1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 static struct type *desc_base_type (struct type *);
73 static struct type *desc_bounds_type (struct type *);
75 static struct value *desc_bounds (struct value *);
77 static int fat_pntr_bounds_bitpos (struct type *);
79 static int fat_pntr_bounds_bitsize (struct type *);
81 static struct type *desc_data_target_type (struct type *);
83 static struct value *desc_data (struct value *);
85 static int fat_pntr_data_bitpos (struct type *);
87 static int fat_pntr_data_bitsize (struct type *);
89 static struct value *desc_one_bound (struct value *, int, int);
91 static int desc_bound_bitpos (struct type *, int, int);
93 static int desc_bound_bitsize (struct type *, int, int);
95 static struct type *desc_index_type (struct type *, int);
97 static int desc_arity (struct type *);
99 static int ada_args_match (struct symbol *, struct value **, int);
101 static struct value *make_array_descriptor (struct type *, struct value *);
103 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
108 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
109 const struct block *,
110 const lookup_name_info &lookup_name,
111 domain_enum, int, int *);
113 static int is_nonfunction (const std::vector<struct block_symbol> &);
115 static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 const struct block *);
119 static int possible_user_operator_p (enum exp_opcode, struct value **);
121 static const char *ada_decoded_op_name (enum exp_opcode);
123 static int numeric_type_p (struct type *);
125 static int integer_type_p (struct type *);
127 static int scalar_type_p (struct type *);
129 static int discrete_type_p (struct type *);
131 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
134 static struct type *ada_find_parallel_type_with_name (struct type *,
137 static int is_dynamic_field (struct type *, int);
139 static struct type *to_fixed_variant_branch_type (struct type *,
141 CORE_ADDR, struct value *);
143 static struct type *to_fixed_array_type (struct type *, struct value *, int);
145 static struct type *to_fixed_range_type (struct type *, struct value *);
147 static struct type *to_static_fixed_type (struct type *);
148 static struct type *static_unwrap_type (struct type *type);
150 static struct value *unwrap_value (struct value *);
152 static struct type *constrained_packed_array_type (struct type *, long *);
154 static struct type *decode_constrained_packed_array_type (struct type *);
156 static long decode_packed_array_bitsize (struct type *);
158 static struct value *decode_constrained_packed_array (struct value *);
160 static int ada_is_unconstrained_packed_array_type (struct type *);
162 static struct value *value_subscript_packed (struct value *, int,
165 static struct value *coerce_unspec_val_to_type (struct value *,
168 static int lesseq_defined_than (struct symbol *, struct symbol *);
170 static int equiv_types (struct type *, struct type *);
172 static int is_name_suffix (const char *);
174 static int advance_wild_match (const char **, const char *, char);
176 static bool wild_match (const char *name, const char *patn);
178 static struct value *ada_coerce_ref (struct value *);
180 static LONGEST pos_atr (struct value *);
182 static struct value *val_atr (struct type *, LONGEST);
184 static struct symbol *standard_lookup (const char *, const struct block *,
187 static struct value *ada_search_struct_field (const char *, struct value *, int,
190 static int find_struct_field (const char *, struct type *, int,
191 struct type **, int *, int *, int *, int *);
193 static int ada_resolve_function (std::vector<struct block_symbol> &,
194 struct value **, int, const char *,
195 struct type *, bool);
197 static int ada_is_direct_array_type (struct type *);
199 static struct value *ada_index_struct_field (int, struct value *, int,
202 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
205 static struct type *ada_find_any_type (const char *name);
207 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
208 (const lookup_name_info &lookup_name);
212 /* The result of a symbol lookup to be stored in our symbol cache. */
216 /* The name used to perform the lookup. */
218 /* The namespace used during the lookup. */
220 /* The symbol returned by the lookup, or NULL if no matching symbol
223 /* The block where the symbol was found, or NULL if no matching
225 const struct block *block;
226 /* A pointer to the next entry with the same hash. */
227 struct cache_entry *next;
230 /* The Ada symbol cache, used to store the result of Ada-mode symbol
231 lookups in the course of executing the user's commands.
233 The cache is implemented using a simple, fixed-sized hash.
234 The size is fixed on the grounds that there are not likely to be
235 all that many symbols looked up during any given session, regardless
236 of the size of the symbol table. If we decide to go to a resizable
237 table, let's just use the stuff from libiberty instead. */
239 #define HASH_SIZE 1009
241 struct ada_symbol_cache
243 /* An obstack used to store the entries in our cache. */
244 struct auto_obstack cache_space;
246 /* The root of the hash table used to implement our symbol cache. */
247 struct cache_entry *root[HASH_SIZE] {};
250 /* Maximum-sized dynamic type. */
251 static unsigned int varsize_limit;
253 static const char ada_completer_word_break_characters[] =
255 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
257 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
260 /* The name of the symbol to use to get the name of the main subprogram. */
261 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
262 = "__gnat_ada_main_program_name";
264 /* Limit on the number of warnings to raise per expression evaluation. */
265 static int warning_limit = 2;
267 /* Number of warning messages issued; reset to 0 by cleanups after
268 expression evaluation. */
269 static int warnings_issued = 0;
271 static const char * const known_runtime_file_name_patterns[] = {
272 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
275 static const char * const known_auxiliary_function_name_patterns[] = {
276 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
279 /* Maintenance-related settings for this module. */
281 static struct cmd_list_element *maint_set_ada_cmdlist;
282 static struct cmd_list_element *maint_show_ada_cmdlist;
284 /* The "maintenance ada set/show ignore-descriptive-type" value. */
286 static bool ada_ignore_descriptive_types_p = false;
288 /* Inferior-specific data. */
290 /* Per-inferior data for this module. */
292 struct ada_inferior_data
294 /* The ada__tags__type_specific_data type, which is used when decoding
295 tagged types. With older versions of GNAT, this type was directly
296 accessible through a component ("tsd") in the object tag. But this
297 is no longer the case, so we cache it for each inferior. */
298 struct type *tsd_type = nullptr;
300 /* The exception_support_info data. This data is used to determine
301 how to implement support for Ada exception catchpoints in a given
303 const struct exception_support_info *exception_info = nullptr;
306 /* Our key to this module's inferior data. */
307 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
309 /* Return our inferior data for the given inferior (INF).
311 This function always returns a valid pointer to an allocated
312 ada_inferior_data structure. If INF's inferior data has not
313 been previously set, this functions creates a new one with all
314 fields set to zero, sets INF's inferior to it, and then returns
315 a pointer to that newly allocated ada_inferior_data. */
317 static struct ada_inferior_data *
318 get_ada_inferior_data (struct inferior *inf)
320 struct ada_inferior_data *data;
322 data = ada_inferior_data.get (inf);
324 data = ada_inferior_data.emplace (inf);
329 /* Perform all necessary cleanups regarding our module's inferior data
330 that is required after the inferior INF just exited. */
333 ada_inferior_exit (struct inferior *inf)
335 ada_inferior_data.clear (inf);
339 /* program-space-specific data. */
341 /* This module's per-program-space data. */
342 struct ada_pspace_data
344 /* The Ada symbol cache. */
345 std::unique_ptr<ada_symbol_cache> sym_cache;
348 /* Key to our per-program-space data. */
349 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
351 /* Return this module's data for the given program space (PSPACE).
352 If not is found, add a zero'ed one now.
354 This function always returns a valid object. */
356 static struct ada_pspace_data *
357 get_ada_pspace_data (struct program_space *pspace)
359 struct ada_pspace_data *data;
361 data = ada_pspace_data_handle.get (pspace);
363 data = ada_pspace_data_handle.emplace (pspace);
370 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
371 all typedef layers have been peeled. Otherwise, return TYPE.
373 Normally, we really expect a typedef type to only have 1 typedef layer.
374 In other words, we really expect the target type of a typedef type to be
375 a non-typedef type. This is particularly true for Ada units, because
376 the language does not have a typedef vs not-typedef distinction.
377 In that respect, the Ada compiler has been trying to eliminate as many
378 typedef definitions in the debugging information, since they generally
379 do not bring any extra information (we still use typedef under certain
380 circumstances related mostly to the GNAT encoding).
382 Unfortunately, we have seen situations where the debugging information
383 generated by the compiler leads to such multiple typedef layers. For
384 instance, consider the following example with stabs:
386 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
387 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
389 This is an error in the debugging information which causes type
390 pck__float_array___XUP to be defined twice, and the second time,
391 it is defined as a typedef of a typedef.
393 This is on the fringe of legality as far as debugging information is
394 concerned, and certainly unexpected. But it is easy to handle these
395 situations correctly, so we can afford to be lenient in this case. */
398 ada_typedef_target_type (struct type *type)
400 while (type->code () == TYPE_CODE_TYPEDEF)
401 type = TYPE_TARGET_TYPE (type);
405 /* Given DECODED_NAME a string holding a symbol name in its
406 decoded form (ie using the Ada dotted notation), returns
407 its unqualified name. */
410 ada_unqualified_name (const char *decoded_name)
414 /* If the decoded name starts with '<', it means that the encoded
415 name does not follow standard naming conventions, and thus that
416 it is not your typical Ada symbol name. Trying to unqualify it
417 is therefore pointless and possibly erroneous. */
418 if (decoded_name[0] == '<')
421 result = strrchr (decoded_name, '.');
423 result++; /* Skip the dot... */
425 result = decoded_name;
430 /* Return a string starting with '<', followed by STR, and '>'. */
433 add_angle_brackets (const char *str)
435 return string_printf ("<%s>", str);
438 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
439 suffix of FIELD_NAME beginning "___". */
442 field_name_match (const char *field_name, const char *target)
444 int len = strlen (target);
447 (strncmp (field_name, target, len) == 0
448 && (field_name[len] == '\0'
449 || (startswith (field_name + len, "___")
450 && strcmp (field_name + strlen (field_name) - 6,
455 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
456 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
457 and return its index. This function also handles fields whose name
458 have ___ suffixes because the compiler sometimes alters their name
459 by adding such a suffix to represent fields with certain constraints.
460 If the field could not be found, return a negative number if
461 MAYBE_MISSING is set. Otherwise raise an error. */
464 ada_get_field_index (const struct type *type, const char *field_name,
468 struct type *struct_type = check_typedef ((struct type *) type);
470 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
471 if (field_name_match (struct_type->field (fieldno).name (), field_name))
475 error (_("Unable to find field %s in struct %s. Aborting"),
476 field_name, struct_type->name ());
481 /* The length of the prefix of NAME prior to any "___" suffix. */
484 ada_name_prefix_len (const char *name)
490 const char *p = strstr (name, "___");
493 return strlen (name);
499 /* Return non-zero if SUFFIX is a suffix of STR.
500 Return zero if STR is null. */
503 is_suffix (const char *str, const char *suffix)
510 len2 = strlen (suffix);
511 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
514 /* The contents of value VAL, treated as a value of type TYPE. The
515 result is an lval in memory if VAL is. */
517 static struct value *
518 coerce_unspec_val_to_type (struct value *val, struct type *type)
520 type = ada_check_typedef (type);
521 if (value_type (val) == type)
525 struct value *result;
527 /* Make sure that the object size is not unreasonable before
528 trying to allocate some memory for it. */
529 ada_ensure_varsize_limit (type);
531 if (value_optimized_out (val))
532 result = allocate_optimized_out_value (type);
533 else if (value_lazy (val)
534 /* Be careful not to make a lazy not_lval value. */
535 || (VALUE_LVAL (val) != not_lval
536 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
537 result = allocate_value_lazy (type);
540 result = allocate_value (type);
541 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
543 set_value_component_location (result, val);
544 set_value_bitsize (result, value_bitsize (val));
545 set_value_bitpos (result, value_bitpos (val));
546 if (VALUE_LVAL (result) == lval_memory)
547 set_value_address (result, value_address (val));
552 static const gdb_byte *
553 cond_offset_host (const gdb_byte *valaddr, long offset)
558 return valaddr + offset;
562 cond_offset_target (CORE_ADDR address, long offset)
567 return address + offset;
570 /* Issue a warning (as for the definition of warning in utils.c, but
571 with exactly one argument rather than ...), unless the limit on the
572 number of warnings has passed during the evaluation of the current
575 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
576 provided by "complaint". */
577 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
580 lim_warning (const char *format, ...)
584 va_start (args, format);
585 warnings_issued += 1;
586 if (warnings_issued <= warning_limit)
587 vwarning (format, args);
592 /* Issue an error if the size of an object of type T is unreasonable,
593 i.e. if it would be a bad idea to allocate a value of this type in
597 ada_ensure_varsize_limit (const struct type *type)
599 if (TYPE_LENGTH (type) > varsize_limit)
600 error (_("object size is larger than varsize-limit"));
603 /* Maximum value of a SIZE-byte signed integer type. */
605 max_of_size (int size)
607 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
609 return top_bit | (top_bit - 1);
612 /* Minimum value of a SIZE-byte signed integer type. */
614 min_of_size (int size)
616 return -max_of_size (size) - 1;
619 /* Maximum value of a SIZE-byte unsigned integer type. */
621 umax_of_size (int size)
623 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
625 return top_bit | (top_bit - 1);
628 /* Maximum value of integral type T, as a signed quantity. */
630 max_of_type (struct type *t)
632 if (t->is_unsigned ())
633 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
635 return max_of_size (TYPE_LENGTH (t));
638 /* Minimum value of integral type T, as a signed quantity. */
640 min_of_type (struct type *t)
642 if (t->is_unsigned ())
645 return min_of_size (TYPE_LENGTH (t));
648 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
650 ada_discrete_type_high_bound (struct type *type)
652 type = resolve_dynamic_type (type, {}, 0);
653 switch (type->code ())
655 case TYPE_CODE_RANGE:
657 const dynamic_prop &high = type->bounds ()->high;
659 if (high.kind () == PROP_CONST)
660 return high.const_val ();
663 gdb_assert (high.kind () == PROP_UNDEFINED);
665 /* This happens when trying to evaluate a type's dynamic bound
666 without a live target. There is nothing relevant for us to
667 return here, so return 0. */
672 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
677 return max_of_type (type);
679 error (_("Unexpected type in ada_discrete_type_high_bound."));
683 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
685 ada_discrete_type_low_bound (struct type *type)
687 type = resolve_dynamic_type (type, {}, 0);
688 switch (type->code ())
690 case TYPE_CODE_RANGE:
692 const dynamic_prop &low = type->bounds ()->low;
694 if (low.kind () == PROP_CONST)
695 return low.const_val ();
698 gdb_assert (low.kind () == PROP_UNDEFINED);
700 /* This happens when trying to evaluate a type's dynamic bound
701 without a live target. There is nothing relevant for us to
702 return here, so return 0. */
707 return TYPE_FIELD_ENUMVAL (type, 0);
712 return min_of_type (type);
714 error (_("Unexpected type in ada_discrete_type_low_bound."));
718 /* The identity on non-range types. For range types, the underlying
719 non-range scalar type. */
722 get_base_type (struct type *type)
724 while (type != NULL && type->code () == TYPE_CODE_RANGE)
726 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
728 type = TYPE_TARGET_TYPE (type);
733 /* Return a decoded version of the given VALUE. This means returning
734 a value whose type is obtained by applying all the GNAT-specific
735 encodings, making the resulting type a static but standard description
736 of the initial type. */
739 ada_get_decoded_value (struct value *value)
741 struct type *type = ada_check_typedef (value_type (value));
743 if (ada_is_array_descriptor_type (type)
744 || (ada_is_constrained_packed_array_type (type)
745 && type->code () != TYPE_CODE_PTR))
747 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
748 value = ada_coerce_to_simple_array_ptr (value);
750 value = ada_coerce_to_simple_array (value);
753 value = ada_to_fixed_value (value);
758 /* Same as ada_get_decoded_value, but with the given TYPE.
759 Because there is no associated actual value for this type,
760 the resulting type might be a best-effort approximation in
761 the case of dynamic types. */
764 ada_get_decoded_type (struct type *type)
766 type = to_static_fixed_type (type);
767 if (ada_is_constrained_packed_array_type (type))
768 type = ada_coerce_to_simple_array_type (type);
774 /* Language Selection */
776 /* If the main program is in Ada, return language_ada, otherwise return LANG
777 (the main program is in Ada iif the adainit symbol is found). */
780 ada_update_initial_language (enum language lang)
782 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
788 /* If the main procedure is written in Ada, then return its name.
789 The result is good until the next call. Return NULL if the main
790 procedure doesn't appear to be in Ada. */
795 struct bound_minimal_symbol msym;
796 static gdb::unique_xmalloc_ptr<char> main_program_name;
798 /* For Ada, the name of the main procedure is stored in a specific
799 string constant, generated by the binder. Look for that symbol,
800 extract its address, and then read that string. If we didn't find
801 that string, then most probably the main procedure is not written
803 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
805 if (msym.minsym != NULL)
807 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
808 if (main_program_name_addr == 0)
809 error (_("Invalid address for Ada main program name."));
811 main_program_name = target_read_string (main_program_name_addr, 1024);
812 return main_program_name.get ();
815 /* The main procedure doesn't seem to be in Ada. */
821 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
824 const struct ada_opname_map ada_opname_table[] = {
825 {"Oadd", "\"+\"", BINOP_ADD},
826 {"Osubtract", "\"-\"", BINOP_SUB},
827 {"Omultiply", "\"*\"", BINOP_MUL},
828 {"Odivide", "\"/\"", BINOP_DIV},
829 {"Omod", "\"mod\"", BINOP_MOD},
830 {"Orem", "\"rem\"", BINOP_REM},
831 {"Oexpon", "\"**\"", BINOP_EXP},
832 {"Olt", "\"<\"", BINOP_LESS},
833 {"Ole", "\"<=\"", BINOP_LEQ},
834 {"Ogt", "\">\"", BINOP_GTR},
835 {"Oge", "\">=\"", BINOP_GEQ},
836 {"Oeq", "\"=\"", BINOP_EQUAL},
837 {"One", "\"/=\"", BINOP_NOTEQUAL},
838 {"Oand", "\"and\"", BINOP_BITWISE_AND},
839 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
840 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
841 {"Oconcat", "\"&\"", BINOP_CONCAT},
842 {"Oabs", "\"abs\"", UNOP_ABS},
843 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
844 {"Oadd", "\"+\"", UNOP_PLUS},
845 {"Osubtract", "\"-\"", UNOP_NEG},
849 /* If STR is a decoded version of a compiler-provided suffix (like the
850 "[cold]" in "symbol[cold]"), return true. Otherwise, return
854 is_compiler_suffix (const char *str)
856 gdb_assert (*str == '[');
858 while (*str != '\0' && isalpha (*str))
860 /* We accept a missing "]" in order to support completion. */
861 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
864 /* The "encoded" form of DECODED, according to GNAT conventions. If
865 THROW_ERRORS, throw an error if invalid operator name is found.
866 Otherwise, return the empty string in that case. */
869 ada_encode_1 (const char *decoded, bool throw_errors)
874 std::string encoding_buffer;
875 for (const char *p = decoded; *p != '\0'; p += 1)
878 encoding_buffer.append ("__");
879 else if (*p == '[' && is_compiler_suffix (p))
881 encoding_buffer = encoding_buffer + "." + (p + 1);
882 if (encoding_buffer.back () == ']')
883 encoding_buffer.pop_back ();
888 const struct ada_opname_map *mapping;
890 for (mapping = ada_opname_table;
891 mapping->encoded != NULL
892 && !startswith (p, mapping->decoded); mapping += 1)
894 if (mapping->encoded == NULL)
897 error (_("invalid Ada operator name: %s"), p);
901 encoding_buffer.append (mapping->encoded);
905 encoding_buffer.push_back (*p);
908 return encoding_buffer;
911 /* The "encoded" form of DECODED, according to GNAT conventions. */
914 ada_encode (const char *decoded)
916 return ada_encode_1 (decoded, true);
919 /* Return NAME folded to lower case, or, if surrounded by single
920 quotes, unfolded, but with the quotes stripped away. Result good
924 ada_fold_name (gdb::string_view name)
926 static std::string fold_storage;
928 if (!name.empty () && name[0] == '\'')
929 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
932 fold_storage = gdb::to_string (name);
933 for (int i = 0; i < name.size (); i += 1)
934 fold_storage[i] = tolower (fold_storage[i]);
937 return fold_storage.c_str ();
940 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
943 is_lower_alphanum (const char c)
945 return (isdigit (c) || (isalpha (c) && islower (c)));
948 /* ENCODED is the linkage name of a symbol and LEN contains its length.
949 This function saves in LEN the length of that same symbol name but
950 without either of these suffixes:
956 These are suffixes introduced by the compiler for entities such as
957 nested subprogram for instance, in order to avoid name clashes.
958 They do not serve any purpose for the debugger. */
961 ada_remove_trailing_digits (const char *encoded, int *len)
963 if (*len > 1 && isdigit (encoded[*len - 1]))
967 while (i > 0 && isdigit (encoded[i]))
969 if (i >= 0 && encoded[i] == '.')
971 else if (i >= 0 && encoded[i] == '$')
973 else if (i >= 2 && startswith (encoded + i - 2, "___"))
975 else if (i >= 1 && startswith (encoded + i - 1, "__"))
980 /* Remove the suffix introduced by the compiler for protected object
984 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
986 /* Remove trailing N. */
988 /* Protected entry subprograms are broken into two
989 separate subprograms: The first one is unprotected, and has
990 a 'N' suffix; the second is the protected version, and has
991 the 'P' suffix. The second calls the first one after handling
992 the protection. Since the P subprograms are internally generated,
993 we leave these names undecoded, giving the user a clue that this
994 entity is internal. */
997 && encoded[*len - 1] == 'N'
998 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1002 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
1003 then update *LEN to remove the suffix and return the offset of the
1004 character just past the ".". Otherwise, return -1. */
1007 remove_compiler_suffix (const char *encoded, int *len)
1009 int offset = *len - 1;
1010 while (offset > 0 && isalpha (encoded[offset]))
1012 if (offset > 0 && encoded[offset] == '.')
1020 /* See ada-lang.h. */
1023 ada_decode (const char *encoded, bool wrap)
1029 std::string decoded;
1032 /* With function descriptors on PPC64, the value of a symbol named
1033 ".FN", if it exists, is the entry point of the function "FN". */
1034 if (encoded[0] == '.')
1037 /* The name of the Ada main procedure starts with "_ada_".
1038 This prefix is not part of the decoded name, so skip this part
1039 if we see this prefix. */
1040 if (startswith (encoded, "_ada_"))
1043 /* If the name starts with '_', then it is not a properly encoded
1044 name, so do not attempt to decode it. Similarly, if the name
1045 starts with '<', the name should not be decoded. */
1046 if (encoded[0] == '_' || encoded[0] == '<')
1049 len0 = strlen (encoded);
1051 suffix = remove_compiler_suffix (encoded, &len0);
1053 ada_remove_trailing_digits (encoded, &len0);
1054 ada_remove_po_subprogram_suffix (encoded, &len0);
1056 /* Remove the ___X.* suffix if present. Do not forget to verify that
1057 the suffix is located before the current "end" of ENCODED. We want
1058 to avoid re-matching parts of ENCODED that have previously been
1059 marked as discarded (by decrementing LEN0). */
1060 p = strstr (encoded, "___");
1061 if (p != NULL && p - encoded < len0 - 3)
1069 /* Remove any trailing TKB suffix. It tells us that this symbol
1070 is for the body of a task, but that information does not actually
1071 appear in the decoded name. */
1073 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1076 /* Remove any trailing TB suffix. The TB suffix is slightly different
1077 from the TKB suffix because it is used for non-anonymous task
1080 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1083 /* Remove trailing "B" suffixes. */
1084 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1086 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1089 /* Make decoded big enough for possible expansion by operator name. */
1091 decoded.resize (2 * len0 + 1, 'X');
1093 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1095 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1098 while ((i >= 0 && isdigit (encoded[i]))
1099 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1101 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1103 else if (encoded[i] == '$')
1107 /* The first few characters that are not alphabetic are not part
1108 of any encoding we use, so we can copy them over verbatim. */
1110 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1111 decoded[j] = encoded[i];
1116 /* Is this a symbol function? */
1117 if (at_start_name && encoded[i] == 'O')
1121 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1123 int op_len = strlen (ada_opname_table[k].encoded);
1124 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1126 && !isalnum (encoded[i + op_len]))
1128 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1131 j += strlen (ada_opname_table[k].decoded);
1135 if (ada_opname_table[k].encoded != NULL)
1140 /* Replace "TK__" with "__", which will eventually be translated
1141 into "." (just below). */
1143 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1146 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1147 be translated into "." (just below). These are internal names
1148 generated for anonymous blocks inside which our symbol is nested. */
1150 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1151 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1152 && isdigit (encoded [i+4]))
1156 while (k < len0 && isdigit (encoded[k]))
1157 k++; /* Skip any extra digit. */
1159 /* Double-check that the "__B_{DIGITS}+" sequence we found
1160 is indeed followed by "__". */
1161 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1165 /* Remove _E{DIGITS}+[sb] */
1167 /* Just as for protected object subprograms, there are 2 categories
1168 of subprograms created by the compiler for each entry. The first
1169 one implements the actual entry code, and has a suffix following
1170 the convention above; the second one implements the barrier and
1171 uses the same convention as above, except that the 'E' is replaced
1174 Just as above, we do not decode the name of barrier functions
1175 to give the user a clue that the code he is debugging has been
1176 internally generated. */
1178 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1179 && isdigit (encoded[i+2]))
1183 while (k < len0 && isdigit (encoded[k]))
1187 && (encoded[k] == 'b' || encoded[k] == 's'))
1190 /* Just as an extra precaution, make sure that if this
1191 suffix is followed by anything else, it is a '_'.
1192 Otherwise, we matched this sequence by accident. */
1194 || (k < len0 && encoded[k] == '_'))
1199 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1200 the GNAT front-end in protected object subprograms. */
1203 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1205 /* Backtrack a bit up until we reach either the begining of
1206 the encoded name, or "__". Make sure that we only find
1207 digits or lowercase characters. */
1208 const char *ptr = encoded + i - 1;
1210 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1213 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1217 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1219 /* This is a X[bn]* sequence not separated from the previous
1220 part of the name with a non-alpha-numeric character (in other
1221 words, immediately following an alpha-numeric character), then
1222 verify that it is placed at the end of the encoded name. If
1223 not, then the encoding is not valid and we should abort the
1224 decoding. Otherwise, just skip it, it is used in body-nested
1228 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1232 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1234 /* Replace '__' by '.'. */
1242 /* It's a character part of the decoded name, so just copy it
1244 decoded[j] = encoded[i];
1251 /* Decoded names should never contain any uppercase character.
1252 Double-check this, and abort the decoding if we find one. */
1254 for (i = 0; i < decoded.length(); ++i)
1255 if (isupper (decoded[i]) || decoded[i] == ' ')
1258 /* If the compiler added a suffix, append it now. */
1260 decoded = decoded + "[" + &encoded[suffix] + "]";
1268 if (encoded[0] == '<')
1271 decoded = '<' + std::string(encoded) + '>';
1275 /* Table for keeping permanent unique copies of decoded names. Once
1276 allocated, names in this table are never released. While this is a
1277 storage leak, it should not be significant unless there are massive
1278 changes in the set of decoded names in successive versions of a
1279 symbol table loaded during a single session. */
1280 static struct htab *decoded_names_store;
1282 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1283 in the language-specific part of GSYMBOL, if it has not been
1284 previously computed. Tries to save the decoded name in the same
1285 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1286 in any case, the decoded symbol has a lifetime at least that of
1288 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1289 const, but nevertheless modified to a semantically equivalent form
1290 when a decoded name is cached in it. */
1293 ada_decode_symbol (const struct general_symbol_info *arg)
1295 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1296 const char **resultp =
1297 &gsymbol->language_specific.demangled_name;
1299 if (!gsymbol->ada_mangled)
1301 std::string decoded = ada_decode (gsymbol->linkage_name ());
1302 struct obstack *obstack = gsymbol->language_specific.obstack;
1304 gsymbol->ada_mangled = 1;
1306 if (obstack != NULL)
1307 *resultp = obstack_strdup (obstack, decoded.c_str ());
1310 /* Sometimes, we can't find a corresponding objfile, in
1311 which case, we put the result on the heap. Since we only
1312 decode when needed, we hope this usually does not cause a
1313 significant memory leak (FIXME). */
1315 char **slot = (char **) htab_find_slot (decoded_names_store,
1316 decoded.c_str (), INSERT);
1319 *slot = xstrdup (decoded.c_str ());
1328 ada_la_decode (const char *encoded, int options)
1330 return xstrdup (ada_decode (encoded).c_str ());
1337 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1338 generated by the GNAT compiler to describe the index type used
1339 for each dimension of an array, check whether it follows the latest
1340 known encoding. If not, fix it up to conform to the latest encoding.
1341 Otherwise, do nothing. This function also does nothing if
1342 INDEX_DESC_TYPE is NULL.
1344 The GNAT encoding used to describe the array index type evolved a bit.
1345 Initially, the information would be provided through the name of each
1346 field of the structure type only, while the type of these fields was
1347 described as unspecified and irrelevant. The debugger was then expected
1348 to perform a global type lookup using the name of that field in order
1349 to get access to the full index type description. Because these global
1350 lookups can be very expensive, the encoding was later enhanced to make
1351 the global lookup unnecessary by defining the field type as being
1352 the full index type description.
1354 The purpose of this routine is to allow us to support older versions
1355 of the compiler by detecting the use of the older encoding, and by
1356 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1357 we essentially replace each field's meaningless type by the associated
1361 ada_fixup_array_indexes_type (struct type *index_desc_type)
1365 if (index_desc_type == NULL)
1367 gdb_assert (index_desc_type->num_fields () > 0);
1369 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1370 to check one field only, no need to check them all). If not, return
1373 If our INDEX_DESC_TYPE was generated using the older encoding,
1374 the field type should be a meaningless integer type whose name
1375 is not equal to the field name. */
1376 if (index_desc_type->field (0).type ()->name () != NULL
1377 && strcmp (index_desc_type->field (0).type ()->name (),
1378 index_desc_type->field (0).name ()) == 0)
1381 /* Fixup each field of INDEX_DESC_TYPE. */
1382 for (i = 0; i < index_desc_type->num_fields (); i++)
1384 const char *name = index_desc_type->field (i).name ();
1385 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1388 index_desc_type->field (i).set_type (raw_type);
1392 /* The desc_* routines return primitive portions of array descriptors
1395 /* The descriptor or array type, if any, indicated by TYPE; removes
1396 level of indirection, if needed. */
1398 static struct type *
1399 desc_base_type (struct type *type)
1403 type = ada_check_typedef (type);
1404 if (type->code () == TYPE_CODE_TYPEDEF)
1405 type = ada_typedef_target_type (type);
1408 && (type->code () == TYPE_CODE_PTR
1409 || type->code () == TYPE_CODE_REF))
1410 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1415 /* True iff TYPE indicates a "thin" array pointer type. */
1418 is_thin_pntr (struct type *type)
1421 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1422 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1425 /* The descriptor type for thin pointer type TYPE. */
1427 static struct type *
1428 thin_descriptor_type (struct type *type)
1430 struct type *base_type = desc_base_type (type);
1432 if (base_type == NULL)
1434 if (is_suffix (ada_type_name (base_type), "___XVE"))
1438 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1440 if (alt_type == NULL)
1447 /* A pointer to the array data for thin-pointer value VAL. */
1449 static struct value *
1450 thin_data_pntr (struct value *val)
1452 struct type *type = ada_check_typedef (value_type (val));
1453 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1455 data_type = lookup_pointer_type (data_type);
1457 if (type->code () == TYPE_CODE_PTR)
1458 return value_cast (data_type, value_copy (val));
1460 return value_from_longest (data_type, value_address (val));
1463 /* True iff TYPE indicates a "thick" array pointer type. */
1466 is_thick_pntr (struct type *type)
1468 type = desc_base_type (type);
1469 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1470 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1473 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1474 pointer to one, the type of its bounds data; otherwise, NULL. */
1476 static struct type *
1477 desc_bounds_type (struct type *type)
1481 type = desc_base_type (type);
1485 else if (is_thin_pntr (type))
1487 type = thin_descriptor_type (type);
1490 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1492 return ada_check_typedef (r);
1494 else if (type->code () == TYPE_CODE_STRUCT)
1496 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1498 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1503 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1504 one, a pointer to its bounds data. Otherwise NULL. */
1506 static struct value *
1507 desc_bounds (struct value *arr)
1509 struct type *type = ada_check_typedef (value_type (arr));
1511 if (is_thin_pntr (type))
1513 struct type *bounds_type =
1514 desc_bounds_type (thin_descriptor_type (type));
1517 if (bounds_type == NULL)
1518 error (_("Bad GNAT array descriptor"));
1520 /* NOTE: The following calculation is not really kosher, but
1521 since desc_type is an XVE-encoded type (and shouldn't be),
1522 the correct calculation is a real pain. FIXME (and fix GCC). */
1523 if (type->code () == TYPE_CODE_PTR)
1524 addr = value_as_long (arr);
1526 addr = value_address (arr);
1529 value_from_longest (lookup_pointer_type (bounds_type),
1530 addr - TYPE_LENGTH (bounds_type));
1533 else if (is_thick_pntr (type))
1535 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1536 _("Bad GNAT array descriptor"));
1537 struct type *p_bounds_type = value_type (p_bounds);
1540 && p_bounds_type->code () == TYPE_CODE_PTR)
1542 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1544 if (target_type->is_stub ())
1545 p_bounds = value_cast (lookup_pointer_type
1546 (ada_check_typedef (target_type)),
1550 error (_("Bad GNAT array descriptor"));
1558 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1559 position of the field containing the address of the bounds data. */
1562 fat_pntr_bounds_bitpos (struct type *type)
1564 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1567 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1568 size of the field containing the address of the bounds data. */
1571 fat_pntr_bounds_bitsize (struct type *type)
1573 type = desc_base_type (type);
1575 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1576 return TYPE_FIELD_BITSIZE (type, 1);
1578 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1581 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1582 pointer to one, the type of its array data (a array-with-no-bounds type);
1583 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1586 static struct type *
1587 desc_data_target_type (struct type *type)
1589 type = desc_base_type (type);
1591 /* NOTE: The following is bogus; see comment in desc_bounds. */
1592 if (is_thin_pntr (type))
1593 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1594 else if (is_thick_pntr (type))
1596 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1599 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1600 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1606 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1609 static struct value *
1610 desc_data (struct value *arr)
1612 struct type *type = value_type (arr);
1614 if (is_thin_pntr (type))
1615 return thin_data_pntr (arr);
1616 else if (is_thick_pntr (type))
1617 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1618 _("Bad GNAT array descriptor"));
1624 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1625 position of the field containing the address of the data. */
1628 fat_pntr_data_bitpos (struct type *type)
1630 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1633 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1634 size of the field containing the address of the data. */
1637 fat_pntr_data_bitsize (struct type *type)
1639 type = desc_base_type (type);
1641 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1642 return TYPE_FIELD_BITSIZE (type, 0);
1644 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1647 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1648 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1649 bound, if WHICH is 1. The first bound is I=1. */
1651 static struct value *
1652 desc_one_bound (struct value *bounds, int i, int which)
1654 char bound_name[20];
1655 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1656 which ? 'U' : 'L', i - 1);
1657 return value_struct_elt (&bounds, {}, bound_name, NULL,
1658 _("Bad GNAT array descriptor bounds"));
1661 /* If BOUNDS is an array-bounds structure type, return the bit position
1662 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1663 bound, if WHICH is 1. The first bound is I=1. */
1666 desc_bound_bitpos (struct type *type, int i, int which)
1668 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1671 /* If BOUNDS is an array-bounds structure type, return the bit field size
1672 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1673 bound, if WHICH is 1. The first bound is I=1. */
1676 desc_bound_bitsize (struct type *type, int i, int which)
1678 type = desc_base_type (type);
1680 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1681 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1683 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1686 /* If TYPE is the type of an array-bounds structure, the type of its
1687 Ith bound (numbering from 1). Otherwise, NULL. */
1689 static struct type *
1690 desc_index_type (struct type *type, int i)
1692 type = desc_base_type (type);
1694 if (type->code () == TYPE_CODE_STRUCT)
1696 char bound_name[20];
1697 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1698 return lookup_struct_elt_type (type, bound_name, 1);
1704 /* The number of index positions in the array-bounds type TYPE.
1705 Return 0 if TYPE is NULL. */
1708 desc_arity (struct type *type)
1710 type = desc_base_type (type);
1713 return type->num_fields () / 2;
1717 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1718 an array descriptor type (representing an unconstrained array
1722 ada_is_direct_array_type (struct type *type)
1726 type = ada_check_typedef (type);
1727 return (type->code () == TYPE_CODE_ARRAY
1728 || ada_is_array_descriptor_type (type));
1731 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1735 ada_is_array_type (struct type *type)
1738 && (type->code () == TYPE_CODE_PTR
1739 || type->code () == TYPE_CODE_REF))
1740 type = TYPE_TARGET_TYPE (type);
1741 return ada_is_direct_array_type (type);
1744 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1747 ada_is_simple_array_type (struct type *type)
1751 type = ada_check_typedef (type);
1752 return (type->code () == TYPE_CODE_ARRAY
1753 || (type->code () == TYPE_CODE_PTR
1754 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1755 == TYPE_CODE_ARRAY)));
1758 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1761 ada_is_array_descriptor_type (struct type *type)
1763 struct type *data_type = desc_data_target_type (type);
1767 type = ada_check_typedef (type);
1768 return (data_type != NULL
1769 && data_type->code () == TYPE_CODE_ARRAY
1770 && desc_arity (desc_bounds_type (type)) > 0);
1773 /* Non-zero iff type is a partially mal-formed GNAT array
1774 descriptor. FIXME: This is to compensate for some problems with
1775 debugging output from GNAT. Re-examine periodically to see if it
1779 ada_is_bogus_array_descriptor (struct type *type)
1783 && type->code () == TYPE_CODE_STRUCT
1784 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1785 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1786 && !ada_is_array_descriptor_type (type);
1790 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1791 (fat pointer) returns the type of the array data described---specifically,
1792 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1793 in from the descriptor; otherwise, they are left unspecified. If
1794 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1795 returns NULL. The result is simply the type of ARR if ARR is not
1798 static struct type *
1799 ada_type_of_array (struct value *arr, int bounds)
1801 if (ada_is_constrained_packed_array_type (value_type (arr)))
1802 return decode_constrained_packed_array_type (value_type (arr));
1804 if (!ada_is_array_descriptor_type (value_type (arr)))
1805 return value_type (arr);
1809 struct type *array_type =
1810 ada_check_typedef (desc_data_target_type (value_type (arr)));
1812 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1813 TYPE_FIELD_BITSIZE (array_type, 0) =
1814 decode_packed_array_bitsize (value_type (arr));
1820 struct type *elt_type;
1822 struct value *descriptor;
1824 elt_type = ada_array_element_type (value_type (arr), -1);
1825 arity = ada_array_arity (value_type (arr));
1827 if (elt_type == NULL || arity == 0)
1828 return ada_check_typedef (value_type (arr));
1830 descriptor = desc_bounds (arr);
1831 if (value_as_long (descriptor) == 0)
1835 struct type *range_type = alloc_type_copy (value_type (arr));
1836 struct type *array_type = alloc_type_copy (value_type (arr));
1837 struct value *low = desc_one_bound (descriptor, arity, 0);
1838 struct value *high = desc_one_bound (descriptor, arity, 1);
1841 create_static_range_type (range_type, value_type (low),
1842 longest_to_int (value_as_long (low)),
1843 longest_to_int (value_as_long (high)));
1844 elt_type = create_array_type (array_type, elt_type, range_type);
1846 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 /* We need to store the element packed bitsize, as well as
1849 recompute the array size, because it was previously
1850 computed based on the unpacked element size. */
1851 LONGEST lo = value_as_long (low);
1852 LONGEST hi = value_as_long (high);
1854 TYPE_FIELD_BITSIZE (elt_type, 0) =
1855 decode_packed_array_bitsize (value_type (arr));
1856 /* If the array has no element, then the size is already
1857 zero, and does not need to be recomputed. */
1861 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1863 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1868 return lookup_pointer_type (elt_type);
1872 /* If ARR does not represent an array, returns ARR unchanged.
1873 Otherwise, returns either a standard GDB array with bounds set
1874 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1875 GDB array. Returns NULL if ARR is a null fat pointer. */
1878 ada_coerce_to_simple_array_ptr (struct value *arr)
1880 if (ada_is_array_descriptor_type (value_type (arr)))
1882 struct type *arrType = ada_type_of_array (arr, 1);
1884 if (arrType == NULL)
1886 return value_cast (arrType, value_copy (desc_data (arr)));
1888 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1889 return decode_constrained_packed_array (arr);
1894 /* If ARR does not represent an array, returns ARR unchanged.
1895 Otherwise, returns a standard GDB array describing ARR (which may
1896 be ARR itself if it already is in the proper form). */
1899 ada_coerce_to_simple_array (struct value *arr)
1901 if (ada_is_array_descriptor_type (value_type (arr)))
1903 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1906 error (_("Bounds unavailable for null array pointer."));
1907 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1908 return value_ind (arrVal);
1910 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1911 return decode_constrained_packed_array (arr);
1916 /* If TYPE represents a GNAT array type, return it translated to an
1917 ordinary GDB array type (possibly with BITSIZE fields indicating
1918 packing). For other types, is the identity. */
1921 ada_coerce_to_simple_array_type (struct type *type)
1923 if (ada_is_constrained_packed_array_type (type))
1924 return decode_constrained_packed_array_type (type);
1926 if (ada_is_array_descriptor_type (type))
1927 return ada_check_typedef (desc_data_target_type (type));
1932 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1935 ada_is_gnat_encoded_packed_array_type (struct type *type)
1939 type = desc_base_type (type);
1940 type = ada_check_typedef (type);
1942 ada_type_name (type) != NULL
1943 && strstr (ada_type_name (type), "___XP") != NULL;
1946 /* Non-zero iff TYPE represents a standard GNAT constrained
1947 packed-array type. */
1950 ada_is_constrained_packed_array_type (struct type *type)
1952 return ada_is_gnat_encoded_packed_array_type (type)
1953 && !ada_is_array_descriptor_type (type);
1956 /* Non-zero iff TYPE represents an array descriptor for a
1957 unconstrained packed-array type. */
1960 ada_is_unconstrained_packed_array_type (struct type *type)
1962 if (!ada_is_array_descriptor_type (type))
1965 if (ada_is_gnat_encoded_packed_array_type (type))
1968 /* If we saw GNAT encodings, then the above code is sufficient.
1969 However, with minimal encodings, we will just have a thick
1971 if (is_thick_pntr (type))
1973 type = desc_base_type (type);
1974 /* The structure's first field is a pointer to an array, so this
1975 fetches the array type. */
1976 type = TYPE_TARGET_TYPE (type->field (0).type ());
1977 /* Now we can see if the array elements are packed. */
1978 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1984 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1985 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1988 ada_is_any_packed_array_type (struct type *type)
1990 return (ada_is_constrained_packed_array_type (type)
1991 || (type->code () == TYPE_CODE_ARRAY
1992 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1995 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1996 return the size of its elements in bits. */
1999 decode_packed_array_bitsize (struct type *type)
2001 const char *raw_name;
2005 /* Access to arrays implemented as fat pointers are encoded as a typedef
2006 of the fat pointer type. We need the name of the fat pointer type
2007 to do the decoding, so strip the typedef layer. */
2008 if (type->code () == TYPE_CODE_TYPEDEF)
2009 type = ada_typedef_target_type (type);
2011 raw_name = ada_type_name (ada_check_typedef (type));
2013 raw_name = ada_type_name (desc_base_type (type));
2018 tail = strstr (raw_name, "___XP");
2019 if (tail == nullptr)
2021 gdb_assert (is_thick_pntr (type));
2022 /* The structure's first field is a pointer to an array, so this
2023 fetches the array type. */
2024 type = TYPE_TARGET_TYPE (type->field (0).type ());
2025 /* Now we can see if the array elements are packed. */
2026 return TYPE_FIELD_BITSIZE (type, 0);
2029 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2032 (_("could not understand bit size information on packed array"));
2039 /* Given that TYPE is a standard GDB array type with all bounds filled
2040 in, and that the element size of its ultimate scalar constituents
2041 (that is, either its elements, or, if it is an array of arrays, its
2042 elements' elements, etc.) is *ELT_BITS, return an identical type,
2043 but with the bit sizes of its elements (and those of any
2044 constituent arrays) recorded in the BITSIZE components of its
2045 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2048 Note that, for arrays whose index type has an XA encoding where
2049 a bound references a record discriminant, getting that discriminant,
2050 and therefore the actual value of that bound, is not possible
2051 because none of the given parameters gives us access to the record.
2052 This function assumes that it is OK in the context where it is being
2053 used to return an array whose bounds are still dynamic and where
2054 the length is arbitrary. */
2056 static struct type *
2057 constrained_packed_array_type (struct type *type, long *elt_bits)
2059 struct type *new_elt_type;
2060 struct type *new_type;
2061 struct type *index_type_desc;
2062 struct type *index_type;
2063 LONGEST low_bound, high_bound;
2065 type = ada_check_typedef (type);
2066 if (type->code () != TYPE_CODE_ARRAY)
2069 index_type_desc = ada_find_parallel_type (type, "___XA");
2070 if (index_type_desc)
2071 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2074 index_type = type->index_type ();
2076 new_type = alloc_type_copy (type);
2078 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2080 create_array_type (new_type, new_elt_type, index_type);
2081 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2082 new_type->set_name (ada_type_name (type));
2084 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2085 && is_dynamic_type (check_typedef (index_type)))
2086 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2087 low_bound = high_bound = 0;
2088 if (high_bound < low_bound)
2089 *elt_bits = TYPE_LENGTH (new_type) = 0;
2092 *elt_bits *= (high_bound - low_bound + 1);
2093 TYPE_LENGTH (new_type) =
2094 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2097 new_type->set_is_fixed_instance (true);
2101 /* The array type encoded by TYPE, where
2102 ada_is_constrained_packed_array_type (TYPE). */
2104 static struct type *
2105 decode_constrained_packed_array_type (struct type *type)
2107 const char *raw_name = ada_type_name (ada_check_typedef (type));
2110 struct type *shadow_type;
2114 raw_name = ada_type_name (desc_base_type (type));
2119 name = (char *) alloca (strlen (raw_name) + 1);
2120 tail = strstr (raw_name, "___XP");
2121 type = desc_base_type (type);
2123 memcpy (name, raw_name, tail - raw_name);
2124 name[tail - raw_name] = '\000';
2126 shadow_type = ada_find_parallel_type_with_name (type, name);
2128 if (shadow_type == NULL)
2130 lim_warning (_("could not find bounds information on packed array"));
2133 shadow_type = check_typedef (shadow_type);
2135 if (shadow_type->code () != TYPE_CODE_ARRAY)
2137 lim_warning (_("could not understand bounds "
2138 "information on packed array"));
2142 bits = decode_packed_array_bitsize (type);
2143 return constrained_packed_array_type (shadow_type, &bits);
2146 /* Helper function for decode_constrained_packed_array. Set the field
2147 bitsize on a series of packed arrays. Returns the number of
2148 elements in TYPE. */
2151 recursively_update_array_bitsize (struct type *type)
2153 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2156 if (!get_discrete_bounds (type->index_type (), &low, &high)
2159 LONGEST our_len = high - low + 1;
2161 struct type *elt_type = TYPE_TARGET_TYPE (type);
2162 if (elt_type->code () == TYPE_CODE_ARRAY)
2164 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2165 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2166 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2168 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2175 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2176 array, returns a simple array that denotes that array. Its type is a
2177 standard GDB array type except that the BITSIZEs of the array
2178 target types are set to the number of bits in each element, and the
2179 type length is set appropriately. */
2181 static struct value *
2182 decode_constrained_packed_array (struct value *arr)
2186 /* If our value is a pointer, then dereference it. Likewise if
2187 the value is a reference. Make sure that this operation does not
2188 cause the target type to be fixed, as this would indirectly cause
2189 this array to be decoded. The rest of the routine assumes that
2190 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2191 and "value_ind" routines to perform the dereferencing, as opposed
2192 to using "ada_coerce_ref" or "ada_value_ind". */
2193 arr = coerce_ref (arr);
2194 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2195 arr = value_ind (arr);
2197 type = decode_constrained_packed_array_type (value_type (arr));
2200 error (_("can't unpack array"));
2204 /* Decoding the packed array type could not correctly set the field
2205 bitsizes for any dimension except the innermost, because the
2206 bounds may be variable and were not passed to that function. So,
2207 we further resolve the array bounds here and then update the
2209 const gdb_byte *valaddr = value_contents_for_printing (arr);
2210 CORE_ADDR address = value_address (arr);
2211 gdb::array_view<const gdb_byte> view
2212 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2213 type = resolve_dynamic_type (type, view, address);
2214 recursively_update_array_bitsize (type);
2216 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2217 && ada_is_modular_type (value_type (arr)))
2219 /* This is a (right-justified) modular type representing a packed
2220 array with no wrapper. In order to interpret the value through
2221 the (left-justified) packed array type we just built, we must
2222 first left-justify it. */
2223 int bit_size, bit_pos;
2226 mod = ada_modulus (value_type (arr)) - 1;
2233 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2234 arr = ada_value_primitive_packed_val (arr, NULL,
2235 bit_pos / HOST_CHAR_BIT,
2236 bit_pos % HOST_CHAR_BIT,
2241 return coerce_unspec_val_to_type (arr, type);
2245 /* The value of the element of packed array ARR at the ARITY indices
2246 given in IND. ARR must be a simple array. */
2248 static struct value *
2249 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2252 int bits, elt_off, bit_off;
2253 long elt_total_bit_offset;
2254 struct type *elt_type;
2258 elt_total_bit_offset = 0;
2259 elt_type = ada_check_typedef (value_type (arr));
2260 for (i = 0; i < arity; i += 1)
2262 if (elt_type->code () != TYPE_CODE_ARRAY
2263 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2265 (_("attempt to do packed indexing of "
2266 "something other than a packed array"));
2269 struct type *range_type = elt_type->index_type ();
2270 LONGEST lowerbound, upperbound;
2273 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2275 lim_warning (_("don't know bounds of array"));
2276 lowerbound = upperbound = 0;
2279 idx = pos_atr (ind[i]);
2280 if (idx < lowerbound || idx > upperbound)
2281 lim_warning (_("packed array index %ld out of bounds"),
2283 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2284 elt_total_bit_offset += (idx - lowerbound) * bits;
2285 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2288 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2289 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2291 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2296 /* Non-zero iff TYPE includes negative integer values. */
2299 has_negatives (struct type *type)
2301 switch (type->code ())
2306 return !type->is_unsigned ();
2307 case TYPE_CODE_RANGE:
2308 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2312 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2313 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2314 the unpacked buffer.
2316 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2317 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2319 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2322 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2324 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2327 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2328 gdb_byte *unpacked, int unpacked_len,
2329 int is_big_endian, int is_signed_type,
2332 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2333 int src_idx; /* Index into the source area */
2334 int src_bytes_left; /* Number of source bytes left to process. */
2335 int srcBitsLeft; /* Number of source bits left to move */
2336 int unusedLS; /* Number of bits in next significant
2337 byte of source that are unused */
2339 int unpacked_idx; /* Index into the unpacked buffer */
2340 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2342 unsigned long accum; /* Staging area for bits being transferred */
2343 int accumSize; /* Number of meaningful bits in accum */
2346 /* Transmit bytes from least to most significant; delta is the direction
2347 the indices move. */
2348 int delta = is_big_endian ? -1 : 1;
2350 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2352 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2353 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2354 bit_size, unpacked_len);
2356 srcBitsLeft = bit_size;
2357 src_bytes_left = src_len;
2358 unpacked_bytes_left = unpacked_len;
2363 src_idx = src_len - 1;
2365 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2369 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2375 unpacked_idx = unpacked_len - 1;
2379 /* Non-scalar values must be aligned at a byte boundary... */
2381 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2382 /* ... And are placed at the beginning (most-significant) bytes
2384 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2385 unpacked_bytes_left = unpacked_idx + 1;
2390 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2392 src_idx = unpacked_idx = 0;
2393 unusedLS = bit_offset;
2396 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2401 while (src_bytes_left > 0)
2403 /* Mask for removing bits of the next source byte that are not
2404 part of the value. */
2405 unsigned int unusedMSMask =
2406 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2408 /* Sign-extend bits for this byte. */
2409 unsigned int signMask = sign & ~unusedMSMask;
2412 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2413 accumSize += HOST_CHAR_BIT - unusedLS;
2414 if (accumSize >= HOST_CHAR_BIT)
2416 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2417 accumSize -= HOST_CHAR_BIT;
2418 accum >>= HOST_CHAR_BIT;
2419 unpacked_bytes_left -= 1;
2420 unpacked_idx += delta;
2422 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2424 src_bytes_left -= 1;
2427 while (unpacked_bytes_left > 0)
2429 accum |= sign << accumSize;
2430 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2431 accumSize -= HOST_CHAR_BIT;
2434 accum >>= HOST_CHAR_BIT;
2435 unpacked_bytes_left -= 1;
2436 unpacked_idx += delta;
2440 /* Create a new value of type TYPE from the contents of OBJ starting
2441 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2442 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2443 assigning through the result will set the field fetched from.
2444 VALADDR is ignored unless OBJ is NULL, in which case,
2445 VALADDR+OFFSET must address the start of storage containing the
2446 packed value. The value returned in this case is never an lval.
2447 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2450 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2451 long offset, int bit_offset, int bit_size,
2455 const gdb_byte *src; /* First byte containing data to unpack */
2457 const int is_scalar = is_scalar_type (type);
2458 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2459 gdb::byte_vector staging;
2461 type = ada_check_typedef (type);
2464 src = valaddr + offset;
2466 src = value_contents (obj) + offset;
2468 if (is_dynamic_type (type))
2470 /* The length of TYPE might by dynamic, so we need to resolve
2471 TYPE in order to know its actual size, which we then use
2472 to create the contents buffer of the value we return.
2473 The difficulty is that the data containing our object is
2474 packed, and therefore maybe not at a byte boundary. So, what
2475 we do, is unpack the data into a byte-aligned buffer, and then
2476 use that buffer as our object's value for resolving the type. */
2477 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2478 staging.resize (staging_len);
2480 ada_unpack_from_contents (src, bit_offset, bit_size,
2481 staging.data (), staging.size (),
2482 is_big_endian, has_negatives (type),
2484 type = resolve_dynamic_type (type, staging, 0);
2485 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2487 /* This happens when the length of the object is dynamic,
2488 and is actually smaller than the space reserved for it.
2489 For instance, in an array of variant records, the bit_size
2490 we're given is the array stride, which is constant and
2491 normally equal to the maximum size of its element.
2492 But, in reality, each element only actually spans a portion
2494 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2500 v = allocate_value (type);
2501 src = valaddr + offset;
2503 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2505 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2508 v = value_at (type, value_address (obj) + offset);
2509 buf = (gdb_byte *) alloca (src_len);
2510 read_memory (value_address (v), buf, src_len);
2515 v = allocate_value (type);
2516 src = value_contents (obj) + offset;
2521 long new_offset = offset;
2523 set_value_component_location (v, obj);
2524 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2525 set_value_bitsize (v, bit_size);
2526 if (value_bitpos (v) >= HOST_CHAR_BIT)
2529 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2531 set_value_offset (v, new_offset);
2533 /* Also set the parent value. This is needed when trying to
2534 assign a new value (in inferior memory). */
2535 set_value_parent (v, obj);
2538 set_value_bitsize (v, bit_size);
2539 unpacked = value_contents_writeable (v);
2543 memset (unpacked, 0, TYPE_LENGTH (type));
2547 if (staging.size () == TYPE_LENGTH (type))
2549 /* Small short-cut: If we've unpacked the data into a buffer
2550 of the same size as TYPE's length, then we can reuse that,
2551 instead of doing the unpacking again. */
2552 memcpy (unpacked, staging.data (), staging.size ());
2555 ada_unpack_from_contents (src, bit_offset, bit_size,
2556 unpacked, TYPE_LENGTH (type),
2557 is_big_endian, has_negatives (type), is_scalar);
2562 /* Store the contents of FROMVAL into the location of TOVAL.
2563 Return a new value with the location of TOVAL and contents of
2564 FROMVAL. Handles assignment into packed fields that have
2565 floating-point or non-scalar types. */
2567 static struct value *
2568 ada_value_assign (struct value *toval, struct value *fromval)
2570 struct type *type = value_type (toval);
2571 int bits = value_bitsize (toval);
2573 toval = ada_coerce_ref (toval);
2574 fromval = ada_coerce_ref (fromval);
2576 if (ada_is_direct_array_type (value_type (toval)))
2577 toval = ada_coerce_to_simple_array (toval);
2578 if (ada_is_direct_array_type (value_type (fromval)))
2579 fromval = ada_coerce_to_simple_array (fromval);
2581 if (!deprecated_value_modifiable (toval))
2582 error (_("Left operand of assignment is not a modifiable lvalue."));
2584 if (VALUE_LVAL (toval) == lval_memory
2586 && (type->code () == TYPE_CODE_FLT
2587 || type->code () == TYPE_CODE_STRUCT))
2589 int len = (value_bitpos (toval)
2590 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2592 gdb_byte *buffer = (gdb_byte *) alloca (len);
2594 CORE_ADDR to_addr = value_address (toval);
2596 if (type->code () == TYPE_CODE_FLT)
2597 fromval = value_cast (type, fromval);
2599 read_memory (to_addr, buffer, len);
2600 from_size = value_bitsize (fromval);
2602 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2604 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2605 ULONGEST from_offset = 0;
2606 if (is_big_endian && is_scalar_type (value_type (fromval)))
2607 from_offset = from_size - bits;
2608 copy_bitwise (buffer, value_bitpos (toval),
2609 value_contents (fromval), from_offset,
2610 bits, is_big_endian);
2611 write_memory_with_notification (to_addr, buffer, len);
2613 val = value_copy (toval);
2614 memcpy (value_contents_raw (val), value_contents (fromval),
2615 TYPE_LENGTH (type));
2616 deprecated_set_value_type (val, type);
2621 return value_assign (toval, fromval);
2625 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2626 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2627 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2628 COMPONENT, and not the inferior's memory. The current contents
2629 of COMPONENT are ignored.
2631 Although not part of the initial design, this function also works
2632 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2633 had a null address, and COMPONENT had an address which is equal to
2634 its offset inside CONTAINER. */
2637 value_assign_to_component (struct value *container, struct value *component,
2640 LONGEST offset_in_container =
2641 (LONGEST) (value_address (component) - value_address (container));
2642 int bit_offset_in_container =
2643 value_bitpos (component) - value_bitpos (container);
2646 val = value_cast (value_type (component), val);
2648 if (value_bitsize (component) == 0)
2649 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2651 bits = value_bitsize (component);
2653 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2657 if (is_scalar_type (check_typedef (value_type (component))))
2659 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2662 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2663 value_bitpos (container) + bit_offset_in_container,
2664 value_contents (val), src_offset, bits, 1);
2667 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2668 value_bitpos (container) + bit_offset_in_container,
2669 value_contents (val), 0, bits, 0);
2672 /* Determine if TYPE is an access to an unconstrained array. */
2675 ada_is_access_to_unconstrained_array (struct type *type)
2677 return (type->code () == TYPE_CODE_TYPEDEF
2678 && is_thick_pntr (ada_typedef_target_type (type)));
2681 /* The value of the element of array ARR at the ARITY indices given in IND.
2682 ARR may be either a simple array, GNAT array descriptor, or pointer
2686 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2690 struct type *elt_type;
2692 elt = ada_coerce_to_simple_array (arr);
2694 elt_type = ada_check_typedef (value_type (elt));
2695 if (elt_type->code () == TYPE_CODE_ARRAY
2696 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2697 return value_subscript_packed (elt, arity, ind);
2699 for (k = 0; k < arity; k += 1)
2701 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2703 if (elt_type->code () != TYPE_CODE_ARRAY)
2704 error (_("too many subscripts (%d expected)"), k);
2706 elt = value_subscript (elt, pos_atr (ind[k]));
2708 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2709 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2711 /* The element is a typedef to an unconstrained array,
2712 except that the value_subscript call stripped the
2713 typedef layer. The typedef layer is GNAT's way to
2714 specify that the element is, at the source level, an
2715 access to the unconstrained array, rather than the
2716 unconstrained array. So, we need to restore that
2717 typedef layer, which we can do by forcing the element's
2718 type back to its original type. Otherwise, the returned
2719 value is going to be printed as the array, rather
2720 than as an access. Another symptom of the same issue
2721 would be that an expression trying to dereference the
2722 element would also be improperly rejected. */
2723 deprecated_set_value_type (elt, saved_elt_type);
2726 elt_type = ada_check_typedef (value_type (elt));
2732 /* Assuming ARR is a pointer to a GDB array, the value of the element
2733 of *ARR at the ARITY indices given in IND.
2734 Does not read the entire array into memory.
2736 Note: Unlike what one would expect, this function is used instead of
2737 ada_value_subscript for basically all non-packed array types. The reason
2738 for this is that a side effect of doing our own pointer arithmetics instead
2739 of relying on value_subscript is that there is no implicit typedef peeling.
2740 This is important for arrays of array accesses, where it allows us to
2741 preserve the fact that the array's element is an array access, where the
2742 access part os encoded in a typedef layer. */
2744 static struct value *
2745 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2748 struct value *array_ind = ada_value_ind (arr);
2750 = check_typedef (value_enclosing_type (array_ind));
2752 if (type->code () == TYPE_CODE_ARRAY
2753 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2754 return value_subscript_packed (array_ind, arity, ind);
2756 for (k = 0; k < arity; k += 1)
2760 if (type->code () != TYPE_CODE_ARRAY)
2761 error (_("too many subscripts (%d expected)"), k);
2762 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2764 get_discrete_bounds (type->index_type (), &lwb, &upb);
2765 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2766 type = TYPE_TARGET_TYPE (type);
2769 return value_ind (arr);
2772 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2773 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2774 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2775 this array is LOW, as per Ada rules. */
2776 static struct value *
2777 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2780 struct type *type0 = ada_check_typedef (type);
2781 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2782 struct type *index_type
2783 = create_static_range_type (NULL, base_index_type, low, high);
2784 struct type *slice_type = create_array_type_with_stride
2785 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2786 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2787 TYPE_FIELD_BITSIZE (type0, 0));
2788 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2789 gdb::optional<LONGEST> base_low_pos, low_pos;
2792 low_pos = discrete_position (base_index_type, low);
2793 base_low_pos = discrete_position (base_index_type, base_low);
2795 if (!low_pos.has_value () || !base_low_pos.has_value ())
2797 warning (_("unable to get positions in slice, use bounds instead"));
2799 base_low_pos = base_low;
2802 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2804 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2806 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2807 return value_at_lazy (slice_type, base);
2811 static struct value *
2812 ada_value_slice (struct value *array, int low, int high)
2814 struct type *type = ada_check_typedef (value_type (array));
2815 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2816 struct type *index_type
2817 = create_static_range_type (NULL, type->index_type (), low, high);
2818 struct type *slice_type = create_array_type_with_stride
2819 (NULL, TYPE_TARGET_TYPE (type), index_type,
2820 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2821 TYPE_FIELD_BITSIZE (type, 0));
2822 gdb::optional<LONGEST> low_pos, high_pos;
2825 low_pos = discrete_position (base_index_type, low);
2826 high_pos = discrete_position (base_index_type, high);
2828 if (!low_pos.has_value () || !high_pos.has_value ())
2830 warning (_("unable to get positions in slice, use bounds instead"));
2835 return value_cast (slice_type,
2836 value_slice (array, low, *high_pos - *low_pos + 1));
2839 /* If type is a record type in the form of a standard GNAT array
2840 descriptor, returns the number of dimensions for type. If arr is a
2841 simple array, returns the number of "array of"s that prefix its
2842 type designation. Otherwise, returns 0. */
2845 ada_array_arity (struct type *type)
2852 type = desc_base_type (type);
2855 if (type->code () == TYPE_CODE_STRUCT)
2856 return desc_arity (desc_bounds_type (type));
2858 while (type->code () == TYPE_CODE_ARRAY)
2861 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2867 /* If TYPE is a record type in the form of a standard GNAT array
2868 descriptor or a simple array type, returns the element type for
2869 TYPE after indexing by NINDICES indices, or by all indices if
2870 NINDICES is -1. Otherwise, returns NULL. */
2873 ada_array_element_type (struct type *type, int nindices)
2875 type = desc_base_type (type);
2877 if (type->code () == TYPE_CODE_STRUCT)
2880 struct type *p_array_type;
2882 p_array_type = desc_data_target_type (type);
2884 k = ada_array_arity (type);
2888 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2889 if (nindices >= 0 && k > nindices)
2891 while (k > 0 && p_array_type != NULL)
2893 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2896 return p_array_type;
2898 else if (type->code () == TYPE_CODE_ARRAY)
2900 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2902 type = TYPE_TARGET_TYPE (type);
2911 /* See ada-lang.h. */
2914 ada_index_type (struct type *type, int n, const char *name)
2916 struct type *result_type;
2918 type = desc_base_type (type);
2920 if (n < 0 || n > ada_array_arity (type))
2921 error (_("invalid dimension number to '%s"), name);
2923 if (ada_is_simple_array_type (type))
2927 for (i = 1; i < n; i += 1)
2929 type = ada_check_typedef (type);
2930 type = TYPE_TARGET_TYPE (type);
2932 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
2933 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2934 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2935 perhaps stabsread.c would make more sense. */
2936 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2941 result_type = desc_index_type (desc_bounds_type (type), n);
2942 if (result_type == NULL)
2943 error (_("attempt to take bound of something that is not an array"));
2949 /* Given that arr is an array type, returns the lower bound of the
2950 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2951 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2952 array-descriptor type. It works for other arrays with bounds supplied
2953 by run-time quantities other than discriminants. */
2956 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2958 struct type *type, *index_type_desc, *index_type;
2961 gdb_assert (which == 0 || which == 1);
2963 if (ada_is_constrained_packed_array_type (arr_type))
2964 arr_type = decode_constrained_packed_array_type (arr_type);
2966 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2967 return (LONGEST) - which;
2969 if (arr_type->code () == TYPE_CODE_PTR)
2970 type = TYPE_TARGET_TYPE (arr_type);
2974 if (type->is_fixed_instance ())
2976 /* The array has already been fixed, so we do not need to
2977 check the parallel ___XA type again. That encoding has
2978 already been applied, so ignore it now. */
2979 index_type_desc = NULL;
2983 index_type_desc = ada_find_parallel_type (type, "___XA");
2984 ada_fixup_array_indexes_type (index_type_desc);
2987 if (index_type_desc != NULL)
2988 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2992 struct type *elt_type = check_typedef (type);
2994 for (i = 1; i < n; i++)
2995 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2997 index_type = elt_type->index_type ();
3001 (LONGEST) (which == 0
3002 ? ada_discrete_type_low_bound (index_type)
3003 : ada_discrete_type_high_bound (index_type));
3006 /* Given that arr is an array value, returns the lower bound of the
3007 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3008 WHICH is 1. This routine will also work for arrays with bounds
3009 supplied by run-time quantities other than discriminants. */
3012 ada_array_bound (struct value *arr, int n, int which)
3014 struct type *arr_type;
3016 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3017 arr = value_ind (arr);
3018 arr_type = value_enclosing_type (arr);
3020 if (ada_is_constrained_packed_array_type (arr_type))
3021 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3022 else if (ada_is_simple_array_type (arr_type))
3023 return ada_array_bound_from_type (arr_type, n, which);
3025 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3028 /* Given that arr is an array value, returns the length of the
3029 nth index. This routine will also work for arrays with bounds
3030 supplied by run-time quantities other than discriminants.
3031 Does not work for arrays indexed by enumeration types with representation
3032 clauses at the moment. */
3035 ada_array_length (struct value *arr, int n)
3037 struct type *arr_type, *index_type;
3040 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3041 arr = value_ind (arr);
3042 arr_type = value_enclosing_type (arr);
3044 if (ada_is_constrained_packed_array_type (arr_type))
3045 return ada_array_length (decode_constrained_packed_array (arr), n);
3047 if (ada_is_simple_array_type (arr_type))
3049 low = ada_array_bound_from_type (arr_type, n, 0);
3050 high = ada_array_bound_from_type (arr_type, n, 1);
3054 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3055 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3058 arr_type = check_typedef (arr_type);
3059 index_type = ada_index_type (arr_type, n, "length");
3060 if (index_type != NULL)
3062 struct type *base_type;
3063 if (index_type->code () == TYPE_CODE_RANGE)
3064 base_type = TYPE_TARGET_TYPE (index_type);
3066 base_type = index_type;
3068 low = pos_atr (value_from_longest (base_type, low));
3069 high = pos_atr (value_from_longest (base_type, high));
3071 return high - low + 1;
3074 /* An array whose type is that of ARR_TYPE (an array type), with
3075 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3076 less than LOW, then LOW-1 is used. */
3078 static struct value *
3079 empty_array (struct type *arr_type, int low, int high)
3081 struct type *arr_type0 = ada_check_typedef (arr_type);
3082 struct type *index_type
3083 = create_static_range_type
3084 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3085 high < low ? low - 1 : high);
3086 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3088 return allocate_value (create_array_type (NULL, elt_type, index_type));
3092 /* Name resolution */
3094 /* The "decoded" name for the user-definable Ada operator corresponding
3098 ada_decoded_op_name (enum exp_opcode op)
3102 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3104 if (ada_opname_table[i].op == op)
3105 return ada_opname_table[i].decoded;
3107 error (_("Could not find operator name for opcode"));
3110 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3111 in a listing of choices during disambiguation (see sort_choices, below).
3112 The idea is that overloadings of a subprogram name from the
3113 same package should sort in their source order. We settle for ordering
3114 such symbols by their trailing number (__N or $N). */
3117 encoded_ordered_before (const char *N0, const char *N1)
3121 else if (N0 == NULL)
3127 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3129 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3131 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3132 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3137 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3140 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3142 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3143 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3145 return (strcmp (N0, N1) < 0);
3149 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3153 sort_choices (struct block_symbol syms[], int nsyms)
3157 for (i = 1; i < nsyms; i += 1)
3159 struct block_symbol sym = syms[i];
3162 for (j = i - 1; j >= 0; j -= 1)
3164 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3165 sym.symbol->linkage_name ()))
3167 syms[j + 1] = syms[j];
3173 /* Whether GDB should display formals and return types for functions in the
3174 overloads selection menu. */
3175 static bool print_signatures = true;
3177 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3178 all but functions, the signature is just the name of the symbol. For
3179 functions, this is the name of the function, the list of types for formals
3180 and the return type (if any). */
3183 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3184 const struct type_print_options *flags)
3186 struct type *type = SYMBOL_TYPE (sym);
3188 fprintf_filtered (stream, "%s", sym->print_name ());
3189 if (!print_signatures
3191 || type->code () != TYPE_CODE_FUNC)
3194 if (type->num_fields () > 0)
3198 fprintf_filtered (stream, " (");
3199 for (i = 0; i < type->num_fields (); ++i)
3202 fprintf_filtered (stream, "; ");
3203 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3206 fprintf_filtered (stream, ")");
3208 if (TYPE_TARGET_TYPE (type) != NULL
3209 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3211 fprintf_filtered (stream, " return ");
3212 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3216 /* Read and validate a set of numeric choices from the user in the
3217 range 0 .. N_CHOICES-1. Place the results in increasing
3218 order in CHOICES[0 .. N-1], and return N.
3220 The user types choices as a sequence of numbers on one line
3221 separated by blanks, encoding them as follows:
3223 + A choice of 0 means to cancel the selection, throwing an error.
3224 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3225 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3227 The user is not allowed to choose more than MAX_RESULTS values.
3229 ANNOTATION_SUFFIX, if present, is used to annotate the input
3230 prompts (for use with the -f switch). */
3233 get_selections (int *choices, int n_choices, int max_results,
3234 int is_all_choice, const char *annotation_suffix)
3239 int first_choice = is_all_choice ? 2 : 1;
3241 prompt = getenv ("PS2");
3245 args = command_line_input (prompt, annotation_suffix);
3248 error_no_arg (_("one or more choice numbers"));
3252 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3253 order, as given in args. Choices are validated. */
3259 args = skip_spaces (args);
3260 if (*args == '\0' && n_chosen == 0)
3261 error_no_arg (_("one or more choice numbers"));
3262 else if (*args == '\0')
3265 choice = strtol (args, &args2, 10);
3266 if (args == args2 || choice < 0
3267 || choice > n_choices + first_choice - 1)
3268 error (_("Argument must be choice number"));
3272 error (_("cancelled"));
3274 if (choice < first_choice)
3276 n_chosen = n_choices;
3277 for (j = 0; j < n_choices; j += 1)
3281 choice -= first_choice;
3283 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3287 if (j < 0 || choice != choices[j])
3291 for (k = n_chosen - 1; k > j; k -= 1)
3292 choices[k + 1] = choices[k];
3293 choices[j + 1] = choice;
3298 if (n_chosen > max_results)
3299 error (_("Select no more than %d of the above"), max_results);
3304 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3305 by asking the user (if necessary), returning the number selected,
3306 and setting the first elements of SYMS items. Error if no symbols
3309 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3310 to be re-integrated one of these days. */
3313 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3316 int *chosen = XALLOCAVEC (int , nsyms);
3318 int first_choice = (max_results == 1) ? 1 : 2;
3319 const char *select_mode = multiple_symbols_select_mode ();
3321 if (max_results < 1)
3322 error (_("Request to select 0 symbols!"));
3326 if (select_mode == multiple_symbols_cancel)
3328 canceled because the command is ambiguous\n\
3329 See set/show multiple-symbol."));
3331 /* If select_mode is "all", then return all possible symbols.
3332 Only do that if more than one symbol can be selected, of course.
3333 Otherwise, display the menu as usual. */
3334 if (select_mode == multiple_symbols_all && max_results > 1)
3337 printf_filtered (_("[0] cancel\n"));
3338 if (max_results > 1)
3339 printf_filtered (_("[1] all\n"));
3341 sort_choices (syms, nsyms);
3343 for (i = 0; i < nsyms; i += 1)
3345 if (syms[i].symbol == NULL)
3348 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3350 struct symtab_and_line sal =
3351 find_function_start_sal (syms[i].symbol, 1);
3353 printf_filtered ("[%d] ", i + first_choice);
3354 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3355 &type_print_raw_options);
3356 if (sal.symtab == NULL)
3357 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3358 metadata_style.style ().ptr (), nullptr, sal.line);
3362 styled_string (file_name_style.style (),
3363 symtab_to_filename_for_display (sal.symtab)),
3370 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3371 && SYMBOL_TYPE (syms[i].symbol) != NULL
3372 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3373 struct symtab *symtab = NULL;
3375 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3376 symtab = symbol_symtab (syms[i].symbol);
3378 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3380 printf_filtered ("[%d] ", i + first_choice);
3381 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3382 &type_print_raw_options);
3383 printf_filtered (_(" at %s:%d\n"),
3384 symtab_to_filename_for_display (symtab),
3385 SYMBOL_LINE (syms[i].symbol));
3387 else if (is_enumeral
3388 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3390 printf_filtered (("[%d] "), i + first_choice);
3391 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3392 gdb_stdout, -1, 0, &type_print_raw_options);
3393 printf_filtered (_("'(%s) (enumeral)\n"),
3394 syms[i].symbol->print_name ());
3398 printf_filtered ("[%d] ", i + first_choice);
3399 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3400 &type_print_raw_options);
3403 printf_filtered (is_enumeral
3404 ? _(" in %s (enumeral)\n")
3406 symtab_to_filename_for_display (symtab));
3408 printf_filtered (is_enumeral
3409 ? _(" (enumeral)\n")
3415 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3418 for (i = 0; i < n_chosen; i += 1)
3419 syms[i] = syms[chosen[i]];
3424 /* See ada-lang.h. */
3427 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3428 int nargs, value *argvec[])
3430 if (possible_user_operator_p (op, argvec))
3432 std::vector<struct block_symbol> candidates
3433 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3436 int i = ada_resolve_function (candidates, argvec,
3437 nargs, ada_decoded_op_name (op), NULL,
3440 return candidates[i];
3445 /* See ada-lang.h. */
3448 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3449 struct type *context_type,
3450 bool parse_completion,
3451 int nargs, value *argvec[],
3452 innermost_block_tracker *tracker)
3454 std::vector<struct block_symbol> candidates
3455 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3458 if (candidates.size () == 1)
3462 i = ada_resolve_function
3465 sym->linkage_name (),
3466 context_type, parse_completion);
3468 error (_("Could not find a match for %s"), sym->print_name ());
3471 tracker->update (candidates[i]);
3472 return candidates[i];
3475 /* Resolve a mention of a name where the context type is an
3476 enumeration type. */
3479 ada_resolve_enum (std::vector<struct block_symbol> &syms,
3480 const char *name, struct type *context_type,
3481 bool parse_completion)
3483 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3484 context_type = ada_check_typedef (context_type);
3486 for (int i = 0; i < syms.size (); ++i)
3488 /* We already know the name matches, so we're just looking for
3489 an element of the correct enum type. */
3490 if (ada_check_typedef (SYMBOL_TYPE (syms[i].symbol)) == context_type)
3494 error (_("No name '%s' in enumeration type '%s'"), name,
3495 ada_type_name (context_type));
3498 /* See ada-lang.h. */
3501 ada_resolve_variable (struct symbol *sym, const struct block *block,
3502 struct type *context_type,
3503 bool parse_completion,
3505 innermost_block_tracker *tracker)
3507 std::vector<struct block_symbol> candidates
3508 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3510 if (std::any_of (candidates.begin (),
3512 [] (block_symbol &bsym)
3514 switch (SYMBOL_CLASS (bsym.symbol))
3519 case LOC_REGPARM_ADDR:
3528 /* Types tend to get re-introduced locally, so if there
3529 are any local symbols that are not types, first filter
3533 (candidates.begin (),
3535 [] (block_symbol &bsym)
3537 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3542 /* Filter out artificial symbols. */
3545 (candidates.begin (),
3547 [] (block_symbol &bsym)
3549 return bsym.symbol->artificial;
3554 if (candidates.empty ())
3555 error (_("No definition found for %s"), sym->print_name ());
3556 else if (candidates.size () == 1)
3558 else if (context_type != nullptr
3559 && context_type->code () == TYPE_CODE_ENUM)
3560 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3562 else if (deprocedure_p && !is_nonfunction (candidates))
3564 i = ada_resolve_function
3565 (candidates, NULL, 0,
3566 sym->linkage_name (),
3567 context_type, parse_completion);
3569 error (_("Could not find a match for %s"), sym->print_name ());
3573 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3574 user_select_syms (candidates.data (), candidates.size (), 1);
3578 tracker->update (candidates[i]);
3579 return candidates[i];
3582 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3583 /* The term "match" here is rather loose. The match is heuristic and
3587 ada_type_match (struct type *ftype, struct type *atype)
3589 ftype = ada_check_typedef (ftype);
3590 atype = ada_check_typedef (atype);
3592 if (ftype->code () == TYPE_CODE_REF)
3593 ftype = TYPE_TARGET_TYPE (ftype);
3594 if (atype->code () == TYPE_CODE_REF)
3595 atype = TYPE_TARGET_TYPE (atype);
3597 switch (ftype->code ())
3600 return ftype->code () == atype->code ();
3602 if (atype->code () != TYPE_CODE_PTR)
3604 atype = TYPE_TARGET_TYPE (atype);
3605 /* This can only happen if the actual argument is 'null'. */
3606 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3608 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3610 case TYPE_CODE_ENUM:
3611 case TYPE_CODE_RANGE:
3612 switch (atype->code ())
3615 case TYPE_CODE_ENUM:
3616 case TYPE_CODE_RANGE:
3622 case TYPE_CODE_ARRAY:
3623 return (atype->code () == TYPE_CODE_ARRAY
3624 || ada_is_array_descriptor_type (atype));
3626 case TYPE_CODE_STRUCT:
3627 if (ada_is_array_descriptor_type (ftype))
3628 return (atype->code () == TYPE_CODE_ARRAY
3629 || ada_is_array_descriptor_type (atype));
3631 return (atype->code () == TYPE_CODE_STRUCT
3632 && !ada_is_array_descriptor_type (atype));
3634 case TYPE_CODE_UNION:
3636 return (atype->code () == ftype->code ());
3640 /* Return non-zero if the formals of FUNC "sufficiently match" the
3641 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3642 may also be an enumeral, in which case it is treated as a 0-
3643 argument function. */
3646 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3649 struct type *func_type = SYMBOL_TYPE (func);
3651 if (SYMBOL_CLASS (func) == LOC_CONST
3652 && func_type->code () == TYPE_CODE_ENUM)
3653 return (n_actuals == 0);
3654 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3657 if (func_type->num_fields () != n_actuals)
3660 for (i = 0; i < n_actuals; i += 1)
3662 if (actuals[i] == NULL)
3666 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3667 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3669 if (!ada_type_match (ftype, atype))
3676 /* False iff function type FUNC_TYPE definitely does not produce a value
3677 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3678 FUNC_TYPE is not a valid function type with a non-null return type
3679 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3682 return_match (struct type *func_type, struct type *context_type)
3684 struct type *return_type;
3686 if (func_type == NULL)
3689 if (func_type->code () == TYPE_CODE_FUNC)
3690 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3692 return_type = get_base_type (func_type);
3693 if (return_type == NULL)
3696 context_type = get_base_type (context_type);
3698 if (return_type->code () == TYPE_CODE_ENUM)
3699 return context_type == NULL || return_type == context_type;
3700 else if (context_type == NULL)
3701 return return_type->code () != TYPE_CODE_VOID;
3703 return return_type->code () == context_type->code ();
3707 /* Returns the index in SYMS that contains the symbol for the
3708 function (if any) that matches the types of the NARGS arguments in
3709 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3710 that returns that type, then eliminate matches that don't. If
3711 CONTEXT_TYPE is void and there is at least one match that does not
3712 return void, eliminate all matches that do.
3714 Asks the user if there is more than one match remaining. Returns -1
3715 if there is no such symbol or none is selected. NAME is used
3716 solely for messages. May re-arrange and modify SYMS in
3717 the process; the index returned is for the modified vector. */
3720 ada_resolve_function (std::vector<struct block_symbol> &syms,
3721 struct value **args, int nargs,
3722 const char *name, struct type *context_type,
3723 bool parse_completion)
3727 int m; /* Number of hits */
3730 /* In the first pass of the loop, we only accept functions matching
3731 context_type. If none are found, we add a second pass of the loop
3732 where every function is accepted. */
3733 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3735 for (k = 0; k < syms.size (); k += 1)
3737 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3739 if (ada_args_match (syms[k].symbol, args, nargs)
3740 && (fallback || return_match (type, context_type)))
3748 /* If we got multiple matches, ask the user which one to use. Don't do this
3749 interactive thing during completion, though, as the purpose of the
3750 completion is providing a list of all possible matches. Prompting the
3751 user to filter it down would be completely unexpected in this case. */
3754 else if (m > 1 && !parse_completion)
3756 printf_filtered (_("Multiple matches for %s\n"), name);
3757 user_select_syms (syms.data (), m, 1);
3763 /* Type-class predicates */
3765 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3769 numeric_type_p (struct type *type)
3775 switch (type->code ())
3779 case TYPE_CODE_FIXED_POINT:
3781 case TYPE_CODE_RANGE:
3782 return (type == TYPE_TARGET_TYPE (type)
3783 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3790 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3793 integer_type_p (struct type *type)
3799 switch (type->code ())
3803 case TYPE_CODE_RANGE:
3804 return (type == TYPE_TARGET_TYPE (type)
3805 || integer_type_p (TYPE_TARGET_TYPE (type)));
3812 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3815 scalar_type_p (struct type *type)
3821 switch (type->code ())
3824 case TYPE_CODE_RANGE:
3825 case TYPE_CODE_ENUM:
3827 case TYPE_CODE_FIXED_POINT:
3835 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3838 discrete_type_p (struct type *type)
3844 switch (type->code ())
3847 case TYPE_CODE_RANGE:
3848 case TYPE_CODE_ENUM:
3849 case TYPE_CODE_BOOL:
3857 /* Returns non-zero if OP with operands in the vector ARGS could be
3858 a user-defined function. Errs on the side of pre-defined operators
3859 (i.e., result 0). */
3862 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3864 struct type *type0 =
3865 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3866 struct type *type1 =
3867 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3881 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3885 case BINOP_BITWISE_AND:
3886 case BINOP_BITWISE_IOR:
3887 case BINOP_BITWISE_XOR:
3888 return (!(integer_type_p (type0) && integer_type_p (type1)));
3891 case BINOP_NOTEQUAL:
3896 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3899 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3902 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3906 case UNOP_LOGICAL_NOT:
3908 return (!numeric_type_p (type0));
3917 1. In the following, we assume that a renaming type's name may
3918 have an ___XD suffix. It would be nice if this went away at some
3920 2. We handle both the (old) purely type-based representation of
3921 renamings and the (new) variable-based encoding. At some point,
3922 it is devoutly to be hoped that the former goes away
3923 (FIXME: hilfinger-2007-07-09).
3924 3. Subprogram renamings are not implemented, although the XRS
3925 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3927 /* If SYM encodes a renaming,
3929 <renaming> renames <renamed entity>,
3931 sets *LEN to the length of the renamed entity's name,
3932 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3933 the string describing the subcomponent selected from the renamed
3934 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3935 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3936 are undefined). Otherwise, returns a value indicating the category
3937 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3938 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3939 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3940 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3941 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3942 may be NULL, in which case they are not assigned.
3944 [Currently, however, GCC does not generate subprogram renamings.] */
3946 enum ada_renaming_category
3947 ada_parse_renaming (struct symbol *sym,
3948 const char **renamed_entity, int *len,
3949 const char **renaming_expr)
3951 enum ada_renaming_category kind;
3956 return ADA_NOT_RENAMING;
3957 switch (SYMBOL_CLASS (sym))
3960 return ADA_NOT_RENAMING;
3964 case LOC_OPTIMIZED_OUT:
3965 info = strstr (sym->linkage_name (), "___XR");
3967 return ADA_NOT_RENAMING;
3971 kind = ADA_OBJECT_RENAMING;
3975 kind = ADA_EXCEPTION_RENAMING;
3979 kind = ADA_PACKAGE_RENAMING;
3983 kind = ADA_SUBPROGRAM_RENAMING;
3987 return ADA_NOT_RENAMING;
3991 if (renamed_entity != NULL)
3992 *renamed_entity = info;
3993 suffix = strstr (info, "___XE");
3994 if (suffix == NULL || suffix == info)
3995 return ADA_NOT_RENAMING;
3997 *len = strlen (info) - strlen (suffix);
3999 if (renaming_expr != NULL)
4000 *renaming_expr = suffix;
4004 /* Compute the value of the given RENAMING_SYM, which is expected to
4005 be a symbol encoding a renaming expression. BLOCK is the block
4006 used to evaluate the renaming. */
4008 static struct value *
4009 ada_read_renaming_var_value (struct symbol *renaming_sym,
4010 const struct block *block)
4012 const char *sym_name;
4014 sym_name = renaming_sym->linkage_name ();
4015 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4016 return evaluate_expression (expr.get ());
4020 /* Evaluation: Function Calls */
4022 /* Return an lvalue containing the value VAL. This is the identity on
4023 lvalues, and otherwise has the side-effect of allocating memory
4024 in the inferior where a copy of the value contents is copied. */
4026 static struct value *
4027 ensure_lval (struct value *val)
4029 if (VALUE_LVAL (val) == not_lval
4030 || VALUE_LVAL (val) == lval_internalvar)
4032 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4033 const CORE_ADDR addr =
4034 value_as_long (value_allocate_space_in_inferior (len));
4036 VALUE_LVAL (val) = lval_memory;
4037 set_value_address (val, addr);
4038 write_memory (addr, value_contents (val), len);
4044 /* Given ARG, a value of type (pointer or reference to a)*
4045 structure/union, extract the component named NAME from the ultimate
4046 target structure/union and return it as a value with its
4049 The routine searches for NAME among all members of the structure itself
4050 and (recursively) among all members of any wrapper members
4053 If NO_ERR, then simply return NULL in case of error, rather than
4056 static struct value *
4057 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4059 struct type *t, *t1;
4064 t1 = t = ada_check_typedef (value_type (arg));
4065 if (t->code () == TYPE_CODE_REF)
4067 t1 = TYPE_TARGET_TYPE (t);
4070 t1 = ada_check_typedef (t1);
4071 if (t1->code () == TYPE_CODE_PTR)
4073 arg = coerce_ref (arg);
4078 while (t->code () == TYPE_CODE_PTR)
4080 t1 = TYPE_TARGET_TYPE (t);
4083 t1 = ada_check_typedef (t1);
4084 if (t1->code () == TYPE_CODE_PTR)
4086 arg = value_ind (arg);
4093 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4097 v = ada_search_struct_field (name, arg, 0, t);
4100 int bit_offset, bit_size, byte_offset;
4101 struct type *field_type;
4104 if (t->code () == TYPE_CODE_PTR)
4105 address = value_address (ada_value_ind (arg));
4107 address = value_address (ada_coerce_ref (arg));
4109 /* Check to see if this is a tagged type. We also need to handle
4110 the case where the type is a reference to a tagged type, but
4111 we have to be careful to exclude pointers to tagged types.
4112 The latter should be shown as usual (as a pointer), whereas
4113 a reference should mostly be transparent to the user. */
4115 if (ada_is_tagged_type (t1, 0)
4116 || (t1->code () == TYPE_CODE_REF
4117 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4119 /* We first try to find the searched field in the current type.
4120 If not found then let's look in the fixed type. */
4122 if (!find_struct_field (name, t1, 0,
4123 &field_type, &byte_offset, &bit_offset,
4132 /* Convert to fixed type in all cases, so that we have proper
4133 offsets to each field in unconstrained record types. */
4134 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4135 address, NULL, check_tag);
4137 /* Resolve the dynamic type as well. */
4138 arg = value_from_contents_and_address (t1, nullptr, address);
4139 t1 = value_type (arg);
4141 if (find_struct_field (name, t1, 0,
4142 &field_type, &byte_offset, &bit_offset,
4147 if (t->code () == TYPE_CODE_REF)
4148 arg = ada_coerce_ref (arg);
4150 arg = ada_value_ind (arg);
4151 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4152 bit_offset, bit_size,
4156 v = value_at_lazy (field_type, address + byte_offset);
4160 if (v != NULL || no_err)
4163 error (_("There is no member named %s."), name);
4169 error (_("Attempt to extract a component of "
4170 "a value that is not a record."));
4173 /* Return the value ACTUAL, converted to be an appropriate value for a
4174 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4175 allocating any necessary descriptors (fat pointers), or copies of
4176 values not residing in memory, updating it as needed. */
4179 ada_convert_actual (struct value *actual, struct type *formal_type0)
4181 struct type *actual_type = ada_check_typedef (value_type (actual));
4182 struct type *formal_type = ada_check_typedef (formal_type0);
4183 struct type *formal_target =
4184 formal_type->code () == TYPE_CODE_PTR
4185 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4186 struct type *actual_target =
4187 actual_type->code () == TYPE_CODE_PTR
4188 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4190 if (ada_is_array_descriptor_type (formal_target)
4191 && actual_target->code () == TYPE_CODE_ARRAY)
4192 return make_array_descriptor (formal_type, actual);
4193 else if (formal_type->code () == TYPE_CODE_PTR
4194 || formal_type->code () == TYPE_CODE_REF)
4196 struct value *result;
4198 if (formal_target->code () == TYPE_CODE_ARRAY
4199 && ada_is_array_descriptor_type (actual_target))
4200 result = desc_data (actual);
4201 else if (formal_type->code () != TYPE_CODE_PTR)
4203 if (VALUE_LVAL (actual) != lval_memory)
4207 actual_type = ada_check_typedef (value_type (actual));
4208 val = allocate_value (actual_type);
4209 memcpy ((char *) value_contents_raw (val),
4210 (char *) value_contents (actual),
4211 TYPE_LENGTH (actual_type));
4212 actual = ensure_lval (val);
4214 result = value_addr (actual);
4218 return value_cast_pointers (formal_type, result, 0);
4220 else if (actual_type->code () == TYPE_CODE_PTR)
4221 return ada_value_ind (actual);
4222 else if (ada_is_aligner_type (formal_type))
4224 /* We need to turn this parameter into an aligner type
4226 struct value *aligner = allocate_value (formal_type);
4227 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4229 value_assign_to_component (aligner, component, actual);
4236 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4237 type TYPE. This is usually an inefficient no-op except on some targets
4238 (such as AVR) where the representation of a pointer and an address
4242 value_pointer (struct value *value, struct type *type)
4244 unsigned len = TYPE_LENGTH (type);
4245 gdb_byte *buf = (gdb_byte *) alloca (len);
4248 addr = value_address (value);
4249 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4250 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4255 /* Push a descriptor of type TYPE for array value ARR on the stack at
4256 *SP, updating *SP to reflect the new descriptor. Return either
4257 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4258 to-descriptor type rather than a descriptor type), a struct value *
4259 representing a pointer to this descriptor. */
4261 static struct value *
4262 make_array_descriptor (struct type *type, struct value *arr)
4264 struct type *bounds_type = desc_bounds_type (type);
4265 struct type *desc_type = desc_base_type (type);
4266 struct value *descriptor = allocate_value (desc_type);
4267 struct value *bounds = allocate_value (bounds_type);
4270 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4273 modify_field (value_type (bounds), value_contents_writeable (bounds),
4274 ada_array_bound (arr, i, 0),
4275 desc_bound_bitpos (bounds_type, i, 0),
4276 desc_bound_bitsize (bounds_type, i, 0));
4277 modify_field (value_type (bounds), value_contents_writeable (bounds),
4278 ada_array_bound (arr, i, 1),
4279 desc_bound_bitpos (bounds_type, i, 1),
4280 desc_bound_bitsize (bounds_type, i, 1));
4283 bounds = ensure_lval (bounds);
4285 modify_field (value_type (descriptor),
4286 value_contents_writeable (descriptor),
4287 value_pointer (ensure_lval (arr),
4288 desc_type->field (0).type ()),
4289 fat_pntr_data_bitpos (desc_type),
4290 fat_pntr_data_bitsize (desc_type));
4292 modify_field (value_type (descriptor),
4293 value_contents_writeable (descriptor),
4294 value_pointer (bounds,
4295 desc_type->field (1).type ()),
4296 fat_pntr_bounds_bitpos (desc_type),
4297 fat_pntr_bounds_bitsize (desc_type));
4299 descriptor = ensure_lval (descriptor);
4301 if (type->code () == TYPE_CODE_PTR)
4302 return value_addr (descriptor);
4307 /* Symbol Cache Module */
4309 /* Performance measurements made as of 2010-01-15 indicate that
4310 this cache does bring some noticeable improvements. Depending
4311 on the type of entity being printed, the cache can make it as much
4312 as an order of magnitude faster than without it.
4314 The descriptive type DWARF extension has significantly reduced
4315 the need for this cache, at least when DWARF is being used. However,
4316 even in this case, some expensive name-based symbol searches are still
4317 sometimes necessary - to find an XVZ variable, mostly. */
4319 /* Return the symbol cache associated to the given program space PSPACE.
4320 If not allocated for this PSPACE yet, allocate and initialize one. */
4322 static struct ada_symbol_cache *
4323 ada_get_symbol_cache (struct program_space *pspace)
4325 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4327 if (pspace_data->sym_cache == nullptr)
4328 pspace_data->sym_cache.reset (new ada_symbol_cache);
4330 return pspace_data->sym_cache.get ();
4333 /* Clear all entries from the symbol cache. */
4336 ada_clear_symbol_cache ()
4338 struct ada_pspace_data *pspace_data
4339 = get_ada_pspace_data (current_program_space);
4341 if (pspace_data->sym_cache != nullptr)
4342 pspace_data->sym_cache.reset ();
4345 /* Search our cache for an entry matching NAME and DOMAIN.
4346 Return it if found, or NULL otherwise. */
4348 static struct cache_entry **
4349 find_entry (const char *name, domain_enum domain)
4351 struct ada_symbol_cache *sym_cache
4352 = ada_get_symbol_cache (current_program_space);
4353 int h = msymbol_hash (name) % HASH_SIZE;
4354 struct cache_entry **e;
4356 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4358 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4364 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4365 Return 1 if found, 0 otherwise.
4367 If an entry was found and SYM is not NULL, set *SYM to the entry's
4368 SYM. Same principle for BLOCK if not NULL. */
4371 lookup_cached_symbol (const char *name, domain_enum domain,
4372 struct symbol **sym, const struct block **block)
4374 struct cache_entry **e = find_entry (name, domain);
4381 *block = (*e)->block;
4385 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4386 in domain DOMAIN, save this result in our symbol cache. */
4389 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4390 const struct block *block)
4392 struct ada_symbol_cache *sym_cache
4393 = ada_get_symbol_cache (current_program_space);
4395 struct cache_entry *e;
4397 /* Symbols for builtin types don't have a block.
4398 For now don't cache such symbols. */
4399 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4402 /* If the symbol is a local symbol, then do not cache it, as a search
4403 for that symbol depends on the context. To determine whether
4404 the symbol is local or not, we check the block where we found it
4405 against the global and static blocks of its associated symtab. */
4407 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4408 GLOBAL_BLOCK) != block
4409 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4410 STATIC_BLOCK) != block)
4413 h = msymbol_hash (name) % HASH_SIZE;
4414 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4415 e->next = sym_cache->root[h];
4416 sym_cache->root[h] = e;
4417 e->name = obstack_strdup (&sym_cache->cache_space, name);
4425 /* Return the symbol name match type that should be used used when
4426 searching for all symbols matching LOOKUP_NAME.
4428 LOOKUP_NAME is expected to be a symbol name after transformation
4431 static symbol_name_match_type
4432 name_match_type_from_name (const char *lookup_name)
4434 return (strstr (lookup_name, "__") == NULL
4435 ? symbol_name_match_type::WILD
4436 : symbol_name_match_type::FULL);
4439 /* Return the result of a standard (literal, C-like) lookup of NAME in
4440 given DOMAIN, visible from lexical block BLOCK. */
4442 static struct symbol *
4443 standard_lookup (const char *name, const struct block *block,
4446 /* Initialize it just to avoid a GCC false warning. */
4447 struct block_symbol sym = {};
4449 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4451 ada_lookup_encoded_symbol (name, block, domain, &sym);
4452 cache_symbol (name, domain, sym.symbol, sym.block);
4457 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4458 in the symbol fields of SYMS. We treat enumerals as functions,
4459 since they contend in overloading in the same way. */
4461 is_nonfunction (const std::vector<struct block_symbol> &syms)
4463 for (const block_symbol &sym : syms)
4464 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4465 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4466 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4472 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4473 struct types. Otherwise, they may not. */
4476 equiv_types (struct type *type0, struct type *type1)
4480 if (type0 == NULL || type1 == NULL
4481 || type0->code () != type1->code ())
4483 if ((type0->code () == TYPE_CODE_STRUCT
4484 || type0->code () == TYPE_CODE_ENUM)
4485 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4486 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4492 /* True iff SYM0 represents the same entity as SYM1, or one that is
4493 no more defined than that of SYM1. */
4496 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4500 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4501 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4504 switch (SYMBOL_CLASS (sym0))
4510 struct type *type0 = SYMBOL_TYPE (sym0);
4511 struct type *type1 = SYMBOL_TYPE (sym1);
4512 const char *name0 = sym0->linkage_name ();
4513 const char *name1 = sym1->linkage_name ();
4514 int len0 = strlen (name0);
4517 type0->code () == type1->code ()
4518 && (equiv_types (type0, type1)
4519 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4520 && startswith (name1 + len0, "___XV")));
4523 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4524 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4528 const char *name0 = sym0->linkage_name ();
4529 const char *name1 = sym1->linkage_name ();
4530 return (strcmp (name0, name1) == 0
4531 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4539 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4540 records in RESULT. Do nothing if SYM is a duplicate. */
4543 add_defn_to_vec (std::vector<struct block_symbol> &result,
4545 const struct block *block)
4547 /* Do not try to complete stub types, as the debugger is probably
4548 already scanning all symbols matching a certain name at the
4549 time when this function is called. Trying to replace the stub
4550 type by its associated full type will cause us to restart a scan
4551 which may lead to an infinite recursion. Instead, the client
4552 collecting the matching symbols will end up collecting several
4553 matches, with at least one of them complete. It can then filter
4554 out the stub ones if needed. */
4556 for (int i = result.size () - 1; i >= 0; i -= 1)
4558 if (lesseq_defined_than (sym, result[i].symbol))
4560 else if (lesseq_defined_than (result[i].symbol, sym))
4562 result[i].symbol = sym;
4563 result[i].block = block;
4568 struct block_symbol info;
4571 result.push_back (info);
4574 /* Return a bound minimal symbol matching NAME according to Ada
4575 decoding rules. Returns an invalid symbol if there is no such
4576 minimal symbol. Names prefixed with "standard__" are handled
4577 specially: "standard__" is first stripped off, and only static and
4578 global symbols are searched. */
4580 struct bound_minimal_symbol
4581 ada_lookup_simple_minsym (const char *name)
4583 struct bound_minimal_symbol result;
4585 memset (&result, 0, sizeof (result));
4587 symbol_name_match_type match_type = name_match_type_from_name (name);
4588 lookup_name_info lookup_name (name, match_type);
4590 symbol_name_matcher_ftype *match_name
4591 = ada_get_symbol_name_matcher (lookup_name);
4593 for (objfile *objfile : current_program_space->objfiles ())
4595 for (minimal_symbol *msymbol : objfile->msymbols ())
4597 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4598 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4600 result.minsym = msymbol;
4601 result.objfile = objfile;
4610 /* True if TYPE is definitely an artificial type supplied to a symbol
4611 for which no debugging information was given in the symbol file. */
4614 is_nondebugging_type (struct type *type)
4616 const char *name = ada_type_name (type);
4618 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4621 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4622 that are deemed "identical" for practical purposes.
4624 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4625 types and that their number of enumerals is identical (in other
4626 words, type1->num_fields () == type2->num_fields ()). */
4629 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4633 /* The heuristic we use here is fairly conservative. We consider
4634 that 2 enumerate types are identical if they have the same
4635 number of enumerals and that all enumerals have the same
4636 underlying value and name. */
4638 /* All enums in the type should have an identical underlying value. */
4639 for (i = 0; i < type1->num_fields (); i++)
4640 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4643 /* All enumerals should also have the same name (modulo any numerical
4645 for (i = 0; i < type1->num_fields (); i++)
4647 const char *name_1 = type1->field (i).name ();
4648 const char *name_2 = type2->field (i).name ();
4649 int len_1 = strlen (name_1);
4650 int len_2 = strlen (name_2);
4652 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4653 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
4655 || strncmp (type1->field (i).name (),
4656 type2->field (i).name (),
4664 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4665 that are deemed "identical" for practical purposes. Sometimes,
4666 enumerals are not strictly identical, but their types are so similar
4667 that they can be considered identical.
4669 For instance, consider the following code:
4671 type Color is (Black, Red, Green, Blue, White);
4672 type RGB_Color is new Color range Red .. Blue;
4674 Type RGB_Color is a subrange of an implicit type which is a copy
4675 of type Color. If we call that implicit type RGB_ColorB ("B" is
4676 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4677 As a result, when an expression references any of the enumeral
4678 by name (Eg. "print green"), the expression is technically
4679 ambiguous and the user should be asked to disambiguate. But
4680 doing so would only hinder the user, since it wouldn't matter
4681 what choice he makes, the outcome would always be the same.
4682 So, for practical purposes, we consider them as the same. */
4685 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4689 /* Before performing a thorough comparison check of each type,
4690 we perform a series of inexpensive checks. We expect that these
4691 checks will quickly fail in the vast majority of cases, and thus
4692 help prevent the unnecessary use of a more expensive comparison.
4693 Said comparison also expects us to make some of these checks
4694 (see ada_identical_enum_types_p). */
4696 /* Quick check: All symbols should have an enum type. */
4697 for (i = 0; i < syms.size (); i++)
4698 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4701 /* Quick check: They should all have the same value. */
4702 for (i = 1; i < syms.size (); i++)
4703 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4706 /* Quick check: They should all have the same number of enumerals. */
4707 for (i = 1; i < syms.size (); i++)
4708 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4709 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4712 /* All the sanity checks passed, so we might have a set of
4713 identical enumeration types. Perform a more complete
4714 comparison of the type of each symbol. */
4715 for (i = 1; i < syms.size (); i++)
4716 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4717 SYMBOL_TYPE (syms[0].symbol)))
4723 /* Remove any non-debugging symbols in SYMS that definitely
4724 duplicate other symbols in the list (The only case I know of where
4725 this happens is when object files containing stabs-in-ecoff are
4726 linked with files containing ordinary ecoff debugging symbols (or no
4727 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4730 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4734 /* We should never be called with less than 2 symbols, as there
4735 cannot be any extra symbol in that case. But it's easy to
4736 handle, since we have nothing to do in that case. */
4737 if (syms->size () < 2)
4741 while (i < syms->size ())
4745 /* If two symbols have the same name and one of them is a stub type,
4746 the get rid of the stub. */
4748 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4749 && (*syms)[i].symbol->linkage_name () != NULL)
4751 for (j = 0; j < syms->size (); j++)
4754 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4755 && (*syms)[j].symbol->linkage_name () != NULL
4756 && strcmp ((*syms)[i].symbol->linkage_name (),
4757 (*syms)[j].symbol->linkage_name ()) == 0)
4762 /* Two symbols with the same name, same class and same address
4763 should be identical. */
4765 else if ((*syms)[i].symbol->linkage_name () != NULL
4766 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4767 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4769 for (j = 0; j < syms->size (); j += 1)
4772 && (*syms)[j].symbol->linkage_name () != NULL
4773 && strcmp ((*syms)[i].symbol->linkage_name (),
4774 (*syms)[j].symbol->linkage_name ()) == 0
4775 && SYMBOL_CLASS ((*syms)[i].symbol)
4776 == SYMBOL_CLASS ((*syms)[j].symbol)
4777 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4778 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4784 syms->erase (syms->begin () + i);
4789 /* If all the remaining symbols are identical enumerals, then
4790 just keep the first one and discard the rest.
4792 Unlike what we did previously, we do not discard any entry
4793 unless they are ALL identical. This is because the symbol
4794 comparison is not a strict comparison, but rather a practical
4795 comparison. If all symbols are considered identical, then
4796 we can just go ahead and use the first one and discard the rest.
4797 But if we cannot reduce the list to a single element, we have
4798 to ask the user to disambiguate anyways. And if we have to
4799 present a multiple-choice menu, it's less confusing if the list
4800 isn't missing some choices that were identical and yet distinct. */
4801 if (symbols_are_identical_enums (*syms))
4805 /* Given a type that corresponds to a renaming entity, use the type name
4806 to extract the scope (package name or function name, fully qualified,
4807 and following the GNAT encoding convention) where this renaming has been
4811 xget_renaming_scope (struct type *renaming_type)
4813 /* The renaming types adhere to the following convention:
4814 <scope>__<rename>___<XR extension>.
4815 So, to extract the scope, we search for the "___XR" extension,
4816 and then backtrack until we find the first "__". */
4818 const char *name = renaming_type->name ();
4819 const char *suffix = strstr (name, "___XR");
4822 /* Now, backtrack a bit until we find the first "__". Start looking
4823 at suffix - 3, as the <rename> part is at least one character long. */
4825 for (last = suffix - 3; last > name; last--)
4826 if (last[0] == '_' && last[1] == '_')
4829 /* Make a copy of scope and return it. */
4830 return std::string (name, last);
4833 /* Return nonzero if NAME corresponds to a package name. */
4836 is_package_name (const char *name)
4838 /* Here, We take advantage of the fact that no symbols are generated
4839 for packages, while symbols are generated for each function.
4840 So the condition for NAME represent a package becomes equivalent
4841 to NAME not existing in our list of symbols. There is only one
4842 small complication with library-level functions (see below). */
4844 /* If it is a function that has not been defined at library level,
4845 then we should be able to look it up in the symbols. */
4846 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4849 /* Library-level function names start with "_ada_". See if function
4850 "_ada_" followed by NAME can be found. */
4852 /* Do a quick check that NAME does not contain "__", since library-level
4853 functions names cannot contain "__" in them. */
4854 if (strstr (name, "__") != NULL)
4857 std::string fun_name = string_printf ("_ada_%s", name);
4859 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4862 /* Return nonzero if SYM corresponds to a renaming entity that is
4863 not visible from FUNCTION_NAME. */
4866 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4868 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4871 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4873 /* If the rename has been defined in a package, then it is visible. */
4874 if (is_package_name (scope.c_str ()))
4877 /* Check that the rename is in the current function scope by checking
4878 that its name starts with SCOPE. */
4880 /* If the function name starts with "_ada_", it means that it is
4881 a library-level function. Strip this prefix before doing the
4882 comparison, as the encoding for the renaming does not contain
4884 if (startswith (function_name, "_ada_"))
4887 return !startswith (function_name, scope.c_str ());
4890 /* Remove entries from SYMS that corresponds to a renaming entity that
4891 is not visible from the function associated with CURRENT_BLOCK or
4892 that is superfluous due to the presence of more specific renaming
4893 information. Places surviving symbols in the initial entries of
4897 First, in cases where an object renaming is implemented as a
4898 reference variable, GNAT may produce both the actual reference
4899 variable and the renaming encoding. In this case, we discard the
4902 Second, GNAT emits a type following a specified encoding for each renaming
4903 entity. Unfortunately, STABS currently does not support the definition
4904 of types that are local to a given lexical block, so all renamings types
4905 are emitted at library level. As a consequence, if an application
4906 contains two renaming entities using the same name, and a user tries to
4907 print the value of one of these entities, the result of the ada symbol
4908 lookup will also contain the wrong renaming type.
4910 This function partially covers for this limitation by attempting to
4911 remove from the SYMS list renaming symbols that should be visible
4912 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4913 method with the current information available. The implementation
4914 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4916 - When the user tries to print a rename in a function while there
4917 is another rename entity defined in a package: Normally, the
4918 rename in the function has precedence over the rename in the
4919 package, so the latter should be removed from the list. This is
4920 currently not the case.
4922 - This function will incorrectly remove valid renames if
4923 the CURRENT_BLOCK corresponds to a function which symbol name
4924 has been changed by an "Export" pragma. As a consequence,
4925 the user will be unable to print such rename entities. */
4928 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4929 const struct block *current_block)
4931 struct symbol *current_function;
4932 const char *current_function_name;
4934 int is_new_style_renaming;
4936 /* If there is both a renaming foo___XR... encoded as a variable and
4937 a simple variable foo in the same block, discard the latter.
4938 First, zero out such symbols, then compress. */
4939 is_new_style_renaming = 0;
4940 for (i = 0; i < syms->size (); i += 1)
4942 struct symbol *sym = (*syms)[i].symbol;
4943 const struct block *block = (*syms)[i].block;
4947 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4949 name = sym->linkage_name ();
4950 suffix = strstr (name, "___XR");
4954 int name_len = suffix - name;
4957 is_new_style_renaming = 1;
4958 for (j = 0; j < syms->size (); j += 1)
4959 if (i != j && (*syms)[j].symbol != NULL
4960 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4962 && block == (*syms)[j].block)
4963 (*syms)[j].symbol = NULL;
4966 if (is_new_style_renaming)
4970 for (j = k = 0; j < syms->size (); j += 1)
4971 if ((*syms)[j].symbol != NULL)
4973 (*syms)[k] = (*syms)[j];
4980 /* Extract the function name associated to CURRENT_BLOCK.
4981 Abort if unable to do so. */
4983 if (current_block == NULL)
4986 current_function = block_linkage_function (current_block);
4987 if (current_function == NULL)
4990 current_function_name = current_function->linkage_name ();
4991 if (current_function_name == NULL)
4994 /* Check each of the symbols, and remove it from the list if it is
4995 a type corresponding to a renaming that is out of the scope of
4996 the current block. */
4999 while (i < syms->size ())
5001 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5002 == ADA_OBJECT_RENAMING
5003 && old_renaming_is_invisible ((*syms)[i].symbol,
5004 current_function_name))
5005 syms->erase (syms->begin () + i);
5011 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
5012 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
5014 Note: This function assumes that RESULT is empty. */
5017 ada_add_local_symbols (std::vector<struct block_symbol> &result,
5018 const lookup_name_info &lookup_name,
5019 const struct block *block, domain_enum domain)
5021 while (block != NULL)
5023 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5025 /* If we found a non-function match, assume that's the one. We
5026 only check this when finding a function boundary, so that we
5027 can accumulate all results from intervening blocks first. */
5028 if (BLOCK_FUNCTION (block) != nullptr && is_nonfunction (result))
5031 block = BLOCK_SUPERBLOCK (block);
5035 /* An object of this type is used as the callback argument when
5036 calling the map_matching_symbols method. */
5040 explicit match_data (std::vector<struct block_symbol> *rp)
5044 DISABLE_COPY_AND_ASSIGN (match_data);
5046 bool operator() (struct block_symbol *bsym);
5048 struct objfile *objfile = nullptr;
5049 std::vector<struct block_symbol> *resultp;
5050 struct symbol *arg_sym = nullptr;
5051 bool found_sym = false;
5054 /* A callback for add_nonlocal_symbols that adds symbol, found in
5055 BSYM, to a list of symbols. */
5058 match_data::operator() (struct block_symbol *bsym)
5060 const struct block *block = bsym->block;
5061 struct symbol *sym = bsym->symbol;
5065 if (!found_sym && arg_sym != NULL)
5066 add_defn_to_vec (*resultp,
5067 fixup_symbol_section (arg_sym, objfile),
5074 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5076 else if (SYMBOL_IS_ARGUMENT (sym))
5081 add_defn_to_vec (*resultp,
5082 fixup_symbol_section (sym, objfile),
5089 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5090 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5091 symbols to RESULT. Return whether we found such symbols. */
5094 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5095 const struct block *block,
5096 const lookup_name_info &lookup_name,
5099 struct using_direct *renaming;
5100 int defns_mark = result.size ();
5102 symbol_name_matcher_ftype *name_match
5103 = ada_get_symbol_name_matcher (lookup_name);
5105 for (renaming = block_using (block);
5107 renaming = renaming->next)
5111 /* Avoid infinite recursions: skip this renaming if we are actually
5112 already traversing it.
5114 Currently, symbol lookup in Ada don't use the namespace machinery from
5115 C++/Fortran support: skip namespace imports that use them. */
5116 if (renaming->searched
5117 || (renaming->import_src != NULL
5118 && renaming->import_src[0] != '\0')
5119 || (renaming->import_dest != NULL
5120 && renaming->import_dest[0] != '\0'))
5122 renaming->searched = 1;
5124 /* TODO: here, we perform another name-based symbol lookup, which can
5125 pull its own multiple overloads. In theory, we should be able to do
5126 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5127 not a simple name. But in order to do this, we would need to enhance
5128 the DWARF reader to associate a symbol to this renaming, instead of a
5129 name. So, for now, we do something simpler: re-use the C++/Fortran
5130 namespace machinery. */
5131 r_name = (renaming->alias != NULL
5133 : renaming->declaration);
5134 if (name_match (r_name, lookup_name, NULL))
5136 lookup_name_info decl_lookup_name (renaming->declaration,
5137 lookup_name.match_type ());
5138 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5141 renaming->searched = 0;
5143 return result.size () != defns_mark;
5146 /* Implements compare_names, but only applying the comparision using
5147 the given CASING. */
5150 compare_names_with_case (const char *string1, const char *string2,
5151 enum case_sensitivity casing)
5153 while (*string1 != '\0' && *string2 != '\0')
5157 if (isspace (*string1) || isspace (*string2))
5158 return strcmp_iw_ordered (string1, string2);
5160 if (casing == case_sensitive_off)
5162 c1 = tolower (*string1);
5163 c2 = tolower (*string2);
5180 return strcmp_iw_ordered (string1, string2);
5182 if (*string2 == '\0')
5184 if (is_name_suffix (string1))
5191 if (*string2 == '(')
5192 return strcmp_iw_ordered (string1, string2);
5195 if (casing == case_sensitive_off)
5196 return tolower (*string1) - tolower (*string2);
5198 return *string1 - *string2;
5203 /* Compare STRING1 to STRING2, with results as for strcmp.
5204 Compatible with strcmp_iw_ordered in that...
5206 strcmp_iw_ordered (STRING1, STRING2) <= 0
5210 compare_names (STRING1, STRING2) <= 0
5212 (they may differ as to what symbols compare equal). */
5215 compare_names (const char *string1, const char *string2)
5219 /* Similar to what strcmp_iw_ordered does, we need to perform
5220 a case-insensitive comparison first, and only resort to
5221 a second, case-sensitive, comparison if the first one was
5222 not sufficient to differentiate the two strings. */
5224 result = compare_names_with_case (string1, string2, case_sensitive_off);
5226 result = compare_names_with_case (string1, string2, case_sensitive_on);
5231 /* Convenience function to get at the Ada encoded lookup name for
5232 LOOKUP_NAME, as a C string. */
5235 ada_lookup_name (const lookup_name_info &lookup_name)
5237 return lookup_name.ada ().lookup_name ().c_str ();
5240 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5241 for OBJFILE, then walk the objfile's symtabs and update the
5245 map_matching_symbols (struct objfile *objfile,
5246 const lookup_name_info &lookup_name,
5252 data.objfile = objfile;
5253 objfile->expand_matching_symbols (lookup_name, domain, global,
5254 is_wild_match ? nullptr : compare_names);
5256 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5257 for (compunit_symtab *symtab : objfile->compunits ())
5259 const struct block *block
5260 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5261 if (!iterate_over_symbols_terminated (block, lookup_name,
5267 /* Add to RESULT all non-local symbols whose name and domain match
5268 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5269 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5270 symbols otherwise. */
5273 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5274 const lookup_name_info &lookup_name,
5275 domain_enum domain, int global)
5277 struct match_data data (&result);
5279 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5281 for (objfile *objfile : current_program_space->objfiles ())
5283 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5286 for (compunit_symtab *cu : objfile->compunits ())
5288 const struct block *global_block
5289 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5291 if (ada_add_block_renamings (result, global_block, lookup_name,
5293 data.found_sym = true;
5297 if (result.empty () && global && !is_wild_match)
5299 const char *name = ada_lookup_name (lookup_name);
5300 std::string bracket_name = std::string ("<_ada_") + name + '>';
5301 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5303 for (objfile *objfile : current_program_space->objfiles ())
5304 map_matching_symbols (objfile, name1, false, domain, global, data);
5308 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5309 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5310 returning the number of matches. Add these to RESULT.
5312 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5313 symbol match within the nest of blocks whose innermost member is BLOCK,
5314 is the one match returned (no other matches in that or
5315 enclosing blocks is returned). If there are any matches in or
5316 surrounding BLOCK, then these alone are returned.
5318 Names prefixed with "standard__" are handled specially:
5319 "standard__" is first stripped off (by the lookup_name
5320 constructor), and only static and global symbols are searched.
5322 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5323 to lookup global symbols. */
5326 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5327 const struct block *block,
5328 const lookup_name_info &lookup_name,
5331 int *made_global_lookup_p)
5335 if (made_global_lookup_p)
5336 *made_global_lookup_p = 0;
5338 /* Special case: If the user specifies a symbol name inside package
5339 Standard, do a non-wild matching of the symbol name without
5340 the "standard__" prefix. This was primarily introduced in order
5341 to allow the user to specifically access the standard exceptions
5342 using, for instance, Standard.Constraint_Error when Constraint_Error
5343 is ambiguous (due to the user defining its own Constraint_Error
5344 entity inside its program). */
5345 if (lookup_name.ada ().standard_p ())
5348 /* Check the non-global symbols. If we have ANY match, then we're done. */
5353 ada_add_local_symbols (result, lookup_name, block, domain);
5356 /* In the !full_search case we're are being called by
5357 iterate_over_symbols, and we don't want to search
5359 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5361 if (!result.empty () || !full_search)
5365 /* No non-global symbols found. Check our cache to see if we have
5366 already performed this search before. If we have, then return
5369 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5370 domain, &sym, &block))
5373 add_defn_to_vec (result, sym, block);
5377 if (made_global_lookup_p)
5378 *made_global_lookup_p = 1;
5380 /* Search symbols from all global blocks. */
5382 add_nonlocal_symbols (result, lookup_name, domain, 1);
5384 /* Now add symbols from all per-file blocks if we've gotten no hits
5385 (not strictly correct, but perhaps better than an error). */
5387 if (result.empty ())
5388 add_nonlocal_symbols (result, lookup_name, domain, 0);
5391 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5392 is non-zero, enclosing scope and in global scopes.
5394 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5395 blocks and symbol tables (if any) in which they were found.
5397 When full_search is non-zero, any non-function/non-enumeral
5398 symbol match within the nest of blocks whose innermost member is BLOCK,
5399 is the one match returned (no other matches in that or
5400 enclosing blocks is returned). If there are any matches in or
5401 surrounding BLOCK, then these alone are returned.
5403 Names prefixed with "standard__" are handled specially: "standard__"
5404 is first stripped off, and only static and global symbols are searched. */
5406 static std::vector<struct block_symbol>
5407 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5408 const struct block *block,
5412 int syms_from_global_search;
5413 std::vector<struct block_symbol> results;
5415 ada_add_all_symbols (results, block, lookup_name,
5416 domain, full_search, &syms_from_global_search);
5418 remove_extra_symbols (&results);
5420 if (results.empty () && full_search && syms_from_global_search)
5421 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5423 if (results.size () == 1 && full_search && syms_from_global_search)
5424 cache_symbol (ada_lookup_name (lookup_name), domain,
5425 results[0].symbol, results[0].block);
5427 remove_irrelevant_renamings (&results, block);
5431 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5432 in global scopes, returning (SYM,BLOCK) tuples.
5434 See ada_lookup_symbol_list_worker for further details. */
5436 std::vector<struct block_symbol>
5437 ada_lookup_symbol_list (const char *name, const struct block *block,
5440 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5441 lookup_name_info lookup_name (name, name_match_type);
5443 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5446 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5447 to 1, but choosing the first symbol found if there are multiple
5450 The result is stored in *INFO, which must be non-NULL.
5451 If no match is found, INFO->SYM is set to NULL. */
5454 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5456 struct block_symbol *info)
5458 /* Since we already have an encoded name, wrap it in '<>' to force a
5459 verbatim match. Otherwise, if the name happens to not look like
5460 an encoded name (because it doesn't include a "__"),
5461 ada_lookup_name_info would re-encode/fold it again, and that
5462 would e.g., incorrectly lowercase object renaming names like
5463 "R28b" -> "r28b". */
5464 std::string verbatim = add_angle_brackets (name);
5466 gdb_assert (info != NULL);
5467 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5470 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5471 scope and in global scopes, or NULL if none. NAME is folded and
5472 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5473 choosing the first symbol if there are multiple choices. */
5476 ada_lookup_symbol (const char *name, const struct block *block0,
5479 std::vector<struct block_symbol> candidates
5480 = ada_lookup_symbol_list (name, block0, domain);
5482 if (candidates.empty ())
5485 block_symbol info = candidates[0];
5486 info.symbol = fixup_symbol_section (info.symbol, NULL);
5491 /* True iff STR is a possible encoded suffix of a normal Ada name
5492 that is to be ignored for matching purposes. Suffixes of parallel
5493 names (e.g., XVE) are not included here. Currently, the possible suffixes
5494 are given by any of the regular expressions:
5496 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5497 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5498 TKB [subprogram suffix for task bodies]
5499 _E[0-9]+[bs]$ [protected object entry suffixes]
5500 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5502 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5503 match is performed. This sequence is used to differentiate homonyms,
5504 is an optional part of a valid name suffix. */
5507 is_name_suffix (const char *str)
5510 const char *matching;
5511 const int len = strlen (str);
5513 /* Skip optional leading __[0-9]+. */
5515 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5518 while (isdigit (str[0]))
5524 if (str[0] == '.' || str[0] == '$')
5527 while (isdigit (matching[0]))
5529 if (matching[0] == '\0')
5535 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5538 while (isdigit (matching[0]))
5540 if (matching[0] == '\0')
5544 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5546 if (strcmp (str, "TKB") == 0)
5550 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5551 with a N at the end. Unfortunately, the compiler uses the same
5552 convention for other internal types it creates. So treating
5553 all entity names that end with an "N" as a name suffix causes
5554 some regressions. For instance, consider the case of an enumerated
5555 type. To support the 'Image attribute, it creates an array whose
5557 Having a single character like this as a suffix carrying some
5558 information is a bit risky. Perhaps we should change the encoding
5559 to be something like "_N" instead. In the meantime, do not do
5560 the following check. */
5561 /* Protected Object Subprograms */
5562 if (len == 1 && str [0] == 'N')
5567 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5570 while (isdigit (matching[0]))
5572 if ((matching[0] == 'b' || matching[0] == 's')
5573 && matching [1] == '\0')
5577 /* ??? We should not modify STR directly, as we are doing below. This
5578 is fine in this case, but may become problematic later if we find
5579 that this alternative did not work, and want to try matching
5580 another one from the begining of STR. Since we modified it, we
5581 won't be able to find the begining of the string anymore! */
5585 while (str[0] != '_' && str[0] != '\0')
5587 if (str[0] != 'n' && str[0] != 'b')
5593 if (str[0] == '\000')
5598 if (str[1] != '_' || str[2] == '\000')
5602 if (strcmp (str + 3, "JM") == 0)
5604 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5605 the LJM suffix in favor of the JM one. But we will
5606 still accept LJM as a valid suffix for a reasonable
5607 amount of time, just to allow ourselves to debug programs
5608 compiled using an older version of GNAT. */
5609 if (strcmp (str + 3, "LJM") == 0)
5613 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5614 || str[4] == 'U' || str[4] == 'P')
5616 if (str[4] == 'R' && str[5] != 'T')
5620 if (!isdigit (str[2]))
5622 for (k = 3; str[k] != '\0'; k += 1)
5623 if (!isdigit (str[k]) && str[k] != '_')
5627 if (str[0] == '$' && isdigit (str[1]))
5629 for (k = 2; str[k] != '\0'; k += 1)
5630 if (!isdigit (str[k]) && str[k] != '_')
5637 /* Return non-zero if the string starting at NAME and ending before
5638 NAME_END contains no capital letters. */
5641 is_valid_name_for_wild_match (const char *name0)
5643 std::string decoded_name = ada_decode (name0);
5646 /* If the decoded name starts with an angle bracket, it means that
5647 NAME0 does not follow the GNAT encoding format. It should then
5648 not be allowed as a possible wild match. */
5649 if (decoded_name[0] == '<')
5652 for (i=0; decoded_name[i] != '\0'; i++)
5653 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5659 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5660 character which could start a simple name. Assumes that *NAMEP points
5661 somewhere inside the string beginning at NAME0. */
5664 advance_wild_match (const char **namep, const char *name0, char target0)
5666 const char *name = *namep;
5676 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5679 if (name == name0 + 5 && startswith (name0, "_ada"))
5684 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5685 || name[2] == target0))
5690 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5692 /* Names like "pkg__B_N__name", where N is a number, are
5693 block-local. We can handle these by simply skipping
5700 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5710 /* Return true iff NAME encodes a name of the form prefix.PATN.
5711 Ignores any informational suffixes of NAME (i.e., for which
5712 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5716 wild_match (const char *name, const char *patn)
5719 const char *name0 = name;
5723 const char *match = name;
5727 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5730 if (*p == '\0' && is_name_suffix (name))
5731 return match == name0 || is_valid_name_for_wild_match (name0);
5733 if (name[-1] == '_')
5736 if (!advance_wild_match (&name, name0, *patn))
5741 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5742 necessary). OBJFILE is the section containing BLOCK. */
5745 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5746 const struct block *block,
5747 const lookup_name_info &lookup_name,
5748 domain_enum domain, struct objfile *objfile)
5750 struct block_iterator iter;
5751 /* A matching argument symbol, if any. */
5752 struct symbol *arg_sym;
5753 /* Set true when we find a matching non-argument symbol. */
5759 for (sym = block_iter_match_first (block, lookup_name, &iter);
5761 sym = block_iter_match_next (lookup_name, &iter))
5763 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5765 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5767 if (SYMBOL_IS_ARGUMENT (sym))
5772 add_defn_to_vec (result,
5773 fixup_symbol_section (sym, objfile),
5780 /* Handle renamings. */
5782 if (ada_add_block_renamings (result, block, lookup_name, domain))
5785 if (!found_sym && arg_sym != NULL)
5787 add_defn_to_vec (result,
5788 fixup_symbol_section (arg_sym, objfile),
5792 if (!lookup_name.ada ().wild_match_p ())
5796 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5797 const char *name = ada_lookup_name.c_str ();
5798 size_t name_len = ada_lookup_name.size ();
5800 ALL_BLOCK_SYMBOLS (block, iter, sym)
5802 if (symbol_matches_domain (sym->language (),
5803 SYMBOL_DOMAIN (sym), domain))
5807 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5810 cmp = !startswith (sym->linkage_name (), "_ada_");
5812 cmp = strncmp (name, sym->linkage_name () + 5,
5817 && is_name_suffix (sym->linkage_name () + name_len + 5))
5819 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5821 if (SYMBOL_IS_ARGUMENT (sym))
5826 add_defn_to_vec (result,
5827 fixup_symbol_section (sym, objfile),
5835 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5836 They aren't parameters, right? */
5837 if (!found_sym && arg_sym != NULL)
5839 add_defn_to_vec (result,
5840 fixup_symbol_section (arg_sym, objfile),
5847 /* Symbol Completion */
5852 ada_lookup_name_info::matches
5853 (const char *sym_name,
5854 symbol_name_match_type match_type,
5855 completion_match_result *comp_match_res) const
5858 const char *text = m_encoded_name.c_str ();
5859 size_t text_len = m_encoded_name.size ();
5861 /* First, test against the fully qualified name of the symbol. */
5863 if (strncmp (sym_name, text, text_len) == 0)
5866 std::string decoded_name = ada_decode (sym_name);
5867 if (match && !m_encoded_p)
5869 /* One needed check before declaring a positive match is to verify
5870 that iff we are doing a verbatim match, the decoded version
5871 of the symbol name starts with '<'. Otherwise, this symbol name
5872 is not a suitable completion. */
5874 bool has_angle_bracket = (decoded_name[0] == '<');
5875 match = (has_angle_bracket == m_verbatim_p);
5878 if (match && !m_verbatim_p)
5880 /* When doing non-verbatim match, another check that needs to
5881 be done is to verify that the potentially matching symbol name
5882 does not include capital letters, because the ada-mode would
5883 not be able to understand these symbol names without the
5884 angle bracket notation. */
5887 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5892 /* Second: Try wild matching... */
5894 if (!match && m_wild_match_p)
5896 /* Since we are doing wild matching, this means that TEXT
5897 may represent an unqualified symbol name. We therefore must
5898 also compare TEXT against the unqualified name of the symbol. */
5899 sym_name = ada_unqualified_name (decoded_name.c_str ());
5901 if (strncmp (sym_name, text, text_len) == 0)
5905 /* Finally: If we found a match, prepare the result to return. */
5910 if (comp_match_res != NULL)
5912 std::string &match_str = comp_match_res->match.storage ();
5915 match_str = ada_decode (sym_name);
5919 match_str = add_angle_brackets (sym_name);
5921 match_str = sym_name;
5925 comp_match_res->set_match (match_str.c_str ());
5933 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5934 for tagged types. */
5937 ada_is_dispatch_table_ptr_type (struct type *type)
5941 if (type->code () != TYPE_CODE_PTR)
5944 name = TYPE_TARGET_TYPE (type)->name ();
5948 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5951 /* Return non-zero if TYPE is an interface tag. */
5954 ada_is_interface_tag (struct type *type)
5956 const char *name = type->name ();
5961 return (strcmp (name, "ada__tags__interface_tag") == 0);
5964 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5965 to be invisible to users. */
5968 ada_is_ignored_field (struct type *type, int field_num)
5970 if (field_num < 0 || field_num > type->num_fields ())
5973 /* Check the name of that field. */
5975 const char *name = type->field (field_num).name ();
5977 /* Anonymous field names should not be printed.
5978 brobecker/2007-02-20: I don't think this can actually happen
5979 but we don't want to print the value of anonymous fields anyway. */
5983 /* Normally, fields whose name start with an underscore ("_")
5984 are fields that have been internally generated by the compiler,
5985 and thus should not be printed. The "_parent" field is special,
5986 however: This is a field internally generated by the compiler
5987 for tagged types, and it contains the components inherited from
5988 the parent type. This field should not be printed as is, but
5989 should not be ignored either. */
5990 if (name[0] == '_' && !startswith (name, "_parent"))
5994 /* If this is the dispatch table of a tagged type or an interface tag,
5996 if (ada_is_tagged_type (type, 1)
5997 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5998 || ada_is_interface_tag (type->field (field_num).type ())))
6001 /* Not a special field, so it should not be ignored. */
6005 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6006 pointer or reference type whose ultimate target has a tag field. */
6009 ada_is_tagged_type (struct type *type, int refok)
6011 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6014 /* True iff TYPE represents the type of X'Tag */
6017 ada_is_tag_type (struct type *type)
6019 type = ada_check_typedef (type);
6021 if (type == NULL || type->code () != TYPE_CODE_PTR)
6025 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6027 return (name != NULL
6028 && strcmp (name, "ada__tags__dispatch_table") == 0);
6032 /* The type of the tag on VAL. */
6034 static struct type *
6035 ada_tag_type (struct value *val)
6037 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6040 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6041 retired at Ada 05). */
6044 is_ada95_tag (struct value *tag)
6046 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6049 /* The value of the tag on VAL. */
6051 static struct value *
6052 ada_value_tag (struct value *val)
6054 return ada_value_struct_elt (val, "_tag", 0);
6057 /* The value of the tag on the object of type TYPE whose contents are
6058 saved at VALADDR, if it is non-null, or is at memory address
6061 static struct value *
6062 value_tag_from_contents_and_address (struct type *type,
6063 const gdb_byte *valaddr,
6066 int tag_byte_offset;
6067 struct type *tag_type;
6069 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6072 const gdb_byte *valaddr1 = ((valaddr == NULL)
6074 : valaddr + tag_byte_offset);
6075 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6077 return value_from_contents_and_address (tag_type, valaddr1, address1);
6082 static struct type *
6083 type_from_tag (struct value *tag)
6085 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6087 if (type_name != NULL)
6088 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6092 /* Given a value OBJ of a tagged type, return a value of this
6093 type at the base address of the object. The base address, as
6094 defined in Ada.Tags, it is the address of the primary tag of
6095 the object, and therefore where the field values of its full
6096 view can be fetched. */
6099 ada_tag_value_at_base_address (struct value *obj)
6102 LONGEST offset_to_top = 0;
6103 struct type *ptr_type, *obj_type;
6105 CORE_ADDR base_address;
6107 obj_type = value_type (obj);
6109 /* It is the responsability of the caller to deref pointers. */
6111 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6114 tag = ada_value_tag (obj);
6118 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6120 if (is_ada95_tag (tag))
6123 ptr_type = language_lookup_primitive_type
6124 (language_def (language_ada), target_gdbarch(), "storage_offset");
6125 ptr_type = lookup_pointer_type (ptr_type);
6126 val = value_cast (ptr_type, tag);
6130 /* It is perfectly possible that an exception be raised while
6131 trying to determine the base address, just like for the tag;
6132 see ada_tag_name for more details. We do not print the error
6133 message for the same reason. */
6137 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6140 catch (const gdb_exception_error &e)
6145 /* If offset is null, nothing to do. */
6147 if (offset_to_top == 0)
6150 /* -1 is a special case in Ada.Tags; however, what should be done
6151 is not quite clear from the documentation. So do nothing for
6154 if (offset_to_top == -1)
6157 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6158 from the base address. This was however incompatible with
6159 C++ dispatch table: C++ uses a *negative* value to *add*
6160 to the base address. Ada's convention has therefore been
6161 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6162 use the same convention. Here, we support both cases by
6163 checking the sign of OFFSET_TO_TOP. */
6165 if (offset_to_top > 0)
6166 offset_to_top = -offset_to_top;
6168 base_address = value_address (obj) + offset_to_top;
6169 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6171 /* Make sure that we have a proper tag at the new address.
6172 Otherwise, offset_to_top is bogus (which can happen when
6173 the object is not initialized yet). */
6178 obj_type = type_from_tag (tag);
6183 return value_from_contents_and_address (obj_type, NULL, base_address);
6186 /* Return the "ada__tags__type_specific_data" type. */
6188 static struct type *
6189 ada_get_tsd_type (struct inferior *inf)
6191 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6193 if (data->tsd_type == 0)
6194 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6195 return data->tsd_type;
6198 /* Return the TSD (type-specific data) associated to the given TAG.
6199 TAG is assumed to be the tag of a tagged-type entity.
6201 May return NULL if we are unable to get the TSD. */
6203 static struct value *
6204 ada_get_tsd_from_tag (struct value *tag)
6209 /* First option: The TSD is simply stored as a field of our TAG.
6210 Only older versions of GNAT would use this format, but we have
6211 to test it first, because there are no visible markers for
6212 the current approach except the absence of that field. */
6214 val = ada_value_struct_elt (tag, "tsd", 1);
6218 /* Try the second representation for the dispatch table (in which
6219 there is no explicit 'tsd' field in the referent of the tag pointer,
6220 and instead the tsd pointer is stored just before the dispatch
6223 type = ada_get_tsd_type (current_inferior());
6226 type = lookup_pointer_type (lookup_pointer_type (type));
6227 val = value_cast (type, tag);
6230 return value_ind (value_ptradd (val, -1));
6233 /* Given the TSD of a tag (type-specific data), return a string
6234 containing the name of the associated type.
6236 May return NULL if we are unable to determine the tag name. */
6238 static gdb::unique_xmalloc_ptr<char>
6239 ada_tag_name_from_tsd (struct value *tsd)
6244 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6247 gdb::unique_xmalloc_ptr<char> buffer
6248 = target_read_string (value_as_address (val), INT_MAX);
6249 if (buffer == nullptr)
6252 for (p = buffer.get (); *p != '\0'; ++p)
6261 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6264 Return NULL if the TAG is not an Ada tag, or if we were unable to
6265 determine the name of that tag. */
6267 gdb::unique_xmalloc_ptr<char>
6268 ada_tag_name (struct value *tag)
6270 gdb::unique_xmalloc_ptr<char> name;
6272 if (!ada_is_tag_type (value_type (tag)))
6275 /* It is perfectly possible that an exception be raised while trying
6276 to determine the TAG's name, even under normal circumstances:
6277 The associated variable may be uninitialized or corrupted, for
6278 instance. We do not let any exception propagate past this point.
6279 instead we return NULL.
6281 We also do not print the error message either (which often is very
6282 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6283 the caller print a more meaningful message if necessary. */
6286 struct value *tsd = ada_get_tsd_from_tag (tag);
6289 name = ada_tag_name_from_tsd (tsd);
6291 catch (const gdb_exception_error &e)
6298 /* The parent type of TYPE, or NULL if none. */
6301 ada_parent_type (struct type *type)
6305 type = ada_check_typedef (type);
6307 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6310 for (i = 0; i < type->num_fields (); i += 1)
6311 if (ada_is_parent_field (type, i))
6313 struct type *parent_type = type->field (i).type ();
6315 /* If the _parent field is a pointer, then dereference it. */
6316 if (parent_type->code () == TYPE_CODE_PTR)
6317 parent_type = TYPE_TARGET_TYPE (parent_type);
6318 /* If there is a parallel XVS type, get the actual base type. */
6319 parent_type = ada_get_base_type (parent_type);
6321 return ada_check_typedef (parent_type);
6327 /* True iff field number FIELD_NUM of structure type TYPE contains the
6328 parent-type (inherited) fields of a derived type. Assumes TYPE is
6329 a structure type with at least FIELD_NUM+1 fields. */
6332 ada_is_parent_field (struct type *type, int field_num)
6334 const char *name = ada_check_typedef (type)->field (field_num).name ();
6336 return (name != NULL
6337 && (startswith (name, "PARENT")
6338 || startswith (name, "_parent")));
6341 /* True iff field number FIELD_NUM of structure type TYPE is a
6342 transparent wrapper field (which should be silently traversed when doing
6343 field selection and flattened when printing). Assumes TYPE is a
6344 structure type with at least FIELD_NUM+1 fields. Such fields are always
6348 ada_is_wrapper_field (struct type *type, int field_num)
6350 const char *name = type->field (field_num).name ();
6352 if (name != NULL && strcmp (name, "RETVAL") == 0)
6354 /* This happens in functions with "out" or "in out" parameters
6355 which are passed by copy. For such functions, GNAT describes
6356 the function's return type as being a struct where the return
6357 value is in a field called RETVAL, and where the other "out"
6358 or "in out" parameters are fields of that struct. This is not
6363 return (name != NULL
6364 && (startswith (name, "PARENT")
6365 || strcmp (name, "REP") == 0
6366 || startswith (name, "_parent")
6367 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6370 /* True iff field number FIELD_NUM of structure or union type TYPE
6371 is a variant wrapper. Assumes TYPE is a structure type with at least
6372 FIELD_NUM+1 fields. */
6375 ada_is_variant_part (struct type *type, int field_num)
6377 /* Only Ada types are eligible. */
6378 if (!ADA_TYPE_P (type))
6381 struct type *field_type = type->field (field_num).type ();
6383 return (field_type->code () == TYPE_CODE_UNION
6384 || (is_dynamic_field (type, field_num)
6385 && (TYPE_TARGET_TYPE (field_type)->code ()
6386 == TYPE_CODE_UNION)));
6389 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6390 whose discriminants are contained in the record type OUTER_TYPE,
6391 returns the type of the controlling discriminant for the variant.
6392 May return NULL if the type could not be found. */
6395 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6397 const char *name = ada_variant_discrim_name (var_type);
6399 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6402 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6403 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6404 represents a 'when others' clause; otherwise 0. */
6407 ada_is_others_clause (struct type *type, int field_num)
6409 const char *name = type->field (field_num).name ();
6411 return (name != NULL && name[0] == 'O');
6414 /* Assuming that TYPE0 is the type of the variant part of a record,
6415 returns the name of the discriminant controlling the variant.
6416 The value is valid until the next call to ada_variant_discrim_name. */
6419 ada_variant_discrim_name (struct type *type0)
6421 static std::string result;
6424 const char *discrim_end;
6425 const char *discrim_start;
6427 if (type0->code () == TYPE_CODE_PTR)
6428 type = TYPE_TARGET_TYPE (type0);
6432 name = ada_type_name (type);
6434 if (name == NULL || name[0] == '\000')
6437 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6440 if (startswith (discrim_end, "___XVN"))
6443 if (discrim_end == name)
6446 for (discrim_start = discrim_end; discrim_start != name + 3;
6449 if (discrim_start == name + 1)
6451 if ((discrim_start > name + 3
6452 && startswith (discrim_start - 3, "___"))
6453 || discrim_start[-1] == '.')
6457 result = std::string (discrim_start, discrim_end - discrim_start);
6458 return result.c_str ();
6461 /* Scan STR for a subtype-encoded number, beginning at position K.
6462 Put the position of the character just past the number scanned in
6463 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6464 Return 1 if there was a valid number at the given position, and 0
6465 otherwise. A "subtype-encoded" number consists of the absolute value
6466 in decimal, followed by the letter 'm' to indicate a negative number.
6467 Assumes 0m does not occur. */
6470 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6474 if (!isdigit (str[k]))
6477 /* Do it the hard way so as not to make any assumption about
6478 the relationship of unsigned long (%lu scan format code) and
6481 while (isdigit (str[k]))
6483 RU = RU * 10 + (str[k] - '0');
6490 *R = (-(LONGEST) (RU - 1)) - 1;
6496 /* NOTE on the above: Technically, C does not say what the results of
6497 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6498 number representable as a LONGEST (although either would probably work
6499 in most implementations). When RU>0, the locution in the then branch
6500 above is always equivalent to the negative of RU. */
6507 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6508 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6509 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6512 ada_in_variant (LONGEST val, struct type *type, int field_num)
6514 const char *name = type->field (field_num).name ();
6528 if (!ada_scan_number (name, p + 1, &W, &p))
6538 if (!ada_scan_number (name, p + 1, &L, &p)
6539 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6541 if (val >= L && val <= U)
6553 /* FIXME: Lots of redundancy below. Try to consolidate. */
6555 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6556 ARG_TYPE, extract and return the value of one of its (non-static)
6557 fields. FIELDNO says which field. Differs from value_primitive_field
6558 only in that it can handle packed values of arbitrary type. */
6561 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6562 struct type *arg_type)
6566 arg_type = ada_check_typedef (arg_type);
6567 type = arg_type->field (fieldno).type ();
6569 /* Handle packed fields. It might be that the field is not packed
6570 relative to its containing structure, but the structure itself is
6571 packed; in this case we must take the bit-field path. */
6572 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6574 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6575 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6577 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6578 offset + bit_pos / 8,
6579 bit_pos % 8, bit_size, type);
6582 return value_primitive_field (arg1, offset, fieldno, arg_type);
6585 /* Find field with name NAME in object of type TYPE. If found,
6586 set the following for each argument that is non-null:
6587 - *FIELD_TYPE_P to the field's type;
6588 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6589 an object of that type;
6590 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6591 - *BIT_SIZE_P to its size in bits if the field is packed, and
6593 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6594 fields up to but not including the desired field, or by the total
6595 number of fields if not found. A NULL value of NAME never
6596 matches; the function just counts visible fields in this case.
6598 Notice that we need to handle when a tagged record hierarchy
6599 has some components with the same name, like in this scenario:
6601 type Top_T is tagged record
6607 type Middle_T is new Top.Top_T with record
6608 N : Character := 'a';
6612 type Bottom_T is new Middle.Middle_T with record
6614 C : Character := '5';
6616 A : Character := 'J';
6619 Let's say we now have a variable declared and initialized as follow:
6621 TC : Top_A := new Bottom_T;
6623 And then we use this variable to call this function
6625 procedure Assign (Obj: in out Top_T; TV : Integer);
6629 Assign (Top_T (B), 12);
6631 Now, we're in the debugger, and we're inside that procedure
6632 then and we want to print the value of obj.c:
6634 Usually, the tagged record or one of the parent type owns the
6635 component to print and there's no issue but in this particular
6636 case, what does it mean to ask for Obj.C? Since the actual
6637 type for object is type Bottom_T, it could mean two things: type
6638 component C from the Middle_T view, but also component C from
6639 Bottom_T. So in that "undefined" case, when the component is
6640 not found in the non-resolved type (which includes all the
6641 components of the parent type), then resolve it and see if we
6642 get better luck once expanded.
6644 In the case of homonyms in the derived tagged type, we don't
6645 guaranty anything, and pick the one that's easiest for us
6648 Returns 1 if found, 0 otherwise. */
6651 find_struct_field (const char *name, struct type *type, int offset,
6652 struct type **field_type_p,
6653 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6657 int parent_offset = -1;
6659 type = ada_check_typedef (type);
6661 if (field_type_p != NULL)
6662 *field_type_p = NULL;
6663 if (byte_offset_p != NULL)
6665 if (bit_offset_p != NULL)
6667 if (bit_size_p != NULL)
6670 for (i = 0; i < type->num_fields (); i += 1)
6672 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6673 int fld_offset = offset + bit_pos / 8;
6674 const char *t_field_name = type->field (i).name ();
6676 if (t_field_name == NULL)
6679 else if (ada_is_parent_field (type, i))
6681 /* This is a field pointing us to the parent type of a tagged
6682 type. As hinted in this function's documentation, we give
6683 preference to fields in the current record first, so what
6684 we do here is just record the index of this field before
6685 we skip it. If it turns out we couldn't find our field
6686 in the current record, then we'll get back to it and search
6687 inside it whether the field might exist in the parent. */
6693 else if (name != NULL && field_name_match (t_field_name, name))
6695 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6697 if (field_type_p != NULL)
6698 *field_type_p = type->field (i).type ();
6699 if (byte_offset_p != NULL)
6700 *byte_offset_p = fld_offset;
6701 if (bit_offset_p != NULL)
6702 *bit_offset_p = bit_pos % 8;
6703 if (bit_size_p != NULL)
6704 *bit_size_p = bit_size;
6707 else if (ada_is_wrapper_field (type, i))
6709 if (find_struct_field (name, type->field (i).type (), fld_offset,
6710 field_type_p, byte_offset_p, bit_offset_p,
6711 bit_size_p, index_p))
6714 else if (ada_is_variant_part (type, i))
6716 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6719 struct type *field_type
6720 = ada_check_typedef (type->field (i).type ());
6722 for (j = 0; j < field_type->num_fields (); j += 1)
6724 if (find_struct_field (name, field_type->field (j).type (),
6726 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6727 field_type_p, byte_offset_p,
6728 bit_offset_p, bit_size_p, index_p))
6732 else if (index_p != NULL)
6736 /* Field not found so far. If this is a tagged type which
6737 has a parent, try finding that field in the parent now. */
6739 if (parent_offset != -1)
6741 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6742 int fld_offset = offset + bit_pos / 8;
6744 if (find_struct_field (name, type->field (parent_offset).type (),
6745 fld_offset, field_type_p, byte_offset_p,
6746 bit_offset_p, bit_size_p, index_p))
6753 /* Number of user-visible fields in record type TYPE. */
6756 num_visible_fields (struct type *type)
6761 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6765 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6766 and search in it assuming it has (class) type TYPE.
6767 If found, return value, else return NULL.
6769 Searches recursively through wrapper fields (e.g., '_parent').
6771 In the case of homonyms in the tagged types, please refer to the
6772 long explanation in find_struct_field's function documentation. */
6774 static struct value *
6775 ada_search_struct_field (const char *name, struct value *arg, int offset,
6779 int parent_offset = -1;
6781 type = ada_check_typedef (type);
6782 for (i = 0; i < type->num_fields (); i += 1)
6784 const char *t_field_name = type->field (i).name ();
6786 if (t_field_name == NULL)
6789 else if (ada_is_parent_field (type, i))
6791 /* This is a field pointing us to the parent type of a tagged
6792 type. As hinted in this function's documentation, we give
6793 preference to fields in the current record first, so what
6794 we do here is just record the index of this field before
6795 we skip it. If it turns out we couldn't find our field
6796 in the current record, then we'll get back to it and search
6797 inside it whether the field might exist in the parent. */
6803 else if (field_name_match (t_field_name, name))
6804 return ada_value_primitive_field (arg, offset, i, type);
6806 else if (ada_is_wrapper_field (type, i))
6808 struct value *v = /* Do not let indent join lines here. */
6809 ada_search_struct_field (name, arg,
6810 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6811 type->field (i).type ());
6817 else if (ada_is_variant_part (type, i))
6819 /* PNH: Do we ever get here? See find_struct_field. */
6821 struct type *field_type = ada_check_typedef (type->field (i).type ());
6822 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6824 for (j = 0; j < field_type->num_fields (); j += 1)
6826 struct value *v = ada_search_struct_field /* Force line
6829 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6830 field_type->field (j).type ());
6838 /* Field not found so far. If this is a tagged type which
6839 has a parent, try finding that field in the parent now. */
6841 if (parent_offset != -1)
6843 struct value *v = ada_search_struct_field (
6844 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
6845 type->field (parent_offset).type ());
6854 static struct value *ada_index_struct_field_1 (int *, struct value *,
6855 int, struct type *);
6858 /* Return field #INDEX in ARG, where the index is that returned by
6859 * find_struct_field through its INDEX_P argument. Adjust the address
6860 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6861 * If found, return value, else return NULL. */
6863 static struct value *
6864 ada_index_struct_field (int index, struct value *arg, int offset,
6867 return ada_index_struct_field_1 (&index, arg, offset, type);
6871 /* Auxiliary function for ada_index_struct_field. Like
6872 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6875 static struct value *
6876 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6880 type = ada_check_typedef (type);
6882 for (i = 0; i < type->num_fields (); i += 1)
6884 if (type->field (i).name () == NULL)
6886 else if (ada_is_wrapper_field (type, i))
6888 struct value *v = /* Do not let indent join lines here. */
6889 ada_index_struct_field_1 (index_p, arg,
6890 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6891 type->field (i).type ());
6897 else if (ada_is_variant_part (type, i))
6899 /* PNH: Do we ever get here? See ada_search_struct_field,
6900 find_struct_field. */
6901 error (_("Cannot assign this kind of variant record"));
6903 else if (*index_p == 0)
6904 return ada_value_primitive_field (arg, offset, i, type);
6911 /* Return a string representation of type TYPE. */
6914 type_as_string (struct type *type)
6916 string_file tmp_stream;
6918 type_print (type, "", &tmp_stream, -1);
6920 return std::move (tmp_stream.string ());
6923 /* Given a type TYPE, look up the type of the component of type named NAME.
6924 If DISPP is non-null, add its byte displacement from the beginning of a
6925 structure (pointed to by a value) of type TYPE to *DISPP (does not
6926 work for packed fields).
6928 Matches any field whose name has NAME as a prefix, possibly
6931 TYPE can be either a struct or union. If REFOK, TYPE may also
6932 be a (pointer or reference)+ to a struct or union, and the
6933 ultimate target type will be searched.
6935 Looks recursively into variant clauses and parent types.
6937 In the case of homonyms in the tagged types, please refer to the
6938 long explanation in find_struct_field's function documentation.
6940 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6941 TYPE is not a type of the right kind. */
6943 static struct type *
6944 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6948 int parent_offset = -1;
6953 if (refok && type != NULL)
6956 type = ada_check_typedef (type);
6957 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6959 type = TYPE_TARGET_TYPE (type);
6963 || (type->code () != TYPE_CODE_STRUCT
6964 && type->code () != TYPE_CODE_UNION))
6969 error (_("Type %s is not a structure or union type"),
6970 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6973 type = to_static_fixed_type (type);
6975 for (i = 0; i < type->num_fields (); i += 1)
6977 const char *t_field_name = type->field (i).name ();
6980 if (t_field_name == NULL)
6983 else if (ada_is_parent_field (type, i))
6985 /* This is a field pointing us to the parent type of a tagged
6986 type. As hinted in this function's documentation, we give
6987 preference to fields in the current record first, so what
6988 we do here is just record the index of this field before
6989 we skip it. If it turns out we couldn't find our field
6990 in the current record, then we'll get back to it and search
6991 inside it whether the field might exist in the parent. */
6997 else if (field_name_match (t_field_name, name))
6998 return type->field (i).type ();
7000 else if (ada_is_wrapper_field (type, i))
7002 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7008 else if (ada_is_variant_part (type, i))
7011 struct type *field_type = ada_check_typedef (type->field (i).type ());
7013 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7015 /* FIXME pnh 2008/01/26: We check for a field that is
7016 NOT wrapped in a struct, since the compiler sometimes
7017 generates these for unchecked variant types. Revisit
7018 if the compiler changes this practice. */
7019 const char *v_field_name = field_type->field (j).name ();
7021 if (v_field_name != NULL
7022 && field_name_match (v_field_name, name))
7023 t = field_type->field (j).type ();
7025 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7035 /* Field not found so far. If this is a tagged type which
7036 has a parent, try finding that field in the parent now. */
7038 if (parent_offset != -1)
7042 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7051 const char *name_str = name != NULL ? name : _("<null>");
7053 error (_("Type %s has no component named %s"),
7054 type_as_string (type).c_str (), name_str);
7060 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7061 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7062 represents an unchecked union (that is, the variant part of a
7063 record that is named in an Unchecked_Union pragma). */
7066 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7068 const char *discrim_name = ada_variant_discrim_name (var_type);
7070 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7074 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7075 within OUTER, determine which variant clause (field number in VAR_TYPE,
7076 numbering from 0) is applicable. Returns -1 if none are. */
7079 ada_which_variant_applies (struct type *var_type, struct value *outer)
7083 const char *discrim_name = ada_variant_discrim_name (var_type);
7084 struct value *discrim;
7085 LONGEST discrim_val;
7087 /* Using plain value_from_contents_and_address here causes problems
7088 because we will end up trying to resolve a type that is currently
7089 being constructed. */
7090 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7091 if (discrim == NULL)
7093 discrim_val = value_as_long (discrim);
7096 for (i = 0; i < var_type->num_fields (); i += 1)
7098 if (ada_is_others_clause (var_type, i))
7100 else if (ada_in_variant (discrim_val, var_type, i))
7104 return others_clause;
7109 /* Dynamic-Sized Records */
7111 /* Strategy: The type ostensibly attached to a value with dynamic size
7112 (i.e., a size that is not statically recorded in the debugging
7113 data) does not accurately reflect the size or layout of the value.
7114 Our strategy is to convert these values to values with accurate,
7115 conventional types that are constructed on the fly. */
7117 /* There is a subtle and tricky problem here. In general, we cannot
7118 determine the size of dynamic records without its data. However,
7119 the 'struct value' data structure, which GDB uses to represent
7120 quantities in the inferior process (the target), requires the size
7121 of the type at the time of its allocation in order to reserve space
7122 for GDB's internal copy of the data. That's why the
7123 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7124 rather than struct value*s.
7126 However, GDB's internal history variables ($1, $2, etc.) are
7127 struct value*s containing internal copies of the data that are not, in
7128 general, the same as the data at their corresponding addresses in
7129 the target. Fortunately, the types we give to these values are all
7130 conventional, fixed-size types (as per the strategy described
7131 above), so that we don't usually have to perform the
7132 'to_fixed_xxx_type' conversions to look at their values.
7133 Unfortunately, there is one exception: if one of the internal
7134 history variables is an array whose elements are unconstrained
7135 records, then we will need to create distinct fixed types for each
7136 element selected. */
7138 /* The upshot of all of this is that many routines take a (type, host
7139 address, target address) triple as arguments to represent a value.
7140 The host address, if non-null, is supposed to contain an internal
7141 copy of the relevant data; otherwise, the program is to consult the
7142 target at the target address. */
7144 /* Assuming that VAL0 represents a pointer value, the result of
7145 dereferencing it. Differs from value_ind in its treatment of
7146 dynamic-sized types. */
7149 ada_value_ind (struct value *val0)
7151 struct value *val = value_ind (val0);
7153 if (ada_is_tagged_type (value_type (val), 0))
7154 val = ada_tag_value_at_base_address (val);
7156 return ada_to_fixed_value (val);
7159 /* The value resulting from dereferencing any "reference to"
7160 qualifiers on VAL0. */
7162 static struct value *
7163 ada_coerce_ref (struct value *val0)
7165 if (value_type (val0)->code () == TYPE_CODE_REF)
7167 struct value *val = val0;
7169 val = coerce_ref (val);
7171 if (ada_is_tagged_type (value_type (val), 0))
7172 val = ada_tag_value_at_base_address (val);
7174 return ada_to_fixed_value (val);
7180 /* Return the bit alignment required for field #F of template type TYPE. */
7183 field_alignment (struct type *type, int f)
7185 const char *name = type->field (f).name ();
7189 /* The field name should never be null, unless the debugging information
7190 is somehow malformed. In this case, we assume the field does not
7191 require any alignment. */
7195 len = strlen (name);
7197 if (!isdigit (name[len - 1]))
7200 if (isdigit (name[len - 2]))
7201 align_offset = len - 2;
7203 align_offset = len - 1;
7205 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7206 return TARGET_CHAR_BIT;
7208 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7211 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7213 static struct symbol *
7214 ada_find_any_type_symbol (const char *name)
7218 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7219 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7222 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7226 /* Find a type named NAME. Ignores ambiguity. This routine will look
7227 solely for types defined by debug info, it will not search the GDB
7230 static struct type *
7231 ada_find_any_type (const char *name)
7233 struct symbol *sym = ada_find_any_type_symbol (name);
7236 return SYMBOL_TYPE (sym);
7241 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7242 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7243 symbol, in which case it is returned. Otherwise, this looks for
7244 symbols whose name is that of NAME_SYM suffixed with "___XR".
7245 Return symbol if found, and NULL otherwise. */
7248 ada_is_renaming_symbol (struct symbol *name_sym)
7250 const char *name = name_sym->linkage_name ();
7251 return strstr (name, "___XR") != NULL;
7254 /* Because of GNAT encoding conventions, several GDB symbols may match a
7255 given type name. If the type denoted by TYPE0 is to be preferred to
7256 that of TYPE1 for purposes of type printing, return non-zero;
7257 otherwise return 0. */
7260 ada_prefer_type (struct type *type0, struct type *type1)
7264 else if (type0 == NULL)
7266 else if (type1->code () == TYPE_CODE_VOID)
7268 else if (type0->code () == TYPE_CODE_VOID)
7270 else if (type1->name () == NULL && type0->name () != NULL)
7272 else if (ada_is_constrained_packed_array_type (type0))
7274 else if (ada_is_array_descriptor_type (type0)
7275 && !ada_is_array_descriptor_type (type1))
7279 const char *type0_name = type0->name ();
7280 const char *type1_name = type1->name ();
7282 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7283 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7289 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7293 ada_type_name (struct type *type)
7297 return type->name ();
7300 /* Search the list of "descriptive" types associated to TYPE for a type
7301 whose name is NAME. */
7303 static struct type *
7304 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7306 struct type *result, *tmp;
7308 if (ada_ignore_descriptive_types_p)
7311 /* If there no descriptive-type info, then there is no parallel type
7313 if (!HAVE_GNAT_AUX_INFO (type))
7316 result = TYPE_DESCRIPTIVE_TYPE (type);
7317 while (result != NULL)
7319 const char *result_name = ada_type_name (result);
7321 if (result_name == NULL)
7323 warning (_("unexpected null name on descriptive type"));
7327 /* If the names match, stop. */
7328 if (strcmp (result_name, name) == 0)
7331 /* Otherwise, look at the next item on the list, if any. */
7332 if (HAVE_GNAT_AUX_INFO (result))
7333 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7337 /* If not found either, try after having resolved the typedef. */
7342 result = check_typedef (result);
7343 if (HAVE_GNAT_AUX_INFO (result))
7344 result = TYPE_DESCRIPTIVE_TYPE (result);
7350 /* If we didn't find a match, see whether this is a packed array. With
7351 older compilers, the descriptive type information is either absent or
7352 irrelevant when it comes to packed arrays so the above lookup fails.
7353 Fall back to using a parallel lookup by name in this case. */
7354 if (result == NULL && ada_is_constrained_packed_array_type (type))
7355 return ada_find_any_type (name);
7360 /* Find a parallel type to TYPE with the specified NAME, using the
7361 descriptive type taken from the debugging information, if available,
7362 and otherwise using the (slower) name-based method. */
7364 static struct type *
7365 ada_find_parallel_type_with_name (struct type *type, const char *name)
7367 struct type *result = NULL;
7369 if (HAVE_GNAT_AUX_INFO (type))
7370 result = find_parallel_type_by_descriptive_type (type, name);
7372 result = ada_find_any_type (name);
7377 /* Same as above, but specify the name of the parallel type by appending
7378 SUFFIX to the name of TYPE. */
7381 ada_find_parallel_type (struct type *type, const char *suffix)
7384 const char *type_name = ada_type_name (type);
7387 if (type_name == NULL)
7390 len = strlen (type_name);
7392 name = (char *) alloca (len + strlen (suffix) + 1);
7394 strcpy (name, type_name);
7395 strcpy (name + len, suffix);
7397 return ada_find_parallel_type_with_name (type, name);
7400 /* If TYPE is a variable-size record type, return the corresponding template
7401 type describing its fields. Otherwise, return NULL. */
7403 static struct type *
7404 dynamic_template_type (struct type *type)
7406 type = ada_check_typedef (type);
7408 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7409 || ada_type_name (type) == NULL)
7413 int len = strlen (ada_type_name (type));
7415 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7418 return ada_find_parallel_type (type, "___XVE");
7422 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7423 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7426 is_dynamic_field (struct type *templ_type, int field_num)
7428 const char *name = templ_type->field (field_num).name ();
7431 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7432 && strstr (name, "___XVL") != NULL;
7435 /* The index of the variant field of TYPE, or -1 if TYPE does not
7436 represent a variant record type. */
7439 variant_field_index (struct type *type)
7443 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7446 for (f = 0; f < type->num_fields (); f += 1)
7448 if (ada_is_variant_part (type, f))
7454 /* A record type with no fields. */
7456 static struct type *
7457 empty_record (struct type *templ)
7459 struct type *type = alloc_type_copy (templ);
7461 type->set_code (TYPE_CODE_STRUCT);
7462 INIT_NONE_SPECIFIC (type);
7463 type->set_name ("<empty>");
7464 TYPE_LENGTH (type) = 0;
7468 /* An ordinary record type (with fixed-length fields) that describes
7469 the value of type TYPE at VALADDR or ADDRESS (see comments at
7470 the beginning of this section) VAL according to GNAT conventions.
7471 DVAL0 should describe the (portion of a) record that contains any
7472 necessary discriminants. It should be NULL if value_type (VAL) is
7473 an outer-level type (i.e., as opposed to a branch of a variant.) A
7474 variant field (unless unchecked) is replaced by a particular branch
7477 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7478 length are not statically known are discarded. As a consequence,
7479 VALADDR, ADDRESS and DVAL0 are ignored.
7481 NOTE: Limitations: For now, we assume that dynamic fields and
7482 variants occupy whole numbers of bytes. However, they need not be
7486 ada_template_to_fixed_record_type_1 (struct type *type,
7487 const gdb_byte *valaddr,
7488 CORE_ADDR address, struct value *dval0,
7489 int keep_dynamic_fields)
7491 struct value *mark = value_mark ();
7494 int nfields, bit_len;
7500 /* Compute the number of fields in this record type that are going
7501 to be processed: unless keep_dynamic_fields, this includes only
7502 fields whose position and length are static will be processed. */
7503 if (keep_dynamic_fields)
7504 nfields = type->num_fields ();
7508 while (nfields < type->num_fields ()
7509 && !ada_is_variant_part (type, nfields)
7510 && !is_dynamic_field (type, nfields))
7514 rtype = alloc_type_copy (type);
7515 rtype->set_code (TYPE_CODE_STRUCT);
7516 INIT_NONE_SPECIFIC (rtype);
7517 rtype->set_num_fields (nfields);
7519 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7520 rtype->set_name (ada_type_name (type));
7521 rtype->set_is_fixed_instance (true);
7527 for (f = 0; f < nfields; f += 1)
7529 off = align_up (off, field_alignment (type, f))
7530 + TYPE_FIELD_BITPOS (type, f);
7531 SET_FIELD_BITPOS (rtype->field (f), off);
7532 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7534 if (ada_is_variant_part (type, f))
7539 else if (is_dynamic_field (type, f))
7541 const gdb_byte *field_valaddr = valaddr;
7542 CORE_ADDR field_address = address;
7543 struct type *field_type =
7544 TYPE_TARGET_TYPE (type->field (f).type ());
7548 /* rtype's length is computed based on the run-time
7549 value of discriminants. If the discriminants are not
7550 initialized, the type size may be completely bogus and
7551 GDB may fail to allocate a value for it. So check the
7552 size first before creating the value. */
7553 ada_ensure_varsize_limit (rtype);
7554 /* Using plain value_from_contents_and_address here
7555 causes problems because we will end up trying to
7556 resolve a type that is currently being
7558 dval = value_from_contents_and_address_unresolved (rtype,
7561 rtype = value_type (dval);
7566 /* If the type referenced by this field is an aligner type, we need
7567 to unwrap that aligner type, because its size might not be set.
7568 Keeping the aligner type would cause us to compute the wrong
7569 size for this field, impacting the offset of the all the fields
7570 that follow this one. */
7571 if (ada_is_aligner_type (field_type))
7573 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7575 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7576 field_address = cond_offset_target (field_address, field_offset);
7577 field_type = ada_aligned_type (field_type);
7580 field_valaddr = cond_offset_host (field_valaddr,
7581 off / TARGET_CHAR_BIT);
7582 field_address = cond_offset_target (field_address,
7583 off / TARGET_CHAR_BIT);
7585 /* Get the fixed type of the field. Note that, in this case,
7586 we do not want to get the real type out of the tag: if
7587 the current field is the parent part of a tagged record,
7588 we will get the tag of the object. Clearly wrong: the real
7589 type of the parent is not the real type of the child. We
7590 would end up in an infinite loop. */
7591 field_type = ada_get_base_type (field_type);
7592 field_type = ada_to_fixed_type (field_type, field_valaddr,
7593 field_address, dval, 0);
7594 /* If the field size is already larger than the maximum
7595 object size, then the record itself will necessarily
7596 be larger than the maximum object size. We need to make
7597 this check now, because the size might be so ridiculously
7598 large (due to an uninitialized variable in the inferior)
7599 that it would cause an overflow when adding it to the
7601 ada_ensure_varsize_limit (field_type);
7603 rtype->field (f).set_type (field_type);
7604 rtype->field (f).set_name (type->field (f).name ());
7605 /* The multiplication can potentially overflow. But because
7606 the field length has been size-checked just above, and
7607 assuming that the maximum size is a reasonable value,
7608 an overflow should not happen in practice. So rather than
7609 adding overflow recovery code to this already complex code,
7610 we just assume that it's not going to happen. */
7612 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7616 /* Note: If this field's type is a typedef, it is important
7617 to preserve the typedef layer.
7619 Otherwise, we might be transforming a typedef to a fat
7620 pointer (encoding a pointer to an unconstrained array),
7621 into a basic fat pointer (encoding an unconstrained
7622 array). As both types are implemented using the same
7623 structure, the typedef is the only clue which allows us
7624 to distinguish between the two options. Stripping it
7625 would prevent us from printing this field appropriately. */
7626 rtype->field (f).set_type (type->field (f).type ());
7627 rtype->field (f).set_name (type->field (f).name ());
7628 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7630 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7633 struct type *field_type = type->field (f).type ();
7635 /* We need to be careful of typedefs when computing
7636 the length of our field. If this is a typedef,
7637 get the length of the target type, not the length
7639 if (field_type->code () == TYPE_CODE_TYPEDEF)
7640 field_type = ada_typedef_target_type (field_type);
7643 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7646 if (off + fld_bit_len > bit_len)
7647 bit_len = off + fld_bit_len;
7649 TYPE_LENGTH (rtype) =
7650 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7653 /* We handle the variant part, if any, at the end because of certain
7654 odd cases in which it is re-ordered so as NOT to be the last field of
7655 the record. This can happen in the presence of representation
7657 if (variant_field >= 0)
7659 struct type *branch_type;
7661 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7665 /* Using plain value_from_contents_and_address here causes
7666 problems because we will end up trying to resolve a type
7667 that is currently being constructed. */
7668 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7670 rtype = value_type (dval);
7676 to_fixed_variant_branch_type
7677 (type->field (variant_field).type (),
7678 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7679 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7680 if (branch_type == NULL)
7682 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7683 rtype->field (f - 1) = rtype->field (f);
7684 rtype->set_num_fields (rtype->num_fields () - 1);
7688 rtype->field (variant_field).set_type (branch_type);
7689 rtype->field (variant_field).set_name ("S");
7691 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7693 if (off + fld_bit_len > bit_len)
7694 bit_len = off + fld_bit_len;
7695 TYPE_LENGTH (rtype) =
7696 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7700 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7701 should contain the alignment of that record, which should be a strictly
7702 positive value. If null or negative, then something is wrong, most
7703 probably in the debug info. In that case, we don't round up the size
7704 of the resulting type. If this record is not part of another structure,
7705 the current RTYPE length might be good enough for our purposes. */
7706 if (TYPE_LENGTH (type) <= 0)
7709 warning (_("Invalid type size for `%s' detected: %s."),
7710 rtype->name (), pulongest (TYPE_LENGTH (type)));
7712 warning (_("Invalid type size for <unnamed> detected: %s."),
7713 pulongest (TYPE_LENGTH (type)));
7717 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7718 TYPE_LENGTH (type));
7721 value_free_to_mark (mark);
7722 if (TYPE_LENGTH (rtype) > varsize_limit)
7723 error (_("record type with dynamic size is larger than varsize-limit"));
7727 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7730 static struct type *
7731 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7732 CORE_ADDR address, struct value *dval0)
7734 return ada_template_to_fixed_record_type_1 (type, valaddr,
7738 /* An ordinary record type in which ___XVL-convention fields and
7739 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7740 static approximations, containing all possible fields. Uses
7741 no runtime values. Useless for use in values, but that's OK,
7742 since the results are used only for type determinations. Works on both
7743 structs and unions. Representation note: to save space, we memorize
7744 the result of this function in the TYPE_TARGET_TYPE of the
7747 static struct type *
7748 template_to_static_fixed_type (struct type *type0)
7754 /* No need no do anything if the input type is already fixed. */
7755 if (type0->is_fixed_instance ())
7758 /* Likewise if we already have computed the static approximation. */
7759 if (TYPE_TARGET_TYPE (type0) != NULL)
7760 return TYPE_TARGET_TYPE (type0);
7762 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7764 nfields = type0->num_fields ();
7766 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7767 recompute all over next time. */
7768 TYPE_TARGET_TYPE (type0) = type;
7770 for (f = 0; f < nfields; f += 1)
7772 struct type *field_type = type0->field (f).type ();
7773 struct type *new_type;
7775 if (is_dynamic_field (type0, f))
7777 field_type = ada_check_typedef (field_type);
7778 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7781 new_type = static_unwrap_type (field_type);
7783 if (new_type != field_type)
7785 /* Clone TYPE0 only the first time we get a new field type. */
7788 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7789 type->set_code (type0->code ());
7790 INIT_NONE_SPECIFIC (type);
7791 type->set_num_fields (nfields);
7795 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7796 memcpy (fields, type0->fields (),
7797 sizeof (struct field) * nfields);
7798 type->set_fields (fields);
7800 type->set_name (ada_type_name (type0));
7801 type->set_is_fixed_instance (true);
7802 TYPE_LENGTH (type) = 0;
7804 type->field (f).set_type (new_type);
7805 type->field (f).set_name (type0->field (f).name ());
7812 /* Given an object of type TYPE whose contents are at VALADDR and
7813 whose address in memory is ADDRESS, returns a revision of TYPE,
7814 which should be a non-dynamic-sized record, in which the variant
7815 part, if any, is replaced with the appropriate branch. Looks
7816 for discriminant values in DVAL0, which can be NULL if the record
7817 contains the necessary discriminant values. */
7819 static struct type *
7820 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7821 CORE_ADDR address, struct value *dval0)
7823 struct value *mark = value_mark ();
7826 struct type *branch_type;
7827 int nfields = type->num_fields ();
7828 int variant_field = variant_field_index (type);
7830 if (variant_field == -1)
7835 dval = value_from_contents_and_address (type, valaddr, address);
7836 type = value_type (dval);
7841 rtype = alloc_type_copy (type);
7842 rtype->set_code (TYPE_CODE_STRUCT);
7843 INIT_NONE_SPECIFIC (rtype);
7844 rtype->set_num_fields (nfields);
7847 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7848 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7849 rtype->set_fields (fields);
7851 rtype->set_name (ada_type_name (type));
7852 rtype->set_is_fixed_instance (true);
7853 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7855 branch_type = to_fixed_variant_branch_type
7856 (type->field (variant_field).type (),
7857 cond_offset_host (valaddr,
7858 TYPE_FIELD_BITPOS (type, variant_field)
7860 cond_offset_target (address,
7861 TYPE_FIELD_BITPOS (type, variant_field)
7862 / TARGET_CHAR_BIT), dval);
7863 if (branch_type == NULL)
7867 for (f = variant_field + 1; f < nfields; f += 1)
7868 rtype->field (f - 1) = rtype->field (f);
7869 rtype->set_num_fields (rtype->num_fields () - 1);
7873 rtype->field (variant_field).set_type (branch_type);
7874 rtype->field (variant_field).set_name ("S");
7875 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7876 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7878 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7880 value_free_to_mark (mark);
7884 /* An ordinary record type (with fixed-length fields) that describes
7885 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7886 beginning of this section]. Any necessary discriminants' values
7887 should be in DVAL, a record value; it may be NULL if the object
7888 at ADDR itself contains any necessary discriminant values.
7889 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7890 values from the record are needed. Except in the case that DVAL,
7891 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7892 unchecked) is replaced by a particular branch of the variant.
7894 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7895 is questionable and may be removed. It can arise during the
7896 processing of an unconstrained-array-of-record type where all the
7897 variant branches have exactly the same size. This is because in
7898 such cases, the compiler does not bother to use the XVS convention
7899 when encoding the record. I am currently dubious of this
7900 shortcut and suspect the compiler should be altered. FIXME. */
7902 static struct type *
7903 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7904 CORE_ADDR address, struct value *dval)
7906 struct type *templ_type;
7908 if (type0->is_fixed_instance ())
7911 templ_type = dynamic_template_type (type0);
7913 if (templ_type != NULL)
7914 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7915 else if (variant_field_index (type0) >= 0)
7917 if (dval == NULL && valaddr == NULL && address == 0)
7919 return to_record_with_fixed_variant_part (type0, valaddr, address,
7924 type0->set_is_fixed_instance (true);
7930 /* An ordinary record type (with fixed-length fields) that describes
7931 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7932 union type. Any necessary discriminants' values should be in DVAL,
7933 a record value. That is, this routine selects the appropriate
7934 branch of the union at ADDR according to the discriminant value
7935 indicated in the union's type name. Returns VAR_TYPE0 itself if
7936 it represents a variant subject to a pragma Unchecked_Union. */
7938 static struct type *
7939 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7940 CORE_ADDR address, struct value *dval)
7943 struct type *templ_type;
7944 struct type *var_type;
7946 if (var_type0->code () == TYPE_CODE_PTR)
7947 var_type = TYPE_TARGET_TYPE (var_type0);
7949 var_type = var_type0;
7951 templ_type = ada_find_parallel_type (var_type, "___XVU");
7953 if (templ_type != NULL)
7954 var_type = templ_type;
7956 if (is_unchecked_variant (var_type, value_type (dval)))
7958 which = ada_which_variant_applies (var_type, dval);
7961 return empty_record (var_type);
7962 else if (is_dynamic_field (var_type, which))
7963 return to_fixed_record_type
7964 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7965 valaddr, address, dval);
7966 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7968 to_fixed_record_type
7969 (var_type->field (which).type (), valaddr, address, dval);
7971 return var_type->field (which).type ();
7974 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7975 ENCODING_TYPE, a type following the GNAT conventions for discrete
7976 type encodings, only carries redundant information. */
7979 ada_is_redundant_range_encoding (struct type *range_type,
7980 struct type *encoding_type)
7982 const char *bounds_str;
7986 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7988 if (get_base_type (range_type)->code ()
7989 != get_base_type (encoding_type)->code ())
7991 /* The compiler probably used a simple base type to describe
7992 the range type instead of the range's actual base type,
7993 expecting us to get the real base type from the encoding
7994 anyway. In this situation, the encoding cannot be ignored
7999 if (is_dynamic_type (range_type))
8002 if (encoding_type->name () == NULL)
8005 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8006 if (bounds_str == NULL)
8009 n = 8; /* Skip "___XDLU_". */
8010 if (!ada_scan_number (bounds_str, n, &lo, &n))
8012 if (range_type->bounds ()->low.const_val () != lo)
8015 n += 2; /* Skip the "__" separator between the two bounds. */
8016 if (!ada_scan_number (bounds_str, n, &hi, &n))
8018 if (range_type->bounds ()->high.const_val () != hi)
8024 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8025 a type following the GNAT encoding for describing array type
8026 indices, only carries redundant information. */
8029 ada_is_redundant_index_type_desc (struct type *array_type,
8030 struct type *desc_type)
8032 struct type *this_layer = check_typedef (array_type);
8035 for (i = 0; i < desc_type->num_fields (); i++)
8037 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8038 desc_type->field (i).type ()))
8040 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8046 /* Assuming that TYPE0 is an array type describing the type of a value
8047 at ADDR, and that DVAL describes a record containing any
8048 discriminants used in TYPE0, returns a type for the value that
8049 contains no dynamic components (that is, no components whose sizes
8050 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8051 true, gives an error message if the resulting type's size is over
8054 static struct type *
8055 to_fixed_array_type (struct type *type0, struct value *dval,
8058 struct type *index_type_desc;
8059 struct type *result;
8060 int constrained_packed_array_p;
8061 static const char *xa_suffix = "___XA";
8063 type0 = ada_check_typedef (type0);
8064 if (type0->is_fixed_instance ())
8067 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8068 if (constrained_packed_array_p)
8070 type0 = decode_constrained_packed_array_type (type0);
8071 if (type0 == nullptr)
8072 error (_("could not decode constrained packed array type"));
8075 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8077 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8078 encoding suffixed with 'P' may still be generated. If so,
8079 it should be used to find the XA type. */
8081 if (index_type_desc == NULL)
8083 const char *type_name = ada_type_name (type0);
8085 if (type_name != NULL)
8087 const int len = strlen (type_name);
8088 char *name = (char *) alloca (len + strlen (xa_suffix));
8090 if (type_name[len - 1] == 'P')
8092 strcpy (name, type_name);
8093 strcpy (name + len - 1, xa_suffix);
8094 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8099 ada_fixup_array_indexes_type (index_type_desc);
8100 if (index_type_desc != NULL
8101 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8103 /* Ignore this ___XA parallel type, as it does not bring any
8104 useful information. This allows us to avoid creating fixed
8105 versions of the array's index types, which would be identical
8106 to the original ones. This, in turn, can also help avoid
8107 the creation of fixed versions of the array itself. */
8108 index_type_desc = NULL;
8111 if (index_type_desc == NULL)
8113 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8115 /* NOTE: elt_type---the fixed version of elt_type0---should never
8116 depend on the contents of the array in properly constructed
8118 /* Create a fixed version of the array element type.
8119 We're not providing the address of an element here,
8120 and thus the actual object value cannot be inspected to do
8121 the conversion. This should not be a problem, since arrays of
8122 unconstrained objects are not allowed. In particular, all
8123 the elements of an array of a tagged type should all be of
8124 the same type specified in the debugging info. No need to
8125 consult the object tag. */
8126 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8128 /* Make sure we always create a new array type when dealing with
8129 packed array types, since we're going to fix-up the array
8130 type length and element bitsize a little further down. */
8131 if (elt_type0 == elt_type && !constrained_packed_array_p)
8134 result = create_array_type (alloc_type_copy (type0),
8135 elt_type, type0->index_type ());
8140 struct type *elt_type0;
8143 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8144 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8146 /* NOTE: result---the fixed version of elt_type0---should never
8147 depend on the contents of the array in properly constructed
8149 /* Create a fixed version of the array element type.
8150 We're not providing the address of an element here,
8151 and thus the actual object value cannot be inspected to do
8152 the conversion. This should not be a problem, since arrays of
8153 unconstrained objects are not allowed. In particular, all
8154 the elements of an array of a tagged type should all be of
8155 the same type specified in the debugging info. No need to
8156 consult the object tag. */
8158 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8161 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8163 struct type *range_type =
8164 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8166 result = create_array_type (alloc_type_copy (elt_type0),
8167 result, range_type);
8168 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8170 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8171 error (_("array type with dynamic size is larger than varsize-limit"));
8174 /* We want to preserve the type name. This can be useful when
8175 trying to get the type name of a value that has already been
8176 printed (for instance, if the user did "print VAR; whatis $". */
8177 result->set_name (type0->name ());
8179 if (constrained_packed_array_p)
8181 /* So far, the resulting type has been created as if the original
8182 type was a regular (non-packed) array type. As a result, the
8183 bitsize of the array elements needs to be set again, and the array
8184 length needs to be recomputed based on that bitsize. */
8185 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8186 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8188 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8189 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8190 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8191 TYPE_LENGTH (result)++;
8194 result->set_is_fixed_instance (true);
8199 /* A standard type (containing no dynamically sized components)
8200 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8201 DVAL describes a record containing any discriminants used in TYPE0,
8202 and may be NULL if there are none, or if the object of type TYPE at
8203 ADDRESS or in VALADDR contains these discriminants.
8205 If CHECK_TAG is not null, in the case of tagged types, this function
8206 attempts to locate the object's tag and use it to compute the actual
8207 type. However, when ADDRESS is null, we cannot use it to determine the
8208 location of the tag, and therefore compute the tagged type's actual type.
8209 So we return the tagged type without consulting the tag. */
8211 static struct type *
8212 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8213 CORE_ADDR address, struct value *dval, int check_tag)
8215 type = ada_check_typedef (type);
8217 /* Only un-fixed types need to be handled here. */
8218 if (!HAVE_GNAT_AUX_INFO (type))
8221 switch (type->code ())
8225 case TYPE_CODE_STRUCT:
8227 struct type *static_type = to_static_fixed_type (type);
8228 struct type *fixed_record_type =
8229 to_fixed_record_type (type, valaddr, address, NULL);
8231 /* If STATIC_TYPE is a tagged type and we know the object's address,
8232 then we can determine its tag, and compute the object's actual
8233 type from there. Note that we have to use the fixed record
8234 type (the parent part of the record may have dynamic fields
8235 and the way the location of _tag is expressed may depend on
8238 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8241 value_tag_from_contents_and_address
8245 struct type *real_type = type_from_tag (tag);
8247 value_from_contents_and_address (fixed_record_type,
8250 fixed_record_type = value_type (obj);
8251 if (real_type != NULL)
8252 return to_fixed_record_type
8254 value_address (ada_tag_value_at_base_address (obj)), NULL);
8257 /* Check to see if there is a parallel ___XVZ variable.
8258 If there is, then it provides the actual size of our type. */
8259 else if (ada_type_name (fixed_record_type) != NULL)
8261 const char *name = ada_type_name (fixed_record_type);
8263 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8264 bool xvz_found = false;
8267 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8270 xvz_found = get_int_var_value (xvz_name, size);
8272 catch (const gdb_exception_error &except)
8274 /* We found the variable, but somehow failed to read
8275 its value. Rethrow the same error, but with a little
8276 bit more information, to help the user understand
8277 what went wrong (Eg: the variable might have been
8279 throw_error (except.error,
8280 _("unable to read value of %s (%s)"),
8281 xvz_name, except.what ());
8284 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8286 fixed_record_type = copy_type (fixed_record_type);
8287 TYPE_LENGTH (fixed_record_type) = size;
8289 /* The FIXED_RECORD_TYPE may have be a stub. We have
8290 observed this when the debugging info is STABS, and
8291 apparently it is something that is hard to fix.
8293 In practice, we don't need the actual type definition
8294 at all, because the presence of the XVZ variable allows us
8295 to assume that there must be a XVS type as well, which we
8296 should be able to use later, when we need the actual type
8299 In the meantime, pretend that the "fixed" type we are
8300 returning is NOT a stub, because this can cause trouble
8301 when using this type to create new types targeting it.
8302 Indeed, the associated creation routines often check
8303 whether the target type is a stub and will try to replace
8304 it, thus using a type with the wrong size. This, in turn,
8305 might cause the new type to have the wrong size too.
8306 Consider the case of an array, for instance, where the size
8307 of the array is computed from the number of elements in
8308 our array multiplied by the size of its element. */
8309 fixed_record_type->set_is_stub (false);
8312 return fixed_record_type;
8314 case TYPE_CODE_ARRAY:
8315 return to_fixed_array_type (type, dval, 1);
8316 case TYPE_CODE_UNION:
8320 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8324 /* The same as ada_to_fixed_type_1, except that it preserves the type
8325 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8327 The typedef layer needs be preserved in order to differentiate between
8328 arrays and array pointers when both types are implemented using the same
8329 fat pointer. In the array pointer case, the pointer is encoded as
8330 a typedef of the pointer type. For instance, considering:
8332 type String_Access is access String;
8333 S1 : String_Access := null;
8335 To the debugger, S1 is defined as a typedef of type String. But
8336 to the user, it is a pointer. So if the user tries to print S1,
8337 we should not dereference the array, but print the array address
8340 If we didn't preserve the typedef layer, we would lose the fact that
8341 the type is to be presented as a pointer (needs de-reference before
8342 being printed). And we would also use the source-level type name. */
8345 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8346 CORE_ADDR address, struct value *dval, int check_tag)
8349 struct type *fixed_type =
8350 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8352 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8353 then preserve the typedef layer.
8355 Implementation note: We can only check the main-type portion of
8356 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8357 from TYPE now returns a type that has the same instance flags
8358 as TYPE. For instance, if TYPE is a "typedef const", and its
8359 target type is a "struct", then the typedef elimination will return
8360 a "const" version of the target type. See check_typedef for more
8361 details about how the typedef layer elimination is done.
8363 brobecker/2010-11-19: It seems to me that the only case where it is
8364 useful to preserve the typedef layer is when dealing with fat pointers.
8365 Perhaps, we could add a check for that and preserve the typedef layer
8366 only in that situation. But this seems unnecessary so far, probably
8367 because we call check_typedef/ada_check_typedef pretty much everywhere.
8369 if (type->code () == TYPE_CODE_TYPEDEF
8370 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8371 == TYPE_MAIN_TYPE (fixed_type)))
8377 /* A standard (static-sized) type corresponding as well as possible to
8378 TYPE0, but based on no runtime data. */
8380 static struct type *
8381 to_static_fixed_type (struct type *type0)
8388 if (type0->is_fixed_instance ())
8391 type0 = ada_check_typedef (type0);
8393 switch (type0->code ())
8397 case TYPE_CODE_STRUCT:
8398 type = dynamic_template_type (type0);
8400 return template_to_static_fixed_type (type);
8402 return template_to_static_fixed_type (type0);
8403 case TYPE_CODE_UNION:
8404 type = ada_find_parallel_type (type0, "___XVU");
8406 return template_to_static_fixed_type (type);
8408 return template_to_static_fixed_type (type0);
8412 /* A static approximation of TYPE with all type wrappers removed. */
8414 static struct type *
8415 static_unwrap_type (struct type *type)
8417 if (ada_is_aligner_type (type))
8419 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8420 if (ada_type_name (type1) == NULL)
8421 type1->set_name (ada_type_name (type));
8423 return static_unwrap_type (type1);
8427 struct type *raw_real_type = ada_get_base_type (type);
8429 if (raw_real_type == type)
8432 return to_static_fixed_type (raw_real_type);
8436 /* In some cases, incomplete and private types require
8437 cross-references that are not resolved as records (for example,
8439 type FooP is access Foo;
8441 type Foo is array ...;
8442 ). In these cases, since there is no mechanism for producing
8443 cross-references to such types, we instead substitute for FooP a
8444 stub enumeration type that is nowhere resolved, and whose tag is
8445 the name of the actual type. Call these types "non-record stubs". */
8447 /* A type equivalent to TYPE that is not a non-record stub, if one
8448 exists, otherwise TYPE. */
8451 ada_check_typedef (struct type *type)
8456 /* If our type is an access to an unconstrained array, which is encoded
8457 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8458 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8459 what allows us to distinguish between fat pointers that represent
8460 array types, and fat pointers that represent array access types
8461 (in both cases, the compiler implements them as fat pointers). */
8462 if (ada_is_access_to_unconstrained_array (type))
8465 type = check_typedef (type);
8466 if (type == NULL || type->code () != TYPE_CODE_ENUM
8467 || !type->is_stub ()
8468 || type->name () == NULL)
8472 const char *name = type->name ();
8473 struct type *type1 = ada_find_any_type (name);
8478 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8479 stubs pointing to arrays, as we don't create symbols for array
8480 types, only for the typedef-to-array types). If that's the case,
8481 strip the typedef layer. */
8482 if (type1->code () == TYPE_CODE_TYPEDEF)
8483 type1 = ada_check_typedef (type1);
8489 /* A value representing the data at VALADDR/ADDRESS as described by
8490 type TYPE0, but with a standard (static-sized) type that correctly
8491 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8492 type, then return VAL0 [this feature is simply to avoid redundant
8493 creation of struct values]. */
8495 static struct value *
8496 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8499 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8501 if (type == type0 && val0 != NULL)
8504 if (VALUE_LVAL (val0) != lval_memory)
8506 /* Our value does not live in memory; it could be a convenience
8507 variable, for instance. Create a not_lval value using val0's
8509 return value_from_contents (type, value_contents (val0));
8512 return value_from_contents_and_address (type, 0, address);
8515 /* A value representing VAL, but with a standard (static-sized) type
8516 that correctly describes it. Does not necessarily create a new
8520 ada_to_fixed_value (struct value *val)
8522 val = unwrap_value (val);
8523 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8530 /* Table mapping attribute numbers to names.
8531 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8533 static const char * const attribute_names[] = {
8551 ada_attribute_name (enum exp_opcode n)
8553 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8554 return attribute_names[n - OP_ATR_FIRST + 1];
8556 return attribute_names[0];
8559 /* Evaluate the 'POS attribute applied to ARG. */
8562 pos_atr (struct value *arg)
8564 struct value *val = coerce_ref (arg);
8565 struct type *type = value_type (val);
8567 if (!discrete_type_p (type))
8568 error (_("'POS only defined on discrete types"));
8570 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8571 if (!result.has_value ())
8572 error (_("enumeration value is invalid: can't find 'POS"));
8578 ada_pos_atr (struct type *expect_type,
8579 struct expression *exp,
8580 enum noside noside, enum exp_opcode op,
8583 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8584 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8585 return value_zero (type, not_lval);
8586 return value_from_longest (type, pos_atr (arg));
8589 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8591 static struct value *
8592 val_atr (struct type *type, LONGEST val)
8594 gdb_assert (discrete_type_p (type));
8595 if (type->code () == TYPE_CODE_RANGE)
8596 type = TYPE_TARGET_TYPE (type);
8597 if (type->code () == TYPE_CODE_ENUM)
8599 if (val < 0 || val >= type->num_fields ())
8600 error (_("argument to 'VAL out of range"));
8601 val = TYPE_FIELD_ENUMVAL (type, val);
8603 return value_from_longest (type, val);
8607 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8609 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8610 return value_zero (type, not_lval);
8612 if (!discrete_type_p (type))
8613 error (_("'VAL only defined on discrete types"));
8614 if (!integer_type_p (value_type (arg)))
8615 error (_("'VAL requires integral argument"));
8617 return val_atr (type, value_as_long (arg));
8623 /* True if TYPE appears to be an Ada character type.
8624 [At the moment, this is true only for Character and Wide_Character;
8625 It is a heuristic test that could stand improvement]. */
8628 ada_is_character_type (struct type *type)
8632 /* If the type code says it's a character, then assume it really is,
8633 and don't check any further. */
8634 if (type->code () == TYPE_CODE_CHAR)
8637 /* Otherwise, assume it's a character type iff it is a discrete type
8638 with a known character type name. */
8639 name = ada_type_name (type);
8640 return (name != NULL
8641 && (type->code () == TYPE_CODE_INT
8642 || type->code () == TYPE_CODE_RANGE)
8643 && (strcmp (name, "character") == 0
8644 || strcmp (name, "wide_character") == 0
8645 || strcmp (name, "wide_wide_character") == 0
8646 || strcmp (name, "unsigned char") == 0));
8649 /* True if TYPE appears to be an Ada string type. */
8652 ada_is_string_type (struct type *type)
8654 type = ada_check_typedef (type);
8656 && type->code () != TYPE_CODE_PTR
8657 && (ada_is_simple_array_type (type)
8658 || ada_is_array_descriptor_type (type))
8659 && ada_array_arity (type) == 1)
8661 struct type *elttype = ada_array_element_type (type, 1);
8663 return ada_is_character_type (elttype);
8669 /* The compiler sometimes provides a parallel XVS type for a given
8670 PAD type. Normally, it is safe to follow the PAD type directly,
8671 but older versions of the compiler have a bug that causes the offset
8672 of its "F" field to be wrong. Following that field in that case
8673 would lead to incorrect results, but this can be worked around
8674 by ignoring the PAD type and using the associated XVS type instead.
8676 Set to True if the debugger should trust the contents of PAD types.
8677 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8678 static bool trust_pad_over_xvs = true;
8680 /* True if TYPE is a struct type introduced by the compiler to force the
8681 alignment of a value. Such types have a single field with a
8682 distinctive name. */
8685 ada_is_aligner_type (struct type *type)
8687 type = ada_check_typedef (type);
8689 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8692 return (type->code () == TYPE_CODE_STRUCT
8693 && type->num_fields () == 1
8694 && strcmp (type->field (0).name (), "F") == 0);
8697 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8698 the parallel type. */
8701 ada_get_base_type (struct type *raw_type)
8703 struct type *real_type_namer;
8704 struct type *raw_real_type;
8706 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8709 if (ada_is_aligner_type (raw_type))
8710 /* The encoding specifies that we should always use the aligner type.
8711 So, even if this aligner type has an associated XVS type, we should
8714 According to the compiler gurus, an XVS type parallel to an aligner
8715 type may exist because of a stabs limitation. In stabs, aligner
8716 types are empty because the field has a variable-sized type, and
8717 thus cannot actually be used as an aligner type. As a result,
8718 we need the associated parallel XVS type to decode the type.
8719 Since the policy in the compiler is to not change the internal
8720 representation based on the debugging info format, we sometimes
8721 end up having a redundant XVS type parallel to the aligner type. */
8724 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8725 if (real_type_namer == NULL
8726 || real_type_namer->code () != TYPE_CODE_STRUCT
8727 || real_type_namer->num_fields () != 1)
8730 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8732 /* This is an older encoding form where the base type needs to be
8733 looked up by name. We prefer the newer encoding because it is
8735 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
8736 if (raw_real_type == NULL)
8739 return raw_real_type;
8742 /* The field in our XVS type is a reference to the base type. */
8743 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8746 /* The type of value designated by TYPE, with all aligners removed. */
8749 ada_aligned_type (struct type *type)
8751 if (ada_is_aligner_type (type))
8752 return ada_aligned_type (type->field (0).type ());
8754 return ada_get_base_type (type);
8758 /* The address of the aligned value in an object at address VALADDR
8759 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8762 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8764 if (ada_is_aligner_type (type))
8765 return ada_aligned_value_addr (type->field (0).type (),
8767 TYPE_FIELD_BITPOS (type,
8768 0) / TARGET_CHAR_BIT);
8775 /* The printed representation of an enumeration literal with encoded
8776 name NAME. The value is good to the next call of ada_enum_name. */
8778 ada_enum_name (const char *name)
8780 static std::string storage;
8783 /* First, unqualify the enumeration name:
8784 1. Search for the last '.' character. If we find one, then skip
8785 all the preceding characters, the unqualified name starts
8786 right after that dot.
8787 2. Otherwise, we may be debugging on a target where the compiler
8788 translates dots into "__". Search forward for double underscores,
8789 but stop searching when we hit an overloading suffix, which is
8790 of the form "__" followed by digits. */
8792 tmp = strrchr (name, '.');
8797 while ((tmp = strstr (name, "__")) != NULL)
8799 if (isdigit (tmp[2]))
8810 if (name[1] == 'U' || name[1] == 'W')
8812 if (sscanf (name + 2, "%x", &v) != 1)
8815 else if (((name[1] >= '0' && name[1] <= '9')
8816 || (name[1] >= 'a' && name[1] <= 'z'))
8819 storage = string_printf ("'%c'", name[1]);
8820 return storage.c_str ();
8825 if (isascii (v) && isprint (v))
8826 storage = string_printf ("'%c'", v);
8827 else if (name[1] == 'U')
8828 storage = string_printf ("[\"%02x\"]", v);
8830 storage = string_printf ("[\"%04x\"]", v);
8832 return storage.c_str ();
8836 tmp = strstr (name, "__");
8838 tmp = strstr (name, "$");
8841 storage = std::string (name, tmp - name);
8842 return storage.c_str ();
8849 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8852 static struct value *
8853 unwrap_value (struct value *val)
8855 struct type *type = ada_check_typedef (value_type (val));
8857 if (ada_is_aligner_type (type))
8859 struct value *v = ada_value_struct_elt (val, "F", 0);
8860 struct type *val_type = ada_check_typedef (value_type (v));
8862 if (ada_type_name (val_type) == NULL)
8863 val_type->set_name (ada_type_name (type));
8865 return unwrap_value (v);
8869 struct type *raw_real_type =
8870 ada_check_typedef (ada_get_base_type (type));
8872 /* If there is no parallel XVS or XVE type, then the value is
8873 already unwrapped. Return it without further modification. */
8874 if ((type == raw_real_type)
8875 && ada_find_parallel_type (type, "___XVE") == NULL)
8879 coerce_unspec_val_to_type
8880 (val, ada_to_fixed_type (raw_real_type, 0,
8881 value_address (val),
8886 /* Given two array types T1 and T2, return nonzero iff both arrays
8887 contain the same number of elements. */
8890 ada_same_array_size_p (struct type *t1, struct type *t2)
8892 LONGEST lo1, hi1, lo2, hi2;
8894 /* Get the array bounds in order to verify that the size of
8895 the two arrays match. */
8896 if (!get_array_bounds (t1, &lo1, &hi1)
8897 || !get_array_bounds (t2, &lo2, &hi2))
8898 error (_("unable to determine array bounds"));
8900 /* To make things easier for size comparison, normalize a bit
8901 the case of empty arrays by making sure that the difference
8902 between upper bound and lower bound is always -1. */
8908 return (hi1 - lo1 == hi2 - lo2);
8911 /* Assuming that VAL is an array of integrals, and TYPE represents
8912 an array with the same number of elements, but with wider integral
8913 elements, return an array "casted" to TYPE. In practice, this
8914 means that the returned array is built by casting each element
8915 of the original array into TYPE's (wider) element type. */
8917 static struct value *
8918 ada_promote_array_of_integrals (struct type *type, struct value *val)
8920 struct type *elt_type = TYPE_TARGET_TYPE (type);
8925 /* Verify that both val and type are arrays of scalars, and
8926 that the size of val's elements is smaller than the size
8927 of type's element. */
8928 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8929 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8930 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8931 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8932 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8933 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8935 if (!get_array_bounds (type, &lo, &hi))
8936 error (_("unable to determine array bounds"));
8938 res = allocate_value (type);
8940 /* Promote each array element. */
8941 for (i = 0; i < hi - lo + 1; i++)
8943 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8945 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8946 value_contents_all (elt), TYPE_LENGTH (elt_type));
8952 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8953 return the converted value. */
8955 static struct value *
8956 coerce_for_assign (struct type *type, struct value *val)
8958 struct type *type2 = value_type (val);
8963 type2 = ada_check_typedef (type2);
8964 type = ada_check_typedef (type);
8966 if (type2->code () == TYPE_CODE_PTR
8967 && type->code () == TYPE_CODE_ARRAY)
8969 val = ada_value_ind (val);
8970 type2 = value_type (val);
8973 if (type2->code () == TYPE_CODE_ARRAY
8974 && type->code () == TYPE_CODE_ARRAY)
8976 if (!ada_same_array_size_p (type, type2))
8977 error (_("cannot assign arrays of different length"));
8979 if (is_integral_type (TYPE_TARGET_TYPE (type))
8980 && is_integral_type (TYPE_TARGET_TYPE (type2))
8981 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8982 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8984 /* Allow implicit promotion of the array elements to
8986 return ada_promote_array_of_integrals (type, val);
8989 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8990 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8991 error (_("Incompatible types in assignment"));
8992 deprecated_set_value_type (val, type);
8997 static struct value *
8998 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9001 struct type *type1, *type2;
9004 arg1 = coerce_ref (arg1);
9005 arg2 = coerce_ref (arg2);
9006 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9007 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9009 if (type1->code () != TYPE_CODE_INT
9010 || type2->code () != TYPE_CODE_INT)
9011 return value_binop (arg1, arg2, op);
9020 return value_binop (arg1, arg2, op);
9023 v2 = value_as_long (arg2);
9027 if (op == BINOP_MOD)
9029 else if (op == BINOP_DIV)
9033 gdb_assert (op == BINOP_REM);
9037 error (_("second operand of %s must not be zero."), name);
9040 if (type1->is_unsigned () || op == BINOP_MOD)
9041 return value_binop (arg1, arg2, op);
9043 v1 = value_as_long (arg1);
9048 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9049 v += v > 0 ? -1 : 1;
9057 /* Should not reach this point. */
9061 val = allocate_value (type1);
9062 store_unsigned_integer (value_contents_raw (val),
9063 TYPE_LENGTH (value_type (val)),
9064 type_byte_order (type1), v);
9069 ada_value_equal (struct value *arg1, struct value *arg2)
9071 if (ada_is_direct_array_type (value_type (arg1))
9072 || ada_is_direct_array_type (value_type (arg2)))
9074 struct type *arg1_type, *arg2_type;
9076 /* Automatically dereference any array reference before
9077 we attempt to perform the comparison. */
9078 arg1 = ada_coerce_ref (arg1);
9079 arg2 = ada_coerce_ref (arg2);
9081 arg1 = ada_coerce_to_simple_array (arg1);
9082 arg2 = ada_coerce_to_simple_array (arg2);
9084 arg1_type = ada_check_typedef (value_type (arg1));
9085 arg2_type = ada_check_typedef (value_type (arg2));
9087 if (arg1_type->code () != TYPE_CODE_ARRAY
9088 || arg2_type->code () != TYPE_CODE_ARRAY)
9089 error (_("Attempt to compare array with non-array"));
9090 /* FIXME: The following works only for types whose
9091 representations use all bits (no padding or undefined bits)
9092 and do not have user-defined equality. */
9093 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9094 && memcmp (value_contents (arg1), value_contents (arg2),
9095 TYPE_LENGTH (arg1_type)) == 0);
9097 return value_equal (arg1, arg2);
9104 check_objfile (const std::unique_ptr<ada_component> &comp,
9105 struct objfile *objfile)
9107 return comp->uses_objfile (objfile);
9110 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9111 component of LHS (a simple array or a record). Does not modify the
9112 inferior's memory, nor does it modify LHS (unless LHS ==
9116 assign_component (struct value *container, struct value *lhs, LONGEST index,
9117 struct expression *exp, operation_up &arg)
9119 scoped_value_mark mark;
9122 struct type *lhs_type = check_typedef (value_type (lhs));
9124 if (lhs_type->code () == TYPE_CODE_ARRAY)
9126 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9127 struct value *index_val = value_from_longest (index_type, index);
9129 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9133 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9134 elt = ada_to_fixed_value (elt);
9137 ada_aggregate_operation *ag_op
9138 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9139 if (ag_op != nullptr)
9140 ag_op->assign_aggregate (container, elt, exp);
9142 value_assign_to_component (container, elt,
9143 arg->evaluate (nullptr, exp,
9148 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9150 for (const auto &item : m_components)
9151 if (item->uses_objfile (objfile))
9157 ada_aggregate_component::dump (ui_file *stream, int depth)
9159 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9160 for (const auto &item : m_components)
9161 item->dump (stream, depth + 1);
9165 ada_aggregate_component::assign (struct value *container,
9166 struct value *lhs, struct expression *exp,
9167 std::vector<LONGEST> &indices,
9168 LONGEST low, LONGEST high)
9170 for (auto &item : m_components)
9171 item->assign (container, lhs, exp, indices, low, high);
9174 /* See ada-exp.h. */
9177 ada_aggregate_operation::assign_aggregate (struct value *container,
9179 struct expression *exp)
9181 struct type *lhs_type;
9182 LONGEST low_index, high_index;
9184 container = ada_coerce_ref (container);
9185 if (ada_is_direct_array_type (value_type (container)))
9186 container = ada_coerce_to_simple_array (container);
9187 lhs = ada_coerce_ref (lhs);
9188 if (!deprecated_value_modifiable (lhs))
9189 error (_("Left operand of assignment is not a modifiable lvalue."));
9191 lhs_type = check_typedef (value_type (lhs));
9192 if (ada_is_direct_array_type (lhs_type))
9194 lhs = ada_coerce_to_simple_array (lhs);
9195 lhs_type = check_typedef (value_type (lhs));
9196 low_index = lhs_type->bounds ()->low.const_val ();
9197 high_index = lhs_type->bounds ()->high.const_val ();
9199 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9202 high_index = num_visible_fields (lhs_type) - 1;
9205 error (_("Left-hand side must be array or record."));
9207 std::vector<LONGEST> indices (4);
9208 indices[0] = indices[1] = low_index - 1;
9209 indices[2] = indices[3] = high_index + 1;
9211 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9212 low_index, high_index);
9218 ada_positional_component::uses_objfile (struct objfile *objfile)
9220 return m_op->uses_objfile (objfile);
9224 ada_positional_component::dump (ui_file *stream, int depth)
9226 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9227 depth, "", m_index);
9228 m_op->dump (stream, depth + 1);
9231 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9232 construct, given that the positions are relative to lower bound
9233 LOW, where HIGH is the upper bound. Record the position in
9234 INDICES. CONTAINER is as for assign_aggregate. */
9236 ada_positional_component::assign (struct value *container,
9237 struct value *lhs, struct expression *exp,
9238 std::vector<LONGEST> &indices,
9239 LONGEST low, LONGEST high)
9241 LONGEST ind = m_index + low;
9243 if (ind - 1 == high)
9244 warning (_("Extra components in aggregate ignored."));
9247 add_component_interval (ind, ind, indices);
9248 assign_component (container, lhs, ind, exp, m_op);
9253 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9255 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9259 ada_discrete_range_association::dump (ui_file *stream, int depth)
9261 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9262 m_low->dump (stream, depth + 1);
9263 m_high->dump (stream, depth + 1);
9267 ada_discrete_range_association::assign (struct value *container,
9269 struct expression *exp,
9270 std::vector<LONGEST> &indices,
9271 LONGEST low, LONGEST high,
9274 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9275 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9277 if (lower <= upper && (lower < low || upper > high))
9278 error (_("Index in component association out of bounds."));
9280 add_component_interval (lower, upper, indices);
9281 while (lower <= upper)
9283 assign_component (container, lhs, lower, exp, op);
9289 ada_name_association::uses_objfile (struct objfile *objfile)
9291 return m_val->uses_objfile (objfile);
9295 ada_name_association::dump (ui_file *stream, int depth)
9297 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9298 m_val->dump (stream, depth + 1);
9302 ada_name_association::assign (struct value *container,
9304 struct expression *exp,
9305 std::vector<LONGEST> &indices,
9306 LONGEST low, LONGEST high,
9311 if (ada_is_direct_array_type (value_type (lhs)))
9312 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9316 ada_string_operation *strop
9317 = dynamic_cast<ada_string_operation *> (m_val.get ());
9320 if (strop != nullptr)
9321 name = strop->get_name ();
9324 ada_var_value_operation *vvo
9325 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9327 error (_("Invalid record component association."));
9328 name = vvo->get_symbol ()->natural_name ();
9332 if (! find_struct_field (name, value_type (lhs), 0,
9333 NULL, NULL, NULL, NULL, &index))
9334 error (_("Unknown component name: %s."), name);
9337 add_component_interval (index, index, indices);
9338 assign_component (container, lhs, index, exp, op);
9342 ada_choices_component::uses_objfile (struct objfile *objfile)
9344 if (m_op->uses_objfile (objfile))
9346 for (const auto &item : m_assocs)
9347 if (item->uses_objfile (objfile))
9353 ada_choices_component::dump (ui_file *stream, int depth)
9355 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9356 m_op->dump (stream, depth + 1);
9357 for (const auto &item : m_assocs)
9358 item->dump (stream, depth + 1);
9361 /* Assign into the components of LHS indexed by the OP_CHOICES
9362 construct at *POS, updating *POS past the construct, given that
9363 the allowable indices are LOW..HIGH. Record the indices assigned
9364 to in INDICES. CONTAINER is as for assign_aggregate. */
9366 ada_choices_component::assign (struct value *container,
9367 struct value *lhs, struct expression *exp,
9368 std::vector<LONGEST> &indices,
9369 LONGEST low, LONGEST high)
9371 for (auto &item : m_assocs)
9372 item->assign (container, lhs, exp, indices, low, high, m_op);
9376 ada_others_component::uses_objfile (struct objfile *objfile)
9378 return m_op->uses_objfile (objfile);
9382 ada_others_component::dump (ui_file *stream, int depth)
9384 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9385 m_op->dump (stream, depth + 1);
9388 /* Assign the value of the expression in the OP_OTHERS construct in
9389 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9390 have not been previously assigned. The index intervals already assigned
9391 are in INDICES. CONTAINER is as for assign_aggregate. */
9393 ada_others_component::assign (struct value *container,
9394 struct value *lhs, struct expression *exp,
9395 std::vector<LONGEST> &indices,
9396 LONGEST low, LONGEST high)
9398 int num_indices = indices.size ();
9399 for (int i = 0; i < num_indices - 2; i += 2)
9401 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9402 assign_component (container, lhs, ind, exp, m_op);
9407 ada_assign_operation::evaluate (struct type *expect_type,
9408 struct expression *exp,
9411 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9413 ada_aggregate_operation *ag_op
9414 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9415 if (ag_op != nullptr)
9417 if (noside != EVAL_NORMAL)
9420 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9421 return ada_value_assign (arg1, arg1);
9423 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9424 except if the lhs of our assignment is a convenience variable.
9425 In the case of assigning to a convenience variable, the lhs
9426 should be exactly the result of the evaluation of the rhs. */
9427 struct type *type = value_type (arg1);
9428 if (VALUE_LVAL (arg1) == lval_internalvar)
9430 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9431 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9433 if (VALUE_LVAL (arg1) == lval_internalvar)
9438 arg2 = coerce_for_assign (value_type (arg1), arg2);
9439 return ada_value_assign (arg1, arg2);
9442 } /* namespace expr */
9444 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9445 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9448 add_component_interval (LONGEST low, LONGEST high,
9449 std::vector<LONGEST> &indices)
9453 int size = indices.size ();
9454 for (i = 0; i < size; i += 2) {
9455 if (high >= indices[i] && low <= indices[i + 1])
9459 for (kh = i + 2; kh < size; kh += 2)
9460 if (high < indices[kh])
9462 if (low < indices[i])
9464 indices[i + 1] = indices[kh - 1];
9465 if (high > indices[i + 1])
9466 indices[i + 1] = high;
9467 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9468 indices.resize (kh - i - 2);
9471 else if (high < indices[i])
9475 indices.resize (indices.size () + 2);
9476 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9477 indices[j] = indices[j - 2];
9479 indices[i + 1] = high;
9482 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9485 static struct value *
9486 ada_value_cast (struct type *type, struct value *arg2)
9488 if (type == ada_check_typedef (value_type (arg2)))
9491 return value_cast (type, arg2);
9494 /* Evaluating Ada expressions, and printing their result.
9495 ------------------------------------------------------
9500 We usually evaluate an Ada expression in order to print its value.
9501 We also evaluate an expression in order to print its type, which
9502 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9503 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9504 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9505 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9508 Evaluating expressions is a little more complicated for Ada entities
9509 than it is for entities in languages such as C. The main reason for
9510 this is that Ada provides types whose definition might be dynamic.
9511 One example of such types is variant records. Or another example
9512 would be an array whose bounds can only be known at run time.
9514 The following description is a general guide as to what should be
9515 done (and what should NOT be done) in order to evaluate an expression
9516 involving such types, and when. This does not cover how the semantic
9517 information is encoded by GNAT as this is covered separatly. For the
9518 document used as the reference for the GNAT encoding, see exp_dbug.ads
9519 in the GNAT sources.
9521 Ideally, we should embed each part of this description next to its
9522 associated code. Unfortunately, the amount of code is so vast right
9523 now that it's hard to see whether the code handling a particular
9524 situation might be duplicated or not. One day, when the code is
9525 cleaned up, this guide might become redundant with the comments
9526 inserted in the code, and we might want to remove it.
9528 2. ``Fixing'' an Entity, the Simple Case:
9529 -----------------------------------------
9531 When evaluating Ada expressions, the tricky issue is that they may
9532 reference entities whose type contents and size are not statically
9533 known. Consider for instance a variant record:
9535 type Rec (Empty : Boolean := True) is record
9538 when False => Value : Integer;
9541 Yes : Rec := (Empty => False, Value => 1);
9542 No : Rec := (empty => True);
9544 The size and contents of that record depends on the value of the
9545 descriminant (Rec.Empty). At this point, neither the debugging
9546 information nor the associated type structure in GDB are able to
9547 express such dynamic types. So what the debugger does is to create
9548 "fixed" versions of the type that applies to the specific object.
9549 We also informally refer to this operation as "fixing" an object,
9550 which means creating its associated fixed type.
9552 Example: when printing the value of variable "Yes" above, its fixed
9553 type would look like this:
9560 On the other hand, if we printed the value of "No", its fixed type
9567 Things become a little more complicated when trying to fix an entity
9568 with a dynamic type that directly contains another dynamic type,
9569 such as an array of variant records, for instance. There are
9570 two possible cases: Arrays, and records.
9572 3. ``Fixing'' Arrays:
9573 ---------------------
9575 The type structure in GDB describes an array in terms of its bounds,
9576 and the type of its elements. By design, all elements in the array
9577 have the same type and we cannot represent an array of variant elements
9578 using the current type structure in GDB. When fixing an array,
9579 we cannot fix the array element, as we would potentially need one
9580 fixed type per element of the array. As a result, the best we can do
9581 when fixing an array is to produce an array whose bounds and size
9582 are correct (allowing us to read it from memory), but without having
9583 touched its element type. Fixing each element will be done later,
9584 when (if) necessary.
9586 Arrays are a little simpler to handle than records, because the same
9587 amount of memory is allocated for each element of the array, even if
9588 the amount of space actually used by each element differs from element
9589 to element. Consider for instance the following array of type Rec:
9591 type Rec_Array is array (1 .. 2) of Rec;
9593 The actual amount of memory occupied by each element might be different
9594 from element to element, depending on the value of their discriminant.
9595 But the amount of space reserved for each element in the array remains
9596 fixed regardless. So we simply need to compute that size using
9597 the debugging information available, from which we can then determine
9598 the array size (we multiply the number of elements of the array by
9599 the size of each element).
9601 The simplest case is when we have an array of a constrained element
9602 type. For instance, consider the following type declarations:
9604 type Bounded_String (Max_Size : Integer) is
9606 Buffer : String (1 .. Max_Size);
9608 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9610 In this case, the compiler describes the array as an array of
9611 variable-size elements (identified by its XVS suffix) for which
9612 the size can be read in the parallel XVZ variable.
9614 In the case of an array of an unconstrained element type, the compiler
9615 wraps the array element inside a private PAD type. This type should not
9616 be shown to the user, and must be "unwrap"'ed before printing. Note
9617 that we also use the adjective "aligner" in our code to designate
9618 these wrapper types.
9620 In some cases, the size allocated for each element is statically
9621 known. In that case, the PAD type already has the correct size,
9622 and the array element should remain unfixed.
9624 But there are cases when this size is not statically known.
9625 For instance, assuming that "Five" is an integer variable:
9627 type Dynamic is array (1 .. Five) of Integer;
9628 type Wrapper (Has_Length : Boolean := False) is record
9631 when True => Length : Integer;
9635 type Wrapper_Array is array (1 .. 2) of Wrapper;
9637 Hello : Wrapper_Array := (others => (Has_Length => True,
9638 Data => (others => 17),
9642 The debugging info would describe variable Hello as being an
9643 array of a PAD type. The size of that PAD type is not statically
9644 known, but can be determined using a parallel XVZ variable.
9645 In that case, a copy of the PAD type with the correct size should
9646 be used for the fixed array.
9648 3. ``Fixing'' record type objects:
9649 ----------------------------------
9651 Things are slightly different from arrays in the case of dynamic
9652 record types. In this case, in order to compute the associated
9653 fixed type, we need to determine the size and offset of each of
9654 its components. This, in turn, requires us to compute the fixed
9655 type of each of these components.
9657 Consider for instance the example:
9659 type Bounded_String (Max_Size : Natural) is record
9660 Str : String (1 .. Max_Size);
9663 My_String : Bounded_String (Max_Size => 10);
9665 In that case, the position of field "Length" depends on the size
9666 of field Str, which itself depends on the value of the Max_Size
9667 discriminant. In order to fix the type of variable My_String,
9668 we need to fix the type of field Str. Therefore, fixing a variant
9669 record requires us to fix each of its components.
9671 However, if a component does not have a dynamic size, the component
9672 should not be fixed. In particular, fields that use a PAD type
9673 should not fixed. Here is an example where this might happen
9674 (assuming type Rec above):
9676 type Container (Big : Boolean) is record
9680 when True => Another : Integer;
9684 My_Container : Container := (Big => False,
9685 First => (Empty => True),
9688 In that example, the compiler creates a PAD type for component First,
9689 whose size is constant, and then positions the component After just
9690 right after it. The offset of component After is therefore constant
9693 The debugger computes the position of each field based on an algorithm
9694 that uses, among other things, the actual position and size of the field
9695 preceding it. Let's now imagine that the user is trying to print
9696 the value of My_Container. If the type fixing was recursive, we would
9697 end up computing the offset of field After based on the size of the
9698 fixed version of field First. And since in our example First has
9699 only one actual field, the size of the fixed type is actually smaller
9700 than the amount of space allocated to that field, and thus we would
9701 compute the wrong offset of field After.
9703 To make things more complicated, we need to watch out for dynamic
9704 components of variant records (identified by the ___XVL suffix in
9705 the component name). Even if the target type is a PAD type, the size
9706 of that type might not be statically known. So the PAD type needs
9707 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9708 we might end up with the wrong size for our component. This can be
9709 observed with the following type declarations:
9711 type Octal is new Integer range 0 .. 7;
9712 type Octal_Array is array (Positive range <>) of Octal;
9713 pragma Pack (Octal_Array);
9715 type Octal_Buffer (Size : Positive) is record
9716 Buffer : Octal_Array (1 .. Size);
9720 In that case, Buffer is a PAD type whose size is unset and needs
9721 to be computed by fixing the unwrapped type.
9723 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9724 ----------------------------------------------------------
9726 Lastly, when should the sub-elements of an entity that remained unfixed
9727 thus far, be actually fixed?
9729 The answer is: Only when referencing that element. For instance
9730 when selecting one component of a record, this specific component
9731 should be fixed at that point in time. Or when printing the value
9732 of a record, each component should be fixed before its value gets
9733 printed. Similarly for arrays, the element of the array should be
9734 fixed when printing each element of the array, or when extracting
9735 one element out of that array. On the other hand, fixing should
9736 not be performed on the elements when taking a slice of an array!
9738 Note that one of the side effects of miscomputing the offset and
9739 size of each field is that we end up also miscomputing the size
9740 of the containing type. This can have adverse results when computing
9741 the value of an entity. GDB fetches the value of an entity based
9742 on the size of its type, and thus a wrong size causes GDB to fetch
9743 the wrong amount of memory. In the case where the computed size is
9744 too small, GDB fetches too little data to print the value of our
9745 entity. Results in this case are unpredictable, as we usually read
9746 past the buffer containing the data =:-o. */
9748 /* A helper function for TERNOP_IN_RANGE. */
9751 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9753 value *arg1, value *arg2, value *arg3)
9755 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9756 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9757 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9759 value_from_longest (type,
9760 (value_less (arg1, arg3)
9761 || value_equal (arg1, arg3))
9762 && (value_less (arg2, arg1)
9763 || value_equal (arg2, arg1)));
9766 /* A helper function for UNOP_NEG. */
9769 ada_unop_neg (struct type *expect_type,
9770 struct expression *exp,
9771 enum noside noside, enum exp_opcode op,
9774 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9775 return value_neg (arg1);
9778 /* A helper function for UNOP_IN_RANGE. */
9781 ada_unop_in_range (struct type *expect_type,
9782 struct expression *exp,
9783 enum noside noside, enum exp_opcode op,
9784 struct value *arg1, struct type *type)
9786 struct value *arg2, *arg3;
9787 switch (type->code ())
9790 lim_warning (_("Membership test incompletely implemented; "
9791 "always returns true"));
9792 type = language_bool_type (exp->language_defn, exp->gdbarch);
9793 return value_from_longest (type, (LONGEST) 1);
9795 case TYPE_CODE_RANGE:
9796 arg2 = value_from_longest (type,
9797 type->bounds ()->low.const_val ());
9798 arg3 = value_from_longest (type,
9799 type->bounds ()->high.const_val ());
9800 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9801 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9802 type = language_bool_type (exp->language_defn, exp->gdbarch);
9804 value_from_longest (type,
9805 (value_less (arg1, arg3)
9806 || value_equal (arg1, arg3))
9807 && (value_less (arg2, arg1)
9808 || value_equal (arg2, arg1)));
9812 /* A helper function for OP_ATR_TAG. */
9815 ada_atr_tag (struct type *expect_type,
9816 struct expression *exp,
9817 enum noside noside, enum exp_opcode op,
9820 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9821 return value_zero (ada_tag_type (arg1), not_lval);
9823 return ada_value_tag (arg1);
9826 /* A helper function for OP_ATR_SIZE. */
9829 ada_atr_size (struct type *expect_type,
9830 struct expression *exp,
9831 enum noside noside, enum exp_opcode op,
9834 struct type *type = value_type (arg1);
9836 /* If the argument is a reference, then dereference its type, since
9837 the user is really asking for the size of the actual object,
9838 not the size of the pointer. */
9839 if (type->code () == TYPE_CODE_REF)
9840 type = TYPE_TARGET_TYPE (type);
9842 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9843 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9845 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9846 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9849 /* A helper function for UNOP_ABS. */
9852 ada_abs (struct type *expect_type,
9853 struct expression *exp,
9854 enum noside noside, enum exp_opcode op,
9857 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9858 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9859 return value_neg (arg1);
9864 /* A helper function for BINOP_MUL. */
9867 ada_mult_binop (struct type *expect_type,
9868 struct expression *exp,
9869 enum noside noside, enum exp_opcode op,
9870 struct value *arg1, struct value *arg2)
9872 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9874 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9875 return value_zero (value_type (arg1), not_lval);
9879 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9880 return ada_value_binop (arg1, arg2, op);
9884 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9887 ada_equal_binop (struct type *expect_type,
9888 struct expression *exp,
9889 enum noside noside, enum exp_opcode op,
9890 struct value *arg1, struct value *arg2)
9893 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9897 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9898 tem = ada_value_equal (arg1, arg2);
9900 if (op == BINOP_NOTEQUAL)
9902 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9903 return value_from_longest (type, (LONGEST) tem);
9906 /* A helper function for TERNOP_SLICE. */
9909 ada_ternop_slice (struct expression *exp,
9911 struct value *array, struct value *low_bound_val,
9912 struct value *high_bound_val)
9917 low_bound_val = coerce_ref (low_bound_val);
9918 high_bound_val = coerce_ref (high_bound_val);
9919 low_bound = value_as_long (low_bound_val);
9920 high_bound = value_as_long (high_bound_val);
9922 /* If this is a reference to an aligner type, then remove all
9924 if (value_type (array)->code () == TYPE_CODE_REF
9925 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9926 TYPE_TARGET_TYPE (value_type (array)) =
9927 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9929 if (ada_is_any_packed_array_type (value_type (array)))
9930 error (_("cannot slice a packed array"));
9932 /* If this is a reference to an array or an array lvalue,
9933 convert to a pointer. */
9934 if (value_type (array)->code () == TYPE_CODE_REF
9935 || (value_type (array)->code () == TYPE_CODE_ARRAY
9936 && VALUE_LVAL (array) == lval_memory))
9937 array = value_addr (array);
9939 if (noside == EVAL_AVOID_SIDE_EFFECTS
9940 && ada_is_array_descriptor_type (ada_check_typedef
9941 (value_type (array))))
9942 return empty_array (ada_type_of_array (array, 0), low_bound,
9945 array = ada_coerce_to_simple_array_ptr (array);
9947 /* If we have more than one level of pointer indirection,
9948 dereference the value until we get only one level. */
9949 while (value_type (array)->code () == TYPE_CODE_PTR
9950 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9952 array = value_ind (array);
9954 /* Make sure we really do have an array type before going further,
9955 to avoid a SEGV when trying to get the index type or the target
9956 type later down the road if the debug info generated by
9957 the compiler is incorrect or incomplete. */
9958 if (!ada_is_simple_array_type (value_type (array)))
9959 error (_("cannot take slice of non-array"));
9961 if (ada_check_typedef (value_type (array))->code ()
9964 struct type *type0 = ada_check_typedef (value_type (array));
9966 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9967 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9970 struct type *arr_type0 =
9971 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9973 return ada_value_slice_from_ptr (array, arr_type0,
9974 longest_to_int (low_bound),
9975 longest_to_int (high_bound));
9978 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9980 else if (high_bound < low_bound)
9981 return empty_array (value_type (array), low_bound, high_bound);
9983 return ada_value_slice (array, longest_to_int (low_bound),
9984 longest_to_int (high_bound));
9987 /* A helper function for BINOP_IN_BOUNDS. */
9990 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9991 struct value *arg1, struct value *arg2, int n)
9993 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9995 struct type *type = language_bool_type (exp->language_defn,
9997 return value_zero (type, not_lval);
10000 struct type *type = ada_index_type (value_type (arg2), n, "range");
10002 type = value_type (arg1);
10004 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
10005 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
10007 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10008 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10009 type = language_bool_type (exp->language_defn, exp->gdbarch);
10010 return value_from_longest (type,
10011 (value_less (arg1, arg3)
10012 || value_equal (arg1, arg3))
10013 && (value_less (arg2, arg1)
10014 || value_equal (arg2, arg1)));
10017 /* A helper function for some attribute operations. */
10020 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10021 struct value *arg1, struct type *type_arg, int tem)
10023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10025 if (type_arg == NULL)
10026 type_arg = value_type (arg1);
10028 if (ada_is_constrained_packed_array_type (type_arg))
10029 type_arg = decode_constrained_packed_array_type (type_arg);
10031 if (!discrete_type_p (type_arg))
10035 default: /* Should never happen. */
10036 error (_("unexpected attribute encountered"));
10039 type_arg = ada_index_type (type_arg, tem,
10040 ada_attribute_name (op));
10042 case OP_ATR_LENGTH:
10043 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10048 return value_zero (type_arg, not_lval);
10050 else if (type_arg == NULL)
10052 arg1 = ada_coerce_ref (arg1);
10054 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10055 arg1 = ada_coerce_to_simple_array (arg1);
10058 if (op == OP_ATR_LENGTH)
10059 type = builtin_type (exp->gdbarch)->builtin_int;
10062 type = ada_index_type (value_type (arg1), tem,
10063 ada_attribute_name (op));
10065 type = builtin_type (exp->gdbarch)->builtin_int;
10070 default: /* Should never happen. */
10071 error (_("unexpected attribute encountered"));
10073 return value_from_longest
10074 (type, ada_array_bound (arg1, tem, 0));
10076 return value_from_longest
10077 (type, ada_array_bound (arg1, tem, 1));
10078 case OP_ATR_LENGTH:
10079 return value_from_longest
10080 (type, ada_array_length (arg1, tem));
10083 else if (discrete_type_p (type_arg))
10085 struct type *range_type;
10086 const char *name = ada_type_name (type_arg);
10089 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10090 range_type = to_fixed_range_type (type_arg, NULL);
10091 if (range_type == NULL)
10092 range_type = type_arg;
10096 error (_("unexpected attribute encountered"));
10098 return value_from_longest
10099 (range_type, ada_discrete_type_low_bound (range_type));
10101 return value_from_longest
10102 (range_type, ada_discrete_type_high_bound (range_type));
10103 case OP_ATR_LENGTH:
10104 error (_("the 'length attribute applies only to array types"));
10107 else if (type_arg->code () == TYPE_CODE_FLT)
10108 error (_("unimplemented type attribute"));
10113 if (ada_is_constrained_packed_array_type (type_arg))
10114 type_arg = decode_constrained_packed_array_type (type_arg);
10117 if (op == OP_ATR_LENGTH)
10118 type = builtin_type (exp->gdbarch)->builtin_int;
10121 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10123 type = builtin_type (exp->gdbarch)->builtin_int;
10129 error (_("unexpected attribute encountered"));
10131 low = ada_array_bound_from_type (type_arg, tem, 0);
10132 return value_from_longest (type, low);
10134 high = ada_array_bound_from_type (type_arg, tem, 1);
10135 return value_from_longest (type, high);
10136 case OP_ATR_LENGTH:
10137 low = ada_array_bound_from_type (type_arg, tem, 0);
10138 high = ada_array_bound_from_type (type_arg, tem, 1);
10139 return value_from_longest (type, high - low + 1);
10144 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10147 ada_binop_minmax (struct type *expect_type,
10148 struct expression *exp,
10149 enum noside noside, enum exp_opcode op,
10150 struct value *arg1, struct value *arg2)
10152 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10153 return value_zero (value_type (arg1), not_lval);
10156 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10157 return value_binop (arg1, arg2, op);
10161 /* A helper function for BINOP_EXP. */
10164 ada_binop_exp (struct type *expect_type,
10165 struct expression *exp,
10166 enum noside noside, enum exp_opcode op,
10167 struct value *arg1, struct value *arg2)
10169 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10170 return value_zero (value_type (arg1), not_lval);
10173 /* For integer exponentiation operations,
10174 only promote the first argument. */
10175 if (is_integral_type (value_type (arg2)))
10176 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10178 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10180 return value_binop (arg1, arg2, op);
10187 /* See ada-exp.h. */
10190 ada_resolvable::replace (operation_up &&owner,
10191 struct expression *exp,
10192 bool deprocedure_p,
10193 bool parse_completion,
10194 innermost_block_tracker *tracker,
10195 struct type *context_type)
10197 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10198 return (make_operation<ada_funcall_operation>
10199 (std::move (owner),
10200 std::vector<operation_up> ()));
10201 return std::move (owner);
10204 /* Convert the character literal whose ASCII value would be VAL to the
10205 appropriate value of type TYPE, if there is a translation.
10206 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10207 the literal 'A' (VAL == 65), returns 0. */
10210 convert_char_literal (struct type *type, LONGEST val)
10217 type = check_typedef (type);
10218 if (type->code () != TYPE_CODE_ENUM)
10221 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10222 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10224 xsnprintf (name, sizeof (name), "QU%02x", (int) val);
10225 size_t len = strlen (name);
10226 for (f = 0; f < type->num_fields (); f += 1)
10228 /* Check the suffix because an enum constant in a package will
10229 have a name like "pkg__QUxx". This is safe enough because we
10230 already have the correct type, and because mangling means
10231 there can't be clashes. */
10232 const char *ename = type->field (f).name ();
10233 size_t elen = strlen (ename);
10235 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10236 return TYPE_FIELD_ENUMVAL (type, f);
10241 /* See ada-exp.h. */
10244 ada_char_operation::replace (operation_up &&owner,
10245 struct expression *exp,
10246 bool deprocedure_p,
10247 bool parse_completion,
10248 innermost_block_tracker *tracker,
10249 struct type *context_type)
10251 operation_up result = std::move (owner);
10253 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10255 gdb_assert (result.get () == this);
10256 std::get<0> (m_storage) = context_type;
10257 std::get<1> (m_storage)
10258 = convert_char_literal (context_type, std::get<1> (m_storage));
10261 return make_operation<ada_wrapped_operation> (std::move (result));
10265 ada_wrapped_operation::evaluate (struct type *expect_type,
10266 struct expression *exp,
10267 enum noside noside)
10269 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10270 if (noside == EVAL_NORMAL)
10271 result = unwrap_value (result);
10273 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10274 then we need to perform the conversion manually, because
10275 evaluate_subexp_standard doesn't do it. This conversion is
10276 necessary in Ada because the different kinds of float/fixed
10277 types in Ada have different representations.
10279 Similarly, we need to perform the conversion from OP_LONG
10281 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10282 result = ada_value_cast (expect_type, result);
10288 ada_string_operation::evaluate (struct type *expect_type,
10289 struct expression *exp,
10290 enum noside noside)
10292 value *result = string_operation::evaluate (expect_type, exp, noside);
10293 /* The result type will have code OP_STRING, bashed there from
10294 OP_ARRAY. Bash it back. */
10295 if (value_type (result)->code () == TYPE_CODE_STRING)
10296 value_type (result)->set_code (TYPE_CODE_ARRAY);
10301 ada_qual_operation::evaluate (struct type *expect_type,
10302 struct expression *exp,
10303 enum noside noside)
10305 struct type *type = std::get<1> (m_storage);
10306 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10310 ada_ternop_range_operation::evaluate (struct type *expect_type,
10311 struct expression *exp,
10312 enum noside noside)
10314 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10315 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10316 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10317 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10321 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10322 struct expression *exp,
10323 enum noside noside)
10325 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10326 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10328 auto do_op = [=] (LONGEST x, LONGEST y)
10330 if (std::get<0> (m_storage) == BINOP_ADD)
10335 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10336 return (value_from_longest
10337 (value_type (arg1),
10338 do_op (value_as_long (arg1), value_as_long (arg2))));
10339 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10340 return (value_from_longest
10341 (value_type (arg2),
10342 do_op (value_as_long (arg1), value_as_long (arg2))));
10343 /* Preserve the original type for use by the range case below.
10344 We cannot cast the result to a reference type, so if ARG1 is
10345 a reference type, find its underlying type. */
10346 struct type *type = value_type (arg1);
10347 while (type->code () == TYPE_CODE_REF)
10348 type = TYPE_TARGET_TYPE (type);
10349 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10350 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10351 /* We need to special-case the result with a range.
10352 This is done for the benefit of "ptype". gdb's Ada support
10353 historically used the LHS to set the result type here, so
10354 preserve this behavior. */
10355 if (type->code () == TYPE_CODE_RANGE)
10356 arg1 = value_cast (type, arg1);
10361 ada_unop_atr_operation::evaluate (struct type *expect_type,
10362 struct expression *exp,
10363 enum noside noside)
10365 struct type *type_arg = nullptr;
10366 value *val = nullptr;
10368 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10370 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10371 EVAL_AVOID_SIDE_EFFECTS);
10372 type_arg = value_type (tem);
10375 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10377 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10378 val, type_arg, std::get<2> (m_storage));
10382 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10383 struct expression *exp,
10384 enum noside noside)
10386 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10387 return value_zero (expect_type, not_lval);
10389 const bound_minimal_symbol &b = std::get<0> (m_storage);
10390 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10392 val = ada_value_cast (expect_type, val);
10394 /* Follow the Ada language semantics that do not allow taking
10395 an address of the result of a cast (view conversion in Ada). */
10396 if (VALUE_LVAL (val) == lval_memory)
10398 if (value_lazy (val))
10399 value_fetch_lazy (val);
10400 VALUE_LVAL (val) = not_lval;
10406 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10407 struct expression *exp,
10408 enum noside noside)
10410 value *val = evaluate_var_value (noside,
10411 std::get<0> (m_storage).block,
10412 std::get<0> (m_storage).symbol);
10414 val = ada_value_cast (expect_type, val);
10416 /* Follow the Ada language semantics that do not allow taking
10417 an address of the result of a cast (view conversion in Ada). */
10418 if (VALUE_LVAL (val) == lval_memory)
10420 if (value_lazy (val))
10421 value_fetch_lazy (val);
10422 VALUE_LVAL (val) = not_lval;
10428 ada_var_value_operation::evaluate (struct type *expect_type,
10429 struct expression *exp,
10430 enum noside noside)
10432 symbol *sym = std::get<0> (m_storage).symbol;
10434 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10435 /* Only encountered when an unresolved symbol occurs in a
10436 context other than a function call, in which case, it is
10438 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10439 sym->print_name ());
10441 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10443 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10444 /* Check to see if this is a tagged type. We also need to handle
10445 the case where the type is a reference to a tagged type, but
10446 we have to be careful to exclude pointers to tagged types.
10447 The latter should be shown as usual (as a pointer), whereas
10448 a reference should mostly be transparent to the user. */
10449 if (ada_is_tagged_type (type, 0)
10450 || (type->code () == TYPE_CODE_REF
10451 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10453 /* Tagged types are a little special in the fact that the real
10454 type is dynamic and can only be determined by inspecting the
10455 object's tag. This means that we need to get the object's
10456 value first (EVAL_NORMAL) and then extract the actual object
10459 Note that we cannot skip the final step where we extract
10460 the object type from its tag, because the EVAL_NORMAL phase
10461 results in dynamic components being resolved into fixed ones.
10462 This can cause problems when trying to print the type
10463 description of tagged types whose parent has a dynamic size:
10464 We use the type name of the "_parent" component in order
10465 to print the name of the ancestor type in the type description.
10466 If that component had a dynamic size, the resolution into
10467 a fixed type would result in the loss of that type name,
10468 thus preventing us from printing the name of the ancestor
10469 type in the type description. */
10470 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10472 if (type->code () != TYPE_CODE_REF)
10474 struct type *actual_type;
10476 actual_type = type_from_tag (ada_value_tag (arg1));
10477 if (actual_type == NULL)
10478 /* If, for some reason, we were unable to determine
10479 the actual type from the tag, then use the static
10480 approximation that we just computed as a fallback.
10481 This can happen if the debugging information is
10482 incomplete, for instance. */
10483 actual_type = type;
10484 return value_zero (actual_type, not_lval);
10488 /* In the case of a ref, ada_coerce_ref takes care
10489 of determining the actual type. But the evaluation
10490 should return a ref as it should be valid to ask
10491 for its address; so rebuild a ref after coerce. */
10492 arg1 = ada_coerce_ref (arg1);
10493 return value_ref (arg1, TYPE_CODE_REF);
10497 /* Records and unions for which GNAT encodings have been
10498 generated need to be statically fixed as well.
10499 Otherwise, non-static fixing produces a type where
10500 all dynamic properties are removed, which prevents "ptype"
10501 from being able to completely describe the type.
10502 For instance, a case statement in a variant record would be
10503 replaced by the relevant components based on the actual
10504 value of the discriminants. */
10505 if ((type->code () == TYPE_CODE_STRUCT
10506 && dynamic_template_type (type) != NULL)
10507 || (type->code () == TYPE_CODE_UNION
10508 && ada_find_parallel_type (type, "___XVU") != NULL))
10509 return value_zero (to_static_fixed_type (type), not_lval);
10512 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10513 return ada_to_fixed_value (arg1);
10517 ada_var_value_operation::resolve (struct expression *exp,
10518 bool deprocedure_p,
10519 bool parse_completion,
10520 innermost_block_tracker *tracker,
10521 struct type *context_type)
10523 symbol *sym = std::get<0> (m_storage).symbol;
10524 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10526 block_symbol resolved
10527 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10528 context_type, parse_completion,
10529 deprocedure_p, tracker);
10530 std::get<0> (m_storage) = resolved;
10534 && (SYMBOL_TYPE (std::get<0> (m_storage).symbol)->code ()
10535 == TYPE_CODE_FUNC))
10542 ada_atr_val_operation::evaluate (struct type *expect_type,
10543 struct expression *exp,
10544 enum noside noside)
10546 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10547 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10551 ada_unop_ind_operation::evaluate (struct type *expect_type,
10552 struct expression *exp,
10553 enum noside noside)
10555 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10557 struct type *type = ada_check_typedef (value_type (arg1));
10558 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10560 if (ada_is_array_descriptor_type (type))
10561 /* GDB allows dereferencing GNAT array descriptors. */
10563 struct type *arrType = ada_type_of_array (arg1, 0);
10565 if (arrType == NULL)
10566 error (_("Attempt to dereference null array pointer."));
10567 return value_at_lazy (arrType, 0);
10569 else if (type->code () == TYPE_CODE_PTR
10570 || type->code () == TYPE_CODE_REF
10571 /* In C you can dereference an array to get the 1st elt. */
10572 || type->code () == TYPE_CODE_ARRAY)
10574 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10575 only be determined by inspecting the object's tag.
10576 This means that we need to evaluate completely the
10577 expression in order to get its type. */
10579 if ((type->code () == TYPE_CODE_REF
10580 || type->code () == TYPE_CODE_PTR)
10581 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10583 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10585 type = value_type (ada_value_ind (arg1));
10589 type = to_static_fixed_type
10591 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10593 ada_ensure_varsize_limit (type);
10594 return value_zero (type, lval_memory);
10596 else if (type->code () == TYPE_CODE_INT)
10598 /* GDB allows dereferencing an int. */
10599 if (expect_type == NULL)
10600 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10605 to_static_fixed_type (ada_aligned_type (expect_type));
10606 return value_zero (expect_type, lval_memory);
10610 error (_("Attempt to take contents of a non-pointer value."));
10612 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10613 type = ada_check_typedef (value_type (arg1));
10615 if (type->code () == TYPE_CODE_INT)
10616 /* GDB allows dereferencing an int. If we were given
10617 the expect_type, then use that as the target type.
10618 Otherwise, assume that the target type is an int. */
10620 if (expect_type != NULL)
10621 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10624 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10625 (CORE_ADDR) value_as_address (arg1));
10628 struct type *target_type = (to_static_fixed_type
10630 (ada_check_typedef (TYPE_TARGET_TYPE (type)))));
10631 ada_ensure_varsize_limit (target_type);
10633 if (ada_is_array_descriptor_type (type))
10634 /* GDB allows dereferencing GNAT array descriptors. */
10635 return ada_coerce_to_simple_array (arg1);
10637 return ada_value_ind (arg1);
10641 ada_structop_operation::evaluate (struct type *expect_type,
10642 struct expression *exp,
10643 enum noside noside)
10645 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10646 const char *str = std::get<1> (m_storage).c_str ();
10647 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10650 struct type *type1 = value_type (arg1);
10652 if (ada_is_tagged_type (type1, 1))
10654 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10656 /* If the field is not found, check if it exists in the
10657 extension of this object's type. This means that we
10658 need to evaluate completely the expression. */
10662 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10664 arg1 = ada_value_struct_elt (arg1, str, 0);
10665 arg1 = unwrap_value (arg1);
10666 type = value_type (ada_to_fixed_value (arg1));
10670 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10672 return value_zero (ada_aligned_type (type), lval_memory);
10676 arg1 = ada_value_struct_elt (arg1, str, 0);
10677 arg1 = unwrap_value (arg1);
10678 return ada_to_fixed_value (arg1);
10683 ada_funcall_operation::evaluate (struct type *expect_type,
10684 struct expression *exp,
10685 enum noside noside)
10687 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10688 int nargs = args_up.size ();
10689 std::vector<value *> argvec (nargs);
10690 operation_up &callee_op = std::get<0> (m_storage);
10692 ada_var_value_operation *avv
10693 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10695 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10696 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10697 avv->get_symbol ()->print_name ());
10699 value *callee = callee_op->evaluate (nullptr, exp, noside);
10700 for (int i = 0; i < args_up.size (); ++i)
10701 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10703 if (ada_is_constrained_packed_array_type
10704 (desc_base_type (value_type (callee))))
10705 callee = ada_coerce_to_simple_array (callee);
10706 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10707 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10708 /* This is a packed array that has already been fixed, and
10709 therefore already coerced to a simple array. Nothing further
10712 else if (value_type (callee)->code () == TYPE_CODE_REF)
10714 /* Make sure we dereference references so that all the code below
10715 feels like it's really handling the referenced value. Wrapping
10716 types (for alignment) may be there, so make sure we strip them as
10718 callee = ada_to_fixed_value (coerce_ref (callee));
10720 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10721 && VALUE_LVAL (callee) == lval_memory)
10722 callee = value_addr (callee);
10724 struct type *type = ada_check_typedef (value_type (callee));
10726 /* Ada allows us to implicitly dereference arrays when subscripting
10727 them. So, if this is an array typedef (encoding use for array
10728 access types encoded as fat pointers), strip it now. */
10729 if (type->code () == TYPE_CODE_TYPEDEF)
10730 type = ada_typedef_target_type (type);
10732 if (type->code () == TYPE_CODE_PTR)
10734 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10736 case TYPE_CODE_FUNC:
10737 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10739 case TYPE_CODE_ARRAY:
10741 case TYPE_CODE_STRUCT:
10742 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10743 callee = ada_value_ind (callee);
10744 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10747 error (_("cannot subscript or call something of type `%s'"),
10748 ada_type_name (value_type (callee)));
10753 switch (type->code ())
10755 case TYPE_CODE_FUNC:
10756 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10758 if (TYPE_TARGET_TYPE (type) == NULL)
10759 error_call_unknown_return_type (NULL);
10760 return allocate_value (TYPE_TARGET_TYPE (type));
10762 return call_function_by_hand (callee, NULL, argvec);
10763 case TYPE_CODE_INTERNAL_FUNCTION:
10764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10765 /* We don't know anything about what the internal
10766 function might return, but we have to return
10768 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10771 return call_internal_function (exp->gdbarch, exp->language_defn,
10775 case TYPE_CODE_STRUCT:
10779 arity = ada_array_arity (type);
10780 type = ada_array_element_type (type, nargs);
10782 error (_("cannot subscript or call a record"));
10783 if (arity != nargs)
10784 error (_("wrong number of subscripts; expecting %d"), arity);
10785 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10786 return value_zero (ada_aligned_type (type), lval_memory);
10788 unwrap_value (ada_value_subscript
10789 (callee, nargs, argvec.data ()));
10791 case TYPE_CODE_ARRAY:
10792 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10794 type = ada_array_element_type (type, nargs);
10796 error (_("element type of array unknown"));
10798 return value_zero (ada_aligned_type (type), lval_memory);
10801 unwrap_value (ada_value_subscript
10802 (ada_coerce_to_simple_array (callee),
10803 nargs, argvec.data ()));
10804 case TYPE_CODE_PTR: /* Pointer to array */
10805 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10807 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10808 type = ada_array_element_type (type, nargs);
10810 error (_("element type of array unknown"));
10812 return value_zero (ada_aligned_type (type), lval_memory);
10815 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10819 error (_("Attempt to index or call something other than an "
10820 "array or function"));
10825 ada_funcall_operation::resolve (struct expression *exp,
10826 bool deprocedure_p,
10827 bool parse_completion,
10828 innermost_block_tracker *tracker,
10829 struct type *context_type)
10831 operation_up &callee_op = std::get<0> (m_storage);
10833 ada_var_value_operation *avv
10834 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10835 if (avv == nullptr)
10838 symbol *sym = avv->get_symbol ();
10839 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10842 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10843 int nargs = args_up.size ();
10844 std::vector<value *> argvec (nargs);
10846 for (int i = 0; i < args_up.size (); ++i)
10847 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10849 const block *block = avv->get_block ();
10850 block_symbol resolved
10851 = ada_resolve_funcall (sym, block,
10852 context_type, parse_completion,
10853 nargs, argvec.data (),
10856 std::get<0> (m_storage)
10857 = make_operation<ada_var_value_operation> (resolved);
10862 ada_ternop_slice_operation::resolve (struct expression *exp,
10863 bool deprocedure_p,
10864 bool parse_completion,
10865 innermost_block_tracker *tracker,
10866 struct type *context_type)
10868 /* Historically this check was done during resolution, so we
10869 continue that here. */
10870 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10871 EVAL_AVOID_SIDE_EFFECTS);
10872 if (ada_is_any_packed_array_type (value_type (v)))
10873 error (_("cannot slice a packed array"));
10881 /* Return non-zero iff TYPE represents a System.Address type. */
10884 ada_is_system_address_type (struct type *type)
10886 return (type->name () && strcmp (type->name (), "system__address") == 0);
10893 /* Scan STR beginning at position K for a discriminant name, and
10894 return the value of that discriminant field of DVAL in *PX. If
10895 PNEW_K is not null, put the position of the character beyond the
10896 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10897 not alter *PX and *PNEW_K if unsuccessful. */
10900 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10903 static std::string storage;
10904 const char *pstart, *pend, *bound;
10905 struct value *bound_val;
10907 if (dval == NULL || str == NULL || str[k] == '\0')
10911 pend = strstr (pstart, "__");
10915 k += strlen (bound);
10919 int len = pend - pstart;
10921 /* Strip __ and beyond. */
10922 storage = std::string (pstart, len);
10923 bound = storage.c_str ();
10927 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10928 if (bound_val == NULL)
10931 *px = value_as_long (bound_val);
10932 if (pnew_k != NULL)
10937 /* Value of variable named NAME. Only exact matches are considered.
10938 If no such variable found, then if ERR_MSG is null, returns 0, and
10939 otherwise causes an error with message ERR_MSG. */
10941 static struct value *
10942 get_var_value (const char *name, const char *err_msg)
10944 std::string quoted_name = add_angle_brackets (name);
10946 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10948 std::vector<struct block_symbol> syms
10949 = ada_lookup_symbol_list_worker (lookup_name,
10950 get_selected_block (0),
10953 if (syms.size () != 1)
10955 if (err_msg == NULL)
10958 error (("%s"), err_msg);
10961 return value_of_variable (syms[0].symbol, syms[0].block);
10964 /* Value of integer variable named NAME in the current environment.
10965 If no such variable is found, returns false. Otherwise, sets VALUE
10966 to the variable's value and returns true. */
10969 get_int_var_value (const char *name, LONGEST &value)
10971 struct value *var_val = get_var_value (name, 0);
10976 value = value_as_long (var_val);
10981 /* Return a range type whose base type is that of the range type named
10982 NAME in the current environment, and whose bounds are calculated
10983 from NAME according to the GNAT range encoding conventions.
10984 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10985 corresponding range type from debug information; fall back to using it
10986 if symbol lookup fails. If a new type must be created, allocate it
10987 like ORIG_TYPE was. The bounds information, in general, is encoded
10988 in NAME, the base type given in the named range type. */
10990 static struct type *
10991 to_fixed_range_type (struct type *raw_type, struct value *dval)
10994 struct type *base_type;
10995 const char *subtype_info;
10997 gdb_assert (raw_type != NULL);
10998 gdb_assert (raw_type->name () != NULL);
11000 if (raw_type->code () == TYPE_CODE_RANGE)
11001 base_type = TYPE_TARGET_TYPE (raw_type);
11003 base_type = raw_type;
11005 name = raw_type->name ();
11006 subtype_info = strstr (name, "___XD");
11007 if (subtype_info == NULL)
11009 LONGEST L = ada_discrete_type_low_bound (raw_type);
11010 LONGEST U = ada_discrete_type_high_bound (raw_type);
11012 if (L < INT_MIN || U > INT_MAX)
11015 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11020 int prefix_len = subtype_info - name;
11023 const char *bounds_str;
11027 bounds_str = strchr (subtype_info, '_');
11030 if (*subtype_info == 'L')
11032 if (!ada_scan_number (bounds_str, n, &L, &n)
11033 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11035 if (bounds_str[n] == '_')
11037 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11043 std::string name_buf = std::string (name, prefix_len) + "___L";
11044 if (!get_int_var_value (name_buf.c_str (), L))
11046 lim_warning (_("Unknown lower bound, using 1."));
11051 if (*subtype_info == 'U')
11053 if (!ada_scan_number (bounds_str, n, &U, &n)
11054 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11059 std::string name_buf = std::string (name, prefix_len) + "___U";
11060 if (!get_int_var_value (name_buf.c_str (), U))
11062 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11067 type = create_static_range_type (alloc_type_copy (raw_type),
11069 /* create_static_range_type alters the resulting type's length
11070 to match the size of the base_type, which is not what we want.
11071 Set it back to the original range type's length. */
11072 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11073 type->set_name (name);
11078 /* True iff NAME is the name of a range type. */
11081 ada_is_range_type_name (const char *name)
11083 return (name != NULL && strstr (name, "___XD"));
11087 /* Modular types */
11089 /* True iff TYPE is an Ada modular type. */
11092 ada_is_modular_type (struct type *type)
11094 struct type *subranged_type = get_base_type (type);
11096 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11097 && subranged_type->code () == TYPE_CODE_INT
11098 && subranged_type->is_unsigned ());
11101 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11104 ada_modulus (struct type *type)
11106 const dynamic_prop &high = type->bounds ()->high;
11108 if (high.kind () == PROP_CONST)
11109 return (ULONGEST) high.const_val () + 1;
11111 /* If TYPE is unresolved, the high bound might be a location list. Return
11112 0, for lack of a better value to return. */
11117 /* Ada exception catchpoint support:
11118 ---------------------------------
11120 We support 3 kinds of exception catchpoints:
11121 . catchpoints on Ada exceptions
11122 . catchpoints on unhandled Ada exceptions
11123 . catchpoints on failed assertions
11125 Exceptions raised during failed assertions, or unhandled exceptions
11126 could perfectly be caught with the general catchpoint on Ada exceptions.
11127 However, we can easily differentiate these two special cases, and having
11128 the option to distinguish these two cases from the rest can be useful
11129 to zero-in on certain situations.
11131 Exception catchpoints are a specialized form of breakpoint,
11132 since they rely on inserting breakpoints inside known routines
11133 of the GNAT runtime. The implementation therefore uses a standard
11134 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11137 Support in the runtime for exception catchpoints have been changed
11138 a few times already, and these changes affect the implementation
11139 of these catchpoints. In order to be able to support several
11140 variants of the runtime, we use a sniffer that will determine
11141 the runtime variant used by the program being debugged. */
11143 /* Ada's standard exceptions.
11145 The Ada 83 standard also defined Numeric_Error. But there so many
11146 situations where it was unclear from the Ada 83 Reference Manual
11147 (RM) whether Constraint_Error or Numeric_Error should be raised,
11148 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11149 Interpretation saying that anytime the RM says that Numeric_Error
11150 should be raised, the implementation may raise Constraint_Error.
11151 Ada 95 went one step further and pretty much removed Numeric_Error
11152 from the list of standard exceptions (it made it a renaming of
11153 Constraint_Error, to help preserve compatibility when compiling
11154 an Ada83 compiler). As such, we do not include Numeric_Error from
11155 this list of standard exceptions. */
11157 static const char * const standard_exc[] = {
11158 "constraint_error",
11164 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11166 /* A structure that describes how to support exception catchpoints
11167 for a given executable. */
11169 struct exception_support_info
11171 /* The name of the symbol to break on in order to insert
11172 a catchpoint on exceptions. */
11173 const char *catch_exception_sym;
11175 /* The name of the symbol to break on in order to insert
11176 a catchpoint on unhandled exceptions. */
11177 const char *catch_exception_unhandled_sym;
11179 /* The name of the symbol to break on in order to insert
11180 a catchpoint on failed assertions. */
11181 const char *catch_assert_sym;
11183 /* The name of the symbol to break on in order to insert
11184 a catchpoint on exception handling. */
11185 const char *catch_handlers_sym;
11187 /* Assuming that the inferior just triggered an unhandled exception
11188 catchpoint, this function is responsible for returning the address
11189 in inferior memory where the name of that exception is stored.
11190 Return zero if the address could not be computed. */
11191 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11194 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11195 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11197 /* The following exception support info structure describes how to
11198 implement exception catchpoints with the latest version of the
11199 Ada runtime (as of 2019-08-??). */
11201 static const struct exception_support_info default_exception_support_info =
11203 "__gnat_debug_raise_exception", /* catch_exception_sym */
11204 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11205 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11206 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11207 ada_unhandled_exception_name_addr
11210 /* The following exception support info structure describes how to
11211 implement exception catchpoints with an earlier version of the
11212 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11214 static const struct exception_support_info exception_support_info_v0 =
11216 "__gnat_debug_raise_exception", /* catch_exception_sym */
11217 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11218 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11219 "__gnat_begin_handler", /* catch_handlers_sym */
11220 ada_unhandled_exception_name_addr
11223 /* The following exception support info structure describes how to
11224 implement exception catchpoints with a slightly older version
11225 of the Ada runtime. */
11227 static const struct exception_support_info exception_support_info_fallback =
11229 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11230 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11231 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11232 "__gnat_begin_handler", /* catch_handlers_sym */
11233 ada_unhandled_exception_name_addr_from_raise
11236 /* Return nonzero if we can detect the exception support routines
11237 described in EINFO.
11239 This function errors out if an abnormal situation is detected
11240 (for instance, if we find the exception support routines, but
11241 that support is found to be incomplete). */
11244 ada_has_this_exception_support (const struct exception_support_info *einfo)
11246 struct symbol *sym;
11248 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11249 that should be compiled with debugging information. As a result, we
11250 expect to find that symbol in the symtabs. */
11252 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11255 /* Perhaps we did not find our symbol because the Ada runtime was
11256 compiled without debugging info, or simply stripped of it.
11257 It happens on some GNU/Linux distributions for instance, where
11258 users have to install a separate debug package in order to get
11259 the runtime's debugging info. In that situation, let the user
11260 know why we cannot insert an Ada exception catchpoint.
11262 Note: Just for the purpose of inserting our Ada exception
11263 catchpoint, we could rely purely on the associated minimal symbol.
11264 But we would be operating in degraded mode anyway, since we are
11265 still lacking the debugging info needed later on to extract
11266 the name of the exception being raised (this name is printed in
11267 the catchpoint message, and is also used when trying to catch
11268 a specific exception). We do not handle this case for now. */
11269 struct bound_minimal_symbol msym
11270 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11272 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11273 error (_("Your Ada runtime appears to be missing some debugging "
11274 "information.\nCannot insert Ada exception catchpoint "
11275 "in this configuration."));
11280 /* Make sure that the symbol we found corresponds to a function. */
11282 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11284 error (_("Symbol \"%s\" is not a function (class = %d)"),
11285 sym->linkage_name (), SYMBOL_CLASS (sym));
11289 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11292 struct bound_minimal_symbol msym
11293 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11295 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11296 error (_("Your Ada runtime appears to be missing some debugging "
11297 "information.\nCannot insert Ada exception catchpoint "
11298 "in this configuration."));
11303 /* Make sure that the symbol we found corresponds to a function. */
11305 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11307 error (_("Symbol \"%s\" is not a function (class = %d)"),
11308 sym->linkage_name (), SYMBOL_CLASS (sym));
11315 /* Inspect the Ada runtime and determine which exception info structure
11316 should be used to provide support for exception catchpoints.
11318 This function will always set the per-inferior exception_info,
11319 or raise an error. */
11322 ada_exception_support_info_sniffer (void)
11324 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11326 /* If the exception info is already known, then no need to recompute it. */
11327 if (data->exception_info != NULL)
11330 /* Check the latest (default) exception support info. */
11331 if (ada_has_this_exception_support (&default_exception_support_info))
11333 data->exception_info = &default_exception_support_info;
11337 /* Try the v0 exception suport info. */
11338 if (ada_has_this_exception_support (&exception_support_info_v0))
11340 data->exception_info = &exception_support_info_v0;
11344 /* Try our fallback exception suport info. */
11345 if (ada_has_this_exception_support (&exception_support_info_fallback))
11347 data->exception_info = &exception_support_info_fallback;
11351 /* Sometimes, it is normal for us to not be able to find the routine
11352 we are looking for. This happens when the program is linked with
11353 the shared version of the GNAT runtime, and the program has not been
11354 started yet. Inform the user of these two possible causes if
11357 if (ada_update_initial_language (language_unknown) != language_ada)
11358 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11360 /* If the symbol does not exist, then check that the program is
11361 already started, to make sure that shared libraries have been
11362 loaded. If it is not started, this may mean that the symbol is
11363 in a shared library. */
11365 if (inferior_ptid.pid () == 0)
11366 error (_("Unable to insert catchpoint. Try to start the program first."));
11368 /* At this point, we know that we are debugging an Ada program and
11369 that the inferior has been started, but we still are not able to
11370 find the run-time symbols. That can mean that we are in
11371 configurable run time mode, or that a-except as been optimized
11372 out by the linker... In any case, at this point it is not worth
11373 supporting this feature. */
11375 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11378 /* True iff FRAME is very likely to be that of a function that is
11379 part of the runtime system. This is all very heuristic, but is
11380 intended to be used as advice as to what frames are uninteresting
11384 is_known_support_routine (struct frame_info *frame)
11386 enum language func_lang;
11388 const char *fullname;
11390 /* If this code does not have any debugging information (no symtab),
11391 This cannot be any user code. */
11393 symtab_and_line sal = find_frame_sal (frame);
11394 if (sal.symtab == NULL)
11397 /* If there is a symtab, but the associated source file cannot be
11398 located, then assume this is not user code: Selecting a frame
11399 for which we cannot display the code would not be very helpful
11400 for the user. This should also take care of case such as VxWorks
11401 where the kernel has some debugging info provided for a few units. */
11403 fullname = symtab_to_fullname (sal.symtab);
11404 if (access (fullname, R_OK) != 0)
11407 /* Check the unit filename against the Ada runtime file naming.
11408 We also check the name of the objfile against the name of some
11409 known system libraries that sometimes come with debugging info
11412 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11414 re_comp (known_runtime_file_name_patterns[i]);
11415 if (re_exec (lbasename (sal.symtab->filename)))
11417 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11418 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11422 /* Check whether the function is a GNAT-generated entity. */
11424 gdb::unique_xmalloc_ptr<char> func_name
11425 = find_frame_funname (frame, &func_lang, NULL);
11426 if (func_name == NULL)
11429 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11431 re_comp (known_auxiliary_function_name_patterns[i]);
11432 if (re_exec (func_name.get ()))
11439 /* Find the first frame that contains debugging information and that is not
11440 part of the Ada run-time, starting from FI and moving upward. */
11443 ada_find_printable_frame (struct frame_info *fi)
11445 for (; fi != NULL; fi = get_prev_frame (fi))
11447 if (!is_known_support_routine (fi))
11456 /* Assuming that the inferior just triggered an unhandled exception
11457 catchpoint, return the address in inferior memory where the name
11458 of the exception is stored.
11460 Return zero if the address could not be computed. */
11463 ada_unhandled_exception_name_addr (void)
11465 return parse_and_eval_address ("e.full_name");
11468 /* Same as ada_unhandled_exception_name_addr, except that this function
11469 should be used when the inferior uses an older version of the runtime,
11470 where the exception name needs to be extracted from a specific frame
11471 several frames up in the callstack. */
11474 ada_unhandled_exception_name_addr_from_raise (void)
11477 struct frame_info *fi;
11478 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11480 /* To determine the name of this exception, we need to select
11481 the frame corresponding to RAISE_SYM_NAME. This frame is
11482 at least 3 levels up, so we simply skip the first 3 frames
11483 without checking the name of their associated function. */
11484 fi = get_current_frame ();
11485 for (frame_level = 0; frame_level < 3; frame_level += 1)
11487 fi = get_prev_frame (fi);
11491 enum language func_lang;
11493 gdb::unique_xmalloc_ptr<char> func_name
11494 = find_frame_funname (fi, &func_lang, NULL);
11495 if (func_name != NULL)
11497 if (strcmp (func_name.get (),
11498 data->exception_info->catch_exception_sym) == 0)
11499 break; /* We found the frame we were looking for... */
11501 fi = get_prev_frame (fi);
11508 return parse_and_eval_address ("id.full_name");
11511 /* Assuming the inferior just triggered an Ada exception catchpoint
11512 (of any type), return the address in inferior memory where the name
11513 of the exception is stored, if applicable.
11515 Assumes the selected frame is the current frame.
11517 Return zero if the address could not be computed, or if not relevant. */
11520 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11521 struct breakpoint *b)
11523 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11527 case ada_catch_exception:
11528 return (parse_and_eval_address ("e.full_name"));
11531 case ada_catch_exception_unhandled:
11532 return data->exception_info->unhandled_exception_name_addr ();
11535 case ada_catch_handlers:
11536 return 0; /* The runtimes does not provide access to the exception
11540 case ada_catch_assert:
11541 return 0; /* Exception name is not relevant in this case. */
11545 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11549 return 0; /* Should never be reached. */
11552 /* Assuming the inferior is stopped at an exception catchpoint,
11553 return the message which was associated to the exception, if
11554 available. Return NULL if the message could not be retrieved.
11556 Note: The exception message can be associated to an exception
11557 either through the use of the Raise_Exception function, or
11558 more simply (Ada 2005 and later), via:
11560 raise Exception_Name with "exception message";
11564 static gdb::unique_xmalloc_ptr<char>
11565 ada_exception_message_1 (void)
11567 struct value *e_msg_val;
11570 /* For runtimes that support this feature, the exception message
11571 is passed as an unbounded string argument called "message". */
11572 e_msg_val = parse_and_eval ("message");
11573 if (e_msg_val == NULL)
11574 return NULL; /* Exception message not supported. */
11576 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11577 gdb_assert (e_msg_val != NULL);
11578 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11580 /* If the message string is empty, then treat it as if there was
11581 no exception message. */
11582 if (e_msg_len <= 0)
11585 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11586 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11588 e_msg.get ()[e_msg_len] = '\0';
11593 /* Same as ada_exception_message_1, except that all exceptions are
11594 contained here (returning NULL instead). */
11596 static gdb::unique_xmalloc_ptr<char>
11597 ada_exception_message (void)
11599 gdb::unique_xmalloc_ptr<char> e_msg;
11603 e_msg = ada_exception_message_1 ();
11605 catch (const gdb_exception_error &e)
11607 e_msg.reset (nullptr);
11613 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11614 any error that ada_exception_name_addr_1 might cause to be thrown.
11615 When an error is intercepted, a warning with the error message is printed,
11616 and zero is returned. */
11619 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11620 struct breakpoint *b)
11622 CORE_ADDR result = 0;
11626 result = ada_exception_name_addr_1 (ex, b);
11629 catch (const gdb_exception_error &e)
11631 warning (_("failed to get exception name: %s"), e.what ());
11638 static std::string ada_exception_catchpoint_cond_string
11639 (const char *excep_string,
11640 enum ada_exception_catchpoint_kind ex);
11642 /* Ada catchpoints.
11644 In the case of catchpoints on Ada exceptions, the catchpoint will
11645 stop the target on every exception the program throws. When a user
11646 specifies the name of a specific exception, we translate this
11647 request into a condition expression (in text form), and then parse
11648 it into an expression stored in each of the catchpoint's locations.
11649 We then use this condition to check whether the exception that was
11650 raised is the one the user is interested in. If not, then the
11651 target is resumed again. We store the name of the requested
11652 exception, in order to be able to re-set the condition expression
11653 when symbols change. */
11655 /* An instance of this type is used to represent an Ada catchpoint
11656 breakpoint location. */
11658 class ada_catchpoint_location : public bp_location
11661 ada_catchpoint_location (breakpoint *owner)
11662 : bp_location (owner, bp_loc_software_breakpoint)
11665 /* The condition that checks whether the exception that was raised
11666 is the specific exception the user specified on catchpoint
11668 expression_up excep_cond_expr;
11671 /* An instance of this type is used to represent an Ada catchpoint. */
11673 struct ada_catchpoint : public breakpoint
11675 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11680 /* The name of the specific exception the user specified. */
11681 std::string excep_string;
11683 /* What kind of catchpoint this is. */
11684 enum ada_exception_catchpoint_kind m_kind;
11687 /* Parse the exception condition string in the context of each of the
11688 catchpoint's locations, and store them for later evaluation. */
11691 create_excep_cond_exprs (struct ada_catchpoint *c,
11692 enum ada_exception_catchpoint_kind ex)
11694 /* Nothing to do if there's no specific exception to catch. */
11695 if (c->excep_string.empty ())
11698 /* Same if there are no locations... */
11699 if (c->loc == NULL)
11702 /* Compute the condition expression in text form, from the specific
11703 expection we want to catch. */
11704 std::string cond_string
11705 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11707 /* Iterate over all the catchpoint's locations, and parse an
11708 expression for each. */
11709 for (bp_location *bl : c->locations ())
11711 struct ada_catchpoint_location *ada_loc
11712 = (struct ada_catchpoint_location *) bl;
11715 if (!bl->shlib_disabled)
11719 s = cond_string.c_str ();
11722 exp = parse_exp_1 (&s, bl->address,
11723 block_for_pc (bl->address),
11726 catch (const gdb_exception_error &e)
11728 warning (_("failed to reevaluate internal exception condition "
11729 "for catchpoint %d: %s"),
11730 c->number, e.what ());
11734 ada_loc->excep_cond_expr = std::move (exp);
11738 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11739 structure for all exception catchpoint kinds. */
11741 static struct bp_location *
11742 allocate_location_exception (struct breakpoint *self)
11744 return new ada_catchpoint_location (self);
11747 /* Implement the RE_SET method in the breakpoint_ops structure for all
11748 exception catchpoint kinds. */
11751 re_set_exception (struct breakpoint *b)
11753 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11755 /* Call the base class's method. This updates the catchpoint's
11757 bkpt_breakpoint_ops.re_set (b);
11759 /* Reparse the exception conditional expressions. One for each
11761 create_excep_cond_exprs (c, c->m_kind);
11764 /* Returns true if we should stop for this breakpoint hit. If the
11765 user specified a specific exception, we only want to cause a stop
11766 if the program thrown that exception. */
11769 should_stop_exception (const struct bp_location *bl)
11771 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11772 const struct ada_catchpoint_location *ada_loc
11773 = (const struct ada_catchpoint_location *) bl;
11776 struct internalvar *var = lookup_internalvar ("_ada_exception");
11777 if (c->m_kind == ada_catch_assert)
11778 clear_internalvar (var);
11785 if (c->m_kind == ada_catch_handlers)
11786 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11787 ".all.occurrence.id");
11791 struct value *exc = parse_and_eval (expr);
11792 set_internalvar (var, exc);
11794 catch (const gdb_exception_error &ex)
11796 clear_internalvar (var);
11800 /* With no specific exception, should always stop. */
11801 if (c->excep_string.empty ())
11804 if (ada_loc->excep_cond_expr == NULL)
11806 /* We will have a NULL expression if back when we were creating
11807 the expressions, this location's had failed to parse. */
11814 struct value *mark;
11816 mark = value_mark ();
11817 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11818 value_free_to_mark (mark);
11820 catch (const gdb_exception &ex)
11822 exception_fprintf (gdb_stderr, ex,
11823 _("Error in testing exception condition:\n"));
11829 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11830 for all exception catchpoint kinds. */
11833 check_status_exception (bpstat bs)
11835 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11838 /* Implement the PRINT_IT method in the breakpoint_ops structure
11839 for all exception catchpoint kinds. */
11841 static enum print_stop_action
11842 print_it_exception (bpstat bs)
11844 struct ui_out *uiout = current_uiout;
11845 struct breakpoint *b = bs->breakpoint_at;
11847 annotate_catchpoint (b->number);
11849 if (uiout->is_mi_like_p ())
11851 uiout->field_string ("reason",
11852 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11853 uiout->field_string ("disp", bpdisp_text (b->disposition));
11856 uiout->text (b->disposition == disp_del
11857 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11858 uiout->field_signed ("bkptno", b->number);
11859 uiout->text (", ");
11861 /* ada_exception_name_addr relies on the selected frame being the
11862 current frame. Need to do this here because this function may be
11863 called more than once when printing a stop, and below, we'll
11864 select the first frame past the Ada run-time (see
11865 ada_find_printable_frame). */
11866 select_frame (get_current_frame ());
11868 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11871 case ada_catch_exception:
11872 case ada_catch_exception_unhandled:
11873 case ada_catch_handlers:
11875 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11876 char exception_name[256];
11880 read_memory (addr, (gdb_byte *) exception_name,
11881 sizeof (exception_name) - 1);
11882 exception_name [sizeof (exception_name) - 1] = '\0';
11886 /* For some reason, we were unable to read the exception
11887 name. This could happen if the Runtime was compiled
11888 without debugging info, for instance. In that case,
11889 just replace the exception name by the generic string
11890 "exception" - it will read as "an exception" in the
11891 notification we are about to print. */
11892 memcpy (exception_name, "exception", sizeof ("exception"));
11894 /* In the case of unhandled exception breakpoints, we print
11895 the exception name as "unhandled EXCEPTION_NAME", to make
11896 it clearer to the user which kind of catchpoint just got
11897 hit. We used ui_out_text to make sure that this extra
11898 info does not pollute the exception name in the MI case. */
11899 if (c->m_kind == ada_catch_exception_unhandled)
11900 uiout->text ("unhandled ");
11901 uiout->field_string ("exception-name", exception_name);
11904 case ada_catch_assert:
11905 /* In this case, the name of the exception is not really
11906 important. Just print "failed assertion" to make it clearer
11907 that his program just hit an assertion-failure catchpoint.
11908 We used ui_out_text because this info does not belong in
11910 uiout->text ("failed assertion");
11914 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11915 if (exception_message != NULL)
11917 uiout->text (" (");
11918 uiout->field_string ("exception-message", exception_message.get ());
11922 uiout->text (" at ");
11923 ada_find_printable_frame (get_current_frame ());
11925 return PRINT_SRC_AND_LOC;
11928 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11929 for all exception catchpoint kinds. */
11932 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11934 struct ui_out *uiout = current_uiout;
11935 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11936 struct value_print_options opts;
11938 get_user_print_options (&opts);
11940 if (opts.addressprint)
11941 uiout->field_skip ("addr");
11943 annotate_field (5);
11946 case ada_catch_exception:
11947 if (!c->excep_string.empty ())
11949 std::string msg = string_printf (_("`%s' Ada exception"),
11950 c->excep_string.c_str ());
11952 uiout->field_string ("what", msg);
11955 uiout->field_string ("what", "all Ada exceptions");
11959 case ada_catch_exception_unhandled:
11960 uiout->field_string ("what", "unhandled Ada exceptions");
11963 case ada_catch_handlers:
11964 if (!c->excep_string.empty ())
11966 uiout->field_fmt ("what",
11967 _("`%s' Ada exception handlers"),
11968 c->excep_string.c_str ());
11971 uiout->field_string ("what", "all Ada exceptions handlers");
11974 case ada_catch_assert:
11975 uiout->field_string ("what", "failed Ada assertions");
11979 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11984 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11985 for all exception catchpoint kinds. */
11988 print_mention_exception (struct breakpoint *b)
11990 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11991 struct ui_out *uiout = current_uiout;
11993 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11994 : _("Catchpoint "));
11995 uiout->field_signed ("bkptno", b->number);
11996 uiout->text (": ");
12000 case ada_catch_exception:
12001 if (!c->excep_string.empty ())
12003 std::string info = string_printf (_("`%s' Ada exception"),
12004 c->excep_string.c_str ());
12005 uiout->text (info);
12008 uiout->text (_("all Ada exceptions"));
12011 case ada_catch_exception_unhandled:
12012 uiout->text (_("unhandled Ada exceptions"));
12015 case ada_catch_handlers:
12016 if (!c->excep_string.empty ())
12019 = string_printf (_("`%s' Ada exception handlers"),
12020 c->excep_string.c_str ());
12021 uiout->text (info);
12024 uiout->text (_("all Ada exceptions handlers"));
12027 case ada_catch_assert:
12028 uiout->text (_("failed Ada assertions"));
12032 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12037 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12038 for all exception catchpoint kinds. */
12041 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12043 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12047 case ada_catch_exception:
12048 fprintf_filtered (fp, "catch exception");
12049 if (!c->excep_string.empty ())
12050 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12053 case ada_catch_exception_unhandled:
12054 fprintf_filtered (fp, "catch exception unhandled");
12057 case ada_catch_handlers:
12058 fprintf_filtered (fp, "catch handlers");
12061 case ada_catch_assert:
12062 fprintf_filtered (fp, "catch assert");
12066 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12068 print_recreate_thread (b, fp);
12071 /* Virtual tables for various breakpoint types. */
12072 static struct breakpoint_ops catch_exception_breakpoint_ops;
12073 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12074 static struct breakpoint_ops catch_assert_breakpoint_ops;
12075 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12077 /* See ada-lang.h. */
12080 is_ada_exception_catchpoint (breakpoint *bp)
12082 return (bp->ops == &catch_exception_breakpoint_ops
12083 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12084 || bp->ops == &catch_assert_breakpoint_ops
12085 || bp->ops == &catch_handlers_breakpoint_ops);
12088 /* Split the arguments specified in a "catch exception" command.
12089 Set EX to the appropriate catchpoint type.
12090 Set EXCEP_STRING to the name of the specific exception if
12091 specified by the user.
12092 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12093 "catch handlers" command. False otherwise.
12094 If a condition is found at the end of the arguments, the condition
12095 expression is stored in COND_STRING (memory must be deallocated
12096 after use). Otherwise COND_STRING is set to NULL. */
12099 catch_ada_exception_command_split (const char *args,
12100 bool is_catch_handlers_cmd,
12101 enum ada_exception_catchpoint_kind *ex,
12102 std::string *excep_string,
12103 std::string *cond_string)
12105 std::string exception_name;
12107 exception_name = extract_arg (&args);
12108 if (exception_name == "if")
12110 /* This is not an exception name; this is the start of a condition
12111 expression for a catchpoint on all exceptions. So, "un-get"
12112 this token, and set exception_name to NULL. */
12113 exception_name.clear ();
12117 /* Check to see if we have a condition. */
12119 args = skip_spaces (args);
12120 if (startswith (args, "if")
12121 && (isspace (args[2]) || args[2] == '\0'))
12124 args = skip_spaces (args);
12126 if (args[0] == '\0')
12127 error (_("Condition missing after `if' keyword"));
12128 *cond_string = args;
12130 args += strlen (args);
12133 /* Check that we do not have any more arguments. Anything else
12136 if (args[0] != '\0')
12137 error (_("Junk at end of expression"));
12139 if (is_catch_handlers_cmd)
12141 /* Catch handling of exceptions. */
12142 *ex = ada_catch_handlers;
12143 *excep_string = exception_name;
12145 else if (exception_name.empty ())
12147 /* Catch all exceptions. */
12148 *ex = ada_catch_exception;
12149 excep_string->clear ();
12151 else if (exception_name == "unhandled")
12153 /* Catch unhandled exceptions. */
12154 *ex = ada_catch_exception_unhandled;
12155 excep_string->clear ();
12159 /* Catch a specific exception. */
12160 *ex = ada_catch_exception;
12161 *excep_string = exception_name;
12165 /* Return the name of the symbol on which we should break in order to
12166 implement a catchpoint of the EX kind. */
12168 static const char *
12169 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12171 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12173 gdb_assert (data->exception_info != NULL);
12177 case ada_catch_exception:
12178 return (data->exception_info->catch_exception_sym);
12180 case ada_catch_exception_unhandled:
12181 return (data->exception_info->catch_exception_unhandled_sym);
12183 case ada_catch_assert:
12184 return (data->exception_info->catch_assert_sym);
12186 case ada_catch_handlers:
12187 return (data->exception_info->catch_handlers_sym);
12190 internal_error (__FILE__, __LINE__,
12191 _("unexpected catchpoint kind (%d)"), ex);
12195 /* Return the breakpoint ops "virtual table" used for catchpoints
12198 static const struct breakpoint_ops *
12199 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12203 case ada_catch_exception:
12204 return (&catch_exception_breakpoint_ops);
12206 case ada_catch_exception_unhandled:
12207 return (&catch_exception_unhandled_breakpoint_ops);
12209 case ada_catch_assert:
12210 return (&catch_assert_breakpoint_ops);
12212 case ada_catch_handlers:
12213 return (&catch_handlers_breakpoint_ops);
12216 internal_error (__FILE__, __LINE__,
12217 _("unexpected catchpoint kind (%d)"), ex);
12221 /* Return the condition that will be used to match the current exception
12222 being raised with the exception that the user wants to catch. This
12223 assumes that this condition is used when the inferior just triggered
12224 an exception catchpoint.
12225 EX: the type of catchpoints used for catching Ada exceptions. */
12228 ada_exception_catchpoint_cond_string (const char *excep_string,
12229 enum ada_exception_catchpoint_kind ex)
12232 bool is_standard_exc = false;
12233 std::string result;
12235 if (ex == ada_catch_handlers)
12237 /* For exception handlers catchpoints, the condition string does
12238 not use the same parameter as for the other exceptions. */
12239 result = ("long_integer (GNAT_GCC_exception_Access"
12240 "(gcc_exception).all.occurrence.id)");
12243 result = "long_integer (e)";
12245 /* The standard exceptions are a special case. They are defined in
12246 runtime units that have been compiled without debugging info; if
12247 EXCEP_STRING is the not-fully-qualified name of a standard
12248 exception (e.g. "constraint_error") then, during the evaluation
12249 of the condition expression, the symbol lookup on this name would
12250 *not* return this standard exception. The catchpoint condition
12251 may then be set only on user-defined exceptions which have the
12252 same not-fully-qualified name (e.g. my_package.constraint_error).
12254 To avoid this unexcepted behavior, these standard exceptions are
12255 systematically prefixed by "standard". This means that "catch
12256 exception constraint_error" is rewritten into "catch exception
12257 standard.constraint_error".
12259 If an exception named constraint_error is defined in another package of
12260 the inferior program, then the only way to specify this exception as a
12261 breakpoint condition is to use its fully-qualified named:
12262 e.g. my_package.constraint_error. */
12264 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12266 if (strcmp (standard_exc [i], excep_string) == 0)
12268 is_standard_exc = true;
12275 if (is_standard_exc)
12276 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12278 string_appendf (result, "long_integer (&%s)", excep_string);
12283 /* Return the symtab_and_line that should be used to insert an exception
12284 catchpoint of the TYPE kind.
12286 ADDR_STRING returns the name of the function where the real
12287 breakpoint that implements the catchpoints is set, depending on the
12288 type of catchpoint we need to create. */
12290 static struct symtab_and_line
12291 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12292 std::string *addr_string, const struct breakpoint_ops **ops)
12294 const char *sym_name;
12295 struct symbol *sym;
12297 /* First, find out which exception support info to use. */
12298 ada_exception_support_info_sniffer ();
12300 /* Then lookup the function on which we will break in order to catch
12301 the Ada exceptions requested by the user. */
12302 sym_name = ada_exception_sym_name (ex);
12303 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12306 error (_("Catchpoint symbol not found: %s"), sym_name);
12308 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12309 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12311 /* Set ADDR_STRING. */
12312 *addr_string = sym_name;
12315 *ops = ada_exception_breakpoint_ops (ex);
12317 return find_function_start_sal (sym, 1);
12320 /* Create an Ada exception catchpoint.
12322 EX_KIND is the kind of exception catchpoint to be created.
12324 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12325 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12326 of the exception to which this catchpoint applies.
12328 COND_STRING, if not empty, is the catchpoint condition.
12330 TEMPFLAG, if nonzero, means that the underlying breakpoint
12331 should be temporary.
12333 FROM_TTY is the usual argument passed to all commands implementations. */
12336 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12337 enum ada_exception_catchpoint_kind ex_kind,
12338 const std::string &excep_string,
12339 const std::string &cond_string,
12344 std::string addr_string;
12345 const struct breakpoint_ops *ops = NULL;
12346 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12348 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12349 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12350 ops, tempflag, disabled, from_tty);
12351 c->excep_string = excep_string;
12352 create_excep_cond_exprs (c.get (), ex_kind);
12353 if (!cond_string.empty ())
12354 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12355 install_breakpoint (0, std::move (c), 1);
12358 /* Implement the "catch exception" command. */
12361 catch_ada_exception_command (const char *arg_entry, int from_tty,
12362 struct cmd_list_element *command)
12364 const char *arg = arg_entry;
12365 struct gdbarch *gdbarch = get_current_arch ();
12367 enum ada_exception_catchpoint_kind ex_kind;
12368 std::string excep_string;
12369 std::string cond_string;
12371 tempflag = command->context () == CATCH_TEMPORARY;
12375 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12377 create_ada_exception_catchpoint (gdbarch, ex_kind,
12378 excep_string, cond_string,
12379 tempflag, 1 /* enabled */,
12383 /* Implement the "catch handlers" command. */
12386 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12387 struct cmd_list_element *command)
12389 const char *arg = arg_entry;
12390 struct gdbarch *gdbarch = get_current_arch ();
12392 enum ada_exception_catchpoint_kind ex_kind;
12393 std::string excep_string;
12394 std::string cond_string;
12396 tempflag = command->context () == CATCH_TEMPORARY;
12400 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12402 create_ada_exception_catchpoint (gdbarch, ex_kind,
12403 excep_string, cond_string,
12404 tempflag, 1 /* enabled */,
12408 /* Completion function for the Ada "catch" commands. */
12411 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12412 const char *text, const char *word)
12414 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12416 for (const ada_exc_info &info : exceptions)
12418 if (startswith (info.name, word))
12419 tracker.add_completion (make_unique_xstrdup (info.name));
12423 /* Split the arguments specified in a "catch assert" command.
12425 ARGS contains the command's arguments (or the empty string if
12426 no arguments were passed).
12428 If ARGS contains a condition, set COND_STRING to that condition
12429 (the memory needs to be deallocated after use). */
12432 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12434 args = skip_spaces (args);
12436 /* Check whether a condition was provided. */
12437 if (startswith (args, "if")
12438 && (isspace (args[2]) || args[2] == '\0'))
12441 args = skip_spaces (args);
12442 if (args[0] == '\0')
12443 error (_("condition missing after `if' keyword"));
12444 cond_string.assign (args);
12447 /* Otherwise, there should be no other argument at the end of
12449 else if (args[0] != '\0')
12450 error (_("Junk at end of arguments."));
12453 /* Implement the "catch assert" command. */
12456 catch_assert_command (const char *arg_entry, int from_tty,
12457 struct cmd_list_element *command)
12459 const char *arg = arg_entry;
12460 struct gdbarch *gdbarch = get_current_arch ();
12462 std::string cond_string;
12464 tempflag = command->context () == CATCH_TEMPORARY;
12468 catch_ada_assert_command_split (arg, cond_string);
12469 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12471 tempflag, 1 /* enabled */,
12475 /* Return non-zero if the symbol SYM is an Ada exception object. */
12478 ada_is_exception_sym (struct symbol *sym)
12480 const char *type_name = SYMBOL_TYPE (sym)->name ();
12482 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12483 && SYMBOL_CLASS (sym) != LOC_BLOCK
12484 && SYMBOL_CLASS (sym) != LOC_CONST
12485 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12486 && type_name != NULL && strcmp (type_name, "exception") == 0);
12489 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12490 Ada exception object. This matches all exceptions except the ones
12491 defined by the Ada language. */
12494 ada_is_non_standard_exception_sym (struct symbol *sym)
12498 if (!ada_is_exception_sym (sym))
12501 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12502 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12503 return 0; /* A standard exception. */
12505 /* Numeric_Error is also a standard exception, so exclude it.
12506 See the STANDARD_EXC description for more details as to why
12507 this exception is not listed in that array. */
12508 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12514 /* A helper function for std::sort, comparing two struct ada_exc_info
12517 The comparison is determined first by exception name, and then
12518 by exception address. */
12521 ada_exc_info::operator< (const ada_exc_info &other) const
12525 result = strcmp (name, other.name);
12528 if (result == 0 && addr < other.addr)
12534 ada_exc_info::operator== (const ada_exc_info &other) const
12536 return addr == other.addr && strcmp (name, other.name) == 0;
12539 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12540 routine, but keeping the first SKIP elements untouched.
12542 All duplicates are also removed. */
12545 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12548 std::sort (exceptions->begin () + skip, exceptions->end ());
12549 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12550 exceptions->end ());
12553 /* Add all exceptions defined by the Ada standard whose name match
12554 a regular expression.
12556 If PREG is not NULL, then this regexp_t object is used to
12557 perform the symbol name matching. Otherwise, no name-based
12558 filtering is performed.
12560 EXCEPTIONS is a vector of exceptions to which matching exceptions
12564 ada_add_standard_exceptions (compiled_regex *preg,
12565 std::vector<ada_exc_info> *exceptions)
12569 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12572 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12574 struct bound_minimal_symbol msymbol
12575 = ada_lookup_simple_minsym (standard_exc[i]);
12577 if (msymbol.minsym != NULL)
12579 struct ada_exc_info info
12580 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12582 exceptions->push_back (info);
12588 /* Add all Ada exceptions defined locally and accessible from the given
12591 If PREG is not NULL, then this regexp_t object is used to
12592 perform the symbol name matching. Otherwise, no name-based
12593 filtering is performed.
12595 EXCEPTIONS is a vector of exceptions to which matching exceptions
12599 ada_add_exceptions_from_frame (compiled_regex *preg,
12600 struct frame_info *frame,
12601 std::vector<ada_exc_info> *exceptions)
12603 const struct block *block = get_frame_block (frame, 0);
12607 struct block_iterator iter;
12608 struct symbol *sym;
12610 ALL_BLOCK_SYMBOLS (block, iter, sym)
12612 switch (SYMBOL_CLASS (sym))
12619 if (ada_is_exception_sym (sym))
12621 struct ada_exc_info info = {sym->print_name (),
12622 SYMBOL_VALUE_ADDRESS (sym)};
12624 exceptions->push_back (info);
12628 if (BLOCK_FUNCTION (block) != NULL)
12630 block = BLOCK_SUPERBLOCK (block);
12634 /* Return true if NAME matches PREG or if PREG is NULL. */
12637 name_matches_regex (const char *name, compiled_regex *preg)
12639 return (preg == NULL
12640 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12643 /* Add all exceptions defined globally whose name name match
12644 a regular expression, excluding standard exceptions.
12646 The reason we exclude standard exceptions is that they need
12647 to be handled separately: Standard exceptions are defined inside
12648 a runtime unit which is normally not compiled with debugging info,
12649 and thus usually do not show up in our symbol search. However,
12650 if the unit was in fact built with debugging info, we need to
12651 exclude them because they would duplicate the entry we found
12652 during the special loop that specifically searches for those
12653 standard exceptions.
12655 If PREG is not NULL, then this regexp_t object is used to
12656 perform the symbol name matching. Otherwise, no name-based
12657 filtering is performed.
12659 EXCEPTIONS is a vector of exceptions to which matching exceptions
12663 ada_add_global_exceptions (compiled_regex *preg,
12664 std::vector<ada_exc_info> *exceptions)
12666 /* In Ada, the symbol "search name" is a linkage name, whereas the
12667 regular expression used to do the matching refers to the natural
12668 name. So match against the decoded name. */
12669 expand_symtabs_matching (NULL,
12670 lookup_name_info::match_any (),
12671 [&] (const char *search_name)
12673 std::string decoded = ada_decode (search_name);
12674 return name_matches_regex (decoded.c_str (), preg);
12677 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
12680 for (objfile *objfile : current_program_space->objfiles ())
12682 for (compunit_symtab *s : objfile->compunits ())
12684 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12687 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12689 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12690 struct block_iterator iter;
12691 struct symbol *sym;
12693 ALL_BLOCK_SYMBOLS (b, iter, sym)
12694 if (ada_is_non_standard_exception_sym (sym)
12695 && name_matches_regex (sym->natural_name (), preg))
12697 struct ada_exc_info info
12698 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12700 exceptions->push_back (info);
12707 /* Implements ada_exceptions_list with the regular expression passed
12708 as a regex_t, rather than a string.
12710 If not NULL, PREG is used to filter out exceptions whose names
12711 do not match. Otherwise, all exceptions are listed. */
12713 static std::vector<ada_exc_info>
12714 ada_exceptions_list_1 (compiled_regex *preg)
12716 std::vector<ada_exc_info> result;
12719 /* First, list the known standard exceptions. These exceptions
12720 need to be handled separately, as they are usually defined in
12721 runtime units that have been compiled without debugging info. */
12723 ada_add_standard_exceptions (preg, &result);
12725 /* Next, find all exceptions whose scope is local and accessible
12726 from the currently selected frame. */
12728 if (has_stack_frames ())
12730 prev_len = result.size ();
12731 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12733 if (result.size () > prev_len)
12734 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12737 /* Add all exceptions whose scope is global. */
12739 prev_len = result.size ();
12740 ada_add_global_exceptions (preg, &result);
12741 if (result.size () > prev_len)
12742 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12747 /* Return a vector of ada_exc_info.
12749 If REGEXP is NULL, all exceptions are included in the result.
12750 Otherwise, it should contain a valid regular expression,
12751 and only the exceptions whose names match that regular expression
12752 are included in the result.
12754 The exceptions are sorted in the following order:
12755 - Standard exceptions (defined by the Ada language), in
12756 alphabetical order;
12757 - Exceptions only visible from the current frame, in
12758 alphabetical order;
12759 - Exceptions whose scope is global, in alphabetical order. */
12761 std::vector<ada_exc_info>
12762 ada_exceptions_list (const char *regexp)
12764 if (regexp == NULL)
12765 return ada_exceptions_list_1 (NULL);
12767 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12768 return ada_exceptions_list_1 (®);
12771 /* Implement the "info exceptions" command. */
12774 info_exceptions_command (const char *regexp, int from_tty)
12776 struct gdbarch *gdbarch = get_current_arch ();
12778 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12780 if (regexp != NULL)
12782 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12784 printf_filtered (_("All defined Ada exceptions:\n"));
12786 for (const ada_exc_info &info : exceptions)
12787 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12791 /* Language vector */
12793 /* symbol_name_matcher_ftype adapter for wild_match. */
12796 do_wild_match (const char *symbol_search_name,
12797 const lookup_name_info &lookup_name,
12798 completion_match_result *comp_match_res)
12800 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12803 /* symbol_name_matcher_ftype adapter for full_match. */
12806 do_full_match (const char *symbol_search_name,
12807 const lookup_name_info &lookup_name,
12808 completion_match_result *comp_match_res)
12810 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12812 /* If both symbols start with "_ada_", just let the loop below
12813 handle the comparison. However, if only the symbol name starts
12814 with "_ada_", skip the prefix and let the match proceed as
12816 if (startswith (symbol_search_name, "_ada_")
12817 && !startswith (lname, "_ada"))
12818 symbol_search_name += 5;
12820 int uscore_count = 0;
12821 while (*lname != '\0')
12823 if (*symbol_search_name != *lname)
12825 if (*symbol_search_name == 'B' && uscore_count == 2
12826 && symbol_search_name[1] == '_')
12828 symbol_search_name += 2;
12829 while (isdigit (*symbol_search_name))
12830 ++symbol_search_name;
12831 if (symbol_search_name[0] == '_'
12832 && symbol_search_name[1] == '_')
12834 symbol_search_name += 2;
12841 if (*symbol_search_name == '_')
12846 ++symbol_search_name;
12850 return is_name_suffix (symbol_search_name);
12853 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12856 do_exact_match (const char *symbol_search_name,
12857 const lookup_name_info &lookup_name,
12858 completion_match_result *comp_match_res)
12860 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12863 /* Build the Ada lookup name for LOOKUP_NAME. */
12865 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12867 gdb::string_view user_name = lookup_name.name ();
12869 if (!user_name.empty () && user_name[0] == '<')
12871 if (user_name.back () == '>')
12873 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12876 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12877 m_encoded_p = true;
12878 m_verbatim_p = true;
12879 m_wild_match_p = false;
12880 m_standard_p = false;
12884 m_verbatim_p = false;
12886 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12890 const char *folded = ada_fold_name (user_name);
12891 m_encoded_name = ada_encode_1 (folded, false);
12892 if (m_encoded_name.empty ())
12893 m_encoded_name = gdb::to_string (user_name);
12896 m_encoded_name = gdb::to_string (user_name);
12898 /* Handle the 'package Standard' special case. See description
12899 of m_standard_p. */
12900 if (startswith (m_encoded_name.c_str (), "standard__"))
12902 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12903 m_standard_p = true;
12906 m_standard_p = false;
12908 /* If the name contains a ".", then the user is entering a fully
12909 qualified entity name, and the match must not be done in wild
12910 mode. Similarly, if the user wants to complete what looks
12911 like an encoded name, the match must not be done in wild
12912 mode. Also, in the standard__ special case always do
12913 non-wild matching. */
12915 = (lookup_name.match_type () != symbol_name_match_type::FULL
12918 && user_name.find ('.') == std::string::npos);
12922 /* symbol_name_matcher_ftype method for Ada. This only handles
12923 completion mode. */
12926 ada_symbol_name_matches (const char *symbol_search_name,
12927 const lookup_name_info &lookup_name,
12928 completion_match_result *comp_match_res)
12930 return lookup_name.ada ().matches (symbol_search_name,
12931 lookup_name.match_type (),
12935 /* A name matcher that matches the symbol name exactly, with
12939 literal_symbol_name_matcher (const char *symbol_search_name,
12940 const lookup_name_info &lookup_name,
12941 completion_match_result *comp_match_res)
12943 gdb::string_view name_view = lookup_name.name ();
12945 if (lookup_name.completion_mode ()
12946 ? (strncmp (symbol_search_name, name_view.data (),
12947 name_view.size ()) == 0)
12948 : symbol_search_name == name_view)
12950 if (comp_match_res != NULL)
12951 comp_match_res->set_match (symbol_search_name);
12958 /* Implement the "get_symbol_name_matcher" language_defn method for
12961 static symbol_name_matcher_ftype *
12962 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12964 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12965 return literal_symbol_name_matcher;
12967 if (lookup_name.completion_mode ())
12968 return ada_symbol_name_matches;
12971 if (lookup_name.ada ().wild_match_p ())
12972 return do_wild_match;
12973 else if (lookup_name.ada ().verbatim_p ())
12974 return do_exact_match;
12976 return do_full_match;
12980 /* Class representing the Ada language. */
12982 class ada_language : public language_defn
12986 : language_defn (language_ada)
12989 /* See language.h. */
12991 const char *name () const override
12994 /* See language.h. */
12996 const char *natural_name () const override
12999 /* See language.h. */
13001 const std::vector<const char *> &filename_extensions () const override
13003 static const std::vector<const char *> extensions
13004 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13008 /* Print an array element index using the Ada syntax. */
13010 void print_array_index (struct type *index_type,
13012 struct ui_file *stream,
13013 const value_print_options *options) const override
13015 struct value *index_value = val_atr (index_type, index);
13017 value_print (index_value, stream, options);
13018 fprintf_filtered (stream, " => ");
13021 /* Implement the "read_var_value" language_defn method for Ada. */
13023 struct value *read_var_value (struct symbol *var,
13024 const struct block *var_block,
13025 struct frame_info *frame) const override
13027 /* The only case where default_read_var_value is not sufficient
13028 is when VAR is a renaming... */
13029 if (frame != nullptr)
13031 const struct block *frame_block = get_frame_block (frame, NULL);
13032 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13033 return ada_read_renaming_var_value (var, frame_block);
13036 /* This is a typical case where we expect the default_read_var_value
13037 function to work. */
13038 return language_defn::read_var_value (var, var_block, frame);
13041 /* See language.h. */
13042 virtual bool symbol_printing_suppressed (struct symbol *symbol) const override
13044 return symbol->artificial;
13047 /* See language.h. */
13048 void language_arch_info (struct gdbarch *gdbarch,
13049 struct language_arch_info *lai) const override
13051 const struct builtin_type *builtin = builtin_type (gdbarch);
13053 /* Helper function to allow shorter lines below. */
13054 auto add = [&] (struct type *t)
13056 lai->add_primitive_type (t);
13059 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13061 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13062 0, "long_integer"));
13063 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13064 0, "short_integer"));
13065 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13067 lai->set_string_char_type (char_type);
13069 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13070 "float", gdbarch_float_format (gdbarch)));
13071 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13072 "long_float", gdbarch_double_format (gdbarch)));
13073 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13074 0, "long_long_integer"));
13075 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13077 gdbarch_long_double_format (gdbarch)));
13078 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13080 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13082 add (builtin->builtin_void);
13084 struct type *system_addr_ptr
13085 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13087 system_addr_ptr->set_name ("system__address");
13088 add (system_addr_ptr);
13090 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13091 type. This is a signed integral type whose size is the same as
13092 the size of addresses. */
13093 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13094 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13095 "storage_offset"));
13097 lai->set_bool_type (builtin->builtin_bool);
13100 /* See language.h. */
13102 bool iterate_over_symbols
13103 (const struct block *block, const lookup_name_info &name,
13104 domain_enum domain,
13105 gdb::function_view<symbol_found_callback_ftype> callback) const override
13107 std::vector<struct block_symbol> results
13108 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13109 for (block_symbol &sym : results)
13111 if (!callback (&sym))
13118 /* See language.h. */
13119 bool sniff_from_mangled_name (const char *mangled,
13120 char **out) const override
13122 std::string demangled = ada_decode (mangled);
13126 if (demangled != mangled && demangled[0] != '<')
13128 /* Set the gsymbol language to Ada, but still return 0.
13129 Two reasons for that:
13131 1. For Ada, we prefer computing the symbol's decoded name
13132 on the fly rather than pre-compute it, in order to save
13133 memory (Ada projects are typically very large).
13135 2. There are some areas in the definition of the GNAT
13136 encoding where, with a bit of bad luck, we might be able
13137 to decode a non-Ada symbol, generating an incorrect
13138 demangled name (Eg: names ending with "TB" for instance
13139 are identified as task bodies and so stripped from
13140 the decoded name returned).
13142 Returning true, here, but not setting *DEMANGLED, helps us get
13143 a little bit of the best of both worlds. Because we're last,
13144 we should not affect any of the other languages that were
13145 able to demangle the symbol before us; we get to correctly
13146 tag Ada symbols as such; and even if we incorrectly tagged a
13147 non-Ada symbol, which should be rare, any routing through the
13148 Ada language should be transparent (Ada tries to behave much
13149 like C/C++ with non-Ada symbols). */
13156 /* See language.h. */
13158 char *demangle_symbol (const char *mangled, int options) const override
13160 return ada_la_decode (mangled, options);
13163 /* See language.h. */
13165 void print_type (struct type *type, const char *varstring,
13166 struct ui_file *stream, int show, int level,
13167 const struct type_print_options *flags) const override
13169 ada_print_type (type, varstring, stream, show, level, flags);
13172 /* See language.h. */
13174 const char *word_break_characters (void) const override
13176 return ada_completer_word_break_characters;
13179 /* See language.h. */
13181 void collect_symbol_completion_matches (completion_tracker &tracker,
13182 complete_symbol_mode mode,
13183 symbol_name_match_type name_match_type,
13184 const char *text, const char *word,
13185 enum type_code code) const override
13187 struct symbol *sym;
13188 const struct block *b, *surrounding_static_block = 0;
13189 struct block_iterator iter;
13191 gdb_assert (code == TYPE_CODE_UNDEF);
13193 lookup_name_info lookup_name (text, name_match_type, true);
13195 /* First, look at the partial symtab symbols. */
13196 expand_symtabs_matching (NULL,
13200 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13203 /* At this point scan through the misc symbol vectors and add each
13204 symbol you find to the list. Eventually we want to ignore
13205 anything that isn't a text symbol (everything else will be
13206 handled by the psymtab code above). */
13208 for (objfile *objfile : current_program_space->objfiles ())
13210 for (minimal_symbol *msymbol : objfile->msymbols ())
13214 if (completion_skip_symbol (mode, msymbol))
13217 language symbol_language = msymbol->language ();
13219 /* Ada minimal symbols won't have their language set to Ada. If
13220 we let completion_list_add_name compare using the
13221 default/C-like matcher, then when completing e.g., symbols in a
13222 package named "pck", we'd match internal Ada symbols like
13223 "pckS", which are invalid in an Ada expression, unless you wrap
13224 them in '<' '>' to request a verbatim match.
13226 Unfortunately, some Ada encoded names successfully demangle as
13227 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13228 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13229 with the wrong language set. Paper over that issue here. */
13230 if (symbol_language == language_auto
13231 || symbol_language == language_cplus)
13232 symbol_language = language_ada;
13234 completion_list_add_name (tracker,
13236 msymbol->linkage_name (),
13237 lookup_name, text, word);
13241 /* Search upwards from currently selected frame (so that we can
13242 complete on local vars. */
13244 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13246 if (!BLOCK_SUPERBLOCK (b))
13247 surrounding_static_block = b; /* For elmin of dups */
13249 ALL_BLOCK_SYMBOLS (b, iter, sym)
13251 if (completion_skip_symbol (mode, sym))
13254 completion_list_add_name (tracker,
13256 sym->linkage_name (),
13257 lookup_name, text, word);
13261 /* Go through the symtabs and check the externs and statics for
13262 symbols which match. */
13264 for (objfile *objfile : current_program_space->objfiles ())
13266 for (compunit_symtab *s : objfile->compunits ())
13269 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13270 ALL_BLOCK_SYMBOLS (b, iter, sym)
13272 if (completion_skip_symbol (mode, sym))
13275 completion_list_add_name (tracker,
13277 sym->linkage_name (),
13278 lookup_name, text, word);
13283 for (objfile *objfile : current_program_space->objfiles ())
13285 for (compunit_symtab *s : objfile->compunits ())
13288 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13289 /* Don't do this block twice. */
13290 if (b == surrounding_static_block)
13292 ALL_BLOCK_SYMBOLS (b, iter, sym)
13294 if (completion_skip_symbol (mode, sym))
13297 completion_list_add_name (tracker,
13299 sym->linkage_name (),
13300 lookup_name, text, word);
13306 /* See language.h. */
13308 gdb::unique_xmalloc_ptr<char> watch_location_expression
13309 (struct type *type, CORE_ADDR addr) const override
13311 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13312 std::string name = type_to_string (type);
13313 return gdb::unique_xmalloc_ptr<char>
13314 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13317 /* See language.h. */
13319 void value_print (struct value *val, struct ui_file *stream,
13320 const struct value_print_options *options) const override
13322 return ada_value_print (val, stream, options);
13325 /* See language.h. */
13327 void value_print_inner
13328 (struct value *val, struct ui_file *stream, int recurse,
13329 const struct value_print_options *options) const override
13331 return ada_value_print_inner (val, stream, recurse, options);
13334 /* See language.h. */
13336 struct block_symbol lookup_symbol_nonlocal
13337 (const char *name, const struct block *block,
13338 const domain_enum domain) const override
13340 struct block_symbol sym;
13342 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13343 if (sym.symbol != NULL)
13346 /* If we haven't found a match at this point, try the primitive
13347 types. In other languages, this search is performed before
13348 searching for global symbols in order to short-circuit that
13349 global-symbol search if it happens that the name corresponds
13350 to a primitive type. But we cannot do the same in Ada, because
13351 it is perfectly legitimate for a program to declare a type which
13352 has the same name as a standard type. If looking up a type in
13353 that situation, we have traditionally ignored the primitive type
13354 in favor of user-defined types. This is why, unlike most other
13355 languages, we search the primitive types this late and only after
13356 having searched the global symbols without success. */
13358 if (domain == VAR_DOMAIN)
13360 struct gdbarch *gdbarch;
13363 gdbarch = target_gdbarch ();
13365 gdbarch = block_gdbarch (block);
13367 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13368 if (sym.symbol != NULL)
13375 /* See language.h. */
13377 int parser (struct parser_state *ps) const override
13379 warnings_issued = 0;
13380 return ada_parse (ps);
13383 /* See language.h. */
13385 void emitchar (int ch, struct type *chtype,
13386 struct ui_file *stream, int quoter) const override
13388 ada_emit_char (ch, chtype, stream, quoter, 1);
13391 /* See language.h. */
13393 void printchar (int ch, struct type *chtype,
13394 struct ui_file *stream) const override
13396 ada_printchar (ch, chtype, stream);
13399 /* See language.h. */
13401 void printstr (struct ui_file *stream, struct type *elttype,
13402 const gdb_byte *string, unsigned int length,
13403 const char *encoding, int force_ellipses,
13404 const struct value_print_options *options) const override
13406 ada_printstr (stream, elttype, string, length, encoding,
13407 force_ellipses, options);
13410 /* See language.h. */
13412 void print_typedef (struct type *type, struct symbol *new_symbol,
13413 struct ui_file *stream) const override
13415 ada_print_typedef (type, new_symbol, stream);
13418 /* See language.h. */
13420 bool is_string_type_p (struct type *type) const override
13422 return ada_is_string_type (type);
13425 /* See language.h. */
13427 const char *struct_too_deep_ellipsis () const override
13428 { return "(...)"; }
13430 /* See language.h. */
13432 bool c_style_arrays_p () const override
13435 /* See language.h. */
13437 bool store_sym_names_in_linkage_form_p () const override
13440 /* See language.h. */
13442 const struct lang_varobj_ops *varobj_ops () const override
13443 { return &ada_varobj_ops; }
13446 /* See language.h. */
13448 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13449 (const lookup_name_info &lookup_name) const override
13451 return ada_get_symbol_name_matcher (lookup_name);
13455 /* Single instance of the Ada language class. */
13457 static ada_language ada_language_defn;
13459 /* Command-list for the "set/show ada" prefix command. */
13460 static struct cmd_list_element *set_ada_list;
13461 static struct cmd_list_element *show_ada_list;
13464 initialize_ada_catchpoint_ops (void)
13466 struct breakpoint_ops *ops;
13468 initialize_breakpoint_ops ();
13470 ops = &catch_exception_breakpoint_ops;
13471 *ops = bkpt_breakpoint_ops;
13472 ops->allocate_location = allocate_location_exception;
13473 ops->re_set = re_set_exception;
13474 ops->check_status = check_status_exception;
13475 ops->print_it = print_it_exception;
13476 ops->print_one = print_one_exception;
13477 ops->print_mention = print_mention_exception;
13478 ops->print_recreate = print_recreate_exception;
13480 ops = &catch_exception_unhandled_breakpoint_ops;
13481 *ops = bkpt_breakpoint_ops;
13482 ops->allocate_location = allocate_location_exception;
13483 ops->re_set = re_set_exception;
13484 ops->check_status = check_status_exception;
13485 ops->print_it = print_it_exception;
13486 ops->print_one = print_one_exception;
13487 ops->print_mention = print_mention_exception;
13488 ops->print_recreate = print_recreate_exception;
13490 ops = &catch_assert_breakpoint_ops;
13491 *ops = bkpt_breakpoint_ops;
13492 ops->allocate_location = allocate_location_exception;
13493 ops->re_set = re_set_exception;
13494 ops->check_status = check_status_exception;
13495 ops->print_it = print_it_exception;
13496 ops->print_one = print_one_exception;
13497 ops->print_mention = print_mention_exception;
13498 ops->print_recreate = print_recreate_exception;
13500 ops = &catch_handlers_breakpoint_ops;
13501 *ops = bkpt_breakpoint_ops;
13502 ops->allocate_location = allocate_location_exception;
13503 ops->re_set = re_set_exception;
13504 ops->check_status = check_status_exception;
13505 ops->print_it = print_it_exception;
13506 ops->print_one = print_one_exception;
13507 ops->print_mention = print_mention_exception;
13508 ops->print_recreate = print_recreate_exception;
13511 /* This module's 'new_objfile' observer. */
13514 ada_new_objfile_observer (struct objfile *objfile)
13516 ada_clear_symbol_cache ();
13519 /* This module's 'free_objfile' observer. */
13522 ada_free_objfile_observer (struct objfile *objfile)
13524 ada_clear_symbol_cache ();
13527 void _initialize_ada_language ();
13529 _initialize_ada_language ()
13531 initialize_ada_catchpoint_ops ();
13533 add_basic_prefix_cmd ("ada", no_class,
13534 _("Prefix command for changing Ada-specific settings."),
13535 &set_ada_list, 0, &setlist);
13537 add_show_prefix_cmd ("ada", no_class,
13538 _("Generic command for showing Ada-specific settings."),
13539 &show_ada_list, 0, &showlist);
13541 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13542 &trust_pad_over_xvs, _("\
13543 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13544 Show whether an optimization trusting PAD types over XVS types is activated."),
13546 This is related to the encoding used by the GNAT compiler. The debugger\n\
13547 should normally trust the contents of PAD types, but certain older versions\n\
13548 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13549 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13550 work around this bug. It is always safe to turn this option \"off\", but\n\
13551 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13552 this option to \"off\" unless necessary."),
13553 NULL, NULL, &set_ada_list, &show_ada_list);
13555 add_setshow_boolean_cmd ("print-signatures", class_vars,
13556 &print_signatures, _("\
13557 Enable or disable the output of formal and return types for functions in the \
13558 overloads selection menu."), _("\
13559 Show whether the output of formal and return types for functions in the \
13560 overloads selection menu is activated."),
13561 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13563 add_catch_command ("exception", _("\
13564 Catch Ada exceptions, when raised.\n\
13565 Usage: catch exception [ARG] [if CONDITION]\n\
13566 Without any argument, stop when any Ada exception is raised.\n\
13567 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13568 being raised does not have a handler (and will therefore lead to the task's\n\
13570 Otherwise, the catchpoint only stops when the name of the exception being\n\
13571 raised is the same as ARG.\n\
13572 CONDITION is a boolean expression that is evaluated to see whether the\n\
13573 exception should cause a stop."),
13574 catch_ada_exception_command,
13575 catch_ada_completer,
13579 add_catch_command ("handlers", _("\
13580 Catch Ada exceptions, when handled.\n\
13581 Usage: catch handlers [ARG] [if CONDITION]\n\
13582 Without any argument, stop when any Ada exception is handled.\n\
13583 With an argument, catch only exceptions with the given name.\n\
13584 CONDITION is a boolean expression that is evaluated to see whether the\n\
13585 exception should cause a stop."),
13586 catch_ada_handlers_command,
13587 catch_ada_completer,
13590 add_catch_command ("assert", _("\
13591 Catch failed Ada assertions, when raised.\n\
13592 Usage: catch assert [if CONDITION]\n\
13593 CONDITION is a boolean expression that is evaluated to see whether the\n\
13594 exception should cause a stop."),
13595 catch_assert_command,
13600 varsize_limit = 65536;
13601 add_setshow_uinteger_cmd ("varsize-limit", class_support,
13602 &varsize_limit, _("\
13603 Set the maximum number of bytes allowed in a variable-size object."), _("\
13604 Show the maximum number of bytes allowed in a variable-size object."), _("\
13605 Attempts to access an object whose size is not a compile-time constant\n\
13606 and exceeds this limit will cause an error."),
13607 NULL, NULL, &setlist, &showlist);
13609 add_info ("exceptions", info_exceptions_command,
13611 List all Ada exception names.\n\
13612 Usage: info exceptions [REGEXP]\n\
13613 If a regular expression is passed as an argument, only those matching\n\
13614 the regular expression are listed."));
13616 add_basic_prefix_cmd ("ada", class_maintenance,
13617 _("Set Ada maintenance-related variables."),
13618 &maint_set_ada_cmdlist,
13619 0/*allow-unknown*/, &maintenance_set_cmdlist);
13621 add_show_prefix_cmd ("ada", class_maintenance,
13622 _("Show Ada maintenance-related variables."),
13623 &maint_show_ada_cmdlist,
13624 0/*allow-unknown*/, &maintenance_show_cmdlist);
13626 add_setshow_boolean_cmd
13627 ("ignore-descriptive-types", class_maintenance,
13628 &ada_ignore_descriptive_types_p,
13629 _("Set whether descriptive types generated by GNAT should be ignored."),
13630 _("Show whether descriptive types generated by GNAT should be ignored."),
13632 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13633 DWARF attribute."),
13634 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13636 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13638 NULL, xcalloc, xfree);
13640 /* The ada-lang observers. */
13641 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13642 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13643 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");