3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
9 # This file is part of GDB.
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 # Make certain that the script is running in an internationalized
28 LC_ALL=c ; export LC_ALL
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
39 echo "${file} unchanged" 1>&2
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
46 # Format of the input table
47 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
82 if eval test \"\${${r}}\" = \"\ \"
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
104 if [ "${returntype}" = int ]
108 elif [ "${returntype}" = long ]
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
120 case "${invalid_p}" in
122 if test -n "${predefault}"
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 elif class_is_variable_p
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
131 predicate="gdbarch->${function} != NULL"
135 echo "Predicate function ${function} with invalid_p." 1>&2
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
149 if [ -n "${postdefault}" ]
151 fallbackdefault="${postdefault}"
152 elif [ -n "${predefault}" ]
154 fallbackdefault="${predefault}"
159 #NOT YET: See gdbarch.log for basic verification of
174 fallback_default_p ()
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
180 class_is_variable_p ()
188 class_is_function_p ()
191 *f* | *F* | *m* | *M* ) true ;;
196 class_is_multiarch_p ()
204 class_is_predicate_p ()
207 *F* | *V* | *M* ) true ;;
221 # dump out/verify the doco
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
238 # hiding something from the ``struct info'' object
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
252 # The name of the MACRO that this method is to be accessed by.
256 # For functions, the return type; for variables, the data type
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
284 # To help with the GDB startup a static gdbarch object is
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
289 # If STATICDEFAULT is empty, zero is used.
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
298 # If PREDEFAULT is empty, zero is used.
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
304 # A zero PREDEFAULT function will force the fallback to call
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
312 # A value to assign to MEMBER of the new gdbarch object should
313 # the target architecture code fail to change the PREDEFAULT
316 # If POSTDEFAULT is empty, no post update is performed.
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
335 # A predicate equation that validates MEMBER. Non-zero is
336 # returned if the code creating the new architecture failed to
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
348 # See also PREDEFAULT and POSTDEFAULT.
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
356 # If FMT is empty, ``%ld'' is used.
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
363 # If PRINT is empty, ``(long)'' is used.
367 # An optional indicator for any predicte to wrap around the
370 # () -> Call a custom function to do the dump.
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
374 # If PRINT_P is empty, ``1'' is always used.
381 echo "Bad field ${field}"
389 # See below (DOCO) for description of each field
391 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
393 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
395 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
396 # Number of bits in a char or unsigned char for the target machine.
397 # Just like CHAR_BIT in <limits.h> but describes the target machine.
398 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
400 # Number of bits in a short or unsigned short for the target machine.
401 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
402 # Number of bits in an int or unsigned int for the target machine.
403 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
404 # Number of bits in a long or unsigned long for the target machine.
405 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
406 # Number of bits in a long long or unsigned long long for the target
408 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
409 # Number of bits in a float for the target machine.
410 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
411 # Number of bits in a double for the target machine.
412 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
413 # Number of bits in a long double for the target machine.
414 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
415 # For most targets, a pointer on the target and its representation as an
416 # address in GDB have the same size and "look the same". For such a
417 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418 # / addr_bit will be set from it.
420 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
423 # ptr_bit is the size of a pointer on the target
424 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
425 # addr_bit is the size of a target address as represented in gdb
426 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
427 # Number of bits in a BFD_VMA for the target object file format.
428 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
430 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
431 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
433 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
434 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
435 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
436 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
455 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
456 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
457 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
458 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
459 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value. As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works. This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497 # replaced by the constant MAX_REGISTER_SIZE.
498 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
499 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
503 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
504 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # SAVE_DUMMY_FRAME_TOS.
507 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # DEPRECATED_FP_REGNUM.
510 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_TARGET_READ_FP.
513 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
515 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516 # replacement for DEPRECATED_PUSH_ARGUMENTS.
517 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
521 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522 # Implement PUSH_RETURN_ADDRESS, and then merge in
523 # DEPRECATED_PUSH_RETURN_ADDRESS.
524 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
525 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
526 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
527 # DEPRECATED_REGISTER_SIZE can be deleted.
528 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
529 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
530 F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
531 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
532 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
533 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
534 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
535 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
536 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
537 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
538 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
539 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
540 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
541 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
542 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
543 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
544 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
545 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
546 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
547 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
548 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
549 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
550 # Implement PUSH_DUMMY_CALL, then delete
551 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
552 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
554 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
555 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
556 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
558 # MAP a GDB RAW register number onto a simulator register number. See
559 # also include/...-sim.h.
560 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
561 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
562 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
563 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
564 # setjmp/longjmp support.
565 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
566 # NOTE: cagney/2002-11-24: This function with predicate has a valid
567 # (callable) initial value. As a consequence, even when the predicate
568 # is false, the corresponding function works. This simplifies the
569 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
570 # doesn't need to be modified.
571 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
572 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
573 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
575 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
576 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
577 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
579 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
580 # For raw <-> cooked register conversions, replaced by pseudo registers.
581 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
582 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
583 # For raw <-> cooked register conversions, replaced by pseudo registers.
584 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
585 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
586 # For raw <-> cooked register conversions, replaced by pseudo registers.
587 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
589 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
590 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
591 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
593 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
594 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
595 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
601 # It has been suggested that this, well actually its predecessor,
602 # should take the type/value of the function to be called and not the
603 # return type. This is left as an exercise for the reader.
605 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
607 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
608 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
611 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
612 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
613 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
614 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
615 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
616 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
618 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
619 # ABI suitable for the implementation of a robust extract
620 # struct-convention return-value address method (the sparc saves the
621 # address in the callers frame). All the other cases so far examined,
622 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
623 # erreneous - the code was incorrectly assuming that the return-value
624 # address, stored in a register, was preserved across the entire
627 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
628 # the ABIs that are still to be analyzed - perhaps this should simply
629 # be deleted. The commented out extract_returned_value_address method
630 # is provided as a starting point for the 32-bit SPARC. It, or
631 # something like it, along with changes to both infcmd.c and stack.c
632 # will be needed for that case to work. NB: It is passed the callers
633 # frame since it is only after the callee has returned that this
636 #M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
637 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
639 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
640 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
642 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
643 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
644 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
645 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
646 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
647 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
648 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
649 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
651 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
653 v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
654 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
655 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
656 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
657 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
658 # note, per UNWIND_PC's doco, that while the two have similar
659 # interfaces they have very different underlying implementations.
660 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
661 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
662 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
663 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
664 # frame-base. Enable frame-base before frame-unwind.
665 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
666 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
667 # frame-base. Enable frame-base before frame-unwind.
668 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
669 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
670 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
672 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
673 # to frame_align and the requirement that methods such as
674 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
676 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
677 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
678 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
679 # stabs_argument_has_addr.
680 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
681 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
682 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
683 v:2:PARM_BOUNDARY:int:parm_boundary
685 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
686 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
687 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
688 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
689 # On some machines there are bits in addresses which are not really
690 # part of the address, but are used by the kernel, the hardware, etc.
691 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
692 # we get a "real" address such as one would find in a symbol table.
693 # This is used only for addresses of instructions, and even then I'm
694 # not sure it's used in all contexts. It exists to deal with there
695 # being a few stray bits in the PC which would mislead us, not as some
696 # sort of generic thing to handle alignment or segmentation (it's
697 # possible it should be in TARGET_READ_PC instead).
698 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
699 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
701 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
702 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
703 # the target needs software single step. An ISA method to implement it.
705 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
706 # using the breakpoint system instead of blatting memory directly (as with rs6000).
708 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
709 # single step. If not, then implement single step using breakpoints.
710 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
711 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
712 # disassembler. Perhaphs objdump can handle it?
713 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
714 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
717 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
718 # evaluates non-zero, this is the address where the debugger will place
719 # a step-resume breakpoint to get us past the dynamic linker.
720 m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
721 # For SVR4 shared libraries, each call goes through a small piece of
722 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
723 # to nonzero if we are currently stopped in one of these.
724 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
726 # Some systems also have trampoline code for returning from shared libs.
727 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
729 # Sigtramp is a routine that the kernel calls (which then calls the
730 # signal handler). On most machines it is a library routine that is
731 # linked into the executable.
733 # This macro, given a program counter value and the name of the
734 # function in which that PC resides (which can be null if the name is
735 # not known), returns nonzero if the PC and name show that we are in
738 # On most machines just see if the name is sigtramp (and if we have
739 # no name, assume we are not in sigtramp).
741 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
742 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
743 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
744 # own local NAME lookup.
746 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
747 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
749 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
750 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
751 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
752 # A target might have problems with watchpoints as soon as the stack
753 # frame of the current function has been destroyed. This mostly happens
754 # as the first action in a funtion's epilogue. in_function_epilogue_p()
755 # is defined to return a non-zero value if either the given addr is one
756 # instruction after the stack destroying instruction up to the trailing
757 # return instruction or if we can figure out that the stack frame has
758 # already been invalidated regardless of the value of addr. Targets
759 # which don't suffer from that problem could just let this functionality
761 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
762 # Given a vector of command-line arguments, return a newly allocated
763 # string which, when passed to the create_inferior function, will be
764 # parsed (on Unix systems, by the shell) to yield the same vector.
765 # This function should call error() if the argument vector is not
766 # representable for this target or if this target does not support
767 # command-line arguments.
768 # ARGC is the number of elements in the vector.
769 # ARGV is an array of strings, one per argument.
770 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
771 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
772 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
773 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
774 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
775 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
776 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
777 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
778 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
779 # Is a register in a group
780 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
781 # Fetch the pointer to the ith function argument.
782 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
784 # Return the appropriate register set for a core file section with
785 # name SECT_NAME and size SECT_SIZE.
786 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
793 exec > new-gdbarch.log
794 function_list | while do_read
797 ${class} ${macro}(${actual})
798 ${returntype} ${function} ($formal)${attrib}
802 eval echo \"\ \ \ \ ${r}=\${${r}}\"
804 if class_is_predicate_p && fallback_default_p
806 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
810 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
812 echo "Error: postdefault is useless when invalid_p=0" 1>&2
816 if class_is_multiarch_p
818 if class_is_predicate_p ; then :
819 elif test "x${predefault}" = "x"
821 echo "Error: pure multi-arch function must have a predefault" 1>&2
830 compare_new gdbarch.log
836 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
838 /* Dynamic architecture support for GDB, the GNU debugger.
840 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
841 Software Foundation, Inc.
843 This file is part of GDB.
845 This program is free software; you can redistribute it and/or modify
846 it under the terms of the GNU General Public License as published by
847 the Free Software Foundation; either version 2 of the License, or
848 (at your option) any later version.
850 This program is distributed in the hope that it will be useful,
851 but WITHOUT ANY WARRANTY; without even the implied warranty of
852 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
853 GNU General Public License for more details.
855 You should have received a copy of the GNU General Public License
856 along with this program; if not, write to the Free Software
857 Foundation, Inc., 59 Temple Place - Suite 330,
858 Boston, MA 02111-1307, USA. */
860 /* This file was created with the aid of \`\`gdbarch.sh''.
862 The Bourne shell script \`\`gdbarch.sh'' creates the files
863 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
864 against the existing \`\`gdbarch.[hc]''. Any differences found
867 If editing this file, please also run gdbarch.sh and merge any
868 changes into that script. Conversely, when making sweeping changes
869 to this file, modifying gdbarch.sh and using its output may prove
890 struct minimal_symbol;
894 struct disassemble_info;
897 extern struct gdbarch *current_gdbarch;
900 /* If any of the following are defined, the target wasn't correctly
903 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
904 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
911 printf "/* The following are pre-initialized by GDBARCH. */\n"
912 function_list | while do_read
917 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
918 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
919 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
920 printf "#error \"Non multi-arch definition of ${macro}\"\n"
922 printf "#if !defined (${macro})\n"
923 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
931 printf "/* The following are initialized by the target dependent code. */\n"
932 function_list | while do_read
934 if [ -n "${comment}" ]
936 echo "${comment}" | sed \
941 if class_is_multiarch_p
943 if class_is_predicate_p
946 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
949 if class_is_predicate_p
952 printf "#if defined (${macro})\n"
953 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
954 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
955 printf "#if !defined (${macro}_P)\n"
956 printf "#define ${macro}_P() (1)\n"
960 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
961 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
962 printf "#error \"Non multi-arch definition of ${macro}\"\n"
964 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
965 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
969 if class_is_variable_p
972 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
973 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
974 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
975 printf "#error \"Non multi-arch definition of ${macro}\"\n"
977 printf "#if !defined (${macro})\n"
978 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
981 if class_is_function_p
984 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
986 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
987 elif class_is_multiarch_p
989 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
991 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
993 if [ "x${formal}" = "xvoid" ]
995 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
997 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
999 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1000 if class_is_multiarch_p ; then :
1002 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
1003 printf "#error \"Non multi-arch definition of ${macro}\"\n"
1005 if [ "x${actual}" = "x" ]
1007 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
1008 elif [ "x${actual}" = "x-" ]
1010 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
1012 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1014 printf "#if !defined (${macro})\n"
1015 if [ "x${actual}" = "x" ]
1017 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
1018 elif [ "x${actual}" = "x-" ]
1020 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1022 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1032 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1035 /* Mechanism for co-ordinating the selection of a specific
1038 GDB targets (*-tdep.c) can register an interest in a specific
1039 architecture. Other GDB components can register a need to maintain
1040 per-architecture data.
1042 The mechanisms below ensures that there is only a loose connection
1043 between the set-architecture command and the various GDB
1044 components. Each component can independently register their need
1045 to maintain architecture specific data with gdbarch.
1049 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1052 The more traditional mega-struct containing architecture specific
1053 data for all the various GDB components was also considered. Since
1054 GDB is built from a variable number of (fairly independent)
1055 components it was determined that the global aproach was not
1059 /* Register a new architectural family with GDB.
1061 Register support for the specified ARCHITECTURE with GDB. When
1062 gdbarch determines that the specified architecture has been
1063 selected, the corresponding INIT function is called.
1067 The INIT function takes two parameters: INFO which contains the
1068 information available to gdbarch about the (possibly new)
1069 architecture; ARCHES which is a list of the previously created
1070 \`\`struct gdbarch'' for this architecture.
1072 The INFO parameter is, as far as possible, be pre-initialized with
1073 information obtained from INFO.ABFD or the previously selected
1076 The ARCHES parameter is a linked list (sorted most recently used)
1077 of all the previously created architures for this architecture
1078 family. The (possibly NULL) ARCHES->gdbarch can used to access
1079 values from the previously selected architecture for this
1080 architecture family. The global \`\`current_gdbarch'' shall not be
1083 The INIT function shall return any of: NULL - indicating that it
1084 doesn't recognize the selected architecture; an existing \`\`struct
1085 gdbarch'' from the ARCHES list - indicating that the new
1086 architecture is just a synonym for an earlier architecture (see
1087 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1088 - that describes the selected architecture (see gdbarch_alloc()).
1090 The DUMP_TDEP function shall print out all target specific values.
1091 Care should be taken to ensure that the function works in both the
1092 multi-arch and non- multi-arch cases. */
1096 struct gdbarch *gdbarch;
1097 struct gdbarch_list *next;
1102 /* Use default: NULL (ZERO). */
1103 const struct bfd_arch_info *bfd_arch_info;
1105 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1108 /* Use default: NULL (ZERO). */
1111 /* Use default: NULL (ZERO). */
1112 struct gdbarch_tdep_info *tdep_info;
1114 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1115 enum gdb_osabi osabi;
1118 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1119 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1121 /* DEPRECATED - use gdbarch_register() */
1122 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1124 extern void gdbarch_register (enum bfd_architecture architecture,
1125 gdbarch_init_ftype *,
1126 gdbarch_dump_tdep_ftype *);
1129 /* Return a freshly allocated, NULL terminated, array of the valid
1130 architecture names. Since architectures are registered during the
1131 _initialize phase this function only returns useful information
1132 once initialization has been completed. */
1134 extern const char **gdbarch_printable_names (void);
1137 /* Helper function. Search the list of ARCHES for a GDBARCH that
1138 matches the information provided by INFO. */
1140 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1143 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1144 basic initialization using values obtained from the INFO andTDEP
1145 parameters. set_gdbarch_*() functions are called to complete the
1146 initialization of the object. */
1148 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1151 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1152 It is assumed that the caller freeds the \`\`struct
1155 extern void gdbarch_free (struct gdbarch *);
1158 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1159 obstack. The memory is freed when the corresponding architecture
1162 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1163 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1164 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1167 /* Helper function. Force an update of the current architecture.
1169 The actual architecture selected is determined by INFO, \`\`(gdb) set
1170 architecture'' et.al., the existing architecture and BFD's default
1171 architecture. INFO should be initialized to zero and then selected
1172 fields should be updated.
1174 Returns non-zero if the update succeeds */
1176 extern int gdbarch_update_p (struct gdbarch_info info);
1179 /* Helper function. Find an architecture matching info.
1181 INFO should be initialized using gdbarch_info_init, relevant fields
1182 set, and then finished using gdbarch_info_fill.
1184 Returns the corresponding architecture, or NULL if no matching
1185 architecture was found. "current_gdbarch" is not updated. */
1187 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1190 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1192 FIXME: kettenis/20031124: Of the functions that follow, only
1193 gdbarch_from_bfd is supposed to survive. The others will
1194 dissappear since in the future GDB will (hopefully) be truly
1195 multi-arch. However, for now we're still stuck with the concept of
1196 a single active architecture. */
1198 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1201 /* Register per-architecture data-pointer.
1203 Reserve space for a per-architecture data-pointer. An identifier
1204 for the reserved data-pointer is returned. That identifer should
1205 be saved in a local static variable.
1207 The per-architecture data-pointer is either initialized explicitly
1208 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1211 Memory for the per-architecture data shall be allocated using
1212 gdbarch_obstack_zalloc. That memory will be deleted when the
1213 corresponding architecture object is deleted.
1215 When a previously created architecture is re-selected, the
1216 per-architecture data-pointer for that previous architecture is
1217 restored. INIT() is not re-called.
1219 Multiple registrarants for any architecture are allowed (and
1220 strongly encouraged). */
1222 struct gdbarch_data;
1224 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1225 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1226 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1227 struct gdbarch_data *data,
1230 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1234 /* Register per-architecture memory region.
1236 Provide a memory-region swap mechanism. Per-architecture memory
1237 region are created. These memory regions are swapped whenever the
1238 architecture is changed. For a new architecture, the memory region
1239 is initialized with zero (0) and the INIT function is called.
1241 Memory regions are swapped / initialized in the order that they are
1242 registered. NULL DATA and/or INIT values can be specified.
1244 New code should use register_gdbarch_data(). */
1246 typedef void (gdbarch_swap_ftype) (void);
1247 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1248 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1252 /* Set the dynamic target-system-dependent parameters (architecture,
1253 byte-order, ...) using information found in the BFD */
1255 extern void set_gdbarch_from_file (bfd *);
1258 /* Initialize the current architecture to the "first" one we find on
1261 extern void initialize_current_architecture (void);
1263 /* gdbarch trace variable */
1264 extern int gdbarch_debug;
1266 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1271 #../move-if-change new-gdbarch.h gdbarch.h
1272 compare_new gdbarch.h
1279 exec > new-gdbarch.c
1284 #include "arch-utils.h"
1287 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1290 #include "floatformat.h"
1292 #include "gdb_assert.h"
1293 #include "gdb_string.h"
1294 #include "gdb-events.h"
1295 #include "reggroups.h"
1297 #include "symfile.h" /* For entry_point_address. */
1298 #include "gdb_obstack.h"
1300 /* Static function declarations */
1302 static void alloc_gdbarch_data (struct gdbarch *);
1304 /* Non-zero if we want to trace architecture code. */
1306 #ifndef GDBARCH_DEBUG
1307 #define GDBARCH_DEBUG 0
1309 int gdbarch_debug = GDBARCH_DEBUG;
1313 # gdbarch open the gdbarch object
1315 printf "/* Maintain the struct gdbarch object */\n"
1317 printf "struct gdbarch\n"
1319 printf " /* Has this architecture been fully initialized? */\n"
1320 printf " int initialized_p;\n"
1322 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1323 printf " struct obstack *obstack;\n"
1325 printf " /* basic architectural information */\n"
1326 function_list | while do_read
1330 printf " ${returntype} ${function};\n"
1334 printf " /* target specific vector. */\n"
1335 printf " struct gdbarch_tdep *tdep;\n"
1336 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1338 printf " /* per-architecture data-pointers */\n"
1339 printf " unsigned nr_data;\n"
1340 printf " void **data;\n"
1342 printf " /* per-architecture swap-regions */\n"
1343 printf " struct gdbarch_swap *swap;\n"
1346 /* Multi-arch values.
1348 When extending this structure you must:
1350 Add the field below.
1352 Declare set/get functions and define the corresponding
1355 gdbarch_alloc(): If zero/NULL is not a suitable default,
1356 initialize the new field.
1358 verify_gdbarch(): Confirm that the target updated the field
1361 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1364 \`\`startup_gdbarch()'': Append an initial value to the static
1365 variable (base values on the host's c-type system).
1367 get_gdbarch(): Implement the set/get functions (probably using
1368 the macro's as shortcuts).
1373 function_list | while do_read
1375 if class_is_variable_p
1377 printf " ${returntype} ${function};\n"
1378 elif class_is_function_p
1380 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1385 # A pre-initialized vector
1389 /* The default architecture uses host values (for want of a better
1393 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1395 printf "struct gdbarch startup_gdbarch =\n"
1397 printf " 1, /* Always initialized. */\n"
1398 printf " NULL, /* The obstack. */\n"
1399 printf " /* basic architecture information */\n"
1400 function_list | while do_read
1404 printf " ${staticdefault}, /* ${function} */\n"
1408 /* target specific vector and its dump routine */
1410 /*per-architecture data-pointers and swap regions */
1412 /* Multi-arch values */
1414 function_list | while do_read
1416 if class_is_function_p || class_is_variable_p
1418 printf " ${staticdefault}, /* ${function} */\n"
1422 /* startup_gdbarch() */
1425 struct gdbarch *current_gdbarch = &startup_gdbarch;
1428 # Create a new gdbarch struct
1431 /* Create a new \`\`struct gdbarch'' based on information provided by
1432 \`\`struct gdbarch_info''. */
1437 gdbarch_alloc (const struct gdbarch_info *info,
1438 struct gdbarch_tdep *tdep)
1440 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1441 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1442 the current local architecture and not the previous global
1443 architecture. This ensures that the new architectures initial
1444 values are not influenced by the previous architecture. Once
1445 everything is parameterised with gdbarch, this will go away. */
1446 struct gdbarch *current_gdbarch;
1448 /* Create an obstack for allocating all the per-architecture memory,
1449 then use that to allocate the architecture vector. */
1450 struct obstack *obstack = XMALLOC (struct obstack);
1451 obstack_init (obstack);
1452 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1453 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1454 current_gdbarch->obstack = obstack;
1456 alloc_gdbarch_data (current_gdbarch);
1458 current_gdbarch->tdep = tdep;
1461 function_list | while do_read
1465 printf " current_gdbarch->${function} = info->${function};\n"
1469 printf " /* Force the explicit initialization of these. */\n"
1470 function_list | while do_read
1472 if class_is_function_p || class_is_variable_p
1474 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1476 printf " current_gdbarch->${function} = ${predefault};\n"
1481 /* gdbarch_alloc() */
1483 return current_gdbarch;
1487 # Free a gdbarch struct.
1491 /* Allocate extra space using the per-architecture obstack. */
1494 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1496 void *data = obstack_alloc (arch->obstack, size);
1497 memset (data, 0, size);
1502 /* Free a gdbarch struct. This should never happen in normal
1503 operation --- once you've created a gdbarch, you keep it around.
1504 However, if an architecture's init function encounters an error
1505 building the structure, it may need to clean up a partially
1506 constructed gdbarch. */
1509 gdbarch_free (struct gdbarch *arch)
1511 struct obstack *obstack;
1512 gdb_assert (arch != NULL);
1513 gdb_assert (!arch->initialized_p);
1514 obstack = arch->obstack;
1515 obstack_free (obstack, 0); /* Includes the ARCH. */
1520 # verify a new architecture
1524 /* Ensure that all values in a GDBARCH are reasonable. */
1526 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1527 just happens to match the global variable \`\`current_gdbarch''. That
1528 way macros refering to that variable get the local and not the global
1529 version - ulgh. Once everything is parameterised with gdbarch, this
1533 verify_gdbarch (struct gdbarch *current_gdbarch)
1535 struct ui_file *log;
1536 struct cleanup *cleanups;
1539 log = mem_fileopen ();
1540 cleanups = make_cleanup_ui_file_delete (log);
1542 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1543 fprintf_unfiltered (log, "\n\tbyte-order");
1544 if (current_gdbarch->bfd_arch_info == NULL)
1545 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1546 /* Check those that need to be defined for the given multi-arch level. */
1548 function_list | while do_read
1550 if class_is_function_p || class_is_variable_p
1552 if [ "x${invalid_p}" = "x0" ]
1554 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1555 elif class_is_predicate_p
1557 printf " /* Skip verify of ${function}, has predicate */\n"
1558 # FIXME: See do_read for potential simplification
1559 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1561 printf " if (${invalid_p})\n"
1562 printf " current_gdbarch->${function} = ${postdefault};\n"
1563 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1565 printf " if (current_gdbarch->${function} == ${predefault})\n"
1566 printf " current_gdbarch->${function} = ${postdefault};\n"
1567 elif [ -n "${postdefault}" ]
1569 printf " if (current_gdbarch->${function} == 0)\n"
1570 printf " current_gdbarch->${function} = ${postdefault};\n"
1571 elif [ -n "${invalid_p}" ]
1573 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1574 printf " && (${invalid_p}))\n"
1575 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1576 elif [ -n "${predefault}" ]
1578 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1579 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1580 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1585 buf = ui_file_xstrdup (log, &dummy);
1586 make_cleanup (xfree, buf);
1587 if (strlen (buf) > 0)
1588 internal_error (__FILE__, __LINE__,
1589 "verify_gdbarch: the following are invalid ...%s",
1591 do_cleanups (cleanups);
1595 # dump the structure
1599 /* Print out the details of the current architecture. */
1601 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1602 just happens to match the global variable \`\`current_gdbarch''. That
1603 way macros refering to that variable get the local and not the global
1604 version - ulgh. Once everything is parameterised with gdbarch, this
1608 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1610 fprintf_unfiltered (file,
1611 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1614 function_list | sort -t: -k 3 | while do_read
1616 # First the predicate
1617 if class_is_predicate_p
1619 if class_is_multiarch_p
1621 printf " fprintf_unfiltered (file,\n"
1622 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1623 printf " gdbarch_${function}_p (current_gdbarch));\n"
1625 printf "#ifdef ${macro}_P\n"
1626 printf " fprintf_unfiltered (file,\n"
1627 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1628 printf " \"${macro}_P()\",\n"
1629 printf " XSTRING (${macro}_P ()));\n"
1630 printf " fprintf_unfiltered (file,\n"
1631 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1632 printf " ${macro}_P ());\n"
1636 # multiarch functions don't have macros.
1637 if class_is_multiarch_p
1639 printf " fprintf_unfiltered (file,\n"
1640 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1641 printf " (long) current_gdbarch->${function});\n"
1644 # Print the macro definition.
1645 printf "#ifdef ${macro}\n"
1646 if class_is_function_p
1648 printf " fprintf_unfiltered (file,\n"
1649 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1650 printf " \"${macro}(${actual})\",\n"
1651 printf " XSTRING (${macro} (${actual})));\n"
1653 printf " fprintf_unfiltered (file,\n"
1654 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1655 printf " XSTRING (${macro}));\n"
1657 if [ "x${print_p}" = "x()" ]
1659 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1660 elif [ "x${print_p}" = "x0" ]
1662 printf " /* skip print of ${macro}, print_p == 0. */\n"
1663 elif [ -n "${print_p}" ]
1665 printf " if (${print_p})\n"
1666 printf " fprintf_unfiltered (file,\n"
1667 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1668 printf " ${print});\n"
1669 elif class_is_function_p
1671 printf " fprintf_unfiltered (file,\n"
1672 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1673 printf " (long) current_gdbarch->${function}\n"
1674 printf " /*${macro} ()*/);\n"
1676 printf " fprintf_unfiltered (file,\n"
1677 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1678 printf " ${print});\n"
1683 if (current_gdbarch->dump_tdep != NULL)
1684 current_gdbarch->dump_tdep (current_gdbarch, file);
1692 struct gdbarch_tdep *
1693 gdbarch_tdep (struct gdbarch *gdbarch)
1695 if (gdbarch_debug >= 2)
1696 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1697 return gdbarch->tdep;
1701 function_list | while do_read
1703 if class_is_predicate_p
1707 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1709 printf " gdb_assert (gdbarch != NULL);\n"
1710 printf " return ${predicate};\n"
1713 if class_is_function_p
1716 printf "${returntype}\n"
1717 if [ "x${formal}" = "xvoid" ]
1719 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1721 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1724 printf " gdb_assert (gdbarch != NULL);\n"
1725 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1726 if class_is_predicate_p && test -n "${predefault}"
1728 # Allow a call to a function with a predicate.
1729 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1731 printf " if (gdbarch_debug >= 2)\n"
1732 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1733 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1735 if class_is_multiarch_p
1742 if class_is_multiarch_p
1744 params="gdbarch, ${actual}"
1749 if [ "x${returntype}" = "xvoid" ]
1751 printf " gdbarch->${function} (${params});\n"
1753 printf " return gdbarch->${function} (${params});\n"
1758 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1759 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1761 printf " gdbarch->${function} = ${function};\n"
1763 elif class_is_variable_p
1766 printf "${returntype}\n"
1767 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1769 printf " gdb_assert (gdbarch != NULL);\n"
1770 if [ "x${invalid_p}" = "x0" ]
1772 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1773 elif [ -n "${invalid_p}" ]
1775 printf " /* Check variable is valid. */\n"
1776 printf " gdb_assert (!(${invalid_p}));\n"
1777 elif [ -n "${predefault}" ]
1779 printf " /* Check variable changed from pre-default. */\n"
1780 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1782 printf " if (gdbarch_debug >= 2)\n"
1783 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1784 printf " return gdbarch->${function};\n"
1788 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1789 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1791 printf " gdbarch->${function} = ${function};\n"
1793 elif class_is_info_p
1796 printf "${returntype}\n"
1797 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1799 printf " gdb_assert (gdbarch != NULL);\n"
1800 printf " if (gdbarch_debug >= 2)\n"
1801 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1802 printf " return gdbarch->${function};\n"
1807 # All the trailing guff
1811 /* Keep a registry of per-architecture data-pointers required by GDB
1818 gdbarch_data_init_ftype *init;
1821 struct gdbarch_data_registration
1823 struct gdbarch_data *data;
1824 struct gdbarch_data_registration *next;
1827 struct gdbarch_data_registry
1830 struct gdbarch_data_registration *registrations;
1833 struct gdbarch_data_registry gdbarch_data_registry =
1838 struct gdbarch_data *
1839 register_gdbarch_data (gdbarch_data_init_ftype *init)
1841 struct gdbarch_data_registration **curr;
1842 /* Append the new registraration. */
1843 for (curr = &gdbarch_data_registry.registrations;
1845 curr = &(*curr)->next);
1846 (*curr) = XMALLOC (struct gdbarch_data_registration);
1847 (*curr)->next = NULL;
1848 (*curr)->data = XMALLOC (struct gdbarch_data);
1849 (*curr)->data->index = gdbarch_data_registry.nr++;
1850 (*curr)->data->init = init;
1851 (*curr)->data->init_p = 1;
1852 return (*curr)->data;
1856 /* Create/delete the gdbarch data vector. */
1859 alloc_gdbarch_data (struct gdbarch *gdbarch)
1861 gdb_assert (gdbarch->data == NULL);
1862 gdbarch->nr_data = gdbarch_data_registry.nr;
1863 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1866 /* Initialize the current value of the specified per-architecture
1870 set_gdbarch_data (struct gdbarch *gdbarch,
1871 struct gdbarch_data *data,
1874 gdb_assert (data->index < gdbarch->nr_data);
1875 gdb_assert (gdbarch->data[data->index] == NULL);
1876 gdbarch->data[data->index] = pointer;
1879 /* Return the current value of the specified per-architecture
1883 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1885 gdb_assert (data->index < gdbarch->nr_data);
1886 /* The data-pointer isn't initialized, call init() to get a value but
1887 only if the architecture initializaiton has completed. Otherwise
1888 punt - hope that the caller knows what they are doing. */
1889 if (gdbarch->data[data->index] == NULL
1890 && gdbarch->initialized_p)
1892 /* Be careful to detect an initialization cycle. */
1893 gdb_assert (data->init_p);
1895 gdb_assert (data->init != NULL);
1896 gdbarch->data[data->index] = data->init (gdbarch);
1898 gdb_assert (gdbarch->data[data->index] != NULL);
1900 return gdbarch->data[data->index];
1905 /* Keep a registry of swapped data required by GDB modules. */
1910 struct gdbarch_swap_registration *source;
1911 struct gdbarch_swap *next;
1914 struct gdbarch_swap_registration
1917 unsigned long sizeof_data;
1918 gdbarch_swap_ftype *init;
1919 struct gdbarch_swap_registration *next;
1922 struct gdbarch_swap_registry
1925 struct gdbarch_swap_registration *registrations;
1928 struct gdbarch_swap_registry gdbarch_swap_registry =
1934 register_gdbarch_swap (void *data,
1935 unsigned long sizeof_data,
1936 gdbarch_swap_ftype *init)
1938 struct gdbarch_swap_registration **rego;
1939 for (rego = &gdbarch_swap_registry.registrations;
1941 rego = &(*rego)->next);
1942 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1943 (*rego)->next = NULL;
1944 (*rego)->init = init;
1945 (*rego)->data = data;
1946 (*rego)->sizeof_data = sizeof_data;
1950 current_gdbarch_swap_init_hack (void)
1952 struct gdbarch_swap_registration *rego;
1953 struct gdbarch_swap **curr = ¤t_gdbarch->swap;
1954 for (rego = gdbarch_swap_registry.registrations;
1958 if (rego->data != NULL)
1960 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1961 struct gdbarch_swap);
1962 (*curr)->source = rego;
1963 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1965 (*curr)->next = NULL;
1966 curr = &(*curr)->next;
1968 if (rego->init != NULL)
1973 static struct gdbarch *
1974 current_gdbarch_swap_out_hack (void)
1976 struct gdbarch *old_gdbarch = current_gdbarch;
1977 struct gdbarch_swap *curr;
1979 gdb_assert (old_gdbarch != NULL);
1980 for (curr = old_gdbarch->swap;
1984 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1985 memset (curr->source->data, 0, curr->source->sizeof_data);
1987 current_gdbarch = NULL;
1992 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1994 struct gdbarch_swap *curr;
1996 gdb_assert (current_gdbarch == NULL);
1997 for (curr = new_gdbarch->swap;
2000 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2001 current_gdbarch = new_gdbarch;
2005 /* Keep a registry of the architectures known by GDB. */
2007 struct gdbarch_registration
2009 enum bfd_architecture bfd_architecture;
2010 gdbarch_init_ftype *init;
2011 gdbarch_dump_tdep_ftype *dump_tdep;
2012 struct gdbarch_list *arches;
2013 struct gdbarch_registration *next;
2016 static struct gdbarch_registration *gdbarch_registry = NULL;
2019 append_name (const char ***buf, int *nr, const char *name)
2021 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2027 gdbarch_printable_names (void)
2029 /* Accumulate a list of names based on the registed list of
2031 enum bfd_architecture a;
2033 const char **arches = NULL;
2034 struct gdbarch_registration *rego;
2035 for (rego = gdbarch_registry;
2039 const struct bfd_arch_info *ap;
2040 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2042 internal_error (__FILE__, __LINE__,
2043 "gdbarch_architecture_names: multi-arch unknown");
2046 append_name (&arches, &nr_arches, ap->printable_name);
2051 append_name (&arches, &nr_arches, NULL);
2057 gdbarch_register (enum bfd_architecture bfd_architecture,
2058 gdbarch_init_ftype *init,
2059 gdbarch_dump_tdep_ftype *dump_tdep)
2061 struct gdbarch_registration **curr;
2062 const struct bfd_arch_info *bfd_arch_info;
2063 /* Check that BFD recognizes this architecture */
2064 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2065 if (bfd_arch_info == NULL)
2067 internal_error (__FILE__, __LINE__,
2068 "gdbarch: Attempt to register unknown architecture (%d)",
2071 /* Check that we haven't seen this architecture before */
2072 for (curr = &gdbarch_registry;
2074 curr = &(*curr)->next)
2076 if (bfd_architecture == (*curr)->bfd_architecture)
2077 internal_error (__FILE__, __LINE__,
2078 "gdbarch: Duplicate registraration of architecture (%s)",
2079 bfd_arch_info->printable_name);
2083 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2084 bfd_arch_info->printable_name,
2087 (*curr) = XMALLOC (struct gdbarch_registration);
2088 (*curr)->bfd_architecture = bfd_architecture;
2089 (*curr)->init = init;
2090 (*curr)->dump_tdep = dump_tdep;
2091 (*curr)->arches = NULL;
2092 (*curr)->next = NULL;
2096 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2097 gdbarch_init_ftype *init)
2099 gdbarch_register (bfd_architecture, init, NULL);
2103 /* Look for an architecture using gdbarch_info. Base search on only
2104 BFD_ARCH_INFO and BYTE_ORDER. */
2106 struct gdbarch_list *
2107 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2108 const struct gdbarch_info *info)
2110 for (; arches != NULL; arches = arches->next)
2112 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2114 if (info->byte_order != arches->gdbarch->byte_order)
2116 if (info->osabi != arches->gdbarch->osabi)
2124 /* Find an architecture that matches the specified INFO. Create a new
2125 architecture if needed. Return that new architecture. Assumes
2126 that there is no current architecture. */
2128 static struct gdbarch *
2129 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2131 struct gdbarch *new_gdbarch;
2132 struct gdbarch_registration *rego;
2134 /* The existing architecture has been swapped out - all this code
2135 works from a clean slate. */
2136 gdb_assert (current_gdbarch == NULL);
2138 /* Fill in missing parts of the INFO struct using a number of
2139 sources: "set ..."; INFOabfd supplied; and the existing
2141 gdbarch_info_fill (old_gdbarch, &info);
2143 /* Must have found some sort of architecture. */
2144 gdb_assert (info.bfd_arch_info != NULL);
2148 fprintf_unfiltered (gdb_stdlog,
2149 "find_arch_by_info: info.bfd_arch_info %s\n",
2150 (info.bfd_arch_info != NULL
2151 ? info.bfd_arch_info->printable_name
2153 fprintf_unfiltered (gdb_stdlog,
2154 "find_arch_by_info: info.byte_order %d (%s)\n",
2156 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2157 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2159 fprintf_unfiltered (gdb_stdlog,
2160 "find_arch_by_info: info.osabi %d (%s)\n",
2161 info.osabi, gdbarch_osabi_name (info.osabi));
2162 fprintf_unfiltered (gdb_stdlog,
2163 "find_arch_by_info: info.abfd 0x%lx\n",
2165 fprintf_unfiltered (gdb_stdlog,
2166 "find_arch_by_info: info.tdep_info 0x%lx\n",
2167 (long) info.tdep_info);
2170 /* Find the tdep code that knows about this architecture. */
2171 for (rego = gdbarch_registry;
2174 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2179 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2180 "No matching architecture\n");
2184 /* Ask the tdep code for an architecture that matches "info". */
2185 new_gdbarch = rego->init (info, rego->arches);
2187 /* Did the tdep code like it? No. Reject the change and revert to
2188 the old architecture. */
2189 if (new_gdbarch == NULL)
2192 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2193 "Target rejected architecture\n");
2197 /* Is this a pre-existing architecture (as determined by already
2198 being initialized)? Move it to the front of the architecture
2199 list (keeping the list sorted Most Recently Used). */
2200 if (new_gdbarch->initialized_p)
2202 struct gdbarch_list **list;
2203 struct gdbarch_list *this;
2205 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2206 "Previous architecture 0x%08lx (%s) selected\n",
2208 new_gdbarch->bfd_arch_info->printable_name);
2209 /* Find the existing arch in the list. */
2210 for (list = ®o->arches;
2211 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2212 list = &(*list)->next);
2213 /* It had better be in the list of architectures. */
2214 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2217 (*list) = this->next;
2218 /* Insert THIS at the front. */
2219 this->next = rego->arches;
2220 rego->arches = this;
2225 /* It's a new architecture. */
2227 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2228 "New architecture 0x%08lx (%s) selected\n",
2230 new_gdbarch->bfd_arch_info->printable_name);
2232 /* Insert the new architecture into the front of the architecture
2233 list (keep the list sorted Most Recently Used). */
2235 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2236 this->next = rego->arches;
2237 this->gdbarch = new_gdbarch;
2238 rego->arches = this;
2241 /* Check that the newly installed architecture is valid. Plug in
2242 any post init values. */
2243 new_gdbarch->dump_tdep = rego->dump_tdep;
2244 verify_gdbarch (new_gdbarch);
2245 new_gdbarch->initialized_p = 1;
2247 /* Initialize any per-architecture swap areas. This phase requires
2248 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2249 swap the entire architecture out. */
2250 current_gdbarch = new_gdbarch;
2251 current_gdbarch_swap_init_hack ();
2252 current_gdbarch_swap_out_hack ();
2255 gdbarch_dump (new_gdbarch, gdb_stdlog);
2261 gdbarch_find_by_info (struct gdbarch_info info)
2263 /* Save the previously selected architecture, setting the global to
2264 NULL. This stops things like gdbarch->init() trying to use the
2265 previous architecture's configuration. The previous architecture
2266 may not even be of the same architecture family. The most recent
2267 architecture of the same family is found at the head of the
2268 rego->arches list. */
2269 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2271 /* Find the specified architecture. */
2272 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2274 /* Restore the existing architecture. */
2275 gdb_assert (current_gdbarch == NULL);
2276 current_gdbarch_swap_in_hack (old_gdbarch);
2281 /* Make the specified architecture current, swapping the existing one
2285 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2287 gdb_assert (new_gdbarch != NULL);
2288 gdb_assert (current_gdbarch != NULL);
2289 gdb_assert (new_gdbarch->initialized_p);
2290 current_gdbarch_swap_out_hack ();
2291 current_gdbarch_swap_in_hack (new_gdbarch);
2292 architecture_changed_event ();
2295 extern void _initialize_gdbarch (void);
2298 _initialize_gdbarch (void)
2300 struct cmd_list_element *c;
2302 add_show_from_set (add_set_cmd ("arch",
2305 (char *)&gdbarch_debug,
2306 "Set architecture debugging.\\n\\
2307 When non-zero, architecture debugging is enabled.", &setdebuglist),
2309 c = add_set_cmd ("archdebug",
2312 (char *)&gdbarch_debug,
2313 "Set architecture debugging.\\n\\
2314 When non-zero, architecture debugging is enabled.", &setlist);
2316 deprecate_cmd (c, "set debug arch");
2317 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2323 #../move-if-change new-gdbarch.c gdbarch.c
2324 compare_new gdbarch.c