1 /* DWARF 2 location expression support for GDB.
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
35 #include "complaints.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "common/selftest.h"
44 #include <unordered_set>
45 #include "common/underlying.h"
46 #include "common/byte-vector.h"
48 extern int dwarf_always_disassemble;
50 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
51 struct frame_info *frame,
54 struct dwarf2_per_cu_data *per_cu,
55 struct type *subobj_type,
56 LONGEST subobj_byte_offset);
58 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
59 (struct frame_info *frame,
60 enum call_site_parameter_kind kind,
61 union call_site_parameter_u kind_u,
62 struct dwarf2_per_cu_data **per_cu_return);
64 static struct value *indirect_synthetic_pointer
65 (sect_offset die, LONGEST byte_offset,
66 struct dwarf2_per_cu_data *per_cu,
67 struct frame_info *frame,
68 struct type *type, bool resolve_abstract_p = false);
70 /* Until these have formal names, we define these here.
71 ref: http://gcc.gnu.org/wiki/DebugFission
72 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
73 and is then followed by data specific to that entry. */
77 /* Indicates the end of the list of entries. */
78 DEBUG_LOC_END_OF_LIST = 0,
80 /* This is followed by an unsigned LEB128 number that is an index into
81 .debug_addr and specifies the base address for all following entries. */
82 DEBUG_LOC_BASE_ADDRESS = 1,
84 /* This is followed by two unsigned LEB128 numbers that are indices into
85 .debug_addr and specify the beginning and ending addresses, and then
86 a normal location expression as in .debug_loc. */
87 DEBUG_LOC_START_END = 2,
89 /* This is followed by an unsigned LEB128 number that is an index into
90 .debug_addr and specifies the beginning address, and a 4 byte unsigned
91 number that specifies the length, and then a normal location expression
93 DEBUG_LOC_START_LENGTH = 3,
95 /* An internal value indicating there is insufficient data. */
96 DEBUG_LOC_BUFFER_OVERFLOW = -1,
98 /* An internal value indicating an invalid kind of entry was found. */
99 DEBUG_LOC_INVALID_ENTRY = -2
102 /* Helper function which throws an error if a synthetic pointer is
106 invalid_synthetic_pointer (void)
108 error (_("access outside bounds of object "
109 "referenced via synthetic pointer"));
112 /* Decode the addresses in a non-dwo .debug_loc entry.
113 A pointer to the next byte to examine is returned in *NEW_PTR.
114 The encoded low,high addresses are return in *LOW,*HIGH.
115 The result indicates the kind of entry found. */
117 static enum debug_loc_kind
118 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
119 const gdb_byte **new_ptr,
120 CORE_ADDR *low, CORE_ADDR *high,
121 enum bfd_endian byte_order,
122 unsigned int addr_size,
125 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
127 if (buf_end - loc_ptr < 2 * addr_size)
128 return DEBUG_LOC_BUFFER_OVERFLOW;
131 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
133 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
134 loc_ptr += addr_size;
137 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
139 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
140 loc_ptr += addr_size;
144 /* A base-address-selection entry. */
145 if ((*low & base_mask) == base_mask)
146 return DEBUG_LOC_BASE_ADDRESS;
148 /* An end-of-list entry. */
149 if (*low == 0 && *high == 0)
150 return DEBUG_LOC_END_OF_LIST;
152 return DEBUG_LOC_START_END;
155 /* Decode the addresses in .debug_loclists entry.
156 A pointer to the next byte to examine is returned in *NEW_PTR.
157 The encoded low,high addresses are return in *LOW,*HIGH.
158 The result indicates the kind of entry found. */
160 static enum debug_loc_kind
161 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
162 const gdb_byte *loc_ptr,
163 const gdb_byte *buf_end,
164 const gdb_byte **new_ptr,
165 CORE_ADDR *low, CORE_ADDR *high,
166 enum bfd_endian byte_order,
167 unsigned int addr_size,
172 if (loc_ptr == buf_end)
173 return DEBUG_LOC_BUFFER_OVERFLOW;
177 case DW_LLE_end_of_list:
179 return DEBUG_LOC_END_OF_LIST;
180 case DW_LLE_base_address:
181 if (loc_ptr + addr_size > buf_end)
182 return DEBUG_LOC_BUFFER_OVERFLOW;
184 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
186 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
187 loc_ptr += addr_size;
189 return DEBUG_LOC_BASE_ADDRESS;
190 case DW_LLE_offset_pair:
191 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
193 return DEBUG_LOC_BUFFER_OVERFLOW;
195 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
197 return DEBUG_LOC_BUFFER_OVERFLOW;
200 return DEBUG_LOC_START_END;
202 return DEBUG_LOC_INVALID_ENTRY;
206 /* Decode the addresses in .debug_loc.dwo entry.
207 A pointer to the next byte to examine is returned in *NEW_PTR.
208 The encoded low,high addresses are return in *LOW,*HIGH.
209 The result indicates the kind of entry found. */
211 static enum debug_loc_kind
212 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
213 const gdb_byte *loc_ptr,
214 const gdb_byte *buf_end,
215 const gdb_byte **new_ptr,
216 CORE_ADDR *low, CORE_ADDR *high,
217 enum bfd_endian byte_order)
219 uint64_t low_index, high_index;
221 if (loc_ptr == buf_end)
222 return DEBUG_LOC_BUFFER_OVERFLOW;
226 case DW_LLE_GNU_end_of_list_entry:
228 return DEBUG_LOC_END_OF_LIST;
229 case DW_LLE_GNU_base_address_selection_entry:
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *high = dwarf2_read_addr_index (per_cu, high_index);
236 return DEBUG_LOC_BASE_ADDRESS;
237 case DW_LLE_GNU_start_end_entry:
238 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
240 return DEBUG_LOC_BUFFER_OVERFLOW;
241 *low = dwarf2_read_addr_index (per_cu, low_index);
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *high = dwarf2_read_addr_index (per_cu, high_index);
247 return DEBUG_LOC_START_END;
248 case DW_LLE_GNU_start_length_entry:
249 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
251 return DEBUG_LOC_BUFFER_OVERFLOW;
252 *low = dwarf2_read_addr_index (per_cu, low_index);
253 if (loc_ptr + 4 > buf_end)
254 return DEBUG_LOC_BUFFER_OVERFLOW;
256 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
257 *new_ptr = loc_ptr + 4;
258 return DEBUG_LOC_START_LENGTH;
260 return DEBUG_LOC_INVALID_ENTRY;
264 /* A function for dealing with location lists. Given a
265 symbol baton (BATON) and a pc value (PC), find the appropriate
266 location expression, set *LOCEXPR_LENGTH, and return a pointer
267 to the beginning of the expression. Returns NULL on failure.
269 For now, only return the first matching location expression; there
270 can be more than one in the list. */
273 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
274 size_t *locexpr_length, CORE_ADDR pc)
276 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
277 struct gdbarch *gdbarch = get_objfile_arch (objfile);
278 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
279 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
280 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
281 /* Adjust base_address for relocatable objects. */
282 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
283 CORE_ADDR base_address = baton->base_address + base_offset;
284 const gdb_byte *loc_ptr, *buf_end;
286 loc_ptr = baton->data;
287 buf_end = baton->data + baton->size;
291 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
293 enum debug_loc_kind kind;
294 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
297 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
298 loc_ptr, buf_end, &new_ptr,
299 &low, &high, byte_order);
300 else if (dwarf2_version (baton->per_cu) < 5)
301 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
303 byte_order, addr_size,
306 kind = decode_debug_loclists_addresses (baton->per_cu,
307 loc_ptr, buf_end, &new_ptr,
308 &low, &high, byte_order,
309 addr_size, signed_addr_p);
314 case DEBUG_LOC_END_OF_LIST:
317 case DEBUG_LOC_BASE_ADDRESS:
318 base_address = high + base_offset;
320 case DEBUG_LOC_START_END:
321 case DEBUG_LOC_START_LENGTH:
323 case DEBUG_LOC_BUFFER_OVERFLOW:
324 case DEBUG_LOC_INVALID_ENTRY:
325 error (_("dwarf2_find_location_expression: "
326 "Corrupted DWARF expression."));
328 gdb_assert_not_reached ("bad debug_loc_kind");
331 /* Otherwise, a location expression entry.
332 If the entry is from a DWO, don't add base address: the entry is from
333 .debug_addr which already has the DWARF "base address". We still add
334 base_offset in case we're debugging a PIE executable. */
343 high += base_address;
346 if (dwarf2_version (baton->per_cu) < 5)
348 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
353 unsigned int bytes_read;
355 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
356 loc_ptr += bytes_read;
359 if (low == high && pc == low)
361 /* This is entry PC record present only at entry point
362 of a function. Verify it is really the function entry point. */
364 const struct block *pc_block = block_for_pc (pc);
365 struct symbol *pc_func = NULL;
368 pc_func = block_linkage_function (pc_block);
370 if (pc_func && pc == BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (pc_func)))
372 *locexpr_length = length;
377 if (pc >= low && pc < high)
379 *locexpr_length = length;
387 /* This is the baton used when performing dwarf2 expression
389 struct dwarf_expr_baton
391 struct frame_info *frame;
392 struct dwarf2_per_cu_data *per_cu;
393 CORE_ADDR obj_address;
396 /* Implement find_frame_base_location method for LOC_BLOCK functions using
397 DWARF expression for its DW_AT_frame_base. */
400 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
401 const gdb_byte **start, size_t *length)
403 struct dwarf2_locexpr_baton *symbaton
404 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
406 *length = symbaton->size;
407 *start = symbaton->data;
410 /* Implement the struct symbol_block_ops::get_frame_base method for
411 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
414 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
416 struct gdbarch *gdbarch;
418 struct dwarf2_locexpr_baton *dlbaton;
419 const gdb_byte *start;
421 struct value *result;
423 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
424 Thus, it's supposed to provide the find_frame_base_location method as
426 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
428 gdbarch = get_frame_arch (frame);
429 type = builtin_type (gdbarch)->builtin_data_ptr;
430 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
432 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
433 (framefunc, get_frame_pc (frame), &start, &length);
434 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
437 /* The DW_AT_frame_base attribute contains a location description which
438 computes the base address itself. However, the call to
439 dwarf2_evaluate_loc_desc returns a value representing a variable at
440 that address. The frame base address is thus this variable's
442 return value_address (result);
445 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
446 function uses DWARF expression for its DW_AT_frame_base. */
448 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
450 locexpr_find_frame_base_location,
451 locexpr_get_frame_base
454 /* Implement find_frame_base_location method for LOC_BLOCK functions using
455 DWARF location list for its DW_AT_frame_base. */
458 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
459 const gdb_byte **start, size_t *length)
461 struct dwarf2_loclist_baton *symbaton
462 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
464 *start = dwarf2_find_location_expression (symbaton, length, pc);
467 /* Implement the struct symbol_block_ops::get_frame_base method for
468 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
471 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
473 struct gdbarch *gdbarch;
475 struct dwarf2_loclist_baton *dlbaton;
476 const gdb_byte *start;
478 struct value *result;
480 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
481 Thus, it's supposed to provide the find_frame_base_location method as
483 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
485 gdbarch = get_frame_arch (frame);
486 type = builtin_type (gdbarch)->builtin_data_ptr;
487 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
489 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
490 (framefunc, get_frame_pc (frame), &start, &length);
491 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
494 /* The DW_AT_frame_base attribute contains a location description which
495 computes the base address itself. However, the call to
496 dwarf2_evaluate_loc_desc returns a value representing a variable at
497 that address. The frame base address is thus this variable's
499 return value_address (result);
502 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
503 function uses DWARF location list for its DW_AT_frame_base. */
505 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
507 loclist_find_frame_base_location,
508 loclist_get_frame_base
511 /* See dwarf2loc.h. */
514 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
515 const gdb_byte **start, size_t *length)
517 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
519 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
521 ops_block->find_frame_base_location (framefunc, pc, start, length);
527 error (_("Could not find the frame base for \"%s\"."),
528 SYMBOL_NATURAL_NAME (framefunc));
532 get_frame_pc_for_per_cu_dwarf_call (void *baton)
534 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
536 return ctx->get_frame_pc ();
540 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
541 struct dwarf2_per_cu_data *per_cu)
543 struct dwarf2_locexpr_baton block;
545 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
546 get_frame_pc_for_per_cu_dwarf_call,
549 /* DW_OP_call_ref is currently not supported. */
550 gdb_assert (block.per_cu == per_cu);
552 ctx->eval (block.data, block.size);
555 /* Given context CTX, section offset SECT_OFF, and compilation unit
556 data PER_CU, execute the "variable value" operation on the DIE
557 found at SECT_OFF. */
559 static struct value *
560 sect_variable_value (struct dwarf_expr_context *ctx, sect_offset sect_off,
561 struct dwarf2_per_cu_data *per_cu)
563 struct type *die_type = dwarf2_fetch_die_type_sect_off (sect_off, per_cu);
565 if (die_type == NULL)
566 error (_("Bad DW_OP_GNU_variable_value DIE."));
568 /* Note: Things still work when the following test is removed. This
569 test and error is here to conform to the proposed specification. */
570 if (TYPE_CODE (die_type) != TYPE_CODE_INT
571 && TYPE_CODE (die_type) != TYPE_CODE_PTR)
572 error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer."));
574 struct type *type = lookup_pointer_type (die_type);
575 struct frame_info *frame = get_selected_frame (_("No frame selected."));
576 return indirect_synthetic_pointer (sect_off, 0, per_cu, frame, type, true);
579 class dwarf_evaluate_loc_desc : public dwarf_expr_context
583 struct frame_info *frame;
584 struct dwarf2_per_cu_data *per_cu;
585 CORE_ADDR obj_address;
587 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
588 the frame in BATON. */
590 CORE_ADDR get_frame_cfa () override
592 return dwarf2_frame_cfa (frame);
595 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
596 the frame in BATON. */
598 CORE_ADDR get_frame_pc () override
600 return get_frame_address_in_block (frame);
603 /* Using the objfile specified in BATON, find the address for the
604 current thread's thread-local storage with offset OFFSET. */
605 CORE_ADDR get_tls_address (CORE_ADDR offset) override
607 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
609 return target_translate_tls_address (objfile, offset);
612 /* Helper interface of per_cu_dwarf_call for
613 dwarf2_evaluate_loc_desc. */
615 void dwarf_call (cu_offset die_offset) override
617 per_cu_dwarf_call (this, die_offset, per_cu);
620 /* Helper interface of sect_variable_value for
621 dwarf2_evaluate_loc_desc. */
623 struct value *dwarf_variable_value (sect_offset sect_off) override
625 return sect_variable_value (this, sect_off, per_cu);
628 struct type *get_base_type (cu_offset die_offset, int size) override
630 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
632 error (_("Could not find type for DW_OP_const_type"));
633 if (size != 0 && TYPE_LENGTH (result) != size)
634 error (_("DW_OP_const_type has different sizes for type and data"));
638 /* Callback function for dwarf2_evaluate_loc_desc.
639 Fetch the address indexed by DW_OP_addrx or DW_OP_GNU_addr_index. */
641 CORE_ADDR get_addr_index (unsigned int index) override
643 return dwarf2_read_addr_index (per_cu, index);
646 /* Callback function for get_object_address. Return the address of the VLA
649 CORE_ADDR get_object_address () override
651 if (obj_address == 0)
652 error (_("Location address is not set."));
656 /* Execute DWARF block of call_site_parameter which matches KIND and
657 KIND_U. Choose DEREF_SIZE value of that parameter. Search
658 caller of this objects's frame.
660 The caller can be from a different CU - per_cu_dwarf_call
661 implementation can be more simple as it does not support cross-CU
664 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
665 union call_site_parameter_u kind_u,
666 int deref_size) override
668 struct frame_info *caller_frame;
669 struct dwarf2_per_cu_data *caller_per_cu;
670 struct call_site_parameter *parameter;
671 const gdb_byte *data_src;
674 caller_frame = get_prev_frame (frame);
676 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
678 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
679 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
681 /* DEREF_SIZE size is not verified here. */
682 if (data_src == NULL)
683 throw_error (NO_ENTRY_VALUE_ERROR,
684 _("Cannot resolve DW_AT_call_data_value"));
686 scoped_restore save_frame = make_scoped_restore (&this->frame,
688 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
690 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
693 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
695 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
696 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
697 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
698 scoped_restore save_offset = make_scoped_restore (&this->offset);
699 this->offset = dwarf2_per_cu_text_offset (per_cu);
701 this->eval (data_src, size);
704 /* Using the frame specified in BATON, find the location expression
705 describing the frame base. Return a pointer to it in START and
706 its length in LENGTH. */
707 void get_frame_base (const gdb_byte **start, size_t * length) override
709 /* FIXME: cagney/2003-03-26: This code should be using
710 get_frame_base_address(), and then implement a dwarf2 specific
712 struct symbol *framefunc;
713 const struct block *bl = get_frame_block (frame, NULL);
716 error (_("frame address is not available."));
718 /* Use block_linkage_function, which returns a real (not inlined)
719 function, instead of get_frame_function, which may return an
721 framefunc = block_linkage_function (bl);
723 /* If we found a frame-relative symbol then it was certainly within
724 some function associated with a frame. If we can't find the frame,
725 something has gone wrong. */
726 gdb_assert (framefunc != NULL);
728 func_get_frame_base_dwarf_block (framefunc,
729 get_frame_address_in_block (frame),
733 /* Read memory at ADDR (length LEN) into BUF. */
735 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
737 read_memory (addr, buf, len);
740 /* Using the frame specified in BATON, return the value of register
741 REGNUM, treated as a pointer. */
742 CORE_ADDR read_addr_from_reg (int dwarf_regnum) override
744 struct gdbarch *gdbarch = get_frame_arch (frame);
745 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
747 return address_from_register (regnum, frame);
750 /* Implement "get_reg_value" callback. */
752 struct value *get_reg_value (struct type *type, int dwarf_regnum) override
754 struct gdbarch *gdbarch = get_frame_arch (frame);
755 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
757 return value_from_register (type, regnum, frame);
761 /* See dwarf2loc.h. */
763 unsigned int entry_values_debug = 0;
765 /* Helper to set entry_values_debug. */
768 show_entry_values_debug (struct ui_file *file, int from_tty,
769 struct cmd_list_element *c, const char *value)
771 fprintf_filtered (file,
772 _("Entry values and tail call frames debugging is %s.\n"),
776 /* Find DW_TAG_call_site's DW_AT_call_target address.
777 CALLER_FRAME (for registers) can be NULL if it is not known. This function
778 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
781 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
782 struct call_site *call_site,
783 struct frame_info *caller_frame)
785 switch (FIELD_LOC_KIND (call_site->target))
787 case FIELD_LOC_KIND_DWARF_BLOCK:
789 struct dwarf2_locexpr_baton *dwarf_block;
791 struct type *caller_core_addr_type;
792 struct gdbarch *caller_arch;
794 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
795 if (dwarf_block == NULL)
797 struct bound_minimal_symbol msym;
799 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
800 throw_error (NO_ENTRY_VALUE_ERROR,
801 _("DW_AT_call_target is not specified at %s in %s"),
802 paddress (call_site_gdbarch, call_site->pc),
803 (msym.minsym == NULL ? "???"
804 : MSYMBOL_PRINT_NAME (msym.minsym)));
807 if (caller_frame == NULL)
809 struct bound_minimal_symbol msym;
811 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
812 throw_error (NO_ENTRY_VALUE_ERROR,
813 _("DW_AT_call_target DWARF block resolving "
814 "requires known frame which is currently not "
815 "available at %s in %s"),
816 paddress (call_site_gdbarch, call_site->pc),
817 (msym.minsym == NULL ? "???"
818 : MSYMBOL_PRINT_NAME (msym.minsym)));
821 caller_arch = get_frame_arch (caller_frame);
822 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
823 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
824 dwarf_block->data, dwarf_block->size,
825 dwarf_block->per_cu);
826 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
827 if (VALUE_LVAL (val) == lval_memory)
828 return value_address (val);
830 return value_as_address (val);
833 case FIELD_LOC_KIND_PHYSNAME:
835 const char *physname;
836 struct bound_minimal_symbol msym;
838 physname = FIELD_STATIC_PHYSNAME (call_site->target);
840 /* Handle both the mangled and demangled PHYSNAME. */
841 msym = lookup_minimal_symbol (physname, NULL, NULL);
842 if (msym.minsym == NULL)
844 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
845 throw_error (NO_ENTRY_VALUE_ERROR,
846 _("Cannot find function \"%s\" for a call site target "
848 physname, paddress (call_site_gdbarch, call_site->pc),
849 (msym.minsym == NULL ? "???"
850 : MSYMBOL_PRINT_NAME (msym.minsym)));
853 return BMSYMBOL_VALUE_ADDRESS (msym);
856 case FIELD_LOC_KIND_PHYSADDR:
857 return FIELD_STATIC_PHYSADDR (call_site->target);
860 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
864 /* Convert function entry point exact address ADDR to the function which is
865 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
866 NO_ENTRY_VALUE_ERROR otherwise. */
868 static struct symbol *
869 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
871 struct symbol *sym = find_pc_function (addr);
874 if (sym == NULL || BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) != addr)
875 throw_error (NO_ENTRY_VALUE_ERROR,
876 _("DW_TAG_call_site resolving failed to find function "
877 "name for address %s"),
878 paddress (gdbarch, addr));
880 type = SYMBOL_TYPE (sym);
881 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
882 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
887 /* Verify function with entry point exact address ADDR can never call itself
888 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
889 can call itself via tail calls.
891 If a funtion can tail call itself its entry value based parameters are
892 unreliable. There is no verification whether the value of some/all
893 parameters is unchanged through the self tail call, we expect if there is
894 a self tail call all the parameters can be modified. */
897 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
901 /* The verification is completely unordered. Track here function addresses
902 which still need to be iterated. */
903 std::vector<CORE_ADDR> todo;
905 /* Track here CORE_ADDRs which were already visited. */
906 std::unordered_set<CORE_ADDR> addr_hash;
908 todo.push_back (verify_addr);
909 while (!todo.empty ())
911 struct symbol *func_sym;
912 struct call_site *call_site;
917 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
919 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
920 call_site; call_site = call_site->tail_call_next)
922 CORE_ADDR target_addr;
924 /* CALLER_FRAME with registers is not available for tail-call jumped
926 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
928 if (target_addr == verify_addr)
930 struct bound_minimal_symbol msym;
932 msym = lookup_minimal_symbol_by_pc (verify_addr);
933 throw_error (NO_ENTRY_VALUE_ERROR,
934 _("DW_OP_entry_value resolving has found "
935 "function \"%s\" at %s can call itself via tail "
937 (msym.minsym == NULL ? "???"
938 : MSYMBOL_PRINT_NAME (msym.minsym)),
939 paddress (gdbarch, verify_addr));
942 if (addr_hash.insert (target_addr).second)
943 todo.push_back (target_addr);
948 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
949 ENTRY_VALUES_DEBUG. */
952 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
954 CORE_ADDR addr = call_site->pc;
955 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
957 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
958 (msym.minsym == NULL ? "???"
959 : MSYMBOL_PRINT_NAME (msym.minsym)));
963 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
964 only top callers and bottom callees which are present in both. GDBARCH is
965 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
966 no remaining possibilities to provide unambiguous non-trivial result.
967 RESULTP should point to NULL on the first (initialization) call. Caller is
968 responsible for xfree of any RESULTP data. */
971 chain_candidate (struct gdbarch *gdbarch,
972 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
973 std::vector<struct call_site *> *chain)
975 long length = chain->size ();
976 int callers, callees, idx;
978 if (*resultp == NULL)
980 /* Create the initial chain containing all the passed PCs. */
982 struct call_site_chain *result
983 = ((struct call_site_chain *)
984 xmalloc (sizeof (*result)
985 + sizeof (*result->call_site) * (length - 1)));
986 result->length = length;
987 result->callers = result->callees = length;
988 if (!chain->empty ())
989 memcpy (result->call_site, chain->data (),
990 sizeof (*result->call_site) * length);
991 resultp->reset (result);
993 if (entry_values_debug)
995 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
996 for (idx = 0; idx < length; idx++)
997 tailcall_dump (gdbarch, result->call_site[idx]);
998 fputc_unfiltered ('\n', gdb_stdlog);
1004 if (entry_values_debug)
1006 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
1007 for (idx = 0; idx < length; idx++)
1008 tailcall_dump (gdbarch, chain->at (idx));
1009 fputc_unfiltered ('\n', gdb_stdlog);
1012 /* Intersect callers. */
1014 callers = std::min ((long) (*resultp)->callers, length);
1015 for (idx = 0; idx < callers; idx++)
1016 if ((*resultp)->call_site[idx] != chain->at (idx))
1018 (*resultp)->callers = idx;
1022 /* Intersect callees. */
1024 callees = std::min ((long) (*resultp)->callees, length);
1025 for (idx = 0; idx < callees; idx++)
1026 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
1027 != chain->at (length - 1 - idx))
1029 (*resultp)->callees = idx;
1033 if (entry_values_debug)
1035 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
1036 for (idx = 0; idx < (*resultp)->callers; idx++)
1037 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
1038 fputs_unfiltered (" |", gdb_stdlog);
1039 for (idx = 0; idx < (*resultp)->callees; idx++)
1040 tailcall_dump (gdbarch,
1041 (*resultp)->call_site[(*resultp)->length
1042 - (*resultp)->callees + idx]);
1043 fputc_unfiltered ('\n', gdb_stdlog);
1046 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1048 /* There are no common callers or callees. It could be also a direct
1049 call (which has length 0) with ambiguous possibility of an indirect
1050 call - CALLERS == CALLEES == 0 is valid during the first allocation
1051 but any subsequence processing of such entry means ambiguity. */
1052 resultp->reset (NULL);
1056 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1057 PC again. In such case there must be two different code paths to reach
1058 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1059 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1062 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1063 assumed frames between them use GDBARCH. Use depth first search so we can
1064 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1065 would have needless GDB stack overhead. Caller is responsible for xfree of
1066 the returned result. Any unreliability results in thrown
1067 NO_ENTRY_VALUE_ERROR. */
1069 static struct call_site_chain *
1070 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1071 CORE_ADDR callee_pc)
1073 CORE_ADDR save_callee_pc = callee_pc;
1074 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1075 struct call_site *call_site;
1077 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1078 call_site nor any possible call_site at CALLEE_PC's function is there.
1079 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1080 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1081 std::vector<struct call_site *> chain;
1083 /* We are not interested in the specific PC inside the callee function. */
1084 callee_pc = get_pc_function_start (callee_pc);
1086 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1087 paddress (gdbarch, save_callee_pc));
1089 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1090 std::unordered_set<CORE_ADDR> addr_hash;
1092 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1093 at the target's function. All the possible tail call sites in the
1094 target's function will get iterated as already pushed into CHAIN via their
1096 call_site = call_site_for_pc (gdbarch, caller_pc);
1100 CORE_ADDR target_func_addr;
1101 struct call_site *target_call_site;
1103 /* CALLER_FRAME with registers is not available for tail-call jumped
1105 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1107 if (target_func_addr == callee_pc)
1109 chain_candidate (gdbarch, &retval, &chain);
1113 /* There is no way to reach CALLEE_PC again as we would prevent
1114 entering it twice as being already marked in ADDR_HASH. */
1115 target_call_site = NULL;
1119 struct symbol *target_func;
1121 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1122 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1127 /* Attempt to visit TARGET_CALL_SITE. */
1129 if (target_call_site)
1131 if (addr_hash.insert (target_call_site->pc).second)
1133 /* Successfully entered TARGET_CALL_SITE. */
1135 chain.push_back (target_call_site);
1140 /* Backtrack (without revisiting the originating call_site). Try the
1141 callers's sibling; if there isn't any try the callers's callers's
1144 target_call_site = NULL;
1145 while (!chain.empty ())
1147 call_site = chain.back ();
1150 size_t removed = addr_hash.erase (call_site->pc);
1151 gdb_assert (removed == 1);
1153 target_call_site = call_site->tail_call_next;
1154 if (target_call_site)
1158 while (target_call_site);
1163 call_site = chain.back ();
1168 struct bound_minimal_symbol msym_caller, msym_callee;
1170 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1171 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1172 throw_error (NO_ENTRY_VALUE_ERROR,
1173 _("There are no unambiguously determinable intermediate "
1174 "callers or callees between caller function \"%s\" at %s "
1175 "and callee function \"%s\" at %s"),
1176 (msym_caller.minsym == NULL
1177 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1178 paddress (gdbarch, caller_pc),
1179 (msym_callee.minsym == NULL
1180 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1181 paddress (gdbarch, callee_pc));
1184 return retval.release ();
1187 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1188 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1189 constructed return NULL. Caller is responsible for xfree of the returned
1192 struct call_site_chain *
1193 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1194 CORE_ADDR callee_pc)
1196 struct call_site_chain *retval = NULL;
1200 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1202 catch (const gdb_exception_error &e)
1204 if (e.error == NO_ENTRY_VALUE_ERROR)
1206 if (entry_values_debug)
1207 exception_print (gdb_stdout, e);
1218 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1221 call_site_parameter_matches (struct call_site_parameter *parameter,
1222 enum call_site_parameter_kind kind,
1223 union call_site_parameter_u kind_u)
1225 if (kind == parameter->kind)
1228 case CALL_SITE_PARAMETER_DWARF_REG:
1229 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1230 case CALL_SITE_PARAMETER_FB_OFFSET:
1231 return kind_u.fb_offset == parameter->u.fb_offset;
1232 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1233 return kind_u.param_cu_off == parameter->u.param_cu_off;
1238 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1239 FRAME is for callee.
1241 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1244 static struct call_site_parameter *
1245 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1246 enum call_site_parameter_kind kind,
1247 union call_site_parameter_u kind_u,
1248 struct dwarf2_per_cu_data **per_cu_return)
1250 CORE_ADDR func_addr, caller_pc;
1251 struct gdbarch *gdbarch;
1252 struct frame_info *caller_frame;
1253 struct call_site *call_site;
1255 /* Initialize it just to avoid a GCC false warning. */
1256 struct call_site_parameter *parameter = NULL;
1257 CORE_ADDR target_addr;
1259 while (get_frame_type (frame) == INLINE_FRAME)
1261 frame = get_prev_frame (frame);
1262 gdb_assert (frame != NULL);
1265 func_addr = get_frame_func (frame);
1266 gdbarch = get_frame_arch (frame);
1267 caller_frame = get_prev_frame (frame);
1268 if (gdbarch != frame_unwind_arch (frame))
1270 struct bound_minimal_symbol msym
1271 = lookup_minimal_symbol_by_pc (func_addr);
1272 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1274 throw_error (NO_ENTRY_VALUE_ERROR,
1275 _("DW_OP_entry_value resolving callee gdbarch %s "
1276 "(of %s (%s)) does not match caller gdbarch %s"),
1277 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1278 paddress (gdbarch, func_addr),
1279 (msym.minsym == NULL ? "???"
1280 : MSYMBOL_PRINT_NAME (msym.minsym)),
1281 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1284 if (caller_frame == NULL)
1286 struct bound_minimal_symbol msym
1287 = lookup_minimal_symbol_by_pc (func_addr);
1289 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1290 "requires caller of %s (%s)"),
1291 paddress (gdbarch, func_addr),
1292 (msym.minsym == NULL ? "???"
1293 : MSYMBOL_PRINT_NAME (msym.minsym)));
1295 caller_pc = get_frame_pc (caller_frame);
1296 call_site = call_site_for_pc (gdbarch, caller_pc);
1298 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1299 if (target_addr != func_addr)
1301 struct minimal_symbol *target_msym, *func_msym;
1303 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1304 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1305 throw_error (NO_ENTRY_VALUE_ERROR,
1306 _("DW_OP_entry_value resolving expects callee %s at %s "
1307 "but the called frame is for %s at %s"),
1308 (target_msym == NULL ? "???"
1309 : MSYMBOL_PRINT_NAME (target_msym)),
1310 paddress (gdbarch, target_addr),
1311 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1312 paddress (gdbarch, func_addr));
1315 /* No entry value based parameters would be reliable if this function can
1316 call itself via tail calls. */
1317 func_verify_no_selftailcall (gdbarch, func_addr);
1319 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1321 parameter = &call_site->parameter[iparams];
1322 if (call_site_parameter_matches (parameter, kind, kind_u))
1325 if (iparams == call_site->parameter_count)
1327 struct minimal_symbol *msym
1328 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1330 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1331 determine its value. */
1332 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1333 "at DW_TAG_call_site %s at %s"),
1334 paddress (gdbarch, caller_pc),
1335 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1338 *per_cu_return = call_site->per_cu;
1342 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1343 the normal DW_AT_call_value block. Otherwise return the
1344 DW_AT_call_data_value (dereferenced) block.
1346 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1349 Function always returns non-NULL, non-optimized out value. It throws
1350 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1352 static struct value *
1353 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1354 CORE_ADDR deref_size, struct type *type,
1355 struct frame_info *caller_frame,
1356 struct dwarf2_per_cu_data *per_cu)
1358 const gdb_byte *data_src;
1362 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1363 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1365 /* DEREF_SIZE size is not verified here. */
1366 if (data_src == NULL)
1367 throw_error (NO_ENTRY_VALUE_ERROR,
1368 _("Cannot resolve DW_AT_call_data_value"));
1370 /* DW_AT_call_value is a DWARF expression, not a DWARF
1371 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1373 data = (gdb_byte *) alloca (size + 1);
1374 memcpy (data, data_src, size);
1375 data[size] = DW_OP_stack_value;
1377 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1380 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1381 the indirect method on it, that is use its stored target value, the sole
1382 purpose of entry_data_value_funcs.. */
1384 static struct value *
1385 entry_data_value_coerce_ref (const struct value *value)
1387 struct type *checked_type = check_typedef (value_type (value));
1388 struct value *target_val;
1390 if (!TYPE_IS_REFERENCE (checked_type))
1393 target_val = (struct value *) value_computed_closure (value);
1394 value_incref (target_val);
1398 /* Implement copy_closure. */
1401 entry_data_value_copy_closure (const struct value *v)
1403 struct value *target_val = (struct value *) value_computed_closure (v);
1405 value_incref (target_val);
1409 /* Implement free_closure. */
1412 entry_data_value_free_closure (struct value *v)
1414 struct value *target_val = (struct value *) value_computed_closure (v);
1416 value_decref (target_val);
1419 /* Vector for methods for an entry value reference where the referenced value
1420 is stored in the caller. On the first dereference use
1421 DW_AT_call_data_value in the caller. */
1423 static const struct lval_funcs entry_data_value_funcs =
1427 NULL, /* indirect */
1428 entry_data_value_coerce_ref,
1429 NULL, /* check_synthetic_pointer */
1430 entry_data_value_copy_closure,
1431 entry_data_value_free_closure
1434 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1435 are used to match DW_AT_location at the caller's
1436 DW_TAG_call_site_parameter.
1438 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1439 cannot resolve the parameter for any reason. */
1441 static struct value *
1442 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1443 enum call_site_parameter_kind kind,
1444 union call_site_parameter_u kind_u)
1446 struct type *checked_type = check_typedef (type);
1447 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1448 struct frame_info *caller_frame = get_prev_frame (frame);
1449 struct value *outer_val, *target_val, *val;
1450 struct call_site_parameter *parameter;
1451 struct dwarf2_per_cu_data *caller_per_cu;
1453 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1456 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1460 /* Check if DW_AT_call_data_value cannot be used. If it should be
1461 used and it is not available do not fall back to OUTER_VAL - dereferencing
1462 TYPE_CODE_REF with non-entry data value would give current value - not the
1465 if (!TYPE_IS_REFERENCE (checked_type)
1466 || TYPE_TARGET_TYPE (checked_type) == NULL)
1469 target_val = dwarf_entry_parameter_to_value (parameter,
1470 TYPE_LENGTH (target_type),
1471 target_type, caller_frame,
1474 val = allocate_computed_value (type, &entry_data_value_funcs,
1475 release_value (target_val).release ());
1477 /* Copy the referencing pointer to the new computed value. */
1478 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1479 TYPE_LENGTH (checked_type));
1480 set_value_lazy (val, 0);
1485 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1486 SIZE are DWARF block used to match DW_AT_location at the caller's
1487 DW_TAG_call_site_parameter.
1489 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1490 cannot resolve the parameter for any reason. */
1492 static struct value *
1493 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1494 const gdb_byte *block, size_t block_len)
1496 union call_site_parameter_u kind_u;
1498 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1499 if (kind_u.dwarf_reg != -1)
1500 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1503 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1504 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1507 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1508 suppressed during normal operation. The expression can be arbitrary if
1509 there is no caller-callee entry value binding expected. */
1510 throw_error (NO_ENTRY_VALUE_ERROR,
1511 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1512 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1515 struct piece_closure
1517 /* Reference count. */
1520 /* The CU from which this closure's expression came. */
1521 struct dwarf2_per_cu_data *per_cu = NULL;
1523 /* The pieces describing this variable. */
1524 std::vector<dwarf_expr_piece> pieces;
1526 /* Frame ID of frame to which a register value is relative, used
1527 only by DWARF_VALUE_REGISTER. */
1528 struct frame_id frame_id;
1531 /* Allocate a closure for a value formed from separately-described
1534 static struct piece_closure *
1535 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1536 std::vector<dwarf_expr_piece> &&pieces,
1537 struct frame_info *frame)
1539 struct piece_closure *c = new piece_closure;
1543 c->pieces = std::move (pieces);
1545 c->frame_id = null_frame_id;
1547 c->frame_id = get_frame_id (frame);
1549 for (dwarf_expr_piece &piece : c->pieces)
1550 if (piece.location == DWARF_VALUE_STACK)
1551 value_incref (piece.v.value);
1556 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1557 bits whose first bit is located at bit offset START. */
1560 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1562 return (start % 8 + n_bits + 7) / 8;
1565 /* Read or write a pieced value V. If FROM != NULL, operate in "write
1566 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1567 operate in "read mode": fetch the contents of the (lazy) value V by
1568 composing it from its pieces. */
1571 rw_pieced_value (struct value *v, struct value *from)
1574 LONGEST offset = 0, max_offset;
1575 ULONGEST bits_to_skip;
1576 gdb_byte *v_contents;
1577 const gdb_byte *from_contents;
1578 struct piece_closure *c
1579 = (struct piece_closure *) value_computed_closure (v);
1580 gdb::byte_vector buffer;
1582 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1586 from_contents = value_contents (from);
1591 if (value_type (v) != value_enclosing_type (v))
1592 internal_error (__FILE__, __LINE__,
1593 _("Should not be able to create a lazy value with "
1594 "an enclosing type"));
1595 v_contents = value_contents_raw (v);
1596 from_contents = NULL;
1599 bits_to_skip = 8 * value_offset (v);
1600 if (value_bitsize (v))
1602 bits_to_skip += (8 * value_offset (value_parent (v))
1603 + value_bitpos (v));
1605 && (gdbarch_byte_order (get_type_arch (value_type (from)))
1608 /* Use the least significant bits of FROM. */
1609 max_offset = 8 * TYPE_LENGTH (value_type (from));
1610 offset = max_offset - value_bitsize (v);
1613 max_offset = value_bitsize (v);
1616 max_offset = 8 * TYPE_LENGTH (value_type (v));
1618 /* Advance to the first non-skipped piece. */
1619 for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
1620 bits_to_skip -= c->pieces[i].size;
1622 for (; i < c->pieces.size () && offset < max_offset; i++)
1624 struct dwarf_expr_piece *p = &c->pieces[i];
1625 size_t this_size_bits, this_size;
1627 this_size_bits = p->size - bits_to_skip;
1628 if (this_size_bits > max_offset - offset)
1629 this_size_bits = max_offset - offset;
1631 switch (p->location)
1633 case DWARF_VALUE_REGISTER:
1635 struct frame_info *frame = frame_find_by_id (c->frame_id);
1636 struct gdbarch *arch = get_frame_arch (frame);
1637 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1638 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1641 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1642 && p->offset + p->size < reg_bits)
1644 /* Big-endian, and we want less than full size. */
1645 bits_to_skip += reg_bits - (p->offset + p->size);
1648 bits_to_skip += p->offset;
1650 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1651 buffer.resize (this_size);
1656 if (!get_frame_register_bytes (frame, gdb_regnum,
1658 this_size, buffer.data (),
1662 mark_value_bits_optimized_out (v, offset,
1665 mark_value_bits_unavailable (v, offset,
1670 copy_bitwise (v_contents, offset,
1671 buffer.data (), bits_to_skip % 8,
1672 this_size_bits, bits_big_endian);
1677 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1679 /* Data is copied non-byte-aligned into the register.
1680 Need some bits from original register value. */
1681 get_frame_register_bytes (frame, gdb_regnum,
1683 this_size, buffer.data (),
1686 throw_error (OPTIMIZED_OUT_ERROR,
1687 _("Can't do read-modify-write to "
1688 "update bitfield; containing word "
1689 "has been optimized out"));
1691 throw_error (NOT_AVAILABLE_ERROR,
1692 _("Can't do read-modify-write to "
1693 "update bitfield; containing word "
1697 copy_bitwise (buffer.data (), bits_to_skip % 8,
1698 from_contents, offset,
1699 this_size_bits, bits_big_endian);
1700 put_frame_register_bytes (frame, gdb_regnum,
1702 this_size, buffer.data ());
1707 case DWARF_VALUE_MEMORY:
1709 bits_to_skip += p->offset;
1711 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1713 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1716 /* Everything is byte-aligned; no buffer needed. */
1718 write_memory_with_notification (start_addr,
1721 this_size_bits / 8);
1723 read_value_memory (v, offset,
1724 p->v.mem.in_stack_memory,
1725 p->v.mem.addr + bits_to_skip / 8,
1726 v_contents + offset / 8,
1727 this_size_bits / 8);
1731 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1732 buffer.resize (this_size);
1737 read_value_memory (v, offset,
1738 p->v.mem.in_stack_memory,
1739 p->v.mem.addr + bits_to_skip / 8,
1740 buffer.data (), this_size);
1741 copy_bitwise (v_contents, offset,
1742 buffer.data (), bits_to_skip % 8,
1743 this_size_bits, bits_big_endian);
1748 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1752 /* Perform a single read for small sizes. */
1753 read_memory (start_addr, buffer.data (),
1758 /* Only the first and last bytes can possibly have
1760 read_memory (start_addr, buffer.data (), 1);
1761 read_memory (start_addr + this_size - 1,
1762 &buffer[this_size - 1], 1);
1766 copy_bitwise (buffer.data (), bits_to_skip % 8,
1767 from_contents, offset,
1768 this_size_bits, bits_big_endian);
1769 write_memory_with_notification (start_addr,
1776 case DWARF_VALUE_STACK:
1780 mark_value_bits_optimized_out (v, offset, this_size_bits);
1784 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1785 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1786 ULONGEST stack_value_size_bits
1787 = 8 * TYPE_LENGTH (value_type (p->v.value));
1789 /* Use zeroes if piece reaches beyond stack value. */
1790 if (p->offset + p->size > stack_value_size_bits)
1793 /* Piece is anchored at least significant bit end. */
1794 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1795 bits_to_skip += stack_value_size_bits - p->offset - p->size;
1797 bits_to_skip += p->offset;
1799 copy_bitwise (v_contents, offset,
1800 value_contents_all (p->v.value),
1802 this_size_bits, bits_big_endian);
1806 case DWARF_VALUE_LITERAL:
1810 mark_value_bits_optimized_out (v, offset, this_size_bits);
1814 ULONGEST literal_size_bits = 8 * p->v.literal.length;
1815 size_t n = this_size_bits;
1817 /* Cut off at the end of the implicit value. */
1818 bits_to_skip += p->offset;
1819 if (bits_to_skip >= literal_size_bits)
1821 if (n > literal_size_bits - bits_to_skip)
1822 n = literal_size_bits - bits_to_skip;
1824 copy_bitwise (v_contents, offset,
1825 p->v.literal.data, bits_to_skip,
1826 n, bits_big_endian);
1830 case DWARF_VALUE_IMPLICIT_POINTER:
1833 mark_value_bits_optimized_out (v, offset, this_size_bits);
1837 /* These bits show up as zeros -- but do not cause the value to
1838 be considered optimized-out. */
1841 case DWARF_VALUE_OPTIMIZED_OUT:
1842 mark_value_bits_optimized_out (v, offset, this_size_bits);
1846 internal_error (__FILE__, __LINE__, _("invalid location type"));
1849 offset += this_size_bits;
1856 read_pieced_value (struct value *v)
1858 rw_pieced_value (v, NULL);
1862 write_pieced_value (struct value *to, struct value *from)
1864 rw_pieced_value (to, from);
1867 /* An implementation of an lval_funcs method to see whether a value is
1868 a synthetic pointer. */
1871 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
1874 struct piece_closure *c
1875 = (struct piece_closure *) value_computed_closure (value);
1878 bit_offset += 8 * value_offset (value);
1879 if (value_bitsize (value))
1880 bit_offset += value_bitpos (value);
1882 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
1884 struct dwarf_expr_piece *p = &c->pieces[i];
1885 size_t this_size_bits = p->size;
1889 if (bit_offset >= this_size_bits)
1891 bit_offset -= this_size_bits;
1895 bit_length -= this_size_bits - bit_offset;
1899 bit_length -= this_size_bits;
1901 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1908 /* A wrapper function for get_frame_address_in_block. */
1911 get_frame_address_in_block_wrapper (void *baton)
1913 return get_frame_address_in_block ((struct frame_info *) baton);
1916 /* Fetch a DW_AT_const_value through a synthetic pointer. */
1918 static struct value *
1919 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1920 struct dwarf2_per_cu_data *per_cu,
1923 struct value *result = NULL;
1924 const gdb_byte *bytes;
1927 auto_obstack temp_obstack;
1928 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
1932 if (byte_offset >= 0
1933 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
1935 bytes += byte_offset;
1936 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
1939 invalid_synthetic_pointer ();
1942 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
1947 /* Fetch the value pointed to by a synthetic pointer. */
1949 static struct value *
1950 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1951 struct dwarf2_per_cu_data *per_cu,
1952 struct frame_info *frame, struct type *type,
1953 bool resolve_abstract_p)
1955 /* Fetch the location expression of the DIE we're pointing to. */
1956 struct dwarf2_locexpr_baton baton
1957 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
1958 get_frame_address_in_block_wrapper, frame,
1959 resolve_abstract_p);
1961 /* Get type of pointed-to DIE. */
1962 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
1963 if (orig_type == NULL)
1964 invalid_synthetic_pointer ();
1966 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
1967 resulting value. Otherwise, it may have a DW_AT_const_value instead,
1968 or it may've been optimized out. */
1969 if (baton.data != NULL)
1970 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
1971 baton.size, baton.per_cu,
1972 TYPE_TARGET_TYPE (type),
1975 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
1979 /* An implementation of an lval_funcs method to indirect through a
1980 pointer. This handles the synthetic pointer case when needed. */
1982 static struct value *
1983 indirect_pieced_value (struct value *value)
1985 struct piece_closure *c
1986 = (struct piece_closure *) value_computed_closure (value);
1988 struct frame_info *frame;
1991 struct dwarf_expr_piece *piece = NULL;
1992 LONGEST byte_offset;
1993 enum bfd_endian byte_order;
1995 type = check_typedef (value_type (value));
1996 if (TYPE_CODE (type) != TYPE_CODE_PTR)
1999 bit_length = 8 * TYPE_LENGTH (type);
2000 bit_offset = 8 * value_offset (value);
2001 if (value_bitsize (value))
2002 bit_offset += value_bitpos (value);
2004 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
2006 struct dwarf_expr_piece *p = &c->pieces[i];
2007 size_t this_size_bits = p->size;
2011 if (bit_offset >= this_size_bits)
2013 bit_offset -= this_size_bits;
2017 bit_length -= this_size_bits - bit_offset;
2021 bit_length -= this_size_bits;
2023 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2026 if (bit_length != 0)
2027 error (_("Invalid use of DW_OP_implicit_pointer"));
2033 gdb_assert (piece != NULL);
2034 frame = get_selected_frame (_("No frame selected."));
2036 /* This is an offset requested by GDB, such as value subscripts.
2037 However, due to how synthetic pointers are implemented, this is
2038 always presented to us as a pointer type. This means we have to
2039 sign-extend it manually as appropriate. Use raw
2040 extract_signed_integer directly rather than value_as_address and
2041 sign extend afterwards on architectures that would need it
2042 (mostly everywhere except MIPS, which has signed addresses) as
2043 the later would go through gdbarch_pointer_to_address and thus
2044 return a CORE_ADDR with high bits set on architectures that
2045 encode address spaces and other things in CORE_ADDR. */
2046 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2047 byte_offset = extract_signed_integer (value_contents (value),
2048 TYPE_LENGTH (type), byte_order);
2049 byte_offset += piece->v.ptr.offset;
2051 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2052 byte_offset, c->per_cu,
2056 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2059 static struct value *
2060 coerce_pieced_ref (const struct value *value)
2062 struct type *type = check_typedef (value_type (value));
2064 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2065 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2067 const struct piece_closure *closure
2068 = (struct piece_closure *) value_computed_closure (value);
2069 struct frame_info *frame
2070 = get_selected_frame (_("No frame selected."));
2072 /* gdb represents synthetic pointers as pieced values with a single
2074 gdb_assert (closure != NULL);
2075 gdb_assert (closure->pieces.size () == 1);
2077 return indirect_synthetic_pointer
2078 (closure->pieces[0].v.ptr.die_sect_off,
2079 closure->pieces[0].v.ptr.offset,
2080 closure->per_cu, frame, type);
2084 /* Else: not a synthetic reference; do nothing. */
2090 copy_pieced_value_closure (const struct value *v)
2092 struct piece_closure *c
2093 = (struct piece_closure *) value_computed_closure (v);
2100 free_pieced_value_closure (struct value *v)
2102 struct piece_closure *c
2103 = (struct piece_closure *) value_computed_closure (v);
2108 for (dwarf_expr_piece &p : c->pieces)
2109 if (p.location == DWARF_VALUE_STACK)
2110 value_decref (p.v.value);
2116 /* Functions for accessing a variable described by DW_OP_piece. */
2117 static const struct lval_funcs pieced_value_funcs = {
2120 indirect_pieced_value,
2122 check_pieced_synthetic_pointer,
2123 copy_pieced_value_closure,
2124 free_pieced_value_closure
2127 /* Evaluate a location description, starting at DATA and with length
2128 SIZE, to find the current location of variable of TYPE in the
2129 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2130 location of the subobject of type SUBOBJ_TYPE at byte offset
2131 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2133 static struct value *
2134 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2135 const gdb_byte *data, size_t size,
2136 struct dwarf2_per_cu_data *per_cu,
2137 struct type *subobj_type,
2138 LONGEST subobj_byte_offset)
2140 struct value *retval;
2141 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2143 if (subobj_type == NULL)
2146 subobj_byte_offset = 0;
2148 else if (subobj_byte_offset < 0)
2149 invalid_synthetic_pointer ();
2152 return allocate_optimized_out_value (subobj_type);
2154 dwarf_evaluate_loc_desc ctx;
2156 ctx.per_cu = per_cu;
2157 ctx.obj_address = 0;
2159 scoped_value_mark free_values;
2161 ctx.gdbarch = get_objfile_arch (objfile);
2162 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2163 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2164 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2168 ctx.eval (data, size);
2170 catch (const gdb_exception_error &ex)
2172 if (ex.error == NOT_AVAILABLE_ERROR)
2174 free_values.free_to_mark ();
2175 retval = allocate_value (subobj_type);
2176 mark_value_bytes_unavailable (retval, 0,
2177 TYPE_LENGTH (subobj_type));
2180 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2182 if (entry_values_debug)
2183 exception_print (gdb_stdout, ex);
2184 free_values.free_to_mark ();
2185 return allocate_optimized_out_value (subobj_type);
2191 if (ctx.pieces.size () > 0)
2193 struct piece_closure *c;
2194 ULONGEST bit_size = 0;
2196 for (dwarf_expr_piece &piece : ctx.pieces)
2197 bit_size += piece.size;
2198 /* Complain if the expression is larger than the size of the
2200 if (bit_size > 8 * TYPE_LENGTH (type))
2201 invalid_synthetic_pointer ();
2203 c = allocate_piece_closure (per_cu, std::move (ctx.pieces), frame);
2204 /* We must clean up the value chain after creating the piece
2205 closure but before allocating the result. */
2206 free_values.free_to_mark ();
2207 retval = allocate_computed_value (subobj_type,
2208 &pieced_value_funcs, c);
2209 set_value_offset (retval, subobj_byte_offset);
2213 switch (ctx.location)
2215 case DWARF_VALUE_REGISTER:
2217 struct gdbarch *arch = get_frame_arch (frame);
2219 = longest_to_int (value_as_long (ctx.fetch (0)));
2220 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2222 if (subobj_byte_offset != 0)
2223 error (_("cannot use offset on synthetic pointer to register"));
2224 free_values.free_to_mark ();
2225 retval = value_from_register (subobj_type, gdb_regnum, frame);
2226 if (value_optimized_out (retval))
2230 /* This means the register has undefined value / was
2231 not saved. As we're computing the location of some
2232 variable etc. in the program, not a value for
2233 inspecting a register ($pc, $sp, etc.), return a
2234 generic optimized out value instead, so that we show
2235 <optimized out> instead of <not saved>. */
2236 tmp = allocate_value (subobj_type);
2237 value_contents_copy (tmp, 0, retval, 0,
2238 TYPE_LENGTH (subobj_type));
2244 case DWARF_VALUE_MEMORY:
2246 struct type *ptr_type;
2247 CORE_ADDR address = ctx.fetch_address (0);
2248 bool in_stack_memory = ctx.fetch_in_stack_memory (0);
2250 /* DW_OP_deref_size (and possibly other operations too) may
2251 create a pointer instead of an address. Ideally, the
2252 pointer to address conversion would be performed as part
2253 of those operations, but the type of the object to
2254 which the address refers is not known at the time of
2255 the operation. Therefore, we do the conversion here
2256 since the type is readily available. */
2258 switch (TYPE_CODE (subobj_type))
2260 case TYPE_CODE_FUNC:
2261 case TYPE_CODE_METHOD:
2262 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2265 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2268 address = value_as_address (value_from_pointer (ptr_type, address));
2270 free_values.free_to_mark ();
2271 retval = value_at_lazy (subobj_type,
2272 address + subobj_byte_offset);
2273 if (in_stack_memory)
2274 set_value_stack (retval, 1);
2278 case DWARF_VALUE_STACK:
2280 struct value *value = ctx.fetch (0);
2281 size_t n = TYPE_LENGTH (value_type (value));
2282 size_t len = TYPE_LENGTH (subobj_type);
2283 size_t max = TYPE_LENGTH (type);
2284 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2286 if (subobj_byte_offset + len > max)
2287 invalid_synthetic_pointer ();
2289 /* Preserve VALUE because we are going to free values back
2290 to the mark, but we still need the value contents
2292 value_ref_ptr value_holder = value_ref_ptr::new_reference (value);
2293 free_values.free_to_mark ();
2295 retval = allocate_value (subobj_type);
2297 /* The given offset is relative to the actual object. */
2298 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2299 subobj_byte_offset += n - max;
2301 memcpy (value_contents_raw (retval),
2302 value_contents_all (value) + subobj_byte_offset, len);
2306 case DWARF_VALUE_LITERAL:
2309 size_t n = TYPE_LENGTH (subobj_type);
2311 if (subobj_byte_offset + n > ctx.len)
2312 invalid_synthetic_pointer ();
2314 free_values.free_to_mark ();
2315 retval = allocate_value (subobj_type);
2316 contents = value_contents_raw (retval);
2317 memcpy (contents, ctx.data + subobj_byte_offset, n);
2321 case DWARF_VALUE_OPTIMIZED_OUT:
2322 free_values.free_to_mark ();
2323 retval = allocate_optimized_out_value (subobj_type);
2326 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2327 operation by execute_stack_op. */
2328 case DWARF_VALUE_IMPLICIT_POINTER:
2329 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2330 it can only be encountered when making a piece. */
2332 internal_error (__FILE__, __LINE__, _("invalid location type"));
2336 set_value_initialized (retval, ctx.initialized);
2341 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2342 passes 0 as the byte_offset. */
2345 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2346 const gdb_byte *data, size_t size,
2347 struct dwarf2_per_cu_data *per_cu)
2349 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2353 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2354 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2355 frame in which the expression is evaluated. ADDR is a context (location of
2356 a variable) and might be needed to evaluate the location expression.
2357 Returns 1 on success, 0 otherwise. */
2360 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2361 struct frame_info *frame,
2365 struct objfile *objfile;
2367 if (dlbaton == NULL || dlbaton->size == 0)
2370 dwarf_evaluate_loc_desc ctx;
2373 ctx.per_cu = dlbaton->per_cu;
2374 ctx.obj_address = addr;
2376 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2378 ctx.gdbarch = get_objfile_arch (objfile);
2379 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2380 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2381 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2385 ctx.eval (dlbaton->data, dlbaton->size);
2387 catch (const gdb_exception_error &ex)
2389 if (ex.error == NOT_AVAILABLE_ERROR)
2393 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2395 if (entry_values_debug)
2396 exception_print (gdb_stdout, ex);
2403 switch (ctx.location)
2405 case DWARF_VALUE_REGISTER:
2406 case DWARF_VALUE_MEMORY:
2407 case DWARF_VALUE_STACK:
2408 *valp = ctx.fetch_address (0);
2409 if (ctx.location == DWARF_VALUE_REGISTER)
2410 *valp = ctx.read_addr_from_reg (*valp);
2412 case DWARF_VALUE_LITERAL:
2413 *valp = extract_signed_integer (ctx.data, ctx.len,
2414 gdbarch_byte_order (ctx.gdbarch));
2416 /* Unsupported dwarf values. */
2417 case DWARF_VALUE_OPTIMIZED_OUT:
2418 case DWARF_VALUE_IMPLICIT_POINTER:
2425 /* See dwarf2loc.h. */
2428 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2429 struct frame_info *frame,
2430 struct property_addr_info *addr_stack,
2436 if (frame == NULL && has_stack_frames ())
2437 frame = get_selected_frame (NULL);
2443 const struct dwarf2_property_baton *baton
2444 = (const struct dwarf2_property_baton *) prop->data.baton;
2446 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2447 addr_stack ? addr_stack->addr : 0,
2450 if (baton->referenced_type)
2452 struct value *val = value_at (baton->referenced_type, *value);
2454 *value = value_as_address (val);
2463 struct dwarf2_property_baton *baton
2464 = (struct dwarf2_property_baton *) prop->data.baton;
2465 CORE_ADDR pc = get_frame_address_in_block (frame);
2466 const gdb_byte *data;
2470 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2473 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2474 size, baton->loclist.per_cu);
2475 if (!value_optimized_out (val))
2477 *value = value_as_address (val);
2485 *value = prop->data.const_val;
2488 case PROP_ADDR_OFFSET:
2490 struct dwarf2_property_baton *baton
2491 = (struct dwarf2_property_baton *) prop->data.baton;
2492 struct property_addr_info *pinfo;
2495 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2496 if (pinfo->type == baton->referenced_type)
2499 error (_("cannot find reference address for offset property"));
2500 if (pinfo->valaddr != NULL)
2501 val = value_from_contents
2502 (baton->offset_info.type,
2503 pinfo->valaddr + baton->offset_info.offset);
2505 val = value_at (baton->offset_info.type,
2506 pinfo->addr + baton->offset_info.offset);
2507 *value = value_as_address (val);
2515 /* See dwarf2loc.h. */
2518 dwarf2_compile_property_to_c (string_file *stream,
2519 const char *result_name,
2520 struct gdbarch *gdbarch,
2521 unsigned char *registers_used,
2522 const struct dynamic_prop *prop,
2526 struct dwarf2_property_baton *baton
2527 = (struct dwarf2_property_baton *) prop->data.baton;
2528 const gdb_byte *data;
2530 struct dwarf2_per_cu_data *per_cu;
2532 if (prop->kind == PROP_LOCEXPR)
2534 data = baton->locexpr.data;
2535 size = baton->locexpr.size;
2536 per_cu = baton->locexpr.per_cu;
2540 gdb_assert (prop->kind == PROP_LOCLIST);
2542 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2543 per_cu = baton->loclist.per_cu;
2546 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2547 gdbarch, registers_used,
2548 dwarf2_per_cu_addr_size (per_cu),
2549 data, data + size, per_cu);
2553 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2555 class symbol_needs_eval_context : public dwarf_expr_context
2559 enum symbol_needs_kind needs;
2560 struct dwarf2_per_cu_data *per_cu;
2562 /* Reads from registers do require a frame. */
2563 CORE_ADDR read_addr_from_reg (int regnum) override
2565 needs = SYMBOL_NEEDS_FRAME;
2569 /* "get_reg_value" callback: Reads from registers do require a
2572 struct value *get_reg_value (struct type *type, int regnum) override
2574 needs = SYMBOL_NEEDS_FRAME;
2575 return value_zero (type, not_lval);
2578 /* Reads from memory do not require a frame. */
2579 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
2581 memset (buf, 0, len);
2584 /* Frame-relative accesses do require a frame. */
2585 void get_frame_base (const gdb_byte **start, size_t *length) override
2587 static gdb_byte lit0 = DW_OP_lit0;
2592 needs = SYMBOL_NEEDS_FRAME;
2595 /* CFA accesses require a frame. */
2596 CORE_ADDR get_frame_cfa () override
2598 needs = SYMBOL_NEEDS_FRAME;
2602 CORE_ADDR get_frame_pc () override
2604 needs = SYMBOL_NEEDS_FRAME;
2608 /* Thread-local accesses require registers, but not a frame. */
2609 CORE_ADDR get_tls_address (CORE_ADDR offset) override
2611 if (needs <= SYMBOL_NEEDS_REGISTERS)
2612 needs = SYMBOL_NEEDS_REGISTERS;
2616 /* Helper interface of per_cu_dwarf_call for
2617 dwarf2_loc_desc_get_symbol_read_needs. */
2619 void dwarf_call (cu_offset die_offset) override
2621 per_cu_dwarf_call (this, die_offset, per_cu);
2624 /* Helper interface of sect_variable_value for
2625 dwarf2_loc_desc_get_symbol_read_needs. */
2627 struct value *dwarf_variable_value (sect_offset sect_off) override
2629 return sect_variable_value (this, sect_off, per_cu);
2632 /* DW_OP_entry_value accesses require a caller, therefore a
2635 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2636 union call_site_parameter_u kind_u,
2637 int deref_size) override
2639 needs = SYMBOL_NEEDS_FRAME;
2641 /* The expression may require some stub values on DWARF stack. */
2642 push_address (0, 0);
2645 /* DW_OP_addrx and DW_OP_GNU_addr_index doesn't require a frame. */
2647 CORE_ADDR get_addr_index (unsigned int index) override
2649 /* Nothing to do. */
2653 /* DW_OP_push_object_address has a frame already passed through. */
2655 CORE_ADDR get_object_address () override
2657 /* Nothing to do. */
2662 /* Compute the correct symbol_needs_kind value for the location
2663 expression at DATA (length SIZE). */
2665 static enum symbol_needs_kind
2666 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2667 struct dwarf2_per_cu_data *per_cu)
2670 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2672 scoped_value_mark free_values;
2674 symbol_needs_eval_context ctx;
2676 ctx.needs = SYMBOL_NEEDS_NONE;
2677 ctx.per_cu = per_cu;
2678 ctx.gdbarch = get_objfile_arch (objfile);
2679 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2680 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2681 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2683 ctx.eval (data, size);
2685 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2687 /* If the location has several pieces, and any of them are in
2688 registers, then we will need a frame to fetch them from. */
2689 for (dwarf_expr_piece &p : ctx.pieces)
2690 if (p.location == DWARF_VALUE_REGISTER)
2694 ctx.needs = SYMBOL_NEEDS_FRAME;
2698 /* A helper function that throws an unimplemented error mentioning a
2699 given DWARF operator. */
2701 static void ATTRIBUTE_NORETURN
2702 unimplemented (unsigned int op)
2704 const char *name = get_DW_OP_name (op);
2707 error (_("DWARF operator %s cannot be translated to an agent expression"),
2710 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2711 "to an agent expression"),
2717 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2718 can issue a complaint, which is better than having every target's
2719 implementation of dwarf2_reg_to_regnum do it. */
2722 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2724 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2728 complaint (_("bad DWARF register number %d"), dwarf_reg);
2733 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2734 Throw an error because DWARF_REG is bad. */
2737 throw_bad_regnum_error (ULONGEST dwarf_reg)
2739 /* Still want to print -1 as "-1".
2740 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2741 but that's overkill for now. */
2742 if ((int) dwarf_reg == dwarf_reg)
2743 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2744 error (_("Unable to access DWARF register number %s"),
2745 pulongest (dwarf_reg));
2748 /* See dwarf2loc.h. */
2751 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2755 if (dwarf_reg > INT_MAX)
2756 throw_bad_regnum_error (dwarf_reg);
2757 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2758 bad, but that's ok. */
2759 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2761 throw_bad_regnum_error (dwarf_reg);
2765 /* A helper function that emits an access to memory. ARCH is the
2766 target architecture. EXPR is the expression which we are building.
2767 NBITS is the number of bits we want to read. This emits the
2768 opcodes needed to read the memory and then extract the desired
2772 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2774 ULONGEST nbytes = (nbits + 7) / 8;
2776 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2779 ax_trace_quick (expr, nbytes);
2782 ax_simple (expr, aop_ref8);
2783 else if (nbits <= 16)
2784 ax_simple (expr, aop_ref16);
2785 else if (nbits <= 32)
2786 ax_simple (expr, aop_ref32);
2788 ax_simple (expr, aop_ref64);
2790 /* If we read exactly the number of bytes we wanted, we're done. */
2791 if (8 * nbytes == nbits)
2794 if (gdbarch_bits_big_endian (arch))
2796 /* On a bits-big-endian machine, we want the high-order
2798 ax_const_l (expr, 8 * nbytes - nbits);
2799 ax_simple (expr, aop_rsh_unsigned);
2803 /* On a bits-little-endian box, we want the low-order NBITS. */
2804 ax_zero_ext (expr, nbits);
2808 /* A helper function to return the frame's PC. */
2811 get_ax_pc (void *baton)
2813 struct agent_expr *expr = (struct agent_expr *) baton;
2818 /* Compile a DWARF location expression to an agent expression.
2820 EXPR is the agent expression we are building.
2821 LOC is the agent value we modify.
2822 ARCH is the architecture.
2823 ADDR_SIZE is the size of addresses, in bytes.
2824 OP_PTR is the start of the location expression.
2825 OP_END is one past the last byte of the location expression.
2827 This will throw an exception for various kinds of errors -- for
2828 example, if the expression cannot be compiled, or if the expression
2832 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2833 unsigned int addr_size, const gdb_byte *op_ptr,
2834 const gdb_byte *op_end,
2835 struct dwarf2_per_cu_data *per_cu)
2837 gdbarch *arch = expr->gdbarch;
2838 std::vector<int> dw_labels, patches;
2839 const gdb_byte * const base = op_ptr;
2840 const gdb_byte *previous_piece = op_ptr;
2841 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2842 ULONGEST bits_collected = 0;
2843 unsigned int addr_size_bits = 8 * addr_size;
2844 int bits_big_endian = gdbarch_bits_big_endian (arch);
2846 std::vector<int> offsets (op_end - op_ptr, -1);
2848 /* By default we are making an address. */
2849 loc->kind = axs_lvalue_memory;
2851 while (op_ptr < op_end)
2853 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
2854 uint64_t uoffset, reg;
2858 offsets[op_ptr - base] = expr->len;
2861 /* Our basic approach to code generation is to map DWARF
2862 operations directly to AX operations. However, there are
2865 First, DWARF works on address-sized units, but AX always uses
2866 LONGEST. For most operations we simply ignore this
2867 difference; instead we generate sign extensions as needed
2868 before division and comparison operations. It would be nice
2869 to omit the sign extensions, but there is no way to determine
2870 the size of the target's LONGEST. (This code uses the size
2871 of the host LONGEST in some cases -- that is a bug but it is
2874 Second, some DWARF operations cannot be translated to AX.
2875 For these we simply fail. See
2876 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2911 ax_const_l (expr, op - DW_OP_lit0);
2915 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2916 op_ptr += addr_size;
2917 /* Some versions of GCC emit DW_OP_addr before
2918 DW_OP_GNU_push_tls_address. In this case the value is an
2919 index, not an address. We don't support things like
2920 branching between the address and the TLS op. */
2921 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2922 uoffset += dwarf2_per_cu_text_offset (per_cu);
2923 ax_const_l (expr, uoffset);
2927 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2931 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2935 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2939 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2943 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2947 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2951 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2955 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2959 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2960 ax_const_l (expr, uoffset);
2963 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2964 ax_const_l (expr, offset);
2999 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3000 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3001 loc->kind = axs_lvalue_register;
3005 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
3006 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3007 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3008 loc->kind = axs_lvalue_register;
3011 case DW_OP_implicit_value:
3015 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3016 if (op_ptr + len > op_end)
3017 error (_("DW_OP_implicit_value: too few bytes available."));
3018 if (len > sizeof (ULONGEST))
3019 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3022 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3025 dwarf_expr_require_composition (op_ptr, op_end,
3026 "DW_OP_implicit_value");
3028 loc->kind = axs_rvalue;
3032 case DW_OP_stack_value:
3033 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3034 loc->kind = axs_rvalue;
3069 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3070 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3074 ax_const_l (expr, offset);
3075 ax_simple (expr, aop_add);
3080 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
3081 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3082 i = dwarf_reg_to_regnum_or_error (arch, reg);
3086 ax_const_l (expr, offset);
3087 ax_simple (expr, aop_add);
3093 const gdb_byte *datastart;
3095 const struct block *b;
3096 struct symbol *framefunc;
3098 b = block_for_pc (expr->scope);
3101 error (_("No block found for address"));
3103 framefunc = block_linkage_function (b);
3106 error (_("No function found for block"));
3108 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3109 &datastart, &datalen);
3111 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3112 dwarf2_compile_expr_to_ax (expr, loc, addr_size, datastart,
3113 datastart + datalen, per_cu);
3114 if (loc->kind == axs_lvalue_register)
3115 require_rvalue (expr, loc);
3119 ax_const_l (expr, offset);
3120 ax_simple (expr, aop_add);
3123 loc->kind = axs_lvalue_memory;
3128 ax_simple (expr, aop_dup);
3132 ax_simple (expr, aop_pop);
3137 ax_pick (expr, offset);
3141 ax_simple (expr, aop_swap);
3149 ax_simple (expr, aop_rot);
3153 case DW_OP_deref_size:
3157 if (op == DW_OP_deref_size)
3162 if (size != 1 && size != 2 && size != 4 && size != 8)
3163 error (_("Unsupported size %d in %s"),
3164 size, get_DW_OP_name (op));
3165 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3170 /* Sign extend the operand. */
3171 ax_ext (expr, addr_size_bits);
3172 ax_simple (expr, aop_dup);
3173 ax_const_l (expr, 0);
3174 ax_simple (expr, aop_less_signed);
3175 ax_simple (expr, aop_log_not);
3176 i = ax_goto (expr, aop_if_goto);
3177 /* We have to emit 0 - X. */
3178 ax_const_l (expr, 0);
3179 ax_simple (expr, aop_swap);
3180 ax_simple (expr, aop_sub);
3181 ax_label (expr, i, expr->len);
3185 /* No need to sign extend here. */
3186 ax_const_l (expr, 0);
3187 ax_simple (expr, aop_swap);
3188 ax_simple (expr, aop_sub);
3192 /* Sign extend the operand. */
3193 ax_ext (expr, addr_size_bits);
3194 ax_simple (expr, aop_bit_not);
3197 case DW_OP_plus_uconst:
3198 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
3199 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3200 but we micro-optimize anyhow. */
3203 ax_const_l (expr, reg);
3204 ax_simple (expr, aop_add);
3209 ax_simple (expr, aop_bit_and);
3213 /* Sign extend the operands. */
3214 ax_ext (expr, addr_size_bits);
3215 ax_simple (expr, aop_swap);
3216 ax_ext (expr, addr_size_bits);
3217 ax_simple (expr, aop_swap);
3218 ax_simple (expr, aop_div_signed);
3222 ax_simple (expr, aop_sub);
3226 ax_simple (expr, aop_rem_unsigned);
3230 ax_simple (expr, aop_mul);
3234 ax_simple (expr, aop_bit_or);
3238 ax_simple (expr, aop_add);
3242 ax_simple (expr, aop_lsh);
3246 ax_simple (expr, aop_rsh_unsigned);
3250 ax_simple (expr, aop_rsh_signed);
3254 ax_simple (expr, aop_bit_xor);
3258 /* Sign extend the operands. */
3259 ax_ext (expr, addr_size_bits);
3260 ax_simple (expr, aop_swap);
3261 ax_ext (expr, addr_size_bits);
3262 /* Note no swap here: A <= B is !(B < A). */
3263 ax_simple (expr, aop_less_signed);
3264 ax_simple (expr, aop_log_not);
3268 /* Sign extend the operands. */
3269 ax_ext (expr, addr_size_bits);
3270 ax_simple (expr, aop_swap);
3271 ax_ext (expr, addr_size_bits);
3272 ax_simple (expr, aop_swap);
3273 /* A >= B is !(A < B). */
3274 ax_simple (expr, aop_less_signed);
3275 ax_simple (expr, aop_log_not);
3279 /* Sign extend the operands. */
3280 ax_ext (expr, addr_size_bits);
3281 ax_simple (expr, aop_swap);
3282 ax_ext (expr, addr_size_bits);
3283 /* No need for a second swap here. */
3284 ax_simple (expr, aop_equal);
3288 /* Sign extend the operands. */
3289 ax_ext (expr, addr_size_bits);
3290 ax_simple (expr, aop_swap);
3291 ax_ext (expr, addr_size_bits);
3292 ax_simple (expr, aop_swap);
3293 ax_simple (expr, aop_less_signed);
3297 /* Sign extend the operands. */
3298 ax_ext (expr, addr_size_bits);
3299 ax_simple (expr, aop_swap);
3300 ax_ext (expr, addr_size_bits);
3301 /* Note no swap here: A > B is B < A. */
3302 ax_simple (expr, aop_less_signed);
3306 /* Sign extend the operands. */
3307 ax_ext (expr, addr_size_bits);
3308 ax_simple (expr, aop_swap);
3309 ax_ext (expr, addr_size_bits);
3310 /* No need for a swap here. */
3311 ax_simple (expr, aop_equal);
3312 ax_simple (expr, aop_log_not);
3315 case DW_OP_call_frame_cfa:
3318 CORE_ADDR text_offset;
3320 const gdb_byte *cfa_start, *cfa_end;
3322 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3324 &text_offset, &cfa_start, &cfa_end))
3327 ax_reg (expr, regnum);
3330 ax_const_l (expr, off);
3331 ax_simple (expr, aop_add);
3336 /* Another expression. */
3337 ax_const_l (expr, text_offset);
3338 dwarf2_compile_expr_to_ax (expr, loc, addr_size, cfa_start,
3342 loc->kind = axs_lvalue_memory;
3346 case DW_OP_GNU_push_tls_address:
3347 case DW_OP_form_tls_address:
3351 case DW_OP_push_object_address:
3356 offset = extract_signed_integer (op_ptr, 2, byte_order);
3358 i = ax_goto (expr, aop_goto);
3359 dw_labels.push_back (op_ptr + offset - base);
3360 patches.push_back (i);
3364 offset = extract_signed_integer (op_ptr, 2, byte_order);
3366 /* Zero extend the operand. */
3367 ax_zero_ext (expr, addr_size_bits);
3368 i = ax_goto (expr, aop_if_goto);
3369 dw_labels.push_back (op_ptr + offset - base);
3370 patches.push_back (i);
3377 case DW_OP_bit_piece:
3381 if (op_ptr - 1 == previous_piece)
3382 error (_("Cannot translate empty pieces to agent expressions"));
3383 previous_piece = op_ptr - 1;
3385 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3386 if (op == DW_OP_piece)
3392 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3394 if (bits_collected + size > 8 * sizeof (LONGEST))
3395 error (_("Expression pieces exceed word size"));
3397 /* Access the bits. */
3400 case axs_lvalue_register:
3401 ax_reg (expr, loc->u.reg);
3404 case axs_lvalue_memory:
3405 /* Offset the pointer, if needed. */
3408 ax_const_l (expr, uoffset / 8);
3409 ax_simple (expr, aop_add);
3412 access_memory (arch, expr, size);
3416 /* For a bits-big-endian target, shift up what we already
3417 have. For a bits-little-endian target, shift up the
3418 new data. Note that there is a potential bug here if
3419 the DWARF expression leaves multiple values on the
3421 if (bits_collected > 0)
3423 if (bits_big_endian)
3425 ax_simple (expr, aop_swap);
3426 ax_const_l (expr, size);
3427 ax_simple (expr, aop_lsh);
3428 /* We don't need a second swap here, because
3429 aop_bit_or is symmetric. */
3433 ax_const_l (expr, size);
3434 ax_simple (expr, aop_lsh);
3436 ax_simple (expr, aop_bit_or);
3439 bits_collected += size;
3440 loc->kind = axs_rvalue;
3444 case DW_OP_GNU_uninit:
3450 struct dwarf2_locexpr_baton block;
3451 int size = (op == DW_OP_call2 ? 2 : 4);
3453 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3456 cu_offset cuoffset = (cu_offset) uoffset;
3457 block = dwarf2_fetch_die_loc_cu_off (cuoffset, per_cu,
3460 /* DW_OP_call_ref is currently not supported. */
3461 gdb_assert (block.per_cu == per_cu);
3463 dwarf2_compile_expr_to_ax (expr, loc, addr_size, block.data,
3464 block.data + block.size, per_cu);
3468 case DW_OP_call_ref:
3471 case DW_OP_GNU_variable_value:
3479 /* Patch all the branches we emitted. */
3480 for (int i = 0; i < patches.size (); ++i)
3482 int targ = offsets[dw_labels[i]];
3484 internal_error (__FILE__, __LINE__, _("invalid label"));
3485 ax_label (expr, patches[i], targ);
3490 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3491 evaluator to calculate the location. */
3492 static struct value *
3493 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3495 struct dwarf2_locexpr_baton *dlbaton
3496 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3499 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3500 dlbaton->size, dlbaton->per_cu);
3505 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3506 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3509 static struct value *
3510 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3512 struct dwarf2_locexpr_baton *dlbaton
3513 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3515 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3519 /* Implementation of get_symbol_read_needs from
3520 symbol_computed_ops. */
3522 static enum symbol_needs_kind
3523 locexpr_get_symbol_read_needs (struct symbol *symbol)
3525 struct dwarf2_locexpr_baton *dlbaton
3526 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3528 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3532 /* Return true if DATA points to the end of a piece. END is one past
3533 the last byte in the expression. */
3536 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3538 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3541 /* Helper for locexpr_describe_location_piece that finds the name of a
3545 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3549 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3550 We'd rather print *something* here than throw an error. */
3551 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3552 /* gdbarch_register_name may just return "", return something more
3553 descriptive for bad register numbers. */
3556 /* The text is output as "$bad_register_number".
3557 That is why we use the underscores. */
3558 return _("bad_register_number");
3560 return gdbarch_register_name (gdbarch, regnum);
3563 /* Nicely describe a single piece of a location, returning an updated
3564 position in the bytecode sequence. This function cannot recognize
3565 all locations; if a location is not recognized, it simply returns
3566 DATA. If there is an error during reading, e.g. we run off the end
3567 of the buffer, an error is thrown. */
3569 static const gdb_byte *
3570 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3571 CORE_ADDR addr, struct objfile *objfile,
3572 struct dwarf2_per_cu_data *per_cu,
3573 const gdb_byte *data, const gdb_byte *end,
3574 unsigned int addr_size)
3576 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3579 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3581 fprintf_filtered (stream, _("a variable in $%s"),
3582 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3585 else if (data[0] == DW_OP_regx)
3589 data = safe_read_uleb128 (data + 1, end, ®);
3590 fprintf_filtered (stream, _("a variable in $%s"),
3591 locexpr_regname (gdbarch, reg));
3593 else if (data[0] == DW_OP_fbreg)
3595 const struct block *b;
3596 struct symbol *framefunc;
3598 int64_t frame_offset;
3599 const gdb_byte *base_data, *new_data, *save_data = data;
3601 int64_t base_offset = 0;
3603 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3604 if (!piece_end_p (new_data, end))
3608 b = block_for_pc (addr);
3611 error (_("No block found for address for symbol \"%s\"."),
3612 SYMBOL_PRINT_NAME (symbol));
3614 framefunc = block_linkage_function (b);
3617 error (_("No function found for block for symbol \"%s\"."),
3618 SYMBOL_PRINT_NAME (symbol));
3620 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3622 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3624 const gdb_byte *buf_end;
3626 frame_reg = base_data[0] - DW_OP_breg0;
3627 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3629 if (buf_end != base_data + base_size)
3630 error (_("Unexpected opcode after "
3631 "DW_OP_breg%u for symbol \"%s\"."),
3632 frame_reg, SYMBOL_PRINT_NAME (symbol));
3634 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3636 /* The frame base is just the register, with no offset. */
3637 frame_reg = base_data[0] - DW_OP_reg0;
3642 /* We don't know what to do with the frame base expression,
3643 so we can't trace this variable; give up. */
3647 fprintf_filtered (stream,
3648 _("a variable at frame base reg $%s offset %s+%s"),
3649 locexpr_regname (gdbarch, frame_reg),
3650 plongest (base_offset), plongest (frame_offset));
3652 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3653 && piece_end_p (data, end))
3657 data = safe_read_sleb128 (data + 1, end, &offset);
3659 fprintf_filtered (stream,
3660 _("a variable at offset %s from base reg $%s"),
3662 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3665 /* The location expression for a TLS variable looks like this (on a
3668 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3669 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3671 0x3 is the encoding for DW_OP_addr, which has an operand as long
3672 as the size of an address on the target machine (here is 8
3673 bytes). Note that more recent version of GCC emit DW_OP_const4u
3674 or DW_OP_const8u, depending on address size, rather than
3675 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3676 The operand represents the offset at which the variable is within
3677 the thread local storage. */
3679 else if (data + 1 + addr_size < end
3680 && (data[0] == DW_OP_addr
3681 || (addr_size == 4 && data[0] == DW_OP_const4u)
3682 || (addr_size == 8 && data[0] == DW_OP_const8u))
3683 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3684 || data[1 + addr_size] == DW_OP_form_tls_address)
3685 && piece_end_p (data + 2 + addr_size, end))
3688 offset = extract_unsigned_integer (data + 1, addr_size,
3689 gdbarch_byte_order (gdbarch));
3691 fprintf_filtered (stream,
3692 _("a thread-local variable at offset 0x%s "
3693 "in the thread-local storage for `%s'"),
3694 phex_nz (offset, addr_size), objfile_name (objfile));
3696 data += 1 + addr_size + 1;
3699 /* With -gsplit-dwarf a TLS variable can also look like this:
3700 DW_AT_location : 3 byte block: fc 4 e0
3701 (DW_OP_GNU_const_index: 4;
3702 DW_OP_GNU_push_tls_address) */
3703 else if (data + 3 <= end
3704 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3705 && data[0] == DW_OP_GNU_const_index
3707 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3708 || data[1 + leb128_size] == DW_OP_form_tls_address)
3709 && piece_end_p (data + 2 + leb128_size, end))
3713 data = safe_read_uleb128 (data + 1, end, &offset);
3714 offset = dwarf2_read_addr_index (per_cu, offset);
3715 fprintf_filtered (stream,
3716 _("a thread-local variable at offset 0x%s "
3717 "in the thread-local storage for `%s'"),
3718 phex_nz (offset, addr_size), objfile_name (objfile));
3722 else if (data[0] >= DW_OP_lit0
3723 && data[0] <= DW_OP_lit31
3725 && data[1] == DW_OP_stack_value)
3727 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3734 /* Disassemble an expression, stopping at the end of a piece or at the
3735 end of the expression. Returns a pointer to the next unread byte
3736 in the input expression. If ALL is nonzero, then this function
3737 will keep going until it reaches the end of the expression.
3738 If there is an error during reading, e.g. we run off the end
3739 of the buffer, an error is thrown. */
3741 static const gdb_byte *
3742 disassemble_dwarf_expression (struct ui_file *stream,
3743 struct gdbarch *arch, unsigned int addr_size,
3744 int offset_size, const gdb_byte *start,
3745 const gdb_byte *data, const gdb_byte *end,
3746 int indent, int all,
3747 struct dwarf2_per_cu_data *per_cu)
3751 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3753 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3758 name = get_DW_OP_name (op);
3761 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3762 op, (long) (data - 1 - start));
3763 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3764 (long) (data - 1 - start), name);
3769 ul = extract_unsigned_integer (data, addr_size,
3770 gdbarch_byte_order (arch));
3772 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3776 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3778 fprintf_filtered (stream, " %s", pulongest (ul));
3781 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3783 fprintf_filtered (stream, " %s", plongest (l));
3786 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3788 fprintf_filtered (stream, " %s", pulongest (ul));
3791 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3793 fprintf_filtered (stream, " %s", plongest (l));
3796 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3798 fprintf_filtered (stream, " %s", pulongest (ul));
3801 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3803 fprintf_filtered (stream, " %s", plongest (l));
3806 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3808 fprintf_filtered (stream, " %s", pulongest (ul));
3811 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3813 fprintf_filtered (stream, " %s", plongest (l));
3816 data = safe_read_uleb128 (data, end, &ul);
3817 fprintf_filtered (stream, " %s", pulongest (ul));
3820 data = safe_read_sleb128 (data, end, &l);
3821 fprintf_filtered (stream, " %s", plongest (l));
3856 fprintf_filtered (stream, " [$%s]",
3857 locexpr_regname (arch, op - DW_OP_reg0));
3861 data = safe_read_uleb128 (data, end, &ul);
3862 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3863 locexpr_regname (arch, (int) ul));
3866 case DW_OP_implicit_value:
3867 data = safe_read_uleb128 (data, end, &ul);
3869 fprintf_filtered (stream, " %s", pulongest (ul));
3904 data = safe_read_sleb128 (data, end, &l);
3905 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3906 locexpr_regname (arch, op - DW_OP_breg0));
3910 data = safe_read_uleb128 (data, end, &ul);
3911 data = safe_read_sleb128 (data, end, &l);
3912 fprintf_filtered (stream, " register %s [$%s] offset %s",
3914 locexpr_regname (arch, (int) ul),
3919 data = safe_read_sleb128 (data, end, &l);
3920 fprintf_filtered (stream, " %s", plongest (l));
3923 case DW_OP_xderef_size:
3924 case DW_OP_deref_size:
3926 fprintf_filtered (stream, " %d", *data);
3930 case DW_OP_plus_uconst:
3931 data = safe_read_uleb128 (data, end, &ul);
3932 fprintf_filtered (stream, " %s", pulongest (ul));
3936 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3938 fprintf_filtered (stream, " to %ld",
3939 (long) (data + l - start));
3943 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3945 fprintf_filtered (stream, " %ld",
3946 (long) (data + l - start));
3950 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3952 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3956 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3958 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3961 case DW_OP_call_ref:
3962 ul = extract_unsigned_integer (data, offset_size,
3963 gdbarch_byte_order (arch));
3964 data += offset_size;
3965 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3969 data = safe_read_uleb128 (data, end, &ul);
3970 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3973 case DW_OP_bit_piece:
3977 data = safe_read_uleb128 (data, end, &ul);
3978 data = safe_read_uleb128 (data, end, &offset);
3979 fprintf_filtered (stream, " size %s offset %s (bits)",
3980 pulongest (ul), pulongest (offset));
3984 case DW_OP_implicit_pointer:
3985 case DW_OP_GNU_implicit_pointer:
3987 ul = extract_unsigned_integer (data, offset_size,
3988 gdbarch_byte_order (arch));
3989 data += offset_size;
3991 data = safe_read_sleb128 (data, end, &l);
3993 fprintf_filtered (stream, " DIE %s offset %s",
3994 phex_nz (ul, offset_size),
3999 case DW_OP_deref_type:
4000 case DW_OP_GNU_deref_type:
4002 int deref_addr_size = *data++;
4005 data = safe_read_uleb128 (data, end, &ul);
4006 cu_offset offset = (cu_offset) ul;
4007 type = dwarf2_get_die_type (offset, per_cu);
4008 fprintf_filtered (stream, "<");
4009 type_print (type, "", stream, -1);
4010 fprintf_filtered (stream, " [0x%s]> %d",
4011 phex_nz (to_underlying (offset), 0),
4016 case DW_OP_const_type:
4017 case DW_OP_GNU_const_type:
4021 data = safe_read_uleb128 (data, end, &ul);
4022 cu_offset type_die = (cu_offset) ul;
4023 type = dwarf2_get_die_type (type_die, per_cu);
4024 fprintf_filtered (stream, "<");
4025 type_print (type, "", stream, -1);
4026 fprintf_filtered (stream, " [0x%s]>",
4027 phex_nz (to_underlying (type_die), 0));
4031 case DW_OP_regval_type:
4032 case DW_OP_GNU_regval_type:
4037 data = safe_read_uleb128 (data, end, ®);
4038 data = safe_read_uleb128 (data, end, &ul);
4039 cu_offset type_die = (cu_offset) ul;
4041 type = dwarf2_get_die_type (type_die, per_cu);
4042 fprintf_filtered (stream, "<");
4043 type_print (type, "", stream, -1);
4044 fprintf_filtered (stream, " [0x%s]> [$%s]",
4045 phex_nz (to_underlying (type_die), 0),
4046 locexpr_regname (arch, reg));
4051 case DW_OP_GNU_convert:
4052 case DW_OP_reinterpret:
4053 case DW_OP_GNU_reinterpret:
4055 data = safe_read_uleb128 (data, end, &ul);
4056 cu_offset type_die = (cu_offset) ul;
4058 if (to_underlying (type_die) == 0)
4059 fprintf_filtered (stream, "<0>");
4064 type = dwarf2_get_die_type (type_die, per_cu);
4065 fprintf_filtered (stream, "<");
4066 type_print (type, "", stream, -1);
4067 fprintf_filtered (stream, " [0x%s]>",
4068 phex_nz (to_underlying (type_die), 0));
4073 case DW_OP_entry_value:
4074 case DW_OP_GNU_entry_value:
4075 data = safe_read_uleb128 (data, end, &ul);
4076 fputc_filtered ('\n', stream);
4077 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4078 start, data, data + ul, indent + 2,
4083 case DW_OP_GNU_parameter_ref:
4084 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4086 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4090 case DW_OP_GNU_addr_index:
4091 data = safe_read_uleb128 (data, end, &ul);
4092 ul = dwarf2_read_addr_index (per_cu, ul);
4093 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4095 case DW_OP_GNU_const_index:
4096 data = safe_read_uleb128 (data, end, &ul);
4097 ul = dwarf2_read_addr_index (per_cu, ul);
4098 fprintf_filtered (stream, " %s", pulongest (ul));
4101 case DW_OP_GNU_variable_value:
4102 ul = extract_unsigned_integer (data, offset_size,
4103 gdbarch_byte_order (arch));
4104 data += offset_size;
4105 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4109 fprintf_filtered (stream, "\n");
4115 /* Describe a single location, which may in turn consist of multiple
4119 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4120 struct ui_file *stream,
4121 const gdb_byte *data, size_t size,
4122 struct objfile *objfile, unsigned int addr_size,
4123 int offset_size, struct dwarf2_per_cu_data *per_cu)
4125 const gdb_byte *end = data + size;
4126 int first_piece = 1, bad = 0;
4130 const gdb_byte *here = data;
4131 int disassemble = 1;
4136 fprintf_filtered (stream, _(", and "));
4138 if (!dwarf_always_disassemble)
4140 data = locexpr_describe_location_piece (symbol, stream,
4141 addr, objfile, per_cu,
4142 data, end, addr_size);
4143 /* If we printed anything, or if we have an empty piece,
4144 then don't disassemble. */
4146 || data[0] == DW_OP_piece
4147 || data[0] == DW_OP_bit_piece)
4152 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4153 data = disassemble_dwarf_expression (stream,
4154 get_objfile_arch (objfile),
4155 addr_size, offset_size, data,
4157 dwarf_always_disassemble,
4163 int empty = data == here;
4166 fprintf_filtered (stream, " ");
4167 if (data[0] == DW_OP_piece)
4171 data = safe_read_uleb128 (data + 1, end, &bytes);
4174 fprintf_filtered (stream, _("an empty %s-byte piece"),
4177 fprintf_filtered (stream, _(" [%s-byte piece]"),
4180 else if (data[0] == DW_OP_bit_piece)
4182 uint64_t bits, offset;
4184 data = safe_read_uleb128 (data + 1, end, &bits);
4185 data = safe_read_uleb128 (data, end, &offset);
4188 fprintf_filtered (stream,
4189 _("an empty %s-bit piece"),
4192 fprintf_filtered (stream,
4193 _(" [%s-bit piece, offset %s bits]"),
4194 pulongest (bits), pulongest (offset));
4204 if (bad || data > end)
4205 error (_("Corrupted DWARF2 expression for \"%s\"."),
4206 SYMBOL_PRINT_NAME (symbol));
4209 /* Print a natural-language description of SYMBOL to STREAM. This
4210 version is for a symbol with a single location. */
4213 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4214 struct ui_file *stream)
4216 struct dwarf2_locexpr_baton *dlbaton
4217 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4218 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4219 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4220 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4222 locexpr_describe_location_1 (symbol, addr, stream,
4223 dlbaton->data, dlbaton->size,
4224 objfile, addr_size, offset_size,
4228 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4229 any necessary bytecode in AX. */
4232 locexpr_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4233 struct axs_value *value)
4235 struct dwarf2_locexpr_baton *dlbaton
4236 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4237 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4239 if (dlbaton->size == 0)
4240 value->optimized_out = 1;
4242 dwarf2_compile_expr_to_ax (ax, value, addr_size, dlbaton->data,
4243 dlbaton->data + dlbaton->size, dlbaton->per_cu);
4246 /* symbol_computed_ops 'generate_c_location' method. */
4249 locexpr_generate_c_location (struct symbol *sym, string_file *stream,
4250 struct gdbarch *gdbarch,
4251 unsigned char *registers_used,
4252 CORE_ADDR pc, const char *result_name)
4254 struct dwarf2_locexpr_baton *dlbaton
4255 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4256 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4258 if (dlbaton->size == 0)
4259 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4261 compile_dwarf_expr_to_c (stream, result_name,
4262 sym, pc, gdbarch, registers_used, addr_size,
4263 dlbaton->data, dlbaton->data + dlbaton->size,
4267 /* The set of location functions used with the DWARF-2 expression
4269 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4270 locexpr_read_variable,
4271 locexpr_read_variable_at_entry,
4272 locexpr_get_symbol_read_needs,
4273 locexpr_describe_location,
4274 0, /* location_has_loclist */
4275 locexpr_tracepoint_var_ref,
4276 locexpr_generate_c_location
4280 /* Wrapper functions for location lists. These generally find
4281 the appropriate location expression and call something above. */
4283 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4284 evaluator to calculate the location. */
4285 static struct value *
4286 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4288 struct dwarf2_loclist_baton *dlbaton
4289 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4291 const gdb_byte *data;
4293 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4295 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4296 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4302 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4303 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4306 Function always returns non-NULL value, it may be marked optimized out if
4307 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4308 if it cannot resolve the parameter for any reason. */
4310 static struct value *
4311 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4313 struct dwarf2_loclist_baton *dlbaton
4314 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4315 const gdb_byte *data;
4319 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4320 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4322 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4324 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4326 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4329 /* Implementation of get_symbol_read_needs from
4330 symbol_computed_ops. */
4332 static enum symbol_needs_kind
4333 loclist_symbol_needs (struct symbol *symbol)
4335 /* If there's a location list, then assume we need to have a frame
4336 to choose the appropriate location expression. With tracking of
4337 global variables this is not necessarily true, but such tracking
4338 is disabled in GCC at the moment until we figure out how to
4341 return SYMBOL_NEEDS_FRAME;
4344 /* Print a natural-language description of SYMBOL to STREAM. This
4345 version applies when there is a list of different locations, each
4346 with a specified address range. */
4349 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4350 struct ui_file *stream)
4352 struct dwarf2_loclist_baton *dlbaton
4353 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4354 const gdb_byte *loc_ptr, *buf_end;
4355 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4356 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4358 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4359 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4360 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4361 /* Adjust base_address for relocatable objects. */
4362 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4363 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4366 loc_ptr = dlbaton->data;
4367 buf_end = dlbaton->data + dlbaton->size;
4369 fprintf_filtered (stream, _("multi-location:\n"));
4371 /* Iterate through locations until we run out. */
4374 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4376 enum debug_loc_kind kind;
4377 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4379 if (dlbaton->from_dwo)
4380 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4381 loc_ptr, buf_end, &new_ptr,
4382 &low, &high, byte_order);
4384 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4386 byte_order, addr_size,
4391 case DEBUG_LOC_END_OF_LIST:
4394 case DEBUG_LOC_BASE_ADDRESS:
4395 base_address = high + base_offset;
4396 fprintf_filtered (stream, _(" Base address %s"),
4397 paddress (gdbarch, base_address));
4399 case DEBUG_LOC_START_END:
4400 case DEBUG_LOC_START_LENGTH:
4402 case DEBUG_LOC_BUFFER_OVERFLOW:
4403 case DEBUG_LOC_INVALID_ENTRY:
4404 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4405 SYMBOL_PRINT_NAME (symbol));
4407 gdb_assert_not_reached ("bad debug_loc_kind");
4410 /* Otherwise, a location expression entry. */
4411 low += base_address;
4412 high += base_address;
4414 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4415 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4417 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4420 /* (It would improve readability to print only the minimum
4421 necessary digits of the second number of the range.) */
4422 fprintf_filtered (stream, _(" Range %s-%s: "),
4423 paddress (gdbarch, low), paddress (gdbarch, high));
4425 /* Now describe this particular location. */
4426 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4427 objfile, addr_size, offset_size,
4430 fprintf_filtered (stream, "\n");
4436 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4437 any necessary bytecode in AX. */
4439 loclist_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4440 struct axs_value *value)
4442 struct dwarf2_loclist_baton *dlbaton
4443 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4444 const gdb_byte *data;
4446 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4448 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4450 value->optimized_out = 1;
4452 dwarf2_compile_expr_to_ax (ax, value, addr_size, data, data + size,
4456 /* symbol_computed_ops 'generate_c_location' method. */
4459 loclist_generate_c_location (struct symbol *sym, string_file *stream,
4460 struct gdbarch *gdbarch,
4461 unsigned char *registers_used,
4462 CORE_ADDR pc, const char *result_name)
4464 struct dwarf2_loclist_baton *dlbaton
4465 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4466 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4467 const gdb_byte *data;
4470 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4472 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4474 compile_dwarf_expr_to_c (stream, result_name,
4475 sym, pc, gdbarch, registers_used, addr_size,
4480 /* The set of location functions used with the DWARF-2 expression
4481 evaluator and location lists. */
4482 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4483 loclist_read_variable,
4484 loclist_read_variable_at_entry,
4485 loclist_symbol_needs,
4486 loclist_describe_location,
4487 1, /* location_has_loclist */
4488 loclist_tracepoint_var_ref,
4489 loclist_generate_c_location
4493 _initialize_dwarf2loc (void)
4495 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4496 &entry_values_debug,
4497 _("Set entry values and tail call frames "
4499 _("Show entry values and tail call frames "
4501 _("When non-zero, the process of determining "
4502 "parameter values from function entry point "
4503 "and tail call frames will be printed."),
4505 show_entry_values_debug,
4506 &setdebuglist, &showdebuglist);