1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
3 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "gdb_string.h"
25 #include "arch-utils.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
32 #include "gdb_assert.h"
33 #include "sim-regno.h"
34 #include "gdb/sim-frv.h"
35 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
44 extern void _initialize_frv_tdep (void);
46 struct frv_unwind_cache /* was struct frame_extra_info */
48 /* The previous frame's inner-most stack address. Used as this
49 frame ID's stack_addr. */
52 /* The frame's base, optionally used by the high-level debug info. */
55 /* Table indicating the location of each and every register. */
56 struct trad_frame_saved_reg *saved_regs;
59 /* A structure describing a particular variant of the FRV.
60 We allocate and initialize one of these structures when we create
61 the gdbarch object for a variant.
63 At the moment, all the FR variants we support differ only in which
64 registers are present; the portable code of GDB knows that
65 registers whose names are the empty string don't exist, so the
66 `register_names' array captures all the per-variant information we
69 in the future, if we need to have per-variant maps for raw size,
70 virtual type, etc., we should replace register_names with an array
71 of structures, each of which gives all the necessary info for one
72 register. Don't stick parallel arrays in here --- that's so
76 /* Which ABI is in use? */
79 /* How many general-purpose registers does this variant have? */
82 /* How many floating-point registers does this variant have? */
85 /* How many hardware watchpoints can it support? */
86 int num_hw_watchpoints;
88 /* How many hardware breakpoints can it support? */
89 int num_hw_breakpoints;
92 char **register_names;
95 /* Return the FR-V ABI associated with GDBARCH. */
97 frv_abi (struct gdbarch *gdbarch)
99 return gdbarch_tdep (gdbarch)->frv_abi;
102 /* Fetch the interpreter and executable loadmap addresses (for shared
103 library support) for the FDPIC ABI. Return 0 if successful, -1 if
104 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
106 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
107 CORE_ADDR *exec_addr)
109 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
113 struct regcache *regcache = get_current_regcache ();
115 if (interp_addr != NULL)
118 regcache_cooked_read_unsigned (regcache,
119 fdpic_loadmap_interp_regnum, &val);
122 if (exec_addr != NULL)
125 regcache_cooked_read_unsigned (regcache,
126 fdpic_loadmap_exec_regnum, &val);
133 /* Allocate a new variant structure, and set up default values for all
135 static struct gdbarch_tdep *
138 struct gdbarch_tdep *var;
142 var = xmalloc (sizeof (*var));
143 memset (var, 0, sizeof (*var));
145 var->frv_abi = FRV_ABI_EABI;
148 var->num_hw_watchpoints = 0;
149 var->num_hw_breakpoints = 0;
151 /* By default, don't supply any general-purpose or floating-point
154 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
156 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
157 var->register_names[r] = "";
159 /* Do, however, supply default names for the known special-purpose
162 var->register_names[pc_regnum] = "pc";
163 var->register_names[lr_regnum] = "lr";
164 var->register_names[lcr_regnum] = "lcr";
166 var->register_names[psr_regnum] = "psr";
167 var->register_names[ccr_regnum] = "ccr";
168 var->register_names[cccr_regnum] = "cccr";
169 var->register_names[tbr_regnum] = "tbr";
171 /* Debug registers. */
172 var->register_names[brr_regnum] = "brr";
173 var->register_names[dbar0_regnum] = "dbar0";
174 var->register_names[dbar1_regnum] = "dbar1";
175 var->register_names[dbar2_regnum] = "dbar2";
176 var->register_names[dbar3_regnum] = "dbar3";
178 /* iacc0 (Only found on MB93405.) */
179 var->register_names[iacc0h_regnum] = "iacc0h";
180 var->register_names[iacc0l_regnum] = "iacc0l";
181 var->register_names[iacc0_regnum] = "iacc0";
183 /* fsr0 (Found on FR555 and FR501.) */
184 var->register_names[fsr0_regnum] = "fsr0";
186 /* acc0 - acc7. The architecture provides for the possibility of many
187 more (up to 64 total), but we don't want to make that big of a hole
188 in the G packet. If we need more in the future, we'll add them
190 for (r = acc0_regnum; r <= acc7_regnum; r++)
193 buf = xstrprintf ("acc%d", r - acc0_regnum);
194 var->register_names[r] = buf;
197 /* accg0 - accg7: These are one byte registers. The remote protocol
198 provides the raw values packed four into a slot. accg0123 and
199 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
200 We don't provide names for accg0123 and accg4567 since the user will
201 likely not want to see these raw values. */
203 for (r = accg0_regnum; r <= accg7_regnum; r++)
206 buf = xstrprintf ("accg%d", r - accg0_regnum);
207 var->register_names[r] = buf;
212 var->register_names[msr0_regnum] = "msr0";
213 var->register_names[msr1_regnum] = "msr1";
215 /* gner and fner registers. */
216 var->register_names[gner0_regnum] = "gner0";
217 var->register_names[gner1_regnum] = "gner1";
218 var->register_names[fner0_regnum] = "fner0";
219 var->register_names[fner1_regnum] = "fner1";
225 /* Indicate that the variant VAR has NUM_GPRS general-purpose
226 registers, and fill in the names array appropriately. */
228 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
232 var->num_gprs = num_gprs;
234 for (r = 0; r < num_gprs; ++r)
238 sprintf (buf, "gr%d", r);
239 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
244 /* Indicate that the variant VAR has NUM_FPRS floating-point
245 registers, and fill in the names array appropriately. */
247 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
251 var->num_fprs = num_fprs;
253 for (r = 0; r < num_fprs; ++r)
257 sprintf (buf, "fr%d", r);
258 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
263 set_variant_abi_fdpic (struct gdbarch_tdep *var)
265 var->frv_abi = FRV_ABI_FDPIC;
266 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
267 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
271 set_variant_scratch_registers (struct gdbarch_tdep *var)
273 var->register_names[scr0_regnum] = xstrdup ("scr0");
274 var->register_names[scr1_regnum] = xstrdup ("scr1");
275 var->register_names[scr2_regnum] = xstrdup ("scr2");
276 var->register_names[scr3_regnum] = xstrdup ("scr3");
280 frv_register_name (struct gdbarch *gdbarch, int reg)
284 if (reg >= frv_num_regs + frv_num_pseudo_regs)
287 return gdbarch_tdep (gdbarch)->register_names[reg];
292 frv_register_type (struct gdbarch *gdbarch, int reg)
294 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
295 return builtin_type (gdbarch)->builtin_float;
296 else if (reg == iacc0_regnum)
297 return builtin_type (gdbarch)->builtin_int64;
299 return builtin_type (gdbarch)->builtin_int32;
303 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
304 int reg, gdb_byte *buffer)
306 if (reg == iacc0_regnum)
308 regcache_raw_read (regcache, iacc0h_regnum, buffer);
309 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
311 else if (accg0_regnum <= reg && reg <= accg7_regnum)
313 /* The accg raw registers have four values in each slot with the
314 lowest register number occupying the first byte. */
316 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
317 int byte_num = (reg - accg0_regnum) % 4;
320 regcache_raw_read (regcache, raw_regnum, buf);
321 memset (buffer, 0, 4);
322 /* FR-V is big endian, so put the requested byte in the first byte
323 of the buffer allocated to hold the pseudo-register. */
324 ((bfd_byte *) buffer)[0] = buf[byte_num];
329 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
330 int reg, const gdb_byte *buffer)
332 if (reg == iacc0_regnum)
334 regcache_raw_write (regcache, iacc0h_regnum, buffer);
335 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
337 else if (accg0_regnum <= reg && reg <= accg7_regnum)
339 /* The accg raw registers have four values in each slot with the
340 lowest register number occupying the first byte. */
342 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
343 int byte_num = (reg - accg0_regnum) % 4;
346 regcache_raw_read (regcache, raw_regnum, buf);
347 buf[byte_num] = ((bfd_byte *) buffer)[0];
348 regcache_raw_write (regcache, raw_regnum, buf);
353 frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
355 static const int spr_map[] =
357 H_SPR_PSR, /* psr_regnum */
358 H_SPR_CCR, /* ccr_regnum */
359 H_SPR_CCCR, /* cccr_regnum */
360 -1, /* fdpic_loadmap_exec_regnum */
361 -1, /* fdpic_loadmap_interp_regnum */
363 H_SPR_TBR, /* tbr_regnum */
364 H_SPR_BRR, /* brr_regnum */
365 H_SPR_DBAR0, /* dbar0_regnum */
366 H_SPR_DBAR1, /* dbar1_regnum */
367 H_SPR_DBAR2, /* dbar2_regnum */
368 H_SPR_DBAR3, /* dbar3_regnum */
369 H_SPR_SCR0, /* scr0_regnum */
370 H_SPR_SCR1, /* scr1_regnum */
371 H_SPR_SCR2, /* scr2_regnum */
372 H_SPR_SCR3, /* scr3_regnum */
373 H_SPR_LR, /* lr_regnum */
374 H_SPR_LCR, /* lcr_regnum */
375 H_SPR_IACC0H, /* iacc0h_regnum */
376 H_SPR_IACC0L, /* iacc0l_regnum */
377 H_SPR_FSR0, /* fsr0_regnum */
378 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
379 -1, /* acc0_regnum */
380 -1, /* acc1_regnum */
381 -1, /* acc2_regnum */
382 -1, /* acc3_regnum */
383 -1, /* acc4_regnum */
384 -1, /* acc5_regnum */
385 -1, /* acc6_regnum */
386 -1, /* acc7_regnum */
387 -1, /* acc0123_regnum */
388 -1, /* acc4567_regnum */
389 H_SPR_MSR0, /* msr0_regnum */
390 H_SPR_MSR1, /* msr1_regnum */
391 H_SPR_GNER0, /* gner0_regnum */
392 H_SPR_GNER1, /* gner1_regnum */
393 H_SPR_FNER0, /* fner0_regnum */
394 H_SPR_FNER1, /* fner1_regnum */
397 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
399 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
400 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
401 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
402 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
403 else if (pc_regnum == reg)
404 return SIM_FRV_PC_REGNUM;
405 else if (reg >= first_spr_regnum
406 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
408 int spr_reg_offset = spr_map[reg - first_spr_regnum];
410 if (spr_reg_offset < 0)
411 return SIM_REGNO_DOES_NOT_EXIST;
413 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
416 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
419 static const unsigned char *
420 frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
422 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
423 *lenp = sizeof (breakpoint);
427 /* Define the maximum number of instructions which may be packed into a
428 bundle (VLIW instruction). */
429 static const int max_instrs_per_bundle = 8;
431 /* Define the size (in bytes) of an FR-V instruction. */
432 static const int frv_instr_size = 4;
434 /* Adjust a breakpoint's address to account for the FR-V architecture's
435 constraint that a break instruction must not appear as any but the
436 first instruction in the bundle. */
438 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
440 int count = max_instrs_per_bundle;
441 CORE_ADDR addr = bpaddr - frv_instr_size;
442 CORE_ADDR func_start = get_pc_function_start (bpaddr);
444 /* Find the end of the previous packing sequence. This will be indicated
445 by either attempting to access some inaccessible memory or by finding
446 an instruction word whose packing bit is set to one. */
447 while (count-- > 0 && addr >= func_start)
449 char instr[frv_instr_size];
452 status = target_read_memory (addr, instr, sizeof instr);
457 /* This is a big endian architecture, so byte zero will have most
458 significant byte. The most significant bit of this byte is the
463 addr -= frv_instr_size;
467 bpaddr = addr + frv_instr_size;
473 /* Return true if REG is a caller-saves ("scratch") register,
476 is_caller_saves_reg (int reg)
478 return ((4 <= reg && reg <= 7)
479 || (14 <= reg && reg <= 15)
480 || (32 <= reg && reg <= 47));
484 /* Return true if REG is a callee-saves register, false otherwise. */
486 is_callee_saves_reg (int reg)
488 return ((16 <= reg && reg <= 31)
489 || (48 <= reg && reg <= 63));
493 /* Return true if REG is an argument register, false otherwise. */
495 is_argument_reg (int reg)
497 return (8 <= reg && reg <= 13);
500 /* Scan an FR-V prologue, starting at PC, until frame->PC.
501 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
502 We assume FRAME's saved_regs array has already been allocated and cleared.
503 Return the first PC value after the prologue.
505 Note that, for unoptimized code, we almost don't need this function
506 at all; all arguments and locals live on the stack, so we just need
507 the FP to find everything. The catch: structures passed by value
508 have their addresses living in registers; they're never spilled to
509 the stack. So if you ever want to be able to get to these
510 arguments in any frame but the top, you'll need to do this serious
511 prologue analysis. */
513 frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
514 struct frame_info *this_frame,
515 struct frv_unwind_cache *info)
517 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
519 /* When writing out instruction bitpatterns, we use the following
520 letters to label instruction fields:
521 P - The parallel bit. We don't use this.
522 J - The register number of GRj in the instruction description.
523 K - The register number of GRk in the instruction description.
524 I - The register number of GRi.
525 S - a signed imediate offset.
526 U - an unsigned immediate offset.
528 The dots below the numbers indicate where hex digit boundaries
529 fall, to make it easier to check the numbers. */
531 /* Non-zero iff we've seen the instruction that initializes the
532 frame pointer for this function's frame. */
535 /* If fp_set is non_zero, then this is the distance from
536 the stack pointer to frame pointer: fp = sp + fp_offset. */
539 /* Total size of frame prior to any alloca operations. */
542 /* Flag indicating if lr has been saved on the stack. */
543 int lr_saved_on_stack = 0;
545 /* The number of the general-purpose register we saved the return
546 address ("link register") in, or -1 if we haven't moved it yet. */
547 int lr_save_reg = -1;
549 /* Offset (from sp) at which lr has been saved on the stack. */
551 int lr_sp_offset = 0;
553 /* If gr_saved[i] is non-zero, then we've noticed that general
554 register i has been saved at gr_sp_offset[i] from the stack
557 int gr_sp_offset[64];
559 /* The address of the most recently scanned prologue instruction. */
560 CORE_ADDR last_prologue_pc;
562 /* The address of the next instruction. */
565 /* The upper bound to of the pc values to scan. */
568 memset (gr_saved, 0, sizeof (gr_saved));
570 last_prologue_pc = pc;
572 /* Try to compute an upper limit (on how far to scan) based on the
574 lim_pc = skip_prologue_using_sal (gdbarch, pc);
575 /* If there's no line number info, lim_pc will be 0. In that case,
576 set the limit to be 100 instructions away from pc. Hopefully, this
577 will be far enough away to account for the entire prologue. Don't
578 worry about overshooting the end of the function. The scan loop
579 below contains some checks to avoid scanning unreasonably far. */
583 /* If we have a frame, we don't want to scan past the frame's pc. This
584 will catch those cases where the pc is in the prologue. */
587 CORE_ADDR frame_pc = get_frame_pc (this_frame);
588 if (frame_pc < lim_pc)
592 /* Scan the prologue. */
595 char buf[frv_instr_size];
598 if (target_read_memory (pc, buf, sizeof buf) != 0)
600 op = extract_signed_integer (buf, sizeof buf, byte_order);
604 /* The tests in this chain of ifs should be in order of
605 decreasing selectivity, so that more particular patterns get
606 to fire before less particular patterns. */
608 /* Some sort of control transfer instruction: stop scanning prologue.
609 Integer Conditional Branch:
610 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
611 Floating-point / media Conditional Branch:
612 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
613 LCR Conditional Branch to LR
614 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
615 Integer conditional Branches to LR
616 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
617 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
618 Floating-point/Media Branches to LR
619 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
620 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
622 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
623 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
625 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
627 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
628 Integer Conditional Trap
629 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
630 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
631 Floating-point /media Conditional Trap
632 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
633 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
635 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
637 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
638 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
639 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
640 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
641 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
643 /* Stop scanning; not in prologue any longer. */
647 /* Loading something from memory into fp probably means that
648 we're in the epilogue. Stop scanning the prologue.
650 X 000010 0000010 XXXXXX 000100 XXXXXX
652 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
653 else if ((op & 0x7ffc0fc0) == 0x04080100
654 || (op & 0x7ffc0000) == 0x04c80000)
659 /* Setting the FP from the SP:
661 P 000010 0100010 000001 000000000000 = 0x04881000
662 0 111111 1111111 111111 111111111111 = 0x7fffffff
664 We treat this as part of the prologue. */
665 else if ((op & 0x7fffffff) == 0x04881000)
669 last_prologue_pc = next_pc;
672 /* Move the link register to the scratch register grJ, before saving:
674 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
675 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
677 We treat this as part of the prologue. */
678 else if ((op & 0x7fffffc0) == 0x080d01c0)
680 int gr_j = op & 0x3f;
682 /* If we're moving it to a scratch register, that's fine. */
683 if (is_caller_saves_reg (gr_j))
686 last_prologue_pc = next_pc;
690 /* To save multiple callee-saves registers on the stack, at
694 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
695 0 000000 1111111 111111 111111 111111 = 0x01ffffff
698 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
699 0 000000 1111111 111111 111111 111111 = 0x01ffffff
701 We treat this as part of the prologue, and record the register's
702 saved address in the frame structure. */
703 else if ((op & 0x01ffffff) == 0x000c10c0
704 || (op & 0x01ffffff) == 0x000c1100)
706 int gr_k = ((op >> 25) & 0x3f);
707 int ope = ((op >> 6) & 0x3f);
711 /* Is it an std or an stq? */
717 /* Is it really a callee-saves register? */
718 if (is_callee_saves_reg (gr_k))
720 for (i = 0; i < count; i++)
722 gr_saved[gr_k + i] = 1;
723 gr_sp_offset[gr_k + i] = 4 * i;
725 last_prologue_pc = next_pc;
729 /* Adjusting the stack pointer. (The stack pointer is GR1.)
731 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
732 0 111111 1111111 111111 000000000000 = 0x7ffff000
734 We treat this as part of the prologue. */
735 else if ((op & 0x7ffff000) == 0x02401000)
739 /* Sign-extend the twelve-bit field.
740 (Isn't there a better way to do this?) */
741 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
744 last_prologue_pc = pc;
748 /* If the prologue is being adjusted again, we've
749 likely gone too far; i.e. we're probably in the
755 /* Setting the FP to a constant distance from the SP:
757 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
758 0 111111 1111111 111111 000000000000 = 0x7ffff000
760 We treat this as part of the prologue. */
761 else if ((op & 0x7ffff000) == 0x04401000)
763 /* Sign-extend the twelve-bit field.
764 (Isn't there a better way to do this?) */
765 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
768 last_prologue_pc = pc;
771 /* To spill an argument register to a scratch register:
773 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
774 0 000000 1111111 000000 111111111111 = 0x01fc0fff
776 For the time being, we treat this as a prologue instruction,
777 assuming that GRi is an argument register. This one's kind
778 of suspicious, because it seems like it could be part of a
779 legitimate body instruction. But we only come here when the
780 source info wasn't helpful, so we have to do the best we can.
781 Hopefully once GCC and GDB agree on how to emit line number
782 info for prologues, then this code will never come into play. */
783 else if ((op & 0x01fc0fff) == 0x00880000)
785 int gr_i = ((op >> 12) & 0x3f);
787 /* Make sure that the source is an arg register; if it is, we'll
788 treat it as a prologue instruction. */
789 if (is_argument_reg (gr_i))
790 last_prologue_pc = next_pc;
793 /* To spill 16-bit values to the stack:
795 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
796 0 000000 1111111 111111 000000000000 = 0x01fff000
798 And for 8-bit values, we use STB instructions.
800 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
801 0 000000 1111111 111111 000000000000 = 0x01fff000
803 We check that GRk is really an argument register, and treat
804 all such as part of the prologue. */
805 else if ( (op & 0x01fff000) == 0x01442000
806 || (op & 0x01fff000) == 0x01402000)
808 int gr_k = ((op >> 25) & 0x3f);
810 /* Make sure that GRk is really an argument register; treat
811 it as a prologue instruction if so. */
812 if (is_argument_reg (gr_k))
813 last_prologue_pc = next_pc;
816 /* To save multiple callee-saves register on the stack, at a
820 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
821 0 000000 1111111 111111 000000000000 = 0x01fff000
824 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
825 0 000000 1111111 111111 000000000000 = 0x01fff000
827 We treat this as part of the prologue, and record the register's
828 saved address in the frame structure. */
829 else if ((op & 0x01fff000) == 0x014c1000
830 || (op & 0x01fff000) == 0x01501000)
832 int gr_k = ((op >> 25) & 0x3f);
836 /* Is it a stdi or a stqi? */
837 if ((op & 0x01fff000) == 0x014c1000)
842 /* Is it really a callee-saves register? */
843 if (is_callee_saves_reg (gr_k))
845 /* Sign-extend the twelve-bit field.
846 (Isn't there a better way to do this?) */
847 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
849 for (i = 0; i < count; i++)
851 gr_saved[gr_k + i] = 1;
852 gr_sp_offset[gr_k + i] = s + (4 * i);
854 last_prologue_pc = next_pc;
858 /* Storing any kind of integer register at any constant offset
859 from any other register.
862 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
863 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
866 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
867 0 000000 1111111 000000 000000000000 = 0x01fc0000
869 These could be almost anything, but a lot of prologue
870 instructions fall into this pattern, so let's decode the
871 instruction once, and then work at a higher level. */
872 else if (((op & 0x01fc0fff) == 0x000c0080)
873 || ((op & 0x01fc0000) == 0x01480000))
875 int gr_k = ((op >> 25) & 0x3f);
876 int gr_i = ((op >> 12) & 0x3f);
879 /* Are we storing with gr0 as an offset, or using an
881 if ((op & 0x01fc0fff) == 0x000c0080)
884 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
886 /* If the address isn't relative to the SP or FP, it's not a
887 prologue instruction. */
888 if (gr_i != sp_regnum && gr_i != fp_regnum)
890 /* Do nothing; not a prologue instruction. */
893 /* Saving the old FP in the new frame (relative to the SP). */
894 else if (gr_k == fp_regnum && gr_i == sp_regnum)
896 gr_saved[fp_regnum] = 1;
897 gr_sp_offset[fp_regnum] = offset;
898 last_prologue_pc = next_pc;
901 /* Saving callee-saves register(s) on the stack, relative to
903 else if (gr_i == sp_regnum
904 && is_callee_saves_reg (gr_k))
907 if (gr_i == sp_regnum)
908 gr_sp_offset[gr_k] = offset;
910 gr_sp_offset[gr_k] = offset + fp_offset;
911 last_prologue_pc = next_pc;
914 /* Saving the scratch register holding the return address. */
915 else if (lr_save_reg != -1
916 && gr_k == lr_save_reg)
918 lr_saved_on_stack = 1;
919 if (gr_i == sp_regnum)
920 lr_sp_offset = offset;
922 lr_sp_offset = offset + fp_offset;
923 last_prologue_pc = next_pc;
926 /* Spilling int-sized arguments to the stack. */
927 else if (is_argument_reg (gr_k))
928 last_prologue_pc = next_pc;
933 if (this_frame && info)
938 /* If we know the relationship between the stack and frame
939 pointers, record the addresses of the registers we noticed.
940 Note that we have to do this as a separate step at the end,
941 because instructions may save relative to the SP, but we need
942 their addresses relative to the FP. */
944 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
946 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
948 for (i = 0; i < 64; i++)
950 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
952 info->prev_sp = this_base - fp_offset + framesize;
953 info->base = this_base;
955 /* If LR was saved on the stack, record its location. */
956 if (lr_saved_on_stack)
957 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
959 /* The call instruction moves the caller's PC in the callee's LR.
960 Since this is an unwind, do the reverse. Copy the location of LR
961 into PC (the address / regnum) so that a request for PC will be
962 converted into a request for the LR. */
963 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
965 /* Save the previous frame's computed SP value. */
966 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
969 return last_prologue_pc;
974 frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
976 CORE_ADDR func_addr, func_end, new_pc;
980 /* If the line table has entry for a line *within* the function
981 (i.e., not in the prologue, and not past the end), then that's
983 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
985 struct symtab_and_line sal;
987 sal = find_pc_line (func_addr, 0);
989 if (sal.line != 0 && sal.end < func_end)
995 /* The FR-V prologue is at least five instructions long (twenty bytes).
996 If we didn't find a real source location past that, then
997 do a full analysis of the prologue. */
998 if (new_pc < pc + 20)
999 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
1005 /* Examine the instruction pointed to by PC. If it corresponds to
1006 a call to __main, return the address of the next instruction.
1007 Otherwise, return PC. */
1010 frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1012 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1015 CORE_ADDR orig_pc = pc;
1017 if (target_read_memory (pc, buf, 4))
1019 op = extract_unsigned_integer (buf, 4, byte_order);
1021 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1022 to the call instruction.
1024 Skip over this instruction if present. It won't be present in
1025 non-PIC code, and even in PIC code, it might not be present.
1026 (This is due to the fact that GR15, the FDPIC register, already
1027 contains the correct value.)
1029 The general form of the LDI is given first, followed by the
1030 specific instruction with the GRi and GRk filled in as FP and
1033 ldi @(GRi, d12), GRk
1034 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1035 0 000000 1111111 000000 000000000000 = 0x01fc0000
1037 ldi @(FP, d12), GR15
1038 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1039 0 001111 1111111 000010 000000000000 = 0x7ffff000
1042 if ((op & 0x7ffff000) == 0x1ec82000)
1045 if (target_read_memory (pc, buf, 4))
1047 op = extract_unsigned_integer (buf, 4, byte_order);
1050 /* The format of an FRV CALL instruction is as follows:
1053 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1054 0 000000 1111111 000000000000000000 = 0x01fc0000
1057 where label24 is constructed by concatenating the H bits with the
1058 L bits. The call target is PC + (4 * sign_ext(label24)). */
1060 if ((op & 0x01fc0000) == 0x003c0000)
1063 CORE_ADDR call_dest;
1064 struct minimal_symbol *s;
1066 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1067 if ((displ & 0x00800000) != 0)
1068 displ |= ~((LONGEST) 0x00ffffff);
1070 call_dest = pc + 4 * displ;
1071 s = lookup_minimal_symbol_by_pc (call_dest);
1074 && SYMBOL_LINKAGE_NAME (s) != NULL
1075 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1085 static struct frv_unwind_cache *
1086 frv_frame_unwind_cache (struct frame_info *this_frame,
1087 void **this_prologue_cache)
1089 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1092 struct frv_unwind_cache *info;
1094 if ((*this_prologue_cache))
1095 return (*this_prologue_cache);
1097 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1098 (*this_prologue_cache) = info;
1099 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1101 /* Prologue analysis does the rest... */
1102 frv_analyze_prologue (gdbarch,
1103 get_frame_func (this_frame), this_frame, info);
1109 frv_extract_return_value (struct type *type, struct regcache *regcache,
1112 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1113 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1114 int len = TYPE_LENGTH (type);
1119 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1120 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
1125 regcache_cooked_read_unsigned (regcache, 8, ®val);
1126 store_unsigned_integer (valbuf, 4, byte_order, regval);
1127 regcache_cooked_read_unsigned (regcache, 9, ®val);
1128 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
1131 internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len);
1135 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1137 /* Require dword alignment. */
1138 return align_down (sp, 8);
1142 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1144 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1147 CORE_ADDR start_addr;
1149 /* If we can't find the function in the symbol table, then we assume
1150 that the function address is already in descriptor form. */
1151 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1152 || entry_point != start_addr)
1155 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1160 /* Construct a non-canonical descriptor from space allocated on
1163 descr = value_as_long (value_allocate_space_in_inferior (8));
1164 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
1165 write_memory (descr, valbuf, 4);
1166 store_unsigned_integer (valbuf, 4, byte_order,
1167 frv_fdpic_find_global_pointer (entry_point));
1168 write_memory (descr + 4, valbuf, 4);
1173 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1174 struct target_ops *targ)
1176 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1177 CORE_ADDR entry_point;
1178 CORE_ADDR got_address;
1180 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1181 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
1183 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1190 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1191 struct regcache *regcache, CORE_ADDR bp_addr,
1192 int nargs, struct value **args, CORE_ADDR sp,
1193 int struct_return, CORE_ADDR struct_addr)
1195 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1201 struct type *arg_type;
1203 enum type_code typecode;
1207 enum frv_abi abi = frv_abi (gdbarch);
1208 CORE_ADDR func_addr = find_function_addr (function, NULL);
1211 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1212 nargs, (int) sp, struct_return, struct_addr);
1216 for (argnum = 0; argnum < nargs; ++argnum)
1217 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1219 stack_space -= (6 * 4);
1220 if (stack_space > 0)
1223 /* Make sure stack is dword aligned. */
1224 sp = align_down (sp, 8);
1231 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1234 for (argnum = 0; argnum < nargs; ++argnum)
1237 arg_type = check_typedef (value_type (arg));
1238 len = TYPE_LENGTH (arg_type);
1239 typecode = TYPE_CODE (arg_type);
1241 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1243 store_unsigned_integer (valbuf, 4, byte_order,
1244 value_address (arg));
1245 typecode = TYPE_CODE_PTR;
1249 else if (abi == FRV_ABI_FDPIC
1251 && typecode == TYPE_CODE_PTR
1252 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1254 /* The FDPIC ABI requires function descriptors to be passed instead
1256 CORE_ADDR addr = extract_unsigned_integer
1257 (value_contents (arg), 4, byte_order);
1258 addr = find_func_descr (gdbarch, addr);
1259 store_unsigned_integer (valbuf, 4, byte_order, addr);
1260 typecode = TYPE_CODE_PTR;
1266 val = (char *) value_contents (arg);
1271 int partial_len = (len < 4 ? len : 4);
1275 regval = extract_unsigned_integer (val, partial_len, byte_order);
1277 printf(" Argnum %d data %x -> reg %d\n",
1278 argnum, (int) regval, argreg);
1280 regcache_cooked_write_unsigned (regcache, argreg, regval);
1286 printf(" Argnum %d data %x -> offset %d (%x)\n",
1287 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1289 write_memory (sp + stack_offset, val, partial_len);
1290 stack_offset += align_up (partial_len, 4);
1297 /* Set the return address. For the frv, the return breakpoint is
1298 always at BP_ADDR. */
1299 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1301 if (abi == FRV_ABI_FDPIC)
1303 /* Set the GOT register for the FDPIC ABI. */
1304 regcache_cooked_write_unsigned
1305 (regcache, first_gpr_regnum + 15,
1306 frv_fdpic_find_global_pointer (func_addr));
1309 /* Finally, update the SP register. */
1310 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1316 frv_store_return_value (struct type *type, struct regcache *regcache,
1317 const gdb_byte *valbuf)
1319 int len = TYPE_LENGTH (type);
1324 memset (val, 0, sizeof (val));
1325 memcpy (val + (4 - len), valbuf, len);
1326 regcache_cooked_write (regcache, 8, val);
1330 regcache_cooked_write (regcache, 8, valbuf);
1331 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1334 internal_error (__FILE__, __LINE__,
1335 _("Don't know how to return a %d-byte value."), len);
1338 static enum return_value_convention
1339 frv_return_value (struct gdbarch *gdbarch, struct type *func_type,
1340 struct type *valtype, struct regcache *regcache,
1341 gdb_byte *readbuf, const gdb_byte *writebuf)
1343 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1344 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1345 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1347 if (writebuf != NULL)
1349 gdb_assert (!struct_return);
1350 frv_store_return_value (valtype, regcache, writebuf);
1353 if (readbuf != NULL)
1355 gdb_assert (!struct_return);
1356 frv_extract_return_value (valtype, regcache, readbuf);
1360 return RETURN_VALUE_STRUCT_CONVENTION;
1362 return RETURN_VALUE_REGISTER_CONVENTION;
1366 /* Hardware watchpoint / breakpoint support for the FR500
1370 frv_check_watch_resources (struct gdbarch *gdbarch, int type, int cnt, int ot)
1372 struct gdbarch_tdep *var = gdbarch_tdep (gdbarch);
1374 /* Watchpoints not supported on simulator. */
1375 if (strcmp (target_shortname, "sim") == 0)
1378 if (type == bp_hardware_breakpoint)
1380 if (var->num_hw_breakpoints == 0)
1382 else if (cnt <= var->num_hw_breakpoints)
1387 if (var->num_hw_watchpoints == 0)
1391 else if (cnt <= var->num_hw_watchpoints)
1399 frv_stopped_data_address (CORE_ADDR *addr_p)
1401 struct frame_info *frame = get_current_frame ();
1402 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1404 brr = get_frame_register_unsigned (frame, brr_regnum);
1405 dbar0 = get_frame_register_unsigned (frame, dbar0_regnum);
1406 dbar1 = get_frame_register_unsigned (frame, dbar1_regnum);
1407 dbar2 = get_frame_register_unsigned (frame, dbar2_regnum);
1408 dbar3 = get_frame_register_unsigned (frame, dbar3_regnum);
1412 else if (brr & (1<<10))
1414 else if (brr & (1<<9))
1416 else if (brr & (1<<8))
1425 frv_have_stopped_data_address (void)
1428 return frv_stopped_data_address (&addr);
1432 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1434 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1437 /* Given a GDB frame, determine the address of the calling function's
1438 frame. This will be used to create a new GDB frame struct. */
1441 frv_frame_this_id (struct frame_info *this_frame,
1442 void **this_prologue_cache, struct frame_id *this_id)
1444 struct frv_unwind_cache *info
1445 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1448 struct minimal_symbol *msym_stack;
1451 /* The FUNC is easy. */
1452 func = get_frame_func (this_frame);
1454 /* Check if the stack is empty. */
1455 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1456 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1459 /* Hopefully the prologue analysis either correctly determined the
1460 frame's base (which is the SP from the previous frame), or set
1461 that base to "NULL". */
1462 base = info->prev_sp;
1466 id = frame_id_build (base, func);
1470 static struct value *
1471 frv_frame_prev_register (struct frame_info *this_frame,
1472 void **this_prologue_cache, int regnum)
1474 struct frv_unwind_cache *info
1475 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1476 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1479 static const struct frame_unwind frv_frame_unwind = {
1482 frv_frame_prev_register,
1484 default_frame_sniffer
1488 frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1490 struct frv_unwind_cache *info
1491 = frv_frame_unwind_cache (this_frame, this_cache);
1495 static const struct frame_base frv_frame_base = {
1497 frv_frame_base_address,
1498 frv_frame_base_address,
1499 frv_frame_base_address
1503 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1505 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1509 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1510 frame. The frame ID's base needs to match the TOS value saved by
1511 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1513 static struct frame_id
1514 frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1516 CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1517 return frame_id_build (sp, get_frame_pc (this_frame));
1520 static struct gdbarch *
1521 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1523 struct gdbarch *gdbarch;
1524 struct gdbarch_tdep *var;
1527 /* Check to see if we've already built an appropriate architecture
1528 object for this executable. */
1529 arches = gdbarch_list_lookup_by_info (arches, &info);
1531 return arches->gdbarch;
1533 /* Select the right tdep structure for this variant. */
1534 var = new_variant ();
1535 switch (info.bfd_arch_info->mach)
1538 case bfd_mach_frvsimple:
1539 case bfd_mach_fr500:
1540 case bfd_mach_frvtomcat:
1541 case bfd_mach_fr550:
1542 set_variant_num_gprs (var, 64);
1543 set_variant_num_fprs (var, 64);
1546 case bfd_mach_fr400:
1547 case bfd_mach_fr450:
1548 set_variant_num_gprs (var, 32);
1549 set_variant_num_fprs (var, 32);
1553 /* Never heard of this variant. */
1557 /* Extract the ELF flags, if available. */
1558 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1559 elf_flags = elf_elfheader (info.abfd)->e_flags;
1561 if (elf_flags & EF_FRV_FDPIC)
1562 set_variant_abi_fdpic (var);
1564 if (elf_flags & EF_FRV_CPU_FR450)
1565 set_variant_scratch_registers (var);
1567 gdbarch = gdbarch_alloc (&info, var);
1569 set_gdbarch_short_bit (gdbarch, 16);
1570 set_gdbarch_int_bit (gdbarch, 32);
1571 set_gdbarch_long_bit (gdbarch, 32);
1572 set_gdbarch_long_long_bit (gdbarch, 64);
1573 set_gdbarch_float_bit (gdbarch, 32);
1574 set_gdbarch_double_bit (gdbarch, 64);
1575 set_gdbarch_long_double_bit (gdbarch, 64);
1576 set_gdbarch_ptr_bit (gdbarch, 32);
1578 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1579 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1581 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1582 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1583 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1585 set_gdbarch_register_name (gdbarch, frv_register_name);
1586 set_gdbarch_register_type (gdbarch, frv_register_type);
1587 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1589 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1590 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1592 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1593 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1594 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1595 set_gdbarch_adjust_breakpoint_address
1596 (gdbarch, frv_adjust_breakpoint_address);
1598 set_gdbarch_return_value (gdbarch, frv_return_value);
1601 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1602 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1603 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1604 frame_base_set_default (gdbarch, &frv_frame_base);
1605 /* We set the sniffer lower down after the OSABI hooks have been
1608 /* Settings for calling functions in the inferior. */
1609 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1610 set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
1612 /* Settings that should be unnecessary. */
1613 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1615 /* Hardware watchpoint / breakpoint support. */
1616 switch (info.bfd_arch_info->mach)
1619 case bfd_mach_frvsimple:
1620 case bfd_mach_fr500:
1621 case bfd_mach_frvtomcat:
1622 /* fr500-style hardware debugging support. */
1623 var->num_hw_watchpoints = 4;
1624 var->num_hw_breakpoints = 4;
1627 case bfd_mach_fr400:
1628 case bfd_mach_fr450:
1629 /* fr400-style hardware debugging support. */
1630 var->num_hw_watchpoints = 2;
1631 var->num_hw_breakpoints = 4;
1635 /* Otherwise, assume we don't have hardware debugging support. */
1636 var->num_hw_watchpoints = 0;
1637 var->num_hw_breakpoints = 0;
1641 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1642 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1643 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1644 frv_convert_from_func_ptr_addr);
1646 set_solib_ops (gdbarch, &frv_so_ops);
1648 /* Hook in ABI-specific overrides, if they have been registered. */
1649 gdbarch_init_osabi (info, gdbarch);
1651 /* Set the fallback (prologue based) frame sniffer. */
1652 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1654 /* Enable TLS support. */
1655 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1656 frv_fetch_objfile_link_map);
1662 _initialize_frv_tdep (void)
1664 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);