3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
6 # This file is part of GDB.
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 # Make certain that the script is running in an internationalized
25 LC_ALL=c ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
52 if test "${line}" = ""
55 elif test "${line}" = "#" -a "${comment}" = ""
58 elif expr "${line}" : "#" > /dev/null
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
79 if eval test \"\${${r}}\" = \"\ \"
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
104 if [ "${returntype}" = int ]
108 elif [ "${returntype}" = long ]
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
120 case "${invalid_p}" in
122 if test -n "${predefault}" -a "${predefault}" != "0"
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
132 echo "Predicate function ${function} with invalid_p." 1>&2
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
146 if [ -n "${postdefault}" ]
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
151 fallbackdefault="${predefault}"
156 #NOT YET: See gdbarch.log for basic verification of
171 fallback_default_p ()
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
177 class_is_variable_p ()
185 class_is_function_p ()
188 *f* | *F* | *m* | *M* ) true ;;
193 class_is_multiarch_p ()
201 class_is_predicate_p ()
204 *F* | *V* | *M* ) true ;;
218 # dump out/verify the doco
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
249 # The name of the MACRO that this method is to be accessed by.
253 # For functions, the return type; for variables, the data type
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
286 # If STATICDEFAULT is empty, zero is used.
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
295 # If PREDEFAULT is empty, zero is used.
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
301 # A zero PREDEFAULT function will force the fallback to call
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
313 # If POSTDEFAULT is empty, no post update is performed.
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
344 # See also PREDEFAULT and POSTDEFAULT.
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
352 # If FMT is empty, ``%ld'' is used.
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
359 # If PRINT is empty, ``(long)'' is used.
363 # An optional indicator for any predicte to wrap around the
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
370 # If PRINT_P is empty, ``1'' is always used.
377 echo "Bad field ${field}"
385 # See below (DOCO) for description of each field
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 # Number of bits in a char or unsigned char for the target machine.
391 # Just like CHAR_BIT in <limits.h> but describes the target machine.
392 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
394 # Number of bits in a short or unsigned short for the target machine.
395 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
396 # Number of bits in an int or unsigned int for the target machine.
397 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
398 # Number of bits in a long or unsigned long for the target machine.
399 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long long or unsigned long long for the target
402 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
403 # Number of bits in a float for the target machine.
404 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
405 # Number of bits in a double for the target machine.
406 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
407 # Number of bits in a long double for the target machine.
408 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
409 # For most targets, a pointer on the target and its representation as an
410 # address in GDB have the same size and "look the same". For such a
411 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
412 # / addr_bit will be set from it.
414 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
415 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
417 # ptr_bit is the size of a pointer on the target
418 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
419 # addr_bit is the size of a target address as represented in gdb
420 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
421 # Number of bits in a BFD_VMA for the target object file format.
422 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
424 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
425 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
427 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
428 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
429 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
430 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
431 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
432 # Function for getting target's idea of a frame pointer. FIXME: GDB's
433 # whole scheme for dealing with "frames" and "frame pointers" needs a
435 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
437 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
438 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
440 v:2:NUM_REGS:int:num_regs::::0:-1
441 # This macro gives the number of pseudo-registers that live in the
442 # register namespace but do not get fetched or stored on the target.
443 # These pseudo-registers may be aliases for other registers,
444 # combinations of other registers, or they may be computed by GDB.
445 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
447 # GDB's standard (or well known) register numbers. These can map onto
448 # a real register or a pseudo (computed) register or not be defined at
450 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
451 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
452 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
453 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
454 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
455 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
456 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
457 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
458 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
459 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
461 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
462 # Convert from an sdb register number to an internal gdb register number.
463 # This should be defined in tm.h, if REGISTER_NAMES is not set up
464 # to map one to one onto the sdb register numbers.
465 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
466 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
467 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
468 v:2:REGISTER_SIZE:int:register_size::::0:-1
469 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
470 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
471 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
472 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
473 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
474 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
475 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
477 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
478 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
479 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
480 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
481 # MAP a GDB RAW register number onto a simulator register number. See
482 # also include/...-sim.h.
483 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
484 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
485 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
486 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
487 # setjmp/longjmp support.
488 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
490 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
491 # much better but at least they are vaguely consistent). The headers
492 # and body contain convoluted #if/#else sequences for determine how
493 # things should be compiled. Instead of trying to mimic that
494 # behaviour here (and hence entrench it further) gdbarch simply
495 # reqires that these methods be set up from the word go. This also
496 # avoids any potential problems with moving beyond multi-arch partial.
497 v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
498 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
499 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
500 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
501 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
502 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
503 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
504 # NOTE: cagney/2002-11-24: This function with predicate has a valid
505 # (callable) initial value. As a consequence, even when the predicate
506 # is false, the corresponding function works. This simplifies the
507 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
508 # doesn't need to be modified.
509 F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
510 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
511 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
512 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
513 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
514 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
515 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
516 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
517 f:2:INIT_FRAME_PC:CORE_ADDR:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
519 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
520 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
521 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
522 F:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
524 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
525 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
526 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
528 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
529 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
530 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
532 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
533 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
534 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
536 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
537 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
538 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
539 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
540 f:2:POP_FRAME:void:pop_frame:void:-:::0
542 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
544 f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
545 f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
546 f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
547 f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
549 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
550 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
551 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
553 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
554 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
556 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
557 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
558 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
559 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
560 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
561 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
562 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
563 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
564 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
566 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
568 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
569 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
570 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
571 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
572 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
573 # given frame is the outermost one and has no caller.
575 # XXXX - both default and alternate frame_chain_valid functions are
576 # deprecated. New code should use dummy frames and one of the generic
578 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
579 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
580 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
581 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
582 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
583 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
585 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
586 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
587 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
588 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
589 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
590 v:2:PARM_BOUNDARY:int:parm_boundary
592 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
593 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
594 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
595 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
596 # On some machines there are bits in addresses which are not really
597 # part of the address, but are used by the kernel, the hardware, etc.
598 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
599 # we get a "real" address such as one would find in a symbol table.
600 # This is used only for addresses of instructions, and even then I'm
601 # not sure it's used in all contexts. It exists to deal with there
602 # being a few stray bits in the PC which would mislead us, not as some
603 # sort of generic thing to handle alignment or segmentation (it's
604 # possible it should be in TARGET_READ_PC instead).
605 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
606 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
608 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
609 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
610 # the target needs software single step. An ISA method to implement it.
612 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
613 # using the breakpoint system instead of blatting memory directly (as with rs6000).
615 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
616 # single step. If not, then implement single step using breakpoints.
617 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
618 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
619 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
622 # For SVR4 shared libraries, each call goes through a small piece of
623 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
624 # to nonzero if we are currently stopped in one of these.
625 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
627 # Some systems also have trampoline code for returning from shared libs.
628 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
630 # Sigtramp is a routine that the kernel calls (which then calls the
631 # signal handler). On most machines it is a library routine that is
632 # linked into the executable.
634 # This macro, given a program counter value and the name of the
635 # function in which that PC resides (which can be null if the name is
636 # not known), returns nonzero if the PC and name show that we are in
639 # On most machines just see if the name is sigtramp (and if we have
640 # no name, assume we are not in sigtramp).
642 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
643 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
644 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
645 # own local NAME lookup.
647 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
648 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
650 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
651 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
652 F::SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
653 # A target might have problems with watchpoints as soon as the stack
654 # frame of the current function has been destroyed. This mostly happens
655 # as the first action in a funtion's epilogue. in_function_epilogue_p()
656 # is defined to return a non-zero value if either the given addr is one
657 # instruction after the stack destroying instruction up to the trailing
658 # return instruction or if we can figure out that the stack frame has
659 # already been invalidated regardless of the value of addr. Targets
660 # which don't suffer from that problem could just let this functionality
662 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
663 # Given a vector of command-line arguments, return a newly allocated
664 # string which, when passed to the create_inferior function, will be
665 # parsed (on Unix systems, by the shell) to yield the same vector.
666 # This function should call error() if the argument vector is not
667 # representable for this target or if this target does not support
668 # command-line arguments.
669 # ARGC is the number of elements in the vector.
670 # ARGV is an array of strings, one per argument.
671 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
672 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
673 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
674 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
675 v::NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
676 v::CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
677 v::HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
678 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
679 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:char *:address_class_type_flags_to_name:int type_flags:type_flags:
680 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:char *name, int *type_flags_ptr:name, type_flags_ptr
681 # Is a register in a group
682 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
689 exec > new-gdbarch.log
690 function_list | while do_read
693 ${class} ${macro}(${actual})
694 ${returntype} ${function} ($formal)${attrib}
698 eval echo \"\ \ \ \ ${r}=\${${r}}\"
700 if class_is_predicate_p && fallback_default_p
702 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
706 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
708 echo "Error: postdefault is useless when invalid_p=0" 1>&2
712 if class_is_multiarch_p
714 if class_is_predicate_p ; then :
715 elif test "x${predefault}" = "x"
717 echo "Error: pure multi-arch function must have a predefault" 1>&2
726 compare_new gdbarch.log
732 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
734 /* Dynamic architecture support for GDB, the GNU debugger.
735 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
737 This file is part of GDB.
739 This program is free software; you can redistribute it and/or modify
740 it under the terms of the GNU General Public License as published by
741 the Free Software Foundation; either version 2 of the License, or
742 (at your option) any later version.
744 This program is distributed in the hope that it will be useful,
745 but WITHOUT ANY WARRANTY; without even the implied warranty of
746 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
747 GNU General Public License for more details.
749 You should have received a copy of the GNU General Public License
750 along with this program; if not, write to the Free Software
751 Foundation, Inc., 59 Temple Place - Suite 330,
752 Boston, MA 02111-1307, USA. */
754 /* This file was created with the aid of \`\`gdbarch.sh''.
756 The Bourne shell script \`\`gdbarch.sh'' creates the files
757 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
758 against the existing \`\`gdbarch.[hc]''. Any differences found
761 If editing this file, please also run gdbarch.sh and merge any
762 changes into that script. Conversely, when making sweeping changes
763 to this file, modifying gdbarch.sh and using its output may prove
779 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
781 /* Pull in function declarations refered to, indirectly, via macros. */
782 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
783 #include "inferior.h" /* For unsigned_address_to_pointer(). */
789 struct minimal_symbol;
793 extern struct gdbarch *current_gdbarch;
796 /* If any of the following are defined, the target wasn't correctly
800 #if defined (EXTRA_FRAME_INFO)
801 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
806 #if defined (FRAME_FIND_SAVED_REGS)
807 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
811 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
812 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
819 printf "/* The following are pre-initialized by GDBARCH. */\n"
820 function_list | while do_read
825 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
826 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
827 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
828 printf "#error \"Non multi-arch definition of ${macro}\"\n"
830 printf "#if GDB_MULTI_ARCH\n"
831 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
832 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
841 printf "/* The following are initialized by the target dependent code. */\n"
842 function_list | while do_read
844 if [ -n "${comment}" ]
846 echo "${comment}" | sed \
851 if class_is_multiarch_p
853 if class_is_predicate_p
856 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
859 if class_is_predicate_p
862 printf "#if defined (${macro})\n"
863 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
864 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
865 printf "#if !defined (${macro}_P)\n"
866 printf "#define ${macro}_P() (1)\n"
870 printf "/* Default predicate for non- multi-arch targets. */\n"
871 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
872 printf "#define ${macro}_P() (0)\n"
875 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
876 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
877 printf "#error \"Non multi-arch definition of ${macro}\"\n"
879 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
880 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
884 if class_is_variable_p
886 if fallback_default_p || class_is_predicate_p
889 printf "/* Default (value) for non- multi-arch platforms. */\n"
890 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
891 echo "#define ${macro} (${fallbackdefault})" \
892 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
896 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
897 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
898 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
899 printf "#error \"Non multi-arch definition of ${macro}\"\n"
901 printf "#if GDB_MULTI_ARCH\n"
902 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
903 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
907 if class_is_function_p
909 if class_is_multiarch_p ; then :
910 elif fallback_default_p || class_is_predicate_p
913 printf "/* Default (function) for non- multi-arch platforms. */\n"
914 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
915 if [ "x${fallbackdefault}" = "x0" ]
917 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
919 # FIXME: Should be passing current_gdbarch through!
920 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
921 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
926 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
928 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
929 elif class_is_multiarch_p
931 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
933 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
935 if [ "x${formal}" = "xvoid" ]
937 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
939 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
941 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
942 if class_is_multiarch_p ; then :
944 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
945 printf "#error \"Non multi-arch definition of ${macro}\"\n"
947 printf "#if GDB_MULTI_ARCH\n"
948 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
949 if [ "x${actual}" = "x" ]
951 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
952 elif [ "x${actual}" = "x-" ]
954 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
956 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
967 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
970 /* Mechanism for co-ordinating the selection of a specific
973 GDB targets (*-tdep.c) can register an interest in a specific
974 architecture. Other GDB components can register a need to maintain
975 per-architecture data.
977 The mechanisms below ensures that there is only a loose connection
978 between the set-architecture command and the various GDB
979 components. Each component can independently register their need
980 to maintain architecture specific data with gdbarch.
984 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
987 The more traditional mega-struct containing architecture specific
988 data for all the various GDB components was also considered. Since
989 GDB is built from a variable number of (fairly independent)
990 components it was determined that the global aproach was not
994 /* Register a new architectural family with GDB.
996 Register support for the specified ARCHITECTURE with GDB. When
997 gdbarch determines that the specified architecture has been
998 selected, the corresponding INIT function is called.
1002 The INIT function takes two parameters: INFO which contains the
1003 information available to gdbarch about the (possibly new)
1004 architecture; ARCHES which is a list of the previously created
1005 \`\`struct gdbarch'' for this architecture.
1007 The INFO parameter is, as far as possible, be pre-initialized with
1008 information obtained from INFO.ABFD or the previously selected
1011 The ARCHES parameter is a linked list (sorted most recently used)
1012 of all the previously created architures for this architecture
1013 family. The (possibly NULL) ARCHES->gdbarch can used to access
1014 values from the previously selected architecture for this
1015 architecture family. The global \`\`current_gdbarch'' shall not be
1018 The INIT function shall return any of: NULL - indicating that it
1019 doesn't recognize the selected architecture; an existing \`\`struct
1020 gdbarch'' from the ARCHES list - indicating that the new
1021 architecture is just a synonym for an earlier architecture (see
1022 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1023 - that describes the selected architecture (see gdbarch_alloc()).
1025 The DUMP_TDEP function shall print out all target specific values.
1026 Care should be taken to ensure that the function works in both the
1027 multi-arch and non- multi-arch cases. */
1031 struct gdbarch *gdbarch;
1032 struct gdbarch_list *next;
1037 /* Use default: NULL (ZERO). */
1038 const struct bfd_arch_info *bfd_arch_info;
1040 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1043 /* Use default: NULL (ZERO). */
1046 /* Use default: NULL (ZERO). */
1047 struct gdbarch_tdep_info *tdep_info;
1050 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1051 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1053 /* DEPRECATED - use gdbarch_register() */
1054 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1056 extern void gdbarch_register (enum bfd_architecture architecture,
1057 gdbarch_init_ftype *,
1058 gdbarch_dump_tdep_ftype *);
1061 /* Return a freshly allocated, NULL terminated, array of the valid
1062 architecture names. Since architectures are registered during the
1063 _initialize phase this function only returns useful information
1064 once initialization has been completed. */
1066 extern const char **gdbarch_printable_names (void);
1069 /* Helper function. Search the list of ARCHES for a GDBARCH that
1070 matches the information provided by INFO. */
1072 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1075 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1076 basic initialization using values obtained from the INFO andTDEP
1077 parameters. set_gdbarch_*() functions are called to complete the
1078 initialization of the object. */
1080 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1083 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1084 It is assumed that the caller freeds the \`\`struct
1087 extern void gdbarch_free (struct gdbarch *);
1090 /* Helper function. Force an update of the current architecture.
1092 The actual architecture selected is determined by INFO, \`\`(gdb) set
1093 architecture'' et.al., the existing architecture and BFD's default
1094 architecture. INFO should be initialized to zero and then selected
1095 fields should be updated.
1097 Returns non-zero if the update succeeds */
1099 extern int gdbarch_update_p (struct gdbarch_info info);
1103 /* Register per-architecture data-pointer.
1105 Reserve space for a per-architecture data-pointer. An identifier
1106 for the reserved data-pointer is returned. That identifer should
1107 be saved in a local static variable.
1109 The per-architecture data-pointer is either initialized explicitly
1110 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1111 gdbarch_data()). FREE() is called to delete either an existing
1112 data-pointer overridden by set_gdbarch_data() or when the
1113 architecture object is being deleted.
1115 When a previously created architecture is re-selected, the
1116 per-architecture data-pointer for that previous architecture is
1117 restored. INIT() is not re-called.
1119 Multiple registrarants for any architecture are allowed (and
1120 strongly encouraged). */
1122 struct gdbarch_data;
1124 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1125 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1127 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1128 gdbarch_data_free_ftype *free);
1129 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1130 struct gdbarch_data *data,
1133 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1136 /* Register per-architecture memory region.
1138 Provide a memory-region swap mechanism. Per-architecture memory
1139 region are created. These memory regions are swapped whenever the
1140 architecture is changed. For a new architecture, the memory region
1141 is initialized with zero (0) and the INIT function is called.
1143 Memory regions are swapped / initialized in the order that they are
1144 registered. NULL DATA and/or INIT values can be specified.
1146 New code should use register_gdbarch_data(). */
1148 typedef void (gdbarch_swap_ftype) (void);
1149 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1150 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1154 /* The target-system-dependent byte order is dynamic */
1156 extern int target_byte_order;
1157 #ifndef TARGET_BYTE_ORDER
1158 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1161 extern int target_byte_order_auto;
1162 #ifndef TARGET_BYTE_ORDER_AUTO
1163 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1168 /* The target-system-dependent BFD architecture is dynamic */
1170 extern int target_architecture_auto;
1171 #ifndef TARGET_ARCHITECTURE_AUTO
1172 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1175 extern const struct bfd_arch_info *target_architecture;
1176 #ifndef TARGET_ARCHITECTURE
1177 #define TARGET_ARCHITECTURE (target_architecture + 0)
1181 /* The target-system-dependent disassembler is semi-dynamic */
1183 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1184 unsigned int len, disassemble_info *info);
1186 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1187 disassemble_info *info);
1189 extern void dis_asm_print_address (bfd_vma addr,
1190 disassemble_info *info);
1192 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1193 extern disassemble_info tm_print_insn_info;
1194 #ifndef TARGET_PRINT_INSN_INFO
1195 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1200 /* Set the dynamic target-system-dependent parameters (architecture,
1201 byte-order, ...) using information found in the BFD */
1203 extern void set_gdbarch_from_file (bfd *);
1206 /* Initialize the current architecture to the "first" one we find on
1209 extern void initialize_current_architecture (void);
1211 /* For non-multiarched targets, do any initialization of the default
1212 gdbarch object necessary after the _initialize_MODULE functions
1214 extern void initialize_non_multiarch (void);
1216 /* gdbarch trace variable */
1217 extern int gdbarch_debug;
1219 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1224 #../move-if-change new-gdbarch.h gdbarch.h
1225 compare_new gdbarch.h
1232 exec > new-gdbarch.c
1237 #include "arch-utils.h"
1241 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1243 /* Just include everything in sight so that the every old definition
1244 of macro is visible. */
1245 #include "gdb_string.h"
1249 #include "inferior.h"
1250 #include "breakpoint.h"
1251 #include "gdb_wait.h"
1252 #include "gdbcore.h"
1255 #include "gdbthread.h"
1256 #include "annotate.h"
1257 #include "symfile.h" /* for overlay functions */
1258 #include "value.h" /* For old tm.h/nm.h macros. */
1262 #include "floatformat.h"
1264 #include "gdb_assert.h"
1265 #include "gdb_string.h"
1266 #include "gdb-events.h"
1267 #include "reggroups.h"
1269 /* Static function declarations */
1271 static void verify_gdbarch (struct gdbarch *gdbarch);
1272 static void alloc_gdbarch_data (struct gdbarch *);
1273 static void free_gdbarch_data (struct gdbarch *);
1274 static void init_gdbarch_swap (struct gdbarch *);
1275 static void clear_gdbarch_swap (struct gdbarch *);
1276 static void swapout_gdbarch_swap (struct gdbarch *);
1277 static void swapin_gdbarch_swap (struct gdbarch *);
1279 /* Non-zero if we want to trace architecture code. */
1281 #ifndef GDBARCH_DEBUG
1282 #define GDBARCH_DEBUG 0
1284 int gdbarch_debug = GDBARCH_DEBUG;
1288 # gdbarch open the gdbarch object
1290 printf "/* Maintain the struct gdbarch object */\n"
1292 printf "struct gdbarch\n"
1294 printf " /* Has this architecture been fully initialized? */\n"
1295 printf " int initialized_p;\n"
1296 printf " /* basic architectural information */\n"
1297 function_list | while do_read
1301 printf " ${returntype} ${function};\n"
1305 printf " /* target specific vector. */\n"
1306 printf " struct gdbarch_tdep *tdep;\n"
1307 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1309 printf " /* per-architecture data-pointers */\n"
1310 printf " unsigned nr_data;\n"
1311 printf " void **data;\n"
1313 printf " /* per-architecture swap-regions */\n"
1314 printf " struct gdbarch_swap *swap;\n"
1317 /* Multi-arch values.
1319 When extending this structure you must:
1321 Add the field below.
1323 Declare set/get functions and define the corresponding
1326 gdbarch_alloc(): If zero/NULL is not a suitable default,
1327 initialize the new field.
1329 verify_gdbarch(): Confirm that the target updated the field
1332 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1335 \`\`startup_gdbarch()'': Append an initial value to the static
1336 variable (base values on the host's c-type system).
1338 get_gdbarch(): Implement the set/get functions (probably using
1339 the macro's as shortcuts).
1344 function_list | while do_read
1346 if class_is_variable_p
1348 printf " ${returntype} ${function};\n"
1349 elif class_is_function_p
1351 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1356 # A pre-initialized vector
1360 /* The default architecture uses host values (for want of a better
1364 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1366 printf "struct gdbarch startup_gdbarch =\n"
1368 printf " 1, /* Always initialized. */\n"
1369 printf " /* basic architecture information */\n"
1370 function_list | while do_read
1374 printf " ${staticdefault},\n"
1378 /* target specific vector and its dump routine */
1380 /*per-architecture data-pointers and swap regions */
1382 /* Multi-arch values */
1384 function_list | while do_read
1386 if class_is_function_p || class_is_variable_p
1388 printf " ${staticdefault},\n"
1392 /* startup_gdbarch() */
1395 struct gdbarch *current_gdbarch = &startup_gdbarch;
1397 /* Do any initialization needed for a non-multiarch configuration
1398 after the _initialize_MODULE functions have been run. */
1400 initialize_non_multiarch (void)
1402 alloc_gdbarch_data (&startup_gdbarch);
1403 /* Ensure that all swap areas are zeroed so that they again think
1404 they are starting from scratch. */
1405 clear_gdbarch_swap (&startup_gdbarch);
1406 init_gdbarch_swap (&startup_gdbarch);
1410 # Create a new gdbarch struct
1414 /* Create a new \`\`struct gdbarch'' based on information provided by
1415 \`\`struct gdbarch_info''. */
1420 gdbarch_alloc (const struct gdbarch_info *info,
1421 struct gdbarch_tdep *tdep)
1423 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1424 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1425 the current local architecture and not the previous global
1426 architecture. This ensures that the new architectures initial
1427 values are not influenced by the previous architecture. Once
1428 everything is parameterised with gdbarch, this will go away. */
1429 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1430 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1432 alloc_gdbarch_data (current_gdbarch);
1434 current_gdbarch->tdep = tdep;
1437 function_list | while do_read
1441 printf " current_gdbarch->${function} = info->${function};\n"
1445 printf " /* Force the explicit initialization of these. */\n"
1446 function_list | while do_read
1448 if class_is_function_p || class_is_variable_p
1450 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1452 printf " current_gdbarch->${function} = ${predefault};\n"
1457 /* gdbarch_alloc() */
1459 return current_gdbarch;
1463 # Free a gdbarch struct.
1467 /* Free a gdbarch struct. This should never happen in normal
1468 operation --- once you've created a gdbarch, you keep it around.
1469 However, if an architecture's init function encounters an error
1470 building the structure, it may need to clean up a partially
1471 constructed gdbarch. */
1474 gdbarch_free (struct gdbarch *arch)
1476 gdb_assert (arch != NULL);
1477 free_gdbarch_data (arch);
1482 # verify a new architecture
1485 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1489 verify_gdbarch (struct gdbarch *gdbarch)
1491 struct ui_file *log;
1492 struct cleanup *cleanups;
1495 /* Only perform sanity checks on a multi-arch target. */
1496 if (!GDB_MULTI_ARCH)
1498 log = mem_fileopen ();
1499 cleanups = make_cleanup_ui_file_delete (log);
1501 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1502 fprintf_unfiltered (log, "\n\tbyte-order");
1503 if (gdbarch->bfd_arch_info == NULL)
1504 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1505 /* Check those that need to be defined for the given multi-arch level. */
1507 function_list | while do_read
1509 if class_is_function_p || class_is_variable_p
1511 if [ "x${invalid_p}" = "x0" ]
1513 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1514 elif class_is_predicate_p
1516 printf " /* Skip verify of ${function}, has predicate */\n"
1517 # FIXME: See do_read for potential simplification
1518 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1520 printf " if (${invalid_p})\n"
1521 printf " gdbarch->${function} = ${postdefault};\n"
1522 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1524 printf " if (gdbarch->${function} == ${predefault})\n"
1525 printf " gdbarch->${function} = ${postdefault};\n"
1526 elif [ -n "${postdefault}" ]
1528 printf " if (gdbarch->${function} == 0)\n"
1529 printf " gdbarch->${function} = ${postdefault};\n"
1530 elif [ -n "${invalid_p}" ]
1532 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1533 printf " && (${invalid_p}))\n"
1534 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1535 elif [ -n "${predefault}" ]
1537 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1538 printf " && (gdbarch->${function} == ${predefault}))\n"
1539 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1544 buf = ui_file_xstrdup (log, &dummy);
1545 make_cleanup (xfree, buf);
1546 if (strlen (buf) > 0)
1547 internal_error (__FILE__, __LINE__,
1548 "verify_gdbarch: the following are invalid ...%s",
1550 do_cleanups (cleanups);
1554 # dump the structure
1558 /* Print out the details of the current architecture. */
1560 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1561 just happens to match the global variable \`\`current_gdbarch''. That
1562 way macros refering to that variable get the local and not the global
1563 version - ulgh. Once everything is parameterised with gdbarch, this
1567 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1569 fprintf_unfiltered (file,
1570 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1573 function_list | sort -t: -k 3 | while do_read
1575 # First the predicate
1576 if class_is_predicate_p
1578 if class_is_multiarch_p
1580 printf " if (GDB_MULTI_ARCH)\n"
1581 printf " fprintf_unfiltered (file,\n"
1582 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1583 printf " gdbarch_${function}_p (current_gdbarch));\n"
1585 printf "#ifdef ${macro}_P\n"
1586 printf " fprintf_unfiltered (file,\n"
1587 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1588 printf " \"${macro}_P()\",\n"
1589 printf " XSTRING (${macro}_P ()));\n"
1590 printf " fprintf_unfiltered (file,\n"
1591 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1592 printf " ${macro}_P ());\n"
1596 # multiarch functions don't have macros.
1597 if class_is_multiarch_p
1599 printf " if (GDB_MULTI_ARCH)\n"
1600 printf " fprintf_unfiltered (file,\n"
1601 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1602 printf " (long) current_gdbarch->${function});\n"
1605 # Print the macro definition.
1606 printf "#ifdef ${macro}\n"
1607 if [ "x${returntype}" = "xvoid" ]
1609 printf "#if GDB_MULTI_ARCH\n"
1610 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1612 if class_is_function_p
1614 printf " fprintf_unfiltered (file,\n"
1615 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1616 printf " \"${macro}(${actual})\",\n"
1617 printf " XSTRING (${macro} (${actual})));\n"
1619 printf " fprintf_unfiltered (file,\n"
1620 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1621 printf " XSTRING (${macro}));\n"
1623 # Print the architecture vector value
1624 if [ "x${returntype}" = "xvoid" ]
1628 if [ "x${print_p}" = "x()" ]
1630 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1631 elif [ "x${print_p}" = "x0" ]
1633 printf " /* skip print of ${macro}, print_p == 0. */\n"
1634 elif [ -n "${print_p}" ]
1636 printf " if (${print_p})\n"
1637 printf " fprintf_unfiltered (file,\n"
1638 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1639 printf " ${print});\n"
1640 elif class_is_function_p
1642 printf " if (GDB_MULTI_ARCH)\n"
1643 printf " fprintf_unfiltered (file,\n"
1644 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1645 printf " (long) current_gdbarch->${function}\n"
1646 printf " /*${macro} ()*/);\n"
1648 printf " fprintf_unfiltered (file,\n"
1649 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1650 printf " ${print});\n"
1655 if (current_gdbarch->dump_tdep != NULL)
1656 current_gdbarch->dump_tdep (current_gdbarch, file);
1664 struct gdbarch_tdep *
1665 gdbarch_tdep (struct gdbarch *gdbarch)
1667 if (gdbarch_debug >= 2)
1668 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1669 return gdbarch->tdep;
1673 function_list | while do_read
1675 if class_is_predicate_p
1679 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1681 printf " gdb_assert (gdbarch != NULL);\n"
1682 if [ -n "${predicate}" ]
1684 printf " return ${predicate};\n"
1686 printf " return gdbarch->${function} != 0;\n"
1690 if class_is_function_p
1693 printf "${returntype}\n"
1694 if [ "x${formal}" = "xvoid" ]
1696 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1698 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1701 printf " gdb_assert (gdbarch != NULL);\n"
1702 printf " if (gdbarch->${function} == 0)\n"
1703 printf " internal_error (__FILE__, __LINE__,\n"
1704 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1705 if class_is_predicate_p && test -n "${predicate}"
1707 # Allow a call to a function with a predicate.
1708 printf " /* Ignore predicate (${predicate}). */\n"
1710 printf " if (gdbarch_debug >= 2)\n"
1711 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1712 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1714 if class_is_multiarch_p
1721 if class_is_multiarch_p
1723 params="gdbarch, ${actual}"
1728 if [ "x${returntype}" = "xvoid" ]
1730 printf " gdbarch->${function} (${params});\n"
1732 printf " return gdbarch->${function} (${params});\n"
1737 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1738 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1740 printf " gdbarch->${function} = ${function};\n"
1742 elif class_is_variable_p
1745 printf "${returntype}\n"
1746 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1748 printf " gdb_assert (gdbarch != NULL);\n"
1749 if [ "x${invalid_p}" = "x0" ]
1751 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1752 elif [ -n "${invalid_p}" ]
1754 printf " if (${invalid_p})\n"
1755 printf " internal_error (__FILE__, __LINE__,\n"
1756 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1757 elif [ -n "${predefault}" ]
1759 printf " if (gdbarch->${function} == ${predefault})\n"
1760 printf " internal_error (__FILE__, __LINE__,\n"
1761 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1763 printf " if (gdbarch_debug >= 2)\n"
1764 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1765 printf " return gdbarch->${function};\n"
1769 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1770 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1772 printf " gdbarch->${function} = ${function};\n"
1774 elif class_is_info_p
1777 printf "${returntype}\n"
1778 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1780 printf " gdb_assert (gdbarch != NULL);\n"
1781 printf " if (gdbarch_debug >= 2)\n"
1782 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1783 printf " return gdbarch->${function};\n"
1788 # All the trailing guff
1792 /* Keep a registry of per-architecture data-pointers required by GDB
1799 gdbarch_data_init_ftype *init;
1800 gdbarch_data_free_ftype *free;
1803 struct gdbarch_data_registration
1805 struct gdbarch_data *data;
1806 struct gdbarch_data_registration *next;
1809 struct gdbarch_data_registry
1812 struct gdbarch_data_registration *registrations;
1815 struct gdbarch_data_registry gdbarch_data_registry =
1820 struct gdbarch_data *
1821 register_gdbarch_data (gdbarch_data_init_ftype *init,
1822 gdbarch_data_free_ftype *free)
1824 struct gdbarch_data_registration **curr;
1825 /* Append the new registraration. */
1826 for (curr = &gdbarch_data_registry.registrations;
1828 curr = &(*curr)->next);
1829 (*curr) = XMALLOC (struct gdbarch_data_registration);
1830 (*curr)->next = NULL;
1831 (*curr)->data = XMALLOC (struct gdbarch_data);
1832 (*curr)->data->index = gdbarch_data_registry.nr++;
1833 (*curr)->data->init = init;
1834 (*curr)->data->init_p = 1;
1835 (*curr)->data->free = free;
1836 return (*curr)->data;
1840 /* Create/delete the gdbarch data vector. */
1843 alloc_gdbarch_data (struct gdbarch *gdbarch)
1845 gdb_assert (gdbarch->data == NULL);
1846 gdbarch->nr_data = gdbarch_data_registry.nr;
1847 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1851 free_gdbarch_data (struct gdbarch *gdbarch)
1853 struct gdbarch_data_registration *rego;
1854 gdb_assert (gdbarch->data != NULL);
1855 for (rego = gdbarch_data_registry.registrations;
1859 struct gdbarch_data *data = rego->data;
1860 gdb_assert (data->index < gdbarch->nr_data);
1861 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1863 data->free (gdbarch, gdbarch->data[data->index]);
1864 gdbarch->data[data->index] = NULL;
1867 xfree (gdbarch->data);
1868 gdbarch->data = NULL;
1872 /* Initialize the current value of the specified per-architecture
1876 set_gdbarch_data (struct gdbarch *gdbarch,
1877 struct gdbarch_data *data,
1880 gdb_assert (data->index < gdbarch->nr_data);
1881 if (gdbarch->data[data->index] != NULL)
1883 gdb_assert (data->free != NULL);
1884 data->free (gdbarch, gdbarch->data[data->index]);
1886 gdbarch->data[data->index] = pointer;
1889 /* Return the current value of the specified per-architecture
1893 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1895 gdb_assert (data->index < gdbarch->nr_data);
1896 /* The data-pointer isn't initialized, call init() to get a value but
1897 only if the architecture initializaiton has completed. Otherwise
1898 punt - hope that the caller knows what they are doing. */
1899 if (gdbarch->data[data->index] == NULL
1900 && gdbarch->initialized_p)
1902 /* Be careful to detect an initialization cycle. */
1903 gdb_assert (data->init_p);
1905 gdb_assert (data->init != NULL);
1906 gdbarch->data[data->index] = data->init (gdbarch);
1908 gdb_assert (gdbarch->data[data->index] != NULL);
1910 return gdbarch->data[data->index];
1915 /* Keep a registry of swapped data required by GDB modules. */
1920 struct gdbarch_swap_registration *source;
1921 struct gdbarch_swap *next;
1924 struct gdbarch_swap_registration
1927 unsigned long sizeof_data;
1928 gdbarch_swap_ftype *init;
1929 struct gdbarch_swap_registration *next;
1932 struct gdbarch_swap_registry
1935 struct gdbarch_swap_registration *registrations;
1938 struct gdbarch_swap_registry gdbarch_swap_registry =
1944 register_gdbarch_swap (void *data,
1945 unsigned long sizeof_data,
1946 gdbarch_swap_ftype *init)
1948 struct gdbarch_swap_registration **rego;
1949 for (rego = &gdbarch_swap_registry.registrations;
1951 rego = &(*rego)->next);
1952 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1953 (*rego)->next = NULL;
1954 (*rego)->init = init;
1955 (*rego)->data = data;
1956 (*rego)->sizeof_data = sizeof_data;
1960 clear_gdbarch_swap (struct gdbarch *gdbarch)
1962 struct gdbarch_swap *curr;
1963 for (curr = gdbarch->swap;
1967 memset (curr->source->data, 0, curr->source->sizeof_data);
1972 init_gdbarch_swap (struct gdbarch *gdbarch)
1974 struct gdbarch_swap_registration *rego;
1975 struct gdbarch_swap **curr = &gdbarch->swap;
1976 for (rego = gdbarch_swap_registry.registrations;
1980 if (rego->data != NULL)
1982 (*curr) = XMALLOC (struct gdbarch_swap);
1983 (*curr)->source = rego;
1984 (*curr)->swap = xmalloc (rego->sizeof_data);
1985 (*curr)->next = NULL;
1986 curr = &(*curr)->next;
1988 if (rego->init != NULL)
1994 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1996 struct gdbarch_swap *curr;
1997 for (curr = gdbarch->swap;
2000 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2004 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2006 struct gdbarch_swap *curr;
2007 for (curr = gdbarch->swap;
2010 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2014 /* Keep a registry of the architectures known by GDB. */
2016 struct gdbarch_registration
2018 enum bfd_architecture bfd_architecture;
2019 gdbarch_init_ftype *init;
2020 gdbarch_dump_tdep_ftype *dump_tdep;
2021 struct gdbarch_list *arches;
2022 struct gdbarch_registration *next;
2025 static struct gdbarch_registration *gdbarch_registry = NULL;
2028 append_name (const char ***buf, int *nr, const char *name)
2030 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2036 gdbarch_printable_names (void)
2040 /* Accumulate a list of names based on the registed list of
2042 enum bfd_architecture a;
2044 const char **arches = NULL;
2045 struct gdbarch_registration *rego;
2046 for (rego = gdbarch_registry;
2050 const struct bfd_arch_info *ap;
2051 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2053 internal_error (__FILE__, __LINE__,
2054 "gdbarch_architecture_names: multi-arch unknown");
2057 append_name (&arches, &nr_arches, ap->printable_name);
2062 append_name (&arches, &nr_arches, NULL);
2066 /* Just return all the architectures that BFD knows. Assume that
2067 the legacy architecture framework supports them. */
2068 return bfd_arch_list ();
2073 gdbarch_register (enum bfd_architecture bfd_architecture,
2074 gdbarch_init_ftype *init,
2075 gdbarch_dump_tdep_ftype *dump_tdep)
2077 struct gdbarch_registration **curr;
2078 const struct bfd_arch_info *bfd_arch_info;
2079 /* Check that BFD recognizes this architecture */
2080 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2081 if (bfd_arch_info == NULL)
2083 internal_error (__FILE__, __LINE__,
2084 "gdbarch: Attempt to register unknown architecture (%d)",
2087 /* Check that we haven't seen this architecture before */
2088 for (curr = &gdbarch_registry;
2090 curr = &(*curr)->next)
2092 if (bfd_architecture == (*curr)->bfd_architecture)
2093 internal_error (__FILE__, __LINE__,
2094 "gdbarch: Duplicate registraration of architecture (%s)",
2095 bfd_arch_info->printable_name);
2099 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2100 bfd_arch_info->printable_name,
2103 (*curr) = XMALLOC (struct gdbarch_registration);
2104 (*curr)->bfd_architecture = bfd_architecture;
2105 (*curr)->init = init;
2106 (*curr)->dump_tdep = dump_tdep;
2107 (*curr)->arches = NULL;
2108 (*curr)->next = NULL;
2109 /* When non- multi-arch, install whatever target dump routine we've
2110 been provided - hopefully that routine has been written correctly
2111 and works regardless of multi-arch. */
2112 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2113 && startup_gdbarch.dump_tdep == NULL)
2114 startup_gdbarch.dump_tdep = dump_tdep;
2118 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2119 gdbarch_init_ftype *init)
2121 gdbarch_register (bfd_architecture, init, NULL);
2125 /* Look for an architecture using gdbarch_info. Base search on only
2126 BFD_ARCH_INFO and BYTE_ORDER. */
2128 struct gdbarch_list *
2129 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2130 const struct gdbarch_info *info)
2132 for (; arches != NULL; arches = arches->next)
2134 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2136 if (info->byte_order != arches->gdbarch->byte_order)
2144 /* Update the current architecture. Return ZERO if the update request
2148 gdbarch_update_p (struct gdbarch_info info)
2150 struct gdbarch *new_gdbarch;
2151 struct gdbarch *old_gdbarch;
2152 struct gdbarch_registration *rego;
2154 /* Fill in missing parts of the INFO struct using a number of
2155 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2157 /* \`\`(gdb) set architecture ...'' */
2158 if (info.bfd_arch_info == NULL
2159 && !TARGET_ARCHITECTURE_AUTO)
2160 info.bfd_arch_info = TARGET_ARCHITECTURE;
2161 if (info.bfd_arch_info == NULL
2162 && info.abfd != NULL
2163 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2164 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2165 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2166 if (info.bfd_arch_info == NULL)
2167 info.bfd_arch_info = TARGET_ARCHITECTURE;
2169 /* \`\`(gdb) set byte-order ...'' */
2170 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2171 && !TARGET_BYTE_ORDER_AUTO)
2172 info.byte_order = TARGET_BYTE_ORDER;
2173 /* From the INFO struct. */
2174 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2175 && info.abfd != NULL)
2176 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2177 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2178 : BFD_ENDIAN_UNKNOWN);
2179 /* From the current target. */
2180 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2181 info.byte_order = TARGET_BYTE_ORDER;
2183 /* Must have found some sort of architecture. */
2184 gdb_assert (info.bfd_arch_info != NULL);
2188 fprintf_unfiltered (gdb_stdlog,
2189 "gdbarch_update: info.bfd_arch_info %s\n",
2190 (info.bfd_arch_info != NULL
2191 ? info.bfd_arch_info->printable_name
2193 fprintf_unfiltered (gdb_stdlog,
2194 "gdbarch_update: info.byte_order %d (%s)\n",
2196 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2197 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2199 fprintf_unfiltered (gdb_stdlog,
2200 "gdbarch_update: info.abfd 0x%lx\n",
2202 fprintf_unfiltered (gdb_stdlog,
2203 "gdbarch_update: info.tdep_info 0x%lx\n",
2204 (long) info.tdep_info);
2207 /* Find the target that knows about this architecture. */
2208 for (rego = gdbarch_registry;
2211 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2216 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2220 /* Swap the data belonging to the old target out setting the
2221 installed data to zero. This stops the ->init() function trying
2222 to refer to the previous architecture's global data structures. */
2223 swapout_gdbarch_swap (current_gdbarch);
2224 clear_gdbarch_swap (current_gdbarch);
2226 /* Save the previously selected architecture, setting the global to
2227 NULL. This stops ->init() trying to use the previous
2228 architecture's configuration. The previous architecture may not
2229 even be of the same architecture family. The most recent
2230 architecture of the same family is found at the head of the
2231 rego->arches list. */
2232 old_gdbarch = current_gdbarch;
2233 current_gdbarch = NULL;
2235 /* Ask the target for a replacement architecture. */
2236 new_gdbarch = rego->init (info, rego->arches);
2238 /* Did the target like it? No. Reject the change and revert to the
2239 old architecture. */
2240 if (new_gdbarch == NULL)
2243 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2244 swapin_gdbarch_swap (old_gdbarch);
2245 current_gdbarch = old_gdbarch;
2249 /* Did the architecture change? No. Oops, put the old architecture
2251 if (old_gdbarch == new_gdbarch)
2254 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2256 new_gdbarch->bfd_arch_info->printable_name);
2257 swapin_gdbarch_swap (old_gdbarch);
2258 current_gdbarch = old_gdbarch;
2262 /* Is this a pre-existing architecture? Yes. Move it to the front
2263 of the list of architectures (keeping the list sorted Most
2264 Recently Used) and then copy it in. */
2266 struct gdbarch_list **list;
2267 for (list = ®o->arches;
2269 list = &(*list)->next)
2271 if ((*list)->gdbarch == new_gdbarch)
2273 struct gdbarch_list *this;
2275 fprintf_unfiltered (gdb_stdlog,
2276 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2278 new_gdbarch->bfd_arch_info->printable_name);
2281 (*list) = this->next;
2282 /* Insert in the front. */
2283 this->next = rego->arches;
2284 rego->arches = this;
2285 /* Copy the new architecture in. */
2286 current_gdbarch = new_gdbarch;
2287 swapin_gdbarch_swap (new_gdbarch);
2288 architecture_changed_event ();
2294 /* Prepend this new architecture to the architecture list (keep the
2295 list sorted Most Recently Used). */
2297 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2298 this->next = rego->arches;
2299 this->gdbarch = new_gdbarch;
2300 rego->arches = this;
2303 /* Switch to this new architecture marking it initialized. */
2304 current_gdbarch = new_gdbarch;
2305 current_gdbarch->initialized_p = 1;
2308 fprintf_unfiltered (gdb_stdlog,
2309 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2311 new_gdbarch->bfd_arch_info->printable_name);
2314 /* Check that the newly installed architecture is valid. Plug in
2315 any post init values. */
2316 new_gdbarch->dump_tdep = rego->dump_tdep;
2317 verify_gdbarch (new_gdbarch);
2319 /* Initialize the per-architecture memory (swap) areas.
2320 CURRENT_GDBARCH must be update before these modules are
2322 init_gdbarch_swap (new_gdbarch);
2324 /* Initialize the per-architecture data. CURRENT_GDBARCH
2325 must be updated before these modules are called. */
2326 architecture_changed_event ();
2329 gdbarch_dump (current_gdbarch, gdb_stdlog);
2337 /* Pointer to the target-dependent disassembly function. */
2338 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2339 disassemble_info tm_print_insn_info;
2342 extern void _initialize_gdbarch (void);
2345 _initialize_gdbarch (void)
2347 struct cmd_list_element *c;
2349 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2350 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2351 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2352 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2353 tm_print_insn_info.print_address_func = dis_asm_print_address;
2355 add_show_from_set (add_set_cmd ("arch",
2358 (char *)&gdbarch_debug,
2359 "Set architecture debugging.\\n\\
2360 When non-zero, architecture debugging is enabled.", &setdebuglist),
2362 c = add_set_cmd ("archdebug",
2365 (char *)&gdbarch_debug,
2366 "Set architecture debugging.\\n\\
2367 When non-zero, architecture debugging is enabled.", &setlist);
2369 deprecate_cmd (c, "set debug arch");
2370 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2376 #../move-if-change new-gdbarch.c gdbarch.c
2377 compare_new gdbarch.c