1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
46 #include "elf/dwarf.h"
49 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
51 #include "complaints.h"
60 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
65 /* Some macros to provide DIE info for complaints. */
67 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
68 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
70 /* Complaints that can be issued during DWARF debug info reading. */
72 struct complaint no_bfd_get_N =
74 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
77 struct complaint malformed_die =
79 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
82 struct complaint bad_die_ref =
84 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
87 struct complaint unknown_attribute_form =
89 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
92 struct complaint unknown_attribute_length =
94 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
97 struct complaint unexpected_fund_type =
99 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
102 struct complaint unknown_type_modifier =
104 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
107 struct complaint volatile_ignored =
109 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
112 struct complaint const_ignored =
114 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
117 struct complaint botched_modified_type =
119 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
122 struct complaint op_deref2 =
124 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
127 struct complaint op_deref4 =
129 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
132 struct complaint basereg_not_handled =
134 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
137 struct complaint dup_user_type_allocation =
139 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
142 struct complaint dup_user_type_definition =
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
147 struct complaint missing_tag =
149 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
152 struct complaint bad_array_element_type =
154 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
157 struct complaint subscript_data_items =
159 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
162 struct complaint unhandled_array_subscript_format =
164 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
167 struct complaint unknown_array_subscript_format =
169 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
172 struct complaint not_row_major =
174 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
177 typedef unsigned int DIE_REF; /* Reference to a DIE */
180 #define GCC_PRODUCER "GNU C "
183 #ifndef GPLUS_PRODUCER
184 #define GPLUS_PRODUCER "GNU C++ "
188 #define LCC_PRODUCER "NCR C/C++"
191 #ifndef CHILL_PRODUCER
192 #define CHILL_PRODUCER "GNU Chill "
195 /* Flags to target_to_host() that tell whether or not the data object is
196 expected to be signed. Used, for example, when fetching a signed
197 integer in the target environment which is used as a signed integer
198 in the host environment, and the two environments have different sized
199 ints. In this case, *somebody* has to sign extend the smaller sized
202 #define GET_UNSIGNED 0 /* No sign extension required */
203 #define GET_SIGNED 1 /* Sign extension required */
205 /* Defines for things which are specified in the document "DWARF Debugging
206 Information Format" published by UNIX International, Programming Languages
207 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
209 #define SIZEOF_DIE_LENGTH 4
210 #define SIZEOF_DIE_TAG 2
211 #define SIZEOF_ATTRIBUTE 2
212 #define SIZEOF_FORMAT_SPECIFIER 1
213 #define SIZEOF_FMT_FT 2
214 #define SIZEOF_LINETBL_LENGTH 4
215 #define SIZEOF_LINETBL_LINENO 4
216 #define SIZEOF_LINETBL_STMT 2
217 #define SIZEOF_LINETBL_DELTA 4
218 #define SIZEOF_LOC_ATOM_CODE 1
220 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
222 /* Macros that return the sizes of various types of data in the target
225 FIXME: Currently these are just compile time constants (as they are in
226 other parts of gdb as well). They need to be able to get the right size
227 either from the bfd or possibly from the DWARF info. It would be nice if
228 the DWARF producer inserted DIES that describe the fundamental types in
229 the target environment into the DWARF info, similar to the way dbx stabs
230 producers produce information about their fundamental types. */
232 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
233 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
235 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
236 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
237 However, the Issue 2 DWARF specification from AT&T defines it as
238 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
239 For backwards compatibility with the AT&T compiler produced executables
240 we define AT_short_element_list for this variant. */
242 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
244 /* External variables referenced. */
246 extern int info_verbose; /* From main.c; nonzero => verbose */
247 extern char *warning_pre_print; /* From utils.c */
249 /* The DWARF debugging information consists of two major pieces,
250 one is a block of DWARF Information Entries (DIE's) and the other
251 is a line number table. The "struct dieinfo" structure contains
252 the information for a single DIE, the one currently being processed.
254 In order to make it easier to randomly access the attribute fields
255 of the current DIE, which are specifically unordered within the DIE,
256 each DIE is scanned and an instance of the "struct dieinfo"
257 structure is initialized.
259 Initialization is done in two levels. The first, done by basicdieinfo(),
260 just initializes those fields that are vital to deciding whether or not
261 to use this DIE, how to skip past it, etc. The second, done by the
262 function completedieinfo(), fills in the rest of the information.
264 Attributes which have block forms are not interpreted at the time
265 the DIE is scanned, instead we just save pointers to the start
266 of their value fields.
268 Some fields have a flag <name>_p that is set when the value of the
269 field is valid (I.E. we found a matching attribute in the DIE). Since
270 we may want to test for the presence of some attributes in the DIE,
271 such as AT_low_pc, without restricting the values of the field,
272 we need someway to note that we found such an attribute.
279 char * die; /* Pointer to the raw DIE data */
280 unsigned long die_length; /* Length of the raw DIE data */
281 DIE_REF die_ref; /* Offset of this DIE */
282 unsigned short die_tag; /* Tag for this DIE */
283 unsigned long at_padding;
284 unsigned long at_sibling;
287 unsigned short at_fund_type;
288 BLOCK * at_mod_fund_type;
289 unsigned long at_user_def_type;
290 BLOCK * at_mod_u_d_type;
291 unsigned short at_ordering;
292 BLOCK * at_subscr_data;
293 unsigned long at_byte_size;
294 unsigned short at_bit_offset;
295 unsigned long at_bit_size;
296 BLOCK * at_element_list;
297 unsigned long at_stmt_list;
298 unsigned long at_low_pc;
299 unsigned long at_high_pc;
300 unsigned long at_language;
301 unsigned long at_member;
302 unsigned long at_discr;
303 BLOCK * at_discr_value;
304 BLOCK * at_string_length;
307 unsigned long at_start_scope;
308 unsigned long at_stride_size;
309 unsigned long at_src_info;
310 char * at_prototyped;
311 unsigned int has_at_low_pc:1;
312 unsigned int has_at_stmt_list:1;
313 unsigned int has_at_byte_size:1;
314 unsigned int short_element_list:1;
317 static int diecount; /* Approximate count of dies for compilation unit */
318 static struct dieinfo *curdie; /* For warnings and such */
320 static char *dbbase; /* Base pointer to dwarf info */
321 static int dbsize; /* Size of dwarf info in bytes */
322 static int dbroff; /* Relative offset from start of .debug section */
323 static char *lnbase; /* Base pointer to line section */
324 static int isreg; /* Kludge to identify register variables */
325 /* Kludge to identify basereg references. Nonzero if we have an offset
326 relative to a basereg. */
328 /* Which base register is it relative to? */
331 /* This value is added to each symbol value. FIXME: Generalize to
332 the section_offsets structure used by dbxread (once this is done,
333 pass the appropriate section number to end_symtab). */
334 static CORE_ADDR baseaddr; /* Add to each symbol value */
336 /* The section offsets used in the current psymtab or symtab. FIXME,
337 only used to pass one value (baseaddr) at the moment. */
338 static struct section_offsets *base_section_offsets;
340 /* Each partial symbol table entry contains a pointer to private data for the
341 read_symtab() function to use when expanding a partial symbol table entry
342 to a full symbol table entry. For DWARF debugging info, this data is
343 contained in the following structure and macros are provided for easy
344 access to the members given a pointer to a partial symbol table entry.
346 dbfoff Always the absolute file offset to the start of the ".debug"
347 section for the file containing the DIE's being accessed.
349 dbroff Relative offset from the start of the ".debug" access to the
350 first DIE to be accessed. When building the partial symbol
351 table, this value will be zero since we are accessing the
352 entire ".debug" section. When expanding a partial symbol
353 table entry, this value will be the offset to the first
354 DIE for the compilation unit containing the symbol that
355 triggers the expansion.
357 dblength The size of the chunk of DIE's being examined, in bytes.
359 lnfoff The absolute file offset to the line table fragment. Ignored
360 when building partial symbol tables, but used when expanding
361 them, and contains the absolute file offset to the fragment
362 of the ".line" section containing the line numbers for the
363 current compilation unit.
367 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
368 int dbroff; /* Relative offset from start of .debug section */
369 int dblength; /* Size of the chunk of DIE's being examined */
370 file_ptr lnfoff; /* Absolute file offset to line table fragment */
373 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
374 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
375 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
376 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
378 /* The generic symbol table building routines have separate lists for
379 file scope symbols and all all other scopes (local scopes). So
380 we need to select the right one to pass to add_symbol_to_list().
381 We do it by keeping a pointer to the correct list in list_in_scope.
383 FIXME: The original dwarf code just treated the file scope as the first
384 local scope, and all other local scopes as nested local scopes, and worked
385 fine. Check to see if we really need to distinguish these in buildsym.c */
387 struct pending **list_in_scope = &file_symbols;
389 /* DIES which have user defined types or modified user defined types refer to
390 other DIES for the type information. Thus we need to associate the offset
391 of a DIE for a user defined type with a pointer to the type information.
393 Originally this was done using a simple but expensive algorithm, with an
394 array of unsorted structures, each containing an offset/type-pointer pair.
395 This array was scanned linearly each time a lookup was done. The result
396 was that gdb was spending over half it's startup time munging through this
397 array of pointers looking for a structure that had the right offset member.
399 The second attempt used the same array of structures, but the array was
400 sorted using qsort each time a new offset/type was recorded, and a binary
401 search was used to find the type pointer for a given DIE offset. This was
402 even slower, due to the overhead of sorting the array each time a new
403 offset/type pair was entered.
405 The third attempt uses a fixed size array of type pointers, indexed by a
406 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
407 we can divide any DIE offset by 4 to obtain a unique index into this fixed
408 size array. Since each element is a 4 byte pointer, it takes exactly as
409 much memory to hold this array as to hold the DWARF info for a given
410 compilation unit. But it gets freed as soon as we are done with it.
411 This has worked well in practice, as a reasonable tradeoff between memory
412 consumption and speed, without having to resort to much more complicated
415 static struct type **utypes; /* Pointer to array of user type pointers */
416 static int numutypes; /* Max number of user type pointers */
418 /* Maintain an array of referenced fundamental types for the current
419 compilation unit being read. For DWARF version 1, we have to construct
420 the fundamental types on the fly, since no information about the
421 fundamental types is supplied. Each such fundamental type is created by
422 calling a language dependent routine to create the type, and then a
423 pointer to that type is then placed in the array at the index specified
424 by it's FT_<TYPENAME> value. The array has a fixed size set by the
425 FT_NUM_MEMBERS compile time constant, which is the number of predefined
426 fundamental types gdb knows how to construct. */
428 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
430 /* Record the language for the compilation unit which is currently being
431 processed. We know it once we have seen the TAG_compile_unit DIE,
432 and we need it while processing the DIE's for that compilation unit.
433 It is eventually saved in the symtab structure, but we don't finalize
434 the symtab struct until we have processed all the DIE's for the
435 compilation unit. We also need to get and save a pointer to the
436 language struct for this language, so we can call the language
437 dependent routines for doing things such as creating fundamental
440 static enum language cu_language;
441 static const struct language_defn *cu_language_defn;
443 /* Forward declarations of static functions so we don't have to worry
444 about ordering within this file. */
447 attribute_size PARAMS ((unsigned int));
450 target_to_host PARAMS ((char *, int, int, struct objfile *));
453 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
456 handle_producer PARAMS ((char *));
459 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
462 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
465 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
469 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
472 scan_compilation_units PARAMS ((char *, char *, file_ptr,
473 file_ptr, struct objfile *));
476 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
479 init_psymbol_list PARAMS ((struct objfile *, int));
482 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
485 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
488 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
491 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
494 read_ofile_symtab PARAMS ((struct partial_symtab *));
497 process_dies PARAMS ((char *, char *, struct objfile *));
500 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
504 decode_array_element_type PARAMS ((char *));
507 decode_subscript_data_item PARAMS ((char *, char *));
510 dwarf_read_array_type PARAMS ((struct dieinfo *));
513 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
516 read_tag_string_type PARAMS ((struct dieinfo *dip));
519 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
522 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
525 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
528 enum_type PARAMS ((struct dieinfo *, struct objfile *));
531 decode_line_numbers PARAMS ((char *));
534 decode_die_type PARAMS ((struct dieinfo *));
537 decode_mod_fund_type PARAMS ((char *));
540 decode_mod_u_d_type PARAMS ((char *));
543 decode_modified_type PARAMS ((char *, unsigned int, int));
546 decode_fund_type PARAMS ((unsigned int));
549 create_name PARAMS ((char *, struct obstack *));
552 lookup_utype PARAMS ((DIE_REF));
555 alloc_utype PARAMS ((DIE_REF, struct type *));
557 static struct symbol *
558 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
561 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
565 locval PARAMS ((char *));
568 set_cu_language PARAMS ((struct dieinfo *));
571 dwarf_fundamental_type PARAMS ((struct objfile *, int));
578 dwarf_fundamental_type -- lookup or create a fundamental type
583 dwarf_fundamental_type (struct objfile *objfile, int typeid)
587 DWARF version 1 doesn't supply any fundamental type information,
588 so gdb has to construct such types. It has a fixed number of
589 fundamental types that it knows how to construct, which is the
590 union of all types that it knows how to construct for all languages
591 that it knows about. These are enumerated in gdbtypes.h.
593 As an example, assume we find a DIE that references a DWARF
594 fundamental type of FT_integer. We first look in the ftypes
595 array to see if we already have such a type, indexed by the
596 gdb internal value of FT_INTEGER. If so, we simply return a
597 pointer to that type. If not, then we ask an appropriate
598 language dependent routine to create a type FT_INTEGER, using
599 defaults reasonable for the current target machine, and install
600 that type in ftypes for future reference.
604 Pointer to a fundamental type.
609 dwarf_fundamental_type (objfile, typeid)
610 struct objfile *objfile;
613 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
615 error ("internal error - invalid fundamental type id %d", typeid);
618 /* Look for this particular type in the fundamental type vector. If one is
619 not found, create and install one appropriate for the current language
620 and the current target machine. */
622 if (ftypes[typeid] == NULL)
624 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
627 return (ftypes[typeid]);
634 set_cu_language -- set local copy of language for compilation unit
639 set_cu_language (struct dieinfo *dip)
643 Decode the language attribute for a compilation unit DIE and
644 remember what the language was. We use this at various times
645 when processing DIE's for a given compilation unit.
654 set_cu_language (dip)
657 switch (dip -> at_language)
661 cu_language = language_c;
663 case LANG_C_PLUS_PLUS:
664 cu_language = language_cplus;
667 cu_language = language_chill;
670 cu_language = language_m2;
678 /* We don't know anything special about these yet. */
679 cu_language = language_unknown;
682 /* If no at_language, try to deduce one from the filename */
683 cu_language = deduce_language_from_filename (dip -> at_name);
686 cu_language_defn = language_def (cu_language);
693 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
697 void dwarf_build_psymtabs (struct objfile *objfile,
698 struct section_offsets *section_offsets,
699 int mainline, file_ptr dbfoff, unsigned int dbfsize,
700 file_ptr lnoffset, unsigned int lnsize)
704 This function is called upon to build partial symtabs from files
705 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
707 It is passed a bfd* containing the DIES
708 and line number information, the corresponding filename for that
709 file, a base address for relocating the symbols, a flag indicating
710 whether or not this debugging information is from a "main symbol
711 table" rather than a shared library or dynamically linked file,
712 and file offset/size pairs for the DIE information and line number
722 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
724 struct objfile *objfile;
725 struct section_offsets *section_offsets;
728 unsigned int dbfsize;
732 bfd *abfd = objfile->obfd;
733 struct cleanup *back_to;
735 current_objfile = objfile;
737 dbbase = xmalloc (dbsize);
739 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
740 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
743 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
745 back_to = make_cleanup (free, dbbase);
747 /* If we are reinitializing, or if we have never loaded syms yet, init.
748 Since we have no idea how many DIES we are looking at, we just guess
749 some arbitrary value. */
751 if (mainline || objfile -> global_psymbols.size == 0 ||
752 objfile -> static_psymbols.size == 0)
754 init_psymbol_list (objfile, 1024);
757 /* Save the relocation factor where everybody can see it. */
759 base_section_offsets = section_offsets;
760 baseaddr = ANOFFSET (section_offsets, 0);
762 /* Follow the compilation unit sibling chain, building a partial symbol
763 table entry for each one. Save enough information about each compilation
764 unit to locate the full DWARF information later. */
766 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
768 do_cleanups (back_to);
769 current_objfile = NULL;
776 read_lexical_block_scope -- process all dies in a lexical block
780 static void read_lexical_block_scope (struct dieinfo *dip,
781 char *thisdie, char *enddie)
785 Process all the DIES contained within a lexical block scope.
786 Start a new scope, process the dies, and then close the scope.
791 read_lexical_block_scope (dip, thisdie, enddie, objfile)
795 struct objfile *objfile;
797 register struct context_stack *new;
799 push_context (0, dip -> at_low_pc);
800 process_dies (thisdie + dip -> die_length, enddie, objfile);
801 new = pop_context ();
802 if (local_symbols != NULL)
804 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
805 dip -> at_high_pc, objfile);
807 local_symbols = new -> locals;
814 lookup_utype -- look up a user defined type from die reference
818 static type *lookup_utype (DIE_REF die_ref)
822 Given a DIE reference, lookup the user defined type associated with
823 that DIE, if it has been registered already. If not registered, then
824 return NULL. Alloc_utype() can be called to register an empty
825 type for this reference, which will be filled in later when the
826 actual referenced DIE is processed.
830 lookup_utype (die_ref)
833 struct type *type = NULL;
836 utypeidx = (die_ref - dbroff) / 4;
837 if ((utypeidx < 0) || (utypeidx >= numutypes))
839 complain (&bad_die_ref, DIE_ID, DIE_NAME);
843 type = *(utypes + utypeidx);
853 alloc_utype -- add a user defined type for die reference
857 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
861 Given a die reference DIE_REF, and a possible pointer to a user
862 defined type UTYPEP, register that this reference has a user
863 defined type and either use the specified type in UTYPEP or
864 make a new empty type that will be filled in later.
866 We should only be called after calling lookup_utype() to verify that
867 there is not currently a type registered for DIE_REF.
871 alloc_utype (die_ref, utypep)
878 utypeidx = (die_ref - dbroff) / 4;
879 typep = utypes + utypeidx;
880 if ((utypeidx < 0) || (utypeidx >= numutypes))
882 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
883 complain (&bad_die_ref, DIE_ID, DIE_NAME);
885 else if (*typep != NULL)
888 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
894 utypep = alloc_type (current_objfile);
905 decode_die_type -- return a type for a specified die
909 static struct type *decode_die_type (struct dieinfo *dip)
913 Given a pointer to a die information structure DIP, decode the
914 type of the die and return a pointer to the decoded type. All
915 dies without specific types default to type int.
919 decode_die_type (dip)
922 struct type *type = NULL;
924 if (dip -> at_fund_type != 0)
926 type = decode_fund_type (dip -> at_fund_type);
928 else if (dip -> at_mod_fund_type != NULL)
930 type = decode_mod_fund_type (dip -> at_mod_fund_type);
932 else if (dip -> at_user_def_type)
934 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
936 type = alloc_utype (dip -> at_user_def_type, NULL);
939 else if (dip -> at_mod_u_d_type)
941 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
945 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
954 struct_type -- compute and return the type for a struct or union
958 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
959 char *enddie, struct objfile *objfile)
963 Given pointer to a die information structure for a die which
964 defines a union or structure (and MUST define one or the other),
965 and pointers to the raw die data that define the range of dies which
966 define the members, compute and return the user defined type for the
971 struct_type (dip, thisdie, enddie, objfile)
975 struct objfile *objfile;
979 struct nextfield *next;
982 struct nextfield *list = NULL;
983 struct nextfield *new;
992 if ((type = lookup_utype (dip -> die_ref)) == NULL)
994 /* No forward references created an empty type, so install one now */
995 type = alloc_utype (dip -> die_ref, NULL);
997 INIT_CPLUS_SPECIFIC(type);
998 switch (dip -> die_tag)
1000 case TAG_class_type:
1001 TYPE_CODE (type) = TYPE_CODE_CLASS;
1003 case TAG_structure_type:
1004 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1006 case TAG_union_type:
1007 TYPE_CODE (type) = TYPE_CODE_UNION;
1010 /* Should never happen */
1011 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1012 complain (&missing_tag, DIE_ID, DIE_NAME);
1015 /* Some compilers try to be helpful by inventing "fake" names for
1016 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1017 Thanks, but no thanks... */
1018 if (dip -> at_name != NULL
1019 && *dip -> at_name != '~'
1020 && *dip -> at_name != '.')
1022 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1023 "", "", dip -> at_name);
1025 /* Use whatever size is known. Zero is a valid size. We might however
1026 wish to check has_at_byte_size to make sure that some byte size was
1027 given explicitly, but DWARF doesn't specify that explicit sizes of
1028 zero have to present, so complaining about missing sizes should
1029 probably not be the default. */
1030 TYPE_LENGTH (type) = dip -> at_byte_size;
1031 thisdie += dip -> die_length;
1032 while (thisdie < enddie)
1034 basicdieinfo (&mbr, thisdie, objfile);
1035 completedieinfo (&mbr, objfile);
1036 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1040 else if (mbr.at_sibling != 0)
1042 nextdie = dbbase + mbr.at_sibling - dbroff;
1046 nextdie = thisdie + mbr.die_length;
1048 switch (mbr.die_tag)
1051 /* Get space to record the next field's data. */
1052 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1055 /* Save the data. */
1056 list -> field.name =
1057 obsavestring (mbr.at_name, strlen (mbr.at_name),
1058 &objfile -> type_obstack);
1059 list -> field.type = decode_die_type (&mbr);
1060 list -> field.bitpos = 8 * locval (mbr.at_location);
1061 /* Handle bit fields. */
1062 list -> field.bitsize = mbr.at_bit_size;
1064 /* For big endian bits, the at_bit_offset gives the additional
1065 bit offset from the MSB of the containing anonymous object to
1066 the MSB of the field. We don't have to do anything special
1067 since we don't need to know the size of the anonymous object. */
1068 list -> field.bitpos += mbr.at_bit_offset;
1070 /* For little endian bits, we need to have a non-zero at_bit_size,
1071 so that we know we are in fact dealing with a bitfield. Compute
1072 the bit offset to the MSB of the anonymous object, subtract off
1073 the number of bits from the MSB of the field to the MSB of the
1074 object, and then subtract off the number of bits of the field
1075 itself. The result is the bit offset of the LSB of the field. */
1076 if (mbr.at_bit_size > 0)
1078 if (mbr.has_at_byte_size)
1080 /* The size of the anonymous object containing the bit field
1081 is explicit, so use the indicated size (in bytes). */
1082 anonymous_size = mbr.at_byte_size;
1086 /* The size of the anonymous object containing the bit field
1087 matches the size of an object of the bit field's type.
1088 DWARF allows at_byte_size to be left out in such cases,
1089 as a debug information size optimization. */
1090 anonymous_size = TYPE_LENGTH (list -> field.type);
1092 list -> field.bitpos +=
1093 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1099 process_dies (thisdie, nextdie, objfile);
1104 /* Now create the vector of fields, and record how big it is. We may
1105 not even have any fields, if this DIE was generated due to a reference
1106 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1107 set, which clues gdb in to the fact that it needs to search elsewhere
1108 for the full structure definition. */
1111 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1115 TYPE_NFIELDS (type) = nfields;
1116 TYPE_FIELDS (type) = (struct field *)
1117 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1118 /* Copy the saved-up fields into the field vector. */
1119 for (n = nfields; list; list = list -> next)
1121 TYPE_FIELD (type, --n) = list -> field;
1131 read_structure_scope -- process all dies within struct or union
1135 static void read_structure_scope (struct dieinfo *dip,
1136 char *thisdie, char *enddie, struct objfile *objfile)
1140 Called when we find the DIE that starts a structure or union
1141 scope (definition) to process all dies that define the members
1142 of the structure or union. DIP is a pointer to the die info
1143 struct for the DIE that names the structure or union.
1147 Note that we need to call struct_type regardless of whether or not
1148 the DIE has an at_name attribute, since it might be an anonymous
1149 structure or union. This gets the type entered into our set of
1152 However, if the structure is incomplete (an opaque struct/union)
1153 then suppress creating a symbol table entry for it since gdb only
1154 wants to find the one with the complete definition. Note that if
1155 it is complete, we just call new_symbol, which does it's own
1156 checking about whether the struct/union is anonymous or not (and
1157 suppresses creating a symbol table entry itself).
1162 read_structure_scope (dip, thisdie, enddie, objfile)
1163 struct dieinfo *dip;
1166 struct objfile *objfile;
1171 type = struct_type (dip, thisdie, enddie, objfile);
1172 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1174 sym = new_symbol (dip, objfile);
1177 SYMBOL_TYPE (sym) = type;
1178 if (cu_language == language_cplus)
1180 synthesize_typedef (dip, objfile, type);
1190 decode_array_element_type -- decode type of the array elements
1194 static struct type *decode_array_element_type (char *scan, char *end)
1198 As the last step in decoding the array subscript information for an
1199 array DIE, we need to decode the type of the array elements. We are
1200 passed a pointer to this last part of the subscript information and
1201 must return the appropriate type. If the type attribute is not
1202 recognized, just warn about the problem and return type int.
1205 static struct type *
1206 decode_array_element_type (scan)
1211 unsigned short attribute;
1212 unsigned short fundtype;
1215 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1217 scan += SIZEOF_ATTRIBUTE;
1218 if ((nbytes = attribute_size (attribute)) == -1)
1220 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1221 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1228 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1230 typep = decode_fund_type (fundtype);
1232 case AT_mod_fund_type:
1233 typep = decode_mod_fund_type (scan);
1235 case AT_user_def_type:
1236 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1238 if ((typep = lookup_utype (die_ref)) == NULL)
1240 typep = alloc_utype (die_ref, NULL);
1243 case AT_mod_u_d_type:
1244 typep = decode_mod_u_d_type (scan);
1247 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1248 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1259 decode_subscript_data_item -- decode array subscript item
1263 static struct type *
1264 decode_subscript_data_item (char *scan, char *end)
1268 The array subscripts and the data type of the elements of an
1269 array are described by a list of data items, stored as a block
1270 of contiguous bytes. There is a data item describing each array
1271 dimension, and a final data item describing the element type.
1272 The data items are ordered the same as their appearance in the
1273 source (I.E. leftmost dimension first, next to leftmost second,
1276 The data items describing each array dimension consist of four
1277 parts: (1) a format specifier, (2) type type of the subscript
1278 index, (3) a description of the low bound of the array dimension,
1279 and (4) a description of the high bound of the array dimension.
1281 The last data item is the description of the type of each of
1284 We are passed a pointer to the start of the block of bytes
1285 containing the remaining data items, and a pointer to the first
1286 byte past the data. This function recursively decodes the
1287 remaining data items and returns a type.
1289 If we somehow fail to decode some data, we complain about it
1290 and return a type "array of int".
1293 FIXME: This code only implements the forms currently used
1294 by the AT&T and GNU C compilers.
1296 The end pointer is supplied for error checking, maybe we should
1300 static struct type *
1301 decode_subscript_data_item (scan, end)
1305 struct type *typep = NULL; /* Array type we are building */
1306 struct type *nexttype; /* Type of each element (may be array) */
1307 struct type *indextype; /* Type of this index */
1308 struct type *rangetype;
1309 unsigned int format;
1310 unsigned short fundtype;
1311 unsigned long lowbound;
1312 unsigned long highbound;
1315 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1317 scan += SIZEOF_FORMAT_SPECIFIER;
1321 typep = decode_array_element_type (scan);
1324 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1326 indextype = decode_fund_type (fundtype);
1327 scan += SIZEOF_FMT_FT;
1328 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1329 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1331 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1333 nexttype = decode_subscript_data_item (scan, end);
1334 if (nexttype == NULL)
1336 /* Munged subscript data or other problem, fake it. */
1337 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1338 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1340 rangetype = create_range_type ((struct type *) NULL, indextype,
1341 lowbound, highbound);
1342 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1351 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1352 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1353 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1354 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1357 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1358 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1359 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1360 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1370 dwarf_read_array_type -- read TAG_array_type DIE
1374 static void dwarf_read_array_type (struct dieinfo *dip)
1378 Extract all information from a TAG_array_type DIE and add to
1379 the user defined type vector.
1383 dwarf_read_array_type (dip)
1384 struct dieinfo *dip;
1390 unsigned short blocksz;
1393 if (dip -> at_ordering != ORD_row_major)
1395 /* FIXME: Can gdb even handle column major arrays? */
1396 complain (¬_row_major, DIE_ID, DIE_NAME);
1398 if ((sub = dip -> at_subscr_data) != NULL)
1400 nbytes = attribute_size (AT_subscr_data);
1401 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1402 subend = sub + nbytes + blocksz;
1404 type = decode_subscript_data_item (sub, subend);
1405 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1407 /* Install user defined type that has not been referenced yet. */
1408 alloc_utype (dip -> die_ref, type);
1410 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1412 /* Ick! A forward ref has already generated a blank type in our
1413 slot, and this type probably already has things pointing to it
1414 (which is what caused it to be created in the first place).
1415 If it's just a place holder we can plop our fully defined type
1416 on top of it. We can't recover the space allocated for our
1417 new type since it might be on an obstack, but we could reuse
1418 it if we kept a list of them, but it might not be worth it
1424 /* Double ick! Not only is a type already in our slot, but
1425 someone has decorated it. Complain and leave it alone. */
1426 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1435 read_tag_pointer_type -- read TAG_pointer_type DIE
1439 static void read_tag_pointer_type (struct dieinfo *dip)
1443 Extract all information from a TAG_pointer_type DIE and add to
1444 the user defined type vector.
1448 read_tag_pointer_type (dip)
1449 struct dieinfo *dip;
1454 type = decode_die_type (dip);
1455 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1457 utype = lookup_pointer_type (type);
1458 alloc_utype (dip -> die_ref, utype);
1462 TYPE_TARGET_TYPE (utype) = type;
1463 TYPE_POINTER_TYPE (type) = utype;
1465 /* We assume the machine has only one representation for pointers! */
1466 /* FIXME: This confuses host<->target data representations, and is a
1467 poor assumption besides. */
1469 TYPE_LENGTH (utype) = sizeof (char *);
1470 TYPE_CODE (utype) = TYPE_CODE_PTR;
1478 read_tag_string_type -- read TAG_string_type DIE
1482 static void read_tag_string_type (struct dieinfo *dip)
1486 Extract all information from a TAG_string_type DIE and add to
1487 the user defined type vector. It isn't really a user defined
1488 type, but it behaves like one, with other DIE's using an
1489 AT_user_def_type attribute to reference it.
1493 read_tag_string_type (dip)
1494 struct dieinfo *dip;
1497 struct type *indextype;
1498 struct type *rangetype;
1499 unsigned long lowbound = 0;
1500 unsigned long highbound;
1502 if (dip -> has_at_byte_size)
1504 /* A fixed bounds string */
1505 highbound = dip -> at_byte_size - 1;
1509 /* A varying length string. Stub for now. (FIXME) */
1512 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1513 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1516 utype = lookup_utype (dip -> die_ref);
1519 /* No type defined, go ahead and create a blank one to use. */
1520 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1524 /* Already a type in our slot due to a forward reference. Make sure it
1525 is a blank one. If not, complain and leave it alone. */
1526 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1528 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1533 /* Create the string type using the blank type we either found or created. */
1534 utype = create_string_type (utype, rangetype);
1541 read_subroutine_type -- process TAG_subroutine_type dies
1545 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1550 Handle DIES due to C code like:
1553 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1559 The parameter DIES are currently ignored. See if gdb has a way to
1560 include this info in it's type system, and decode them if so. Is
1561 this what the type structure's "arg_types" field is for? (FIXME)
1565 read_subroutine_type (dip, thisdie, enddie)
1566 struct dieinfo *dip;
1570 struct type *type; /* Type that this function returns */
1571 struct type *ftype; /* Function that returns above type */
1573 /* Decode the type that this subroutine returns */
1575 type = decode_die_type (dip);
1577 /* Check to see if we already have a partially constructed user
1578 defined type for this DIE, from a forward reference. */
1580 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1582 /* This is the first reference to one of these types. Make
1583 a new one and place it in the user defined types. */
1584 ftype = lookup_function_type (type);
1585 alloc_utype (dip -> die_ref, ftype);
1587 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1589 /* We have an existing partially constructed type, so bash it
1590 into the correct type. */
1591 TYPE_TARGET_TYPE (ftype) = type;
1592 TYPE_FUNCTION_TYPE (type) = ftype;
1593 TYPE_LENGTH (ftype) = 1;
1594 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1598 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1606 read_enumeration -- process dies which define an enumeration
1610 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1611 char *enddie, struct objfile *objfile)
1615 Given a pointer to a die which begins an enumeration, process all
1616 the dies that define the members of the enumeration.
1620 Note that we need to call enum_type regardless of whether or not we
1621 have a symbol, since we might have an enum without a tag name (thus
1622 no symbol for the tagname).
1626 read_enumeration (dip, thisdie, enddie, objfile)
1627 struct dieinfo *dip;
1630 struct objfile *objfile;
1635 type = enum_type (dip, objfile);
1636 sym = new_symbol (dip, objfile);
1639 SYMBOL_TYPE (sym) = type;
1640 if (cu_language == language_cplus)
1642 synthesize_typedef (dip, objfile, type);
1651 enum_type -- decode and return a type for an enumeration
1655 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1659 Given a pointer to a die information structure for the die which
1660 starts an enumeration, process all the dies that define the members
1661 of the enumeration and return a type pointer for the enumeration.
1663 At the same time, for each member of the enumeration, create a
1664 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1665 and give it the type of the enumeration itself.
1669 Note that the DWARF specification explicitly mandates that enum
1670 constants occur in reverse order from the source program order,
1671 for "consistency" and because this ordering is easier for many
1672 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1673 Entries). Because gdb wants to see the enum members in program
1674 source order, we have to ensure that the order gets reversed while
1675 we are processing them.
1678 static struct type *
1679 enum_type (dip, objfile)
1680 struct dieinfo *dip;
1681 struct objfile *objfile;
1685 struct nextfield *next;
1688 struct nextfield *list = NULL;
1689 struct nextfield *new;
1694 unsigned short blocksz;
1698 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1700 /* No forward references created an empty type, so install one now */
1701 type = alloc_utype (dip -> die_ref, NULL);
1703 TYPE_CODE (type) = TYPE_CODE_ENUM;
1704 /* Some compilers try to be helpful by inventing "fake" names for
1705 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1706 Thanks, but no thanks... */
1707 if (dip -> at_name != NULL
1708 && *dip -> at_name != '~'
1709 && *dip -> at_name != '.')
1711 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1712 "", "", dip -> at_name);
1714 if (dip -> at_byte_size != 0)
1716 TYPE_LENGTH (type) = dip -> at_byte_size;
1718 if ((scan = dip -> at_element_list) != NULL)
1720 if (dip -> short_element_list)
1722 nbytes = attribute_size (AT_short_element_list);
1726 nbytes = attribute_size (AT_element_list);
1728 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1729 listend = scan + nbytes + blocksz;
1731 while (scan < listend)
1733 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1736 list -> field.type = NULL;
1737 list -> field.bitsize = 0;
1738 list -> field.bitpos =
1739 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1741 scan += TARGET_FT_LONG_SIZE (objfile);
1742 list -> field.name = obsavestring (scan, strlen (scan),
1743 &objfile -> type_obstack);
1744 scan += strlen (scan) + 1;
1746 /* Handcraft a new symbol for this enum member. */
1747 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1748 sizeof (struct symbol));
1749 memset (sym, 0, sizeof (struct symbol));
1750 SYMBOL_NAME (sym) = create_name (list -> field.name,
1751 &objfile->symbol_obstack);
1752 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1753 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1754 SYMBOL_CLASS (sym) = LOC_CONST;
1755 SYMBOL_TYPE (sym) = type;
1756 SYMBOL_VALUE (sym) = list -> field.bitpos;
1757 add_symbol_to_list (sym, list_in_scope);
1759 /* Now create the vector of fields, and record how big it is. This is
1760 where we reverse the order, by pulling the members off the list in
1761 reverse order from how they were inserted. If we have no fields
1762 (this is apparently possible in C++) then skip building a field
1766 TYPE_NFIELDS (type) = nfields;
1767 TYPE_FIELDS (type) = (struct field *)
1768 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1769 /* Copy the saved-up fields into the field vector. */
1770 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1772 TYPE_FIELD (type, n++) = list -> field;
1783 read_func_scope -- process all dies within a function scope
1787 Process all dies within a given function scope. We are passed
1788 a die information structure pointer DIP for the die which
1789 starts the function scope, and pointers into the raw die data
1790 that define the dies within the function scope.
1792 For now, we ignore lexical block scopes within the function.
1793 The problem is that AT&T cc does not define a DWARF lexical
1794 block scope for the function itself, while gcc defines a
1795 lexical block scope for the function. We need to think about
1796 how to handle this difference, or if it is even a problem.
1801 read_func_scope (dip, thisdie, enddie, objfile)
1802 struct dieinfo *dip;
1805 struct objfile *objfile;
1807 register struct context_stack *new;
1809 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1810 objfile -> ei.entry_point < dip -> at_high_pc)
1812 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1813 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1815 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1817 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1818 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1820 new = push_context (0, dip -> at_low_pc);
1821 new -> name = new_symbol (dip, objfile);
1822 list_in_scope = &local_symbols;
1823 process_dies (thisdie + dip -> die_length, enddie, objfile);
1824 new = pop_context ();
1825 /* Make a block for the local symbols within. */
1826 finish_block (new -> name, &local_symbols, new -> old_blocks,
1827 new -> start_addr, dip -> at_high_pc, objfile);
1828 list_in_scope = &file_symbols;
1836 handle_producer -- process the AT_producer attribute
1840 Perform any operations that depend on finding a particular
1841 AT_producer attribute.
1846 handle_producer (producer)
1850 /* If this compilation unit was compiled with g++ or gcc, then set the
1851 processing_gcc_compilation flag. */
1853 processing_gcc_compilation =
1854 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1855 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1856 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1858 /* Select a demangling style if we can identify the producer and if
1859 the current style is auto. We leave the current style alone if it
1860 is not auto. We also leave the demangling style alone if we find a
1861 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1863 if (AUTO_DEMANGLING)
1865 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1867 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1869 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1871 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1881 read_file_scope -- process all dies within a file scope
1885 Process all dies within a given file scope. We are passed a
1886 pointer to the die information structure for the die which
1887 starts the file scope, and pointers into the raw die data which
1888 mark the range of dies within the file scope.
1890 When the partial symbol table is built, the file offset for the line
1891 number table for each compilation unit is saved in the partial symbol
1892 table entry for that compilation unit. As the symbols for each
1893 compilation unit are read, the line number table is read into memory
1894 and the variable lnbase is set to point to it. Thus all we have to
1895 do is use lnbase to access the line number table for the current
1900 read_file_scope (dip, thisdie, enddie, objfile)
1901 struct dieinfo *dip;
1904 struct objfile *objfile;
1906 struct cleanup *back_to;
1907 struct symtab *symtab;
1909 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1910 objfile -> ei.entry_point < dip -> at_high_pc)
1912 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1913 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1915 set_cu_language (dip);
1916 if (dip -> at_producer != NULL)
1918 handle_producer (dip -> at_producer);
1920 numutypes = (enddie - thisdie) / 4;
1921 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1922 back_to = make_cleanup (free, utypes);
1923 memset (utypes, 0, numutypes * sizeof (struct type *));
1924 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1925 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1926 decode_line_numbers (lnbase);
1927 process_dies (thisdie + dip -> die_length, enddie, objfile);
1929 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1932 symtab -> language = cu_language;
1934 do_cleanups (back_to);
1943 process_dies -- process a range of DWARF Information Entries
1947 static void process_dies (char *thisdie, char *enddie,
1948 struct objfile *objfile)
1952 Process all DIE's in a specified range. May be (and almost
1953 certainly will be) called recursively.
1957 process_dies (thisdie, enddie, objfile)
1960 struct objfile *objfile;
1965 while (thisdie < enddie)
1967 basicdieinfo (&di, thisdie, objfile);
1968 if (di.die_length < SIZEOF_DIE_LENGTH)
1972 else if (di.die_tag == TAG_padding)
1974 nextdie = thisdie + di.die_length;
1978 completedieinfo (&di, objfile);
1979 if (di.at_sibling != 0)
1981 nextdie = dbbase + di.at_sibling - dbroff;
1985 nextdie = thisdie + di.die_length;
1987 #ifdef SMASH_TEXT_ADDRESS
1988 /* I think that these are always text, not data, addresses. */
1989 SMASH_TEXT_ADDRESS (di.at_low_pc);
1990 SMASH_TEXT_ADDRESS (di.at_high_pc);
1994 case TAG_compile_unit:
1995 /* Skip Tag_compile_unit if we are already inside a compilation
1996 unit, we are unable to handle nested compilation units
1997 properly (FIXME). */
1998 if (current_subfile == NULL)
1999 read_file_scope (&di, thisdie, nextdie, objfile);
2001 nextdie = thisdie + di.die_length;
2003 case TAG_global_subroutine:
2004 case TAG_subroutine:
2005 if (di.has_at_low_pc)
2007 read_func_scope (&di, thisdie, nextdie, objfile);
2010 case TAG_lexical_block:
2011 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2013 case TAG_class_type:
2014 case TAG_structure_type:
2015 case TAG_union_type:
2016 read_structure_scope (&di, thisdie, nextdie, objfile);
2018 case TAG_enumeration_type:
2019 read_enumeration (&di, thisdie, nextdie, objfile);
2021 case TAG_subroutine_type:
2022 read_subroutine_type (&di, thisdie, nextdie);
2024 case TAG_array_type:
2025 dwarf_read_array_type (&di);
2027 case TAG_pointer_type:
2028 read_tag_pointer_type (&di);
2030 case TAG_string_type:
2031 read_tag_string_type (&di);
2034 new_symbol (&di, objfile);
2046 decode_line_numbers -- decode a line number table fragment
2050 static void decode_line_numbers (char *tblscan, char *tblend,
2051 long length, long base, long line, long pc)
2055 Translate the DWARF line number information to gdb form.
2057 The ".line" section contains one or more line number tables, one for
2058 each ".line" section from the objects that were linked.
2060 The AT_stmt_list attribute for each TAG_source_file entry in the
2061 ".debug" section contains the offset into the ".line" section for the
2062 start of the table for that file.
2064 The table itself has the following structure:
2066 <table length><base address><source statement entry>
2067 4 bytes 4 bytes 10 bytes
2069 The table length is the total size of the table, including the 4 bytes
2070 for the length information.
2072 The base address is the address of the first instruction generated
2073 for the source file.
2075 Each source statement entry has the following structure:
2077 <line number><statement position><address delta>
2078 4 bytes 2 bytes 4 bytes
2080 The line number is relative to the start of the file, starting with
2083 The statement position either -1 (0xFFFF) or the number of characters
2084 from the beginning of the line to the beginning of the statement.
2086 The address delta is the difference between the base address and
2087 the address of the first instruction for the statement.
2089 Note that we must copy the bytes from the packed table to our local
2090 variables before attempting to use them, to avoid alignment problems
2091 on some machines, particularly RISC processors.
2095 Does gdb expect the line numbers to be sorted? They are now by
2096 chance/luck, but are not required to be. (FIXME)
2098 The line with number 0 is unused, gdb apparently can discover the
2099 span of the last line some other way. How? (FIXME)
2103 decode_line_numbers (linetable)
2108 unsigned long length;
2113 if (linetable != NULL)
2115 tblscan = tblend = linetable;
2116 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2118 tblscan += SIZEOF_LINETBL_LENGTH;
2120 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2121 GET_UNSIGNED, current_objfile);
2122 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2124 while (tblscan < tblend)
2126 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2128 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2129 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2131 tblscan += SIZEOF_LINETBL_DELTA;
2135 record_line (current_subfile, line, pc);
2145 locval -- compute the value of a location attribute
2149 static int locval (char *loc)
2153 Given pointer to a string of bytes that define a location, compute
2154 the location and return the value.
2156 When computing values involving the current value of the frame pointer,
2157 the value zero is used, which results in a value relative to the frame
2158 pointer, rather than the absolute value. This is what GDB wants
2161 When the result is a register number, the global isreg flag is set,
2162 otherwise it is cleared. This is a kludge until we figure out a better
2163 way to handle the problem. Gdb's design does not mesh well with the
2164 DWARF notion of a location computing interpreter, which is a shame
2165 because the flexibility goes unused.
2169 Note that stack[0] is unused except as a default error return.
2170 Note that stack overflow is not yet handled.
2177 unsigned short nbytes;
2178 unsigned short locsize;
2179 auto long stack[64];
2185 nbytes = attribute_size (AT_location);
2186 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2188 end = loc + locsize;
2193 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2196 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2198 loc += SIZEOF_LOC_ATOM_CODE;
2199 switch (loc_atom_code)
2206 /* push register (number) */
2207 stack[++stacki] = target_to_host (loc, loc_value_size,
2208 GET_UNSIGNED, current_objfile);
2209 loc += loc_value_size;
2213 /* push value of register (number) */
2214 /* Actually, we compute the value as if register has 0, so the
2215 value ends up being the offset from that register. */
2217 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2219 loc += loc_value_size;
2220 stack[++stacki] = 0;
2223 /* push address (relocated address) */
2224 stack[++stacki] = target_to_host (loc, loc_value_size,
2225 GET_UNSIGNED, current_objfile);
2226 loc += loc_value_size;
2229 /* push constant (number) FIXME: signed or unsigned! */
2230 stack[++stacki] = target_to_host (loc, loc_value_size,
2231 GET_SIGNED, current_objfile);
2232 loc += loc_value_size;
2235 /* pop, deref and push 2 bytes (as a long) */
2236 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2238 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2239 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2241 case OP_ADD: /* pop top 2 items, add, push result */
2242 stack[stacki - 1] += stack[stacki];
2247 return (stack[stacki]);
2254 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2258 static void read_ofile_symtab (struct partial_symtab *pst)
2262 When expanding a partial symbol table entry to a full symbol table
2263 entry, this is the function that gets called to read in the symbols
2264 for the compilation unit. A pointer to the newly constructed symtab,
2265 which is now the new first one on the objfile's symtab list, is
2266 stashed in the partial symbol table entry.
2270 read_ofile_symtab (pst)
2271 struct partial_symtab *pst;
2273 struct cleanup *back_to;
2274 unsigned long lnsize;
2277 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2279 abfd = pst -> objfile -> obfd;
2280 current_objfile = pst -> objfile;
2282 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2283 unit, seek to the location in the file, and read in all the DIE's. */
2286 dbsize = DBLENGTH (pst);
2287 dbbase = xmalloc (dbsize);
2288 dbroff = DBROFF(pst);
2289 foffset = DBFOFF(pst) + dbroff;
2290 base_section_offsets = pst->section_offsets;
2291 baseaddr = ANOFFSET (pst->section_offsets, 0);
2292 if (bfd_seek (abfd, foffset, L_SET) ||
2293 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2296 error ("can't read DWARF data");
2298 back_to = make_cleanup (free, dbbase);
2300 /* If there is a line number table associated with this compilation unit
2301 then read the size of this fragment in bytes, from the fragment itself.
2302 Allocate a buffer for the fragment and read it in for future
2308 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2309 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2310 sizeof (lnsizedata)))
2312 error ("can't read DWARF line number table size");
2314 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2315 GET_UNSIGNED, pst -> objfile);
2316 lnbase = xmalloc (lnsize);
2317 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2318 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2321 error ("can't read DWARF line numbers");
2323 make_cleanup (free, lnbase);
2326 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2327 do_cleanups (back_to);
2328 current_objfile = NULL;
2329 pst -> symtab = pst -> objfile -> symtabs;
2336 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2340 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2344 Called once for each partial symbol table entry that needs to be
2345 expanded into a full symbol table entry.
2350 psymtab_to_symtab_1 (pst)
2351 struct partial_symtab *pst;
2354 struct cleanup *old_chain;
2360 warning ("psymtab for %s already read in. Shouldn't happen.",
2365 /* Read in all partial symtabs on which this one is dependent */
2366 for (i = 0; i < pst -> number_of_dependencies; i++)
2368 if (!pst -> dependencies[i] -> readin)
2370 /* Inform about additional files that need to be read in. */
2373 fputs_filtered (" ", gdb_stdout);
2375 fputs_filtered ("and ", gdb_stdout);
2377 printf_filtered ("%s...",
2378 pst -> dependencies[i] -> filename);
2380 gdb_flush (gdb_stdout); /* Flush output */
2382 psymtab_to_symtab_1 (pst -> dependencies[i]);
2385 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2388 old_chain = make_cleanup (really_free_pendings, 0);
2389 read_ofile_symtab (pst);
2392 printf_filtered ("%d DIE's, sorting...", diecount);
2394 gdb_flush (gdb_stdout);
2396 sort_symtab_syms (pst -> symtab);
2397 do_cleanups (old_chain);
2408 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2412 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2416 This is the DWARF support entry point for building a full symbol
2417 table entry from a partial symbol table entry. We are passed a
2418 pointer to the partial symbol table entry that needs to be expanded.
2423 dwarf_psymtab_to_symtab (pst)
2424 struct partial_symtab *pst;
2431 warning ("psymtab for %s already read in. Shouldn't happen.",
2436 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2438 /* Print the message now, before starting serious work, to avoid
2439 disconcerting pauses. */
2442 printf_filtered ("Reading in symbols for %s...",
2444 gdb_flush (gdb_stdout);
2447 psymtab_to_symtab_1 (pst);
2449 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2450 we need to do an equivalent or is this something peculiar to
2452 Match with global symbols. This only needs to be done once,
2453 after all of the symtabs and dependencies have been read in.
2455 scan_file_globals (pst -> objfile);
2458 /* Finish up the verbose info message. */
2461 printf_filtered ("done.\n");
2462 gdb_flush (gdb_stdout);
2473 init_psymbol_list -- initialize storage for partial symbols
2477 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2481 Initializes storage for all of the partial symbols that will be
2482 created by dwarf_build_psymtabs and subsidiaries.
2486 init_psymbol_list (objfile, total_symbols)
2487 struct objfile *objfile;
2490 /* Free any previously allocated psymbol lists. */
2492 if (objfile -> global_psymbols.list)
2494 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2496 if (objfile -> static_psymbols.list)
2498 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2501 /* Current best guess is that there are approximately a twentieth
2502 of the total symbols (in a debugging file) are global or static
2505 objfile -> global_psymbols.size = total_symbols / 10;
2506 objfile -> static_psymbols.size = total_symbols / 10;
2507 objfile -> global_psymbols.next =
2508 objfile -> global_psymbols.list = (struct partial_symbol *)
2509 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2510 * sizeof (struct partial_symbol));
2511 objfile -> static_psymbols.next =
2512 objfile -> static_psymbols.list = (struct partial_symbol *)
2513 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2514 * sizeof (struct partial_symbol));
2521 add_enum_psymbol -- add enumeration members to partial symbol table
2525 Given pointer to a DIE that is known to be for an enumeration,
2526 extract the symbolic names of the enumeration members and add
2527 partial symbols for them.
2531 add_enum_psymbol (dip, objfile)
2532 struct dieinfo *dip;
2533 struct objfile *objfile;
2537 unsigned short blocksz;
2540 if ((scan = dip -> at_element_list) != NULL)
2542 if (dip -> short_element_list)
2544 nbytes = attribute_size (AT_short_element_list);
2548 nbytes = attribute_size (AT_element_list);
2550 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2552 listend = scan + blocksz;
2553 while (scan < listend)
2555 scan += TARGET_FT_LONG_SIZE (objfile);
2556 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2557 objfile -> static_psymbols, 0, cu_language,
2559 scan += strlen (scan) + 1;
2568 add_partial_symbol -- add symbol to partial symbol table
2572 Given a DIE, if it is one of the types that we want to
2573 add to a partial symbol table, finish filling in the die info
2574 and then add a partial symbol table entry for it.
2578 The caller must ensure that the DIE has a valid name attribute.
2582 add_partial_symbol (dip, objfile)
2583 struct dieinfo *dip;
2584 struct objfile *objfile;
2586 switch (dip -> die_tag)
2588 case TAG_global_subroutine:
2589 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2590 VAR_NAMESPACE, LOC_BLOCK,
2591 objfile -> global_psymbols,
2592 dip -> at_low_pc, cu_language, objfile);
2594 case TAG_global_variable:
2595 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2596 VAR_NAMESPACE, LOC_STATIC,
2597 objfile -> global_psymbols,
2598 0, cu_language, objfile);
2600 case TAG_subroutine:
2601 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2602 VAR_NAMESPACE, LOC_BLOCK,
2603 objfile -> static_psymbols,
2604 dip -> at_low_pc, cu_language, objfile);
2606 case TAG_local_variable:
2607 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2608 VAR_NAMESPACE, LOC_STATIC,
2609 objfile -> static_psymbols,
2610 0, cu_language, objfile);
2613 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2614 VAR_NAMESPACE, LOC_TYPEDEF,
2615 objfile -> static_psymbols,
2616 0, cu_language, objfile);
2618 case TAG_class_type:
2619 case TAG_structure_type:
2620 case TAG_union_type:
2621 case TAG_enumeration_type:
2622 /* Do not add opaque aggregate definitions to the psymtab. */
2623 if (!dip -> has_at_byte_size)
2625 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2626 STRUCT_NAMESPACE, LOC_TYPEDEF,
2627 objfile -> static_psymbols,
2628 0, cu_language, objfile);
2629 if (cu_language == language_cplus)
2631 /* For C++, these implicitly act as typedefs as well. */
2632 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2633 VAR_NAMESPACE, LOC_TYPEDEF,
2634 objfile -> static_psymbols,
2635 0, cu_language, objfile);
2645 scan_partial_symbols -- scan DIE's within a single compilation unit
2649 Process the DIE's within a single compilation unit, looking for
2650 interesting DIE's that contribute to the partial symbol table entry
2651 for this compilation unit.
2655 There are some DIE's that may appear both at file scope and within
2656 the scope of a function. We are only interested in the ones at file
2657 scope, and the only way to tell them apart is to keep track of the
2658 scope. For example, consider the test case:
2663 for which the relevant DWARF segment has the structure:
2666 0x23 global subrtn sibling 0x9b
2668 fund_type FT_integer
2673 0x23 local var sibling 0x97
2675 fund_type FT_integer
2676 location OP_BASEREG 0xe
2683 0x1d local var sibling 0xb8
2685 fund_type FT_integer
2686 location OP_ADDR 0x800025dc
2691 We want to include the symbol 'i' in the partial symbol table, but
2692 not the symbol 'j'. In essence, we want to skip all the dies within
2693 the scope of a TAG_global_subroutine DIE.
2695 Don't attempt to add anonymous structures or unions since they have
2696 no name. Anonymous enumerations however are processed, because we
2697 want to extract their member names (the check for a tag name is
2700 Also, for variables and subroutines, check that this is the place
2701 where the actual definition occurs, rather than just a reference
2706 scan_partial_symbols (thisdie, enddie, objfile)
2709 struct objfile *objfile;
2715 while (thisdie < enddie)
2717 basicdieinfo (&di, thisdie, objfile);
2718 if (di.die_length < SIZEOF_DIE_LENGTH)
2724 nextdie = thisdie + di.die_length;
2725 /* To avoid getting complete die information for every die, we
2726 only do it (below) for the cases we are interested in. */
2729 case TAG_global_subroutine:
2730 case TAG_subroutine:
2731 completedieinfo (&di, objfile);
2732 if (di.at_name && (di.has_at_low_pc || di.at_location))
2734 add_partial_symbol (&di, objfile);
2735 /* If there is a sibling attribute, adjust the nextdie
2736 pointer to skip the entire scope of the subroutine.
2737 Apply some sanity checking to make sure we don't
2738 overrun or underrun the range of remaining DIE's */
2739 if (di.at_sibling != 0)
2741 temp = dbbase + di.at_sibling - dbroff;
2742 if ((temp < thisdie) || (temp >= enddie))
2744 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2754 case TAG_global_variable:
2755 case TAG_local_variable:
2756 completedieinfo (&di, objfile);
2757 if (di.at_name && (di.has_at_low_pc || di.at_location))
2759 add_partial_symbol (&di, objfile);
2763 case TAG_class_type:
2764 case TAG_structure_type:
2765 case TAG_union_type:
2766 completedieinfo (&di, objfile);
2769 add_partial_symbol (&di, objfile);
2772 case TAG_enumeration_type:
2773 completedieinfo (&di, objfile);
2776 add_partial_symbol (&di, objfile);
2778 add_enum_psymbol (&di, objfile);
2790 scan_compilation_units -- build a psymtab entry for each compilation
2794 This is the top level dwarf parsing routine for building partial
2797 It scans from the beginning of the DWARF table looking for the first
2798 TAG_compile_unit DIE, and then follows the sibling chain to locate
2799 each additional TAG_compile_unit DIE.
2801 For each TAG_compile_unit DIE it creates a partial symtab structure,
2802 calls a subordinate routine to collect all the compilation unit's
2803 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2804 new partial symtab structure into the partial symbol table. It also
2805 records the appropriate information in the partial symbol table entry
2806 to allow the chunk of DIE's and line number table for this compilation
2807 unit to be located and re-read later, to generate a complete symbol
2808 table entry for the compilation unit.
2810 Thus it effectively partitions up a chunk of DIE's for multiple
2811 compilation units into smaller DIE chunks and line number tables,
2812 and associates them with a partial symbol table entry.
2816 If any compilation unit has no line number table associated with
2817 it for some reason (a missing at_stmt_list attribute, rather than
2818 just one with a value of zero, which is valid) then we ensure that
2819 the recorded file offset is zero so that the routine which later
2820 reads line number table fragments knows that there is no fragment
2830 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2835 struct objfile *objfile;
2839 struct partial_symtab *pst;
2842 file_ptr curlnoffset;
2844 while (thisdie < enddie)
2846 basicdieinfo (&di, thisdie, objfile);
2847 if (di.die_length < SIZEOF_DIE_LENGTH)
2851 else if (di.die_tag != TAG_compile_unit)
2853 nextdie = thisdie + di.die_length;
2857 completedieinfo (&di, objfile);
2858 set_cu_language (&di);
2859 if (di.at_sibling != 0)
2861 nextdie = dbbase + di.at_sibling - dbroff;
2865 nextdie = thisdie + di.die_length;
2867 curoff = thisdie - dbbase;
2868 culength = nextdie - thisdie;
2869 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2871 /* First allocate a new partial symbol table structure */
2873 pst = start_psymtab_common (objfile, base_section_offsets,
2874 di.at_name, di.at_low_pc,
2875 objfile -> global_psymbols.next,
2876 objfile -> static_psymbols.next);
2878 pst -> texthigh = di.at_high_pc;
2879 pst -> read_symtab_private = (char *)
2880 obstack_alloc (&objfile -> psymbol_obstack,
2881 sizeof (struct dwfinfo));
2882 DBFOFF (pst) = dbfoff;
2883 DBROFF (pst) = curoff;
2884 DBLENGTH (pst) = culength;
2885 LNFOFF (pst) = curlnoffset;
2886 pst -> read_symtab = dwarf_psymtab_to_symtab;
2888 /* Now look for partial symbols */
2890 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2892 pst -> n_global_syms = objfile -> global_psymbols.next -
2893 (objfile -> global_psymbols.list + pst -> globals_offset);
2894 pst -> n_static_syms = objfile -> static_psymbols.next -
2895 (objfile -> static_psymbols.list + pst -> statics_offset);
2896 sort_pst_symbols (pst);
2897 /* If there is already a psymtab or symtab for a file of this name,
2898 remove it. (If there is a symtab, more drastic things also
2899 happen.) This happens in VxWorks. */
2900 free_named_symtabs (pst -> filename);
2910 new_symbol -- make a symbol table entry for a new symbol
2914 static struct symbol *new_symbol (struct dieinfo *dip,
2915 struct objfile *objfile)
2919 Given a pointer to a DWARF information entry, figure out if we need
2920 to make a symbol table entry for it, and if so, create a new entry
2921 and return a pointer to it.
2924 static struct symbol *
2925 new_symbol (dip, objfile)
2926 struct dieinfo *dip;
2927 struct objfile *objfile;
2929 struct symbol *sym = NULL;
2931 if (dip -> at_name != NULL)
2933 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2934 sizeof (struct symbol));
2935 memset (sym, 0, sizeof (struct symbol));
2936 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2937 &objfile->symbol_obstack);
2938 /* default assumptions */
2939 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2940 SYMBOL_CLASS (sym) = LOC_STATIC;
2941 SYMBOL_TYPE (sym) = decode_die_type (dip);
2943 /* If this symbol is from a C++ compilation, then attempt to cache the
2944 demangled form for future reference. This is a typical time versus
2945 space tradeoff, that was decided in favor of time because it sped up
2946 C++ symbol lookups by a factor of about 20. */
2948 SYMBOL_LANGUAGE (sym) = cu_language;
2949 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2950 switch (dip -> die_tag)
2953 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2954 SYMBOL_CLASS (sym) = LOC_LABEL;
2956 case TAG_global_subroutine:
2957 case TAG_subroutine:
2958 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2959 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2960 SYMBOL_CLASS (sym) = LOC_BLOCK;
2961 if (dip -> die_tag == TAG_global_subroutine)
2963 add_symbol_to_list (sym, &global_symbols);
2967 add_symbol_to_list (sym, list_in_scope);
2970 case TAG_global_variable:
2971 if (dip -> at_location != NULL)
2973 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2974 add_symbol_to_list (sym, &global_symbols);
2975 SYMBOL_CLASS (sym) = LOC_STATIC;
2976 SYMBOL_VALUE (sym) += baseaddr;
2979 case TAG_local_variable:
2980 if (dip -> at_location != NULL)
2982 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2983 add_symbol_to_list (sym, list_in_scope);
2986 SYMBOL_CLASS (sym) = LOC_REGISTER;
2990 SYMBOL_CLASS (sym) = LOC_BASEREG;
2991 SYMBOL_BASEREG (sym) = basereg;
2995 SYMBOL_CLASS (sym) = LOC_STATIC;
2996 SYMBOL_VALUE (sym) += baseaddr;
3000 case TAG_formal_parameter:
3001 if (dip -> at_location != NULL)
3003 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3005 add_symbol_to_list (sym, list_in_scope);
3008 SYMBOL_CLASS (sym) = LOC_REGPARM;
3012 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3013 SYMBOL_BASEREG (sym) = basereg;
3017 SYMBOL_CLASS (sym) = LOC_ARG;
3020 case TAG_unspecified_parameters:
3021 /* From varargs functions; gdb doesn't seem to have any interest in
3022 this information, so just ignore it for now. (FIXME?) */
3024 case TAG_class_type:
3025 case TAG_structure_type:
3026 case TAG_union_type:
3027 case TAG_enumeration_type:
3028 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3029 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3030 add_symbol_to_list (sym, list_in_scope);
3033 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3034 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3035 add_symbol_to_list (sym, list_in_scope);
3038 /* Not a tag we recognize. Hopefully we aren't processing trash
3039 data, but since we must specifically ignore things we don't
3040 recognize, there is nothing else we should do at this point. */
3051 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3055 static void synthesize_typedef (struct dieinfo *dip,
3056 struct objfile *objfile,
3061 Given a pointer to a DWARF information entry, synthesize a typedef
3062 for the name in the DIE, using the specified type.
3064 This is used for C++ class, structs, unions, and enumerations to
3065 set up the tag name as a type.
3070 synthesize_typedef (dip, objfile, type)
3071 struct dieinfo *dip;
3072 struct objfile *objfile;
3075 struct symbol *sym = NULL;
3077 if (dip -> at_name != NULL)
3079 sym = (struct symbol *)
3080 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3081 memset (sym, 0, sizeof (struct symbol));
3082 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3083 &objfile->symbol_obstack);
3084 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3085 SYMBOL_TYPE (sym) = type;
3086 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3087 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3088 add_symbol_to_list (sym, list_in_scope);
3096 decode_mod_fund_type -- decode a modified fundamental type
3100 static struct type *decode_mod_fund_type (char *typedata)
3104 Decode a block of data containing a modified fundamental
3105 type specification. TYPEDATA is a pointer to the block,
3106 which starts with a length containing the size of the rest
3107 of the block. At the end of the block is a fundmental type
3108 code value that gives the fundamental type. Everything
3109 in between are type modifiers.
3111 We simply compute the number of modifiers and call the general
3112 function decode_modified_type to do the actual work.
3115 static struct type *
3116 decode_mod_fund_type (typedata)
3119 struct type *typep = NULL;
3120 unsigned short modcount;
3123 /* Get the total size of the block, exclusive of the size itself */
3125 nbytes = attribute_size (AT_mod_fund_type);
3126 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3129 /* Deduct the size of the fundamental type bytes at the end of the block. */
3131 modcount -= attribute_size (AT_fund_type);
3133 /* Now do the actual decoding */
3135 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3143 decode_mod_u_d_type -- decode a modified user defined type
3147 static struct type *decode_mod_u_d_type (char *typedata)
3151 Decode a block of data containing a modified user defined
3152 type specification. TYPEDATA is a pointer to the block,
3153 which consists of a two byte length, containing the size
3154 of the rest of the block. At the end of the block is a
3155 four byte value that gives a reference to a user defined type.
3156 Everything in between are type modifiers.
3158 We simply compute the number of modifiers and call the general
3159 function decode_modified_type to do the actual work.
3162 static struct type *
3163 decode_mod_u_d_type (typedata)
3166 struct type *typep = NULL;
3167 unsigned short modcount;
3170 /* Get the total size of the block, exclusive of the size itself */
3172 nbytes = attribute_size (AT_mod_u_d_type);
3173 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3176 /* Deduct the size of the reference type bytes at the end of the block. */
3178 modcount -= attribute_size (AT_user_def_type);
3180 /* Now do the actual decoding */
3182 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3190 decode_modified_type -- decode modified user or fundamental type
3194 static struct type *decode_modified_type (char *modifiers,
3195 unsigned short modcount, int mtype)
3199 Decode a modified type, either a modified fundamental type or
3200 a modified user defined type. MODIFIERS is a pointer to the
3201 block of bytes that define MODCOUNT modifiers. Immediately
3202 following the last modifier is a short containing the fundamental
3203 type or a long containing the reference to the user defined
3204 type. Which one is determined by MTYPE, which is either
3205 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3206 type we are generating.
3208 We call ourself recursively to generate each modified type,`
3209 until MODCOUNT reaches zero, at which point we have consumed
3210 all the modifiers and generate either the fundamental type or
3211 user defined type. When the recursion unwinds, each modifier
3212 is applied in turn to generate the full modified type.
3216 If we find a modifier that we don't recognize, and it is not one
3217 of those reserved for application specific use, then we issue a
3218 warning and simply ignore the modifier.
3222 We currently ignore MOD_const and MOD_volatile. (FIXME)
3226 static struct type *
3227 decode_modified_type (modifiers, modcount, mtype)
3229 unsigned int modcount;
3232 struct type *typep = NULL;
3233 unsigned short fundtype;
3242 case AT_mod_fund_type:
3243 nbytes = attribute_size (AT_fund_type);
3244 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3246 typep = decode_fund_type (fundtype);
3248 case AT_mod_u_d_type:
3249 nbytes = attribute_size (AT_user_def_type);
3250 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3252 if ((typep = lookup_utype (die_ref)) == NULL)
3254 typep = alloc_utype (die_ref, NULL);
3258 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3259 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3265 modifier = *modifiers++;
3266 typep = decode_modified_type (modifiers, --modcount, mtype);
3269 case MOD_pointer_to:
3270 typep = lookup_pointer_type (typep);
3272 case MOD_reference_to:
3273 typep = lookup_reference_type (typep);
3276 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3279 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3282 if (!(MOD_lo_user <= (unsigned char) modifier
3283 && (unsigned char) modifier <= MOD_hi_user))
3285 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3297 decode_fund_type -- translate basic DWARF type to gdb base type
3301 Given an integer that is one of the fundamental DWARF types,
3302 translate it to one of the basic internal gdb types and return
3303 a pointer to the appropriate gdb type (a "struct type *").
3307 For robustness, if we are asked to translate a fundamental
3308 type that we are unprepared to deal with, we return int so
3309 callers can always depend upon a valid type being returned,
3310 and so gdb may at least do something reasonable by default.
3311 If the type is not in the range of those types defined as
3312 application specific types, we also issue a warning.
3315 static struct type *
3316 decode_fund_type (fundtype)
3317 unsigned int fundtype;
3319 struct type *typep = NULL;
3325 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3328 case FT_boolean: /* Was FT_set in AT&T version */
3329 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3332 case FT_pointer: /* (void *) */
3333 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3334 typep = lookup_pointer_type (typep);
3338 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3341 case FT_signed_char:
3342 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3345 case FT_unsigned_char:
3346 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3350 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3353 case FT_signed_short:
3354 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3357 case FT_unsigned_short:
3358 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3362 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3365 case FT_signed_integer:
3366 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3369 case FT_unsigned_integer:
3370 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3374 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3377 case FT_signed_long:
3378 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3381 case FT_unsigned_long:
3382 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3386 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3389 case FT_signed_long_long:
3390 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3393 case FT_unsigned_long_long:
3394 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3398 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3401 case FT_dbl_prec_float:
3402 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3405 case FT_ext_prec_float:
3406 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3410 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3413 case FT_dbl_prec_complex:
3414 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3417 case FT_ext_prec_complex:
3418 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3425 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3426 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3428 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3439 create_name -- allocate a fresh copy of a string on an obstack
3443 Given a pointer to a string and a pointer to an obstack, allocates
3444 a fresh copy of the string on the specified obstack.
3449 create_name (name, obstackp)
3451 struct obstack *obstackp;
3456 length = strlen (name) + 1;
3457 newname = (char *) obstack_alloc (obstackp, length);
3458 strcpy (newname, name);
3466 basicdieinfo -- extract the minimal die info from raw die data
3470 void basicdieinfo (char *diep, struct dieinfo *dip,
3471 struct objfile *objfile)
3475 Given a pointer to raw DIE data, and a pointer to an instance of a
3476 die info structure, this function extracts the basic information
3477 from the DIE data required to continue processing this DIE, along
3478 with some bookkeeping information about the DIE.
3480 The information we absolutely must have includes the DIE tag,
3481 and the DIE length. If we need the sibling reference, then we
3482 will have to call completedieinfo() to process all the remaining
3485 Note that since there is no guarantee that the data is properly
3486 aligned in memory for the type of access required (indirection
3487 through anything other than a char pointer), and there is no
3488 guarantee that it is in the same byte order as the gdb host,
3489 we call a function which deals with both alignment and byte
3490 swapping issues. Possibly inefficient, but quite portable.
3492 We also take care of some other basic things at this point, such
3493 as ensuring that the instance of the die info structure starts
3494 out completely zero'd and that curdie is initialized for use
3495 in error reporting if we have a problem with the current die.
3499 All DIE's must have at least a valid length, thus the minimum
3500 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3501 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3502 are forced to be TAG_padding DIES.
3504 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3505 that if a padding DIE is used for alignment and the amount needed is
3506 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3507 enough to align to the next alignment boundry.
3509 We do some basic sanity checking here, such as verifying that the
3510 length of the die would not cause it to overrun the recorded end of
3511 the buffer holding the DIE info. If we find a DIE that is either
3512 too small or too large, we force it's length to zero which should
3513 cause the caller to take appropriate action.
3517 basicdieinfo (dip, diep, objfile)
3518 struct dieinfo *dip;
3520 struct objfile *objfile;
3523 memset (dip, 0, sizeof (struct dieinfo));
3525 dip -> die_ref = dbroff + (diep - dbbase);
3526 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3528 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3529 ((diep + dip -> die_length) > (dbbase + dbsize)))
3531 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3532 dip -> die_length = 0;
3534 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3536 dip -> die_tag = TAG_padding;
3540 diep += SIZEOF_DIE_LENGTH;
3541 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3550 completedieinfo -- finish reading the information for a given DIE
3554 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3558 Given a pointer to an already partially initialized die info structure,
3559 scan the raw DIE data and finish filling in the die info structure
3560 from the various attributes found.
3562 Note that since there is no guarantee that the data is properly
3563 aligned in memory for the type of access required (indirection
3564 through anything other than a char pointer), and there is no
3565 guarantee that it is in the same byte order as the gdb host,
3566 we call a function which deals with both alignment and byte
3567 swapping issues. Possibly inefficient, but quite portable.
3571 Each time we are called, we increment the diecount variable, which
3572 keeps an approximate count of the number of dies processed for
3573 each compilation unit. This information is presented to the user
3574 if the info_verbose flag is set.
3579 completedieinfo (dip, objfile)
3580 struct dieinfo *dip;
3581 struct objfile *objfile;
3583 char *diep; /* Current pointer into raw DIE data */
3584 char *end; /* Terminate DIE scan here */
3585 unsigned short attr; /* Current attribute being scanned */
3586 unsigned short form; /* Form of the attribute */
3587 int nbytes; /* Size of next field to read */
3591 end = diep + dip -> die_length;
3592 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3595 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3596 diep += SIZEOF_ATTRIBUTE;
3597 if ((nbytes = attribute_size (attr)) == -1)
3599 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3606 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3610 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3614 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3618 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3622 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3624 dip -> has_at_stmt_list = 1;
3627 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3629 dip -> at_low_pc += baseaddr;
3630 dip -> has_at_low_pc = 1;
3633 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3635 dip -> at_high_pc += baseaddr;
3638 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3641 case AT_user_def_type:
3642 dip -> at_user_def_type = target_to_host (diep, nbytes,
3643 GET_UNSIGNED, objfile);
3646 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3648 dip -> has_at_byte_size = 1;
3651 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3655 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3659 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3663 dip -> at_location = diep;
3665 case AT_mod_fund_type:
3666 dip -> at_mod_fund_type = diep;
3668 case AT_subscr_data:
3669 dip -> at_subscr_data = diep;
3671 case AT_mod_u_d_type:
3672 dip -> at_mod_u_d_type = diep;
3674 case AT_element_list:
3675 dip -> at_element_list = diep;
3676 dip -> short_element_list = 0;
3678 case AT_short_element_list:
3679 dip -> at_element_list = diep;
3680 dip -> short_element_list = 1;
3682 case AT_discr_value:
3683 dip -> at_discr_value = diep;
3685 case AT_string_length:
3686 dip -> at_string_length = diep;
3689 dip -> at_name = diep;
3692 /* For now, ignore any "hostname:" portion, since gdb doesn't
3693 know how to deal with it. (FIXME). */
3694 dip -> at_comp_dir = strrchr (diep, ':');
3695 if (dip -> at_comp_dir != NULL)
3697 dip -> at_comp_dir++;
3701 dip -> at_comp_dir = diep;
3705 dip -> at_producer = diep;
3707 case AT_start_scope:
3708 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3711 case AT_stride_size:
3712 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3716 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3720 dip -> at_prototyped = diep;
3723 /* Found an attribute that we are unprepared to handle. However
3724 it is specifically one of the design goals of DWARF that
3725 consumers should ignore unknown attributes. As long as the
3726 form is one that we recognize (so we know how to skip it),
3727 we can just ignore the unknown attribute. */
3730 form = FORM_FROM_ATTR (attr);
3744 diep += TARGET_FT_POINTER_SIZE (objfile);
3747 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3750 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3753 diep += strlen (diep) + 1;
3756 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3767 target_to_host -- swap in target data to host
3771 target_to_host (char *from, int nbytes, int signextend,
3772 struct objfile *objfile)
3776 Given pointer to data in target format in FROM, a byte count for
3777 the size of the data in NBYTES, a flag indicating whether or not
3778 the data is signed in SIGNEXTEND, and a pointer to the current
3779 objfile in OBJFILE, convert the data to host format and return
3780 the converted value.
3784 FIXME: If we read data that is known to be signed, and expect to
3785 use it as signed data, then we need to explicitly sign extend the
3786 result until the bfd library is able to do this for us.
3790 static unsigned long
3791 target_to_host (from, nbytes, signextend, objfile)
3794 int signextend; /* FIXME: Unused */
3795 struct objfile *objfile;
3797 unsigned long rtnval;
3802 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3805 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3808 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3811 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3814 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3825 attribute_size -- compute size of data for a DWARF attribute
3829 static int attribute_size (unsigned int attr)
3833 Given a DWARF attribute in ATTR, compute the size of the first
3834 piece of data associated with this attribute and return that
3837 Returns -1 for unrecognized attributes.
3842 attribute_size (attr)
3845 int nbytes; /* Size of next data for this attribute */
3846 unsigned short form; /* Form of the attribute */
3848 form = FORM_FROM_ATTR (attr);
3851 case FORM_STRING: /* A variable length field is next */
3854 case FORM_DATA2: /* Next 2 byte field is the data itself */
3855 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3858 case FORM_DATA4: /* Next 4 byte field is the data itself */
3859 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3860 case FORM_REF: /* Next 4 byte field is a DIE offset */
3863 case FORM_DATA8: /* Next 8 byte field is the data itself */
3866 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3867 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3870 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);