3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
7 # This file is part of GDB.
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22 # Make certain that the script is not running in an internationalized
25 LC_ALL=C ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
52 if test "${line}" = ""
55 elif test "${line}" = "#" -a "${comment}" = ""
58 elif expr "${line}" : "#" > /dev/null
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
75 if test -n "${garbage_at_eol}"
77 echo "Garbage at end-of-line in ${line}" 1>&2
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
86 if eval test \"\${${r}}\" = \"\ \"
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
100 case "${invalid_p}" in
102 if test -n "${predefault}"
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
111 predicate="gdbarch->${function} != NULL"
115 echo "Predicate function ${function} with invalid_p." 1>&2
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
129 if [ -n "${postdefault}" ]
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
134 fallbackdefault="${predefault}"
139 #NOT YET: See gdbarch.log for basic verification of
154 fallback_default_p ()
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
160 class_is_variable_p ()
168 class_is_function_p ()
171 *f* | *F* | *m* | *M* ) true ;;
176 class_is_multiarch_p ()
184 class_is_predicate_p ()
187 *F* | *V* | *M* ) true ;;
201 # dump out/verify the doco
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
226 # For functions, the return type; for variables, the data type
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
254 # If STATICDEFAULT is empty, zero is used.
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
263 # If PREDEFAULT is empty, zero is used.
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
269 # A zero PREDEFAULT function will force the fallback to call
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
281 # If POSTDEFAULT is empty, no post update is performed.
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
313 # See also PREDEFAULT and POSTDEFAULT.
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
323 garbage_at_eol ) : ;;
325 # Catches stray fields.
328 echo "Bad field ${field}"
336 # See below (DOCO) for description of each field
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
491 v:int:believe_pcc_promotion:::::::
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
506 # Return the return-value convention that will be used by FUNCTYPE
507 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
516 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
518 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
519 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
520 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
521 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
522 # Return the adjusted address and kind to use for Z0/Z1 packets.
523 # KIND is usually the memory length of the breakpoint, but may have a
524 # different target-specific meaning.
525 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
526 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
527 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
529 v:CORE_ADDR:decr_pc_after_break:::0:::0
531 # A function can be addressed by either it's "pointer" (possibly a
532 # descriptor address) or "entry point" (first executable instruction).
533 # The method "convert_from_func_ptr_addr" converting the former to the
534 # latter. gdbarch_deprecated_function_start_offset is being used to implement
535 # a simplified subset of that functionality - the function's address
536 # corresponds to the "function pointer" and the function's start
537 # corresponds to the "function entry point" - and hence is redundant.
539 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
541 # Return the remote protocol register number associated with this
542 # register. Normally the identity mapping.
543 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
545 # Fetch the target specific address used to represent a load module.
546 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
548 v:CORE_ADDR:frame_args_skip:::0:::0
549 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
551 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552 # frame-base. Enable frame-base before frame-unwind.
553 F:int:frame_num_args:struct frame_info *frame:frame
555 M:CORE_ADDR:frame_align:CORE_ADDR address:address
556 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557 v:int:frame_red_zone_size
559 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
560 # On some machines there are bits in addresses which are not really
561 # part of the address, but are used by the kernel, the hardware, etc.
562 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
563 # we get a "real" address such as one would find in a symbol table.
564 # This is used only for addresses of instructions, and even then I'm
565 # not sure it's used in all contexts. It exists to deal with there
566 # being a few stray bits in the PC which would mislead us, not as some
567 # sort of generic thing to handle alignment or segmentation (it's
568 # possible it should be in TARGET_READ_PC instead).
569 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
570 # It is not at all clear why gdbarch_smash_text_address is not folded into
571 # gdbarch_addr_bits_remove.
572 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
574 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
575 # indicates if the target needs software single step. An ISA method to
578 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579 # breakpoints using the breakpoint system instead of blatting memory directly
582 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583 # target can single step. If not, then implement single step using breakpoints.
585 # A return value of 1 means that the software_single_step breakpoints
586 # were inserted; 0 means they were not.
587 F:int:software_single_step:struct frame_info *frame:frame
589 # Return non-zero if the processor is executing a delay slot and a
590 # further single-step is needed before the instruction finishes.
591 M:int:single_step_through_delay:struct frame_info *frame:frame
592 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
593 # disassembler. Perhaps objdump can handle it?
594 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
598 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
599 # evaluates non-zero, this is the address where the debugger will place
600 # a step-resume breakpoint to get us past the dynamic linker.
601 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
602 # Some systems also have trampoline code for returning from shared libs.
603 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
605 # A target might have problems with watchpoints as soon as the stack
606 # frame of the current function has been destroyed. This mostly happens
607 # as the first action in a funtion's epilogue. in_function_epilogue_p()
608 # is defined to return a non-zero value if either the given addr is one
609 # instruction after the stack destroying instruction up to the trailing
610 # return instruction or if we can figure out that the stack frame has
611 # already been invalidated regardless of the value of addr. Targets
612 # which don't suffer from that problem could just let this functionality
614 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
615 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
617 v:int:cannot_step_breakpoint:::0:0::0
618 v:int:have_nonsteppable_watchpoint:::0:0::0
619 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
622 # Is a register in a group
623 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
624 # Fetch the pointer to the ith function argument.
625 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
627 # Return the appropriate register set for a core file section with
628 # name SECT_NAME and size SECT_SIZE.
629 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
631 # Supported register notes in a core file.
632 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
634 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
635 # core file into buffer READBUF with length LEN.
636 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
638 # How the core target converts a PTID from a core file to a string.
639 M:char *:core_pid_to_str:ptid_t ptid:ptid
641 # BFD target to use when generating a core file.
642 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
644 # If the elements of C++ vtables are in-place function descriptors rather
645 # than normal function pointers (which may point to code or a descriptor),
647 v:int:vtable_function_descriptors:::0:0::0
649 # Set if the least significant bit of the delta is used instead of the least
650 # significant bit of the pfn for pointers to virtual member functions.
651 v:int:vbit_in_delta:::0:0::0
653 # Advance PC to next instruction in order to skip a permanent breakpoint.
654 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
656 # The maximum length of an instruction on this architecture in bytes.
657 V:ULONGEST:max_insn_length:::0:0
659 # Copy the instruction at FROM to TO, and make any adjustments
660 # necessary to single-step it at that address.
662 # REGS holds the state the thread's registers will have before
663 # executing the copied instruction; the PC in REGS will refer to FROM,
664 # not the copy at TO. The caller should update it to point at TO later.
666 # Return a pointer to data of the architecture's choice to be passed
667 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
668 # the instruction's effects have been completely simulated, with the
669 # resulting state written back to REGS.
671 # For a general explanation of displaced stepping and how GDB uses it,
672 # see the comments in infrun.c.
674 # The TO area is only guaranteed to have space for
675 # gdbarch_max_insn_length (arch) bytes, so this function must not
676 # write more bytes than that to that area.
678 # If you do not provide this function, GDB assumes that the
679 # architecture does not support displaced stepping.
681 # If your architecture doesn't need to adjust instructions before
682 # single-stepping them, consider using simple_displaced_step_copy_insn
684 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
686 # Return true if GDB should use hardware single-stepping to execute
687 # the displaced instruction identified by CLOSURE. If false,
688 # GDB will simply restart execution at the displaced instruction
689 # location, and it is up to the target to ensure GDB will receive
690 # control again (e.g. by placing a software breakpoint instruction
691 # into the displaced instruction buffer).
693 # The default implementation returns false on all targets that
694 # provide a gdbarch_software_single_step routine, and true otherwise.
695 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
697 # Fix up the state resulting from successfully single-stepping a
698 # displaced instruction, to give the result we would have gotten from
699 # stepping the instruction in its original location.
701 # REGS is the register state resulting from single-stepping the
702 # displaced instruction.
704 # CLOSURE is the result from the matching call to
705 # gdbarch_displaced_step_copy_insn.
707 # If you provide gdbarch_displaced_step_copy_insn.but not this
708 # function, then GDB assumes that no fixup is needed after
709 # single-stepping the instruction.
711 # For a general explanation of displaced stepping and how GDB uses it,
712 # see the comments in infrun.c.
713 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
715 # Free a closure returned by gdbarch_displaced_step_copy_insn.
717 # If you provide gdbarch_displaced_step_copy_insn, you must provide
718 # this function as well.
720 # If your architecture uses closures that don't need to be freed, then
721 # you can use simple_displaced_step_free_closure here.
723 # For a general explanation of displaced stepping and how GDB uses it,
724 # see the comments in infrun.c.
725 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
727 # Return the address of an appropriate place to put displaced
728 # instructions while we step over them. There need only be one such
729 # place, since we're only stepping one thread over a breakpoint at a
732 # For a general explanation of displaced stepping and how GDB uses it,
733 # see the comments in infrun.c.
734 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
736 # Relocate an instruction to execute at a different address. OLDLOC
737 # is the address in the inferior memory where the instruction to
738 # relocate is currently at. On input, TO points to the destination
739 # where we want the instruction to be copied (and possibly adjusted)
740 # to. On output, it points to one past the end of the resulting
741 # instruction(s). The effect of executing the instruction at TO shall
742 # be the same as if executing it at FROM. For example, call
743 # instructions that implicitly push the return address on the stack
744 # should be adjusted to return to the instruction after OLDLOC;
745 # relative branches, and other PC-relative instructions need the
746 # offset adjusted; etc.
747 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
749 # Refresh overlay mapped state for section OSECT.
750 F:void:overlay_update:struct obj_section *osect:osect
752 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
754 # Handle special encoding of static variables in stabs debug info.
755 F:char *:static_transform_name:char *name:name
756 # Set if the address in N_SO or N_FUN stabs may be zero.
757 v:int:sofun_address_maybe_missing:::0:0::0
759 # Parse the instruction at ADDR storing in the record execution log
760 # the registers REGCACHE and memory ranges that will be affected when
761 # the instruction executes, along with their current values.
762 # Return -1 if something goes wrong, 0 otherwise.
763 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
765 # Save process state after a signal.
766 # Return -1 if something goes wrong, 0 otherwise.
767 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
769 # Signal translation: translate inferior's signal (host's) number into
770 # GDB's representation.
771 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
772 # Signal translation: translate GDB's signal number into inferior's host
774 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
776 # Extra signal info inspection.
778 # Return a type suitable to inspect extra signal information.
779 M:struct type *:get_siginfo_type:void:
781 # Record architecture-specific information from the symbol table.
782 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
784 # Function for the 'catch syscall' feature.
786 # Get architecture-specific system calls information from registers.
787 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
789 # True if the list of shared libraries is one and only for all
790 # processes, as opposed to a list of shared libraries per inferior.
791 # This usually means that all processes, although may or may not share
792 # an address space, will see the same set of symbols at the same
794 v:int:has_global_solist:::0:0::0
796 # On some targets, even though each inferior has its own private
797 # address space, the debug interface takes care of making breakpoints
798 # visible to all address spaces automatically. For such cases,
799 # this property should be set to true.
800 v:int:has_global_breakpoints:::0:0::0
802 # True if inferiors share an address space (e.g., uClinux).
803 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
805 # True if a fast tracepoint can be set at an address.
806 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
808 # Return the "auto" target charset.
809 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
810 # Return the "auto" target wide charset.
811 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
813 # If non-empty, this is a file extension that will be opened in place
814 # of the file extension reported by the shared library list.
816 # This is most useful for toolchains that use a post-linker tool,
817 # where the names of the files run on the target differ in extension
818 # compared to the names of the files GDB should load for debug info.
819 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
821 # If true, the target OS has DOS-based file system semantics. That
822 # is, absolute paths include a drive name, and the backslash is
823 # considered a directory separator.
824 v:int:has_dos_based_file_system:::0:0::0
826 # Generate bytecodes to collect the return address in a frame.
827 # Since the bytecodes run on the target, possibly with GDB not even
828 # connected, the full unwinding machinery is not available, and
829 # typically this function will issue bytecodes for one or more likely
830 # places that the return address may be found.
831 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
833 # Implement the "info proc" command.
834 M:void:info_proc:char *args, enum info_proc_what what:args, what
842 exec > new-gdbarch.log
843 function_list | while do_read
846 ${class} ${returntype} ${function} ($formal)
850 eval echo \"\ \ \ \ ${r}=\${${r}}\"
852 if class_is_predicate_p && fallback_default_p
854 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
858 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
860 echo "Error: postdefault is useless when invalid_p=0" 1>&2
864 if class_is_multiarch_p
866 if class_is_predicate_p ; then :
867 elif test "x${predefault}" = "x"
869 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
878 compare_new gdbarch.log
884 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
886 /* Dynamic architecture support for GDB, the GNU debugger.
888 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
889 2007, 2008, 2009 Free Software Foundation, Inc.
891 This file is part of GDB.
893 This program is free software; you can redistribute it and/or modify
894 it under the terms of the GNU General Public License as published by
895 the Free Software Foundation; either version 3 of the License, or
896 (at your option) any later version.
898 This program is distributed in the hope that it will be useful,
899 but WITHOUT ANY WARRANTY; without even the implied warranty of
900 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
901 GNU General Public License for more details.
903 You should have received a copy of the GNU General Public License
904 along with this program. If not, see <http://www.gnu.org/licenses/>. */
906 /* This file was created with the aid of \`\`gdbarch.sh''.
908 The Bourne shell script \`\`gdbarch.sh'' creates the files
909 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
910 against the existing \`\`gdbarch.[hc]''. Any differences found
913 If editing this file, please also run gdbarch.sh and merge any
914 changes into that script. Conversely, when making sweeping changes
915 to this file, modifying gdbarch.sh and using its output may prove
937 struct minimal_symbol;
941 struct disassemble_info;
944 struct bp_target_info;
946 struct displaced_step_closure;
947 struct core_regset_section;
952 /* The architecture associated with the connection to the target.
954 The architecture vector provides some information that is really
955 a property of the target: The layout of certain packets, for instance;
956 or the solib_ops vector. Etc. To differentiate architecture accesses
957 to per-target properties from per-thread/per-frame/per-objfile properties,
958 accesses to per-target properties should be made through target_gdbarch.
960 Eventually, when support for multiple targets is implemented in
961 GDB, this global should be made target-specific. */
962 extern struct gdbarch *target_gdbarch;
968 printf "/* The following are pre-initialized by GDBARCH. */\n"
969 function_list | while do_read
974 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
975 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
982 printf "/* The following are initialized by the target dependent code. */\n"
983 function_list | while do_read
985 if [ -n "${comment}" ]
987 echo "${comment}" | sed \
993 if class_is_predicate_p
996 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
998 if class_is_variable_p
1001 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1002 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1004 if class_is_function_p
1007 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1009 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1010 elif class_is_multiarch_p
1012 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1014 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1016 if [ "x${formal}" = "xvoid" ]
1018 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1020 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1022 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1029 /* Definition for an unknown syscall, used basically in error-cases. */
1030 #define UNKNOWN_SYSCALL (-1)
1032 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1035 /* Mechanism for co-ordinating the selection of a specific
1038 GDB targets (*-tdep.c) can register an interest in a specific
1039 architecture. Other GDB components can register a need to maintain
1040 per-architecture data.
1042 The mechanisms below ensures that there is only a loose connection
1043 between the set-architecture command and the various GDB
1044 components. Each component can independently register their need
1045 to maintain architecture specific data with gdbarch.
1049 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1052 The more traditional mega-struct containing architecture specific
1053 data for all the various GDB components was also considered. Since
1054 GDB is built from a variable number of (fairly independent)
1055 components it was determined that the global aproach was not
1059 /* Register a new architectural family with GDB.
1061 Register support for the specified ARCHITECTURE with GDB. When
1062 gdbarch determines that the specified architecture has been
1063 selected, the corresponding INIT function is called.
1067 The INIT function takes two parameters: INFO which contains the
1068 information available to gdbarch about the (possibly new)
1069 architecture; ARCHES which is a list of the previously created
1070 \`\`struct gdbarch'' for this architecture.
1072 The INFO parameter is, as far as possible, be pre-initialized with
1073 information obtained from INFO.ABFD or the global defaults.
1075 The ARCHES parameter is a linked list (sorted most recently used)
1076 of all the previously created architures for this architecture
1077 family. The (possibly NULL) ARCHES->gdbarch can used to access
1078 values from the previously selected architecture for this
1079 architecture family.
1081 The INIT function shall return any of: NULL - indicating that it
1082 doesn't recognize the selected architecture; an existing \`\`struct
1083 gdbarch'' from the ARCHES list - indicating that the new
1084 architecture is just a synonym for an earlier architecture (see
1085 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1086 - that describes the selected architecture (see gdbarch_alloc()).
1088 The DUMP_TDEP function shall print out all target specific values.
1089 Care should be taken to ensure that the function works in both the
1090 multi-arch and non- multi-arch cases. */
1094 struct gdbarch *gdbarch;
1095 struct gdbarch_list *next;
1100 /* Use default: NULL (ZERO). */
1101 const struct bfd_arch_info *bfd_arch_info;
1103 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1106 int byte_order_for_code;
1108 /* Use default: NULL (ZERO). */
1111 /* Use default: NULL (ZERO). */
1112 struct gdbarch_tdep_info *tdep_info;
1114 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1115 enum gdb_osabi osabi;
1117 /* Use default: NULL (ZERO). */
1118 const struct target_desc *target_desc;
1121 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1122 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1124 /* DEPRECATED - use gdbarch_register() */
1125 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1127 extern void gdbarch_register (enum bfd_architecture architecture,
1128 gdbarch_init_ftype *,
1129 gdbarch_dump_tdep_ftype *);
1132 /* Return a freshly allocated, NULL terminated, array of the valid
1133 architecture names. Since architectures are registered during the
1134 _initialize phase this function only returns useful information
1135 once initialization has been completed. */
1137 extern const char **gdbarch_printable_names (void);
1140 /* Helper function. Search the list of ARCHES for a GDBARCH that
1141 matches the information provided by INFO. */
1143 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1146 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1147 basic initialization using values obtained from the INFO and TDEP
1148 parameters. set_gdbarch_*() functions are called to complete the
1149 initialization of the object. */
1151 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1154 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1155 It is assumed that the caller freeds the \`\`struct
1158 extern void gdbarch_free (struct gdbarch *);
1161 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1162 obstack. The memory is freed when the corresponding architecture
1165 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1166 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1167 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1170 /* Helper function. Force an update of the current architecture.
1172 The actual architecture selected is determined by INFO, \`\`(gdb) set
1173 architecture'' et.al., the existing architecture and BFD's default
1174 architecture. INFO should be initialized to zero and then selected
1175 fields should be updated.
1177 Returns non-zero if the update succeeds. */
1179 extern int gdbarch_update_p (struct gdbarch_info info);
1182 /* Helper function. Find an architecture matching info.
1184 INFO should be initialized using gdbarch_info_init, relevant fields
1185 set, and then finished using gdbarch_info_fill.
1187 Returns the corresponding architecture, or NULL if no matching
1188 architecture was found. */
1190 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1193 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1195 FIXME: kettenis/20031124: Of the functions that follow, only
1196 gdbarch_from_bfd is supposed to survive. The others will
1197 dissappear since in the future GDB will (hopefully) be truly
1198 multi-arch. However, for now we're still stuck with the concept of
1199 a single active architecture. */
1201 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1204 /* Register per-architecture data-pointer.
1206 Reserve space for a per-architecture data-pointer. An identifier
1207 for the reserved data-pointer is returned. That identifer should
1208 be saved in a local static variable.
1210 Memory for the per-architecture data shall be allocated using
1211 gdbarch_obstack_zalloc. That memory will be deleted when the
1212 corresponding architecture object is deleted.
1214 When a previously created architecture is re-selected, the
1215 per-architecture data-pointer for that previous architecture is
1216 restored. INIT() is not re-called.
1218 Multiple registrarants for any architecture are allowed (and
1219 strongly encouraged). */
1221 struct gdbarch_data;
1223 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1224 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1225 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1226 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1227 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1228 struct gdbarch_data *data,
1231 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1234 /* Set the dynamic target-system-dependent parameters (architecture,
1235 byte-order, ...) using information found in the BFD. */
1237 extern void set_gdbarch_from_file (bfd *);
1240 /* Initialize the current architecture to the "first" one we find on
1243 extern void initialize_current_architecture (void);
1245 /* gdbarch trace variable */
1246 extern int gdbarch_debug;
1248 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1253 #../move-if-change new-gdbarch.h gdbarch.h
1254 compare_new gdbarch.h
1261 exec > new-gdbarch.c
1266 #include "arch-utils.h"
1269 #include "inferior.h"
1272 #include "floatformat.h"
1274 #include "gdb_assert.h"
1275 #include "gdb_string.h"
1276 #include "reggroups.h"
1278 #include "gdb_obstack.h"
1279 #include "observer.h"
1280 #include "regcache.h"
1282 /* Static function declarations */
1284 static void alloc_gdbarch_data (struct gdbarch *);
1286 /* Non-zero if we want to trace architecture code. */
1288 #ifndef GDBARCH_DEBUG
1289 #define GDBARCH_DEBUG 0
1291 int gdbarch_debug = GDBARCH_DEBUG;
1293 show_gdbarch_debug (struct ui_file *file, int from_tty,
1294 struct cmd_list_element *c, const char *value)
1296 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1300 pformat (const struct floatformat **format)
1305 /* Just print out one of them - this is only for diagnostics. */
1306 return format[0]->name;
1310 pstring (const char *string)
1319 # gdbarch open the gdbarch object
1321 printf "/* Maintain the struct gdbarch object. */\n"
1323 printf "struct gdbarch\n"
1325 printf " /* Has this architecture been fully initialized? */\n"
1326 printf " int initialized_p;\n"
1328 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1329 printf " struct obstack *obstack;\n"
1331 printf " /* basic architectural information. */\n"
1332 function_list | while do_read
1336 printf " ${returntype} ${function};\n"
1340 printf " /* target specific vector. */\n"
1341 printf " struct gdbarch_tdep *tdep;\n"
1342 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1344 printf " /* per-architecture data-pointers. */\n"
1345 printf " unsigned nr_data;\n"
1346 printf " void **data;\n"
1348 printf " /* per-architecture swap-regions. */\n"
1349 printf " struct gdbarch_swap *swap;\n"
1352 /* Multi-arch values.
1354 When extending this structure you must:
1356 Add the field below.
1358 Declare set/get functions and define the corresponding
1361 gdbarch_alloc(): If zero/NULL is not a suitable default,
1362 initialize the new field.
1364 verify_gdbarch(): Confirm that the target updated the field
1367 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1370 \`\`startup_gdbarch()'': Append an initial value to the static
1371 variable (base values on the host's c-type system).
1373 get_gdbarch(): Implement the set/get functions (probably using
1374 the macro's as shortcuts).
1379 function_list | while do_read
1381 if class_is_variable_p
1383 printf " ${returntype} ${function};\n"
1384 elif class_is_function_p
1386 printf " gdbarch_${function}_ftype *${function};\n"
1391 # A pre-initialized vector
1395 /* The default architecture uses host values (for want of a better
1399 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1401 printf "struct gdbarch startup_gdbarch =\n"
1403 printf " 1, /* Always initialized. */\n"
1404 printf " NULL, /* The obstack. */\n"
1405 printf " /* basic architecture information. */\n"
1406 function_list | while do_read
1410 printf " ${staticdefault}, /* ${function} */\n"
1414 /* target specific vector and its dump routine. */
1416 /*per-architecture data-pointers and swap regions. */
1418 /* Multi-arch values */
1420 function_list | while do_read
1422 if class_is_function_p || class_is_variable_p
1424 printf " ${staticdefault}, /* ${function} */\n"
1428 /* startup_gdbarch() */
1431 struct gdbarch *target_gdbarch = &startup_gdbarch;
1434 # Create a new gdbarch struct
1437 /* Create a new \`\`struct gdbarch'' based on information provided by
1438 \`\`struct gdbarch_info''. */
1443 gdbarch_alloc (const struct gdbarch_info *info,
1444 struct gdbarch_tdep *tdep)
1446 struct gdbarch *gdbarch;
1448 /* Create an obstack for allocating all the per-architecture memory,
1449 then use that to allocate the architecture vector. */
1450 struct obstack *obstack = XMALLOC (struct obstack);
1451 obstack_init (obstack);
1452 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1453 memset (gdbarch, 0, sizeof (*gdbarch));
1454 gdbarch->obstack = obstack;
1456 alloc_gdbarch_data (gdbarch);
1458 gdbarch->tdep = tdep;
1461 function_list | while do_read
1465 printf " gdbarch->${function} = info->${function};\n"
1469 printf " /* Force the explicit initialization of these. */\n"
1470 function_list | while do_read
1472 if class_is_function_p || class_is_variable_p
1474 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1476 printf " gdbarch->${function} = ${predefault};\n"
1481 /* gdbarch_alloc() */
1487 # Free a gdbarch struct.
1491 /* Allocate extra space using the per-architecture obstack. */
1494 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1496 void *data = obstack_alloc (arch->obstack, size);
1498 memset (data, 0, size);
1503 /* Free a gdbarch struct. This should never happen in normal
1504 operation --- once you've created a gdbarch, you keep it around.
1505 However, if an architecture's init function encounters an error
1506 building the structure, it may need to clean up a partially
1507 constructed gdbarch. */
1510 gdbarch_free (struct gdbarch *arch)
1512 struct obstack *obstack;
1514 gdb_assert (arch != NULL);
1515 gdb_assert (!arch->initialized_p);
1516 obstack = arch->obstack;
1517 obstack_free (obstack, 0); /* Includes the ARCH. */
1522 # verify a new architecture
1526 /* Ensure that all values in a GDBARCH are reasonable. */
1529 verify_gdbarch (struct gdbarch *gdbarch)
1531 struct ui_file *log;
1532 struct cleanup *cleanups;
1536 log = mem_fileopen ();
1537 cleanups = make_cleanup_ui_file_delete (log);
1539 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1540 fprintf_unfiltered (log, "\n\tbyte-order");
1541 if (gdbarch->bfd_arch_info == NULL)
1542 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1543 /* Check those that need to be defined for the given multi-arch level. */
1545 function_list | while do_read
1547 if class_is_function_p || class_is_variable_p
1549 if [ "x${invalid_p}" = "x0" ]
1551 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1552 elif class_is_predicate_p
1554 printf " /* Skip verify of ${function}, has predicate. */\n"
1555 # FIXME: See do_read for potential simplification
1556 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1558 printf " if (${invalid_p})\n"
1559 printf " gdbarch->${function} = ${postdefault};\n"
1560 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1562 printf " if (gdbarch->${function} == ${predefault})\n"
1563 printf " gdbarch->${function} = ${postdefault};\n"
1564 elif [ -n "${postdefault}" ]
1566 printf " if (gdbarch->${function} == 0)\n"
1567 printf " gdbarch->${function} = ${postdefault};\n"
1568 elif [ -n "${invalid_p}" ]
1570 printf " if (${invalid_p})\n"
1571 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1572 elif [ -n "${predefault}" ]
1574 printf " if (gdbarch->${function} == ${predefault})\n"
1575 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1580 buf = ui_file_xstrdup (log, &length);
1581 make_cleanup (xfree, buf);
1583 internal_error (__FILE__, __LINE__,
1584 _("verify_gdbarch: the following are invalid ...%s"),
1586 do_cleanups (cleanups);
1590 # dump the structure
1594 /* Print out the details of the current architecture. */
1597 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1599 const char *gdb_nm_file = "<not-defined>";
1601 #if defined (GDB_NM_FILE)
1602 gdb_nm_file = GDB_NM_FILE;
1604 fprintf_unfiltered (file,
1605 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1608 function_list | sort -t: -k 3 | while do_read
1610 # First the predicate
1611 if class_is_predicate_p
1613 printf " fprintf_unfiltered (file,\n"
1614 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1615 printf " gdbarch_${function}_p (gdbarch));\n"
1617 # Print the corresponding value.
1618 if class_is_function_p
1620 printf " fprintf_unfiltered (file,\n"
1621 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1622 printf " host_address_to_string (gdbarch->${function}));\n"
1625 case "${print}:${returntype}" in
1628 print="core_addr_to_string_nz (gdbarch->${function})"
1632 print="plongest (gdbarch->${function})"
1638 printf " fprintf_unfiltered (file,\n"
1639 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1640 printf " ${print});\n"
1644 if (gdbarch->dump_tdep != NULL)
1645 gdbarch->dump_tdep (gdbarch, file);
1653 struct gdbarch_tdep *
1654 gdbarch_tdep (struct gdbarch *gdbarch)
1656 if (gdbarch_debug >= 2)
1657 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1658 return gdbarch->tdep;
1662 function_list | while do_read
1664 if class_is_predicate_p
1668 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1670 printf " gdb_assert (gdbarch != NULL);\n"
1671 printf " return ${predicate};\n"
1674 if class_is_function_p
1677 printf "${returntype}\n"
1678 if [ "x${formal}" = "xvoid" ]
1680 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1682 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1685 printf " gdb_assert (gdbarch != NULL);\n"
1686 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1687 if class_is_predicate_p && test -n "${predefault}"
1689 # Allow a call to a function with a predicate.
1690 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1692 printf " if (gdbarch_debug >= 2)\n"
1693 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1694 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1696 if class_is_multiarch_p
1703 if class_is_multiarch_p
1705 params="gdbarch, ${actual}"
1710 if [ "x${returntype}" = "xvoid" ]
1712 printf " gdbarch->${function} (${params});\n"
1714 printf " return gdbarch->${function} (${params});\n"
1719 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1720 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1722 printf " gdbarch->${function} = ${function};\n"
1724 elif class_is_variable_p
1727 printf "${returntype}\n"
1728 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1730 printf " gdb_assert (gdbarch != NULL);\n"
1731 if [ "x${invalid_p}" = "x0" ]
1733 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1734 elif [ -n "${invalid_p}" ]
1736 printf " /* Check variable is valid. */\n"
1737 printf " gdb_assert (!(${invalid_p}));\n"
1738 elif [ -n "${predefault}" ]
1740 printf " /* Check variable changed from pre-default. */\n"
1741 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1743 printf " if (gdbarch_debug >= 2)\n"
1744 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1745 printf " return gdbarch->${function};\n"
1749 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1750 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1752 printf " gdbarch->${function} = ${function};\n"
1754 elif class_is_info_p
1757 printf "${returntype}\n"
1758 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1760 printf " gdb_assert (gdbarch != NULL);\n"
1761 printf " if (gdbarch_debug >= 2)\n"
1762 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1763 printf " return gdbarch->${function};\n"
1768 # All the trailing guff
1772 /* Keep a registry of per-architecture data-pointers required by GDB
1779 gdbarch_data_pre_init_ftype *pre_init;
1780 gdbarch_data_post_init_ftype *post_init;
1783 struct gdbarch_data_registration
1785 struct gdbarch_data *data;
1786 struct gdbarch_data_registration *next;
1789 struct gdbarch_data_registry
1792 struct gdbarch_data_registration *registrations;
1795 struct gdbarch_data_registry gdbarch_data_registry =
1800 static struct gdbarch_data *
1801 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1802 gdbarch_data_post_init_ftype *post_init)
1804 struct gdbarch_data_registration **curr;
1806 /* Append the new registration. */
1807 for (curr = &gdbarch_data_registry.registrations;
1809 curr = &(*curr)->next);
1810 (*curr) = XMALLOC (struct gdbarch_data_registration);
1811 (*curr)->next = NULL;
1812 (*curr)->data = XMALLOC (struct gdbarch_data);
1813 (*curr)->data->index = gdbarch_data_registry.nr++;
1814 (*curr)->data->pre_init = pre_init;
1815 (*curr)->data->post_init = post_init;
1816 (*curr)->data->init_p = 1;
1817 return (*curr)->data;
1820 struct gdbarch_data *
1821 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1823 return gdbarch_data_register (pre_init, NULL);
1826 struct gdbarch_data *
1827 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1829 return gdbarch_data_register (NULL, post_init);
1832 /* Create/delete the gdbarch data vector. */
1835 alloc_gdbarch_data (struct gdbarch *gdbarch)
1837 gdb_assert (gdbarch->data == NULL);
1838 gdbarch->nr_data = gdbarch_data_registry.nr;
1839 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1842 /* Initialize the current value of the specified per-architecture
1846 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1847 struct gdbarch_data *data,
1850 gdb_assert (data->index < gdbarch->nr_data);
1851 gdb_assert (gdbarch->data[data->index] == NULL);
1852 gdb_assert (data->pre_init == NULL);
1853 gdbarch->data[data->index] = pointer;
1856 /* Return the current value of the specified per-architecture
1860 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1862 gdb_assert (data->index < gdbarch->nr_data);
1863 if (gdbarch->data[data->index] == NULL)
1865 /* The data-pointer isn't initialized, call init() to get a
1867 if (data->pre_init != NULL)
1868 /* Mid architecture creation: pass just the obstack, and not
1869 the entire architecture, as that way it isn't possible for
1870 pre-init code to refer to undefined architecture
1872 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1873 else if (gdbarch->initialized_p
1874 && data->post_init != NULL)
1875 /* Post architecture creation: pass the entire architecture
1876 (as all fields are valid), but be careful to also detect
1877 recursive references. */
1879 gdb_assert (data->init_p);
1881 gdbarch->data[data->index] = data->post_init (gdbarch);
1885 /* The architecture initialization hasn't completed - punt -
1886 hope that the caller knows what they are doing. Once
1887 deprecated_set_gdbarch_data has been initialized, this can be
1888 changed to an internal error. */
1890 gdb_assert (gdbarch->data[data->index] != NULL);
1892 return gdbarch->data[data->index];
1896 /* Keep a registry of the architectures known by GDB. */
1898 struct gdbarch_registration
1900 enum bfd_architecture bfd_architecture;
1901 gdbarch_init_ftype *init;
1902 gdbarch_dump_tdep_ftype *dump_tdep;
1903 struct gdbarch_list *arches;
1904 struct gdbarch_registration *next;
1907 static struct gdbarch_registration *gdbarch_registry = NULL;
1910 append_name (const char ***buf, int *nr, const char *name)
1912 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1918 gdbarch_printable_names (void)
1920 /* Accumulate a list of names based on the registed list of
1923 const char **arches = NULL;
1924 struct gdbarch_registration *rego;
1926 for (rego = gdbarch_registry;
1930 const struct bfd_arch_info *ap;
1931 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1933 internal_error (__FILE__, __LINE__,
1934 _("gdbarch_architecture_names: multi-arch unknown"));
1937 append_name (&arches, &nr_arches, ap->printable_name);
1942 append_name (&arches, &nr_arches, NULL);
1948 gdbarch_register (enum bfd_architecture bfd_architecture,
1949 gdbarch_init_ftype *init,
1950 gdbarch_dump_tdep_ftype *dump_tdep)
1952 struct gdbarch_registration **curr;
1953 const struct bfd_arch_info *bfd_arch_info;
1955 /* Check that BFD recognizes this architecture */
1956 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1957 if (bfd_arch_info == NULL)
1959 internal_error (__FILE__, __LINE__,
1960 _("gdbarch: Attempt to register "
1961 "unknown architecture (%d)"),
1964 /* Check that we haven't seen this architecture before. */
1965 for (curr = &gdbarch_registry;
1967 curr = &(*curr)->next)
1969 if (bfd_architecture == (*curr)->bfd_architecture)
1970 internal_error (__FILE__, __LINE__,
1971 _("gdbarch: Duplicate registration "
1972 "of architecture (%s)"),
1973 bfd_arch_info->printable_name);
1977 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1978 bfd_arch_info->printable_name,
1979 host_address_to_string (init));
1981 (*curr) = XMALLOC (struct gdbarch_registration);
1982 (*curr)->bfd_architecture = bfd_architecture;
1983 (*curr)->init = init;
1984 (*curr)->dump_tdep = dump_tdep;
1985 (*curr)->arches = NULL;
1986 (*curr)->next = NULL;
1990 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1991 gdbarch_init_ftype *init)
1993 gdbarch_register (bfd_architecture, init, NULL);
1997 /* Look for an architecture using gdbarch_info. */
1999 struct gdbarch_list *
2000 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2001 const struct gdbarch_info *info)
2003 for (; arches != NULL; arches = arches->next)
2005 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2007 if (info->byte_order != arches->gdbarch->byte_order)
2009 if (info->osabi != arches->gdbarch->osabi)
2011 if (info->target_desc != arches->gdbarch->target_desc)
2019 /* Find an architecture that matches the specified INFO. Create a new
2020 architecture if needed. Return that new architecture. */
2023 gdbarch_find_by_info (struct gdbarch_info info)
2025 struct gdbarch *new_gdbarch;
2026 struct gdbarch_registration *rego;
2028 /* Fill in missing parts of the INFO struct using a number of
2029 sources: "set ..."; INFOabfd supplied; and the global
2031 gdbarch_info_fill (&info);
2033 /* Must have found some sort of architecture. */
2034 gdb_assert (info.bfd_arch_info != NULL);
2038 fprintf_unfiltered (gdb_stdlog,
2039 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2040 (info.bfd_arch_info != NULL
2041 ? info.bfd_arch_info->printable_name
2043 fprintf_unfiltered (gdb_stdlog,
2044 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2046 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2047 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2049 fprintf_unfiltered (gdb_stdlog,
2050 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2051 info.osabi, gdbarch_osabi_name (info.osabi));
2052 fprintf_unfiltered (gdb_stdlog,
2053 "gdbarch_find_by_info: info.abfd %s\n",
2054 host_address_to_string (info.abfd));
2055 fprintf_unfiltered (gdb_stdlog,
2056 "gdbarch_find_by_info: info.tdep_info %s\n",
2057 host_address_to_string (info.tdep_info));
2060 /* Find the tdep code that knows about this architecture. */
2061 for (rego = gdbarch_registry;
2064 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2069 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2070 "No matching architecture\n");
2074 /* Ask the tdep code for an architecture that matches "info". */
2075 new_gdbarch = rego->init (info, rego->arches);
2077 /* Did the tdep code like it? No. Reject the change and revert to
2078 the old architecture. */
2079 if (new_gdbarch == NULL)
2082 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2083 "Target rejected architecture\n");
2087 /* Is this a pre-existing architecture (as determined by already
2088 being initialized)? Move it to the front of the architecture
2089 list (keeping the list sorted Most Recently Used). */
2090 if (new_gdbarch->initialized_p)
2092 struct gdbarch_list **list;
2093 struct gdbarch_list *this;
2095 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2096 "Previous architecture %s (%s) selected\n",
2097 host_address_to_string (new_gdbarch),
2098 new_gdbarch->bfd_arch_info->printable_name);
2099 /* Find the existing arch in the list. */
2100 for (list = ®o->arches;
2101 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2102 list = &(*list)->next);
2103 /* It had better be in the list of architectures. */
2104 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2107 (*list) = this->next;
2108 /* Insert THIS at the front. */
2109 this->next = rego->arches;
2110 rego->arches = this;
2115 /* It's a new architecture. */
2117 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2118 "New architecture %s (%s) selected\n",
2119 host_address_to_string (new_gdbarch),
2120 new_gdbarch->bfd_arch_info->printable_name);
2122 /* Insert the new architecture into the front of the architecture
2123 list (keep the list sorted Most Recently Used). */
2125 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2126 this->next = rego->arches;
2127 this->gdbarch = new_gdbarch;
2128 rego->arches = this;
2131 /* Check that the newly installed architecture is valid. Plug in
2132 any post init values. */
2133 new_gdbarch->dump_tdep = rego->dump_tdep;
2134 verify_gdbarch (new_gdbarch);
2135 new_gdbarch->initialized_p = 1;
2138 gdbarch_dump (new_gdbarch, gdb_stdlog);
2143 /* Make the specified architecture current. */
2146 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2148 gdb_assert (new_gdbarch != NULL);
2149 gdb_assert (new_gdbarch->initialized_p);
2150 target_gdbarch = new_gdbarch;
2151 observer_notify_architecture_changed (new_gdbarch);
2152 registers_changed ();
2155 extern void _initialize_gdbarch (void);
2158 _initialize_gdbarch (void)
2160 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2161 Set architecture debugging."), _("\\
2162 Show architecture debugging."), _("\\
2163 When non-zero, architecture debugging is enabled."),
2166 &setdebuglist, &showdebuglist);
2172 #../move-if-change new-gdbarch.c gdbarch.c
2173 compare_new gdbarch.c