1 /* Remote debugging interface for Densan DVE-R3900 ROM monitor for
3 Copyright 1997 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
29 #include "gdb_string.h"
32 /* Type of function passed to bfd_map_over_sections. */
34 typedef void (*section_map_func) (bfd * abfd, asection * sect, PTR obj);
36 /* Packet escape character used by Densan monitor. */
40 /* Maximum packet size. This is actually smaller than necessary
45 /* External functions. */
47 extern void report_transfer_performance (unsigned long, time_t, time_t);
49 /* Certain registers are "bitmapped", in that the monitor can only display
50 them or let the user modify them as a series of named bitfields.
51 This structure describes a field in a bitmapped register. */
55 char *prefix; /* string appearing before the value */
56 char *suffix; /* string appearing after the value */
57 char *user_name; /* name used by human when entering field value */
58 int length; /* number of bits in the field */
59 int start; /* starting (least significant) bit number of field */
62 /* Local functions for register manipulation. */
64 static void r3900_supply_register (char *regname, int regnamelen,
65 char *val, int vallen);
66 static void fetch_bad_vaddr (void);
67 static unsigned long fetch_fields (struct bit_field *bf);
68 static void fetch_bitmapped_register (int regno, struct bit_field *bf);
69 static void r3900_fetch_registers (int regno);
70 static void store_bitmapped_register (int regno, struct bit_field *bf);
71 static void r3900_store_registers (int regno);
73 /* Local functions for fast binary loading. */
75 static void write_long (char *buf, long n);
76 static void write_long_le (char *buf, long n);
77 static int debug_readchar (int hex);
78 static void debug_write (unsigned char *buf, int buflen);
79 static void ignore_packet (void);
80 static void send_packet (char type, unsigned char *buf, int buflen, int seq);
81 static void process_read_request (unsigned char *buf, int buflen);
82 static void count_section (bfd * abfd, asection * s,
83 unsigned int *section_count);
84 static void load_section (bfd * abfd, asection * s, unsigned int *data_count);
85 static void r3900_load (char *filename, int from_tty);
87 /* Miscellaneous local functions. */
89 static void r3900_open (char *args, int from_tty);
92 /* Pointers to static functions in monitor.c for fetching and storing
93 registers. We can't use these function in certain cases where the Densan
94 monitor acts perversely: for registers that it displays in bit-map
95 format, and those that can't be modified at all. In those cases
96 we have to use our own functions to fetch and store their values. */
98 static void (*orig_monitor_fetch_registers) (int regno);
99 static void (*orig_monitor_store_registers) (int regno);
101 /* Pointer to static function in monitor. for loading programs.
102 We use this function for loading S-records via the serial link. */
104 static void (*orig_monitor_load) (char *file, int from_tty);
106 /* This flag is set if a fast ethernet download should be used. */
108 static int ethernet = 0;
110 /* This array of registers needs to match the indexes used by GDB. The
111 whole reason this exists is because the various ROM monitors use
112 different names than GDB does, and don't support all the registers
115 static char *r3900_regnames[NUM_REGS] =
117 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
118 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
119 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
120 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
125 "B", /* BADVADDR_REGNUM */
126 "Pcause", /* CAUSE_REGNUM */
131 /* Table of register names produced by monitor's register dump command. */
133 static struct reg_entry
281 "BadV", BADVADDR_REGNUM
290 /* The monitor displays the cache register along with the status register,
291 as if they were a single register. So when we want to fetch the
292 status register, parse but otherwise ignore the fields of the
293 cache register that the monitor displays. Register fields that should
294 be ignored have a length of zero in the tables below. */
296 static struct bit_field status_fields[] =
298 /* Status register portion */
299 {"SR[<CU=", " ", "cu", 4, 28},
300 {"RE=", " ", "re", 1, 25},
301 {"BEV=", " ", "bev", 1, 22},
302 {"TS=", " ", "ts", 1, 21},
303 {"Nmi=", " ", "nmi", 1, 20},
304 {"INT=", " ", "int", 6, 10},
305 {"SW=", ">]", "sw", 2, 8},
306 {"[<KUO=", " ", "kuo", 1, 5},
307 {"IEO=", " ", "ieo", 1, 4},
308 {"KUP=", " ", "kup", 1, 3},
309 {"IEP=", " ", "iep", 1, 2},
310 {"KUC=", " ", "kuc", 1, 1},
311 {"IEC=", ">]", "iec", 1, 0},
313 /* Cache register portion (dummy for parsing only) */
314 {"CR[<IalO=", " ", "ialo", 0, 13},
315 {"DalO=", " ", "dalo", 0, 12},
316 {"IalP=", " ", "ialp", 0, 11},
317 {"DalP=", " ", "dalp", 0, 10},
318 {"IalC=", " ", "ialc", 0, 9},
319 {"DalC=", ">] ", "dalc", 0, 8},
321 {NULL, NULL, 0, 0} /* end of table marker */
325 #if 0 /* FIXME: Enable when we add support for modifying cache register. */
326 static struct bit_field cache_fields[] =
328 /* Status register portion (dummy for parsing only) */
329 {"SR[<CU=", " ", "cu", 0, 28},
330 {"RE=", " ", "re", 0, 25},
331 {"BEV=", " ", "bev", 0, 22},
332 {"TS=", " ", "ts", 0, 21},
333 {"Nmi=", " ", "nmi", 0, 20},
334 {"INT=", " ", "int", 0, 10},
335 {"SW=", ">]", "sw", 0, 8},
336 {"[<KUO=", " ", "kuo", 0, 5},
337 {"IEO=", " ", "ieo", 0, 4},
338 {"KUP=", " ", "kup", 0, 3},
339 {"IEP=", " ", "iep", 0, 2},
340 {"KUC=", " ", "kuc", 0, 1},
341 {"IEC=", ">]", "iec", 0, 0},
343 /* Cache register portion */
344 {"CR[<IalO=", " ", "ialo", 1, 13},
345 {"DalO=", " ", "dalo", 1, 12},
346 {"IalP=", " ", "ialp", 1, 11},
347 {"DalP=", " ", "dalp", 1, 10},
348 {"IalC=", " ", "ialc", 1, 9},
349 {"DalC=", ">] ", "dalc", 1, 8},
351 {NULL, NULL, NULL, 0, 0} /* end of table marker */
356 static struct bit_field cause_fields[] =
358 {"<BD=", " ", "bd", 1, 31},
359 {"CE=", " ", "ce", 2, 28},
360 {"IP=", " ", "ip", 6, 10},
361 {"SW=", " ", "sw", 2, 8},
362 {"EC=", ">]", "ec", 5, 2},
364 {NULL, NULL, NULL, 0, 0} /* end of table marker */
368 /* The monitor prints register values in the form
372 We look up the register name in a table, and remove the embedded space in
373 the hex value before passing it to monitor_supply_register. */
376 r3900_supply_register (char *regname, int regnamelen, char *val, int vallen)
383 /* Perform some sanity checks on the register name and value. */
384 if (regnamelen < 2 || regnamelen > 7 || vallen != 9)
387 /* Look up the register name. */
388 for (i = 0; reg_table[i].name != NULL; i++)
390 int rlen = strlen (reg_table[i].name);
391 if (rlen == regnamelen && strncmp (regname, reg_table[i].name, rlen) == 0)
393 regno = reg_table[i].regno;
400 /* Copy the hex value to a buffer and eliminate the embedded space. */
401 for (i = 0, p = valbuf; i < vallen; i++)
406 monitor_supply_register (regno, valbuf);
410 /* Fetch the BadVaddr register. Unlike the other registers, this
411 one can't be modified, and the monitor won't even prompt to let
415 fetch_bad_vaddr (void)
419 monitor_printf ("xB\r");
420 monitor_expect ("BadV=", NULL, 0);
421 monitor_expect_prompt (buf, sizeof (buf));
422 monitor_supply_register (BADVADDR_REGNUM, buf);
426 /* Read a series of bit fields from the monitor, and return their
427 combined binary value. */
430 fetch_fields (struct bit_field *bf)
433 unsigned long val = 0;
436 for (; bf->prefix != NULL; bf++)
438 monitor_expect (bf->prefix, NULL, 0); /* get prefix */
439 monitor_expect (bf->suffix, buf, sizeof (buf)); /* hex value, suffix */
442 bits = strtoul (buf, NULL, 16); /* get field value */
443 bits &= ((1 << bf->length) - 1); /* mask out useless bits */
444 val |= bits << bf->start; /* insert into register */
454 fetch_bitmapped_register (int regno, struct bit_field *bf)
457 unsigned char regbuf[MAX_REGISTER_RAW_SIZE];
459 monitor_printf ("x%s\r", r3900_regnames[regno]);
460 val = fetch_fields (bf);
461 monitor_printf (".\r");
462 monitor_expect_prompt (NULL, 0);
464 /* supply register stores in target byte order, so swap here */
466 store_unsigned_integer (regbuf, REGISTER_RAW_SIZE (regno), val);
467 supply_register (regno, regbuf);
472 /* Fetch all registers (if regno is -1), or one register from the
473 monitor. For most registers, we can use the generic monitor_
474 monitor_fetch_registers function. But others are displayed in
475 a very unusual fashion by the monitor, and must be handled specially. */
478 r3900_fetch_registers (int regno)
482 case BADVADDR_REGNUM:
486 fetch_bitmapped_register (PS_REGNUM, status_fields);
489 fetch_bitmapped_register (CAUSE_REGNUM, cause_fields);
492 orig_monitor_fetch_registers (regno);
497 /* Write the new value of the bitmapped register to the monitor. */
500 store_bitmapped_register (int regno, struct bit_field *bf)
502 unsigned long oldval, newval;
504 /* Fetch the current value of the register. */
505 monitor_printf ("x%s\r", r3900_regnames[regno]);
506 oldval = fetch_fields (bf);
507 newval = read_register (regno);
509 /* To save time, write just the fields that have changed. */
510 for (; bf->prefix != NULL; bf++)
514 unsigned long oldbits, newbits, mask;
516 mask = (1 << bf->length) - 1;
517 oldbits = (oldval >> bf->start) & mask;
518 newbits = (newval >> bf->start) & mask;
519 if (oldbits != newbits)
520 monitor_printf ("%s %lx ", bf->user_name, newbits);
524 monitor_printf (".\r");
525 monitor_expect_prompt (NULL, 0);
530 r3900_store_registers (int regno)
535 store_bitmapped_register (PS_REGNUM, status_fields);
538 store_bitmapped_register (CAUSE_REGNUM, cause_fields);
541 orig_monitor_store_registers (regno);
546 /* Write a 4-byte integer to the buffer in big-endian order. */
549 write_long (char *buf, long n)
551 buf[0] = (n >> 24) & 0xff;
552 buf[1] = (n >> 16) & 0xff;
553 buf[2] = (n >> 8) & 0xff;
558 /* Write a 4-byte integer to the buffer in little-endian order. */
561 write_long_le (char *buf, long n)
564 buf[1] = (n >> 8) & 0xff;
565 buf[2] = (n >> 16) & 0xff;
566 buf[3] = (n >> 24) & 0xff;
570 /* Read a character from the monitor. If remote debugging is on,
571 print the received character. If HEX is non-zero, print the
572 character in hexadecimal; otherwise, print it in ASCII. */
575 debug_readchar (int hex)
578 int c = monitor_readchar ();
580 if (remote_debug > 0)
583 sprintf (buf, "[%02x]", c & 0xff);
591 puts_debug ("Read -->", buf, "<--");
597 /* Send a buffer of characters to the monitor. If remote debugging is on,
598 print the sent buffer in hex. */
601 debug_write (unsigned char *buf, int buflen)
605 monitor_write (buf, buflen);
607 if (remote_debug > 0)
611 sprintf (s, "[%02x]", *buf & 0xff);
612 puts_debug ("Sent -->", s, "<--");
619 /* Ignore a packet sent to us by the monitor. It send packets
620 when its console is in "communications interface" mode. A packet
623 start of packet flag (one byte: 0xdc)
624 packet type (one byte)
629 The last two bytes of the data field are a checksum, but we don't
639 /* Ignore lots of trash (messages about section addresses, for example)
640 until we see the start of a packet. */
641 for (len = 0; len < 256; len++)
643 c = debug_readchar (0);
648 error ("Packet header byte not found; %02x seen instead.", c);
650 /* Read the packet type and length. */
651 c = debug_readchar (1); /* type */
653 c = debug_readchar (1); /* low byte of length */
656 c = debug_readchar (1); /* high byte of length */
657 len += (c & 0xff) << 8;
659 /* Ignore the rest of the packet. */
661 c = debug_readchar (1);
665 /* Encapsulate some data into a packet and send it to the monitor.
667 The 'p' packet is a special case. This is a packet we send
668 in response to a read ('r') packet from the monitor. This function
669 appends a one-byte sequence number to the data field of such a packet.
673 send_packet (char type, unsigned char *buf, int buflen, int seq)
675 unsigned char hdr[4];
679 /* If this is a 'p' packet, add one byte for a sequence number. */
683 /* If the buffer has a non-zero length, add two bytes for a checksum. */
687 /* Write the packet header. */
691 hdr[3] = (len >> 8) & 0xff;
692 debug_write (hdr, sizeof (hdr));
696 /* Write the packet data. */
697 debug_write (buf, buflen);
699 /* Write the sequence number if this is a 'p' packet. */
703 debug_write (hdr, 1);
706 /* Write the checksum. */
708 for (i = 0; i < buflen; i++)
710 int tmp = (buf[i] & 0xff);
721 sum += (seq & 0xff) << 8;
723 sum = (sum & 0xffff) + ((sum >> 16) & 0xffff);
724 sum += (sum >> 16) & 1;
727 hdr[0] = (sum >> 8) & 0xff;
729 debug_write (hdr, 2);
734 /* Respond to an expected read request from the monitor by sending
735 data in chunks. Handle all acknowledgements and handshaking packets.
737 The monitor expects a response consisting of a one or more 'p' packets,
738 each followed by a portion of the data requested. The 'p' packet
739 contains only a four-byte integer, the value of which is the number
740 of bytes of data we are about to send. Following the 'p' packet,
741 the monitor expects the data bytes themselves in raw, unpacketized,
742 form, without even a checksum.
746 process_read_request (unsigned char *buf, int buflen)
748 unsigned char len[4];
752 /* Discard the read request. FIXME: we have to hope it's for
753 the exact number of bytes we want to send; should check for this. */
756 for (i = chunk = 0, seq = 0; i < buflen; i += chunk, seq++)
758 /* Don't send more than MAXPSIZE bytes at a time. */
760 if (chunk > MAXPSIZE)
763 /* Write a packet containing the number of bytes we are sending. */
764 write_long_le (len, chunk);
765 send_packet ('p', len, sizeof (len), seq);
767 /* Write the data in raw form following the packet. */
768 debug_write (&buf[i], chunk);
770 /* Discard the ACK packet. */
774 /* Send an "end of data" packet. */
775 send_packet ('e', "", 0, 0);
779 /* Count loadable sections (helper function for r3900_load). */
782 count_section (bfd *abfd, asection *s, unsigned int *section_count)
784 if (s->flags & SEC_LOAD && bfd_section_size (abfd, s) != 0)
789 /* Load a single BFD section (helper function for r3900_load).
791 WARNING: this code is filled with assumptions about how
792 the Densan monitor loads programs. The monitor issues
793 packets containing read requests, but rather than respond
794 to them in an general way, we expect them to following
797 For example, we know that the monitor will start loading by
798 issuing an 8-byte read request for the binary file header.
799 We know this is coming and ignore the actual contents
800 of the read request packet.
804 load_section (bfd *abfd, asection *s, unsigned int *data_count)
806 if (s->flags & SEC_LOAD)
808 bfd_size_type section_size = bfd_section_size (abfd, s);
809 bfd_vma section_base = bfd_section_lma (abfd, s);
810 unsigned char *buffer;
811 unsigned char header[8];
813 /* Don't output zero-length sections. */
814 if (section_size == 0)
817 *data_count += section_size;
819 /* Print some fluff about the section being loaded. */
820 printf_filtered ("Loading section %s, size 0x%lx lma ",
821 bfd_section_name (abfd, s), (long) section_size);
822 print_address_numeric (section_base, 1, gdb_stdout);
823 printf_filtered ("\n");
824 gdb_flush (gdb_stdout);
826 /* Write the section header (location and size). */
827 write_long (&header[0], (long) section_base);
828 write_long (&header[4], (long) section_size);
829 process_read_request (header, sizeof (header));
831 /* Read the section contents into a buffer, write it out,
832 then free the buffer. */
833 buffer = (unsigned char *) xmalloc (section_size);
834 bfd_get_section_contents (abfd, s, buffer, 0, section_size);
835 process_read_request (buffer, section_size);
841 /* When the ethernet is used as the console port on the Densan board,
842 we can use the "Rm" command to do a fast binary load. The format
843 of the download data is:
845 number of sections (4 bytes)
846 starting address (4 bytes)
847 repeat for each section:
848 location address (4 bytes)
849 section size (4 bytes)
852 The 4-byte fields are all in big-endian order.
854 Using this command is tricky because we have to put the monitor
855 into a special funky "communications interface" mode, in which
856 it sends and receives packets of data along with the normal prompt.
860 r3900_load (char *filename, int from_tty)
863 unsigned int data_count = 0;
864 time_t start_time, end_time; /* for timing of download */
865 int section_count = 0;
866 unsigned char buffer[8];
868 /* If we are not using the ethernet, use the normal monitor load,
869 which sends S-records over the serial link. */
872 orig_monitor_load (filename, from_tty);
877 if (filename == NULL || filename[0] == 0)
878 filename = get_exec_file (1);
879 abfd = bfd_openr (filename, 0);
881 error ("Unable to open file %s\n", filename);
882 if (bfd_check_format (abfd, bfd_object) == 0)
883 error ("File is not an object file\n");
885 /* Output the "vconsi" command to get the monitor in the communication
886 state where it will accept a load command. This will cause
887 the monitor to emit a packet before each prompt, so ignore the packet. */
888 monitor_printf ("vconsi\r");
890 monitor_expect_prompt (NULL, 0);
892 /* Output the "Rm" (load) command and respond to the subsequent "open"
893 packet by sending an ACK packet. */
894 monitor_printf ("Rm\r");
896 send_packet ('a', "", 0, 0);
898 /* Output the fast load header (number of sections and starting address). */
899 bfd_map_over_sections ((bfd *) abfd, (section_map_func) count_section,
901 write_long (&buffer[0], (long) section_count);
903 write_long (&buffer[4], (long) bfd_get_start_address (exec_bfd));
905 write_long (&buffer[4], 0);
906 process_read_request (buffer, sizeof (buffer));
908 /* Output the section data. */
909 start_time = time (NULL);
910 bfd_map_over_sections (abfd, (section_map_func) load_section, &data_count);
911 end_time = time (NULL);
913 /* Acknowledge the close packet and put the monitor back into
914 "normal" mode so it won't send packets any more. */
916 send_packet ('a', "", 0, 0);
917 monitor_expect_prompt (NULL, 0);
918 monitor_printf ("vconsx\r");
919 monitor_expect_prompt (NULL, 0);
921 /* Print start address and download performance information. */
922 printf_filtered ("Start address 0x%lx\n", (long) bfd_get_start_address (abfd));
923 report_transfer_performance (data_count, start_time, end_time);
925 /* Finally, make the PC point at the start address */
927 write_pc (bfd_get_start_address (exec_bfd));
929 inferior_pid = 0; /* No process now */
931 /* This is necessary because many things were based on the PC at the
932 time that we attached to the monitor, which is no longer valid
933 now that we have loaded new code (and just changed the PC).
934 Another way to do this might be to call normal_stop, except that
935 the stack may not be valid, and things would get horribly
937 clear_symtab_users ();
941 /* Commands to send to the monitor when first connecting:
942 * The bare carriage return forces a prompt from the monitor
943 (monitor doesn't prompt immediately after a reset).
944 * The "vconsx" switches the monitor back to interactive mode
945 in case an aborted download had left it in packet mode.
946 * The "Xtr" command causes subsequent "t" (trace) commands to display
947 the general registers only.
948 * The "Xxr" command does the same thing for the "x" (examine
950 * The "bx" command clears all breakpoints.
953 static char *r3900_inits[] =
954 {"\r", "vconsx\r", "Xtr\r", "Xxr\r", "bx\r", NULL};
955 static char *dummy_inits[] =
958 static struct target_ops r3900_ops;
959 static struct monitor_ops r3900_cmds;
962 r3900_open (char *args, int from_tty)
967 monitor_open (args, &r3900_cmds, from_tty);
969 /* We have to handle sending the init strings ourselves, because
970 the first two strings we send (carriage returns) may not be echoed
971 by the monitor, but the rest will be. */
972 monitor_printf_noecho ("\r\r");
973 for (i = 0; r3900_inits[i] != NULL; i++)
975 monitor_printf (r3900_inits[i]);
976 monitor_expect_prompt (NULL, 0);
979 /* Attempt to determine whether the console device is ethernet or serial.
980 This will tell us which kind of load to use (S-records over a serial
981 link, or the Densan fast binary multi-section format over the net). */
984 monitor_printf ("v\r");
985 if (monitor_expect ("console device :", NULL, 0) != -1)
986 if (monitor_expect ("\n", buf, sizeof (buf)) != -1)
987 if (strstr (buf, "ethernet") != NULL)
989 monitor_expect_prompt (NULL, 0);
993 _initialize_r3900_rom (void)
995 r3900_cmds.flags = MO_NO_ECHO_ON_OPEN |
996 MO_ADDR_BITS_REMOVE |
997 MO_CLR_BREAK_USES_ADDR |
998 MO_GETMEM_READ_SINGLE |
999 MO_PRINT_PROGRAM_OUTPUT;
1001 r3900_cmds.init = dummy_inits;
1002 r3900_cmds.cont = "g\r";
1003 r3900_cmds.step = "t\r";
1004 r3900_cmds.set_break = "b %A\r"; /* COREADDR */
1005 r3900_cmds.clr_break = "b %A,0\r"; /* COREADDR */
1006 r3900_cmds.fill = "fx %A s %x %x\r"; /* COREADDR, len, val */
1008 r3900_cmds.setmem.cmdb = "sx %A %x\r"; /* COREADDR, val */
1009 r3900_cmds.setmem.cmdw = "sh %A %x\r"; /* COREADDR, val */
1010 r3900_cmds.setmem.cmdl = "sw %A %x\r"; /* COREADDR, val */
1012 r3900_cmds.getmem.cmdb = "sx %A\r"; /* COREADDR */
1013 r3900_cmds.getmem.cmdw = "sh %A\r"; /* COREADDR */
1014 r3900_cmds.getmem.cmdl = "sw %A\r"; /* COREADDR */
1015 r3900_cmds.getmem.resp_delim = " : ";
1016 r3900_cmds.getmem.term = " ";
1017 r3900_cmds.getmem.term_cmd = ".\r";
1019 r3900_cmds.setreg.cmd = "x%s %x\r"; /* regname, val */
1021 r3900_cmds.getreg.cmd = "x%s\r"; /* regname */
1022 r3900_cmds.getreg.resp_delim = "=";
1023 r3900_cmds.getreg.term = " ";
1024 r3900_cmds.getreg.term_cmd = ".\r";
1026 r3900_cmds.dump_registers = "x\r";
1027 r3900_cmds.register_pattern =
1028 "\\([a-zA-Z0-9_]+\\) *=\\([0-9a-f]+ [0-9a-f]+\\b\\)";
1029 r3900_cmds.supply_register = r3900_supply_register;
1030 /* S-record download, via "keyboard port". */
1031 r3900_cmds.load = "r0\r";
1032 r3900_cmds.prompt = "#";
1033 r3900_cmds.line_term = "\r";
1034 r3900_cmds.target = &r3900_ops;
1035 r3900_cmds.stopbits = SERIAL_1_STOPBITS;
1036 r3900_cmds.regnames = r3900_regnames;
1037 r3900_cmds.magic = MONITOR_OPS_MAGIC;
1039 init_monitor_ops (&r3900_ops);
1041 r3900_ops.to_shortname = "r3900";
1042 r3900_ops.to_longname = "R3900 monitor";
1043 r3900_ops.to_doc = "Debug using the DVE R3900 monitor.\n\
1044 Specify the serial device it is connected to (e.g. /dev/ttya).";
1045 r3900_ops.to_open = r3900_open;
1047 /* Override the functions to fetch and store registers. But save the
1048 addresses of the default functions, because we will use those functions
1049 for "normal" registers. */
1051 orig_monitor_fetch_registers = r3900_ops.to_fetch_registers;
1052 orig_monitor_store_registers = r3900_ops.to_store_registers;
1053 r3900_ops.to_fetch_registers = r3900_fetch_registers;
1054 r3900_ops.to_store_registers = r3900_store_registers;
1056 /* Override the load function, but save the address of the default
1057 function to use when loading S-records over a serial link. */
1058 orig_monitor_load = r3900_ops.to_load;
1059 r3900_ops.to_load = r3900_load;
1061 add_target (&r3900_ops);