1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
30 /* This file handles functionality common to the different MIPS ABI's. */
35 #include "libiberty.h"
37 #include "elfxx-mips.h"
39 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
52 (1) absolute addresses
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
84 /* The input bfd in which the symbol is defined. */
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
91 /* If abfd == NULL, an address that must be stored in the got. */
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
99 struct mips_elf_link_hash_entry *h;
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
118 struct mips_got_page_range
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
129 /* The input bfd in which the symbol is defined. */
131 /* The index of the symbol, as stored in the relocation r_info. */
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
139 /* This structure is used to hold .got information when linking. */
143 /* The global symbol in the GOT with the lowest index in the dynamic
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
148 /* The number of .got slots used for TLS. */
149 unsigned int tls_gotno;
150 /* The first unused TLS .got entry. Used only during
151 mips_elf_initialize_tls_index. */
152 unsigned int tls_assigned_gotno;
153 /* The number of local .got entries, eventually including page entries. */
154 unsigned int local_gotno;
155 /* The maximum number of page entries needed. */
156 unsigned int page_gotno;
157 /* The number of local .got entries we have used. */
158 unsigned int assigned_gotno;
159 /* A hash table holding members of the got. */
160 struct htab *got_entries;
161 /* A hash table of mips_got_page_entry structures. */
162 struct htab *got_page_entries;
163 /* A hash table mapping input bfds to other mips_got_info. NULL
164 unless multi-got was necessary. */
165 struct htab *bfd2got;
166 /* In multi-got links, a pointer to the next got (err, rather, most
167 of the time, it points to the previous got). */
168 struct mips_got_info *next;
169 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
170 for none, or MINUS_TWO for not yet assigned. This is needed
171 because a single-GOT link may have multiple hash table entries
172 for the LDM. It does not get initialized in multi-GOT mode. */
173 bfd_vma tls_ldm_offset;
176 /* Map an input bfd to a got in a multi-got link. */
178 struct mips_elf_bfd2got_hash {
180 struct mips_got_info *g;
183 /* Structure passed when traversing the bfd2got hash table, used to
184 create and merge bfd's gots. */
186 struct mips_elf_got_per_bfd_arg
188 /* A hashtable that maps bfds to gots. */
190 /* The output bfd. */
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
210 unsigned int global_count;
213 /* Another structure used to pass arguments for got entries traversal. */
215 struct mips_elf_set_global_got_offset_arg
217 struct mips_got_info *g;
219 unsigned int needed_relocs;
220 struct bfd_link_info *info;
223 /* A structure used to count TLS relocations or GOT entries, for GOT
224 entry or ELF symbol table traversal. */
226 struct mips_elf_count_tls_arg
228 struct bfd_link_info *info;
232 struct _mips_elf_section_data
234 struct bfd_elf_section_data elf;
237 struct mips_got_info *got_info;
242 #define mips_elf_section_data(sec) \
243 ((struct _mips_elf_section_data *) elf_section_data (sec))
245 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
246 the dynamic symbols. */
248 struct mips_elf_hash_sort_data
250 /* The symbol in the global GOT with the lowest dynamic symbol table
252 struct elf_link_hash_entry *low;
253 /* The least dynamic symbol table index corresponding to a non-TLS
254 symbol with a GOT entry. */
255 long min_got_dynindx;
256 /* The greatest dynamic symbol table index corresponding to a symbol
257 with a GOT entry that is not referenced (e.g., a dynamic symbol
258 with dynamic relocations pointing to it from non-primary GOTs). */
259 long max_unref_got_dynindx;
260 /* The greatest dynamic symbol table index not corresponding to a
261 symbol without a GOT entry. */
262 long max_non_got_dynindx;
265 /* The MIPS ELF linker needs additional information for each symbol in
266 the global hash table. */
268 struct mips_elf_link_hash_entry
270 struct elf_link_hash_entry root;
272 /* External symbol information. */
275 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
277 unsigned int possibly_dynamic_relocs;
279 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
280 a readonly section. */
281 bfd_boolean readonly_reloc;
283 /* We must not create a stub for a symbol that has relocations
284 related to taking the function's address, i.e. any but
285 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
287 bfd_boolean no_fn_stub;
289 /* If there is a stub that 32 bit functions should use to call this
290 16 bit function, this points to the section containing the stub. */
293 /* Whether we need the fn_stub; this is set if this symbol appears
294 in any relocs other than a 16 bit call. */
295 bfd_boolean need_fn_stub;
297 /* If there is a stub that 16 bit functions should use to call this
298 32 bit function, this points to the section containing the stub. */
301 /* This is like the call_stub field, but it is used if the function
302 being called returns a floating point value. */
303 asection *call_fp_stub;
305 /* Are we forced local? This will only be set if we have converted
306 the initial global GOT entry to a local GOT entry. */
307 bfd_boolean forced_local;
309 /* Are we referenced by some kind of relocation? */
310 bfd_boolean is_relocation_target;
312 /* Are we referenced by branch relocations? */
313 bfd_boolean is_branch_target;
317 #define GOT_TLS_LDM 2
319 #define GOT_TLS_OFFSET_DONE 0x40
320 #define GOT_TLS_DONE 0x80
321 unsigned char tls_type;
322 /* This is only used in single-GOT mode; in multi-GOT mode there
323 is one mips_got_entry per GOT entry, so the offset is stored
324 there. In single-GOT mode there may be many mips_got_entry
325 structures all referring to the same GOT slot. It might be
326 possible to use root.got.offset instead, but that field is
327 overloaded already. */
328 bfd_vma tls_got_offset;
331 /* MIPS ELF linker hash table. */
333 struct mips_elf_link_hash_table
335 struct elf_link_hash_table root;
337 /* We no longer use this. */
338 /* String section indices for the dynamic section symbols. */
339 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
341 /* The number of .rtproc entries. */
342 bfd_size_type procedure_count;
343 /* The size of the .compact_rel section (if SGI_COMPAT). */
344 bfd_size_type compact_rel_size;
345 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
346 entry is set to the address of __rld_obj_head as in IRIX5. */
347 bfd_boolean use_rld_obj_head;
348 /* This is the value of the __rld_map or __rld_obj_head symbol. */
350 /* This is set if we see any mips16 stub sections. */
351 bfd_boolean mips16_stubs_seen;
352 /* True if we've computed the size of the GOT. */
353 bfd_boolean computed_got_sizes;
354 /* True if we're generating code for VxWorks. */
355 bfd_boolean is_vxworks;
356 /* True if we already reported the small-data section overflow. */
357 bfd_boolean small_data_overflow_reported;
358 /* Shortcuts to some dynamic sections, or NULL if they are not
366 /* The size of the PLT header in bytes (VxWorks only). */
367 bfd_vma plt_header_size;
368 /* The size of a PLT entry in bytes (VxWorks only). */
369 bfd_vma plt_entry_size;
370 /* The size of a function stub entry in bytes. */
371 bfd_vma function_stub_size;
374 #define TLS_RELOC_P(r_type) \
375 (r_type == R_MIPS_TLS_DTPMOD32 \
376 || r_type == R_MIPS_TLS_DTPMOD64 \
377 || r_type == R_MIPS_TLS_DTPREL32 \
378 || r_type == R_MIPS_TLS_DTPREL64 \
379 || r_type == R_MIPS_TLS_GD \
380 || r_type == R_MIPS_TLS_LDM \
381 || r_type == R_MIPS_TLS_DTPREL_HI16 \
382 || r_type == R_MIPS_TLS_DTPREL_LO16 \
383 || r_type == R_MIPS_TLS_GOTTPREL \
384 || r_type == R_MIPS_TLS_TPREL32 \
385 || r_type == R_MIPS_TLS_TPREL64 \
386 || r_type == R_MIPS_TLS_TPREL_HI16 \
387 || r_type == R_MIPS_TLS_TPREL_LO16)
389 /* Structure used to pass information to mips_elf_output_extsym. */
394 struct bfd_link_info *info;
395 struct ecoff_debug_info *debug;
396 const struct ecoff_debug_swap *swap;
400 /* The names of the runtime procedure table symbols used on IRIX5. */
402 static const char * const mips_elf_dynsym_rtproc_names[] =
405 "_procedure_string_table",
406 "_procedure_table_size",
410 /* These structures are used to generate the .compact_rel section on
415 unsigned long id1; /* Always one? */
416 unsigned long num; /* Number of compact relocation entries. */
417 unsigned long id2; /* Always two? */
418 unsigned long offset; /* The file offset of the first relocation. */
419 unsigned long reserved0; /* Zero? */
420 unsigned long reserved1; /* Zero? */
429 bfd_byte reserved0[4];
430 bfd_byte reserved1[4];
431 } Elf32_External_compact_rel;
435 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
436 unsigned int rtype : 4; /* Relocation types. See below. */
437 unsigned int dist2to : 8;
438 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
439 unsigned long konst; /* KONST field. See below. */
440 unsigned long vaddr; /* VADDR to be relocated. */
445 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
446 unsigned int rtype : 4; /* Relocation types. See below. */
447 unsigned int dist2to : 8;
448 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
449 unsigned long konst; /* KONST field. See below. */
457 } Elf32_External_crinfo;
463 } Elf32_External_crinfo2;
465 /* These are the constants used to swap the bitfields in a crinfo. */
467 #define CRINFO_CTYPE (0x1)
468 #define CRINFO_CTYPE_SH (31)
469 #define CRINFO_RTYPE (0xf)
470 #define CRINFO_RTYPE_SH (27)
471 #define CRINFO_DIST2TO (0xff)
472 #define CRINFO_DIST2TO_SH (19)
473 #define CRINFO_RELVADDR (0x7ffff)
474 #define CRINFO_RELVADDR_SH (0)
476 /* A compact relocation info has long (3 words) or short (2 words)
477 formats. A short format doesn't have VADDR field and relvaddr
478 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
479 #define CRF_MIPS_LONG 1
480 #define CRF_MIPS_SHORT 0
482 /* There are 4 types of compact relocation at least. The value KONST
483 has different meaning for each type:
486 CT_MIPS_REL32 Address in data
487 CT_MIPS_WORD Address in word (XXX)
488 CT_MIPS_GPHI_LO GP - vaddr
489 CT_MIPS_JMPAD Address to jump
492 #define CRT_MIPS_REL32 0xa
493 #define CRT_MIPS_WORD 0xb
494 #define CRT_MIPS_GPHI_LO 0xc
495 #define CRT_MIPS_JMPAD 0xd
497 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
498 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
499 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
500 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
502 /* The structure of the runtime procedure descriptor created by the
503 loader for use by the static exception system. */
505 typedef struct runtime_pdr {
506 bfd_vma adr; /* Memory address of start of procedure. */
507 long regmask; /* Save register mask. */
508 long regoffset; /* Save register offset. */
509 long fregmask; /* Save floating point register mask. */
510 long fregoffset; /* Save floating point register offset. */
511 long frameoffset; /* Frame size. */
512 short framereg; /* Frame pointer register. */
513 short pcreg; /* Offset or reg of return pc. */
514 long irpss; /* Index into the runtime string table. */
516 struct exception_info *exception_info;/* Pointer to exception array. */
518 #define cbRPDR sizeof (RPDR)
519 #define rpdNil ((pRPDR) 0)
521 static struct mips_got_entry *mips_elf_create_local_got_entry
522 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
523 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
524 static bfd_boolean mips_elf_sort_hash_table_f
525 (struct mips_elf_link_hash_entry *, void *);
526 static bfd_vma mips_elf_high
528 static bfd_boolean mips16_stub_section_p
530 static bfd_boolean mips_elf_create_dynamic_relocation
531 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
532 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
533 bfd_vma *, asection *);
534 static hashval_t mips_elf_got_entry_hash
536 static bfd_vma mips_elf_adjust_gp
537 (bfd *, struct mips_got_info *, bfd *);
538 static struct mips_got_info *mips_elf_got_for_ibfd
539 (struct mips_got_info *, bfd *);
541 /* This will be used when we sort the dynamic relocation records. */
542 static bfd *reldyn_sorting_bfd;
544 /* Nonzero if ABFD is using the N32 ABI. */
545 #define ABI_N32_P(abfd) \
546 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
548 /* Nonzero if ABFD is using the N64 ABI. */
549 #define ABI_64_P(abfd) \
550 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
552 /* Nonzero if ABFD is using NewABI conventions. */
553 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
555 /* The IRIX compatibility level we are striving for. */
556 #define IRIX_COMPAT(abfd) \
557 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
559 /* Whether we are trying to be compatible with IRIX at all. */
560 #define SGI_COMPAT(abfd) \
561 (IRIX_COMPAT (abfd) != ict_none)
563 /* The name of the options section. */
564 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
565 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
567 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
568 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
569 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
570 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
572 /* Whether the section is readonly. */
573 #define MIPS_ELF_READONLY_SECTION(sec) \
574 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
575 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
577 /* The name of the stub section. */
578 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
580 /* The size of an external REL relocation. */
581 #define MIPS_ELF_REL_SIZE(abfd) \
582 (get_elf_backend_data (abfd)->s->sizeof_rel)
584 /* The size of an external RELA relocation. */
585 #define MIPS_ELF_RELA_SIZE(abfd) \
586 (get_elf_backend_data (abfd)->s->sizeof_rela)
588 /* The size of an external dynamic table entry. */
589 #define MIPS_ELF_DYN_SIZE(abfd) \
590 (get_elf_backend_data (abfd)->s->sizeof_dyn)
592 /* The size of a GOT entry. */
593 #define MIPS_ELF_GOT_SIZE(abfd) \
594 (get_elf_backend_data (abfd)->s->arch_size / 8)
596 /* The size of a symbol-table entry. */
597 #define MIPS_ELF_SYM_SIZE(abfd) \
598 (get_elf_backend_data (abfd)->s->sizeof_sym)
600 /* The default alignment for sections, as a power of two. */
601 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
602 (get_elf_backend_data (abfd)->s->log_file_align)
604 /* Get word-sized data. */
605 #define MIPS_ELF_GET_WORD(abfd, ptr) \
606 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
608 /* Put out word-sized data. */
609 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
611 ? bfd_put_64 (abfd, val, ptr) \
612 : bfd_put_32 (abfd, val, ptr))
614 /* Add a dynamic symbol table-entry. */
615 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
616 _bfd_elf_add_dynamic_entry (info, tag, val)
618 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
619 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
621 /* Determine whether the internal relocation of index REL_IDX is REL
622 (zero) or RELA (non-zero). The assumption is that, if there are
623 two relocation sections for this section, one of them is REL and
624 the other is RELA. If the index of the relocation we're testing is
625 in range for the first relocation section, check that the external
626 relocation size is that for RELA. It is also assumed that, if
627 rel_idx is not in range for the first section, and this first
628 section contains REL relocs, then the relocation is in the second
629 section, that is RELA. */
630 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
631 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
632 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
633 > (bfd_vma)(rel_idx)) \
634 == (elf_section_data (sec)->rel_hdr.sh_entsize \
635 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
636 : sizeof (Elf32_External_Rela))))
638 /* The name of the dynamic relocation section. */
639 #define MIPS_ELF_REL_DYN_NAME(INFO) \
640 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
642 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
643 from smaller values. Start with zero, widen, *then* decrement. */
644 #define MINUS_ONE (((bfd_vma)0) - 1)
645 #define MINUS_TWO (((bfd_vma)0) - 2)
647 /* The number of local .got entries we reserve. */
648 #define MIPS_RESERVED_GOTNO(INFO) \
649 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
651 /* The value to write into got[1] for SVR4 targets, to identify it is
652 a GNU object. The dynamic linker can then use got[1] to store the
654 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
655 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
657 /* The offset of $gp from the beginning of the .got section. */
658 #define ELF_MIPS_GP_OFFSET(INFO) \
659 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
661 /* The maximum size of the GOT for it to be addressable using 16-bit
663 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
665 /* Instructions which appear in a stub. */
666 #define STUB_LW(abfd) \
668 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
669 : 0x8f998010)) /* lw t9,0x8010(gp) */
670 #define STUB_MOVE(abfd) \
672 ? 0x03e0782d /* daddu t7,ra */ \
673 : 0x03e07821)) /* addu t7,ra */
674 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
675 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
676 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
677 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
678 #define STUB_LI16S(abfd, VAL) \
680 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
681 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
683 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
684 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
686 /* The name of the dynamic interpreter. This is put in the .interp
689 #define ELF_DYNAMIC_INTERPRETER(abfd) \
690 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
691 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
692 : "/usr/lib/libc.so.1")
695 #define MNAME(bfd,pre,pos) \
696 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
697 #define ELF_R_SYM(bfd, i) \
698 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
699 #define ELF_R_TYPE(bfd, i) \
700 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
701 #define ELF_R_INFO(bfd, s, t) \
702 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
704 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
705 #define ELF_R_SYM(bfd, i) \
707 #define ELF_R_TYPE(bfd, i) \
709 #define ELF_R_INFO(bfd, s, t) \
710 (ELF32_R_INFO (s, t))
713 /* The mips16 compiler uses a couple of special sections to handle
714 floating point arguments.
716 Section names that look like .mips16.fn.FNNAME contain stubs that
717 copy floating point arguments from the fp regs to the gp regs and
718 then jump to FNNAME. If any 32 bit function calls FNNAME, the
719 call should be redirected to the stub instead. If no 32 bit
720 function calls FNNAME, the stub should be discarded. We need to
721 consider any reference to the function, not just a call, because
722 if the address of the function is taken we will need the stub,
723 since the address might be passed to a 32 bit function.
725 Section names that look like .mips16.call.FNNAME contain stubs
726 that copy floating point arguments from the gp regs to the fp
727 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
728 then any 16 bit function that calls FNNAME should be redirected
729 to the stub instead. If FNNAME is not a 32 bit function, the
730 stub should be discarded.
732 .mips16.call.fp.FNNAME sections are similar, but contain stubs
733 which call FNNAME and then copy the return value from the fp regs
734 to the gp regs. These stubs store the return value in $18 while
735 calling FNNAME; any function which might call one of these stubs
736 must arrange to save $18 around the call. (This case is not
737 needed for 32 bit functions that call 16 bit functions, because
738 16 bit functions always return floating point values in both
741 Note that in all cases FNNAME might be defined statically.
742 Therefore, FNNAME is not used literally. Instead, the relocation
743 information will indicate which symbol the section is for.
745 We record any stubs that we find in the symbol table. */
747 #define FN_STUB ".mips16.fn."
748 #define CALL_STUB ".mips16.call."
749 #define CALL_FP_STUB ".mips16.call.fp."
751 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
752 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
753 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
755 /* The format of the first PLT entry in a VxWorks executable. */
756 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
757 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
758 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
759 0x8f390008, /* lw t9, 8(t9) */
760 0x00000000, /* nop */
761 0x03200008, /* jr t9 */
765 /* The format of subsequent PLT entries. */
766 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
767 0x10000000, /* b .PLT_resolver */
768 0x24180000, /* li t8, <pltindex> */
769 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
770 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
771 0x8f390000, /* lw t9, 0(t9) */
772 0x00000000, /* nop */
773 0x03200008, /* jr t9 */
777 /* The format of the first PLT entry in a VxWorks shared object. */
778 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
779 0x8f990008, /* lw t9, 8(gp) */
780 0x00000000, /* nop */
781 0x03200008, /* jr t9 */
782 0x00000000, /* nop */
783 0x00000000, /* nop */
787 /* The format of subsequent PLT entries. */
788 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
789 0x10000000, /* b .PLT_resolver */
790 0x24180000 /* li t8, <pltindex> */
793 /* Look up an entry in a MIPS ELF linker hash table. */
795 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
796 ((struct mips_elf_link_hash_entry *) \
797 elf_link_hash_lookup (&(table)->root, (string), (create), \
800 /* Traverse a MIPS ELF linker hash table. */
802 #define mips_elf_link_hash_traverse(table, func, info) \
803 (elf_link_hash_traverse \
805 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
808 /* Get the MIPS ELF linker hash table from a link_info structure. */
810 #define mips_elf_hash_table(p) \
811 ((struct mips_elf_link_hash_table *) ((p)->hash))
813 /* Find the base offsets for thread-local storage in this object,
814 for GD/LD and IE/LE respectively. */
816 #define TP_OFFSET 0x7000
817 #define DTP_OFFSET 0x8000
820 dtprel_base (struct bfd_link_info *info)
822 /* If tls_sec is NULL, we should have signalled an error already. */
823 if (elf_hash_table (info)->tls_sec == NULL)
825 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
829 tprel_base (struct bfd_link_info *info)
831 /* If tls_sec is NULL, we should have signalled an error already. */
832 if (elf_hash_table (info)->tls_sec == NULL)
834 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
837 /* Create an entry in a MIPS ELF linker hash table. */
839 static struct bfd_hash_entry *
840 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
841 struct bfd_hash_table *table, const char *string)
843 struct mips_elf_link_hash_entry *ret =
844 (struct mips_elf_link_hash_entry *) entry;
846 /* Allocate the structure if it has not already been allocated by a
849 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
851 return (struct bfd_hash_entry *) ret;
853 /* Call the allocation method of the superclass. */
854 ret = ((struct mips_elf_link_hash_entry *)
855 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
859 /* Set local fields. */
860 memset (&ret->esym, 0, sizeof (EXTR));
861 /* We use -2 as a marker to indicate that the information has
862 not been set. -1 means there is no associated ifd. */
864 ret->possibly_dynamic_relocs = 0;
865 ret->readonly_reloc = FALSE;
866 ret->no_fn_stub = FALSE;
868 ret->need_fn_stub = FALSE;
869 ret->call_stub = NULL;
870 ret->call_fp_stub = NULL;
871 ret->forced_local = FALSE;
872 ret->is_branch_target = FALSE;
873 ret->is_relocation_target = FALSE;
874 ret->tls_type = GOT_NORMAL;
877 return (struct bfd_hash_entry *) ret;
881 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
883 if (!sec->used_by_bfd)
885 struct _mips_elf_section_data *sdata;
886 bfd_size_type amt = sizeof (*sdata);
888 sdata = bfd_zalloc (abfd, amt);
891 sec->used_by_bfd = sdata;
894 return _bfd_elf_new_section_hook (abfd, sec);
897 /* Read ECOFF debugging information from a .mdebug section into a
898 ecoff_debug_info structure. */
901 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
902 struct ecoff_debug_info *debug)
905 const struct ecoff_debug_swap *swap;
908 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
909 memset (debug, 0, sizeof (*debug));
911 ext_hdr = bfd_malloc (swap->external_hdr_size);
912 if (ext_hdr == NULL && swap->external_hdr_size != 0)
915 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
916 swap->external_hdr_size))
919 symhdr = &debug->symbolic_header;
920 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
922 /* The symbolic header contains absolute file offsets and sizes to
924 #define READ(ptr, offset, count, size, type) \
925 if (symhdr->count == 0) \
929 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
930 debug->ptr = bfd_malloc (amt); \
931 if (debug->ptr == NULL) \
933 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
934 || bfd_bread (debug->ptr, amt, abfd) != amt) \
938 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
939 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
940 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
941 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
942 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
943 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
945 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
946 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
947 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
948 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
949 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
959 if (debug->line != NULL)
961 if (debug->external_dnr != NULL)
962 free (debug->external_dnr);
963 if (debug->external_pdr != NULL)
964 free (debug->external_pdr);
965 if (debug->external_sym != NULL)
966 free (debug->external_sym);
967 if (debug->external_opt != NULL)
968 free (debug->external_opt);
969 if (debug->external_aux != NULL)
970 free (debug->external_aux);
971 if (debug->ss != NULL)
973 if (debug->ssext != NULL)
975 if (debug->external_fdr != NULL)
976 free (debug->external_fdr);
977 if (debug->external_rfd != NULL)
978 free (debug->external_rfd);
979 if (debug->external_ext != NULL)
980 free (debug->external_ext);
984 /* Swap RPDR (runtime procedure table entry) for output. */
987 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
989 H_PUT_S32 (abfd, in->adr, ex->p_adr);
990 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
991 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
992 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
993 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
994 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
996 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
997 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
999 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1002 /* Create a runtime procedure table from the .mdebug section. */
1005 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1006 struct bfd_link_info *info, asection *s,
1007 struct ecoff_debug_info *debug)
1009 const struct ecoff_debug_swap *swap;
1010 HDRR *hdr = &debug->symbolic_header;
1012 struct rpdr_ext *erp;
1014 struct pdr_ext *epdr;
1015 struct sym_ext *esym;
1019 bfd_size_type count;
1020 unsigned long sindex;
1024 const char *no_name_func = _("static procedure (no name)");
1032 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1034 sindex = strlen (no_name_func) + 1;
1035 count = hdr->ipdMax;
1038 size = swap->external_pdr_size;
1040 epdr = bfd_malloc (size * count);
1044 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1047 size = sizeof (RPDR);
1048 rp = rpdr = bfd_malloc (size * count);
1052 size = sizeof (char *);
1053 sv = bfd_malloc (size * count);
1057 count = hdr->isymMax;
1058 size = swap->external_sym_size;
1059 esym = bfd_malloc (size * count);
1063 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1066 count = hdr->issMax;
1067 ss = bfd_malloc (count);
1070 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1073 count = hdr->ipdMax;
1074 for (i = 0; i < (unsigned long) count; i++, rp++)
1076 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1077 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1078 rp->adr = sym.value;
1079 rp->regmask = pdr.regmask;
1080 rp->regoffset = pdr.regoffset;
1081 rp->fregmask = pdr.fregmask;
1082 rp->fregoffset = pdr.fregoffset;
1083 rp->frameoffset = pdr.frameoffset;
1084 rp->framereg = pdr.framereg;
1085 rp->pcreg = pdr.pcreg;
1087 sv[i] = ss + sym.iss;
1088 sindex += strlen (sv[i]) + 1;
1092 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1093 size = BFD_ALIGN (size, 16);
1094 rtproc = bfd_alloc (abfd, size);
1097 mips_elf_hash_table (info)->procedure_count = 0;
1101 mips_elf_hash_table (info)->procedure_count = count + 2;
1104 memset (erp, 0, sizeof (struct rpdr_ext));
1106 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1107 strcpy (str, no_name_func);
1108 str += strlen (no_name_func) + 1;
1109 for (i = 0; i < count; i++)
1111 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1112 strcpy (str, sv[i]);
1113 str += strlen (sv[i]) + 1;
1115 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1117 /* Set the size and contents of .rtproc section. */
1119 s->contents = rtproc;
1121 /* Skip this section later on (I don't think this currently
1122 matters, but someday it might). */
1123 s->map_head.link_order = NULL;
1152 /* Check the mips16 stubs for a particular symbol, and see if we can
1156 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1157 void *data ATTRIBUTE_UNUSED)
1159 if (h->root.root.type == bfd_link_hash_warning)
1160 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1162 if (h->fn_stub != NULL
1163 && ! h->need_fn_stub)
1165 /* We don't need the fn_stub; the only references to this symbol
1166 are 16 bit calls. Clobber the size to 0 to prevent it from
1167 being included in the link. */
1168 h->fn_stub->size = 0;
1169 h->fn_stub->flags &= ~SEC_RELOC;
1170 h->fn_stub->reloc_count = 0;
1171 h->fn_stub->flags |= SEC_EXCLUDE;
1174 if (h->call_stub != NULL
1175 && h->root.other == STO_MIPS16)
1177 /* We don't need the call_stub; this is a 16 bit function, so
1178 calls from other 16 bit functions are OK. Clobber the size
1179 to 0 to prevent it from being included in the link. */
1180 h->call_stub->size = 0;
1181 h->call_stub->flags &= ~SEC_RELOC;
1182 h->call_stub->reloc_count = 0;
1183 h->call_stub->flags |= SEC_EXCLUDE;
1186 if (h->call_fp_stub != NULL
1187 && h->root.other == STO_MIPS16)
1189 /* We don't need the call_stub; this is a 16 bit function, so
1190 calls from other 16 bit functions are OK. Clobber the size
1191 to 0 to prevent it from being included in the link. */
1192 h->call_fp_stub->size = 0;
1193 h->call_fp_stub->flags &= ~SEC_RELOC;
1194 h->call_fp_stub->reloc_count = 0;
1195 h->call_fp_stub->flags |= SEC_EXCLUDE;
1201 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1202 Most mips16 instructions are 16 bits, but these instructions
1205 The format of these instructions is:
1207 +--------------+--------------------------------+
1208 | JALX | X| Imm 20:16 | Imm 25:21 |
1209 +--------------+--------------------------------+
1211 +-----------------------------------------------+
1213 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1214 Note that the immediate value in the first word is swapped.
1216 When producing a relocatable object file, R_MIPS16_26 is
1217 handled mostly like R_MIPS_26. In particular, the addend is
1218 stored as a straight 26-bit value in a 32-bit instruction.
1219 (gas makes life simpler for itself by never adjusting a
1220 R_MIPS16_26 reloc to be against a section, so the addend is
1221 always zero). However, the 32 bit instruction is stored as 2
1222 16-bit values, rather than a single 32-bit value. In a
1223 big-endian file, the result is the same; in a little-endian
1224 file, the two 16-bit halves of the 32 bit value are swapped.
1225 This is so that a disassembler can recognize the jal
1228 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1229 instruction stored as two 16-bit values. The addend A is the
1230 contents of the targ26 field. The calculation is the same as
1231 R_MIPS_26. When storing the calculated value, reorder the
1232 immediate value as shown above, and don't forget to store the
1233 value as two 16-bit values.
1235 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1239 +--------+----------------------+
1243 +--------+----------------------+
1246 +----------+------+-------------+
1250 +----------+--------------------+
1251 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1252 ((sub1 << 16) | sub2)).
1254 When producing a relocatable object file, the calculation is
1255 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1256 When producing a fully linked file, the calculation is
1257 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1258 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1260 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1261 mode. A typical instruction will have a format like this:
1263 +--------------+--------------------------------+
1264 | EXTEND | Imm 10:5 | Imm 15:11 |
1265 +--------------+--------------------------------+
1266 | Major | rx | ry | Imm 4:0 |
1267 +--------------+--------------------------------+
1269 EXTEND is the five bit value 11110. Major is the instruction
1272 This is handled exactly like R_MIPS_GPREL16, except that the
1273 addend is retrieved and stored as shown in this diagram; that
1274 is, the Imm fields above replace the V-rel16 field.
1276 All we need to do here is shuffle the bits appropriately. As
1277 above, the two 16-bit halves must be swapped on a
1278 little-endian system.
1280 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1281 access data when neither GP-relative nor PC-relative addressing
1282 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1283 except that the addend is retrieved and stored as shown above
1287 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1288 bfd_boolean jal_shuffle, bfd_byte *data)
1290 bfd_vma extend, insn, val;
1292 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1293 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1296 /* Pick up the mips16 extend instruction and the real instruction. */
1297 extend = bfd_get_16 (abfd, data);
1298 insn = bfd_get_16 (abfd, data + 2);
1299 if (r_type == R_MIPS16_26)
1302 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1303 | ((extend & 0x1f) << 21) | insn;
1305 val = extend << 16 | insn;
1308 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1309 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1310 bfd_put_32 (abfd, val, data);
1314 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1315 bfd_boolean jal_shuffle, bfd_byte *data)
1317 bfd_vma extend, insn, val;
1319 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1320 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1323 val = bfd_get_32 (abfd, data);
1324 if (r_type == R_MIPS16_26)
1328 insn = val & 0xffff;
1329 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1330 | ((val >> 21) & 0x1f);
1334 insn = val & 0xffff;
1340 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1341 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1343 bfd_put_16 (abfd, insn, data + 2);
1344 bfd_put_16 (abfd, extend, data);
1347 bfd_reloc_status_type
1348 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1349 arelent *reloc_entry, asection *input_section,
1350 bfd_boolean relocatable, void *data, bfd_vma gp)
1354 bfd_reloc_status_type status;
1356 if (bfd_is_com_section (symbol->section))
1359 relocation = symbol->value;
1361 relocation += symbol->section->output_section->vma;
1362 relocation += symbol->section->output_offset;
1364 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1365 return bfd_reloc_outofrange;
1367 /* Set val to the offset into the section or symbol. */
1368 val = reloc_entry->addend;
1370 _bfd_mips_elf_sign_extend (val, 16);
1372 /* Adjust val for the final section location and GP value. If we
1373 are producing relocatable output, we don't want to do this for
1374 an external symbol. */
1376 || (symbol->flags & BSF_SECTION_SYM) != 0)
1377 val += relocation - gp;
1379 if (reloc_entry->howto->partial_inplace)
1381 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1383 + reloc_entry->address);
1384 if (status != bfd_reloc_ok)
1388 reloc_entry->addend = val;
1391 reloc_entry->address += input_section->output_offset;
1393 return bfd_reloc_ok;
1396 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1397 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1398 that contains the relocation field and DATA points to the start of
1403 struct mips_hi16 *next;
1405 asection *input_section;
1409 /* FIXME: This should not be a static variable. */
1411 static struct mips_hi16 *mips_hi16_list;
1413 /* A howto special_function for REL *HI16 relocations. We can only
1414 calculate the correct value once we've seen the partnering
1415 *LO16 relocation, so just save the information for later.
1417 The ABI requires that the *LO16 immediately follow the *HI16.
1418 However, as a GNU extension, we permit an arbitrary number of
1419 *HI16s to be associated with a single *LO16. This significantly
1420 simplies the relocation handling in gcc. */
1422 bfd_reloc_status_type
1423 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1424 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1425 asection *input_section, bfd *output_bfd,
1426 char **error_message ATTRIBUTE_UNUSED)
1428 struct mips_hi16 *n;
1430 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1431 return bfd_reloc_outofrange;
1433 n = bfd_malloc (sizeof *n);
1435 return bfd_reloc_outofrange;
1437 n->next = mips_hi16_list;
1439 n->input_section = input_section;
1440 n->rel = *reloc_entry;
1443 if (output_bfd != NULL)
1444 reloc_entry->address += input_section->output_offset;
1446 return bfd_reloc_ok;
1449 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1450 like any other 16-bit relocation when applied to global symbols, but is
1451 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1453 bfd_reloc_status_type
1454 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1455 void *data, asection *input_section,
1456 bfd *output_bfd, char **error_message)
1458 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1459 || bfd_is_und_section (bfd_get_section (symbol))
1460 || bfd_is_com_section (bfd_get_section (symbol)))
1461 /* The relocation is against a global symbol. */
1462 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1463 input_section, output_bfd,
1466 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1467 input_section, output_bfd, error_message);
1470 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1471 is a straightforward 16 bit inplace relocation, but we must deal with
1472 any partnering high-part relocations as well. */
1474 bfd_reloc_status_type
1475 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1476 void *data, asection *input_section,
1477 bfd *output_bfd, char **error_message)
1480 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1482 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1483 return bfd_reloc_outofrange;
1485 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1487 vallo = bfd_get_32 (abfd, location);
1488 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1491 while (mips_hi16_list != NULL)
1493 bfd_reloc_status_type ret;
1494 struct mips_hi16 *hi;
1496 hi = mips_hi16_list;
1498 /* R_MIPS_GOT16 relocations are something of a special case. We
1499 want to install the addend in the same way as for a R_MIPS_HI16
1500 relocation (with a rightshift of 16). However, since GOT16
1501 relocations can also be used with global symbols, their howto
1502 has a rightshift of 0. */
1503 if (hi->rel.howto->type == R_MIPS_GOT16)
1504 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1506 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1507 carry or borrow will induce a change of +1 or -1 in the high part. */
1508 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1510 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1511 hi->input_section, output_bfd,
1513 if (ret != bfd_reloc_ok)
1516 mips_hi16_list = hi->next;
1520 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1521 input_section, output_bfd,
1525 /* A generic howto special_function. This calculates and installs the
1526 relocation itself, thus avoiding the oft-discussed problems in
1527 bfd_perform_relocation and bfd_install_relocation. */
1529 bfd_reloc_status_type
1530 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1531 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1532 asection *input_section, bfd *output_bfd,
1533 char **error_message ATTRIBUTE_UNUSED)
1536 bfd_reloc_status_type status;
1537 bfd_boolean relocatable;
1539 relocatable = (output_bfd != NULL);
1541 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1542 return bfd_reloc_outofrange;
1544 /* Build up the field adjustment in VAL. */
1546 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1548 /* Either we're calculating the final field value or we have a
1549 relocation against a section symbol. Add in the section's
1550 offset or address. */
1551 val += symbol->section->output_section->vma;
1552 val += symbol->section->output_offset;
1557 /* We're calculating the final field value. Add in the symbol's value
1558 and, if pc-relative, subtract the address of the field itself. */
1559 val += symbol->value;
1560 if (reloc_entry->howto->pc_relative)
1562 val -= input_section->output_section->vma;
1563 val -= input_section->output_offset;
1564 val -= reloc_entry->address;
1568 /* VAL is now the final adjustment. If we're keeping this relocation
1569 in the output file, and if the relocation uses a separate addend,
1570 we just need to add VAL to that addend. Otherwise we need to add
1571 VAL to the relocation field itself. */
1572 if (relocatable && !reloc_entry->howto->partial_inplace)
1573 reloc_entry->addend += val;
1576 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1578 /* Add in the separate addend, if any. */
1579 val += reloc_entry->addend;
1581 /* Add VAL to the relocation field. */
1582 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1584 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1586 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1589 if (status != bfd_reloc_ok)
1594 reloc_entry->address += input_section->output_offset;
1596 return bfd_reloc_ok;
1599 /* Swap an entry in a .gptab section. Note that these routines rely
1600 on the equivalence of the two elements of the union. */
1603 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1606 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1607 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1611 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1612 Elf32_External_gptab *ex)
1614 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1615 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1619 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1620 Elf32_External_compact_rel *ex)
1622 H_PUT_32 (abfd, in->id1, ex->id1);
1623 H_PUT_32 (abfd, in->num, ex->num);
1624 H_PUT_32 (abfd, in->id2, ex->id2);
1625 H_PUT_32 (abfd, in->offset, ex->offset);
1626 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1627 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1631 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1632 Elf32_External_crinfo *ex)
1636 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1637 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1638 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1639 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1640 H_PUT_32 (abfd, l, ex->info);
1641 H_PUT_32 (abfd, in->konst, ex->konst);
1642 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1645 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1646 routines swap this structure in and out. They are used outside of
1647 BFD, so they are globally visible. */
1650 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1653 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1654 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1655 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1656 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1657 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1658 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1662 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1663 Elf32_External_RegInfo *ex)
1665 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1666 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1667 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1668 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1669 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1670 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1673 /* In the 64 bit ABI, the .MIPS.options section holds register
1674 information in an Elf64_Reginfo structure. These routines swap
1675 them in and out. They are globally visible because they are used
1676 outside of BFD. These routines are here so that gas can call them
1677 without worrying about whether the 64 bit ABI has been included. */
1680 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1681 Elf64_Internal_RegInfo *in)
1683 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1684 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1685 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1686 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1687 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1688 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1689 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1693 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1694 Elf64_External_RegInfo *ex)
1696 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1697 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1698 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1699 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1700 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1701 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1702 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1705 /* Swap in an options header. */
1708 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1709 Elf_Internal_Options *in)
1711 in->kind = H_GET_8 (abfd, ex->kind);
1712 in->size = H_GET_8 (abfd, ex->size);
1713 in->section = H_GET_16 (abfd, ex->section);
1714 in->info = H_GET_32 (abfd, ex->info);
1717 /* Swap out an options header. */
1720 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1721 Elf_External_Options *ex)
1723 H_PUT_8 (abfd, in->kind, ex->kind);
1724 H_PUT_8 (abfd, in->size, ex->size);
1725 H_PUT_16 (abfd, in->section, ex->section);
1726 H_PUT_32 (abfd, in->info, ex->info);
1729 /* This function is called via qsort() to sort the dynamic relocation
1730 entries by increasing r_symndx value. */
1733 sort_dynamic_relocs (const void *arg1, const void *arg2)
1735 Elf_Internal_Rela int_reloc1;
1736 Elf_Internal_Rela int_reloc2;
1739 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1740 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1742 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1746 if (int_reloc1.r_offset < int_reloc2.r_offset)
1748 if (int_reloc1.r_offset > int_reloc2.r_offset)
1753 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1756 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1757 const void *arg2 ATTRIBUTE_UNUSED)
1760 Elf_Internal_Rela int_reloc1[3];
1761 Elf_Internal_Rela int_reloc2[3];
1763 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1764 (reldyn_sorting_bfd, arg1, int_reloc1);
1765 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1766 (reldyn_sorting_bfd, arg2, int_reloc2);
1768 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1770 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1773 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1775 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1784 /* This routine is used to write out ECOFF debugging external symbol
1785 information. It is called via mips_elf_link_hash_traverse. The
1786 ECOFF external symbol information must match the ELF external
1787 symbol information. Unfortunately, at this point we don't know
1788 whether a symbol is required by reloc information, so the two
1789 tables may wind up being different. We must sort out the external
1790 symbol information before we can set the final size of the .mdebug
1791 section, and we must set the size of the .mdebug section before we
1792 can relocate any sections, and we can't know which symbols are
1793 required by relocation until we relocate the sections.
1794 Fortunately, it is relatively unlikely that any symbol will be
1795 stripped but required by a reloc. In particular, it can not happen
1796 when generating a final executable. */
1799 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1801 struct extsym_info *einfo = data;
1803 asection *sec, *output_section;
1805 if (h->root.root.type == bfd_link_hash_warning)
1806 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1808 if (h->root.indx == -2)
1810 else if ((h->root.def_dynamic
1811 || h->root.ref_dynamic
1812 || h->root.type == bfd_link_hash_new)
1813 && !h->root.def_regular
1814 && !h->root.ref_regular)
1816 else if (einfo->info->strip == strip_all
1817 || (einfo->info->strip == strip_some
1818 && bfd_hash_lookup (einfo->info->keep_hash,
1819 h->root.root.root.string,
1820 FALSE, FALSE) == NULL))
1828 if (h->esym.ifd == -2)
1831 h->esym.cobol_main = 0;
1832 h->esym.weakext = 0;
1833 h->esym.reserved = 0;
1834 h->esym.ifd = ifdNil;
1835 h->esym.asym.value = 0;
1836 h->esym.asym.st = stGlobal;
1838 if (h->root.root.type == bfd_link_hash_undefined
1839 || h->root.root.type == bfd_link_hash_undefweak)
1843 /* Use undefined class. Also, set class and type for some
1845 name = h->root.root.root.string;
1846 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1847 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1849 h->esym.asym.sc = scData;
1850 h->esym.asym.st = stLabel;
1851 h->esym.asym.value = 0;
1853 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1855 h->esym.asym.sc = scAbs;
1856 h->esym.asym.st = stLabel;
1857 h->esym.asym.value =
1858 mips_elf_hash_table (einfo->info)->procedure_count;
1860 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1862 h->esym.asym.sc = scAbs;
1863 h->esym.asym.st = stLabel;
1864 h->esym.asym.value = elf_gp (einfo->abfd);
1867 h->esym.asym.sc = scUndefined;
1869 else if (h->root.root.type != bfd_link_hash_defined
1870 && h->root.root.type != bfd_link_hash_defweak)
1871 h->esym.asym.sc = scAbs;
1876 sec = h->root.root.u.def.section;
1877 output_section = sec->output_section;
1879 /* When making a shared library and symbol h is the one from
1880 the another shared library, OUTPUT_SECTION may be null. */
1881 if (output_section == NULL)
1882 h->esym.asym.sc = scUndefined;
1885 name = bfd_section_name (output_section->owner, output_section);
1887 if (strcmp (name, ".text") == 0)
1888 h->esym.asym.sc = scText;
1889 else if (strcmp (name, ".data") == 0)
1890 h->esym.asym.sc = scData;
1891 else if (strcmp (name, ".sdata") == 0)
1892 h->esym.asym.sc = scSData;
1893 else if (strcmp (name, ".rodata") == 0
1894 || strcmp (name, ".rdata") == 0)
1895 h->esym.asym.sc = scRData;
1896 else if (strcmp (name, ".bss") == 0)
1897 h->esym.asym.sc = scBss;
1898 else if (strcmp (name, ".sbss") == 0)
1899 h->esym.asym.sc = scSBss;
1900 else if (strcmp (name, ".init") == 0)
1901 h->esym.asym.sc = scInit;
1902 else if (strcmp (name, ".fini") == 0)
1903 h->esym.asym.sc = scFini;
1905 h->esym.asym.sc = scAbs;
1909 h->esym.asym.reserved = 0;
1910 h->esym.asym.index = indexNil;
1913 if (h->root.root.type == bfd_link_hash_common)
1914 h->esym.asym.value = h->root.root.u.c.size;
1915 else if (h->root.root.type == bfd_link_hash_defined
1916 || h->root.root.type == bfd_link_hash_defweak)
1918 if (h->esym.asym.sc == scCommon)
1919 h->esym.asym.sc = scBss;
1920 else if (h->esym.asym.sc == scSCommon)
1921 h->esym.asym.sc = scSBss;
1923 sec = h->root.root.u.def.section;
1924 output_section = sec->output_section;
1925 if (output_section != NULL)
1926 h->esym.asym.value = (h->root.root.u.def.value
1927 + sec->output_offset
1928 + output_section->vma);
1930 h->esym.asym.value = 0;
1932 else if (h->root.needs_plt)
1934 struct mips_elf_link_hash_entry *hd = h;
1935 bfd_boolean no_fn_stub = h->no_fn_stub;
1937 while (hd->root.root.type == bfd_link_hash_indirect)
1939 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1940 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1945 /* Set type and value for a symbol with a function stub. */
1946 h->esym.asym.st = stProc;
1947 sec = hd->root.root.u.def.section;
1949 h->esym.asym.value = 0;
1952 output_section = sec->output_section;
1953 if (output_section != NULL)
1954 h->esym.asym.value = (hd->root.plt.offset
1955 + sec->output_offset
1956 + output_section->vma);
1958 h->esym.asym.value = 0;
1963 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1964 h->root.root.root.string,
1967 einfo->failed = TRUE;
1974 /* A comparison routine used to sort .gptab entries. */
1977 gptab_compare (const void *p1, const void *p2)
1979 const Elf32_gptab *a1 = p1;
1980 const Elf32_gptab *a2 = p2;
1982 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1985 /* Functions to manage the got entry hash table. */
1987 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1990 static INLINE hashval_t
1991 mips_elf_hash_bfd_vma (bfd_vma addr)
1994 return addr + (addr >> 32);
2000 /* got_entries only match if they're identical, except for gotidx, so
2001 use all fields to compute the hash, and compare the appropriate
2005 mips_elf_got_entry_hash (const void *entry_)
2007 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2009 return entry->symndx
2010 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2011 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2013 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2014 : entry->d.h->root.root.root.hash));
2018 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2020 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2021 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2023 /* An LDM entry can only match another LDM entry. */
2024 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2027 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2028 && (! e1->abfd ? e1->d.address == e2->d.address
2029 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2030 : e1->d.h == e2->d.h);
2033 /* multi_got_entries are still a match in the case of global objects,
2034 even if the input bfd in which they're referenced differs, so the
2035 hash computation and compare functions are adjusted
2039 mips_elf_multi_got_entry_hash (const void *entry_)
2041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2043 return entry->symndx
2045 ? mips_elf_hash_bfd_vma (entry->d.address)
2046 : entry->symndx >= 0
2047 ? ((entry->tls_type & GOT_TLS_LDM)
2048 ? (GOT_TLS_LDM << 17)
2050 + mips_elf_hash_bfd_vma (entry->d.addend)))
2051 : entry->d.h->root.root.root.hash);
2055 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2057 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2058 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2060 /* Any two LDM entries match. */
2061 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2064 /* Nothing else matches an LDM entry. */
2065 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2068 return e1->symndx == e2->symndx
2069 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2070 : e1->abfd == NULL || e2->abfd == NULL
2071 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2072 : e1->d.h == e2->d.h);
2076 mips_got_page_entry_hash (const void *entry_)
2078 const struct mips_got_page_entry *entry;
2080 entry = (const struct mips_got_page_entry *) entry_;
2081 return entry->abfd->id + entry->symndx;
2085 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2087 const struct mips_got_page_entry *entry1, *entry2;
2089 entry1 = (const struct mips_got_page_entry *) entry1_;
2090 entry2 = (const struct mips_got_page_entry *) entry2_;
2091 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2094 /* Return the dynamic relocation section. If it doesn't exist, try to
2095 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2096 if creation fails. */
2099 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2105 dname = MIPS_ELF_REL_DYN_NAME (info);
2106 dynobj = elf_hash_table (info)->dynobj;
2107 sreloc = bfd_get_section_by_name (dynobj, dname);
2108 if (sreloc == NULL && create_p)
2110 sreloc = bfd_make_section_with_flags (dynobj, dname,
2115 | SEC_LINKER_CREATED
2118 || ! bfd_set_section_alignment (dynobj, sreloc,
2119 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2125 /* Returns the GOT section for ABFD. */
2128 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2130 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2132 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2137 /* Returns the GOT information associated with the link indicated by
2138 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2141 static struct mips_got_info *
2142 mips_elf_got_info (bfd *abfd, asection **sgotp)
2145 struct mips_got_info *g;
2147 sgot = mips_elf_got_section (abfd, TRUE);
2148 BFD_ASSERT (sgot != NULL);
2149 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2150 g = mips_elf_section_data (sgot)->u.got_info;
2151 BFD_ASSERT (g != NULL);
2154 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2159 /* Count the number of relocations needed for a TLS GOT entry, with
2160 access types from TLS_TYPE, and symbol H (or a local symbol if H
2164 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2165 struct elf_link_hash_entry *h)
2169 bfd_boolean need_relocs = FALSE;
2170 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2172 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2173 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2176 if ((info->shared || indx != 0)
2178 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2179 || h->root.type != bfd_link_hash_undefweak))
2185 if (tls_type & GOT_TLS_GD)
2192 if (tls_type & GOT_TLS_IE)
2195 if ((tls_type & GOT_TLS_LDM) && info->shared)
2201 /* Count the number of TLS relocations required for the GOT entry in
2202 ARG1, if it describes a local symbol. */
2205 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2207 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2208 struct mips_elf_count_tls_arg *arg = arg2;
2210 if (entry->abfd != NULL && entry->symndx != -1)
2211 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2216 /* Count the number of TLS GOT entries required for the global (or
2217 forced-local) symbol in ARG1. */
2220 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2222 struct mips_elf_link_hash_entry *hm
2223 = (struct mips_elf_link_hash_entry *) arg1;
2224 struct mips_elf_count_tls_arg *arg = arg2;
2226 if (hm->tls_type & GOT_TLS_GD)
2228 if (hm->tls_type & GOT_TLS_IE)
2234 /* Count the number of TLS relocations required for the global (or
2235 forced-local) symbol in ARG1. */
2238 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2240 struct mips_elf_link_hash_entry *hm
2241 = (struct mips_elf_link_hash_entry *) arg1;
2242 struct mips_elf_count_tls_arg *arg = arg2;
2244 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2249 /* Output a simple dynamic relocation into SRELOC. */
2252 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2258 Elf_Internal_Rela rel[3];
2260 memset (rel, 0, sizeof (rel));
2262 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2263 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2265 if (ABI_64_P (output_bfd))
2267 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2268 (output_bfd, &rel[0],
2270 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2273 bfd_elf32_swap_reloc_out
2274 (output_bfd, &rel[0],
2276 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2277 ++sreloc->reloc_count;
2280 /* Initialize a set of TLS GOT entries for one symbol. */
2283 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2284 unsigned char *tls_type_p,
2285 struct bfd_link_info *info,
2286 struct mips_elf_link_hash_entry *h,
2290 asection *sreloc, *sgot;
2291 bfd_vma offset, offset2;
2293 bfd_boolean need_relocs = FALSE;
2295 dynobj = elf_hash_table (info)->dynobj;
2296 sgot = mips_elf_got_section (dynobj, FALSE);
2301 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2303 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2304 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2305 indx = h->root.dynindx;
2308 if (*tls_type_p & GOT_TLS_DONE)
2311 if ((info->shared || indx != 0)
2313 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2314 || h->root.type != bfd_link_hash_undefweak))
2317 /* MINUS_ONE means the symbol is not defined in this object. It may not
2318 be defined at all; assume that the value doesn't matter in that
2319 case. Otherwise complain if we would use the value. */
2320 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2321 || h->root.root.type == bfd_link_hash_undefweak);
2323 /* Emit necessary relocations. */
2324 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2326 /* General Dynamic. */
2327 if (*tls_type_p & GOT_TLS_GD)
2329 offset = got_offset;
2330 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2334 mips_elf_output_dynamic_relocation
2335 (abfd, sreloc, indx,
2336 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2337 sgot->output_offset + sgot->output_section->vma + offset);
2340 mips_elf_output_dynamic_relocation
2341 (abfd, sreloc, indx,
2342 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2343 sgot->output_offset + sgot->output_section->vma + offset2);
2345 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2346 sgot->contents + offset2);
2350 MIPS_ELF_PUT_WORD (abfd, 1,
2351 sgot->contents + offset);
2352 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2353 sgot->contents + offset2);
2356 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2359 /* Initial Exec model. */
2360 if (*tls_type_p & GOT_TLS_IE)
2362 offset = got_offset;
2367 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2368 sgot->contents + offset);
2370 MIPS_ELF_PUT_WORD (abfd, 0,
2371 sgot->contents + offset);
2373 mips_elf_output_dynamic_relocation
2374 (abfd, sreloc, indx,
2375 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2376 sgot->output_offset + sgot->output_section->vma + offset);
2379 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2380 sgot->contents + offset);
2383 if (*tls_type_p & GOT_TLS_LDM)
2385 /* The initial offset is zero, and the LD offsets will include the
2386 bias by DTP_OFFSET. */
2387 MIPS_ELF_PUT_WORD (abfd, 0,
2388 sgot->contents + got_offset
2389 + MIPS_ELF_GOT_SIZE (abfd));
2392 MIPS_ELF_PUT_WORD (abfd, 1,
2393 sgot->contents + got_offset);
2395 mips_elf_output_dynamic_relocation
2396 (abfd, sreloc, indx,
2397 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2398 sgot->output_offset + sgot->output_section->vma + got_offset);
2401 *tls_type_p |= GOT_TLS_DONE;
2404 /* Return the GOT index to use for a relocation of type R_TYPE against
2405 a symbol accessed using TLS_TYPE models. The GOT entries for this
2406 symbol in this GOT start at GOT_INDEX. This function initializes the
2407 GOT entries and corresponding relocations. */
2410 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2411 int r_type, struct bfd_link_info *info,
2412 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2414 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2415 || r_type == R_MIPS_TLS_LDM);
2417 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2419 if (r_type == R_MIPS_TLS_GOTTPREL)
2421 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2422 if (*tls_type & GOT_TLS_GD)
2423 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2428 if (r_type == R_MIPS_TLS_GD)
2430 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2434 if (r_type == R_MIPS_TLS_LDM)
2436 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2443 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2444 for global symbol H. .got.plt comes before the GOT, so the offset
2445 will be negative. */
2448 mips_elf_gotplt_index (struct bfd_link_info *info,
2449 struct elf_link_hash_entry *h)
2451 bfd_vma plt_index, got_address, got_value;
2452 struct mips_elf_link_hash_table *htab;
2454 htab = mips_elf_hash_table (info);
2455 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2457 /* Calculate the index of the symbol's PLT entry. */
2458 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2460 /* Calculate the address of the associated .got.plt entry. */
2461 got_address = (htab->sgotplt->output_section->vma
2462 + htab->sgotplt->output_offset
2465 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2466 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2467 + htab->root.hgot->root.u.def.section->output_offset
2468 + htab->root.hgot->root.u.def.value);
2470 return got_address - got_value;
2473 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2474 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2475 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2476 offset can be found. */
2479 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2480 bfd_vma value, unsigned long r_symndx,
2481 struct mips_elf_link_hash_entry *h, int r_type)
2484 struct mips_got_info *g;
2485 struct mips_got_entry *entry;
2487 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2489 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2490 value, r_symndx, h, r_type);
2494 if (TLS_RELOC_P (r_type))
2496 if (entry->symndx == -1 && g->next == NULL)
2497 /* A type (3) entry in the single-GOT case. We use the symbol's
2498 hash table entry to track the index. */
2499 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2500 r_type, info, h, value);
2502 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2503 r_type, info, h, value);
2506 return entry->gotidx;
2509 /* Returns the GOT index for the global symbol indicated by H. */
2512 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2513 int r_type, struct bfd_link_info *info)
2517 struct mips_got_info *g, *gg;
2518 long global_got_dynindx = 0;
2520 gg = g = mips_elf_got_info (abfd, &sgot);
2521 if (g->bfd2got && ibfd)
2523 struct mips_got_entry e, *p;
2525 BFD_ASSERT (h->dynindx >= 0);
2527 g = mips_elf_got_for_ibfd (g, ibfd);
2528 if (g->next != gg || TLS_RELOC_P (r_type))
2532 e.d.h = (struct mips_elf_link_hash_entry *)h;
2535 p = htab_find (g->got_entries, &e);
2537 BFD_ASSERT (p->gotidx > 0);
2539 if (TLS_RELOC_P (r_type))
2541 bfd_vma value = MINUS_ONE;
2542 if ((h->root.type == bfd_link_hash_defined
2543 || h->root.type == bfd_link_hash_defweak)
2544 && h->root.u.def.section->output_section)
2545 value = (h->root.u.def.value
2546 + h->root.u.def.section->output_offset
2547 + h->root.u.def.section->output_section->vma);
2549 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2550 info, e.d.h, value);
2557 if (gg->global_gotsym != NULL)
2558 global_got_dynindx = gg->global_gotsym->dynindx;
2560 if (TLS_RELOC_P (r_type))
2562 struct mips_elf_link_hash_entry *hm
2563 = (struct mips_elf_link_hash_entry *) h;
2564 bfd_vma value = MINUS_ONE;
2566 if ((h->root.type == bfd_link_hash_defined
2567 || h->root.type == bfd_link_hash_defweak)
2568 && h->root.u.def.section->output_section)
2569 value = (h->root.u.def.value
2570 + h->root.u.def.section->output_offset
2571 + h->root.u.def.section->output_section->vma);
2573 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2574 r_type, info, hm, value);
2578 /* Once we determine the global GOT entry with the lowest dynamic
2579 symbol table index, we must put all dynamic symbols with greater
2580 indices into the GOT. That makes it easy to calculate the GOT
2582 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2583 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2584 * MIPS_ELF_GOT_SIZE (abfd));
2586 BFD_ASSERT (index < sgot->size);
2591 /* Find a GOT page entry that points to within 32KB of VALUE. These
2592 entries are supposed to be placed at small offsets in the GOT, i.e.,
2593 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2594 entry could be created. If OFFSETP is nonnull, use it to return the
2595 offset of the GOT entry from VALUE. */
2598 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2599 bfd_vma value, bfd_vma *offsetp)
2602 struct mips_got_info *g;
2603 bfd_vma page, index;
2604 struct mips_got_entry *entry;
2606 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2608 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2609 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2610 page, 0, NULL, R_MIPS_GOT_PAGE);
2615 index = entry->gotidx;
2618 *offsetp = value - entry->d.address;
2623 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
2624 EXTERNAL is true if the relocation was against a global symbol
2625 that has been forced local. */
2628 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2629 bfd_vma value, bfd_boolean external)
2632 struct mips_got_info *g;
2633 struct mips_got_entry *entry;
2635 /* GOT16 relocations against local symbols are followed by a LO16
2636 relocation; those against global symbols are not. Thus if the
2637 symbol was originally local, the GOT16 relocation should load the
2638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2640 value = mips_elf_high (value) << 16;
2642 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2644 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2645 value, 0, NULL, R_MIPS_GOT16);
2647 return entry->gotidx;
2652 /* Returns the offset for the entry at the INDEXth position
2656 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2657 bfd *input_bfd, bfd_vma index)
2661 struct mips_got_info *g;
2663 g = mips_elf_got_info (dynobj, &sgot);
2664 gp = _bfd_get_gp_value (output_bfd)
2665 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2667 return sgot->output_section->vma + sgot->output_offset + index - gp;
2670 /* Create and return a local GOT entry for VALUE, which was calculated
2671 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2672 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2675 static struct mips_got_entry *
2676 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2677 bfd *ibfd, struct mips_got_info *gg,
2678 asection *sgot, bfd_vma value,
2679 unsigned long r_symndx,
2680 struct mips_elf_link_hash_entry *h,
2683 struct mips_got_entry entry, **loc;
2684 struct mips_got_info *g;
2685 struct mips_elf_link_hash_table *htab;
2687 htab = mips_elf_hash_table (info);
2691 entry.d.address = value;
2694 g = mips_elf_got_for_ibfd (gg, ibfd);
2697 g = mips_elf_got_for_ibfd (gg, abfd);
2698 BFD_ASSERT (g != NULL);
2701 /* We might have a symbol, H, if it has been forced local. Use the
2702 global entry then. It doesn't matter whether an entry is local
2703 or global for TLS, since the dynamic linker does not
2704 automatically relocate TLS GOT entries. */
2705 BFD_ASSERT (h == NULL || h->root.forced_local);
2706 if (TLS_RELOC_P (r_type))
2708 struct mips_got_entry *p;
2711 if (r_type == R_MIPS_TLS_LDM)
2713 entry.tls_type = GOT_TLS_LDM;
2719 entry.symndx = r_symndx;
2725 p = (struct mips_got_entry *)
2726 htab_find (g->got_entries, &entry);
2732 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2737 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2740 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2745 memcpy (*loc, &entry, sizeof entry);
2747 if (g->assigned_gotno > g->local_gotno)
2749 (*loc)->gotidx = -1;
2750 /* We didn't allocate enough space in the GOT. */
2751 (*_bfd_error_handler)
2752 (_("not enough GOT space for local GOT entries"));
2753 bfd_set_error (bfd_error_bad_value);
2757 MIPS_ELF_PUT_WORD (abfd, value,
2758 (sgot->contents + entry.gotidx));
2760 /* These GOT entries need a dynamic relocation on VxWorks. */
2761 if (htab->is_vxworks)
2763 Elf_Internal_Rela outrel;
2766 bfd_vma got_address;
2768 s = mips_elf_rel_dyn_section (info, FALSE);
2769 got_address = (sgot->output_section->vma
2770 + sgot->output_offset
2773 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2774 outrel.r_offset = got_address;
2775 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2776 outrel.r_addend = value;
2777 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2783 /* Sort the dynamic symbol table so that symbols that need GOT entries
2784 appear towards the end. This reduces the amount of GOT space
2785 required. MAX_LOCAL is used to set the number of local symbols
2786 known to be in the dynamic symbol table. During
2787 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2788 section symbols are added and the count is higher. */
2791 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2793 struct mips_elf_hash_sort_data hsd;
2794 struct mips_got_info *g;
2797 dynobj = elf_hash_table (info)->dynobj;
2799 g = mips_elf_got_info (dynobj, NULL);
2802 hsd.max_unref_got_dynindx =
2803 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2804 /* In the multi-got case, assigned_gotno of the master got_info
2805 indicate the number of entries that aren't referenced in the
2806 primary GOT, but that must have entries because there are
2807 dynamic relocations that reference it. Since they aren't
2808 referenced, we move them to the end of the GOT, so that they
2809 don't prevent other entries that are referenced from getting
2810 too large offsets. */
2811 - (g->next ? g->assigned_gotno : 0);
2812 hsd.max_non_got_dynindx = max_local;
2813 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2814 elf_hash_table (info)),
2815 mips_elf_sort_hash_table_f,
2818 /* There should have been enough room in the symbol table to
2819 accommodate both the GOT and non-GOT symbols. */
2820 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2821 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2822 <= elf_hash_table (info)->dynsymcount);
2824 /* Now we know which dynamic symbol has the lowest dynamic symbol
2825 table index in the GOT. */
2826 g->global_gotsym = hsd.low;
2831 /* If H needs a GOT entry, assign it the highest available dynamic
2832 index. Otherwise, assign it the lowest available dynamic
2836 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2838 struct mips_elf_hash_sort_data *hsd = data;
2840 if (h->root.root.type == bfd_link_hash_warning)
2841 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2843 /* Symbols without dynamic symbol table entries aren't interesting
2845 if (h->root.dynindx == -1)
2848 /* Global symbols that need GOT entries that are not explicitly
2849 referenced are marked with got offset 2. Those that are
2850 referenced get a 1, and those that don't need GOT entries get
2851 -1. Forced local symbols may also be marked with got offset 1,
2852 but are never given global GOT entries. */
2853 if (h->root.got.offset == 2)
2855 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2857 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2858 hsd->low = (struct elf_link_hash_entry *) h;
2859 h->root.dynindx = hsd->max_unref_got_dynindx++;
2861 else if (h->root.got.offset != 1 || h->forced_local)
2862 h->root.dynindx = hsd->max_non_got_dynindx++;
2865 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2867 h->root.dynindx = --hsd->min_got_dynindx;
2868 hsd->low = (struct elf_link_hash_entry *) h;
2874 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2875 symbol table index lower than any we've seen to date, record it for
2879 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2880 bfd *abfd, struct bfd_link_info *info,
2881 struct mips_got_info *g,
2882 unsigned char tls_flag)
2884 struct mips_got_entry entry, **loc;
2886 /* A global symbol in the GOT must also be in the dynamic symbol
2888 if (h->dynindx == -1)
2890 switch (ELF_ST_VISIBILITY (h->other))
2894 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2897 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2901 /* Make sure we have a GOT to put this entry into. */
2902 BFD_ASSERT (g != NULL);
2906 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2909 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2912 /* If we've already marked this entry as needing GOT space, we don't
2913 need to do it again. */
2916 (*loc)->tls_type |= tls_flag;
2920 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2926 entry.tls_type = tls_flag;
2928 memcpy (*loc, &entry, sizeof entry);
2930 if (h->got.offset != MINUS_ONE)
2935 /* By setting this to a value other than -1, we are indicating that
2936 there needs to be a GOT entry for H. Avoid using zero, as the
2937 generic ELF copy_indirect_symbol tests for <= 0. */
2939 if (h->forced_local)
2946 /* Reserve space in G for a GOT entry containing the value of symbol
2947 SYMNDX in input bfd ABDF, plus ADDEND. */
2950 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2951 struct mips_got_info *g,
2952 unsigned char tls_flag)
2954 struct mips_got_entry entry, **loc;
2957 entry.symndx = symndx;
2958 entry.d.addend = addend;
2959 entry.tls_type = tls_flag;
2960 loc = (struct mips_got_entry **)
2961 htab_find_slot (g->got_entries, &entry, INSERT);
2965 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2968 (*loc)->tls_type |= tls_flag;
2970 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2973 (*loc)->tls_type |= tls_flag;
2981 entry.tls_type = tls_flag;
2982 if (tls_flag == GOT_TLS_IE)
2984 else if (tls_flag == GOT_TLS_GD)
2986 else if (g->tls_ldm_offset == MINUS_ONE)
2988 g->tls_ldm_offset = MINUS_TWO;
2994 entry.gotidx = g->local_gotno++;
2998 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3003 memcpy (*loc, &entry, sizeof entry);
3008 /* Return the maximum number of GOT page entries required for RANGE. */
3011 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3013 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3016 /* Record that ABFD has a page relocation against symbol SYMNDX and
3017 that ADDEND is the addend for that relocation. G is the GOT
3018 information. This function creates an upper bound on the number of
3019 GOT slots required; no attempt is made to combine references to
3020 non-overridable global symbols across multiple input files. */
3023 mips_elf_record_got_page_entry (bfd *abfd, long symndx, bfd_signed_vma addend,
3024 struct mips_got_info *g)
3026 struct mips_got_page_entry lookup, *entry;
3027 struct mips_got_page_range **range_ptr, *range;
3028 bfd_vma old_pages, new_pages;
3031 /* Find the mips_got_page_entry hash table entry for this symbol. */
3033 lookup.symndx = symndx;
3034 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3038 /* Create a mips_got_page_entry if this is the first time we've
3040 entry = (struct mips_got_page_entry *) *loc;
3043 entry = bfd_alloc (abfd, sizeof (*entry));
3048 entry->symndx = symndx;
3049 entry->ranges = NULL;
3050 entry->num_pages = 0;
3054 /* Skip over ranges whose maximum extent cannot share a page entry
3056 range_ptr = &entry->ranges;
3057 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3058 range_ptr = &(*range_ptr)->next;
3060 /* If we scanned to the end of the list, or found a range whose
3061 minimum extent cannot share a page entry with ADDEND, create
3062 a new singleton range. */
3064 if (!range || addend < range->min_addend - 0xffff)
3066 range = bfd_alloc (abfd, sizeof (*range));
3070 range->next = *range_ptr;
3071 range->min_addend = addend;
3072 range->max_addend = addend;
3080 /* Remember how many pages the old range contributed. */
3081 old_pages = mips_elf_pages_for_range (range);
3083 /* Update the ranges. */
3084 if (addend < range->min_addend)
3085 range->min_addend = addend;
3086 else if (addend > range->max_addend)
3088 if (range->next && addend >= range->next->min_addend - 0xffff)
3090 old_pages += mips_elf_pages_for_range (range->next);
3091 range->max_addend = range->next->max_addend;
3092 range->next = range->next->next;
3095 range->max_addend = addend;
3098 /* Record any change in the total estimate. */
3099 new_pages = mips_elf_pages_for_range (range);
3100 if (old_pages != new_pages)
3102 entry->num_pages += new_pages - old_pages;
3103 g->page_gotno += new_pages - old_pages;
3109 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3112 mips_elf_bfd2got_entry_hash (const void *entry_)
3114 const struct mips_elf_bfd2got_hash *entry
3115 = (struct mips_elf_bfd2got_hash *)entry_;
3117 return entry->bfd->id;
3120 /* Check whether two hash entries have the same bfd. */
3123 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3125 const struct mips_elf_bfd2got_hash *e1
3126 = (const struct mips_elf_bfd2got_hash *)entry1;
3127 const struct mips_elf_bfd2got_hash *e2
3128 = (const struct mips_elf_bfd2got_hash *)entry2;
3130 return e1->bfd == e2->bfd;
3133 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3134 be the master GOT data. */
3136 static struct mips_got_info *
3137 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3139 struct mips_elf_bfd2got_hash e, *p;
3145 p = htab_find (g->bfd2got, &e);
3146 return p ? p->g : NULL;
3149 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3150 Return NULL if an error occured. */
3152 static struct mips_got_info *
3153 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3156 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3157 struct mips_got_info *g;
3160 bfdgot_entry.bfd = input_bfd;
3161 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3162 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3166 bfdgot = ((struct mips_elf_bfd2got_hash *)
3167 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3173 g = ((struct mips_got_info *)
3174 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3178 bfdgot->bfd = input_bfd;
3181 g->global_gotsym = NULL;
3182 g->global_gotno = 0;
3185 g->assigned_gotno = -1;
3187 g->tls_assigned_gotno = 0;
3188 g->tls_ldm_offset = MINUS_ONE;
3189 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3190 mips_elf_multi_got_entry_eq, NULL);
3191 if (g->got_entries == NULL)
3194 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3195 mips_got_page_entry_eq, NULL);
3196 if (g->got_page_entries == NULL)
3206 /* A htab_traverse callback for the entries in the master got.
3207 Create one separate got for each bfd that has entries in the global
3208 got, such that we can tell how many local and global entries each
3212 mips_elf_make_got_per_bfd (void **entryp, void *p)
3214 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3215 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3216 struct mips_got_info *g;
3218 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3225 /* Insert the GOT entry in the bfd's got entry hash table. */
3226 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3227 if (*entryp != NULL)
3232 if (entry->tls_type)
3234 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3236 if (entry->tls_type & GOT_TLS_IE)
3239 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3247 /* A htab_traverse callback for the page entries in the master got.
3248 Associate each page entry with the bfd's got. */
3251 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
3253 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
3254 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
3255 struct mips_got_info *g;
3257 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3264 /* Insert the GOT entry in the bfd's got entry hash table. */
3265 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
3266 if (*entryp != NULL)
3270 g->page_gotno += entry->num_pages;
3274 /* Consider merging the got described by BFD2GOT with TO, using the
3275 information given by ARG. Return -1 if this would lead to overflow,
3276 1 if they were merged successfully, and 0 if a merge failed due to
3277 lack of memory. (These values are chosen so that nonnegative return
3278 values can be returned by a htab_traverse callback.) */
3281 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
3282 struct mips_got_info *to,
3283 struct mips_elf_got_per_bfd_arg *arg)
3285 struct mips_got_info *from = bfd2got->g;
3286 unsigned int estimate;
3288 /* Work out how many page entries we would need for the combined GOT. */
3289 estimate = arg->max_pages;
3290 if (estimate >= from->page_gotno + to->page_gotno)
3291 estimate = from->page_gotno + to->page_gotno;
3293 /* And conservatively estimate how many local, global and TLS entries
3295 estimate += (from->local_gotno
3296 + from->global_gotno
3302 /* Bail out if the combined GOT might be too big. */
3303 if (estimate > arg->max_count)
3306 /* Commit to the merge. Record that TO is now the bfd for this got. */
3309 /* Transfer the bfd's got information from FROM to TO. */
3310 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
3311 if (arg->obfd == NULL)
3314 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
3315 if (arg->obfd == NULL)
3318 /* We don't have to worry about releasing memory of the actual
3319 got entries, since they're all in the master got_entries hash
3321 htab_delete (from->got_entries);
3322 htab_delete (from->got_page_entries);
3326 /* Attempt to merge gots of different input bfds. Try to use as much
3327 as possible of the primary got, since it doesn't require explicit
3328 dynamic relocations, but don't use bfds that would reference global
3329 symbols out of the addressable range. Failing the primary got,
3330 attempt to merge with the current got, or finish the current got
3331 and then make make the new got current. */
3334 mips_elf_merge_gots (void **bfd2got_, void *p)
3336 struct mips_elf_bfd2got_hash *bfd2got
3337 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3338 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3339 struct mips_got_info *g;
3340 unsigned int estimate;
3345 /* Work out the number of page, local and TLS entries. */
3346 estimate = arg->max_pages;
3347 if (estimate > g->page_gotno)
3348 estimate = g->page_gotno;
3349 estimate += g->local_gotno + g->tls_gotno;
3351 /* We place TLS GOT entries after both locals and globals. The globals
3352 for the primary GOT may overflow the normal GOT size limit, so be
3353 sure not to merge a GOT which requires TLS with the primary GOT in that
3354 case. This doesn't affect non-primary GOTs. */
3355 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
3357 if (estimate <= arg->max_count)
3359 /* If we don't have a primary GOT, use it as
3360 a starting point for the primary GOT. */
3363 arg->primary = bfd2got->g;
3367 /* Try merging with the primary GOT. */
3368 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
3373 /* If we can merge with the last-created got, do it. */
3376 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
3381 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3382 fits; if it turns out that it doesn't, we'll get relocation
3383 overflows anyway. */
3384 g->next = arg->current;
3390 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3391 is null iff there is just a single GOT. */
3394 mips_elf_initialize_tls_index (void **entryp, void *p)
3396 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3397 struct mips_got_info *g = p;
3399 unsigned char tls_type;
3401 /* We're only interested in TLS symbols. */
3402 if (entry->tls_type == 0)
3405 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3407 if (entry->symndx == -1 && g->next == NULL)
3409 /* A type (3) got entry in the single-GOT case. We use the symbol's
3410 hash table entry to track its index. */
3411 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3413 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3414 entry->d.h->tls_got_offset = next_index;
3415 tls_type = entry->d.h->tls_type;
3419 if (entry->tls_type & GOT_TLS_LDM)
3421 /* There are separate mips_got_entry objects for each input bfd
3422 that requires an LDM entry. Make sure that all LDM entries in
3423 a GOT resolve to the same index. */
3424 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3426 entry->gotidx = g->tls_ldm_offset;
3429 g->tls_ldm_offset = next_index;
3431 entry->gotidx = next_index;
3432 tls_type = entry->tls_type;
3435 /* Account for the entries we've just allocated. */
3436 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3437 g->tls_assigned_gotno += 2;
3438 if (tls_type & GOT_TLS_IE)
3439 g->tls_assigned_gotno += 1;
3444 /* If passed a NULL mips_got_info in the argument, set the marker used
3445 to tell whether a global symbol needs a got entry (in the primary
3446 got) to the given VALUE.
3448 If passed a pointer G to a mips_got_info in the argument (it must
3449 not be the primary GOT), compute the offset from the beginning of
3450 the (primary) GOT section to the entry in G corresponding to the
3451 global symbol. G's assigned_gotno must contain the index of the
3452 first available global GOT entry in G. VALUE must contain the size
3453 of a GOT entry in bytes. For each global GOT entry that requires a
3454 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3455 marked as not eligible for lazy resolution through a function
3458 mips_elf_set_global_got_offset (void **entryp, void *p)
3460 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3461 struct mips_elf_set_global_got_offset_arg *arg
3462 = (struct mips_elf_set_global_got_offset_arg *)p;
3463 struct mips_got_info *g = arg->g;
3465 if (g && entry->tls_type != GOT_NORMAL)
3466 arg->needed_relocs +=
3467 mips_tls_got_relocs (arg->info, entry->tls_type,
3468 entry->symndx == -1 ? &entry->d.h->root : NULL);
3470 if (entry->abfd != NULL && entry->symndx == -1
3471 && entry->d.h->root.dynindx != -1
3472 && !entry->d.h->forced_local
3473 && entry->d.h->tls_type == GOT_NORMAL)
3477 BFD_ASSERT (g->global_gotsym == NULL);
3479 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3480 if (arg->info->shared
3481 || (elf_hash_table (arg->info)->dynamic_sections_created
3482 && entry->d.h->root.def_dynamic
3483 && !entry->d.h->root.def_regular))
3484 ++arg->needed_relocs;
3487 entry->d.h->root.got.offset = arg->value;
3493 /* Mark any global symbols referenced in the GOT we are iterating over
3494 as inelligible for lazy resolution stubs. */
3496 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3498 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3500 if (entry->abfd != NULL
3501 && entry->symndx == -1
3502 && entry->d.h->root.dynindx != -1)
3503 entry->d.h->no_fn_stub = TRUE;
3508 /* Follow indirect and warning hash entries so that each got entry
3509 points to the final symbol definition. P must point to a pointer
3510 to the hash table we're traversing. Since this traversal may
3511 modify the hash table, we set this pointer to NULL to indicate
3512 we've made a potentially-destructive change to the hash table, so
3513 the traversal must be restarted. */
3515 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3517 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3518 htab_t got_entries = *(htab_t *)p;
3520 if (entry->abfd != NULL && entry->symndx == -1)
3522 struct mips_elf_link_hash_entry *h = entry->d.h;
3524 while (h->root.root.type == bfd_link_hash_indirect
3525 || h->root.root.type == bfd_link_hash_warning)
3526 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3528 if (entry->d.h == h)
3533 /* If we can't find this entry with the new bfd hash, re-insert
3534 it, and get the traversal restarted. */
3535 if (! htab_find (got_entries, entry))
3537 htab_clear_slot (got_entries, entryp);
3538 entryp = htab_find_slot (got_entries, entry, INSERT);
3541 /* Abort the traversal, since the whole table may have
3542 moved, and leave it up to the parent to restart the
3544 *(htab_t *)p = NULL;
3547 /* We might want to decrement the global_gotno count, but it's
3548 either too early or too late for that at this point. */
3554 /* Turn indirect got entries in a got_entries table into their final
3557 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3563 got_entries = g->got_entries;
3565 htab_traverse (got_entries,
3566 mips_elf_resolve_final_got_entry,
3569 while (got_entries == NULL);
3572 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3575 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3577 if (g->bfd2got == NULL)
3580 g = mips_elf_got_for_ibfd (g, ibfd);
3584 BFD_ASSERT (g->next);
3588 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3589 * MIPS_ELF_GOT_SIZE (abfd);
3592 /* Turn a single GOT that is too big for 16-bit addressing into
3593 a sequence of GOTs, each one 16-bit addressable. */
3596 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3597 struct mips_got_info *g, asection *got,
3598 bfd_size_type pages)
3600 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3601 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3602 struct mips_got_info *gg;
3603 unsigned int assign;
3605 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3606 mips_elf_bfd2got_entry_eq, NULL);
3607 if (g->bfd2got == NULL)
3610 got_per_bfd_arg.bfd2got = g->bfd2got;
3611 got_per_bfd_arg.obfd = abfd;
3612 got_per_bfd_arg.info = info;
3614 /* Count how many GOT entries each input bfd requires, creating a
3615 map from bfd to got info while at that. */
3616 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3617 if (got_per_bfd_arg.obfd == NULL)
3620 /* Also count how many page entries each input bfd requires. */
3621 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
3623 if (got_per_bfd_arg.obfd == NULL)
3626 got_per_bfd_arg.current = NULL;
3627 got_per_bfd_arg.primary = NULL;
3628 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3629 / MIPS_ELF_GOT_SIZE (abfd))
3630 - MIPS_RESERVED_GOTNO (info));
3631 got_per_bfd_arg.max_pages = pages;
3632 /* The number of globals that will be included in the primary GOT.
3633 See the calls to mips_elf_set_global_got_offset below for more
3635 got_per_bfd_arg.global_count = g->global_gotno;
3637 /* Try to merge the GOTs of input bfds together, as long as they
3638 don't seem to exceed the maximum GOT size, choosing one of them
3639 to be the primary GOT. */
3640 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3641 if (got_per_bfd_arg.obfd == NULL)
3644 /* If we do not find any suitable primary GOT, create an empty one. */
3645 if (got_per_bfd_arg.primary == NULL)
3647 g->next = (struct mips_got_info *)
3648 bfd_alloc (abfd, sizeof (struct mips_got_info));
3649 if (g->next == NULL)
3652 g->next->global_gotsym = NULL;
3653 g->next->global_gotno = 0;
3654 g->next->local_gotno = 0;
3655 g->next->page_gotno = 0;
3656 g->next->tls_gotno = 0;
3657 g->next->assigned_gotno = 0;
3658 g->next->tls_assigned_gotno = 0;
3659 g->next->tls_ldm_offset = MINUS_ONE;
3660 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3661 mips_elf_multi_got_entry_eq,
3663 if (g->next->got_entries == NULL)
3665 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3666 mips_got_page_entry_eq,
3668 if (g->next->got_page_entries == NULL)
3670 g->next->bfd2got = NULL;
3673 g->next = got_per_bfd_arg.primary;
3674 g->next->next = got_per_bfd_arg.current;
3676 /* GG is now the master GOT, and G is the primary GOT. */
3680 /* Map the output bfd to the primary got. That's what we're going
3681 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3682 didn't mark in check_relocs, and we want a quick way to find it.
3683 We can't just use gg->next because we're going to reverse the
3686 struct mips_elf_bfd2got_hash *bfdgot;
3689 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3690 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3697 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3699 BFD_ASSERT (*bfdgotp == NULL);
3703 /* The IRIX dynamic linker requires every symbol that is referenced
3704 in a dynamic relocation to be present in the primary GOT, so
3705 arrange for them to appear after those that are actually
3708 GNU/Linux could very well do without it, but it would slow down
3709 the dynamic linker, since it would have to resolve every dynamic
3710 symbol referenced in other GOTs more than once, without help from
3711 the cache. Also, knowing that every external symbol has a GOT
3712 helps speed up the resolution of local symbols too, so GNU/Linux
3713 follows IRIX's practice.
3715 The number 2 is used by mips_elf_sort_hash_table_f to count
3716 global GOT symbols that are unreferenced in the primary GOT, with
3717 an initial dynamic index computed from gg->assigned_gotno, where
3718 the number of unreferenced global entries in the primary GOT is
3722 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3723 g->global_gotno = gg->global_gotno;
3724 set_got_offset_arg.value = 2;
3728 /* This could be used for dynamic linkers that don't optimize
3729 symbol resolution while applying relocations so as to use
3730 primary GOT entries or assuming the symbol is locally-defined.
3731 With this code, we assign lower dynamic indices to global
3732 symbols that are not referenced in the primary GOT, so that
3733 their entries can be omitted. */
3734 gg->assigned_gotno = 0;
3735 set_got_offset_arg.value = -1;
3738 /* Reorder dynamic symbols as described above (which behavior
3739 depends on the setting of VALUE). */
3740 set_got_offset_arg.g = NULL;
3741 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3742 &set_got_offset_arg);
3743 set_got_offset_arg.value = 1;
3744 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3745 &set_got_offset_arg);
3746 if (! mips_elf_sort_hash_table (info, 1))
3749 /* Now go through the GOTs assigning them offset ranges.
3750 [assigned_gotno, local_gotno[ will be set to the range of local
3751 entries in each GOT. We can then compute the end of a GOT by
3752 adding local_gotno to global_gotno. We reverse the list and make
3753 it circular since then we'll be able to quickly compute the
3754 beginning of a GOT, by computing the end of its predecessor. To
3755 avoid special cases for the primary GOT, while still preserving
3756 assertions that are valid for both single- and multi-got links,
3757 we arrange for the main got struct to have the right number of
3758 global entries, but set its local_gotno such that the initial
3759 offset of the primary GOT is zero. Remember that the primary GOT
3760 will become the last item in the circular linked list, so it
3761 points back to the master GOT. */
3762 gg->local_gotno = -g->global_gotno;
3763 gg->global_gotno = g->global_gotno;
3770 struct mips_got_info *gn;
3772 assign += MIPS_RESERVED_GOTNO (info);
3773 g->assigned_gotno = assign;
3774 g->local_gotno += assign;
3775 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
3776 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3778 /* Take g out of the direct list, and push it onto the reversed
3779 list that gg points to. g->next is guaranteed to be nonnull after
3780 this operation, as required by mips_elf_initialize_tls_index. */
3785 /* Set up any TLS entries. We always place the TLS entries after
3786 all non-TLS entries. */
3787 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3788 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3790 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3793 /* Mark global symbols in every non-primary GOT as ineligible for
3796 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3800 got->size = (gg->next->local_gotno
3801 + gg->next->global_gotno
3802 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3808 /* Returns the first relocation of type r_type found, beginning with
3809 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3811 static const Elf_Internal_Rela *
3812 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3813 const Elf_Internal_Rela *relocation,
3814 const Elf_Internal_Rela *relend)
3816 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3818 while (relocation < relend)
3820 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3821 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3827 /* We didn't find it. */
3831 /* Return whether a relocation is against a local symbol. */
3834 mips_elf_local_relocation_p (bfd *input_bfd,
3835 const Elf_Internal_Rela *relocation,
3836 asection **local_sections,
3837 bfd_boolean check_forced)
3839 unsigned long r_symndx;
3840 Elf_Internal_Shdr *symtab_hdr;
3841 struct mips_elf_link_hash_entry *h;
3844 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3845 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3846 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3848 if (r_symndx < extsymoff)
3850 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3855 /* Look up the hash table to check whether the symbol
3856 was forced local. */
3857 h = (struct mips_elf_link_hash_entry *)
3858 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3859 /* Find the real hash-table entry for this symbol. */
3860 while (h->root.root.type == bfd_link_hash_indirect
3861 || h->root.root.type == bfd_link_hash_warning)
3862 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3863 if (h->root.forced_local)
3870 /* Sign-extend VALUE, which has the indicated number of BITS. */
3873 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3875 if (value & ((bfd_vma) 1 << (bits - 1)))
3876 /* VALUE is negative. */
3877 value |= ((bfd_vma) - 1) << bits;
3882 /* Return non-zero if the indicated VALUE has overflowed the maximum
3883 range expressible by a signed number with the indicated number of
3887 mips_elf_overflow_p (bfd_vma value, int bits)
3889 bfd_signed_vma svalue = (bfd_signed_vma) value;
3891 if (svalue > (1 << (bits - 1)) - 1)
3892 /* The value is too big. */
3894 else if (svalue < -(1 << (bits - 1)))
3895 /* The value is too small. */
3902 /* Calculate the %high function. */
3905 mips_elf_high (bfd_vma value)
3907 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3910 /* Calculate the %higher function. */
3913 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3916 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3923 /* Calculate the %highest function. */
3926 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3929 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3936 /* Create the .compact_rel section. */
3939 mips_elf_create_compact_rel_section
3940 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3943 register asection *s;
3945 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3947 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3950 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3952 || ! bfd_set_section_alignment (abfd, s,
3953 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3956 s->size = sizeof (Elf32_External_compact_rel);
3962 /* Create the .got section to hold the global offset table. */
3965 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3966 bfd_boolean maybe_exclude)
3969 register asection *s;
3970 struct elf_link_hash_entry *h;
3971 struct bfd_link_hash_entry *bh;
3972 struct mips_got_info *g;
3974 struct mips_elf_link_hash_table *htab;
3976 htab = mips_elf_hash_table (info);
3978 /* This function may be called more than once. */
3979 s = mips_elf_got_section (abfd, TRUE);
3982 if (! maybe_exclude)
3983 s->flags &= ~SEC_EXCLUDE;
3987 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3988 | SEC_LINKER_CREATED);
3991 flags |= SEC_EXCLUDE;
3993 /* We have to use an alignment of 2**4 here because this is hardcoded
3994 in the function stub generation and in the linker script. */
3995 s = bfd_make_section_with_flags (abfd, ".got", flags);
3997 || ! bfd_set_section_alignment (abfd, s, 4))
4000 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4001 linker script because we don't want to define the symbol if we
4002 are not creating a global offset table. */
4004 if (! (_bfd_generic_link_add_one_symbol
4005 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4006 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4009 h = (struct elf_link_hash_entry *) bh;
4012 h->type = STT_OBJECT;
4013 elf_hash_table (info)->hgot = h;
4016 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4019 amt = sizeof (struct mips_got_info);
4020 g = bfd_alloc (abfd, amt);
4023 g->global_gotsym = NULL;
4024 g->global_gotno = 0;
4026 g->local_gotno = MIPS_RESERVED_GOTNO (info);
4028 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
4031 g->tls_ldm_offset = MINUS_ONE;
4032 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4033 mips_elf_got_entry_eq, NULL);
4034 if (g->got_entries == NULL)
4036 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4037 mips_got_page_entry_eq, NULL);
4038 if (g->got_page_entries == NULL)
4040 mips_elf_section_data (s)->u.got_info = g;
4041 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4042 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4044 /* VxWorks also needs a .got.plt section. */
4045 if (htab->is_vxworks)
4047 s = bfd_make_section_with_flags (abfd, ".got.plt",
4048 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4049 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4050 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
4058 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4059 __GOTT_INDEX__ symbols. These symbols are only special for
4060 shared objects; they are not used in executables. */
4063 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4065 return (mips_elf_hash_table (info)->is_vxworks
4067 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4068 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4071 /* Calculate the value produced by the RELOCATION (which comes from
4072 the INPUT_BFD). The ADDEND is the addend to use for this
4073 RELOCATION; RELOCATION->R_ADDEND is ignored.
4075 The result of the relocation calculation is stored in VALUEP.
4076 REQUIRE_JALXP indicates whether or not the opcode used with this
4077 relocation must be JALX.
4079 This function returns bfd_reloc_continue if the caller need take no
4080 further action regarding this relocation, bfd_reloc_notsupported if
4081 something goes dramatically wrong, bfd_reloc_overflow if an
4082 overflow occurs, and bfd_reloc_ok to indicate success. */
4084 static bfd_reloc_status_type
4085 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4086 asection *input_section,
4087 struct bfd_link_info *info,
4088 const Elf_Internal_Rela *relocation,
4089 bfd_vma addend, reloc_howto_type *howto,
4090 Elf_Internal_Sym *local_syms,
4091 asection **local_sections, bfd_vma *valuep,
4092 const char **namep, bfd_boolean *require_jalxp,
4093 bfd_boolean save_addend)
4095 /* The eventual value we will return. */
4097 /* The address of the symbol against which the relocation is
4100 /* The final GP value to be used for the relocatable, executable, or
4101 shared object file being produced. */
4102 bfd_vma gp = MINUS_ONE;
4103 /* The place (section offset or address) of the storage unit being
4106 /* The value of GP used to create the relocatable object. */
4107 bfd_vma gp0 = MINUS_ONE;
4108 /* The offset into the global offset table at which the address of
4109 the relocation entry symbol, adjusted by the addend, resides
4110 during execution. */
4111 bfd_vma g = MINUS_ONE;
4112 /* The section in which the symbol referenced by the relocation is
4114 asection *sec = NULL;
4115 struct mips_elf_link_hash_entry *h = NULL;
4116 /* TRUE if the symbol referred to by this relocation is a local
4118 bfd_boolean local_p, was_local_p;
4119 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4120 bfd_boolean gp_disp_p = FALSE;
4121 /* TRUE if the symbol referred to by this relocation is
4122 "__gnu_local_gp". */
4123 bfd_boolean gnu_local_gp_p = FALSE;
4124 Elf_Internal_Shdr *symtab_hdr;
4126 unsigned long r_symndx;
4128 /* TRUE if overflow occurred during the calculation of the
4129 relocation value. */
4130 bfd_boolean overflowed_p;
4131 /* TRUE if this relocation refers to a MIPS16 function. */
4132 bfd_boolean target_is_16_bit_code_p = FALSE;
4133 struct mips_elf_link_hash_table *htab;
4136 dynobj = elf_hash_table (info)->dynobj;
4137 htab = mips_elf_hash_table (info);
4139 /* Parse the relocation. */
4140 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4141 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4142 p = (input_section->output_section->vma
4143 + input_section->output_offset
4144 + relocation->r_offset);
4146 /* Assume that there will be no overflow. */
4147 overflowed_p = FALSE;
4149 /* Figure out whether or not the symbol is local, and get the offset
4150 used in the array of hash table entries. */
4151 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4152 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4153 local_sections, FALSE);
4154 was_local_p = local_p;
4155 if (! elf_bad_symtab (input_bfd))
4156 extsymoff = symtab_hdr->sh_info;
4159 /* The symbol table does not follow the rule that local symbols
4160 must come before globals. */
4164 /* Figure out the value of the symbol. */
4167 Elf_Internal_Sym *sym;
4169 sym = local_syms + r_symndx;
4170 sec = local_sections[r_symndx];
4172 symbol = sec->output_section->vma + sec->output_offset;
4173 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4174 || (sec->flags & SEC_MERGE))
4175 symbol += sym->st_value;
4176 if ((sec->flags & SEC_MERGE)
4177 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4179 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4181 addend += sec->output_section->vma + sec->output_offset;
4184 /* MIPS16 text labels should be treated as odd. */
4185 if (sym->st_other == STO_MIPS16)
4188 /* Record the name of this symbol, for our caller. */
4189 *namep = bfd_elf_string_from_elf_section (input_bfd,
4190 symtab_hdr->sh_link,
4193 *namep = bfd_section_name (input_bfd, sec);
4195 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
4199 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4201 /* For global symbols we look up the symbol in the hash-table. */
4202 h = ((struct mips_elf_link_hash_entry *)
4203 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4204 /* Find the real hash-table entry for this symbol. */
4205 while (h->root.root.type == bfd_link_hash_indirect
4206 || h->root.root.type == bfd_link_hash_warning)
4207 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4209 /* Record the name of this symbol, for our caller. */
4210 *namep = h->root.root.root.string;
4212 /* See if this is the special _gp_disp symbol. Note that such a
4213 symbol must always be a global symbol. */
4214 if (strcmp (*namep, "_gp_disp") == 0
4215 && ! NEWABI_P (input_bfd))
4217 /* Relocations against _gp_disp are permitted only with
4218 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4219 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4220 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
4221 return bfd_reloc_notsupported;
4225 /* See if this is the special _gp symbol. Note that such a
4226 symbol must always be a global symbol. */
4227 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4228 gnu_local_gp_p = TRUE;
4231 /* If this symbol is defined, calculate its address. Note that
4232 _gp_disp is a magic symbol, always implicitly defined by the
4233 linker, so it's inappropriate to check to see whether or not
4235 else if ((h->root.root.type == bfd_link_hash_defined
4236 || h->root.root.type == bfd_link_hash_defweak)
4237 && h->root.root.u.def.section)
4239 sec = h->root.root.u.def.section;
4240 if (sec->output_section)
4241 symbol = (h->root.root.u.def.value
4242 + sec->output_section->vma
4243 + sec->output_offset);
4245 symbol = h->root.root.u.def.value;
4247 else if (h->root.root.type == bfd_link_hash_undefweak)
4248 /* We allow relocations against undefined weak symbols, giving
4249 it the value zero, so that you can undefined weak functions
4250 and check to see if they exist by looking at their
4253 else if (info->unresolved_syms_in_objects == RM_IGNORE
4254 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4256 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4257 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4259 /* If this is a dynamic link, we should have created a
4260 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4261 in in _bfd_mips_elf_create_dynamic_sections.
4262 Otherwise, we should define the symbol with a value of 0.
4263 FIXME: It should probably get into the symbol table
4265 BFD_ASSERT (! info->shared);
4266 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4269 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4271 /* This is an optional symbol - an Irix specific extension to the
4272 ELF spec. Ignore it for now.
4273 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4274 than simply ignoring them, but we do not handle this for now.
4275 For information see the "64-bit ELF Object File Specification"
4276 which is available from here:
4277 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4282 if (! ((*info->callbacks->undefined_symbol)
4283 (info, h->root.root.root.string, input_bfd,
4284 input_section, relocation->r_offset,
4285 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4286 || ELF_ST_VISIBILITY (h->root.other))))
4287 return bfd_reloc_undefined;
4291 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4294 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4295 need to redirect the call to the stub, unless we're already *in*
4297 if (r_type != R_MIPS16_26 && !info->relocatable
4298 && ((h != NULL && h->fn_stub != NULL)
4300 && elf_tdata (input_bfd)->local_stubs != NULL
4301 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4302 && !mips16_stub_section_p (input_bfd, input_section))
4304 /* This is a 32- or 64-bit call to a 16-bit function. We should
4305 have already noticed that we were going to need the
4308 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4311 BFD_ASSERT (h->need_fn_stub);
4315 symbol = sec->output_section->vma + sec->output_offset;
4316 /* The target is 16-bit, but the stub isn't. */
4317 target_is_16_bit_code_p = FALSE;
4319 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4320 need to redirect the call to the stub. */
4321 else if (r_type == R_MIPS16_26 && !info->relocatable
4322 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
4324 && elf_tdata (input_bfd)->local_call_stubs != NULL
4325 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4326 && !target_is_16_bit_code_p)
4329 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4332 /* If both call_stub and call_fp_stub are defined, we can figure
4333 out which one to use by checking which one appears in the input
4335 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4340 for (o = input_bfd->sections; o != NULL; o = o->next)
4342 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4344 sec = h->call_fp_stub;
4351 else if (h->call_stub != NULL)
4354 sec = h->call_fp_stub;
4357 BFD_ASSERT (sec->size > 0);
4358 symbol = sec->output_section->vma + sec->output_offset;
4361 /* Calls from 16-bit code to 32-bit code and vice versa require the
4362 special jalx instruction. */
4363 *require_jalxp = (!info->relocatable
4364 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4365 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4367 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4368 local_sections, TRUE);
4370 /* If we haven't already determined the GOT offset, or the GP value,
4371 and we're going to need it, get it now. */
4374 case R_MIPS_GOT_PAGE:
4375 case R_MIPS_GOT_OFST:
4376 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4378 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4379 if (local_p || r_type == R_MIPS_GOT_OFST)
4385 case R_MIPS_GOT_DISP:
4386 case R_MIPS_GOT_HI16:
4387 case R_MIPS_CALL_HI16:
4388 case R_MIPS_GOT_LO16:
4389 case R_MIPS_CALL_LO16:
4391 case R_MIPS_TLS_GOTTPREL:
4392 case R_MIPS_TLS_LDM:
4393 /* Find the index into the GOT where this value is located. */
4394 if (r_type == R_MIPS_TLS_LDM)
4396 g = mips_elf_local_got_index (abfd, input_bfd, info,
4397 0, 0, NULL, r_type);
4399 return bfd_reloc_outofrange;
4403 /* On VxWorks, CALL relocations should refer to the .got.plt
4404 entry, which is initialized to point at the PLT stub. */
4405 if (htab->is_vxworks
4406 && (r_type == R_MIPS_CALL_HI16
4407 || r_type == R_MIPS_CALL_LO16
4408 || r_type == R_MIPS_CALL16))
4410 BFD_ASSERT (addend == 0);
4411 BFD_ASSERT (h->root.needs_plt);
4412 g = mips_elf_gotplt_index (info, &h->root);
4416 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4417 GOT_PAGE relocation that decays to GOT_DISP because the
4418 symbol turns out to be global. The addend is then added
4420 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4421 g = mips_elf_global_got_index (dynobj, input_bfd,
4422 &h->root, r_type, info);
4423 if (h->tls_type == GOT_NORMAL
4424 && (! elf_hash_table(info)->dynamic_sections_created
4426 && (info->symbolic || h->root.forced_local)
4427 && h->root.def_regular)))
4429 /* This is a static link or a -Bsymbolic link. The
4430 symbol is defined locally, or was forced to be local.
4431 We must initialize this entry in the GOT. */
4432 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4433 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4437 else if (!htab->is_vxworks
4438 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4439 /* The calculation below does not involve "g". */
4443 g = mips_elf_local_got_index (abfd, input_bfd, info,
4444 symbol + addend, r_symndx, h, r_type);
4446 return bfd_reloc_outofrange;
4449 /* Convert GOT indices to actual offsets. */
4450 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4455 case R_MIPS_GPREL16:
4456 case R_MIPS_GPREL32:
4457 case R_MIPS_LITERAL:
4460 case R_MIPS16_GPREL:
4461 gp0 = _bfd_get_gp_value (input_bfd);
4462 gp = _bfd_get_gp_value (abfd);
4464 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4475 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4476 symbols are resolved by the loader. Add them to .rela.dyn. */
4477 if (h != NULL && is_gott_symbol (info, &h->root))
4479 Elf_Internal_Rela outrel;
4483 s = mips_elf_rel_dyn_section (info, FALSE);
4484 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4486 outrel.r_offset = (input_section->output_section->vma
4487 + input_section->output_offset
4488 + relocation->r_offset);
4489 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4490 outrel.r_addend = addend;
4491 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4493 /* If we've written this relocation for a readonly section,
4494 we need to set DF_TEXTREL again, so that we do not delete the
4496 if (MIPS_ELF_READONLY_SECTION (input_section))
4497 info->flags |= DF_TEXTREL;
4500 return bfd_reloc_ok;
4503 /* Figure out what kind of relocation is being performed. */
4507 return bfd_reloc_continue;
4510 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4511 overflowed_p = mips_elf_overflow_p (value, 16);
4518 || (!htab->is_vxworks
4519 && htab->root.dynamic_sections_created
4521 && h->root.def_dynamic
4522 && !h->root.def_regular))
4524 && (input_section->flags & SEC_ALLOC) != 0)
4526 /* If we're creating a shared library, or this relocation is
4527 against a symbol in a shared library, then we can't know
4528 where the symbol will end up. So, we create a relocation
4529 record in the output, and leave the job up to the dynamic
4532 In VxWorks executables, references to external symbols
4533 are handled using copy relocs or PLT stubs, so there's
4534 no need to add a dynamic relocation here. */
4536 if (!mips_elf_create_dynamic_relocation (abfd,
4544 return bfd_reloc_undefined;
4548 if (r_type != R_MIPS_REL32)
4549 value = symbol + addend;
4553 value &= howto->dst_mask;
4557 value = symbol + addend - p;
4558 value &= howto->dst_mask;
4562 /* The calculation for R_MIPS16_26 is just the same as for an
4563 R_MIPS_26. It's only the storage of the relocated field into
4564 the output file that's different. That's handled in
4565 mips_elf_perform_relocation. So, we just fall through to the
4566 R_MIPS_26 case here. */
4569 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4572 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4573 if (h->root.root.type != bfd_link_hash_undefweak)
4574 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4576 value &= howto->dst_mask;
4579 case R_MIPS_TLS_DTPREL_HI16:
4580 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4584 case R_MIPS_TLS_DTPREL_LO16:
4585 case R_MIPS_TLS_DTPREL32:
4586 case R_MIPS_TLS_DTPREL64:
4587 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4590 case R_MIPS_TLS_TPREL_HI16:
4591 value = (mips_elf_high (addend + symbol - tprel_base (info))
4595 case R_MIPS_TLS_TPREL_LO16:
4596 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4603 value = mips_elf_high (addend + symbol);
4604 value &= howto->dst_mask;
4608 /* For MIPS16 ABI code we generate this sequence
4609 0: li $v0,%hi(_gp_disp)
4610 4: addiupc $v1,%lo(_gp_disp)
4614 So the offsets of hi and lo relocs are the same, but the
4615 $pc is four higher than $t9 would be, so reduce
4616 both reloc addends by 4. */
4617 if (r_type == R_MIPS16_HI16)
4618 value = mips_elf_high (addend + gp - p - 4);
4620 value = mips_elf_high (addend + gp - p);
4621 overflowed_p = mips_elf_overflow_p (value, 16);
4628 value = (symbol + addend) & howto->dst_mask;
4631 /* See the comment for R_MIPS16_HI16 above for the reason
4632 for this conditional. */
4633 if (r_type == R_MIPS16_LO16)
4634 value = addend + gp - p;
4636 value = addend + gp - p + 4;
4637 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4638 for overflow. But, on, say, IRIX5, relocations against
4639 _gp_disp are normally generated from the .cpload
4640 pseudo-op. It generates code that normally looks like
4643 lui $gp,%hi(_gp_disp)
4644 addiu $gp,$gp,%lo(_gp_disp)
4647 Here $t9 holds the address of the function being called,
4648 as required by the MIPS ELF ABI. The R_MIPS_LO16
4649 relocation can easily overflow in this situation, but the
4650 R_MIPS_HI16 relocation will handle the overflow.
4651 Therefore, we consider this a bug in the MIPS ABI, and do
4652 not check for overflow here. */
4656 case R_MIPS_LITERAL:
4657 /* Because we don't merge literal sections, we can handle this
4658 just like R_MIPS_GPREL16. In the long run, we should merge
4659 shared literals, and then we will need to additional work
4664 case R_MIPS16_GPREL:
4665 /* The R_MIPS16_GPREL performs the same calculation as
4666 R_MIPS_GPREL16, but stores the relocated bits in a different
4667 order. We don't need to do anything special here; the
4668 differences are handled in mips_elf_perform_relocation. */
4669 case R_MIPS_GPREL16:
4670 /* Only sign-extend the addend if it was extracted from the
4671 instruction. If the addend was separate, leave it alone,
4672 otherwise we may lose significant bits. */
4673 if (howto->partial_inplace)
4674 addend = _bfd_mips_elf_sign_extend (addend, 16);
4675 value = symbol + addend - gp;
4676 /* If the symbol was local, any earlier relocatable links will
4677 have adjusted its addend with the gp offset, so compensate
4678 for that now. Don't do it for symbols forced local in this
4679 link, though, since they won't have had the gp offset applied
4683 overflowed_p = mips_elf_overflow_p (value, 16);
4688 /* VxWorks does not have separate local and global semantics for
4689 R_MIPS_GOT16; every relocation evaluates to "G". */
4690 if (!htab->is_vxworks && local_p)
4694 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4695 local_sections, FALSE);
4696 value = mips_elf_got16_entry (abfd, input_bfd, info,
4697 symbol + addend, forced);
4698 if (value == MINUS_ONE)
4699 return bfd_reloc_outofrange;
4701 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4702 overflowed_p = mips_elf_overflow_p (value, 16);
4709 case R_MIPS_TLS_GOTTPREL:
4710 case R_MIPS_TLS_LDM:
4711 case R_MIPS_GOT_DISP:
4714 overflowed_p = mips_elf_overflow_p (value, 16);
4717 case R_MIPS_GPREL32:
4718 value = (addend + symbol + gp0 - gp);
4720 value &= howto->dst_mask;
4724 case R_MIPS_GNU_REL16_S2:
4725 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4726 overflowed_p = mips_elf_overflow_p (value, 18);
4727 value >>= howto->rightshift;
4728 value &= howto->dst_mask;
4731 case R_MIPS_GOT_HI16:
4732 case R_MIPS_CALL_HI16:
4733 /* We're allowed to handle these two relocations identically.
4734 The dynamic linker is allowed to handle the CALL relocations
4735 differently by creating a lazy evaluation stub. */
4737 value = mips_elf_high (value);
4738 value &= howto->dst_mask;
4741 case R_MIPS_GOT_LO16:
4742 case R_MIPS_CALL_LO16:
4743 value = g & howto->dst_mask;
4746 case R_MIPS_GOT_PAGE:
4747 /* GOT_PAGE relocations that reference non-local symbols decay
4748 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4752 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4753 if (value == MINUS_ONE)
4754 return bfd_reloc_outofrange;
4755 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4756 overflowed_p = mips_elf_overflow_p (value, 16);
4759 case R_MIPS_GOT_OFST:
4761 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4764 overflowed_p = mips_elf_overflow_p (value, 16);
4768 value = symbol - addend;
4769 value &= howto->dst_mask;
4773 value = mips_elf_higher (addend + symbol);
4774 value &= howto->dst_mask;
4777 case R_MIPS_HIGHEST:
4778 value = mips_elf_highest (addend + symbol);
4779 value &= howto->dst_mask;
4782 case R_MIPS_SCN_DISP:
4783 value = symbol + addend - sec->output_offset;
4784 value &= howto->dst_mask;
4788 /* This relocation is only a hint. In some cases, we optimize
4789 it into a bal instruction. But we don't try to optimize
4790 branches to the PLT; that will wind up wasting time. */
4791 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4792 return bfd_reloc_continue;
4793 value = symbol + addend;
4797 case R_MIPS_GNU_VTINHERIT:
4798 case R_MIPS_GNU_VTENTRY:
4799 /* We don't do anything with these at present. */
4800 return bfd_reloc_continue;
4803 /* An unrecognized relocation type. */
4804 return bfd_reloc_notsupported;
4807 /* Store the VALUE for our caller. */
4809 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4812 /* Obtain the field relocated by RELOCATION. */
4815 mips_elf_obtain_contents (reloc_howto_type *howto,
4816 const Elf_Internal_Rela *relocation,
4817 bfd *input_bfd, bfd_byte *contents)
4820 bfd_byte *location = contents + relocation->r_offset;
4822 /* Obtain the bytes. */
4823 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4828 /* It has been determined that the result of the RELOCATION is the
4829 VALUE. Use HOWTO to place VALUE into the output file at the
4830 appropriate position. The SECTION is the section to which the
4831 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4832 for the relocation must be either JAL or JALX, and it is
4833 unconditionally converted to JALX.
4835 Returns FALSE if anything goes wrong. */
4838 mips_elf_perform_relocation (struct bfd_link_info *info,
4839 reloc_howto_type *howto,
4840 const Elf_Internal_Rela *relocation,
4841 bfd_vma value, bfd *input_bfd,
4842 asection *input_section, bfd_byte *contents,
4843 bfd_boolean require_jalx)
4847 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4849 /* Figure out where the relocation is occurring. */
4850 location = contents + relocation->r_offset;
4852 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4854 /* Obtain the current value. */
4855 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4857 /* Clear the field we are setting. */
4858 x &= ~howto->dst_mask;
4860 /* Set the field. */
4861 x |= (value & howto->dst_mask);
4863 /* If required, turn JAL into JALX. */
4867 bfd_vma opcode = x >> 26;
4868 bfd_vma jalx_opcode;
4870 /* Check to see if the opcode is already JAL or JALX. */
4871 if (r_type == R_MIPS16_26)
4873 ok = ((opcode == 0x6) || (opcode == 0x7));
4878 ok = ((opcode == 0x3) || (opcode == 0x1d));
4882 /* If the opcode is not JAL or JALX, there's a problem. */
4885 (*_bfd_error_handler)
4886 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4889 (unsigned long) relocation->r_offset);
4890 bfd_set_error (bfd_error_bad_value);
4894 /* Make this the JALX opcode. */
4895 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4898 /* On the RM9000, bal is faster than jal, because bal uses branch
4899 prediction hardware. If we are linking for the RM9000, and we
4900 see jal, and bal fits, use it instead. Note that this
4901 transformation should be safe for all architectures. */
4902 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4903 && !info->relocatable
4905 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4906 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4912 addr = (input_section->output_section->vma
4913 + input_section->output_offset
4914 + relocation->r_offset
4916 if (r_type == R_MIPS_26)
4917 dest = (value << 2) | ((addr >> 28) << 28);
4921 if (off <= 0x1ffff && off >= -0x20000)
4922 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4925 /* Put the value into the output. */
4926 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4928 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4934 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4937 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4939 const char *name = bfd_get_section_name (abfd, section);
4941 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4944 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4947 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4951 struct mips_elf_link_hash_table *htab;
4953 htab = mips_elf_hash_table (info);
4954 s = mips_elf_rel_dyn_section (info, FALSE);
4955 BFD_ASSERT (s != NULL);
4957 if (htab->is_vxworks)
4958 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4963 /* Make room for a null element. */
4964 s->size += MIPS_ELF_REL_SIZE (abfd);
4967 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4971 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4972 is the original relocation, which is now being transformed into a
4973 dynamic relocation. The ADDENDP is adjusted if necessary; the
4974 caller should store the result in place of the original addend. */
4977 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4978 struct bfd_link_info *info,
4979 const Elf_Internal_Rela *rel,
4980 struct mips_elf_link_hash_entry *h,
4981 asection *sec, bfd_vma symbol,
4982 bfd_vma *addendp, asection *input_section)
4984 Elf_Internal_Rela outrel[3];
4989 bfd_boolean defined_p;
4990 struct mips_elf_link_hash_table *htab;
4992 htab = mips_elf_hash_table (info);
4993 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4994 dynobj = elf_hash_table (info)->dynobj;
4995 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4996 BFD_ASSERT (sreloc != NULL);
4997 BFD_ASSERT (sreloc->contents != NULL);
4998 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5001 outrel[0].r_offset =
5002 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5003 if (ABI_64_P (output_bfd))
5005 outrel[1].r_offset =
5006 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5007 outrel[2].r_offset =
5008 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5011 if (outrel[0].r_offset == MINUS_ONE)
5012 /* The relocation field has been deleted. */
5015 if (outrel[0].r_offset == MINUS_TWO)
5017 /* The relocation field has been converted into a relative value of
5018 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5019 the field to be fully relocated, so add in the symbol's value. */
5024 /* We must now calculate the dynamic symbol table index to use
5025 in the relocation. */
5027 && (!h->root.def_regular
5028 || (info->shared && !info->symbolic && !h->root.forced_local)))
5030 indx = h->root.dynindx;
5031 if (SGI_COMPAT (output_bfd))
5032 defined_p = h->root.def_regular;
5034 /* ??? glibc's ld.so just adds the final GOT entry to the
5035 relocation field. It therefore treats relocs against
5036 defined symbols in the same way as relocs against
5037 undefined symbols. */
5042 if (sec != NULL && bfd_is_abs_section (sec))
5044 else if (sec == NULL || sec->owner == NULL)
5046 bfd_set_error (bfd_error_bad_value);
5051 indx = elf_section_data (sec->output_section)->dynindx;
5054 asection *osec = htab->root.text_index_section;
5055 indx = elf_section_data (osec)->dynindx;
5061 /* Instead of generating a relocation using the section
5062 symbol, we may as well make it a fully relative
5063 relocation. We want to avoid generating relocations to
5064 local symbols because we used to generate them
5065 incorrectly, without adding the original symbol value,
5066 which is mandated by the ABI for section symbols. In
5067 order to give dynamic loaders and applications time to
5068 phase out the incorrect use, we refrain from emitting
5069 section-relative relocations. It's not like they're
5070 useful, after all. This should be a bit more efficient
5072 /* ??? Although this behavior is compatible with glibc's ld.so,
5073 the ABI says that relocations against STN_UNDEF should have
5074 a symbol value of 0. Irix rld honors this, so relocations
5075 against STN_UNDEF have no effect. */
5076 if (!SGI_COMPAT (output_bfd))
5081 /* If the relocation was previously an absolute relocation and
5082 this symbol will not be referred to by the relocation, we must
5083 adjust it by the value we give it in the dynamic symbol table.
5084 Otherwise leave the job up to the dynamic linker. */
5085 if (defined_p && r_type != R_MIPS_REL32)
5088 if (htab->is_vxworks)
5089 /* VxWorks uses non-relative relocations for this. */
5090 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5092 /* The relocation is always an REL32 relocation because we don't
5093 know where the shared library will wind up at load-time. */
5094 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5097 /* For strict adherence to the ABI specification, we should
5098 generate a R_MIPS_64 relocation record by itself before the
5099 _REL32/_64 record as well, such that the addend is read in as
5100 a 64-bit value (REL32 is a 32-bit relocation, after all).
5101 However, since none of the existing ELF64 MIPS dynamic
5102 loaders seems to care, we don't waste space with these
5103 artificial relocations. If this turns out to not be true,
5104 mips_elf_allocate_dynamic_relocation() should be tweaked so
5105 as to make room for a pair of dynamic relocations per
5106 invocation if ABI_64_P, and here we should generate an
5107 additional relocation record with R_MIPS_64 by itself for a
5108 NULL symbol before this relocation record. */
5109 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5110 ABI_64_P (output_bfd)
5113 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5115 /* Adjust the output offset of the relocation to reference the
5116 correct location in the output file. */
5117 outrel[0].r_offset += (input_section->output_section->vma
5118 + input_section->output_offset);
5119 outrel[1].r_offset += (input_section->output_section->vma
5120 + input_section->output_offset);
5121 outrel[2].r_offset += (input_section->output_section->vma
5122 + input_section->output_offset);
5124 /* Put the relocation back out. We have to use the special
5125 relocation outputter in the 64-bit case since the 64-bit
5126 relocation format is non-standard. */
5127 if (ABI_64_P (output_bfd))
5129 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5130 (output_bfd, &outrel[0],
5132 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5134 else if (htab->is_vxworks)
5136 /* VxWorks uses RELA rather than REL dynamic relocations. */
5137 outrel[0].r_addend = *addendp;
5138 bfd_elf32_swap_reloca_out
5139 (output_bfd, &outrel[0],
5141 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5144 bfd_elf32_swap_reloc_out
5145 (output_bfd, &outrel[0],
5146 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5148 /* We've now added another relocation. */
5149 ++sreloc->reloc_count;
5151 /* Make sure the output section is writable. The dynamic linker
5152 will be writing to it. */
5153 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5156 /* On IRIX5, make an entry of compact relocation info. */
5157 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5159 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5164 Elf32_crinfo cptrel;
5166 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5167 cptrel.vaddr = (rel->r_offset
5168 + input_section->output_section->vma
5169 + input_section->output_offset);
5170 if (r_type == R_MIPS_REL32)
5171 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5173 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5174 mips_elf_set_cr_dist2to (cptrel, 0);
5175 cptrel.konst = *addendp;
5177 cr = (scpt->contents
5178 + sizeof (Elf32_External_compact_rel));
5179 mips_elf_set_cr_relvaddr (cptrel, 0);
5180 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5181 ((Elf32_External_crinfo *) cr
5182 + scpt->reloc_count));
5183 ++scpt->reloc_count;
5187 /* If we've written this relocation for a readonly section,
5188 we need to set DF_TEXTREL again, so that we do not delete the
5190 if (MIPS_ELF_READONLY_SECTION (input_section))
5191 info->flags |= DF_TEXTREL;
5196 /* Return the MACH for a MIPS e_flags value. */
5199 _bfd_elf_mips_mach (flagword flags)
5201 switch (flags & EF_MIPS_MACH)
5203 case E_MIPS_MACH_3900:
5204 return bfd_mach_mips3900;
5206 case E_MIPS_MACH_4010:
5207 return bfd_mach_mips4010;
5209 case E_MIPS_MACH_4100:
5210 return bfd_mach_mips4100;
5212 case E_MIPS_MACH_4111:
5213 return bfd_mach_mips4111;
5215 case E_MIPS_MACH_4120:
5216 return bfd_mach_mips4120;
5218 case E_MIPS_MACH_4650:
5219 return bfd_mach_mips4650;
5221 case E_MIPS_MACH_5400:
5222 return bfd_mach_mips5400;
5224 case E_MIPS_MACH_5500:
5225 return bfd_mach_mips5500;
5227 case E_MIPS_MACH_9000:
5228 return bfd_mach_mips9000;
5230 case E_MIPS_MACH_SB1:
5231 return bfd_mach_mips_sb1;
5233 case E_MIPS_MACH_LS2E:
5234 return bfd_mach_mips_loongson_2e;
5236 case E_MIPS_MACH_LS2F:
5237 return bfd_mach_mips_loongson_2f;
5239 case E_MIPS_MACH_OCTEON:
5240 return bfd_mach_mips_octeon;
5243 switch (flags & EF_MIPS_ARCH)
5247 return bfd_mach_mips3000;
5250 return bfd_mach_mips6000;
5253 return bfd_mach_mips4000;
5256 return bfd_mach_mips8000;
5259 return bfd_mach_mips5;
5261 case E_MIPS_ARCH_32:
5262 return bfd_mach_mipsisa32;
5264 case E_MIPS_ARCH_64:
5265 return bfd_mach_mipsisa64;
5267 case E_MIPS_ARCH_32R2:
5268 return bfd_mach_mipsisa32r2;
5270 case E_MIPS_ARCH_64R2:
5271 return bfd_mach_mipsisa64r2;
5278 /* Return printable name for ABI. */
5280 static INLINE char *
5281 elf_mips_abi_name (bfd *abfd)
5285 flags = elf_elfheader (abfd)->e_flags;
5286 switch (flags & EF_MIPS_ABI)
5289 if (ABI_N32_P (abfd))
5291 else if (ABI_64_P (abfd))
5295 case E_MIPS_ABI_O32:
5297 case E_MIPS_ABI_O64:
5299 case E_MIPS_ABI_EABI32:
5301 case E_MIPS_ABI_EABI64:
5304 return "unknown abi";
5308 /* MIPS ELF uses two common sections. One is the usual one, and the
5309 other is for small objects. All the small objects are kept
5310 together, and then referenced via the gp pointer, which yields
5311 faster assembler code. This is what we use for the small common
5312 section. This approach is copied from ecoff.c. */
5313 static asection mips_elf_scom_section;
5314 static asymbol mips_elf_scom_symbol;
5315 static asymbol *mips_elf_scom_symbol_ptr;
5317 /* MIPS ELF also uses an acommon section, which represents an
5318 allocated common symbol which may be overridden by a
5319 definition in a shared library. */
5320 static asection mips_elf_acom_section;
5321 static asymbol mips_elf_acom_symbol;
5322 static asymbol *mips_elf_acom_symbol_ptr;
5324 /* Handle the special MIPS section numbers that a symbol may use.
5325 This is used for both the 32-bit and the 64-bit ABI. */
5328 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5330 elf_symbol_type *elfsym;
5332 elfsym = (elf_symbol_type *) asym;
5333 switch (elfsym->internal_elf_sym.st_shndx)
5335 case SHN_MIPS_ACOMMON:
5336 /* This section is used in a dynamically linked executable file.
5337 It is an allocated common section. The dynamic linker can
5338 either resolve these symbols to something in a shared
5339 library, or it can just leave them here. For our purposes,
5340 we can consider these symbols to be in a new section. */
5341 if (mips_elf_acom_section.name == NULL)
5343 /* Initialize the acommon section. */
5344 mips_elf_acom_section.name = ".acommon";
5345 mips_elf_acom_section.flags = SEC_ALLOC;
5346 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5347 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5348 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5349 mips_elf_acom_symbol.name = ".acommon";
5350 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5351 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5352 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5354 asym->section = &mips_elf_acom_section;
5358 /* Common symbols less than the GP size are automatically
5359 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5360 if (asym->value > elf_gp_size (abfd)
5361 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5362 || IRIX_COMPAT (abfd) == ict_irix6)
5365 case SHN_MIPS_SCOMMON:
5366 if (mips_elf_scom_section.name == NULL)
5368 /* Initialize the small common section. */
5369 mips_elf_scom_section.name = ".scommon";
5370 mips_elf_scom_section.flags = SEC_IS_COMMON;
5371 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5372 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5373 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5374 mips_elf_scom_symbol.name = ".scommon";
5375 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5376 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5377 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5379 asym->section = &mips_elf_scom_section;
5380 asym->value = elfsym->internal_elf_sym.st_size;
5383 case SHN_MIPS_SUNDEFINED:
5384 asym->section = bfd_und_section_ptr;
5389 asection *section = bfd_get_section_by_name (abfd, ".text");
5391 BFD_ASSERT (SGI_COMPAT (abfd));
5392 if (section != NULL)
5394 asym->section = section;
5395 /* MIPS_TEXT is a bit special, the address is not an offset
5396 to the base of the .text section. So substract the section
5397 base address to make it an offset. */
5398 asym->value -= section->vma;
5405 asection *section = bfd_get_section_by_name (abfd, ".data");
5407 BFD_ASSERT (SGI_COMPAT (abfd));
5408 if (section != NULL)
5410 asym->section = section;
5411 /* MIPS_DATA is a bit special, the address is not an offset
5412 to the base of the .data section. So substract the section
5413 base address to make it an offset. */
5414 asym->value -= section->vma;
5421 /* Implement elf_backend_eh_frame_address_size. This differs from
5422 the default in the way it handles EABI64.
5424 EABI64 was originally specified as an LP64 ABI, and that is what
5425 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5426 historically accepted the combination of -mabi=eabi and -mlong32,
5427 and this ILP32 variation has become semi-official over time.
5428 Both forms use elf32 and have pointer-sized FDE addresses.
5430 If an EABI object was generated by GCC 4.0 or above, it will have
5431 an empty .gcc_compiled_longXX section, where XX is the size of longs
5432 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5433 have no special marking to distinguish them from LP64 objects.
5435 We don't want users of the official LP64 ABI to be punished for the
5436 existence of the ILP32 variant, but at the same time, we don't want
5437 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5438 We therefore take the following approach:
5440 - If ABFD contains a .gcc_compiled_longXX section, use it to
5441 determine the pointer size.
5443 - Otherwise check the type of the first relocation. Assume that
5444 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5448 The second check is enough to detect LP64 objects generated by pre-4.0
5449 compilers because, in the kind of output generated by those compilers,
5450 the first relocation will be associated with either a CIE personality
5451 routine or an FDE start address. Furthermore, the compilers never
5452 used a special (non-pointer) encoding for this ABI.
5454 Checking the relocation type should also be safe because there is no
5455 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5459 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5461 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5463 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5465 bfd_boolean long32_p, long64_p;
5467 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5468 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5469 if (long32_p && long64_p)
5476 if (sec->reloc_count > 0
5477 && elf_section_data (sec)->relocs != NULL
5478 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5487 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5488 relocations against two unnamed section symbols to resolve to the
5489 same address. For example, if we have code like:
5491 lw $4,%got_disp(.data)($gp)
5492 lw $25,%got_disp(.text)($gp)
5495 then the linker will resolve both relocations to .data and the program
5496 will jump there rather than to .text.
5498 We can work around this problem by giving names to local section symbols.
5499 This is also what the MIPSpro tools do. */
5502 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5504 return SGI_COMPAT (abfd);
5507 /* Work over a section just before writing it out. This routine is
5508 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5509 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5513 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5515 if (hdr->sh_type == SHT_MIPS_REGINFO
5516 && hdr->sh_size > 0)
5520 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5521 BFD_ASSERT (hdr->contents == NULL);
5524 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5527 H_PUT_32 (abfd, elf_gp (abfd), buf);
5528 if (bfd_bwrite (buf, 4, abfd) != 4)
5532 if (hdr->sh_type == SHT_MIPS_OPTIONS
5533 && hdr->bfd_section != NULL
5534 && mips_elf_section_data (hdr->bfd_section) != NULL
5535 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5537 bfd_byte *contents, *l, *lend;
5539 /* We stored the section contents in the tdata field in the
5540 set_section_contents routine. We save the section contents
5541 so that we don't have to read them again.
5542 At this point we know that elf_gp is set, so we can look
5543 through the section contents to see if there is an
5544 ODK_REGINFO structure. */
5546 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5548 lend = contents + hdr->sh_size;
5549 while (l + sizeof (Elf_External_Options) <= lend)
5551 Elf_Internal_Options intopt;
5553 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5555 if (intopt.size < sizeof (Elf_External_Options))
5557 (*_bfd_error_handler)
5558 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5559 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5562 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5569 + sizeof (Elf_External_Options)
5570 + (sizeof (Elf64_External_RegInfo) - 8)),
5573 H_PUT_64 (abfd, elf_gp (abfd), buf);
5574 if (bfd_bwrite (buf, 8, abfd) != 8)
5577 else if (intopt.kind == ODK_REGINFO)
5584 + sizeof (Elf_External_Options)
5585 + (sizeof (Elf32_External_RegInfo) - 4)),
5588 H_PUT_32 (abfd, elf_gp (abfd), buf);
5589 if (bfd_bwrite (buf, 4, abfd) != 4)
5596 if (hdr->bfd_section != NULL)
5598 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5600 if (strcmp (name, ".sdata") == 0
5601 || strcmp (name, ".lit8") == 0
5602 || strcmp (name, ".lit4") == 0)
5604 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5605 hdr->sh_type = SHT_PROGBITS;
5607 else if (strcmp (name, ".sbss") == 0)
5609 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5610 hdr->sh_type = SHT_NOBITS;
5612 else if (strcmp (name, ".srdata") == 0)
5614 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5615 hdr->sh_type = SHT_PROGBITS;
5617 else if (strcmp (name, ".compact_rel") == 0)
5620 hdr->sh_type = SHT_PROGBITS;
5622 else if (strcmp (name, ".rtproc") == 0)
5624 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5626 unsigned int adjust;
5628 adjust = hdr->sh_size % hdr->sh_addralign;
5630 hdr->sh_size += hdr->sh_addralign - adjust;
5638 /* Handle a MIPS specific section when reading an object file. This
5639 is called when elfcode.h finds a section with an unknown type.
5640 This routine supports both the 32-bit and 64-bit ELF ABI.
5642 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5646 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5647 Elf_Internal_Shdr *hdr,
5653 /* There ought to be a place to keep ELF backend specific flags, but
5654 at the moment there isn't one. We just keep track of the
5655 sections by their name, instead. Fortunately, the ABI gives
5656 suggested names for all the MIPS specific sections, so we will
5657 probably get away with this. */
5658 switch (hdr->sh_type)
5660 case SHT_MIPS_LIBLIST:
5661 if (strcmp (name, ".liblist") != 0)
5665 if (strcmp (name, ".msym") != 0)
5668 case SHT_MIPS_CONFLICT:
5669 if (strcmp (name, ".conflict") != 0)
5672 case SHT_MIPS_GPTAB:
5673 if (! CONST_STRNEQ (name, ".gptab."))
5676 case SHT_MIPS_UCODE:
5677 if (strcmp (name, ".ucode") != 0)
5680 case SHT_MIPS_DEBUG:
5681 if (strcmp (name, ".mdebug") != 0)
5683 flags = SEC_DEBUGGING;
5685 case SHT_MIPS_REGINFO:
5686 if (strcmp (name, ".reginfo") != 0
5687 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5689 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5691 case SHT_MIPS_IFACE:
5692 if (strcmp (name, ".MIPS.interfaces") != 0)
5695 case SHT_MIPS_CONTENT:
5696 if (! CONST_STRNEQ (name, ".MIPS.content"))
5699 case SHT_MIPS_OPTIONS:
5700 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5703 case SHT_MIPS_DWARF:
5704 if (! CONST_STRNEQ (name, ".debug_")
5705 && ! CONST_STRNEQ (name, ".zdebug_"))
5708 case SHT_MIPS_SYMBOL_LIB:
5709 if (strcmp (name, ".MIPS.symlib") != 0)
5712 case SHT_MIPS_EVENTS:
5713 if (! CONST_STRNEQ (name, ".MIPS.events")
5714 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5721 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5726 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5727 (bfd_get_section_flags (abfd,
5733 /* FIXME: We should record sh_info for a .gptab section. */
5735 /* For a .reginfo section, set the gp value in the tdata information
5736 from the contents of this section. We need the gp value while
5737 processing relocs, so we just get it now. The .reginfo section
5738 is not used in the 64-bit MIPS ELF ABI. */
5739 if (hdr->sh_type == SHT_MIPS_REGINFO)
5741 Elf32_External_RegInfo ext;
5744 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5745 &ext, 0, sizeof ext))
5747 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5748 elf_gp (abfd) = s.ri_gp_value;
5751 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5752 set the gp value based on what we find. We may see both
5753 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5754 they should agree. */
5755 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5757 bfd_byte *contents, *l, *lend;
5759 contents = bfd_malloc (hdr->sh_size);
5760 if (contents == NULL)
5762 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5769 lend = contents + hdr->sh_size;
5770 while (l + sizeof (Elf_External_Options) <= lend)
5772 Elf_Internal_Options intopt;
5774 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5776 if (intopt.size < sizeof (Elf_External_Options))
5778 (*_bfd_error_handler)
5779 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5780 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5783 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5785 Elf64_Internal_RegInfo intreg;
5787 bfd_mips_elf64_swap_reginfo_in
5789 ((Elf64_External_RegInfo *)
5790 (l + sizeof (Elf_External_Options))),
5792 elf_gp (abfd) = intreg.ri_gp_value;
5794 else if (intopt.kind == ODK_REGINFO)
5796 Elf32_RegInfo intreg;
5798 bfd_mips_elf32_swap_reginfo_in
5800 ((Elf32_External_RegInfo *)
5801 (l + sizeof (Elf_External_Options))),
5803 elf_gp (abfd) = intreg.ri_gp_value;
5813 /* Set the correct type for a MIPS ELF section. We do this by the
5814 section name, which is a hack, but ought to work. This routine is
5815 used by both the 32-bit and the 64-bit ABI. */
5818 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5820 const char *name = bfd_get_section_name (abfd, sec);
5822 if (strcmp (name, ".liblist") == 0)
5824 hdr->sh_type = SHT_MIPS_LIBLIST;
5825 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5826 /* The sh_link field is set in final_write_processing. */
5828 else if (strcmp (name, ".conflict") == 0)
5829 hdr->sh_type = SHT_MIPS_CONFLICT;
5830 else if (CONST_STRNEQ (name, ".gptab."))
5832 hdr->sh_type = SHT_MIPS_GPTAB;
5833 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5834 /* The sh_info field is set in final_write_processing. */
5836 else if (strcmp (name, ".ucode") == 0)
5837 hdr->sh_type = SHT_MIPS_UCODE;
5838 else if (strcmp (name, ".mdebug") == 0)
5840 hdr->sh_type = SHT_MIPS_DEBUG;
5841 /* In a shared object on IRIX 5.3, the .mdebug section has an
5842 entsize of 0. FIXME: Does this matter? */
5843 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5844 hdr->sh_entsize = 0;
5846 hdr->sh_entsize = 1;
5848 else if (strcmp (name, ".reginfo") == 0)
5850 hdr->sh_type = SHT_MIPS_REGINFO;
5851 /* In a shared object on IRIX 5.3, the .reginfo section has an
5852 entsize of 0x18. FIXME: Does this matter? */
5853 if (SGI_COMPAT (abfd))
5855 if ((abfd->flags & DYNAMIC) != 0)
5856 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5858 hdr->sh_entsize = 1;
5861 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5863 else if (SGI_COMPAT (abfd)
5864 && (strcmp (name, ".hash") == 0
5865 || strcmp (name, ".dynamic") == 0
5866 || strcmp (name, ".dynstr") == 0))
5868 if (SGI_COMPAT (abfd))
5869 hdr->sh_entsize = 0;
5871 /* This isn't how the IRIX6 linker behaves. */
5872 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5875 else if (strcmp (name, ".got") == 0
5876 || strcmp (name, ".srdata") == 0
5877 || strcmp (name, ".sdata") == 0
5878 || strcmp (name, ".sbss") == 0
5879 || strcmp (name, ".lit4") == 0
5880 || strcmp (name, ".lit8") == 0)
5881 hdr->sh_flags |= SHF_MIPS_GPREL;
5882 else if (strcmp (name, ".MIPS.interfaces") == 0)
5884 hdr->sh_type = SHT_MIPS_IFACE;
5885 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5887 else if (CONST_STRNEQ (name, ".MIPS.content"))
5889 hdr->sh_type = SHT_MIPS_CONTENT;
5890 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5891 /* The sh_info field is set in final_write_processing. */
5893 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5895 hdr->sh_type = SHT_MIPS_OPTIONS;
5896 hdr->sh_entsize = 1;
5897 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5899 else if (CONST_STRNEQ (name, ".debug_")
5900 || CONST_STRNEQ (name, ".zdebug_"))
5902 hdr->sh_type = SHT_MIPS_DWARF;
5904 /* Irix facilities such as libexc expect a single .debug_frame
5905 per executable, the system ones have NOSTRIP set and the linker
5906 doesn't merge sections with different flags so ... */
5907 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
5908 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5910 else if (strcmp (name, ".MIPS.symlib") == 0)
5912 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5913 /* The sh_link and sh_info fields are set in
5914 final_write_processing. */
5916 else if (CONST_STRNEQ (name, ".MIPS.events")
5917 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5919 hdr->sh_type = SHT_MIPS_EVENTS;
5920 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5921 /* The sh_link field is set in final_write_processing. */
5923 else if (strcmp (name, ".msym") == 0)
5925 hdr->sh_type = SHT_MIPS_MSYM;
5926 hdr->sh_flags |= SHF_ALLOC;
5927 hdr->sh_entsize = 8;
5930 /* The generic elf_fake_sections will set up REL_HDR using the default
5931 kind of relocations. We used to set up a second header for the
5932 non-default kind of relocations here, but only NewABI would use
5933 these, and the IRIX ld doesn't like resulting empty RELA sections.
5934 Thus we create those header only on demand now. */
5939 /* Given a BFD section, try to locate the corresponding ELF section
5940 index. This is used by both the 32-bit and the 64-bit ABI.
5941 Actually, it's not clear to me that the 64-bit ABI supports these,
5942 but for non-PIC objects we will certainly want support for at least
5943 the .scommon section. */
5946 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5947 asection *sec, int *retval)
5949 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5951 *retval = SHN_MIPS_SCOMMON;
5954 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5956 *retval = SHN_MIPS_ACOMMON;
5962 /* Hook called by the linker routine which adds symbols from an object
5963 file. We must handle the special MIPS section numbers here. */
5966 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5967 Elf_Internal_Sym *sym, const char **namep,
5968 flagword *flagsp ATTRIBUTE_UNUSED,
5969 asection **secp, bfd_vma *valp)
5971 if (SGI_COMPAT (abfd)
5972 && (abfd->flags & DYNAMIC) != 0
5973 && strcmp (*namep, "_rld_new_interface") == 0)
5975 /* Skip IRIX5 rld entry name. */
5980 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5981 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5982 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5983 a magic symbol resolved by the linker, we ignore this bogus definition
5984 of _gp_disp. New ABI objects do not suffer from this problem so this
5985 is not done for them. */
5987 && (sym->st_shndx == SHN_ABS)
5988 && (strcmp (*namep, "_gp_disp") == 0))
5994 switch (sym->st_shndx)
5997 /* Common symbols less than the GP size are automatically
5998 treated as SHN_MIPS_SCOMMON symbols. */
5999 if (sym->st_size > elf_gp_size (abfd)
6000 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6001 || IRIX_COMPAT (abfd) == ict_irix6)
6004 case SHN_MIPS_SCOMMON:
6005 *secp = bfd_make_section_old_way (abfd, ".scommon");
6006 (*secp)->flags |= SEC_IS_COMMON;
6007 *valp = sym->st_size;
6011 /* This section is used in a shared object. */
6012 if (elf_tdata (abfd)->elf_text_section == NULL)
6014 asymbol *elf_text_symbol;
6015 asection *elf_text_section;
6016 bfd_size_type amt = sizeof (asection);
6018 elf_text_section = bfd_zalloc (abfd, amt);
6019 if (elf_text_section == NULL)
6022 amt = sizeof (asymbol);
6023 elf_text_symbol = bfd_zalloc (abfd, amt);
6024 if (elf_text_symbol == NULL)
6027 /* Initialize the section. */
6029 elf_tdata (abfd)->elf_text_section = elf_text_section;
6030 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6032 elf_text_section->symbol = elf_text_symbol;
6033 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6035 elf_text_section->name = ".text";
6036 elf_text_section->flags = SEC_NO_FLAGS;
6037 elf_text_section->output_section = NULL;
6038 elf_text_section->owner = abfd;
6039 elf_text_symbol->name = ".text";
6040 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6041 elf_text_symbol->section = elf_text_section;
6043 /* This code used to do *secp = bfd_und_section_ptr if
6044 info->shared. I don't know why, and that doesn't make sense,
6045 so I took it out. */
6046 *secp = elf_tdata (abfd)->elf_text_section;
6049 case SHN_MIPS_ACOMMON:
6050 /* Fall through. XXX Can we treat this as allocated data? */
6052 /* This section is used in a shared object. */
6053 if (elf_tdata (abfd)->elf_data_section == NULL)
6055 asymbol *elf_data_symbol;
6056 asection *elf_data_section;
6057 bfd_size_type amt = sizeof (asection);
6059 elf_data_section = bfd_zalloc (abfd, amt);
6060 if (elf_data_section == NULL)
6063 amt = sizeof (asymbol);
6064 elf_data_symbol = bfd_zalloc (abfd, amt);
6065 if (elf_data_symbol == NULL)
6068 /* Initialize the section. */
6070 elf_tdata (abfd)->elf_data_section = elf_data_section;
6071 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6073 elf_data_section->symbol = elf_data_symbol;
6074 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6076 elf_data_section->name = ".data";
6077 elf_data_section->flags = SEC_NO_FLAGS;
6078 elf_data_section->output_section = NULL;
6079 elf_data_section->owner = abfd;
6080 elf_data_symbol->name = ".data";
6081 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6082 elf_data_symbol->section = elf_data_section;
6084 /* This code used to do *secp = bfd_und_section_ptr if
6085 info->shared. I don't know why, and that doesn't make sense,
6086 so I took it out. */
6087 *secp = elf_tdata (abfd)->elf_data_section;
6090 case SHN_MIPS_SUNDEFINED:
6091 *secp = bfd_und_section_ptr;
6095 if (SGI_COMPAT (abfd)
6097 && info->output_bfd->xvec == abfd->xvec
6098 && strcmp (*namep, "__rld_obj_head") == 0)
6100 struct elf_link_hash_entry *h;
6101 struct bfd_link_hash_entry *bh;
6103 /* Mark __rld_obj_head as dynamic. */
6105 if (! (_bfd_generic_link_add_one_symbol
6106 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6107 get_elf_backend_data (abfd)->collect, &bh)))
6110 h = (struct elf_link_hash_entry *) bh;
6113 h->type = STT_OBJECT;
6115 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6118 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6121 /* If this is a mips16 text symbol, add 1 to the value to make it
6122 odd. This will cause something like .word SYM to come up with
6123 the right value when it is loaded into the PC. */
6124 if (sym->st_other == STO_MIPS16)
6130 /* This hook function is called before the linker writes out a global
6131 symbol. We mark symbols as small common if appropriate. This is
6132 also where we undo the increment of the value for a mips16 symbol. */
6135 _bfd_mips_elf_link_output_symbol_hook
6136 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6137 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6138 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6140 /* If we see a common symbol, which implies a relocatable link, then
6141 if a symbol was small common in an input file, mark it as small
6142 common in the output file. */
6143 if (sym->st_shndx == SHN_COMMON
6144 && strcmp (input_sec->name, ".scommon") == 0)
6145 sym->st_shndx = SHN_MIPS_SCOMMON;
6147 if (sym->st_other == STO_MIPS16)
6148 sym->st_value &= ~1;
6153 /* Functions for the dynamic linker. */
6155 /* Create dynamic sections when linking against a dynamic object. */
6158 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6160 struct elf_link_hash_entry *h;
6161 struct bfd_link_hash_entry *bh;
6163 register asection *s;
6164 const char * const *namep;
6165 struct mips_elf_link_hash_table *htab;
6167 htab = mips_elf_hash_table (info);
6168 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6169 | SEC_LINKER_CREATED | SEC_READONLY);
6171 /* The psABI requires a read-only .dynamic section, but the VxWorks
6173 if (!htab->is_vxworks)
6175 s = bfd_get_section_by_name (abfd, ".dynamic");
6178 if (! bfd_set_section_flags (abfd, s, flags))
6183 /* We need to create .got section. */
6184 if (! mips_elf_create_got_section (abfd, info, FALSE))
6187 if (! mips_elf_rel_dyn_section (info, TRUE))
6190 /* Create .stub section. */
6191 if (bfd_get_section_by_name (abfd,
6192 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
6194 s = bfd_make_section_with_flags (abfd,
6195 MIPS_ELF_STUB_SECTION_NAME (abfd),
6198 || ! bfd_set_section_alignment (abfd, s,
6199 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6203 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6205 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6207 s = bfd_make_section_with_flags (abfd, ".rld_map",
6208 flags &~ (flagword) SEC_READONLY);
6210 || ! bfd_set_section_alignment (abfd, s,
6211 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6215 /* On IRIX5, we adjust add some additional symbols and change the
6216 alignments of several sections. There is no ABI documentation
6217 indicating that this is necessary on IRIX6, nor any evidence that
6218 the linker takes such action. */
6219 if (IRIX_COMPAT (abfd) == ict_irix5)
6221 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6224 if (! (_bfd_generic_link_add_one_symbol
6225 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6226 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6229 h = (struct elf_link_hash_entry *) bh;
6232 h->type = STT_SECTION;
6234 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6238 /* We need to create a .compact_rel section. */
6239 if (SGI_COMPAT (abfd))
6241 if (!mips_elf_create_compact_rel_section (abfd, info))
6245 /* Change alignments of some sections. */
6246 s = bfd_get_section_by_name (abfd, ".hash");
6248 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6249 s = bfd_get_section_by_name (abfd, ".dynsym");
6251 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6252 s = bfd_get_section_by_name (abfd, ".dynstr");
6254 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6255 s = bfd_get_section_by_name (abfd, ".reginfo");
6257 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6258 s = bfd_get_section_by_name (abfd, ".dynamic");
6260 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6267 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6269 if (!(_bfd_generic_link_add_one_symbol
6270 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6271 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6274 h = (struct elf_link_hash_entry *) bh;
6277 h->type = STT_SECTION;
6279 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6282 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6284 /* __rld_map is a four byte word located in the .data section
6285 and is filled in by the rtld to contain a pointer to
6286 the _r_debug structure. Its symbol value will be set in
6287 _bfd_mips_elf_finish_dynamic_symbol. */
6288 s = bfd_get_section_by_name (abfd, ".rld_map");
6289 BFD_ASSERT (s != NULL);
6291 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6293 if (!(_bfd_generic_link_add_one_symbol
6294 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6295 get_elf_backend_data (abfd)->collect, &bh)))
6298 h = (struct elf_link_hash_entry *) bh;
6301 h->type = STT_OBJECT;
6303 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6308 if (htab->is_vxworks)
6310 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6311 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6312 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6315 /* Cache the sections created above. */
6316 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6317 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6318 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6319 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6321 || (!htab->srelbss && !info->shared)
6326 /* Do the usual VxWorks handling. */
6327 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6330 /* Work out the PLT sizes. */
6333 htab->plt_header_size
6334 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6335 htab->plt_entry_size
6336 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6340 htab->plt_header_size
6341 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6342 htab->plt_entry_size
6343 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6350 /* Return true if relocation REL against section SEC is a REL rather than
6351 RELA relocation. RELOCS is the first relocation in the section and
6352 ABFD is the bfd that contains SEC. */
6355 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
6356 const Elf_Internal_Rela *relocs,
6357 const Elf_Internal_Rela *rel)
6359 Elf_Internal_Shdr *rel_hdr;
6360 const struct elf_backend_data *bed;
6362 /* To determine which flavor or relocation this is, we depend on the
6363 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
6364 rel_hdr = &elf_section_data (sec)->rel_hdr;
6365 bed = get_elf_backend_data (abfd);
6366 if ((size_t) (rel - relocs)
6367 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6368 rel_hdr = elf_section_data (sec)->rel_hdr2;
6369 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
6372 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
6373 HOWTO is the relocation's howto and CONTENTS points to the contents
6374 of the section that REL is against. */
6377 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
6378 reloc_howto_type *howto, bfd_byte *contents)
6381 unsigned int r_type;
6384 r_type = ELF_R_TYPE (abfd, rel->r_info);
6385 location = contents + rel->r_offset;
6387 /* Get the addend, which is stored in the input file. */
6388 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
6389 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
6390 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
6392 return addend & howto->src_mask;
6395 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
6396 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
6397 and update *ADDEND with the final addend. Return true on success
6398 or false if the LO16 could not be found. RELEND is the exclusive
6399 upper bound on the relocations for REL's section. */
6402 mips_elf_add_lo16_rel_addend (bfd *abfd,
6403 const Elf_Internal_Rela *rel,
6404 const Elf_Internal_Rela *relend,
6405 bfd_byte *contents, bfd_vma *addend)
6407 unsigned int r_type, lo16_type;
6408 const Elf_Internal_Rela *lo16_relocation;
6409 reloc_howto_type *lo16_howto;
6412 r_type = ELF_R_TYPE (abfd, rel->r_info);
6413 if (r_type == R_MIPS16_HI16)
6414 lo16_type = R_MIPS16_LO16;
6416 lo16_type = R_MIPS_LO16;
6418 /* The combined value is the sum of the HI16 addend, left-shifted by
6419 sixteen bits, and the LO16 addend, sign extended. (Usually, the
6420 code does a `lui' of the HI16 value, and then an `addiu' of the
6423 Scan ahead to find a matching LO16 relocation.
6425 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
6426 be immediately following. However, for the IRIX6 ABI, the next
6427 relocation may be a composed relocation consisting of several
6428 relocations for the same address. In that case, the R_MIPS_LO16
6429 relocation may occur as one of these. We permit a similar
6430 extension in general, as that is useful for GCC.
6432 In some cases GCC dead code elimination removes the LO16 but keeps
6433 the corresponding HI16. This is strictly speaking a violation of
6434 the ABI but not immediately harmful. */
6435 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
6436 if (lo16_relocation == NULL)
6439 /* Obtain the addend kept there. */
6440 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
6441 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
6443 l <<= lo16_howto->rightshift;
6444 l = _bfd_mips_elf_sign_extend (l, 16);
6451 /* Try to read the contents of section SEC in bfd ABFD. Return true and
6452 store the contents in *CONTENTS on success. Assume that *CONTENTS
6453 already holds the contents if it is nonull on entry. */
6456 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
6461 /* Get cached copy if it exists. */
6462 if (elf_section_data (sec)->this_hdr.contents != NULL)
6464 *contents = elf_section_data (sec)->this_hdr.contents;
6468 return bfd_malloc_and_get_section (abfd, sec, contents);
6471 /* Look through the relocs for a section during the first phase, and
6472 allocate space in the global offset table. */
6475 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6476 asection *sec, const Elf_Internal_Rela *relocs)
6480 Elf_Internal_Shdr *symtab_hdr;
6481 struct elf_link_hash_entry **sym_hashes;
6482 struct mips_got_info *g;
6484 const Elf_Internal_Rela *rel;
6485 const Elf_Internal_Rela *rel_end;
6488 const struct elf_backend_data *bed;
6489 struct mips_elf_link_hash_table *htab;
6492 reloc_howto_type *howto;
6494 if (info->relocatable)
6497 htab = mips_elf_hash_table (info);
6498 dynobj = elf_hash_table (info)->dynobj;
6499 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6500 sym_hashes = elf_sym_hashes (abfd);
6501 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6503 /* Check for the mips16 stub sections. */
6505 name = bfd_get_section_name (abfd, sec);
6506 if (FN_STUB_P (name))
6508 unsigned long r_symndx;
6510 /* Look at the relocation information to figure out which symbol
6513 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6515 if (r_symndx < extsymoff
6516 || sym_hashes[r_symndx - extsymoff] == NULL)
6520 /* This stub is for a local symbol. This stub will only be
6521 needed if there is some relocation in this BFD, other
6522 than a 16 bit function call, which refers to this symbol. */
6523 for (o = abfd->sections; o != NULL; o = o->next)
6525 Elf_Internal_Rela *sec_relocs;
6526 const Elf_Internal_Rela *r, *rend;
6528 /* We can ignore stub sections when looking for relocs. */
6529 if ((o->flags & SEC_RELOC) == 0
6530 || o->reloc_count == 0
6531 || mips16_stub_section_p (abfd, o))
6535 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6537 if (sec_relocs == NULL)
6540 rend = sec_relocs + o->reloc_count;
6541 for (r = sec_relocs; r < rend; r++)
6542 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6543 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6546 if (elf_section_data (o)->relocs != sec_relocs)
6555 /* There is no non-call reloc for this stub, so we do
6556 not need it. Since this function is called before
6557 the linker maps input sections to output sections, we
6558 can easily discard it by setting the SEC_EXCLUDE
6560 sec->flags |= SEC_EXCLUDE;
6564 /* Record this stub in an array of local symbol stubs for
6566 if (elf_tdata (abfd)->local_stubs == NULL)
6568 unsigned long symcount;
6572 if (elf_bad_symtab (abfd))
6573 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6575 symcount = symtab_hdr->sh_info;
6576 amt = symcount * sizeof (asection *);
6577 n = bfd_zalloc (abfd, amt);
6580 elf_tdata (abfd)->local_stubs = n;
6583 sec->flags |= SEC_KEEP;
6584 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6586 /* We don't need to set mips16_stubs_seen in this case.
6587 That flag is used to see whether we need to look through
6588 the global symbol table for stubs. We don't need to set
6589 it here, because we just have a local stub. */
6593 struct mips_elf_link_hash_entry *h;
6595 h = ((struct mips_elf_link_hash_entry *)
6596 sym_hashes[r_symndx - extsymoff]);
6598 while (h->root.root.type == bfd_link_hash_indirect
6599 || h->root.root.type == bfd_link_hash_warning)
6600 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6602 /* H is the symbol this stub is for. */
6604 /* If we already have an appropriate stub for this function, we
6605 don't need another one, so we can discard this one. Since
6606 this function is called before the linker maps input sections
6607 to output sections, we can easily discard it by setting the
6608 SEC_EXCLUDE flag. */
6609 if (h->fn_stub != NULL)
6611 sec->flags |= SEC_EXCLUDE;
6615 sec->flags |= SEC_KEEP;
6617 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6620 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6622 unsigned long r_symndx;
6623 struct mips_elf_link_hash_entry *h;
6626 /* Look at the relocation information to figure out which symbol
6629 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6631 if (r_symndx < extsymoff
6632 || sym_hashes[r_symndx - extsymoff] == NULL)
6636 /* This stub is for a local symbol. This stub will only be
6637 needed if there is some relocation (R_MIPS16_26) in this BFD
6638 that refers to this symbol. */
6639 for (o = abfd->sections; o != NULL; o = o->next)
6641 Elf_Internal_Rela *sec_relocs;
6642 const Elf_Internal_Rela *r, *rend;
6644 /* We can ignore stub sections when looking for relocs. */
6645 if ((o->flags & SEC_RELOC) == 0
6646 || o->reloc_count == 0
6647 || mips16_stub_section_p (abfd, o))
6651 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6653 if (sec_relocs == NULL)
6656 rend = sec_relocs + o->reloc_count;
6657 for (r = sec_relocs; r < rend; r++)
6658 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6659 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6662 if (elf_section_data (o)->relocs != sec_relocs)
6671 /* There is no non-call reloc for this stub, so we do
6672 not need it. Since this function is called before
6673 the linker maps input sections to output sections, we
6674 can easily discard it by setting the SEC_EXCLUDE
6676 sec->flags |= SEC_EXCLUDE;
6680 /* Record this stub in an array of local symbol call_stubs for
6682 if (elf_tdata (abfd)->local_call_stubs == NULL)
6684 unsigned long symcount;
6688 if (elf_bad_symtab (abfd))
6689 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6691 symcount = symtab_hdr->sh_info;
6692 amt = symcount * sizeof (asection *);
6693 n = bfd_zalloc (abfd, amt);
6696 elf_tdata (abfd)->local_call_stubs = n;
6699 sec->flags |= SEC_KEEP;
6700 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6702 /* We don't need to set mips16_stubs_seen in this case.
6703 That flag is used to see whether we need to look through
6704 the global symbol table for stubs. We don't need to set
6705 it here, because we just have a local stub. */
6709 h = ((struct mips_elf_link_hash_entry *)
6710 sym_hashes[r_symndx - extsymoff]);
6712 /* H is the symbol this stub is for. */
6714 if (CALL_FP_STUB_P (name))
6715 loc = &h->call_fp_stub;
6717 loc = &h->call_stub;
6719 /* If we already have an appropriate stub for this function, we
6720 don't need another one, so we can discard this one. Since
6721 this function is called before the linker maps input sections
6722 to output sections, we can easily discard it by setting the
6723 SEC_EXCLUDE flag. */
6726 sec->flags |= SEC_EXCLUDE;
6730 sec->flags |= SEC_KEEP;
6732 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6743 sgot = mips_elf_got_section (dynobj, FALSE);
6748 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6749 g = mips_elf_section_data (sgot)->u.got_info;
6750 BFD_ASSERT (g != NULL);
6755 bed = get_elf_backend_data (abfd);
6756 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6758 for (rel = relocs; rel < rel_end; ++rel)
6760 unsigned long r_symndx;
6761 unsigned int r_type;
6762 struct elf_link_hash_entry *h;
6764 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6765 r_type = ELF_R_TYPE (abfd, rel->r_info);
6767 if (r_symndx < extsymoff)
6769 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6771 (*_bfd_error_handler)
6772 (_("%B: Malformed reloc detected for section %s"),
6774 bfd_set_error (bfd_error_bad_value);
6779 h = sym_hashes[r_symndx - extsymoff];
6781 /* This may be an indirect symbol created because of a version. */
6784 while (h->root.type == bfd_link_hash_indirect)
6785 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6789 /* Some relocs require a global offset table. */
6790 if (dynobj == NULL || sgot == NULL)
6796 case R_MIPS_CALL_HI16:
6797 case R_MIPS_CALL_LO16:
6798 case R_MIPS_GOT_HI16:
6799 case R_MIPS_GOT_LO16:
6800 case R_MIPS_GOT_PAGE:
6801 case R_MIPS_GOT_OFST:
6802 case R_MIPS_GOT_DISP:
6803 case R_MIPS_TLS_GOTTPREL:
6805 case R_MIPS_TLS_LDM:
6807 elf_hash_table (info)->dynobj = dynobj = abfd;
6808 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6810 g = mips_elf_got_info (dynobj, &sgot);
6811 if (htab->is_vxworks && !info->shared)
6813 (*_bfd_error_handler)
6814 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6815 abfd, (unsigned long) rel->r_offset);
6816 bfd_set_error (bfd_error_bad_value);
6824 /* In VxWorks executables, references to external symbols
6825 are handled using copy relocs or PLT stubs, so there's
6826 no need to add a dynamic relocation here. */
6828 && (info->shared || (h != NULL && !htab->is_vxworks))
6829 && (sec->flags & SEC_ALLOC) != 0)
6830 elf_hash_table (info)->dynobj = dynobj = abfd;
6840 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6842 /* Relocations against the special VxWorks __GOTT_BASE__ and
6843 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6844 room for them in .rela.dyn. */
6845 if (is_gott_symbol (info, h))
6849 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6853 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6854 if (MIPS_ELF_READONLY_SECTION (sec))
6855 /* We tell the dynamic linker that there are
6856 relocations against the text segment. */
6857 info->flags |= DF_TEXTREL;
6860 else if (r_type == R_MIPS_CALL_LO16
6861 || r_type == R_MIPS_GOT_LO16
6862 || r_type == R_MIPS_GOT_DISP
6863 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6865 /* We may need a local GOT entry for this relocation. We
6866 don't count R_MIPS_GOT_PAGE because we can estimate the
6867 maximum number of pages needed by looking at the size of
6868 the segment. Similar comments apply to R_MIPS_GOT16 and
6869 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6870 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6871 R_MIPS_CALL_HI16 because these are always followed by an
6872 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6873 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6874 rel->r_addend, g, 0))
6883 (*_bfd_error_handler)
6884 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6885 abfd, (unsigned long) rel->r_offset);
6886 bfd_set_error (bfd_error_bad_value);
6891 case R_MIPS_CALL_HI16:
6892 case R_MIPS_CALL_LO16:
6895 /* VxWorks call relocations point the function's .got.plt
6896 entry, which will be allocated by adjust_dynamic_symbol.
6897 Otherwise, this symbol requires a global GOT entry. */
6898 if ((!htab->is_vxworks || h->forced_local)
6899 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6902 /* We need a stub, not a plt entry for the undefined
6903 function. But we record it as if it needs plt. See
6904 _bfd_elf_adjust_dynamic_symbol. */
6910 case R_MIPS_GOT_PAGE:
6911 /* If this is a global, overridable symbol, GOT_PAGE will
6912 decay to GOT_DISP, so we'll need a GOT entry for it. */
6915 struct mips_elf_link_hash_entry *hmips =
6916 (struct mips_elf_link_hash_entry *) h;
6918 while (hmips->root.root.type == bfd_link_hash_indirect
6919 || hmips->root.root.type == bfd_link_hash_warning)
6920 hmips = (struct mips_elf_link_hash_entry *)
6921 hmips->root.root.u.i.link;
6923 /* This symbol is definitely not overridable. */
6924 if (hmips->root.def_regular
6925 && ! (info->shared && ! info->symbolic
6926 && ! hmips->root.forced_local))
6932 case R_MIPS_GOT_HI16:
6933 case R_MIPS_GOT_LO16:
6934 if (!h || r_type == R_MIPS_GOT_PAGE)
6936 /* This relocation needs (or may need, if h != NULL) a
6937 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
6938 know for sure until we know whether the symbol is
6940 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
6942 if (!mips_elf_get_section_contents (abfd, sec, &contents))
6944 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
6945 addend = mips_elf_read_rel_addend (abfd, rel,
6947 if (r_type == R_MIPS_GOT16)
6948 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
6951 addend <<= howto->rightshift;
6954 addend = rel->r_addend;
6955 if (!mips_elf_record_got_page_entry (abfd, r_symndx, addend, g))
6961 case R_MIPS_GOT_DISP:
6962 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6966 case R_MIPS_TLS_GOTTPREL:
6968 info->flags |= DF_STATIC_TLS;
6971 case R_MIPS_TLS_LDM:
6972 if (r_type == R_MIPS_TLS_LDM)
6980 /* This symbol requires a global offset table entry, or two
6981 for TLS GD relocations. */
6983 unsigned char flag = (r_type == R_MIPS_TLS_GD
6985 : r_type == R_MIPS_TLS_LDM
6990 struct mips_elf_link_hash_entry *hmips =
6991 (struct mips_elf_link_hash_entry *) h;
6992 hmips->tls_type |= flag;
6994 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6999 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
7001 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
7002 rel->r_addend, g, flag))
7011 /* In VxWorks executables, references to external symbols
7012 are handled using copy relocs or PLT stubs, so there's
7013 no need to add a .rela.dyn entry for this relocation. */
7014 if ((info->shared || (h != NULL && !htab->is_vxworks))
7015 && (sec->flags & SEC_ALLOC) != 0)
7019 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7025 /* When creating a shared object, we must copy these
7026 reloc types into the output file as R_MIPS_REL32
7027 relocs. Make room for this reloc in .rel(a).dyn. */
7028 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7029 if (MIPS_ELF_READONLY_SECTION (sec))
7030 /* We tell the dynamic linker that there are
7031 relocations against the text segment. */
7032 info->flags |= DF_TEXTREL;
7036 struct mips_elf_link_hash_entry *hmips;
7038 /* We only need to copy this reloc if the symbol is
7039 defined in a dynamic object. */
7040 hmips = (struct mips_elf_link_hash_entry *) h;
7041 ++hmips->possibly_dynamic_relocs;
7042 if (MIPS_ELF_READONLY_SECTION (sec))
7043 /* We need it to tell the dynamic linker if there
7044 are relocations against the text segment. */
7045 hmips->readonly_reloc = TRUE;
7048 /* Even though we don't directly need a GOT entry for
7049 this symbol, a symbol must have a dynamic symbol
7050 table index greater that DT_MIPS_GOTSYM if there are
7051 dynamic relocations against it. This does not apply
7052 to VxWorks, which does not have the usual coupling
7053 between global GOT entries and .dynsym entries. */
7054 if (h != NULL && !htab->is_vxworks)
7057 elf_hash_table (info)->dynobj = dynobj = abfd;
7058 if (! mips_elf_create_got_section (dynobj, info, TRUE))
7060 g = mips_elf_got_info (dynobj, &sgot);
7061 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
7066 if (SGI_COMPAT (abfd))
7067 mips_elf_hash_table (info)->compact_rel_size +=
7068 sizeof (Elf32_External_crinfo);
7073 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7078 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7081 case R_MIPS_GPREL16:
7082 case R_MIPS_LITERAL:
7083 case R_MIPS_GPREL32:
7084 if (SGI_COMPAT (abfd))
7085 mips_elf_hash_table (info)->compact_rel_size +=
7086 sizeof (Elf32_External_crinfo);
7089 /* This relocation describes the C++ object vtable hierarchy.
7090 Reconstruct it for later use during GC. */
7091 case R_MIPS_GNU_VTINHERIT:
7092 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7096 /* This relocation describes which C++ vtable entries are actually
7097 used. Record for later use during GC. */
7098 case R_MIPS_GNU_VTENTRY:
7099 BFD_ASSERT (h != NULL);
7101 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7109 /* We must not create a stub for a symbol that has relocations
7110 related to taking the function's address. This doesn't apply to
7111 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7112 a normal .got entry. */
7113 if (!htab->is_vxworks && h != NULL)
7117 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7120 case R_MIPS_CALL_HI16:
7121 case R_MIPS_CALL_LO16:
7126 /* If this reloc is not a 16 bit call, and it has a global
7127 symbol, then we will need the fn_stub if there is one.
7128 References from a stub section do not count. */
7130 && r_type != R_MIPS16_26
7131 && !mips16_stub_section_p (abfd, sec))
7133 struct mips_elf_link_hash_entry *mh;
7135 mh = (struct mips_elf_link_hash_entry *) h;
7136 mh->need_fn_stub = TRUE;
7144 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7145 struct bfd_link_info *link_info,
7148 Elf_Internal_Rela *internal_relocs;
7149 Elf_Internal_Rela *irel, *irelend;
7150 Elf_Internal_Shdr *symtab_hdr;
7151 bfd_byte *contents = NULL;
7153 bfd_boolean changed_contents = FALSE;
7154 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7155 Elf_Internal_Sym *isymbuf = NULL;
7157 /* We are not currently changing any sizes, so only one pass. */
7160 if (link_info->relocatable)
7163 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7164 link_info->keep_memory);
7165 if (internal_relocs == NULL)
7168 irelend = internal_relocs + sec->reloc_count
7169 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7170 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7171 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7173 for (irel = internal_relocs; irel < irelend; irel++)
7176 bfd_signed_vma sym_offset;
7177 unsigned int r_type;
7178 unsigned long r_symndx;
7180 unsigned long instruction;
7182 /* Turn jalr into bgezal, and jr into beq, if they're marked
7183 with a JALR relocation, that indicate where they jump to.
7184 This saves some pipeline bubbles. */
7185 r_type = ELF_R_TYPE (abfd, irel->r_info);
7186 if (r_type != R_MIPS_JALR)
7189 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7190 /* Compute the address of the jump target. */
7191 if (r_symndx >= extsymoff)
7193 struct mips_elf_link_hash_entry *h
7194 = ((struct mips_elf_link_hash_entry *)
7195 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7197 while (h->root.root.type == bfd_link_hash_indirect
7198 || h->root.root.type == bfd_link_hash_warning)
7199 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7201 /* If a symbol is undefined, or if it may be overridden,
7203 if (! ((h->root.root.type == bfd_link_hash_defined
7204 || h->root.root.type == bfd_link_hash_defweak)
7205 && h->root.root.u.def.section)
7206 || (link_info->shared && ! link_info->symbolic
7207 && !h->root.forced_local))
7210 sym_sec = h->root.root.u.def.section;
7211 if (sym_sec->output_section)
7212 symval = (h->root.root.u.def.value
7213 + sym_sec->output_section->vma
7214 + sym_sec->output_offset);
7216 symval = h->root.root.u.def.value;
7220 Elf_Internal_Sym *isym;
7222 /* Read this BFD's symbols if we haven't done so already. */
7223 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
7225 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7226 if (isymbuf == NULL)
7227 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
7228 symtab_hdr->sh_info, 0,
7230 if (isymbuf == NULL)
7234 isym = isymbuf + r_symndx;
7235 if (isym->st_shndx == SHN_UNDEF)
7237 else if (isym->st_shndx == SHN_ABS)
7238 sym_sec = bfd_abs_section_ptr;
7239 else if (isym->st_shndx == SHN_COMMON)
7240 sym_sec = bfd_com_section_ptr;
7243 = bfd_section_from_elf_index (abfd, isym->st_shndx);
7244 symval = isym->st_value
7245 + sym_sec->output_section->vma
7246 + sym_sec->output_offset;
7249 /* Compute branch offset, from delay slot of the jump to the
7251 sym_offset = (symval + irel->r_addend)
7252 - (sec_start + irel->r_offset + 4);
7254 /* Branch offset must be properly aligned. */
7255 if ((sym_offset & 3) != 0)
7260 /* Check that it's in range. */
7261 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
7264 /* Get the section contents if we haven't done so already. */
7265 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7268 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
7270 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
7271 if ((instruction & 0xfc1fffff) == 0x0000f809)
7272 instruction = 0x04110000;
7273 /* If it was jr <reg>, turn it into b <target>. */
7274 else if ((instruction & 0xfc1fffff) == 0x00000008)
7275 instruction = 0x10000000;
7279 instruction |= (sym_offset & 0xffff);
7280 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
7281 changed_contents = TRUE;
7284 if (contents != NULL
7285 && elf_section_data (sec)->this_hdr.contents != contents)
7287 if (!changed_contents && !link_info->keep_memory)
7291 /* Cache the section contents for elf_link_input_bfd. */
7292 elf_section_data (sec)->this_hdr.contents = contents;
7298 if (contents != NULL
7299 && elf_section_data (sec)->this_hdr.contents != contents)
7304 /* Adjust a symbol defined by a dynamic object and referenced by a
7305 regular object. The current definition is in some section of the
7306 dynamic object, but we're not including those sections. We have to
7307 change the definition to something the rest of the link can
7311 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
7312 struct elf_link_hash_entry *h)
7315 struct mips_elf_link_hash_entry *hmips;
7317 struct mips_elf_link_hash_table *htab;
7319 htab = mips_elf_hash_table (info);
7320 dynobj = elf_hash_table (info)->dynobj;
7322 /* Make sure we know what is going on here. */
7323 BFD_ASSERT (dynobj != NULL
7325 || h->u.weakdef != NULL
7328 && !h->def_regular)));
7330 /* If this symbol is defined in a dynamic object, we need to copy
7331 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
7333 hmips = (struct mips_elf_link_hash_entry *) h;
7334 if (! info->relocatable
7335 && hmips->possibly_dynamic_relocs != 0
7336 && (h->root.type == bfd_link_hash_defweak
7337 || !h->def_regular))
7339 mips_elf_allocate_dynamic_relocations
7340 (dynobj, info, hmips->possibly_dynamic_relocs);
7341 if (hmips->readonly_reloc)
7342 /* We tell the dynamic linker that there are relocations
7343 against the text segment. */
7344 info->flags |= DF_TEXTREL;
7347 /* For a function, create a stub, if allowed. */
7348 if (! hmips->no_fn_stub
7351 if (! elf_hash_table (info)->dynamic_sections_created)
7354 /* If this symbol is not defined in a regular file, then set
7355 the symbol to the stub location. This is required to make
7356 function pointers compare as equal between the normal
7357 executable and the shared library. */
7358 if (!h->def_regular)
7360 /* We need .stub section. */
7361 s = bfd_get_section_by_name (dynobj,
7362 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7363 BFD_ASSERT (s != NULL);
7365 h->root.u.def.section = s;
7366 h->root.u.def.value = s->size;
7368 /* XXX Write this stub address somewhere. */
7369 h->plt.offset = s->size;
7371 /* Make room for this stub code. */
7372 s->size += htab->function_stub_size;
7374 /* The last half word of the stub will be filled with the index
7375 of this symbol in .dynsym section. */
7379 else if ((h->type == STT_FUNC)
7382 /* This will set the entry for this symbol in the GOT to 0, and
7383 the dynamic linker will take care of this. */
7384 h->root.u.def.value = 0;
7388 /* If this is a weak symbol, and there is a real definition, the
7389 processor independent code will have arranged for us to see the
7390 real definition first, and we can just use the same value. */
7391 if (h->u.weakdef != NULL)
7393 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7394 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7395 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7396 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7400 /* This is a reference to a symbol defined by a dynamic object which
7401 is not a function. */
7406 /* Likewise, for VxWorks. */
7409 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7410 struct elf_link_hash_entry *h)
7413 struct mips_elf_link_hash_entry *hmips;
7414 struct mips_elf_link_hash_table *htab;
7416 htab = mips_elf_hash_table (info);
7417 dynobj = elf_hash_table (info)->dynobj;
7418 hmips = (struct mips_elf_link_hash_entry *) h;
7420 /* Make sure we know what is going on here. */
7421 BFD_ASSERT (dynobj != NULL
7424 || h->u.weakdef != NULL
7427 && !h->def_regular)));
7429 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7430 either (a) we want to branch to the symbol or (b) we're linking an
7431 executable that needs a canonical function address. In the latter
7432 case, the canonical address will be the address of the executable's
7434 if ((hmips->is_branch_target
7436 && h->type == STT_FUNC
7437 && hmips->is_relocation_target))
7441 && !h->forced_local)
7444 /* Locally-binding symbols do not need a PLT stub; we can refer to
7445 the functions directly. */
7446 else if (h->needs_plt
7447 && (SYMBOL_CALLS_LOCAL (info, h)
7448 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7449 && h->root.type == bfd_link_hash_undefweak)))
7457 /* If this is the first symbol to need a PLT entry, allocate room
7458 for the header, and for the header's .rela.plt.unloaded entries. */
7459 if (htab->splt->size == 0)
7461 htab->splt->size += htab->plt_header_size;
7463 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7466 /* Assign the next .plt entry to this symbol. */
7467 h->plt.offset = htab->splt->size;
7468 htab->splt->size += htab->plt_entry_size;
7470 /* If the output file has no definition of the symbol, set the
7471 symbol's value to the address of the stub. Point at the PLT
7472 load stub rather than the lazy resolution stub; this stub
7473 will become the canonical function address. */
7474 if (!info->shared && !h->def_regular)
7476 h->root.u.def.section = htab->splt;
7477 h->root.u.def.value = h->plt.offset;
7478 h->root.u.def.value += 8;
7481 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7482 htab->sgotplt->size += 4;
7483 htab->srelplt->size += sizeof (Elf32_External_Rela);
7485 /* Make room for the .rela.plt.unloaded relocations. */
7487 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7492 /* If a function symbol is defined by a dynamic object, and we do not
7493 need a PLT stub for it, the symbol's value should be zero. */
7494 if (h->type == STT_FUNC
7499 h->root.u.def.value = 0;
7503 /* If this is a weak symbol, and there is a real definition, the
7504 processor independent code will have arranged for us to see the
7505 real definition first, and we can just use the same value. */
7506 if (h->u.weakdef != NULL)
7508 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7509 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7510 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7511 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7515 /* This is a reference to a symbol defined by a dynamic object which
7516 is not a function. */
7520 /* We must allocate the symbol in our .dynbss section, which will
7521 become part of the .bss section of the executable. There will be
7522 an entry for this symbol in the .dynsym section. The dynamic
7523 object will contain position independent code, so all references
7524 from the dynamic object to this symbol will go through the global
7525 offset table. The dynamic linker will use the .dynsym entry to
7526 determine the address it must put in the global offset table, so
7527 both the dynamic object and the regular object will refer to the
7528 same memory location for the variable. */
7530 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7532 htab->srelbss->size += sizeof (Elf32_External_Rela);
7536 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
7539 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7540 The number might be exact or a worst-case estimate, depending on how
7541 much information is available to elf_backend_omit_section_dynsym at
7542 the current linking stage. */
7544 static bfd_size_type
7545 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7547 bfd_size_type count;
7550 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7553 const struct elf_backend_data *bed;
7555 bed = get_elf_backend_data (output_bfd);
7556 for (p = output_bfd->sections; p ; p = p->next)
7557 if ((p->flags & SEC_EXCLUDE) == 0
7558 && (p->flags & SEC_ALLOC) != 0
7559 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7565 /* This function is called after all the input files have been read,
7566 and the input sections have been assigned to output sections. We
7567 check for any mips16 stub sections that we can discard. */
7570 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7571 struct bfd_link_info *info)
7577 struct mips_got_info *g;
7579 bfd_size_type loadable_size = 0;
7580 bfd_size_type page_gotno;
7581 bfd_size_type dynsymcount;
7583 struct mips_elf_count_tls_arg count_tls_arg;
7584 struct mips_elf_link_hash_table *htab;
7586 htab = mips_elf_hash_table (info);
7588 /* The .reginfo section has a fixed size. */
7589 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7591 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7593 if (! (info->relocatable
7594 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7595 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7596 mips_elf_check_mips16_stubs, NULL);
7598 dynobj = elf_hash_table (info)->dynobj;
7600 /* Relocatable links don't have it. */
7603 g = mips_elf_got_info (dynobj, &s);
7607 /* Calculate the total loadable size of the output. That
7608 will give us the maximum number of GOT_PAGE entries
7610 for (sub = info->input_bfds; sub; sub = sub->link_next)
7612 asection *subsection;
7614 for (subsection = sub->sections;
7616 subsection = subsection->next)
7618 if ((subsection->flags & SEC_ALLOC) == 0)
7620 loadable_size += ((subsection->size + 0xf)
7621 &~ (bfd_size_type) 0xf);
7625 /* There has to be a global GOT entry for every symbol with
7626 a dynamic symbol table index of DT_MIPS_GOTSYM or
7627 higher. Therefore, it make sense to put those symbols
7628 that need GOT entries at the end of the symbol table. We
7630 if (! mips_elf_sort_hash_table (info, 1))
7633 if (g->global_gotsym != NULL)
7634 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7636 /* If there are no global symbols, or none requiring
7637 relocations, then GLOBAL_GOTSYM will be NULL. */
7640 /* Get a worst-case estimate of the number of dynamic symbols needed.
7641 At this point, dynsymcount does not account for section symbols
7642 and count_section_dynsyms may overestimate the number that will
7644 dynsymcount = (elf_hash_table (info)->dynsymcount
7645 + count_section_dynsyms (output_bfd, info));
7647 /* Determine the size of one stub entry. */
7648 htab->function_stub_size = (dynsymcount > 0x10000
7649 ? MIPS_FUNCTION_STUB_BIG_SIZE
7650 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7652 /* In the worst case, we'll get one stub per dynamic symbol, plus
7653 one to account for the dummy entry at the end required by IRIX
7655 loadable_size += htab->function_stub_size * (i + 1);
7657 if (htab->is_vxworks)
7658 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7659 relocations against local symbols evaluate to "G", and the EABI does
7660 not include R_MIPS_GOT_PAGE. */
7663 /* Assume there are two loadable segments consisting of contiguous
7664 sections. Is 5 enough? */
7665 page_gotno = (loadable_size >> 16) + 5;
7667 /* Choose the smaller of the two estimates; both are intended to be
7669 if (page_gotno > g->page_gotno)
7670 page_gotno = g->page_gotno;
7672 g->local_gotno += page_gotno;
7673 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7675 g->global_gotno = i;
7676 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7678 /* We need to calculate tls_gotno for global symbols at this point
7679 instead of building it up earlier, to avoid doublecounting
7680 entries for one global symbol from multiple input files. */
7681 count_tls_arg.info = info;
7682 count_tls_arg.needed = 0;
7683 elf_link_hash_traverse (elf_hash_table (info),
7684 mips_elf_count_global_tls_entries,
7686 g->tls_gotno += count_tls_arg.needed;
7687 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7689 mips_elf_resolve_final_got_entries (g);
7691 /* VxWorks does not support multiple GOTs. It initializes $gp to
7692 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7694 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7696 if (! mips_elf_multi_got (output_bfd, info, g, s, page_gotno))
7701 /* Set up TLS entries for the first GOT. */
7702 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7703 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7705 htab->computed_got_sizes = TRUE;
7710 /* Set the sizes of the dynamic sections. */
7713 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7714 struct bfd_link_info *info)
7717 asection *s, *sreldyn;
7718 bfd_boolean reltext;
7719 struct mips_elf_link_hash_table *htab;
7721 htab = mips_elf_hash_table (info);
7722 dynobj = elf_hash_table (info)->dynobj;
7723 BFD_ASSERT (dynobj != NULL);
7725 if (elf_hash_table (info)->dynamic_sections_created)
7727 /* Set the contents of the .interp section to the interpreter. */
7728 if (info->executable)
7730 s = bfd_get_section_by_name (dynobj, ".interp");
7731 BFD_ASSERT (s != NULL);
7733 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7735 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7739 /* The check_relocs and adjust_dynamic_symbol entry points have
7740 determined the sizes of the various dynamic sections. Allocate
7744 for (s = dynobj->sections; s != NULL; s = s->next)
7748 /* It's OK to base decisions on the section name, because none
7749 of the dynobj section names depend upon the input files. */
7750 name = bfd_get_section_name (dynobj, s);
7752 if ((s->flags & SEC_LINKER_CREATED) == 0)
7755 if (CONST_STRNEQ (name, ".rel"))
7759 const char *outname;
7762 /* If this relocation section applies to a read only
7763 section, then we probably need a DT_TEXTREL entry.
7764 If the relocation section is .rel(a).dyn, we always
7765 assert a DT_TEXTREL entry rather than testing whether
7766 there exists a relocation to a read only section or
7768 outname = bfd_get_section_name (output_bfd,
7770 target = bfd_get_section_by_name (output_bfd, outname + 4);
7772 && (target->flags & SEC_READONLY) != 0
7773 && (target->flags & SEC_ALLOC) != 0)
7774 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7777 /* We use the reloc_count field as a counter if we need
7778 to copy relocs into the output file. */
7779 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7782 /* If combreloc is enabled, elf_link_sort_relocs() will
7783 sort relocations, but in a different way than we do,
7784 and before we're done creating relocations. Also, it
7785 will move them around between input sections'
7786 relocation's contents, so our sorting would be
7787 broken, so don't let it run. */
7788 info->combreloc = 0;
7791 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7793 /* Executables do not need a GOT. */
7796 /* Allocate relocations for all but the reserved entries. */
7797 struct mips_got_info *g;
7800 g = mips_elf_got_info (dynobj, NULL);
7801 count = (g->global_gotno
7803 - MIPS_RESERVED_GOTNO (info));
7804 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7807 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7809 /* _bfd_mips_elf_always_size_sections() has already done
7810 most of the work, but some symbols may have been mapped
7811 to versions that we must now resolve in the got_entries
7813 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7814 struct mips_got_info *g = gg;
7815 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7816 unsigned int needed_relocs = 0;
7820 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7821 set_got_offset_arg.info = info;
7823 /* NOTE 2005-02-03: How can this call, or the next, ever
7824 find any indirect entries to resolve? They were all
7825 resolved in mips_elf_multi_got. */
7826 mips_elf_resolve_final_got_entries (gg);
7827 for (g = gg->next; g && g->next != gg; g = g->next)
7829 unsigned int save_assign;
7831 mips_elf_resolve_final_got_entries (g);
7833 /* Assign offsets to global GOT entries. */
7834 save_assign = g->assigned_gotno;
7835 g->assigned_gotno = g->local_gotno;
7836 set_got_offset_arg.g = g;
7837 set_got_offset_arg.needed_relocs = 0;
7838 htab_traverse (g->got_entries,
7839 mips_elf_set_global_got_offset,
7840 &set_got_offset_arg);
7841 needed_relocs += set_got_offset_arg.needed_relocs;
7842 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7843 <= g->global_gotno);
7845 g->assigned_gotno = save_assign;
7848 needed_relocs += g->local_gotno - g->assigned_gotno;
7849 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7850 + g->next->global_gotno
7851 + g->next->tls_gotno
7852 + MIPS_RESERVED_GOTNO (info));
7858 struct mips_elf_count_tls_arg arg;
7862 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7864 elf_link_hash_traverse (elf_hash_table (info),
7865 mips_elf_count_global_tls_relocs,
7868 needed_relocs += arg.needed;
7872 mips_elf_allocate_dynamic_relocations (dynobj, info,
7875 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7877 /* IRIX rld assumes that the function stub isn't at the end
7878 of .text section. So put a dummy. XXX */
7879 s->size += htab->function_stub_size;
7881 else if (! info->shared
7882 && ! mips_elf_hash_table (info)->use_rld_obj_head
7883 && CONST_STRNEQ (name, ".rld_map"))
7885 /* We add a room for __rld_map. It will be filled in by the
7886 rtld to contain a pointer to the _r_debug structure. */
7889 else if (SGI_COMPAT (output_bfd)
7890 && CONST_STRNEQ (name, ".compact_rel"))
7891 s->size += mips_elf_hash_table (info)->compact_rel_size;
7892 else if (! CONST_STRNEQ (name, ".init")
7893 && s != htab->sgotplt
7896 /* It's not one of our sections, so don't allocate space. */
7902 s->flags |= SEC_EXCLUDE;
7906 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7909 /* Allocate memory for this section last, since we may increase its
7911 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7917 /* Allocate memory for the section contents. */
7918 s->contents = bfd_zalloc (dynobj, s->size);
7919 if (s->contents == NULL)
7921 bfd_set_error (bfd_error_no_memory);
7926 /* Allocate memory for the .rel(a).dyn section. */
7927 if (sreldyn != NULL)
7929 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7930 if (sreldyn->contents == NULL)
7932 bfd_set_error (bfd_error_no_memory);
7937 if (elf_hash_table (info)->dynamic_sections_created)
7939 /* Add some entries to the .dynamic section. We fill in the
7940 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7941 must add the entries now so that we get the correct size for
7942 the .dynamic section. */
7944 /* SGI object has the equivalence of DT_DEBUG in the
7945 DT_MIPS_RLD_MAP entry. This must come first because glibc
7946 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7947 looks at the first one it sees. */
7949 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7952 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7953 used by the debugger. */
7954 if (info->executable
7955 && !SGI_COMPAT (output_bfd)
7956 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7959 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7960 info->flags |= DF_TEXTREL;
7962 if ((info->flags & DF_TEXTREL) != 0)
7964 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7967 /* Clear the DF_TEXTREL flag. It will be set again if we
7968 write out an actual text relocation; we may not, because
7969 at this point we do not know whether e.g. any .eh_frame
7970 absolute relocations have been converted to PC-relative. */
7971 info->flags &= ~DF_TEXTREL;
7974 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7977 if (htab->is_vxworks)
7979 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7980 use any of the DT_MIPS_* tags. */
7981 if (mips_elf_rel_dyn_section (info, FALSE))
7983 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7986 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7989 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7992 if (htab->splt->size > 0)
7994 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7997 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8000 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8006 if (mips_elf_rel_dyn_section (info, FALSE))
8008 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8011 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8014 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8018 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8021 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8024 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8027 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8030 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8033 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8036 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8039 if (IRIX_COMPAT (dynobj) == ict_irix5
8040 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8043 if (IRIX_COMPAT (dynobj) == ict_irix6
8044 && (bfd_get_section_by_name
8045 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8046 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8049 if (htab->is_vxworks
8050 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8057 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8058 Adjust its R_ADDEND field so that it is correct for the output file.
8059 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8060 and sections respectively; both use symbol indexes. */
8063 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8064 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8065 asection **local_sections, Elf_Internal_Rela *rel)
8067 unsigned int r_type, r_symndx;
8068 Elf_Internal_Sym *sym;
8071 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8073 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8074 if (r_type == R_MIPS16_GPREL
8075 || r_type == R_MIPS_GPREL16
8076 || r_type == R_MIPS_GPREL32
8077 || r_type == R_MIPS_LITERAL)
8079 rel->r_addend += _bfd_get_gp_value (input_bfd);
8080 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8083 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8084 sym = local_syms + r_symndx;
8086 /* Adjust REL's addend to account for section merging. */
8087 if (!info->relocatable)
8089 sec = local_sections[r_symndx];
8090 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8093 /* This would normally be done by the rela_normal code in elflink.c. */
8094 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8095 rel->r_addend += local_sections[r_symndx]->output_offset;
8099 /* Relocate a MIPS ELF section. */
8102 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8103 bfd *input_bfd, asection *input_section,
8104 bfd_byte *contents, Elf_Internal_Rela *relocs,
8105 Elf_Internal_Sym *local_syms,
8106 asection **local_sections)
8108 Elf_Internal_Rela *rel;
8109 const Elf_Internal_Rela *relend;
8111 bfd_boolean use_saved_addend_p = FALSE;
8112 const struct elf_backend_data *bed;
8114 bed = get_elf_backend_data (output_bfd);
8115 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8116 for (rel = relocs; rel < relend; ++rel)
8120 reloc_howto_type *howto;
8121 bfd_boolean require_jalx;
8122 /* TRUE if the relocation is a RELA relocation, rather than a
8124 bfd_boolean rela_relocation_p = TRUE;
8125 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8127 unsigned long r_symndx;
8129 Elf_Internal_Shdr *symtab_hdr;
8130 struct elf_link_hash_entry *h;
8132 /* Find the relocation howto for this relocation. */
8133 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8134 NEWABI_P (input_bfd)
8135 && (MIPS_RELOC_RELA_P
8136 (input_bfd, input_section,
8139 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
8140 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8141 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8143 sec = local_sections[r_symndx];
8148 unsigned long extsymoff;
8151 if (!elf_bad_symtab (input_bfd))
8152 extsymoff = symtab_hdr->sh_info;
8153 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8154 while (h->root.type == bfd_link_hash_indirect
8155 || h->root.type == bfd_link_hash_warning)
8156 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8159 if (h->root.type == bfd_link_hash_defined
8160 || h->root.type == bfd_link_hash_defweak)
8161 sec = h->root.u.def.section;
8164 if (sec != NULL && elf_discarded_section (sec))
8166 /* For relocs against symbols from removed linkonce sections,
8167 or sections discarded by a linker script, we just want the
8168 section contents zeroed. Avoid any special processing. */
8169 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8175 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
8177 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8178 64-bit code, but make sure all their addresses are in the
8179 lowermost or uppermost 32-bit section of the 64-bit address
8180 space. Thus, when they use an R_MIPS_64 they mean what is
8181 usually meant by R_MIPS_32, with the exception that the
8182 stored value is sign-extended to 64 bits. */
8183 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
8185 /* On big-endian systems, we need to lie about the position
8187 if (bfd_big_endian (input_bfd))
8191 if (!use_saved_addend_p)
8193 /* If these relocations were originally of the REL variety,
8194 we must pull the addend out of the field that will be
8195 relocated. Otherwise, we simply use the contents of the
8197 if (mips_elf_rel_relocation_p (input_bfd, input_section,
8200 rela_relocation_p = FALSE;
8201 addend = mips_elf_read_rel_addend (input_bfd, rel,
8203 if (r_type == R_MIPS_HI16
8204 || r_type == R_MIPS16_HI16
8205 || (r_type == R_MIPS_GOT16
8206 && mips_elf_local_relocation_p (input_bfd, rel,
8207 local_sections, FALSE)))
8209 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
8215 name = h->root.root.string;
8217 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
8218 local_syms + r_symndx,
8220 (*_bfd_error_handler)
8221 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8222 input_bfd, input_section, name, howto->name,
8227 addend <<= howto->rightshift;
8230 addend = rel->r_addend;
8231 mips_elf_adjust_addend (output_bfd, info, input_bfd,
8232 local_syms, local_sections, rel);
8235 if (info->relocatable)
8237 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
8238 && bfd_big_endian (input_bfd))
8241 if (!rela_relocation_p && rel->r_addend)
8243 addend += rel->r_addend;
8244 if (r_type == R_MIPS_HI16
8245 || r_type == R_MIPS_GOT16)
8246 addend = mips_elf_high (addend);
8247 else if (r_type == R_MIPS_HIGHER)
8248 addend = mips_elf_higher (addend);
8249 else if (r_type == R_MIPS_HIGHEST)
8250 addend = mips_elf_highest (addend);
8252 addend >>= howto->rightshift;
8254 /* We use the source mask, rather than the destination
8255 mask because the place to which we are writing will be
8256 source of the addend in the final link. */
8257 addend &= howto->src_mask;
8259 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8260 /* See the comment above about using R_MIPS_64 in the 32-bit
8261 ABI. Here, we need to update the addend. It would be
8262 possible to get away with just using the R_MIPS_32 reloc
8263 but for endianness. */
8269 if (addend & ((bfd_vma) 1 << 31))
8271 sign_bits = ((bfd_vma) 1 << 32) - 1;
8278 /* If we don't know that we have a 64-bit type,
8279 do two separate stores. */
8280 if (bfd_big_endian (input_bfd))
8282 /* Store the sign-bits (which are most significant)
8284 low_bits = sign_bits;
8290 high_bits = sign_bits;
8292 bfd_put_32 (input_bfd, low_bits,
8293 contents + rel->r_offset);
8294 bfd_put_32 (input_bfd, high_bits,
8295 contents + rel->r_offset + 4);
8299 if (! mips_elf_perform_relocation (info, howto, rel, addend,
8300 input_bfd, input_section,
8305 /* Go on to the next relocation. */
8309 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8310 relocations for the same offset. In that case we are
8311 supposed to treat the output of each relocation as the addend
8313 if (rel + 1 < relend
8314 && rel->r_offset == rel[1].r_offset
8315 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8316 use_saved_addend_p = TRUE;
8318 use_saved_addend_p = FALSE;
8320 /* Figure out what value we are supposed to relocate. */
8321 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8322 input_section, info, rel,
8323 addend, howto, local_syms,
8324 local_sections, &value,
8325 &name, &require_jalx,
8326 use_saved_addend_p))
8328 case bfd_reloc_continue:
8329 /* There's nothing to do. */
8332 case bfd_reloc_undefined:
8333 /* mips_elf_calculate_relocation already called the
8334 undefined_symbol callback. There's no real point in
8335 trying to perform the relocation at this point, so we
8336 just skip ahead to the next relocation. */
8339 case bfd_reloc_notsupported:
8340 msg = _("internal error: unsupported relocation error");
8341 info->callbacks->warning
8342 (info, msg, name, input_bfd, input_section, rel->r_offset);
8345 case bfd_reloc_overflow:
8346 if (use_saved_addend_p)
8347 /* Ignore overflow until we reach the last relocation for
8348 a given location. */
8352 struct mips_elf_link_hash_table *htab;
8354 htab = mips_elf_hash_table (info);
8355 BFD_ASSERT (name != NULL);
8356 if (!htab->small_data_overflow_reported
8357 && (howto->type == R_MIPS_GPREL16
8358 || howto->type == R_MIPS_LITERAL))
8361 _("small-data section exceeds 64KB;"
8362 " lower small-data size limit (see option -G)");
8364 htab->small_data_overflow_reported = TRUE;
8365 (*info->callbacks->einfo) ("%P: %s\n", msg);
8367 if (! ((*info->callbacks->reloc_overflow)
8368 (info, NULL, name, howto->name, (bfd_vma) 0,
8369 input_bfd, input_section, rel->r_offset)))
8382 /* If we've got another relocation for the address, keep going
8383 until we reach the last one. */
8384 if (use_saved_addend_p)
8390 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8391 /* See the comment above about using R_MIPS_64 in the 32-bit
8392 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8393 that calculated the right value. Now, however, we
8394 sign-extend the 32-bit result to 64-bits, and store it as a
8395 64-bit value. We are especially generous here in that we
8396 go to extreme lengths to support this usage on systems with
8397 only a 32-bit VMA. */
8403 if (value & ((bfd_vma) 1 << 31))
8405 sign_bits = ((bfd_vma) 1 << 32) - 1;
8412 /* If we don't know that we have a 64-bit type,
8413 do two separate stores. */
8414 if (bfd_big_endian (input_bfd))
8416 /* Undo what we did above. */
8418 /* Store the sign-bits (which are most significant)
8420 low_bits = sign_bits;
8426 high_bits = sign_bits;
8428 bfd_put_32 (input_bfd, low_bits,
8429 contents + rel->r_offset);
8430 bfd_put_32 (input_bfd, high_bits,
8431 contents + rel->r_offset + 4);
8435 /* Actually perform the relocation. */
8436 if (! mips_elf_perform_relocation (info, howto, rel, value,
8437 input_bfd, input_section,
8438 contents, require_jalx))
8445 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8446 adjust it appropriately now. */
8449 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8450 const char *name, Elf_Internal_Sym *sym)
8452 /* The linker script takes care of providing names and values for
8453 these, but we must place them into the right sections. */
8454 static const char* const text_section_symbols[] = {
8457 "__dso_displacement",
8459 "__program_header_table",
8463 static const char* const data_section_symbols[] = {
8471 const char* const *p;
8474 for (i = 0; i < 2; ++i)
8475 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8478 if (strcmp (*p, name) == 0)
8480 /* All of these symbols are given type STT_SECTION by the
8482 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8483 sym->st_other = STO_PROTECTED;
8485 /* The IRIX linker puts these symbols in special sections. */
8487 sym->st_shndx = SHN_MIPS_TEXT;
8489 sym->st_shndx = SHN_MIPS_DATA;
8495 /* Finish up dynamic symbol handling. We set the contents of various
8496 dynamic sections here. */
8499 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8500 struct bfd_link_info *info,
8501 struct elf_link_hash_entry *h,
8502 Elf_Internal_Sym *sym)
8506 struct mips_got_info *g, *gg;
8509 struct mips_elf_link_hash_table *htab;
8511 htab = mips_elf_hash_table (info);
8512 dynobj = elf_hash_table (info)->dynobj;
8514 if (h->plt.offset != MINUS_ONE)
8517 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8519 /* This symbol has a stub. Set it up. */
8521 BFD_ASSERT (h->dynindx != -1);
8523 s = bfd_get_section_by_name (dynobj,
8524 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8525 BFD_ASSERT (s != NULL);
8527 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8528 || (h->dynindx <= 0xffff));
8530 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8531 sign extension at runtime in the stub, resulting in a negative
8533 if (h->dynindx & ~0x7fffffff)
8536 /* Fill the stub. */
8538 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8540 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8542 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8544 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8548 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8551 /* If a large stub is not required and sign extension is not a
8552 problem, then use legacy code in the stub. */
8553 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8554 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8555 else if (h->dynindx & ~0x7fff)
8556 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8558 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8561 BFD_ASSERT (h->plt.offset <= s->size);
8562 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8564 /* Mark the symbol as undefined. plt.offset != -1 occurs
8565 only for the referenced symbol. */
8566 sym->st_shndx = SHN_UNDEF;
8568 /* The run-time linker uses the st_value field of the symbol
8569 to reset the global offset table entry for this external
8570 to its stub address when unlinking a shared object. */
8571 sym->st_value = (s->output_section->vma + s->output_offset
8575 BFD_ASSERT (h->dynindx != -1
8576 || h->forced_local);
8578 sgot = mips_elf_got_section (dynobj, FALSE);
8579 BFD_ASSERT (sgot != NULL);
8580 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8581 g = mips_elf_section_data (sgot)->u.got_info;
8582 BFD_ASSERT (g != NULL);
8584 /* Run through the global symbol table, creating GOT entries for all
8585 the symbols that need them. */
8586 if (g->global_gotsym != NULL
8587 && h->dynindx >= g->global_gotsym->dynindx)
8592 value = sym->st_value;
8593 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8594 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8597 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8599 struct mips_got_entry e, *p;
8605 e.abfd = output_bfd;
8607 e.d.h = (struct mips_elf_link_hash_entry *)h;
8610 for (g = g->next; g->next != gg; g = g->next)
8613 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8618 || (elf_hash_table (info)->dynamic_sections_created
8620 && p->d.h->root.def_dynamic
8621 && !p->d.h->root.def_regular))
8623 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8624 the various compatibility problems, it's easier to mock
8625 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8626 mips_elf_create_dynamic_relocation to calculate the
8627 appropriate addend. */
8628 Elf_Internal_Rela rel[3];
8630 memset (rel, 0, sizeof (rel));
8631 if (ABI_64_P (output_bfd))
8632 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8634 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8635 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8638 if (! (mips_elf_create_dynamic_relocation
8639 (output_bfd, info, rel,
8640 e.d.h, NULL, sym->st_value, &entry, sgot)))
8644 entry = sym->st_value;
8645 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8650 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8651 name = h->root.root.string;
8652 if (strcmp (name, "_DYNAMIC") == 0
8653 || h == elf_hash_table (info)->hgot)
8654 sym->st_shndx = SHN_ABS;
8655 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8656 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8658 sym->st_shndx = SHN_ABS;
8659 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8662 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8664 sym->st_shndx = SHN_ABS;
8665 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8666 sym->st_value = elf_gp (output_bfd);
8668 else if (SGI_COMPAT (output_bfd))
8670 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8671 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8673 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8674 sym->st_other = STO_PROTECTED;
8676 sym->st_shndx = SHN_MIPS_DATA;
8678 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8680 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8681 sym->st_other = STO_PROTECTED;
8682 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8683 sym->st_shndx = SHN_ABS;
8685 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8687 if (h->type == STT_FUNC)
8688 sym->st_shndx = SHN_MIPS_TEXT;
8689 else if (h->type == STT_OBJECT)
8690 sym->st_shndx = SHN_MIPS_DATA;
8694 /* Handle the IRIX6-specific symbols. */
8695 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8696 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8700 if (! mips_elf_hash_table (info)->use_rld_obj_head
8701 && (strcmp (name, "__rld_map") == 0
8702 || strcmp (name, "__RLD_MAP") == 0))
8704 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8705 BFD_ASSERT (s != NULL);
8706 sym->st_value = s->output_section->vma + s->output_offset;
8707 bfd_put_32 (output_bfd, 0, s->contents);
8708 if (mips_elf_hash_table (info)->rld_value == 0)
8709 mips_elf_hash_table (info)->rld_value = sym->st_value;
8711 else if (mips_elf_hash_table (info)->use_rld_obj_head
8712 && strcmp (name, "__rld_obj_head") == 0)
8714 /* IRIX6 does not use a .rld_map section. */
8715 if (IRIX_COMPAT (output_bfd) == ict_irix5
8716 || IRIX_COMPAT (output_bfd) == ict_none)
8717 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8719 mips_elf_hash_table (info)->rld_value = sym->st_value;
8723 /* If this is a mips16 symbol, force the value to be even. */
8724 if (sym->st_other == STO_MIPS16)
8725 sym->st_value &= ~1;
8730 /* Likewise, for VxWorks. */
8733 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8734 struct bfd_link_info *info,
8735 struct elf_link_hash_entry *h,
8736 Elf_Internal_Sym *sym)
8740 struct mips_got_info *g;
8741 struct mips_elf_link_hash_table *htab;
8743 htab = mips_elf_hash_table (info);
8744 dynobj = elf_hash_table (info)->dynobj;
8746 if (h->plt.offset != (bfd_vma) -1)
8749 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8750 Elf_Internal_Rela rel;
8751 static const bfd_vma *plt_entry;
8753 BFD_ASSERT (h->dynindx != -1);
8754 BFD_ASSERT (htab->splt != NULL);
8755 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8757 /* Calculate the address of the .plt entry. */
8758 plt_address = (htab->splt->output_section->vma
8759 + htab->splt->output_offset
8762 /* Calculate the index of the entry. */
8763 plt_index = ((h->plt.offset - htab->plt_header_size)
8764 / htab->plt_entry_size);
8766 /* Calculate the address of the .got.plt entry. */
8767 got_address = (htab->sgotplt->output_section->vma
8768 + htab->sgotplt->output_offset
8771 /* Calculate the offset of the .got.plt entry from
8772 _GLOBAL_OFFSET_TABLE_. */
8773 got_offset = mips_elf_gotplt_index (info, h);
8775 /* Calculate the offset for the branch at the start of the PLT
8776 entry. The branch jumps to the beginning of .plt. */
8777 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8779 /* Fill in the initial value of the .got.plt entry. */
8780 bfd_put_32 (output_bfd, plt_address,
8781 htab->sgotplt->contents + plt_index * 4);
8783 /* Find out where the .plt entry should go. */
8784 loc = htab->splt->contents + h->plt.offset;
8788 plt_entry = mips_vxworks_shared_plt_entry;
8789 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8790 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8794 bfd_vma got_address_high, got_address_low;
8796 plt_entry = mips_vxworks_exec_plt_entry;
8797 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8798 got_address_low = got_address & 0xffff;
8800 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8801 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8802 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8803 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8804 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8805 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8806 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8807 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8809 loc = (htab->srelplt2->contents
8810 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8812 /* Emit a relocation for the .got.plt entry. */
8813 rel.r_offset = got_address;
8814 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8815 rel.r_addend = h->plt.offset;
8816 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8818 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8819 loc += sizeof (Elf32_External_Rela);
8820 rel.r_offset = plt_address + 8;
8821 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8822 rel.r_addend = got_offset;
8823 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8825 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8826 loc += sizeof (Elf32_External_Rela);
8828 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8829 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8832 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8833 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8834 rel.r_offset = got_address;
8835 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8837 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8839 if (!h->def_regular)
8840 sym->st_shndx = SHN_UNDEF;
8843 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8845 sgot = mips_elf_got_section (dynobj, FALSE);
8846 BFD_ASSERT (sgot != NULL);
8847 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8848 g = mips_elf_section_data (sgot)->u.got_info;
8849 BFD_ASSERT (g != NULL);
8851 /* See if this symbol has an entry in the GOT. */
8852 if (g->global_gotsym != NULL
8853 && h->dynindx >= g->global_gotsym->dynindx)
8856 Elf_Internal_Rela outrel;
8860 /* Install the symbol value in the GOT. */
8861 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8862 R_MIPS_GOT16, info);
8863 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8865 /* Add a dynamic relocation for it. */
8866 s = mips_elf_rel_dyn_section (info, FALSE);
8867 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8868 outrel.r_offset = (sgot->output_section->vma
8869 + sgot->output_offset
8871 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8872 outrel.r_addend = 0;
8873 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8876 /* Emit a copy reloc, if needed. */
8879 Elf_Internal_Rela rel;
8881 BFD_ASSERT (h->dynindx != -1);
8883 rel.r_offset = (h->root.u.def.section->output_section->vma
8884 + h->root.u.def.section->output_offset
8885 + h->root.u.def.value);
8886 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8888 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8889 htab->srelbss->contents
8890 + (htab->srelbss->reloc_count
8891 * sizeof (Elf32_External_Rela)));
8892 ++htab->srelbss->reloc_count;
8895 /* If this is a mips16 symbol, force the value to be even. */
8896 if (sym->st_other == STO_MIPS16)
8897 sym->st_value &= ~1;
8902 /* Install the PLT header for a VxWorks executable and finalize the
8903 contents of .rela.plt.unloaded. */
8906 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8908 Elf_Internal_Rela rela;
8910 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8911 static const bfd_vma *plt_entry;
8912 struct mips_elf_link_hash_table *htab;
8914 htab = mips_elf_hash_table (info);
8915 plt_entry = mips_vxworks_exec_plt0_entry;
8917 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8918 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8919 + htab->root.hgot->root.u.def.section->output_offset
8920 + htab->root.hgot->root.u.def.value);
8922 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8923 got_value_low = got_value & 0xffff;
8925 /* Calculate the address of the PLT header. */
8926 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8928 /* Install the PLT header. */
8929 loc = htab->splt->contents;
8930 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8931 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8932 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8933 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8934 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8935 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8937 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8938 loc = htab->srelplt2->contents;
8939 rela.r_offset = plt_address;
8940 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8942 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8943 loc += sizeof (Elf32_External_Rela);
8945 /* Output the relocation for the following addiu of
8946 %lo(_GLOBAL_OFFSET_TABLE_). */
8948 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8949 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8950 loc += sizeof (Elf32_External_Rela);
8952 /* Fix up the remaining relocations. They may have the wrong
8953 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8954 in which symbols were output. */
8955 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8957 Elf_Internal_Rela rel;
8959 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8960 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8961 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8962 loc += sizeof (Elf32_External_Rela);
8964 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8965 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8966 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8967 loc += sizeof (Elf32_External_Rela);
8969 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8970 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8971 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8972 loc += sizeof (Elf32_External_Rela);
8976 /* Install the PLT header for a VxWorks shared library. */
8979 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8982 struct mips_elf_link_hash_table *htab;
8984 htab = mips_elf_hash_table (info);
8986 /* We just need to copy the entry byte-by-byte. */
8987 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8988 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8989 htab->splt->contents + i * 4);
8992 /* Finish up the dynamic sections. */
8995 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8996 struct bfd_link_info *info)
9001 struct mips_got_info *gg, *g;
9002 struct mips_elf_link_hash_table *htab;
9004 htab = mips_elf_hash_table (info);
9005 dynobj = elf_hash_table (info)->dynobj;
9007 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9009 sgot = mips_elf_got_section (dynobj, FALSE);
9014 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
9015 gg = mips_elf_section_data (sgot)->u.got_info;
9016 BFD_ASSERT (gg != NULL);
9017 g = mips_elf_got_for_ibfd (gg, output_bfd);
9018 BFD_ASSERT (g != NULL);
9021 if (elf_hash_table (info)->dynamic_sections_created)
9024 int dyn_to_skip = 0, dyn_skipped = 0;
9026 BFD_ASSERT (sdyn != NULL);
9027 BFD_ASSERT (g != NULL);
9029 for (b = sdyn->contents;
9030 b < sdyn->contents + sdyn->size;
9031 b += MIPS_ELF_DYN_SIZE (dynobj))
9033 Elf_Internal_Dyn dyn;
9037 bfd_boolean swap_out_p;
9039 /* Read in the current dynamic entry. */
9040 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9042 /* Assume that we're going to modify it and write it out. */
9048 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9052 BFD_ASSERT (htab->is_vxworks);
9053 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
9057 /* Rewrite DT_STRSZ. */
9059 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9064 if (htab->is_vxworks)
9066 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
9067 of the ".got" section in DYNOBJ. */
9068 s = bfd_get_section_by_name (dynobj, name);
9069 BFD_ASSERT (s != NULL);
9070 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9074 s = bfd_get_section_by_name (output_bfd, name);
9075 BFD_ASSERT (s != NULL);
9076 dyn.d_un.d_ptr = s->vma;
9080 case DT_MIPS_RLD_VERSION:
9081 dyn.d_un.d_val = 1; /* XXX */
9085 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
9088 case DT_MIPS_TIME_STAMP:
9096 case DT_MIPS_ICHECKSUM:
9101 case DT_MIPS_IVERSION:
9106 case DT_MIPS_BASE_ADDRESS:
9107 s = output_bfd->sections;
9108 BFD_ASSERT (s != NULL);
9109 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
9112 case DT_MIPS_LOCAL_GOTNO:
9113 dyn.d_un.d_val = g->local_gotno;
9116 case DT_MIPS_UNREFEXTNO:
9117 /* The index into the dynamic symbol table which is the
9118 entry of the first external symbol that is not
9119 referenced within the same object. */
9120 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
9123 case DT_MIPS_GOTSYM:
9124 if (gg->global_gotsym)
9126 dyn.d_un.d_val = gg->global_gotsym->dynindx;
9129 /* In case if we don't have global got symbols we default
9130 to setting DT_MIPS_GOTSYM to the same value as
9131 DT_MIPS_SYMTABNO, so we just fall through. */
9133 case DT_MIPS_SYMTABNO:
9135 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
9136 s = bfd_get_section_by_name (output_bfd, name);
9137 BFD_ASSERT (s != NULL);
9139 dyn.d_un.d_val = s->size / elemsize;
9142 case DT_MIPS_HIPAGENO:
9143 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
9146 case DT_MIPS_RLD_MAP:
9147 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
9150 case DT_MIPS_OPTIONS:
9151 s = (bfd_get_section_by_name
9152 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9153 dyn.d_un.d_ptr = s->vma;
9157 BFD_ASSERT (htab->is_vxworks);
9158 /* The count does not include the JUMP_SLOT relocations. */
9160 dyn.d_un.d_val -= htab->srelplt->size;
9164 BFD_ASSERT (htab->is_vxworks);
9165 dyn.d_un.d_val = DT_RELA;
9169 BFD_ASSERT (htab->is_vxworks);
9170 dyn.d_un.d_val = htab->srelplt->size;
9174 BFD_ASSERT (htab->is_vxworks);
9175 dyn.d_un.d_val = (htab->srelplt->output_section->vma
9176 + htab->srelplt->output_offset);
9180 /* If we didn't need any text relocations after all, delete
9182 if (!(info->flags & DF_TEXTREL))
9184 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
9190 /* If we didn't need any text relocations after all, clear
9191 DF_TEXTREL from DT_FLAGS. */
9192 if (!(info->flags & DF_TEXTREL))
9193 dyn.d_un.d_val &= ~DF_TEXTREL;
9200 if (htab->is_vxworks
9201 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
9206 if (swap_out_p || dyn_skipped)
9207 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9208 (dynobj, &dyn, b - dyn_skipped);
9212 dyn_skipped += dyn_to_skip;
9217 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
9218 if (dyn_skipped > 0)
9219 memset (b - dyn_skipped, 0, dyn_skipped);
9222 if (sgot != NULL && sgot->size > 0
9223 && !bfd_is_abs_section (sgot->output_section))
9225 if (htab->is_vxworks)
9227 /* The first entry of the global offset table points to the
9228 ".dynamic" section. The second is initialized by the
9229 loader and contains the shared library identifier.
9230 The third is also initialized by the loader and points
9231 to the lazy resolution stub. */
9232 MIPS_ELF_PUT_WORD (output_bfd,
9233 sdyn->output_offset + sdyn->output_section->vma,
9235 MIPS_ELF_PUT_WORD (output_bfd, 0,
9236 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9237 MIPS_ELF_PUT_WORD (output_bfd, 0,
9239 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
9243 /* The first entry of the global offset table will be filled at
9244 runtime. The second entry will be used by some runtime loaders.
9245 This isn't the case of IRIX rld. */
9246 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
9247 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
9248 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9251 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9252 = MIPS_ELF_GOT_SIZE (output_bfd);
9255 /* Generate dynamic relocations for the non-primary gots. */
9256 if (gg != NULL && gg->next)
9258 Elf_Internal_Rela rel[3];
9261 memset (rel, 0, sizeof (rel));
9262 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
9264 for (g = gg->next; g->next != gg; g = g->next)
9266 bfd_vma index = g->next->local_gotno + g->next->global_gotno
9267 + g->next->tls_gotno;
9269 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
9270 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9271 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
9273 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9278 while (index < g->assigned_gotno)
9280 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
9281 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
9282 if (!(mips_elf_create_dynamic_relocation
9283 (output_bfd, info, rel, NULL,
9284 bfd_abs_section_ptr,
9287 BFD_ASSERT (addend == 0);
9292 /* The generation of dynamic relocations for the non-primary gots
9293 adds more dynamic relocations. We cannot count them until
9296 if (elf_hash_table (info)->dynamic_sections_created)
9299 bfd_boolean swap_out_p;
9301 BFD_ASSERT (sdyn != NULL);
9303 for (b = sdyn->contents;
9304 b < sdyn->contents + sdyn->size;
9305 b += MIPS_ELF_DYN_SIZE (dynobj))
9307 Elf_Internal_Dyn dyn;
9310 /* Read in the current dynamic entry. */
9311 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9313 /* Assume that we're going to modify it and write it out. */
9319 /* Reduce DT_RELSZ to account for any relocations we
9320 decided not to make. This is for the n64 irix rld,
9321 which doesn't seem to apply any relocations if there
9322 are trailing null entries. */
9323 s = mips_elf_rel_dyn_section (info, FALSE);
9324 dyn.d_un.d_val = (s->reloc_count
9325 * (ABI_64_P (output_bfd)
9326 ? sizeof (Elf64_Mips_External_Rel)
9327 : sizeof (Elf32_External_Rel)));
9328 /* Adjust the section size too. Tools like the prelinker
9329 can reasonably expect the values to the same. */
9330 elf_section_data (s->output_section)->this_hdr.sh_size
9340 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9347 Elf32_compact_rel cpt;
9349 if (SGI_COMPAT (output_bfd))
9351 /* Write .compact_rel section out. */
9352 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9356 cpt.num = s->reloc_count;
9358 cpt.offset = (s->output_section->filepos
9359 + sizeof (Elf32_External_compact_rel));
9362 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9363 ((Elf32_External_compact_rel *)
9366 /* Clean up a dummy stub function entry in .text. */
9367 s = bfd_get_section_by_name (dynobj,
9368 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9371 file_ptr dummy_offset;
9373 BFD_ASSERT (s->size >= htab->function_stub_size);
9374 dummy_offset = s->size - htab->function_stub_size;
9375 memset (s->contents + dummy_offset, 0,
9376 htab->function_stub_size);
9381 /* The psABI says that the dynamic relocations must be sorted in
9382 increasing order of r_symndx. The VxWorks EABI doesn't require
9383 this, and because the code below handles REL rather than RELA
9384 relocations, using it for VxWorks would be outright harmful. */
9385 if (!htab->is_vxworks)
9387 s = mips_elf_rel_dyn_section (info, FALSE);
9389 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9391 reldyn_sorting_bfd = output_bfd;
9393 if (ABI_64_P (output_bfd))
9394 qsort ((Elf64_External_Rel *) s->contents + 1,
9395 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9396 sort_dynamic_relocs_64);
9398 qsort ((Elf32_External_Rel *) s->contents + 1,
9399 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9400 sort_dynamic_relocs);
9405 if (htab->is_vxworks && htab->splt->size > 0)
9408 mips_vxworks_finish_shared_plt (output_bfd, info);
9410 mips_vxworks_finish_exec_plt (output_bfd, info);
9416 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9419 mips_set_isa_flags (bfd *abfd)
9423 switch (bfd_get_mach (abfd))
9426 case bfd_mach_mips3000:
9427 val = E_MIPS_ARCH_1;
9430 case bfd_mach_mips3900:
9431 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9434 case bfd_mach_mips6000:
9435 val = E_MIPS_ARCH_2;
9438 case bfd_mach_mips4000:
9439 case bfd_mach_mips4300:
9440 case bfd_mach_mips4400:
9441 case bfd_mach_mips4600:
9442 val = E_MIPS_ARCH_3;
9445 case bfd_mach_mips4010:
9446 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9449 case bfd_mach_mips4100:
9450 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9453 case bfd_mach_mips4111:
9454 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9457 case bfd_mach_mips4120:
9458 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9461 case bfd_mach_mips4650:
9462 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9465 case bfd_mach_mips5400:
9466 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9469 case bfd_mach_mips5500:
9470 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9473 case bfd_mach_mips9000:
9474 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9477 case bfd_mach_mips5000:
9478 case bfd_mach_mips7000:
9479 case bfd_mach_mips8000:
9480 case bfd_mach_mips10000:
9481 case bfd_mach_mips12000:
9482 val = E_MIPS_ARCH_4;
9485 case bfd_mach_mips5:
9486 val = E_MIPS_ARCH_5;
9489 case bfd_mach_mips_loongson_2e:
9490 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
9493 case bfd_mach_mips_loongson_2f:
9494 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
9497 case bfd_mach_mips_sb1:
9498 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9501 case bfd_mach_mips_octeon:
9502 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
9505 case bfd_mach_mipsisa32:
9506 val = E_MIPS_ARCH_32;
9509 case bfd_mach_mipsisa64:
9510 val = E_MIPS_ARCH_64;
9513 case bfd_mach_mipsisa32r2:
9514 val = E_MIPS_ARCH_32R2;
9517 case bfd_mach_mipsisa64r2:
9518 val = E_MIPS_ARCH_64R2;
9521 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9522 elf_elfheader (abfd)->e_flags |= val;
9527 /* The final processing done just before writing out a MIPS ELF object
9528 file. This gets the MIPS architecture right based on the machine
9529 number. This is used by both the 32-bit and the 64-bit ABI. */
9532 _bfd_mips_elf_final_write_processing (bfd *abfd,
9533 bfd_boolean linker ATTRIBUTE_UNUSED)
9536 Elf_Internal_Shdr **hdrpp;
9540 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9541 is nonzero. This is for compatibility with old objects, which used
9542 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9543 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9544 mips_set_isa_flags (abfd);
9546 /* Set the sh_info field for .gptab sections and other appropriate
9547 info for each special section. */
9548 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9549 i < elf_numsections (abfd);
9552 switch ((*hdrpp)->sh_type)
9555 case SHT_MIPS_LIBLIST:
9556 sec = bfd_get_section_by_name (abfd, ".dynstr");
9558 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9561 case SHT_MIPS_GPTAB:
9562 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9563 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9564 BFD_ASSERT (name != NULL
9565 && CONST_STRNEQ (name, ".gptab."));
9566 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9567 BFD_ASSERT (sec != NULL);
9568 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9571 case SHT_MIPS_CONTENT:
9572 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9573 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9574 BFD_ASSERT (name != NULL
9575 && CONST_STRNEQ (name, ".MIPS.content"));
9576 sec = bfd_get_section_by_name (abfd,
9577 name + sizeof ".MIPS.content" - 1);
9578 BFD_ASSERT (sec != NULL);
9579 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9582 case SHT_MIPS_SYMBOL_LIB:
9583 sec = bfd_get_section_by_name (abfd, ".dynsym");
9585 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9586 sec = bfd_get_section_by_name (abfd, ".liblist");
9588 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9591 case SHT_MIPS_EVENTS:
9592 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9593 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9594 BFD_ASSERT (name != NULL);
9595 if (CONST_STRNEQ (name, ".MIPS.events"))
9596 sec = bfd_get_section_by_name (abfd,
9597 name + sizeof ".MIPS.events" - 1);
9600 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9601 sec = bfd_get_section_by_name (abfd,
9603 + sizeof ".MIPS.post_rel" - 1));
9605 BFD_ASSERT (sec != NULL);
9606 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9613 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9617 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9618 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9623 /* See if we need a PT_MIPS_REGINFO segment. */
9624 s = bfd_get_section_by_name (abfd, ".reginfo");
9625 if (s && (s->flags & SEC_LOAD))
9628 /* See if we need a PT_MIPS_OPTIONS segment. */
9629 if (IRIX_COMPAT (abfd) == ict_irix6
9630 && bfd_get_section_by_name (abfd,
9631 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9634 /* See if we need a PT_MIPS_RTPROC segment. */
9635 if (IRIX_COMPAT (abfd) == ict_irix5
9636 && bfd_get_section_by_name (abfd, ".dynamic")
9637 && bfd_get_section_by_name (abfd, ".mdebug"))
9640 /* Allocate a PT_NULL header in dynamic objects. See
9641 _bfd_mips_elf_modify_segment_map for details. */
9642 if (!SGI_COMPAT (abfd)
9643 && bfd_get_section_by_name (abfd, ".dynamic"))
9649 /* Modify the segment map for an IRIX5 executable. */
9652 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9653 struct bfd_link_info *info)
9656 struct elf_segment_map *m, **pm;
9659 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9661 s = bfd_get_section_by_name (abfd, ".reginfo");
9662 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9664 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9665 if (m->p_type == PT_MIPS_REGINFO)
9670 m = bfd_zalloc (abfd, amt);
9674 m->p_type = PT_MIPS_REGINFO;
9678 /* We want to put it after the PHDR and INTERP segments. */
9679 pm = &elf_tdata (abfd)->segment_map;
9681 && ((*pm)->p_type == PT_PHDR
9682 || (*pm)->p_type == PT_INTERP))
9690 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9691 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9692 PT_MIPS_OPTIONS segment immediately following the program header
9695 /* On non-IRIX6 new abi, we'll have already created a segment
9696 for this section, so don't create another. I'm not sure this
9697 is not also the case for IRIX 6, but I can't test it right
9699 && IRIX_COMPAT (abfd) == ict_irix6)
9701 for (s = abfd->sections; s; s = s->next)
9702 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9707 struct elf_segment_map *options_segment;
9709 pm = &elf_tdata (abfd)->segment_map;
9711 && ((*pm)->p_type == PT_PHDR
9712 || (*pm)->p_type == PT_INTERP))
9715 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9717 amt = sizeof (struct elf_segment_map);
9718 options_segment = bfd_zalloc (abfd, amt);
9719 options_segment->next = *pm;
9720 options_segment->p_type = PT_MIPS_OPTIONS;
9721 options_segment->p_flags = PF_R;
9722 options_segment->p_flags_valid = TRUE;
9723 options_segment->count = 1;
9724 options_segment->sections[0] = s;
9725 *pm = options_segment;
9731 if (IRIX_COMPAT (abfd) == ict_irix5)
9733 /* If there are .dynamic and .mdebug sections, we make a room
9734 for the RTPROC header. FIXME: Rewrite without section names. */
9735 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9736 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9737 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9739 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9740 if (m->p_type == PT_MIPS_RTPROC)
9745 m = bfd_zalloc (abfd, amt);
9749 m->p_type = PT_MIPS_RTPROC;
9751 s = bfd_get_section_by_name (abfd, ".rtproc");
9756 m->p_flags_valid = 1;
9764 /* We want to put it after the DYNAMIC segment. */
9765 pm = &elf_tdata (abfd)->segment_map;
9766 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9776 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9777 .dynstr, .dynsym, and .hash sections, and everything in
9779 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9781 if ((*pm)->p_type == PT_DYNAMIC)
9784 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9786 /* For a normal mips executable the permissions for the PT_DYNAMIC
9787 segment are read, write and execute. We do that here since
9788 the code in elf.c sets only the read permission. This matters
9789 sometimes for the dynamic linker. */
9790 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9792 m->p_flags = PF_R | PF_W | PF_X;
9793 m->p_flags_valid = 1;
9796 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9797 glibc's dynamic linker has traditionally derived the number of
9798 tags from the p_filesz field, and sometimes allocates stack
9799 arrays of that size. An overly-big PT_DYNAMIC segment can
9800 be actively harmful in such cases. Making PT_DYNAMIC contain
9801 other sections can also make life hard for the prelinker,
9802 which might move one of the other sections to a different
9804 if (SGI_COMPAT (abfd)
9807 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9809 static const char *sec_names[] =
9811 ".dynamic", ".dynstr", ".dynsym", ".hash"
9815 struct elf_segment_map *n;
9819 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9821 s = bfd_get_section_by_name (abfd, sec_names[i]);
9822 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9829 if (high < s->vma + sz)
9835 for (s = abfd->sections; s != NULL; s = s->next)
9836 if ((s->flags & SEC_LOAD) != 0
9838 && s->vma + s->size <= high)
9841 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9842 n = bfd_zalloc (abfd, amt);
9849 for (s = abfd->sections; s != NULL; s = s->next)
9851 if ((s->flags & SEC_LOAD) != 0
9853 && s->vma + s->size <= high)
9864 /* Allocate a spare program header in dynamic objects so that tools
9865 like the prelinker can add an extra PT_LOAD entry.
9867 If the prelinker needs to make room for a new PT_LOAD entry, its
9868 standard procedure is to move the first (read-only) sections into
9869 the new (writable) segment. However, the MIPS ABI requires
9870 .dynamic to be in a read-only segment, and the section will often
9871 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9873 Although the prelinker could in principle move .dynamic to a
9874 writable segment, it seems better to allocate a spare program
9875 header instead, and avoid the need to move any sections.
9876 There is a long tradition of allocating spare dynamic tags,
9877 so allocating a spare program header seems like a natural
9880 If INFO is NULL, we may be copying an already prelinked binary
9881 with objcopy or strip, so do not add this header. */
9883 && !SGI_COMPAT (abfd)
9884 && bfd_get_section_by_name (abfd, ".dynamic"))
9886 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9887 if ((*pm)->p_type == PT_NULL)
9891 m = bfd_zalloc (abfd, sizeof (*m));
9895 m->p_type = PT_NULL;
9903 /* Return the section that should be marked against GC for a given
9907 _bfd_mips_elf_gc_mark_hook (asection *sec,
9908 struct bfd_link_info *info,
9909 Elf_Internal_Rela *rel,
9910 struct elf_link_hash_entry *h,
9911 Elf_Internal_Sym *sym)
9913 /* ??? Do mips16 stub sections need to be handled special? */
9916 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9918 case R_MIPS_GNU_VTINHERIT:
9919 case R_MIPS_GNU_VTENTRY:
9923 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9926 /* Update the got entry reference counts for the section being removed. */
9929 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9930 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9931 asection *sec ATTRIBUTE_UNUSED,
9932 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9935 Elf_Internal_Shdr *symtab_hdr;
9936 struct elf_link_hash_entry **sym_hashes;
9937 bfd_signed_vma *local_got_refcounts;
9938 const Elf_Internal_Rela *rel, *relend;
9939 unsigned long r_symndx;
9940 struct elf_link_hash_entry *h;
9942 if (info->relocatable)
9945 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9946 sym_hashes = elf_sym_hashes (abfd);
9947 local_got_refcounts = elf_local_got_refcounts (abfd);
9949 relend = relocs + sec->reloc_count;
9950 for (rel = relocs; rel < relend; rel++)
9951 switch (ELF_R_TYPE (abfd, rel->r_info))
9955 case R_MIPS_CALL_HI16:
9956 case R_MIPS_CALL_LO16:
9957 case R_MIPS_GOT_HI16:
9958 case R_MIPS_GOT_LO16:
9959 case R_MIPS_GOT_DISP:
9960 case R_MIPS_GOT_PAGE:
9961 case R_MIPS_GOT_OFST:
9962 /* ??? It would seem that the existing MIPS code does no sort
9963 of reference counting or whatnot on its GOT and PLT entries,
9964 so it is not possible to garbage collect them at this time. */
9975 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9976 hiding the old indirect symbol. Process additional relocation
9977 information. Also called for weakdefs, in which case we just let
9978 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9981 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9982 struct elf_link_hash_entry *dir,
9983 struct elf_link_hash_entry *ind)
9985 struct mips_elf_link_hash_entry *dirmips, *indmips;
9987 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9989 if (ind->root.type != bfd_link_hash_indirect)
9992 dirmips = (struct mips_elf_link_hash_entry *) dir;
9993 indmips = (struct mips_elf_link_hash_entry *) ind;
9994 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9995 if (indmips->readonly_reloc)
9996 dirmips->readonly_reloc = TRUE;
9997 if (indmips->no_fn_stub)
9998 dirmips->no_fn_stub = TRUE;
10000 if (dirmips->tls_type == 0)
10001 dirmips->tls_type = indmips->tls_type;
10005 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
10006 struct elf_link_hash_entry *entry,
10007 bfd_boolean force_local)
10011 struct mips_got_info *g;
10012 struct mips_elf_link_hash_entry *h;
10013 struct mips_elf_link_hash_table *htab;
10015 h = (struct mips_elf_link_hash_entry *) entry;
10016 if (h->forced_local)
10018 h->forced_local = force_local;
10020 dynobj = elf_hash_table (info)->dynobj;
10021 htab = mips_elf_hash_table (info);
10022 if (dynobj != NULL && force_local && h->root.type != STT_TLS
10023 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
10024 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
10028 struct mips_got_entry e;
10029 struct mips_got_info *gg = g;
10031 /* Since we're turning what used to be a global symbol into a
10032 local one, bump up the number of local entries of each GOT
10033 that had an entry for it. This will automatically decrease
10034 the number of global entries, since global_gotno is actually
10035 the upper limit of global entries. */
10041 for (g = g->next; g != gg; g = g->next)
10042 if (htab_find (g->got_entries, &e))
10044 BFD_ASSERT (g->global_gotno > 0);
10049 /* If this was a global symbol forced into the primary GOT, we
10050 no longer need an entry for it. We can't release the entry
10051 at this point, but we must at least stop counting it as one
10052 of the symbols that required a forced got entry. */
10053 if (h->root.got.offset == 2)
10055 BFD_ASSERT (gg->assigned_gotno > 0);
10056 gg->assigned_gotno--;
10059 else if (h->root.got.offset == 1)
10061 /* check_relocs didn't know that this symbol would be
10062 forced-local, so add an extra local got entry. */
10064 if (htab->computed_got_sizes)
10066 /* We'll have treated this symbol as global rather
10068 BFD_ASSERT (g->global_gotno > 0);
10072 else if (htab->is_vxworks && h->root.needs_plt)
10074 /* check_relocs didn't know that this symbol would be
10075 forced-local, so add an extra local got entry. */
10077 if (htab->computed_got_sizes)
10078 /* The symbol is only used in call relocations, so we'll
10079 have assumed it only needs a .got.plt entry. Increase
10080 the size of .got accordingly. */
10081 got->size += MIPS_ELF_GOT_SIZE (dynobj);
10085 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
10088 #define PDR_SIZE 32
10091 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
10092 struct bfd_link_info *info)
10095 bfd_boolean ret = FALSE;
10096 unsigned char *tdata;
10099 o = bfd_get_section_by_name (abfd, ".pdr");
10104 if (o->size % PDR_SIZE != 0)
10106 if (o->output_section != NULL
10107 && bfd_is_abs_section (o->output_section))
10110 tdata = bfd_zmalloc (o->size / PDR_SIZE);
10114 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
10115 info->keep_memory);
10122 cookie->rel = cookie->rels;
10123 cookie->relend = cookie->rels + o->reloc_count;
10125 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
10127 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
10136 mips_elf_section_data (o)->u.tdata = tdata;
10137 o->size -= skip * PDR_SIZE;
10143 if (! info->keep_memory)
10144 free (cookie->rels);
10150 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
10152 if (strcmp (sec->name, ".pdr") == 0)
10158 _bfd_mips_elf_write_section (bfd *output_bfd,
10159 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
10160 asection *sec, bfd_byte *contents)
10162 bfd_byte *to, *from, *end;
10165 if (strcmp (sec->name, ".pdr") != 0)
10168 if (mips_elf_section_data (sec)->u.tdata == NULL)
10172 end = contents + sec->size;
10173 for (from = contents, i = 0;
10175 from += PDR_SIZE, i++)
10177 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
10180 memcpy (to, from, PDR_SIZE);
10183 bfd_set_section_contents (output_bfd, sec->output_section, contents,
10184 sec->output_offset, sec->size);
10188 /* MIPS ELF uses a special find_nearest_line routine in order the
10189 handle the ECOFF debugging information. */
10191 struct mips_elf_find_line
10193 struct ecoff_debug_info d;
10194 struct ecoff_find_line i;
10198 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
10199 asymbol **symbols, bfd_vma offset,
10200 const char **filename_ptr,
10201 const char **functionname_ptr,
10202 unsigned int *line_ptr)
10206 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
10207 filename_ptr, functionname_ptr,
10211 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
10212 filename_ptr, functionname_ptr,
10213 line_ptr, ABI_64_P (abfd) ? 8 : 0,
10214 &elf_tdata (abfd)->dwarf2_find_line_info))
10217 msec = bfd_get_section_by_name (abfd, ".mdebug");
10220 flagword origflags;
10221 struct mips_elf_find_line *fi;
10222 const struct ecoff_debug_swap * const swap =
10223 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
10225 /* If we are called during a link, mips_elf_final_link may have
10226 cleared the SEC_HAS_CONTENTS field. We force it back on here
10227 if appropriate (which it normally will be). */
10228 origflags = msec->flags;
10229 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
10230 msec->flags |= SEC_HAS_CONTENTS;
10232 fi = elf_tdata (abfd)->find_line_info;
10235 bfd_size_type external_fdr_size;
10238 struct fdr *fdr_ptr;
10239 bfd_size_type amt = sizeof (struct mips_elf_find_line);
10241 fi = bfd_zalloc (abfd, amt);
10244 msec->flags = origflags;
10248 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
10250 msec->flags = origflags;
10254 /* Swap in the FDR information. */
10255 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
10256 fi->d.fdr = bfd_alloc (abfd, amt);
10257 if (fi->d.fdr == NULL)
10259 msec->flags = origflags;
10262 external_fdr_size = swap->external_fdr_size;
10263 fdr_ptr = fi->d.fdr;
10264 fraw_src = (char *) fi->d.external_fdr;
10265 fraw_end = (fraw_src
10266 + fi->d.symbolic_header.ifdMax * external_fdr_size);
10267 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
10268 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
10270 elf_tdata (abfd)->find_line_info = fi;
10272 /* Note that we don't bother to ever free this information.
10273 find_nearest_line is either called all the time, as in
10274 objdump -l, so the information should be saved, or it is
10275 rarely called, as in ld error messages, so the memory
10276 wasted is unimportant. Still, it would probably be a
10277 good idea for free_cached_info to throw it away. */
10280 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
10281 &fi->i, filename_ptr, functionname_ptr,
10284 msec->flags = origflags;
10288 msec->flags = origflags;
10291 /* Fall back on the generic ELF find_nearest_line routine. */
10293 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
10294 filename_ptr, functionname_ptr,
10299 _bfd_mips_elf_find_inliner_info (bfd *abfd,
10300 const char **filename_ptr,
10301 const char **functionname_ptr,
10302 unsigned int *line_ptr)
10305 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
10306 functionname_ptr, line_ptr,
10307 & elf_tdata (abfd)->dwarf2_find_line_info);
10312 /* When are writing out the .options or .MIPS.options section,
10313 remember the bytes we are writing out, so that we can install the
10314 GP value in the section_processing routine. */
10317 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
10318 const void *location,
10319 file_ptr offset, bfd_size_type count)
10321 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
10325 if (elf_section_data (section) == NULL)
10327 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
10328 section->used_by_bfd = bfd_zalloc (abfd, amt);
10329 if (elf_section_data (section) == NULL)
10332 c = mips_elf_section_data (section)->u.tdata;
10335 c = bfd_zalloc (abfd, section->size);
10338 mips_elf_section_data (section)->u.tdata = c;
10341 memcpy (c + offset, location, count);
10344 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10348 /* This is almost identical to bfd_generic_get_... except that some
10349 MIPS relocations need to be handled specially. Sigh. */
10352 _bfd_elf_mips_get_relocated_section_contents
10354 struct bfd_link_info *link_info,
10355 struct bfd_link_order *link_order,
10357 bfd_boolean relocatable,
10360 /* Get enough memory to hold the stuff */
10361 bfd *input_bfd = link_order->u.indirect.section->owner;
10362 asection *input_section = link_order->u.indirect.section;
10365 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10366 arelent **reloc_vector = NULL;
10369 if (reloc_size < 0)
10372 reloc_vector = bfd_malloc (reloc_size);
10373 if (reloc_vector == NULL && reloc_size != 0)
10376 /* read in the section */
10377 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10378 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10381 reloc_count = bfd_canonicalize_reloc (input_bfd,
10385 if (reloc_count < 0)
10388 if (reloc_count > 0)
10393 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10396 struct bfd_hash_entry *h;
10397 struct bfd_link_hash_entry *lh;
10398 /* Skip all this stuff if we aren't mixing formats. */
10399 if (abfd && input_bfd
10400 && abfd->xvec == input_bfd->xvec)
10404 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10405 lh = (struct bfd_link_hash_entry *) h;
10412 case bfd_link_hash_undefined:
10413 case bfd_link_hash_undefweak:
10414 case bfd_link_hash_common:
10417 case bfd_link_hash_defined:
10418 case bfd_link_hash_defweak:
10420 gp = lh->u.def.value;
10422 case bfd_link_hash_indirect:
10423 case bfd_link_hash_warning:
10425 /* @@FIXME ignoring warning for now */
10427 case bfd_link_hash_new:
10436 for (parent = reloc_vector; *parent != NULL; parent++)
10438 char *error_message = NULL;
10439 bfd_reloc_status_type r;
10441 /* Specific to MIPS: Deal with relocation types that require
10442 knowing the gp of the output bfd. */
10443 asymbol *sym = *(*parent)->sym_ptr_ptr;
10445 /* If we've managed to find the gp and have a special
10446 function for the relocation then go ahead, else default
10447 to the generic handling. */
10449 && (*parent)->howto->special_function
10450 == _bfd_mips_elf32_gprel16_reloc)
10451 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10452 input_section, relocatable,
10455 r = bfd_perform_relocation (input_bfd, *parent, data,
10457 relocatable ? abfd : NULL,
10462 asection *os = input_section->output_section;
10464 /* A partial link, so keep the relocs */
10465 os->orelocation[os->reloc_count] = *parent;
10469 if (r != bfd_reloc_ok)
10473 case bfd_reloc_undefined:
10474 if (!((*link_info->callbacks->undefined_symbol)
10475 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10476 input_bfd, input_section, (*parent)->address, TRUE)))
10479 case bfd_reloc_dangerous:
10480 BFD_ASSERT (error_message != NULL);
10481 if (!((*link_info->callbacks->reloc_dangerous)
10482 (link_info, error_message, input_bfd, input_section,
10483 (*parent)->address)))
10486 case bfd_reloc_overflow:
10487 if (!((*link_info->callbacks->reloc_overflow)
10489 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10490 (*parent)->howto->name, (*parent)->addend,
10491 input_bfd, input_section, (*parent)->address)))
10494 case bfd_reloc_outofrange:
10503 if (reloc_vector != NULL)
10504 free (reloc_vector);
10508 if (reloc_vector != NULL)
10509 free (reloc_vector);
10513 /* Create a MIPS ELF linker hash table. */
10515 struct bfd_link_hash_table *
10516 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10518 struct mips_elf_link_hash_table *ret;
10519 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10521 ret = bfd_malloc (amt);
10525 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10526 mips_elf_link_hash_newfunc,
10527 sizeof (struct mips_elf_link_hash_entry)))
10534 /* We no longer use this. */
10535 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10536 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10538 ret->procedure_count = 0;
10539 ret->compact_rel_size = 0;
10540 ret->use_rld_obj_head = FALSE;
10541 ret->rld_value = 0;
10542 ret->mips16_stubs_seen = FALSE;
10543 ret->computed_got_sizes = FALSE;
10544 ret->is_vxworks = FALSE;
10545 ret->small_data_overflow_reported = FALSE;
10546 ret->srelbss = NULL;
10547 ret->sdynbss = NULL;
10548 ret->srelplt = NULL;
10549 ret->srelplt2 = NULL;
10550 ret->sgotplt = NULL;
10552 ret->plt_header_size = 0;
10553 ret->plt_entry_size = 0;
10554 ret->function_stub_size = 0;
10556 return &ret->root.root;
10559 /* Likewise, but indicate that the target is VxWorks. */
10561 struct bfd_link_hash_table *
10562 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10564 struct bfd_link_hash_table *ret;
10566 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10569 struct mips_elf_link_hash_table *htab;
10571 htab = (struct mips_elf_link_hash_table *) ret;
10572 htab->is_vxworks = 1;
10577 /* We need to use a special link routine to handle the .reginfo and
10578 the .mdebug sections. We need to merge all instances of these
10579 sections together, not write them all out sequentially. */
10582 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10585 struct bfd_link_order *p;
10586 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10587 asection *rtproc_sec;
10588 Elf32_RegInfo reginfo;
10589 struct ecoff_debug_info debug;
10590 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10591 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10592 HDRR *symhdr = &debug.symbolic_header;
10593 void *mdebug_handle = NULL;
10598 struct mips_elf_link_hash_table *htab;
10600 static const char * const secname[] =
10602 ".text", ".init", ".fini", ".data",
10603 ".rodata", ".sdata", ".sbss", ".bss"
10605 static const int sc[] =
10607 scText, scInit, scFini, scData,
10608 scRData, scSData, scSBss, scBss
10611 /* We'd carefully arranged the dynamic symbol indices, and then the
10612 generic size_dynamic_sections renumbered them out from under us.
10613 Rather than trying somehow to prevent the renumbering, just do
10615 htab = mips_elf_hash_table (info);
10616 if (elf_hash_table (info)->dynamic_sections_created)
10620 struct mips_got_info *g;
10621 bfd_size_type dynsecsymcount;
10623 /* When we resort, we must tell mips_elf_sort_hash_table what
10624 the lowest index it may use is. That's the number of section
10625 symbols we're going to add. The generic ELF linker only
10626 adds these symbols when building a shared object. Note that
10627 we count the sections after (possibly) removing the .options
10630 dynsecsymcount = count_section_dynsyms (abfd, info);
10631 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10634 /* Make sure we didn't grow the global .got region. */
10635 dynobj = elf_hash_table (info)->dynobj;
10636 got = mips_elf_got_section (dynobj, FALSE);
10637 g = mips_elf_section_data (got)->u.got_info;
10639 if (g->global_gotsym != NULL)
10640 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10641 - g->global_gotsym->dynindx)
10642 <= g->global_gotno);
10645 /* Get a value for the GP register. */
10646 if (elf_gp (abfd) == 0)
10648 struct bfd_link_hash_entry *h;
10650 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10651 if (h != NULL && h->type == bfd_link_hash_defined)
10652 elf_gp (abfd) = (h->u.def.value
10653 + h->u.def.section->output_section->vma
10654 + h->u.def.section->output_offset);
10655 else if (htab->is_vxworks
10656 && (h = bfd_link_hash_lookup (info->hash,
10657 "_GLOBAL_OFFSET_TABLE_",
10658 FALSE, FALSE, TRUE))
10659 && h->type == bfd_link_hash_defined)
10660 elf_gp (abfd) = (h->u.def.section->output_section->vma
10661 + h->u.def.section->output_offset
10663 else if (info->relocatable)
10665 bfd_vma lo = MINUS_ONE;
10667 /* Find the GP-relative section with the lowest offset. */
10668 for (o = abfd->sections; o != NULL; o = o->next)
10670 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10673 /* And calculate GP relative to that. */
10674 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10678 /* If the relocate_section function needs to do a reloc
10679 involving the GP value, it should make a reloc_dangerous
10680 callback to warn that GP is not defined. */
10684 /* Go through the sections and collect the .reginfo and .mdebug
10686 reginfo_sec = NULL;
10688 gptab_data_sec = NULL;
10689 gptab_bss_sec = NULL;
10690 for (o = abfd->sections; o != NULL; o = o->next)
10692 if (strcmp (o->name, ".reginfo") == 0)
10694 memset (®info, 0, sizeof reginfo);
10696 /* We have found the .reginfo section in the output file.
10697 Look through all the link_orders comprising it and merge
10698 the information together. */
10699 for (p = o->map_head.link_order; p != NULL; p = p->next)
10701 asection *input_section;
10703 Elf32_External_RegInfo ext;
10706 if (p->type != bfd_indirect_link_order)
10708 if (p->type == bfd_data_link_order)
10713 input_section = p->u.indirect.section;
10714 input_bfd = input_section->owner;
10716 if (! bfd_get_section_contents (input_bfd, input_section,
10717 &ext, 0, sizeof ext))
10720 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10722 reginfo.ri_gprmask |= sub.ri_gprmask;
10723 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10724 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10725 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10726 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10728 /* ri_gp_value is set by the function
10729 mips_elf32_section_processing when the section is
10730 finally written out. */
10732 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10733 elf_link_input_bfd ignores this section. */
10734 input_section->flags &= ~SEC_HAS_CONTENTS;
10737 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10738 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10740 /* Skip this section later on (I don't think this currently
10741 matters, but someday it might). */
10742 o->map_head.link_order = NULL;
10747 if (strcmp (o->name, ".mdebug") == 0)
10749 struct extsym_info einfo;
10752 /* We have found the .mdebug section in the output file.
10753 Look through all the link_orders comprising it and merge
10754 the information together. */
10755 symhdr->magic = swap->sym_magic;
10756 /* FIXME: What should the version stamp be? */
10757 symhdr->vstamp = 0;
10758 symhdr->ilineMax = 0;
10759 symhdr->cbLine = 0;
10760 symhdr->idnMax = 0;
10761 symhdr->ipdMax = 0;
10762 symhdr->isymMax = 0;
10763 symhdr->ioptMax = 0;
10764 symhdr->iauxMax = 0;
10765 symhdr->issMax = 0;
10766 symhdr->issExtMax = 0;
10767 symhdr->ifdMax = 0;
10769 symhdr->iextMax = 0;
10771 /* We accumulate the debugging information itself in the
10772 debug_info structure. */
10774 debug.external_dnr = NULL;
10775 debug.external_pdr = NULL;
10776 debug.external_sym = NULL;
10777 debug.external_opt = NULL;
10778 debug.external_aux = NULL;
10780 debug.ssext = debug.ssext_end = NULL;
10781 debug.external_fdr = NULL;
10782 debug.external_rfd = NULL;
10783 debug.external_ext = debug.external_ext_end = NULL;
10785 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10786 if (mdebug_handle == NULL)
10790 esym.cobol_main = 0;
10794 esym.asym.iss = issNil;
10795 esym.asym.st = stLocal;
10796 esym.asym.reserved = 0;
10797 esym.asym.index = indexNil;
10799 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10801 esym.asym.sc = sc[i];
10802 s = bfd_get_section_by_name (abfd, secname[i]);
10805 esym.asym.value = s->vma;
10806 last = s->vma + s->size;
10809 esym.asym.value = last;
10810 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10811 secname[i], &esym))
10815 for (p = o->map_head.link_order; p != NULL; p = p->next)
10817 asection *input_section;
10819 const struct ecoff_debug_swap *input_swap;
10820 struct ecoff_debug_info input_debug;
10824 if (p->type != bfd_indirect_link_order)
10826 if (p->type == bfd_data_link_order)
10831 input_section = p->u.indirect.section;
10832 input_bfd = input_section->owner;
10834 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10835 || (get_elf_backend_data (input_bfd)
10836 ->elf_backend_ecoff_debug_swap) == NULL)
10838 /* I don't know what a non MIPS ELF bfd would be
10839 doing with a .mdebug section, but I don't really
10840 want to deal with it. */
10844 input_swap = (get_elf_backend_data (input_bfd)
10845 ->elf_backend_ecoff_debug_swap);
10847 BFD_ASSERT (p->size == input_section->size);
10849 /* The ECOFF linking code expects that we have already
10850 read in the debugging information and set up an
10851 ecoff_debug_info structure, so we do that now. */
10852 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10856 if (! (bfd_ecoff_debug_accumulate
10857 (mdebug_handle, abfd, &debug, swap, input_bfd,
10858 &input_debug, input_swap, info)))
10861 /* Loop through the external symbols. For each one with
10862 interesting information, try to find the symbol in
10863 the linker global hash table and save the information
10864 for the output external symbols. */
10865 eraw_src = input_debug.external_ext;
10866 eraw_end = (eraw_src
10867 + (input_debug.symbolic_header.iextMax
10868 * input_swap->external_ext_size));
10870 eraw_src < eraw_end;
10871 eraw_src += input_swap->external_ext_size)
10875 struct mips_elf_link_hash_entry *h;
10877 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10878 if (ext.asym.sc == scNil
10879 || ext.asym.sc == scUndefined
10880 || ext.asym.sc == scSUndefined)
10883 name = input_debug.ssext + ext.asym.iss;
10884 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10885 name, FALSE, FALSE, TRUE);
10886 if (h == NULL || h->esym.ifd != -2)
10891 BFD_ASSERT (ext.ifd
10892 < input_debug.symbolic_header.ifdMax);
10893 ext.ifd = input_debug.ifdmap[ext.ifd];
10899 /* Free up the information we just read. */
10900 free (input_debug.line);
10901 free (input_debug.external_dnr);
10902 free (input_debug.external_pdr);
10903 free (input_debug.external_sym);
10904 free (input_debug.external_opt);
10905 free (input_debug.external_aux);
10906 free (input_debug.ss);
10907 free (input_debug.ssext);
10908 free (input_debug.external_fdr);
10909 free (input_debug.external_rfd);
10910 free (input_debug.external_ext);
10912 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10913 elf_link_input_bfd ignores this section. */
10914 input_section->flags &= ~SEC_HAS_CONTENTS;
10917 if (SGI_COMPAT (abfd) && info->shared)
10919 /* Create .rtproc section. */
10920 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10921 if (rtproc_sec == NULL)
10923 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10924 | SEC_LINKER_CREATED | SEC_READONLY);
10926 rtproc_sec = bfd_make_section_with_flags (abfd,
10929 if (rtproc_sec == NULL
10930 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10934 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10940 /* Build the external symbol information. */
10943 einfo.debug = &debug;
10945 einfo.failed = FALSE;
10946 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10947 mips_elf_output_extsym, &einfo);
10951 /* Set the size of the .mdebug section. */
10952 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10954 /* Skip this section later on (I don't think this currently
10955 matters, but someday it might). */
10956 o->map_head.link_order = NULL;
10961 if (CONST_STRNEQ (o->name, ".gptab."))
10963 const char *subname;
10966 Elf32_External_gptab *ext_tab;
10969 /* The .gptab.sdata and .gptab.sbss sections hold
10970 information describing how the small data area would
10971 change depending upon the -G switch. These sections
10972 not used in executables files. */
10973 if (! info->relocatable)
10975 for (p = o->map_head.link_order; p != NULL; p = p->next)
10977 asection *input_section;
10979 if (p->type != bfd_indirect_link_order)
10981 if (p->type == bfd_data_link_order)
10986 input_section = p->u.indirect.section;
10988 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10989 elf_link_input_bfd ignores this section. */
10990 input_section->flags &= ~SEC_HAS_CONTENTS;
10993 /* Skip this section later on (I don't think this
10994 currently matters, but someday it might). */
10995 o->map_head.link_order = NULL;
10997 /* Really remove the section. */
10998 bfd_section_list_remove (abfd, o);
10999 --abfd->section_count;
11004 /* There is one gptab for initialized data, and one for
11005 uninitialized data. */
11006 if (strcmp (o->name, ".gptab.sdata") == 0)
11007 gptab_data_sec = o;
11008 else if (strcmp (o->name, ".gptab.sbss") == 0)
11012 (*_bfd_error_handler)
11013 (_("%s: illegal section name `%s'"),
11014 bfd_get_filename (abfd), o->name);
11015 bfd_set_error (bfd_error_nonrepresentable_section);
11019 /* The linker script always combines .gptab.data and
11020 .gptab.sdata into .gptab.sdata, and likewise for
11021 .gptab.bss and .gptab.sbss. It is possible that there is
11022 no .sdata or .sbss section in the output file, in which
11023 case we must change the name of the output section. */
11024 subname = o->name + sizeof ".gptab" - 1;
11025 if (bfd_get_section_by_name (abfd, subname) == NULL)
11027 if (o == gptab_data_sec)
11028 o->name = ".gptab.data";
11030 o->name = ".gptab.bss";
11031 subname = o->name + sizeof ".gptab" - 1;
11032 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
11035 /* Set up the first entry. */
11037 amt = c * sizeof (Elf32_gptab);
11038 tab = bfd_malloc (amt);
11041 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
11042 tab[0].gt_header.gt_unused = 0;
11044 /* Combine the input sections. */
11045 for (p = o->map_head.link_order; p != NULL; p = p->next)
11047 asection *input_section;
11049 bfd_size_type size;
11050 unsigned long last;
11051 bfd_size_type gpentry;
11053 if (p->type != bfd_indirect_link_order)
11055 if (p->type == bfd_data_link_order)
11060 input_section = p->u.indirect.section;
11061 input_bfd = input_section->owner;
11063 /* Combine the gptab entries for this input section one
11064 by one. We know that the input gptab entries are
11065 sorted by ascending -G value. */
11066 size = input_section->size;
11068 for (gpentry = sizeof (Elf32_External_gptab);
11070 gpentry += sizeof (Elf32_External_gptab))
11072 Elf32_External_gptab ext_gptab;
11073 Elf32_gptab int_gptab;
11079 if (! (bfd_get_section_contents
11080 (input_bfd, input_section, &ext_gptab, gpentry,
11081 sizeof (Elf32_External_gptab))))
11087 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
11089 val = int_gptab.gt_entry.gt_g_value;
11090 add = int_gptab.gt_entry.gt_bytes - last;
11093 for (look = 1; look < c; look++)
11095 if (tab[look].gt_entry.gt_g_value >= val)
11096 tab[look].gt_entry.gt_bytes += add;
11098 if (tab[look].gt_entry.gt_g_value == val)
11104 Elf32_gptab *new_tab;
11107 /* We need a new table entry. */
11108 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
11109 new_tab = bfd_realloc (tab, amt);
11110 if (new_tab == NULL)
11116 tab[c].gt_entry.gt_g_value = val;
11117 tab[c].gt_entry.gt_bytes = add;
11119 /* Merge in the size for the next smallest -G
11120 value, since that will be implied by this new
11123 for (look = 1; look < c; look++)
11125 if (tab[look].gt_entry.gt_g_value < val
11127 || (tab[look].gt_entry.gt_g_value
11128 > tab[max].gt_entry.gt_g_value)))
11132 tab[c].gt_entry.gt_bytes +=
11133 tab[max].gt_entry.gt_bytes;
11138 last = int_gptab.gt_entry.gt_bytes;
11141 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11142 elf_link_input_bfd ignores this section. */
11143 input_section->flags &= ~SEC_HAS_CONTENTS;
11146 /* The table must be sorted by -G value. */
11148 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
11150 /* Swap out the table. */
11151 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
11152 ext_tab = bfd_alloc (abfd, amt);
11153 if (ext_tab == NULL)
11159 for (j = 0; j < c; j++)
11160 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
11163 o->size = c * sizeof (Elf32_External_gptab);
11164 o->contents = (bfd_byte *) ext_tab;
11166 /* Skip this section later on (I don't think this currently
11167 matters, but someday it might). */
11168 o->map_head.link_order = NULL;
11172 /* Invoke the regular ELF backend linker to do all the work. */
11173 if (!bfd_elf_final_link (abfd, info))
11176 /* Now write out the computed sections. */
11178 if (reginfo_sec != NULL)
11180 Elf32_External_RegInfo ext;
11182 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
11183 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
11187 if (mdebug_sec != NULL)
11189 BFD_ASSERT (abfd->output_has_begun);
11190 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
11192 mdebug_sec->filepos))
11195 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
11198 if (gptab_data_sec != NULL)
11200 if (! bfd_set_section_contents (abfd, gptab_data_sec,
11201 gptab_data_sec->contents,
11202 0, gptab_data_sec->size))
11206 if (gptab_bss_sec != NULL)
11208 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
11209 gptab_bss_sec->contents,
11210 0, gptab_bss_sec->size))
11214 if (SGI_COMPAT (abfd))
11216 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11217 if (rtproc_sec != NULL)
11219 if (! bfd_set_section_contents (abfd, rtproc_sec,
11220 rtproc_sec->contents,
11221 0, rtproc_sec->size))
11229 /* Structure for saying that BFD machine EXTENSION extends BASE. */
11231 struct mips_mach_extension {
11232 unsigned long extension, base;
11236 /* An array describing how BFD machines relate to one another. The entries
11237 are ordered topologically with MIPS I extensions listed last. */
11239 static const struct mips_mach_extension mips_mach_extensions[] = {
11240 /* MIPS64r2 extensions. */
11241 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
11243 /* MIPS64 extensions. */
11244 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
11245 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
11247 /* MIPS V extensions. */
11248 { bfd_mach_mipsisa64, bfd_mach_mips5 },
11250 /* R10000 extensions. */
11251 { bfd_mach_mips12000, bfd_mach_mips10000 },
11253 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
11254 vr5400 ISA, but doesn't include the multimedia stuff. It seems
11255 better to allow vr5400 and vr5500 code to be merged anyway, since
11256 many libraries will just use the core ISA. Perhaps we could add
11257 some sort of ASE flag if this ever proves a problem. */
11258 { bfd_mach_mips5500, bfd_mach_mips5400 },
11259 { bfd_mach_mips5400, bfd_mach_mips5000 },
11261 /* MIPS IV extensions. */
11262 { bfd_mach_mips5, bfd_mach_mips8000 },
11263 { bfd_mach_mips10000, bfd_mach_mips8000 },
11264 { bfd_mach_mips5000, bfd_mach_mips8000 },
11265 { bfd_mach_mips7000, bfd_mach_mips8000 },
11266 { bfd_mach_mips9000, bfd_mach_mips8000 },
11268 /* VR4100 extensions. */
11269 { bfd_mach_mips4120, bfd_mach_mips4100 },
11270 { bfd_mach_mips4111, bfd_mach_mips4100 },
11272 /* MIPS III extensions. */
11273 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
11274 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
11275 { bfd_mach_mips8000, bfd_mach_mips4000 },
11276 { bfd_mach_mips4650, bfd_mach_mips4000 },
11277 { bfd_mach_mips4600, bfd_mach_mips4000 },
11278 { bfd_mach_mips4400, bfd_mach_mips4000 },
11279 { bfd_mach_mips4300, bfd_mach_mips4000 },
11280 { bfd_mach_mips4100, bfd_mach_mips4000 },
11281 { bfd_mach_mips4010, bfd_mach_mips4000 },
11283 /* MIPS32 extensions. */
11284 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
11286 /* MIPS II extensions. */
11287 { bfd_mach_mips4000, bfd_mach_mips6000 },
11288 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
11290 /* MIPS I extensions. */
11291 { bfd_mach_mips6000, bfd_mach_mips3000 },
11292 { bfd_mach_mips3900, bfd_mach_mips3000 }
11296 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
11299 mips_mach_extends_p (unsigned long base, unsigned long extension)
11303 if (extension == base)
11306 if (base == bfd_mach_mipsisa32
11307 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
11310 if (base == bfd_mach_mipsisa32r2
11311 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
11314 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
11315 if (extension == mips_mach_extensions[i].extension)
11317 extension = mips_mach_extensions[i].base;
11318 if (extension == base)
11326 /* Return true if the given ELF header flags describe a 32-bit binary. */
11329 mips_32bit_flags_p (flagword flags)
11331 return ((flags & EF_MIPS_32BITMODE) != 0
11332 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
11333 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
11334 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
11335 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
11336 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
11337 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
11341 /* Merge object attributes from IBFD into OBFD. Raise an error if
11342 there are conflicting attributes. */
11344 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
11346 obj_attribute *in_attr;
11347 obj_attribute *out_attr;
11349 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11351 /* This is the first object. Copy the attributes. */
11352 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11354 /* Use the Tag_null value to indicate the attributes have been
11356 elf_known_obj_attributes_proc (obfd)[0].i = 1;
11361 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11362 non-conflicting ones. */
11363 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11364 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11365 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11367 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11368 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11369 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11370 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11372 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
11374 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11375 in_attr[Tag_GNU_MIPS_ABI_FP].i);
11376 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
11378 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11379 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11381 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11384 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11388 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11394 (_("Warning: %B uses hard float, %B uses soft float"),
11400 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11410 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11414 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11420 (_("Warning: %B uses hard float, %B uses soft float"),
11426 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11436 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11442 (_("Warning: %B uses hard float, %B uses soft float"),
11452 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11456 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11462 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11468 (_("Warning: %B uses hard float, %B uses soft float"),
11482 /* Merge Tag_compatibility attributes and any common GNU ones. */
11483 _bfd_elf_merge_object_attributes (ibfd, obfd);
11488 /* Merge backend specific data from an object file to the output
11489 object file when linking. */
11492 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
11494 flagword old_flags;
11495 flagword new_flags;
11497 bfd_boolean null_input_bfd = TRUE;
11500 /* Check if we have the same endianess */
11501 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
11503 (*_bfd_error_handler)
11504 (_("%B: endianness incompatible with that of the selected emulation"),
11509 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11510 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11513 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11515 (*_bfd_error_handler)
11516 (_("%B: ABI is incompatible with that of the selected emulation"),
11521 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11524 new_flags = elf_elfheader (ibfd)->e_flags;
11525 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11526 old_flags = elf_elfheader (obfd)->e_flags;
11528 if (! elf_flags_init (obfd))
11530 elf_flags_init (obfd) = TRUE;
11531 elf_elfheader (obfd)->e_flags = new_flags;
11532 elf_elfheader (obfd)->e_ident[EI_CLASS]
11533 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11535 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11536 && (bfd_get_arch_info (obfd)->the_default
11537 || mips_mach_extends_p (bfd_get_mach (obfd),
11538 bfd_get_mach (ibfd))))
11540 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11541 bfd_get_mach (ibfd)))
11548 /* Check flag compatibility. */
11550 new_flags &= ~EF_MIPS_NOREORDER;
11551 old_flags &= ~EF_MIPS_NOREORDER;
11553 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11554 doesn't seem to matter. */
11555 new_flags &= ~EF_MIPS_XGOT;
11556 old_flags &= ~EF_MIPS_XGOT;
11558 /* MIPSpro generates ucode info in n64 objects. Again, we should
11559 just be able to ignore this. */
11560 new_flags &= ~EF_MIPS_UCODE;
11561 old_flags &= ~EF_MIPS_UCODE;
11563 /* Don't care about the PIC flags from dynamic objects; they are
11565 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11566 && (ibfd->flags & DYNAMIC) != 0)
11567 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11569 if (new_flags == old_flags)
11572 /* Check to see if the input BFD actually contains any sections.
11573 If not, its flags may not have been initialised either, but it cannot
11574 actually cause any incompatibility. */
11575 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11577 /* Ignore synthetic sections and empty .text, .data and .bss sections
11578 which are automatically generated by gas. */
11579 if (strcmp (sec->name, ".reginfo")
11580 && strcmp (sec->name, ".mdebug")
11582 || (strcmp (sec->name, ".text")
11583 && strcmp (sec->name, ".data")
11584 && strcmp (sec->name, ".bss"))))
11586 null_input_bfd = FALSE;
11590 if (null_input_bfd)
11595 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11596 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11598 (*_bfd_error_handler)
11599 (_("%B: warning: linking PIC files with non-PIC files"),
11604 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11605 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11606 if (! (new_flags & EF_MIPS_PIC))
11607 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11609 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11610 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11612 /* Compare the ISAs. */
11613 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11615 (*_bfd_error_handler)
11616 (_("%B: linking 32-bit code with 64-bit code"),
11620 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11622 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11623 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11625 /* Copy the architecture info from IBFD to OBFD. Also copy
11626 the 32-bit flag (if set) so that we continue to recognise
11627 OBFD as a 32-bit binary. */
11628 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11629 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11630 elf_elfheader (obfd)->e_flags
11631 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11633 /* Copy across the ABI flags if OBFD doesn't use them
11634 and if that was what caused us to treat IBFD as 32-bit. */
11635 if ((old_flags & EF_MIPS_ABI) == 0
11636 && mips_32bit_flags_p (new_flags)
11637 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11638 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11642 /* The ISAs aren't compatible. */
11643 (*_bfd_error_handler)
11644 (_("%B: linking %s module with previous %s modules"),
11646 bfd_printable_name (ibfd),
11647 bfd_printable_name (obfd));
11652 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11653 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11655 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11656 does set EI_CLASS differently from any 32-bit ABI. */
11657 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11658 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11659 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11661 /* Only error if both are set (to different values). */
11662 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11663 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11664 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11666 (*_bfd_error_handler)
11667 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11669 elf_mips_abi_name (ibfd),
11670 elf_mips_abi_name (obfd));
11673 new_flags &= ~EF_MIPS_ABI;
11674 old_flags &= ~EF_MIPS_ABI;
11677 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11678 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11680 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11682 new_flags &= ~ EF_MIPS_ARCH_ASE;
11683 old_flags &= ~ EF_MIPS_ARCH_ASE;
11686 /* Warn about any other mismatches */
11687 if (new_flags != old_flags)
11689 (*_bfd_error_handler)
11690 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11691 ibfd, (unsigned long) new_flags,
11692 (unsigned long) old_flags);
11698 bfd_set_error (bfd_error_bad_value);
11705 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11708 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11710 BFD_ASSERT (!elf_flags_init (abfd)
11711 || elf_elfheader (abfd)->e_flags == flags);
11713 elf_elfheader (abfd)->e_flags = flags;
11714 elf_flags_init (abfd) = TRUE;
11719 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
11723 default: return "";
11724 case DT_MIPS_RLD_VERSION:
11725 return "MIPS_RLD_VERSION";
11726 case DT_MIPS_TIME_STAMP:
11727 return "MIPS_TIME_STAMP";
11728 case DT_MIPS_ICHECKSUM:
11729 return "MIPS_ICHECKSUM";
11730 case DT_MIPS_IVERSION:
11731 return "MIPS_IVERSION";
11732 case DT_MIPS_FLAGS:
11733 return "MIPS_FLAGS";
11734 case DT_MIPS_BASE_ADDRESS:
11735 return "MIPS_BASE_ADDRESS";
11737 return "MIPS_MSYM";
11738 case DT_MIPS_CONFLICT:
11739 return "MIPS_CONFLICT";
11740 case DT_MIPS_LIBLIST:
11741 return "MIPS_LIBLIST";
11742 case DT_MIPS_LOCAL_GOTNO:
11743 return "MIPS_LOCAL_GOTNO";
11744 case DT_MIPS_CONFLICTNO:
11745 return "MIPS_CONFLICTNO";
11746 case DT_MIPS_LIBLISTNO:
11747 return "MIPS_LIBLISTNO";
11748 case DT_MIPS_SYMTABNO:
11749 return "MIPS_SYMTABNO";
11750 case DT_MIPS_UNREFEXTNO:
11751 return "MIPS_UNREFEXTNO";
11752 case DT_MIPS_GOTSYM:
11753 return "MIPS_GOTSYM";
11754 case DT_MIPS_HIPAGENO:
11755 return "MIPS_HIPAGENO";
11756 case DT_MIPS_RLD_MAP:
11757 return "MIPS_RLD_MAP";
11758 case DT_MIPS_DELTA_CLASS:
11759 return "MIPS_DELTA_CLASS";
11760 case DT_MIPS_DELTA_CLASS_NO:
11761 return "MIPS_DELTA_CLASS_NO";
11762 case DT_MIPS_DELTA_INSTANCE:
11763 return "MIPS_DELTA_INSTANCE";
11764 case DT_MIPS_DELTA_INSTANCE_NO:
11765 return "MIPS_DELTA_INSTANCE_NO";
11766 case DT_MIPS_DELTA_RELOC:
11767 return "MIPS_DELTA_RELOC";
11768 case DT_MIPS_DELTA_RELOC_NO:
11769 return "MIPS_DELTA_RELOC_NO";
11770 case DT_MIPS_DELTA_SYM:
11771 return "MIPS_DELTA_SYM";
11772 case DT_MIPS_DELTA_SYM_NO:
11773 return "MIPS_DELTA_SYM_NO";
11774 case DT_MIPS_DELTA_CLASSSYM:
11775 return "MIPS_DELTA_CLASSSYM";
11776 case DT_MIPS_DELTA_CLASSSYM_NO:
11777 return "MIPS_DELTA_CLASSSYM_NO";
11778 case DT_MIPS_CXX_FLAGS:
11779 return "MIPS_CXX_FLAGS";
11780 case DT_MIPS_PIXIE_INIT:
11781 return "MIPS_PIXIE_INIT";
11782 case DT_MIPS_SYMBOL_LIB:
11783 return "MIPS_SYMBOL_LIB";
11784 case DT_MIPS_LOCALPAGE_GOTIDX:
11785 return "MIPS_LOCALPAGE_GOTIDX";
11786 case DT_MIPS_LOCAL_GOTIDX:
11787 return "MIPS_LOCAL_GOTIDX";
11788 case DT_MIPS_HIDDEN_GOTIDX:
11789 return "MIPS_HIDDEN_GOTIDX";
11790 case DT_MIPS_PROTECTED_GOTIDX:
11791 return "MIPS_PROTECTED_GOT_IDX";
11792 case DT_MIPS_OPTIONS:
11793 return "MIPS_OPTIONS";
11794 case DT_MIPS_INTERFACE:
11795 return "MIPS_INTERFACE";
11796 case DT_MIPS_DYNSTR_ALIGN:
11797 return "DT_MIPS_DYNSTR_ALIGN";
11798 case DT_MIPS_INTERFACE_SIZE:
11799 return "DT_MIPS_INTERFACE_SIZE";
11800 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
11801 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
11802 case DT_MIPS_PERF_SUFFIX:
11803 return "DT_MIPS_PERF_SUFFIX";
11804 case DT_MIPS_COMPACT_SIZE:
11805 return "DT_MIPS_COMPACT_SIZE";
11806 case DT_MIPS_GP_VALUE:
11807 return "DT_MIPS_GP_VALUE";
11808 case DT_MIPS_AUX_DYNAMIC:
11809 return "DT_MIPS_AUX_DYNAMIC";
11814 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11818 BFD_ASSERT (abfd != NULL && ptr != NULL);
11820 /* Print normal ELF private data. */
11821 _bfd_elf_print_private_bfd_data (abfd, ptr);
11823 /* xgettext:c-format */
11824 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11826 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11827 fprintf (file, _(" [abi=O32]"));
11828 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11829 fprintf (file, _(" [abi=O64]"));
11830 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11831 fprintf (file, _(" [abi=EABI32]"));
11832 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11833 fprintf (file, _(" [abi=EABI64]"));
11834 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11835 fprintf (file, _(" [abi unknown]"));
11836 else if (ABI_N32_P (abfd))
11837 fprintf (file, _(" [abi=N32]"));
11838 else if (ABI_64_P (abfd))
11839 fprintf (file, _(" [abi=64]"));
11841 fprintf (file, _(" [no abi set]"));
11843 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11844 fprintf (file, " [mips1]");
11845 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11846 fprintf (file, " [mips2]");
11847 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11848 fprintf (file, " [mips3]");
11849 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11850 fprintf (file, " [mips4]");
11851 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11852 fprintf (file, " [mips5]");
11853 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11854 fprintf (file, " [mips32]");
11855 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11856 fprintf (file, " [mips64]");
11857 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11858 fprintf (file, " [mips32r2]");
11859 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11860 fprintf (file, " [mips64r2]");
11862 fprintf (file, _(" [unknown ISA]"));
11864 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11865 fprintf (file, " [mdmx]");
11867 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11868 fprintf (file, " [mips16]");
11870 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11871 fprintf (file, " [32bitmode]");
11873 fprintf (file, _(" [not 32bitmode]"));
11875 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11876 fprintf (file, " [noreorder]");
11878 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11879 fprintf (file, " [PIC]");
11881 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11882 fprintf (file, " [CPIC]");
11884 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11885 fprintf (file, " [XGOT]");
11887 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11888 fprintf (file, " [UCODE]");
11890 fputc ('\n', file);
11895 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11897 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11898 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11899 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11900 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11901 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11902 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11903 { NULL, 0, 0, 0, 0 }
11906 /* Merge non visibility st_other attributes. Ensure that the
11907 STO_OPTIONAL flag is copied into h->other, even if this is not a
11908 definiton of the symbol. */
11910 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11911 const Elf_Internal_Sym *isym,
11912 bfd_boolean definition,
11913 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11915 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11917 unsigned char other;
11919 other = (definition ? isym->st_other : h->other);
11920 other &= ~ELF_ST_VISIBILITY (-1);
11921 h->other = other | ELF_ST_VISIBILITY (h->other);
11925 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11926 h->other |= STO_OPTIONAL;
11929 /* Decide whether an undefined symbol is special and can be ignored.
11930 This is the case for OPTIONAL symbols on IRIX. */
11932 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11934 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11938 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11940 return (sym->st_shndx == SHN_COMMON
11941 || sym->st_shndx == SHN_MIPS_ACOMMON
11942 || sym->st_shndx == SHN_MIPS_SCOMMON);