1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
29 /* For argument passing to the inferior */
33 #include <sys/types.h>
36 #include <sys/param.h>
39 #include <sys/ioctl.h>
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
50 /*#include <sys/user.h> After a.out.h */
53 #include <machine/psl.h>
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 static FRAME_ADDR dig_fp_from_stack PARAMS ((FRAME frame,
65 struct unwind_table_entry *u));
66 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
69 /* Routines to extract various sized constants out of hppa
72 /* This assumes that no garbage lies outside of the lower bits of
76 sign_extend (val, bits)
79 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
82 /* For many immediate values the sign bit is the low bit! */
85 low_sign_extend (val, bits)
88 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
90 /* extract the immediate field from a ld{bhw}s instruction */
93 get_field (val, from, to)
94 unsigned val, from, to;
97 return val & ((1 << 32 - from) - 1);
101 set_field (val, from, to, new_val)
102 unsigned *val, from, to;
104 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
105 return *val = *val & mask | (new_val << (31 - from));
108 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
113 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
116 extract_5_load (word)
119 return low_sign_extend (word >> 16 & MASK_5, 5);
122 /* extract the immediate field from a st{bhw}s instruction */
125 extract_5_store (word)
128 return low_sign_extend (word & MASK_5, 5);
131 /* extract the immediate field from a break instruction */
134 extract_5r_store (word)
137 return (word & MASK_5);
140 /* extract the immediate field from a {sr}sm instruction */
143 extract_5R_store (word)
146 return (word >> 16 & MASK_5);
149 /* extract an 11 bit immediate field */
155 return low_sign_extend (word & MASK_11, 11);
158 /* extract a 14 bit immediate field */
164 return low_sign_extend (word & MASK_14, 14);
167 /* deposit a 14 bit constant in a word */
170 deposit_14 (opnd, word)
174 unsigned sign = (opnd < 0 ? 1 : 0);
176 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
179 /* extract a 21 bit constant */
189 val = GET_FIELD (word, 20, 20);
191 val |= GET_FIELD (word, 9, 19);
193 val |= GET_FIELD (word, 5, 6);
195 val |= GET_FIELD (word, 0, 4);
197 val |= GET_FIELD (word, 7, 8);
198 return sign_extend (val, 21) << 11;
201 /* deposit a 21 bit constant in a word. Although 21 bit constants are
202 usually the top 21 bits of a 32 bit constant, we assume that only
203 the low 21 bits of opnd are relevant */
206 deposit_21 (opnd, word)
211 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
213 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
215 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
217 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
219 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
223 /* extract a 12 bit constant from branch instructions */
229 return sign_extend (GET_FIELD (word, 19, 28) |
230 GET_FIELD (word, 29, 29) << 10 |
231 (word & 0x1) << 11, 12) << 2;
234 /* extract a 17 bit constant from branch instructions, returning the
235 19 bit signed value. */
241 return sign_extend (GET_FIELD (word, 19, 28) |
242 GET_FIELD (word, 29, 29) << 10 |
243 GET_FIELD (word, 11, 15) << 11 |
244 (word & 0x1) << 16, 17) << 2;
247 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
248 of the objfiles seeking the unwind table entry for this PC. Each objfile
249 contains a sorted list of struct unwind_table_entry. Since we do a binary
250 search of the unwind tables, we depend upon them to be sorted. */
252 static struct unwind_table_entry *
253 find_unwind_entry(pc)
256 int first, middle, last;
257 struct objfile *objfile;
259 ALL_OBJFILES (objfile)
261 struct obj_unwind_info *ui;
263 ui = OBJ_UNWIND_INFO (objfile);
268 /* First, check the cache */
271 && pc >= ui->cache->region_start
272 && pc <= ui->cache->region_end)
275 /* Not in the cache, do a binary search */
280 while (first <= last)
282 middle = (first + last) / 2;
283 if (pc >= ui->table[middle].region_start
284 && pc <= ui->table[middle].region_end)
286 ui->cache = &ui->table[middle];
287 return &ui->table[middle];
290 if (pc < ui->table[middle].region_start)
295 } /* ALL_OBJFILES() */
299 /* Called when no unwind descriptor was found for PC. Returns 1 if it
300 appears that PC is in a linker stub. */
301 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
304 pc_in_linker_stub (pc)
307 int found_magic_instruction = 0;
311 /* If unable to read memory, assume pc is not in a linker stub. */
312 if (target_read_memory (pc, buf, 4) != 0)
315 /* We are looking for something like
317 ; $$dyncall jams RP into this special spot in the frame (RP')
318 ; before calling the "call stub"
321 ldsid (rp),r1 ; Get space associated with RP into r1
322 mtsp r1,sp ; Move it into space register 0
323 be,n 0(sr0),rp) ; back to your regularly scheduled program
326 /* Maximum known linker stub size is 4 instructions. Search forward
327 from the given PC, then backward. */
328 for (i = 0; i < 4; i++)
330 /* If we hit something with an unwind, stop searching this direction. */
332 if (find_unwind_entry (pc + i * 4) != 0)
335 /* Check for ldsid (rp),r1 which is the magic instruction for a
336 return from a cross-space function call. */
337 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
339 found_magic_instruction = 1;
342 /* Add code to handle long call/branch and argument relocation stubs
346 if (found_magic_instruction != 0)
349 /* Now look backward. */
350 for (i = 0; i < 4; i++)
352 /* If we hit something with an unwind, stop searching this direction. */
354 if (find_unwind_entry (pc - i * 4) != 0)
357 /* Check for ldsid (rp),r1 which is the magic instruction for a
358 return from a cross-space function call. */
359 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
361 found_magic_instruction = 1;
364 /* Add code to handle long call/branch and argument relocation stubs
367 return found_magic_instruction;
371 find_return_regnum(pc)
374 struct unwind_table_entry *u;
376 u = find_unwind_entry (pc);
387 /* Return size of frame, or -1 if we should use a frame pointer. */
389 find_proc_framesize(pc)
392 struct unwind_table_entry *u;
394 u = find_unwind_entry (pc);
398 if (pc_in_linker_stub (pc))
399 /* Linker stubs have a zero size frame. */
406 /* If this bit is set, it means there is a frame pointer and we should
410 return u->Total_frame_size << 3;
413 /* Return offset from sp at which rp is saved, or 0 if not saved. */
414 static int rp_saved PARAMS ((CORE_ADDR));
420 struct unwind_table_entry *u;
422 u = find_unwind_entry (pc);
426 if (pc_in_linker_stub (pc))
427 /* This is the so-called RP'. */
440 frameless_function_invocation (frame)
443 struct unwind_table_entry *u;
445 u = find_unwind_entry (frame->pc);
448 return frameless_look_for_prologue (frame);
450 return (u->Total_frame_size == 0);
454 saved_pc_after_call (frame)
459 ret_regnum = find_return_regnum (get_frame_pc (frame));
461 return read_register (ret_regnum) & ~0x3;
465 frame_saved_pc (frame)
468 CORE_ADDR pc = get_frame_pc (frame);
470 if (frameless_function_invocation (frame))
474 ret_regnum = find_return_regnum (pc);
476 return read_register (ret_regnum) & ~0x3;
480 int rp_offset = rp_saved (pc);
483 return read_register (RP_REGNUM) & ~0x3;
485 return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
489 /* We need to correct the PC and the FP for the outermost frame when we are
493 init_extra_frame_info (fromleaf, frame)
495 struct frame_info *frame;
500 if (frame->next && !fromleaf)
503 /* If the next frame represents a frameless function invocation
504 then we have to do some adjustments that are normally done by
505 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
508 /* Find the framesize of *this* frame without peeking at the PC
509 in the current frame structure (it isn't set yet). */
510 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
512 /* Now adjust our base frame accordingly. If we have a frame pointer
513 use it, else subtract the size of this frame from the current
514 frame. (we always want frame->frame to point at the lowest address
517 frame->frame = read_register (FP_REGNUM);
519 frame->frame -= framesize;
523 flags = read_register (FLAGS_REGNUM);
524 if (flags & 2) /* In system call? */
525 frame->pc = read_register (31) & ~0x3;
527 /* The outermost frame is always derived from PC-framesize
529 One might think frameless innermost frames should have
530 a frame->frame that is the same as the parent's frame->frame.
531 That is wrong; frame->frame in that case should be the *high*
532 address of the parent's frame. It's complicated as hell to
533 explain, but the parent *always* creates some stack space for
534 the child. So the child actually does have a frame of some
535 sorts, and its base is the high address in its parent's frame. */
536 framesize = find_proc_framesize(frame->pc);
538 frame->frame = read_register (FP_REGNUM);
540 frame->frame = read_register (SP_REGNUM) - framesize;
543 /* Given a GDB frame, determine the address of the calling function's frame.
544 This will be used to create a new GDB frame struct, and then
545 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
547 This may involve searching through prologues for several functions
548 at boundaries where GCC calls HP C code, or where code which has
549 a frame pointer calls code without a frame pointer. */
554 struct frame_info *frame;
556 int my_framesize, caller_framesize;
557 struct unwind_table_entry *u;
559 /* Get frame sizes for the current frame and the frame of the
561 my_framesize = find_proc_framesize (frame->pc);
562 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
564 /* If caller does not have a frame pointer, then its frame
565 can be found at current_frame - caller_framesize. */
566 if (caller_framesize != -1)
567 return frame->frame - caller_framesize;
569 /* Both caller and callee have frame pointers and are GCC compiled
570 (SAVE_SP bit in unwind descriptor is on for both functions.
571 The previous frame pointer is found at the top of the current frame. */
572 if (caller_framesize == -1 && my_framesize == -1)
573 return read_memory_integer (frame->frame, 4);
575 /* Caller has a frame pointer, but callee does not. This is a little
576 more difficult as GCC and HP C lay out locals and callee register save
577 areas very differently.
579 The previous frame pointer could be in a register, or in one of
580 several areas on the stack.
582 Walk from the current frame to the innermost frame examining
583 unwind descriptors to determine if %r3 ever gets saved into the
584 stack. If so return whatever value got saved into the stack.
585 If it was never saved in the stack, then the value in %r3 is still
588 We use information from unwind descriptors to determine if %r3
589 is saved into the stack (Entry_GR field has this information). */
593 u = find_unwind_entry (frame->pc);
597 /* We could find this information by examining prologues. I don't
598 think anyone has actually written any tools (not even "strip")
599 which leave them out of an executable, so maybe this is a moot
601 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
605 /* Entry_GR specifies the number of callee-saved general registers
606 saved in the stack. It starts at %r3, so %r3 would be 1. */
607 if (u->Entry_GR >= 1 || u->Save_SP)
615 /* We may have walked down the chain into a function with a frame
618 return read_memory_integer (frame->frame, 4);
619 /* %r3 was saved somewhere in the stack. Dig it out. */
621 return dig_fp_from_stack (frame, u);
625 /* The value in %r3 was never saved into the stack (thus %r3 still
626 holds the value of the previous frame pointer). */
627 return read_register (FP_REGNUM);
631 /* Given a frame and an unwind descriptor return the value for %fr (aka fp)
632 which was saved into the stack. FIXME: Why can't we just use the standard
636 dig_fp_from_stack (frame, u)
638 struct unwind_table_entry *u;
640 CORE_ADDR pc = u->region_start;
642 /* Search the function for the save of %r3. */
643 while (pc != u->region_end)
649 /* We need only look for the standard stw %r3,X(%sp) instruction,
650 the other variants (eg stwm) are only used on the first register
652 status = target_read_memory (pc, buf, 4);
653 inst = extract_unsigned_integer (buf, 4);
656 memory_error (status, pc);
658 /* Check for stw %r3,X(%sp). */
659 if ((inst & 0xffffc000) == 0x6bc30000)
661 /* Found the instruction which saves %r3. The offset (relative
662 to this frame) is framesize + immed14 (derived from the
663 store instruction). */
664 int offset = (u->Total_frame_size << 3) + extract_14 (inst);
666 return read_memory_integer (frame->frame + offset, 4);
673 warning ("Unable to find %%r3 in stack.\n");
678 /* To see if a frame chain is valid, see if the caller looks like it
679 was compiled with gcc. */
682 frame_chain_valid (chain, thisframe)
686 struct minimal_symbol *msym_us;
687 struct minimal_symbol *msym_start;
688 struct unwind_table_entry *u;
693 u = find_unwind_entry (thisframe->pc);
695 /* We can't just check that the same of msym_us is "_start", because
696 someone idiotically decided that they were going to make a Ltext_end
697 symbol with the same address. This Ltext_end symbol is totally
698 indistinguishable (as nearly as I can tell) from the symbol for a function
699 which is (legitimately, since it is in the user's namespace)
700 named Ltext_end, so we can't just ignore it. */
701 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
702 msym_start = lookup_minimal_symbol ("_start", NULL);
705 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
711 if (u->Save_SP || u->Total_frame_size)
714 if (pc_in_linker_stub (thisframe->pc))
721 * These functions deal with saving and restoring register state
722 * around a function call in the inferior. They keep the stack
723 * double-word aligned; eventually, on an hp700, the stack will have
724 * to be aligned to a 64-byte boundary.
730 register CORE_ADDR sp;
735 /* Space for "arguments"; the RP goes in here. */
736 sp = read_register (SP_REGNUM) + 48;
737 int_buffer = read_register (RP_REGNUM) | 0x3;
738 write_memory (sp - 20, (char *)&int_buffer, 4);
740 int_buffer = read_register (FP_REGNUM);
741 write_memory (sp, (char *)&int_buffer, 4);
743 write_register (FP_REGNUM, sp);
747 for (regnum = 1; regnum < 32; regnum++)
748 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
749 sp = push_word (sp, read_register (regnum));
753 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
755 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
756 sp = push_bytes (sp, (char *)&freg_buffer, 8);
758 sp = push_word (sp, read_register (IPSW_REGNUM));
759 sp = push_word (sp, read_register (SAR_REGNUM));
760 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
761 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
762 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
763 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
764 write_register (SP_REGNUM, sp);
767 find_dummy_frame_regs (frame, frame_saved_regs)
768 struct frame_info *frame;
769 struct frame_saved_regs *frame_saved_regs;
771 CORE_ADDR fp = frame->frame;
774 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
775 frame_saved_regs->regs[FP_REGNUM] = fp;
776 frame_saved_regs->regs[1] = fp + 8;
778 for (fp += 12, i = 3; i < 32; i++)
782 frame_saved_regs->regs[i] = fp;
788 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
789 frame_saved_regs->regs[i] = fp;
791 frame_saved_regs->regs[IPSW_REGNUM] = fp;
792 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
793 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
794 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
795 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
796 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
802 register FRAME frame = get_current_frame ();
803 register CORE_ADDR fp;
805 struct frame_saved_regs fsr;
806 struct frame_info *fi;
809 fi = get_frame_info (frame);
811 get_frame_saved_regs (fi, &fsr);
813 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
814 restore_pc_queue (&fsr);
816 for (regnum = 31; regnum > 0; regnum--)
817 if (fsr.regs[regnum])
818 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
820 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
821 if (fsr.regs[regnum])
823 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
824 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
827 if (fsr.regs[IPSW_REGNUM])
828 write_register (IPSW_REGNUM,
829 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
831 if (fsr.regs[SAR_REGNUM])
832 write_register (SAR_REGNUM,
833 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
835 /* If the PC was explicitly saved, then just restore it. */
836 if (fsr.regs[PCOQ_TAIL_REGNUM])
837 write_register (PCOQ_TAIL_REGNUM,
838 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
840 /* Else use the value in %rp to set the new PC. */
842 target_write_pc (read_register (RP_REGNUM));
844 write_register (FP_REGNUM, read_memory_integer (fp, 4));
846 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
847 write_register (SP_REGNUM, fp - 48);
849 write_register (SP_REGNUM, fp);
851 flush_cached_frames ();
852 set_current_frame (create_new_frame (read_register (FP_REGNUM),
857 * After returning to a dummy on the stack, restore the instruction
858 * queue space registers. */
861 restore_pc_queue (fsr)
862 struct frame_saved_regs *fsr;
864 CORE_ADDR pc = read_pc ();
865 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
870 /* Advance past break instruction in the call dummy. */
871 write_register (PCOQ_HEAD_REGNUM, pc + 4);
872 write_register (PCOQ_TAIL_REGNUM, pc + 8);
875 * HPUX doesn't let us set the space registers or the space
876 * registers of the PC queue through ptrace. Boo, hiss.
877 * Conveniently, the call dummy has this sequence of instructions
882 * So, load up the registers and single step until we are in the
886 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
887 write_register (22, new_pc);
889 for (insn_count = 0; insn_count < 3; insn_count++)
891 /* FIXME: What if the inferior gets a signal right now? Want to
892 merge this into wait_for_inferior (as a special kind of
893 watchpoint? By setting a breakpoint at the end? Is there
894 any other choice? Is there *any* way to do this stuff with
895 ptrace() or some equivalent?). */
897 target_wait(inferior_pid, &w);
901 stop_signal = WTERMSIG (w);
902 terminal_ours_for_output ();
903 printf_unfiltered ("\nProgram terminated with signal %d, %s\n",
904 stop_signal, safe_strsignal (stop_signal));
905 gdb_flush (gdb_stdout);
909 target_terminal_ours ();
910 fetch_inferior_registers (-1);
915 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
920 CORE_ADDR struct_addr;
922 /* array of arguments' offsets */
923 int *offset = (int *)alloca(nargs * sizeof (int));
927 for (i = 0; i < nargs; i++)
929 /* Coerce chars to int & float to double if necessary */
930 args[i] = value_arg_coerce (args[i]);
932 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
934 /* value must go at proper alignment. Assume alignment is a
936 alignment = hppa_alignof (VALUE_TYPE (args[i]));
938 cum = (cum + alignment) & -alignment;
941 sp += max ((cum + 7) & -8, 16);
943 for (i = 0; i < nargs; i++)
944 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
945 TYPE_LENGTH (VALUE_TYPE (args[i])));
948 write_register (28, struct_addr);
953 * Insert the specified number of args and function address
954 * into a call sequence of the above form stored at DUMMYNAME.
956 * On the hppa we need to call the stack dummy through $$dyncall.
957 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
958 * real_pc, which is the location where gdb should start up the
959 * inferior to do the function call.
963 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
972 CORE_ADDR dyncall_addr, sr4export_addr;
973 struct minimal_symbol *msymbol;
974 int flags = read_register (FLAGS_REGNUM);
976 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
978 error ("Can't find an address for $$dyncall trampoline");
980 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
982 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
984 error ("Can't find an address for _sr4export trampoline");
986 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
988 store_unsigned_integer
989 (&dummy[9*REGISTER_SIZE],
991 deposit_21 (fun >> 11,
992 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
994 store_unsigned_integer
995 (&dummy[10*REGISTER_SIZE],
997 deposit_14 (fun & MASK_11,
998 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1000 store_unsigned_integer
1001 (&dummy[12*REGISTER_SIZE],
1003 deposit_21 (sr4export_addr >> 11,
1004 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1006 store_unsigned_integer
1007 (&dummy[13*REGISTER_SIZE],
1009 deposit_14 (sr4export_addr & MASK_11,
1010 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1013 write_register (22, pc);
1015 /* If we are in a syscall, then we should call the stack dummy
1016 directly. $$dyncall is not needed as the kernel sets up the
1017 space id registers properly based on the value in %r31. In
1018 fact calling $$dyncall will not work because the value in %r22
1019 will be clobbered on the syscall exit path. */
1023 return dyncall_addr;
1027 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1032 int flags = read_register (FLAGS_REGNUM);
1035 return read_register (31) & ~0x3;
1036 return read_register (PC_REGNUM) & ~0x3;
1039 /* Write out the PC. If currently in a syscall, then also write the new
1040 PC value into %r31. */
1045 int flags = read_register (FLAGS_REGNUM);
1047 /* If in a syscall, then set %r31. Also make sure to get the
1048 privilege bits set correctly. */
1050 write_register (31, (long) (v | 0x3));
1052 write_register (PC_REGNUM, (long) v);
1053 write_register (NPC_REGNUM, (long) v + 4);
1056 /* return the alignment of a type in bytes. Structures have the maximum
1057 alignment required by their fields. */
1063 int max_align, align, i;
1064 switch (TYPE_CODE (arg))
1069 return TYPE_LENGTH (arg);
1070 case TYPE_CODE_ARRAY:
1071 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1072 case TYPE_CODE_STRUCT:
1073 case TYPE_CODE_UNION:
1075 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1077 /* Bit fields have no real alignment. */
1078 if (!TYPE_FIELD_BITPOS (arg, i))
1080 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1081 max_align = max (max_align, align);
1090 /* Print the register regnum, or all registers if regnum is -1 */
1092 pa_do_registers_info (regnum, fpregs)
1096 char raw_regs [REGISTER_BYTES];
1099 for (i = 0; i < NUM_REGS; i++)
1100 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1102 pa_print_registers (raw_regs, regnum, fpregs);
1103 else if (regnum < FP0_REGNUM)
1104 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1105 REGISTER_BYTE (regnum)));
1107 pa_print_fp_reg (regnum);
1110 pa_print_registers (raw_regs, regnum, fpregs)
1117 for (i = 0; i < 18; i++)
1118 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1120 *(int *)(raw_regs + REGISTER_BYTE (i)),
1122 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1124 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1126 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1129 for (i = 72; i < NUM_REGS; i++)
1130 pa_print_fp_reg (i);
1136 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1137 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1139 /* Get the data in raw format. */
1140 read_relative_register_raw_bytes (i, raw_buffer);
1142 /* Convert raw data to virtual format if necessary. */
1143 #ifdef REGISTER_CONVERTIBLE
1144 if (REGISTER_CONVERTIBLE (i))
1146 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1147 raw_buffer, virtual_buffer);
1151 memcpy (virtual_buffer, raw_buffer,
1152 REGISTER_VIRTUAL_SIZE (i));
1154 fputs_filtered (reg_names[i], gdb_stdout);
1155 print_spaces_filtered (15 - strlen (reg_names[i]), gdb_stdout);
1157 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1158 1, 0, Val_pretty_default);
1159 printf_filtered ("\n");
1162 /* Function calls that pass into a new compilation unit must pass through a
1163 small piece of code that does long format (`external' in HPPA parlance)
1164 jumps. We figure out where the trampoline is going to end up, and return
1165 the PC of the final destination. If we aren't in a trampoline, we just
1168 For computed calls, we just extract the new PC from r22. */
1171 skip_trampoline_code (pc, name)
1176 static CORE_ADDR dyncall = 0;
1177 struct minimal_symbol *msym;
1179 /* FIXME XXX - dyncall must be initialized whenever we get a new exec file */
1183 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1185 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1191 return (CORE_ADDR)(read_register (22) & ~0x3);
1193 inst0 = read_memory_integer (pc, 4);
1194 inst1 = read_memory_integer (pc+4, 4);
1196 if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
1197 && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
1198 pc = extract_21 (inst0) + extract_17 (inst1);
1200 pc = (CORE_ADDR)NULL;
1205 /* Advance PC across any function entry prologue instructions
1206 to reach some "real" code. */
1208 /* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
1209 for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
1219 status = target_read_memory (pc, buf, 4);
1220 inst = extract_unsigned_integer (buf, 4);
1224 if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */
1226 if (read_memory_integer (pc + 4, 4) == 0x8030241) /* copy r3,r1 */
1228 else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68710000) /* stw r1,(r3) */
1231 else if (read_memory_integer (pc, 4) == 0x8030241) /* copy r3,r1 */
1233 else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68710000) /* stw r1,(r3) */
1239 #ifdef MAINTENANCE_CMDS
1242 unwind_command (exp, from_tty)
1250 struct unwind_table_entry *u;
1253 /* If we have an expression, evaluate it and use it as the address. */
1255 if (exp != 0 && *exp != 0)
1256 address = parse_and_eval_address (exp);
1260 xxx.u = find_unwind_entry (address);
1264 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
1268 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
1271 #endif /* MAINTENANCE_CMDS */
1274 _initialize_hppa_tdep ()
1276 #ifdef MAINTENANCE_CMDS
1277 add_cmd ("unwind", class_maintenance, unwind_command,
1278 "Print unwind table entry at given address.",
1279 &maintenanceprintlist);
1280 #endif /* MAINTENANCE_CMDS */