system-dependent parameters (architecture,
1231 byte-order, ...) using information found in the BFD */
1233 extern void set_gdbarch_from_file (bfd *);
1236 /* Initialize the current architecture to the "first" one we find on
1239 extern void initialize_current_architecture (void);
1241 /* For non-multiarched targets, do any initialization of the default
1242 gdbarch object necessary after the _initialize_MODULE functions
1244 extern void initialize_non_multiarch (void);
1246 /* gdbarch trace variable */
1247 extern int gdbarch_debug;
1249 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1254 #../move-if-change new-gdbarch.h gdbarch.h
1255 compare_new gdbarch.h
1262 exec > new-gdbarch.c
1267 #include "arch-utils.h"
1271 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1273 /* Just include everything in sight so that the every old definition
1274 of macro is visible. */
1275 #include "gdb_string.h"
1279 #include "inferior.h"
1280 #include "breakpoint.h"
1281 #include "gdb_wait.h"
1282 #include "gdbcore.h"
1285 #include "gdbthread.h"
1286 #include "annotate.h"
1287 #include "symfile.h" /* for overlay functions */
1288 #include "value.h" /* For old tm.h/nm.h macros. */
1292 #include "floatformat.h"
1294 #include "gdb_assert.h"
1295 #include "gdb_string.h"
1296 #include "gdb-events.h"
1297 #include "reggroups.h"
1300 /* Static function declarations */
1302 static void verify_gdbarch (struct gdbarch *gdbarch);
1303 static void alloc_gdbarch_data (struct gdbarch *);
1304 static void free_gdbarch_data (struct gdbarch *);
1305 static void init_gdbarch_swap (struct gdbarch *);
1306 static void clear_gdbarch_swap (struct gdbarch *);
1307 static void swapout_gdbarch_swap (struct gdbarch *);
1308 static void swapin_gdbarch_swap (struct gdbarch *);
1310 /* Non-zero if we want to trace architecture code. */
1312 #ifndef GDBARCH_DEBUG
1313 #define GDBARCH_DEBUG 0
1315 int gdbarch_debug = GDBARCH_DEBUG;
1319 # gdbarch open the gdbarch object
1321 printf "/* Maintain the struct gdbarch object */\n"
1323 printf "struct gdbarch\n"
1325 printf " /* Has this architecture been fully initialized? */\n"
1326 printf " int initialized_p;\n"
1327 printf " /* basic architectural information */\n"
1328 function_list | while do_read
1332 printf " ${returntype} ${function};\n"
1336 printf " /* target specific vector. */\n"
1337 printf " struct gdbarch_tdep *tdep;\n"
1338 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1340 printf " /* per-architecture data-pointers */\n"
1341 printf " unsigned nr_data;\n"
1342 printf " void **data;\n"
1344 printf " /* per-architecture swap-regions */\n"
1345 printf " struct gdbarch_swap *swap;\n"
1348 /* Multi-arch values.
1350 When extending this structure you must:
1352 Add the field below.
1354 Declare set/get functions and define the corresponding
1357 gdbarch_alloc(): If zero/NULL is not a suitable default,
1358 initialize the new field.
1360 verify_gdbarch(): Confirm that the target updated the field
1363 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1366 \`\`startup_gdbarch()'': Append an initial value to the static
1367 variable (base values on the host's c-type system).
1369 get_gdbarch(): Implement the set/get functions (probably using
1370 the macro's as shortcuts).
1375 function_list | while do_read
1377 if class_is_variable_p
1379 printf " ${returntype} ${function};\n"
1380 elif class_is_function_p
1382 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1387 # A pre-initialized vector
1391 /* The default architecture uses host values (for want of a better
1395 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1397 printf "struct gdbarch startup_gdbarch =\n"
1399 printf " 1, /* Always initialized. */\n"
1400 printf " /* basic architecture information */\n"
1401 function_list | while do_read
1405 printf " ${staticdefault},\n"
1409 /* target specific vector and its dump routine */
1411 /*per-architecture data-pointers and swap regions */
1413 /* Multi-arch values */
1415 function_list | while do_read
1417 if class_is_function_p || class_is_variable_p
1419 printf " ${staticdefault},\n"
1423 /* startup_gdbarch() */
1426 struct gdbarch *current_gdbarch = &startup_gdbarch;
1428 /* Do any initialization needed for a non-multiarch configuration
1429 after the _initialize_MODULE functions have been run. */
1431 initialize_non_multiarch (void)
1433 alloc_gdbarch_data (&startup_gdbarch);
1434 /* Ensure that all swap areas are zeroed so that they again think
1435 they are starting from scratch. */
1436 clear_gdbarch_swap (&startup_gdbarch);
1437 init_gdbarch_swap (&startup_gdbarch);
1441 # Create a new gdbarch struct
1445 /* Create a new \`\`struct gdbarch'' based on information provided by
1446 \`\`struct gdbarch_info''. */
1451 gdbarch_alloc (const struct gdbarch_info *info,
1452 struct gdbarch_tdep *tdep)
1454 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1455 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1456 the current local architecture and not the previous global
1457 architecture. This ensures that the new architectures initial
1458 values are not influenced by the previous architecture. Once
1459 everything is parameterised with gdbarch, this will go away. */
1460 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1461 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1463 alloc_gdbarch_data (current_gdbarch);
1465 current_gdbarch->tdep = tdep;
1468 function_list | while do_read
1472 printf " current_gdbarch->${function} = info->${function};\n"
1476 printf " /* Force the explicit initialization of these. */\n"
1477 function_list | while do_read
1479 if class_is_function_p || class_is_variable_p
1481 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1483 printf " current_gdbarch->${function} = ${predefault};\n"
1488 /* gdbarch_alloc() */
1490 return current_gdbarch;
1494 # Free a gdbarch struct.
1498 /* Free a gdbarch struct. This should never happen in normal
1499 operation --- once you've created a gdbarch, you keep it around.
1500 However, if an architecture's init function encounters an error
1501 building the structure, it may need to clean up a partially
1502 constructed gdbarch. */
1505 gdbarch_free (struct gdbarch *arch)
1507 gdb_assert (arch != NULL);
1508 free_gdbarch_data (arch);
1513 # verify a new architecture
1516 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1520 verify_gdbarch (struct gdbarch *gdbarch)
1522 struct ui_file *log;
1523 struct cleanup *cleanups;
1526 /* Only perform sanity checks on a multi-arch target. */
1527 if (!GDB_MULTI_ARCH)
1529 log = mem_fileopen ();
1530 cleanups = make_cleanup_ui_file_delete (log);
1532 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1533 fprintf_unfiltered (log, "\n\tbyte-order");
1534 if (gdbarch->bfd_arch_info == NULL)
1535 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1536 /* Check those that need to be defined for the given multi-arch level. */
1538 function_list | while do_read
1540 if class_is_function_p || class_is_variable_p
1542 if [ "x${invalid_p}" = "x0" ]
1544 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1545 elif class_is_predicate_p
1547 printf " /* Skip verify of ${function}, has predicate */\n"
1548 # FIXME: See do_read for potential simplification
1549 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1551 printf " if (${invalid_p})\n"
1552 printf " gdbarch->${function} = ${postdefault};\n"
1553 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1555 printf " if (gdbarch->${function} == ${predefault})\n"
1556 printf " gdbarch->${function} = ${postdefault};\n"
1557 elif [ -n "${postdefault}" ]
1559 printf " if (gdbarch->${function} == 0)\n"
1560 printf " gdbarch->${function} = ${postdefault};\n"
1561 elif [ -n "${invalid_p}" ]
1563 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1564 printf " && (${invalid_p}))\n"
1565 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1566 elif [ -n "${predefault}" ]
1568 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1569 printf " && (gdbarch->${function} == ${predefault}))\n"
1570 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1575 buf = ui_file_xstrdup (log, &dummy);
1576 make_cleanup (xfree, buf);
1577 if (strlen (buf) > 0)
1578 internal_error (__FILE__, __LINE__,
1579 "verify_gdbarch: the following are invalid ...%s",
1581 do_cleanups (cleanups);
1585 # dump the structure
1589 /* Print out the details of the current architecture. */
1591 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1592 just happens to match the global variable \`\`current_gdbarch''. That
1593 way macros refering to that variable get the local and not the global
1594 version - ulgh. Once everything is parameterised with gdbarch, this
1598 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1600 fprintf_unfiltered (file,
1601 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1604 function_list | sort -t: -k 3 | while do_read
1606 # First the predicate
1607 if class_is_predicate_p
1609 if class_is_multiarch_p
1611 printf " if (GDB_MULTI_ARCH)\n"
1612 printf " fprintf_unfiltered (file,\n"
1613 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1614 printf " gdbarch_${function}_p (current_gdbarch));\n"
1616 printf "#ifdef ${macro}_P\n"
1617 printf " fprintf_unfiltered (file,\n"
1618 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1619 printf " \"${macro}_P()\",\n"
1620 printf " XSTRING (${macro}_P ()));\n"
1621 printf " fprintf_unfiltered (file,\n"
1622 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1623 printf " ${macro}_P ());\n"
1627 # multiarch functions don't have macros.
1628 if class_is_multiarch_p
1630 printf " if (GDB_MULTI_ARCH)\n"
1631 printf " fprintf_unfiltered (file,\n"
1632 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1633 printf " (long) current_gdbarch->${function});\n"
1636 # Print the macro definition.
1637 printf "#ifdef ${macro}\n"
1638 if [ "x${returntype}" = "xvoid" ]
1640 printf "#if GDB_MULTI_ARCH\n"
1641 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1643 if class_is_function_p
1645 printf " fprintf_unfiltered (file,\n"
1646 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1647 printf " \"${macro}(${actual})\",\n"
1648 printf " XSTRING (${macro} (${actual})));\n"
1650 printf " fprintf_unfiltered (file,\n"
1651 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1652 printf " XSTRING (${macro}));\n"
1654 # Print the architecture vector value
1655 if [ "x${returntype}" = "xvoid" ]
1659 if [ "x${print_p}" = "x()" ]
1661 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1662 elif [ "x${print_p}" = "x0" ]
1664 printf " /* skip print of ${macro}, print_p == 0. */\n"
1665 elif [ -n "${print_p}" ]
1667 printf " if (${print_p})\n"
1668 printf " fprintf_unfiltered (file,\n"
1669 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1670 printf " ${print});\n"
1671 elif class_is_function_p
1673 printf " if (GDB_MULTI_ARCH)\n"
1674 printf " fprintf_unfiltered (file,\n"
1675 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1676 printf " (long) current_gdbarch->${function}\n"
1677 printf " /*${macro} ()*/);\n"
1679 printf " fprintf_unfiltered (file,\n"
1680 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1681 printf " ${print});\n"
1686 if (current_gdbarch->dump_tdep != NULL)
1687 current_gdbarch->dump_tdep (current_gdbarch, file);
1695 struct gdbarch_tdep *
1696 gdbarch_tdep (struct gdbarch *gdbarch)
1698 if (gdbarch_debug >= 2)
1699 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1700 return gdbarch->tdep;
1704 function_list | while do_read
1706 if class_is_predicate_p
1710 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1712 printf " gdb_assert (gdbarch != NULL);\n"
1713 if [ -n "${predicate}" ]
1715 printf " return ${predicate};\n"
1717 printf " return gdbarch->${function} != 0;\n"
1721 if class_is_function_p
1724 printf "${returntype}\n"
1725 if [ "x${formal}" = "xvoid" ]
1727 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1729 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1732 printf " gdb_assert (gdbarch != NULL);\n"
1733 printf " if (gdbarch->${function} == 0)\n"
1734 printf " internal_error (__FILE__, __LINE__,\n"
1735 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1736 if class_is_predicate_p && test -n "${predicate}"
1738 # Allow a call to a function with a predicate.
1739 printf " /* Ignore predicate (${predicate}). */\n"
1741 printf " if (gdbarch_debug >= 2)\n"
1742 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1743 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1745 if class_is_multiarch_p
1752 if class_is_multiarch_p
1754 params="gdbarch, ${actual}"
1759 if [ "x${returntype}" = "xvoid" ]
1761 printf " gdbarch->${function} (${params});\n"
1763 printf " return gdbarch->${function} (${params});\n"
1768 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1769 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1771 printf " gdbarch->${function} = ${function};\n"
1773 elif class_is_variable_p
1776 printf "${returntype}\n"
1777 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1779 printf " gdb_assert (gdbarch != NULL);\n"
1780 if [ "x${invalid_p}" = "x0" ]
1782 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1783 elif [ -n "${invalid_p}" ]
1785 printf " if (${invalid_p})\n"
1786 printf " internal_error (__FILE__, __LINE__,\n"
1787 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1788 elif [ -n "${predefault}" ]
1790 printf " if (gdbarch->${function} == ${predefault})\n"
1791 printf " internal_error (__FILE__, __LINE__,\n"
1792 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1794 printf " if (gdbarch_debug >= 2)\n"
1795 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1796 printf " return gdbarch->${function};\n"
1800 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1801 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1803 printf " gdbarch->${function} = ${function};\n"
1805 elif class_is_info_p
1808 printf "${returntype}\n"
1809 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1811 printf " gdb_assert (gdbarch != NULL);\n"
1812 printf " if (gdbarch_debug >= 2)\n"
1813 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1814 printf " return gdbarch->${function};\n"
1819 # All the trailing guff
1823 /* Keep a registry of per-architecture data-pointers required by GDB
1830 gdbarch_data_init_ftype *init;
1831 gdbarch_data_free_ftype *free;
1834 struct gdbarch_data_registration
1836 struct gdbarch_data *data;
1837 struct gdbarch_data_registration *next;
1840 struct gdbarch_data_registry
1843 struct gdbarch_data_registration *registrations;
1846 struct gdbarch_data_registry gdbarch_data_registry =
1851 struct gdbarch_data *
1852 register_gdbarch_data (gdbarch_data_init_ftype *init,
1853 gdbarch_data_free_ftype *free)
1855 struct gdbarch_data_registration **curr;
1856 /* Append the new registraration. */
1857 for (curr = &gdbarch_data_registry.registrations;
1859 curr = &(*curr)->next);
1860 (*curr) = XMALLOC (struct gdbarch_data_registration);
1861 (*curr)->next = NULL;
1862 (*curr)->data = XMALLOC (struct gdbarch_data);
1863 (*curr)->data->index = gdbarch_data_registry.nr++;
1864 (*curr)->data->init = init;
1865 (*curr)->data->init_p = 1;
1866 (*curr)->data->free = free;
1867 return (*curr)->data;
1871 /* Create/delete the gdbarch data vector. */
1874 alloc_gdbarch_data (struct gdbarch *gdbarch)
1876 gdb_assert (gdbarch->data == NULL);
1877 gdbarch->nr_data = gdbarch_data_registry.nr;
1878 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1882 free_gdbarch_data (struct gdbarch *gdbarch)
1884 struct gdbarch_data_registration *rego;
1885 gdb_assert (gdbarch->data != NULL);
1886 for (rego = gdbarch_data_registry.registrations;
1890 struct gdbarch_data *data = rego->data;
1891 gdb_assert (data->index < gdbarch->nr_data);
1892 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1894 data->free (gdbarch, gdbarch->data[data->index]);
1895 gdbarch->data[data->index] = NULL;
1898 xfree (gdbarch->data);
1899 gdbarch->data = NULL;
1903 /* Initialize the current value of the specified per-architecture
1907 set_gdbarch_data (struct gdbarch *gdbarch,
1908 struct gdbarch_data *data,
1911 gdb_assert (data->index < gdbarch->nr_data);
1912 if (gdbarch->data[data->index] != NULL)
1914 gdb_assert (data->free != NULL);
1915 data->free (gdbarch, gdbarch->data[data->index]);
1917 gdbarch->data[data->index] = pointer;
1920 /* Return the current value of the specified per-architecture
1924 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1926 gdb_assert (data->index < gdbarch->nr_data);
1927 /* The data-pointer isn't initialized, call init() to get a value but
1928 only if the architecture initializaiton has completed. Otherwise
1929 punt - hope that the caller knows what they are doing. */
1930 if (gdbarch->data[data->index] == NULL
1931 && gdbarch->initialized_p)
1933 /* Be careful to detect an initialization cycle. */
1934 gdb_assert (data->init_p);
1936 gdb_assert (data->init != NULL);
1937 gdbarch->data[data->index] = data->init (gdbarch);
1939 gdb_assert (gdbarch->data[data->index] != NULL);
1941 return gdbarch->data[data->index];
1946 /* Keep a registry of swapped data required by GDB modules. */
1951 struct gdbarch_swap_registration *source;
1952 struct gdbarch_swap *next;
1955 struct gdbarch_swap_registration
1958 unsigned long sizeof_data;
1959 gdbarch_swap_ftype *init;
1960 struct gdbarch_swap_registration *next;
1963 struct gdbarch_swap_registry
1966 struct gdbarch_swap_registration *registrations;
1969 struct gdbarch_swap_registry gdbarch_swap_registry =
1975 register_gdbarch_swap (void *data,
1976 unsigned long sizeof_data,
1977 gdbarch_swap_ftype *init)
1979 struct gdbarch_swap_registration **rego;
1980 for (rego = &gdbarch_swap_registry.registrations;
1982 rego = &(*rego)->next);
1983 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1984 (*rego)->next = NULL;
1985 (*rego)->init = init;
1986 (*rego)->data = data;
1987 (*rego)->sizeof_data = sizeof_data;
1991 clear_gdbarch_swap (struct gdbarch *gdbarch)
1993 struct gdbarch_swap *curr;
1994 for (curr = gdbarch->swap;
1998 memset (curr->source->data, 0, curr->source->sizeof_data);
2003 init_gdbarch_swap (struct gdbarch *gdbarch)
2005 struct gdbarch_swap_registration *rego;
2006 struct gdbarch_swap **curr = &gdbarch->swap;
2007 for (rego = gdbarch_swap_registry.registrations;
2011 if (rego->data != NULL)
2013 (*curr) = XMALLOC (struct gdbarch_swap);
2014 (*curr)->source = rego;
2015 (*curr)->swap = xmalloc (rego->sizeof_data);
2016 (*curr)->next = NULL;
2017 curr = &(*curr)->next;
2019 if (rego->init != NULL)
2025 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2027 struct gdbarch_swap *curr;
2028 for (curr = gdbarch->swap;
2031 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2035 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2037 struct gdbarch_swap *curr;
2038 for (curr = gdbarch->swap;
2041 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2045 /* Keep a registry of the architectures known by GDB. */
2047 struct gdbarch_registration
2049 enum bfd_architecture bfd_architecture;
2050 gdbarch_init_ftype *init;
2051 gdbarch_dump_tdep_ftype *dump_tdep;
2052 struct gdbarch_list *arches;
2053 struct gdbarch_registration *next;
2056 static struct gdbarch_registration *gdbarch_registry = NULL;
2059 append_name (const char ***buf, int *nr, const char *name)
2061 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2067 gdbarch_printable_names (void)
2071 /* Accumulate a list of names based on the registed list of
2073 enum bfd_architecture a;
2075 const char **arches = NULL;
2076 struct gdbarch_registration *rego;
2077 for (rego = gdbarch_registry;
2081 const struct bfd_arch_info *ap;
2082 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2084 internal_error (__FILE__, __LINE__,
2085 "gdbarch_architecture_names: multi-arch unknown");
2088 append_name (&arches, &nr_arches, ap->printable_name);
2093 append_name (&arches, &nr_arches, NULL);
2097 /* Just return all the architectures that BFD knows. Assume that
2098 the legacy architecture framework supports them. */
2099 return bfd_arch_list ();
2104 gdbarch_register (enum bfd_architecture bfd_architecture,
2105 gdbarch_init_ftype *init,
2106 gdbarch_dump_tdep_ftype *dump_tdep)
2108 struct gdbarch_registration **curr;
2109 const struct bfd_arch_info *bfd_arch_info;
2110 /* Check that BFD recognizes this architecture */
2111 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2112 if (bfd_arch_info == NULL)
2114 internal_error (__FILE__, __LINE__,
2115 "gdbarch: Attempt to register unknown architecture (%d)",
2118 /* Check that we haven't seen this architecture before */
2119 for (curr = &gdbarch_registry;
2121 curr = &(*curr)->next)
2123 if (bfd_architecture == (*curr)->bfd_architecture)
2124 internal_error (__FILE__, __LINE__,
2125 "gdbarch: Duplicate registraration of architecture (%s)",
2126 bfd_arch_info->printable_name);
2130 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2131 bfd_arch_info->printable_name,
2134 (*curr) = XMALLOC (struct gdbarch_registration);
2135 (*curr)->bfd_architecture = bfd_architecture;
2136 (*curr)->init = init;
2137 (*curr)->dump_tdep = dump_tdep;
2138 (*curr)->arches = NULL;
2139 (*curr)->next = NULL;
2140 /* When non- multi-arch, install whatever target dump routine we've
2141 been provided - hopefully that routine has been written correctly
2142 and works regardless of multi-arch. */
2143 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2144 && startup_gdbarch.dump_tdep == NULL)
2145 startup_gdbarch.dump_tdep = dump_tdep;
2149 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2150 gdbarch_init_ftype *init)
2152 gdbarch_register (bfd_architecture, init, NULL);
2156 /* Look for an architecture using gdbarch_info. Base search on only
2157 BFD_ARCH_INFO and BYTE_ORDER. */
2159 struct gdbarch_list *
2160 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2161 const struct gdbarch_info *info)
2163 for (; arches != NULL; arches = arches->next)
2165 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2167 if (info->byte_order != arches->gdbarch->byte_order)
2169 if (info->osabi != arches->gdbarch->osabi)
2177 /* Update the current architecture. Return ZERO if the update request
2181 gdbarch_update_p (struct gdbarch_info info)
2183 struct gdbarch *new_gdbarch;
2184 struct gdbarch *old_gdbarch;
2185 struct gdbarch_registration *rego;
2187 /* Fill in missing parts of the INFO struct using a number of
2188 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2190 /* \`\`(gdb) set architecture ...'' */
2191 if (info.bfd_arch_info == NULL
2192 && !TARGET_ARCHITECTURE_AUTO)
2193 info.bfd_arch_info = TARGET_ARCHITECTURE;
2194 if (info.bfd_arch_info == NULL
2195 && info.abfd != NULL
2196 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2197 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2198 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2199 if (info.bfd_arch_info == NULL)
2200 info.bfd_arch_info = TARGET_ARCHITECTURE;
2202 /* \`\`(gdb) set byte-order ...'' */
2203 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2204 && !TARGET_BYTE_ORDER_AUTO)
2205 info.byte_order = TARGET_BYTE_ORDER;
2206 /* From the INFO struct. */
2207 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2208 && info.abfd != NULL)
2209 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2210 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2211 : BFD_ENDIAN_UNKNOWN);
2212 /* From the current target. */
2213 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2214 info.byte_order = TARGET_BYTE_ORDER;
2216 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2217 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2218 info.osabi = gdbarch_lookup_osabi (info.abfd);
2219 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2220 info.osabi = current_gdbarch->osabi;
2222 /* Must have found some sort of architecture. */
2223 gdb_assert (info.bfd_arch_info != NULL);
2227 fprintf_unfiltered (gdb_stdlog,
2228 "gdbarch_update: info.bfd_arch_info %s\n",
2229 (info.bfd_arch_info != NULL
2230 ? info.bfd_arch_info->printable_name
2232 fprintf_unfiltered (gdb_stdlog,
2233 "gdbarch_update: info.byte_order %d (%s)\n",
2235 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2236 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2238 fprintf_unfiltered (gdb_stdlog,
2239 "gdbarch_update: info.osabi %d (%s)\n",
2240 info.osabi, gdbarch_osabi_name (info.osabi));
2241 fprintf_unfiltered (gdb_stdlog,
2242 "gdbarch_update: info.abfd 0x%lx\n",
2244 fprintf_unfiltered (gdb_stdlog,
2245 "gdbarch_update: info.tdep_info 0x%lx\n",
2246 (long) info.tdep_info);
2249 /* Find the target that knows about this architecture. */
2250 for (rego = gdbarch_registry;
2253 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2258 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2262 /* Swap the data belonging to the old target out setting the
2263 installed data to zero. This stops the ->init() function trying
2264 to refer to the previous architecture's global data structures. */
2265 swapout_gdbarch_swap (current_gdbarch);
2266 clear_gdbarch_swap (current_gdbarch);
2268 /* Save the previously selected architecture, setting the global to
2269 NULL. This stops ->init() trying to use the previous
2270 architecture's configuration. The previous architecture may not
2271 even be of the same architecture family. The most recent
2272 architecture of the same family is found at the head of the
2273 rego->arches list. */
2274 old_gdbarch = current_gdbarch;
2275 current_gdbarch = NULL;
2277 /* Ask the target for a replacement architecture. */
2278 new_gdbarch = rego->init (info, rego->arches);
2280 /* Did the target like it? No. Reject the change and revert to the
2281 old architecture. */
2282 if (new_gdbarch == NULL)
2285 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2286 swapin_gdbarch_swap (old_gdbarch);
2287 current_gdbarch = old_gdbarch;
2291 /* Did the architecture change? No. Oops, put the old architecture
2293 if (old_gdbarch == new_gdbarch)
2296 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2298 new_gdbarch->bfd_arch_info->printable_name);
2299 swapin_gdbarch_swap (old_gdbarch);
2300 current_gdbarch = old_gdbarch;
2304 /* Is this a pre-existing architecture? Yes. Move it to the front
2305 of the list of architectures (keeping the list sorted Most
2306 Recently Used) and then copy it in. */
2308 struct gdbarch_list **list;
2309 for (list = ®o->arches;
2311 list = &(*list)->next)
2313 if ((*list)->gdbarch == new_gdbarch)
2315 struct gdbarch_list *this;
2317 fprintf_unfiltered (gdb_stdlog,
2318 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2320 new_gdbarch->bfd_arch_info->printable_name);
2323 (*list) = this->next;
2324 /* Insert in the front. */
2325 this->next = rego->arches;
2326 rego->arches = this;
2327 /* Copy the new architecture in. */
2328 current_gdbarch = new_gdbarch;
2329 swapin_gdbarch_swap (new_gdbarch);
2330 architecture_changed_event ();
2336 /* Prepend this new architecture to the architecture list (keep the
2337 list sorted Most Recently Used). */
2339 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2340 this->next = rego->arches;
2341 this->gdbarch = new_gdbarch;
2342 rego->arches = this;
2345 /* Switch to this new architecture marking it initialized. */
2346 current_gdbarch = new_gdbarch;
2347 current_gdbarch->initialized_p = 1;
2350 fprintf_unfiltered (gdb_stdlog,
2351 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2353 new_gdbarch->bfd_arch_info->printable_name);
2356 /* Check that the newly installed architecture is valid. Plug in
2357 any post init values. */
2358 new_gdbarch->dump_tdep = rego->dump_tdep;
2359 verify_gdbarch (new_gdbarch);
2361 /* Initialize the per-architecture memory (swap) areas.
2362 CURRENT_GDBARCH must be update before these modules are
2364 init_gdbarch_swap (new_gdbarch);
2366 /* Initialize the per-architecture data. CURRENT_GDBARCH
2367 must be updated before these modules are called. */
2368 architecture_changed_event ();
2371 gdbarch_dump (current_gdbarch, gdb_stdlog);
2379 /* Pointer to the target-dependent disassembly function. */
2380 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2381 disassemble_info tm_print_insn_info;
2384 extern void _initialize_gdbarch (void);
2387 _initialize_gdbarch (void)
2389 struct cmd_list_element *c;
2391 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2392 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2393 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2394 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2395 tm_print_insn_info.print_address_func = dis_asm_print_address;
2397 add_show_from_set (add_set_cmd ("arch",
2400 (char *)&gdbarch_debug,
2401 "Set architecture debugging.\\n\\
2402 When non-zero, architecture debugging is enabled.", &setdebuglist),
2404 c = add_set_cmd ("archdebug",
2407 (char *)&gdbarch_debug,
2408 "Set architecture debugging.\\n\\
2409 When non-zero, architecture debugging is enabled.", &setlist);
2411 deprecate_cmd (c, "set debug arch");
2412 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2418 #../move-if-change new-gdbarch.c gdbarch.c
2419 compare_new gdbarch.c