1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "gdb_string.h"
36 /* Prototypes for exported functions. */
38 void _initialize_values PARAMS ((void));
40 /* Prototypes for local functions. */
42 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
45 static void show_values PARAMS ((char *, int));
47 static void show_convenience PARAMS ((char *, int));
49 static int vb_match PARAMS ((struct type *, int, struct type *));
51 /* The value-history records all the values printed
52 by print commands during this session. Each chunk
53 records 60 consecutive values. The first chunk on
54 the chain records the most recent values.
55 The total number of values is in value_history_count. */
57 #define VALUE_HISTORY_CHUNK 60
59 struct value_history_chunk
61 struct value_history_chunk *next;
62 value_ptr values[VALUE_HISTORY_CHUNK];
65 /* Chain of chunks now in use. */
67 static struct value_history_chunk *value_history_chain;
69 static int value_history_count; /* Abs number of last entry stored */
71 /* List of all value objects currently allocated
72 (except for those released by calls to release_value)
73 This is so they can be freed after each command. */
75 static value_ptr all_values;
77 /* Allocate a value that has the correct length for type TYPE. */
83 register value_ptr val;
84 struct type *atype = check_typedef (type);
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 VALUE_NEXT (val) = all_values;
89 VALUE_TYPE (val) = type;
90 VALUE_ENCLOSING_TYPE (val) = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME (val) = 0;
94 VALUE_OFFSET (val) = 0;
95 VALUE_BITPOS (val) = 0;
96 VALUE_BITSIZE (val) = 0;
97 VALUE_REGNO (val) = -1;
99 VALUE_OPTIMIZED_OUT (val) = 0;
100 VALUE_BFD_SECTION (val) = NULL;
101 VALUE_EMBEDDED_OFFSET (val) = 0;
102 VALUE_POINTED_TO_OFFSET (val) = 0;
107 /* Allocate a value that has the correct length
108 for COUNT repetitions type TYPE. */
111 allocate_repeat_value (type, count)
115 int low_bound = current_language->string_lower_bound; /* ??? */
116 /* FIXME-type-allocation: need a way to free this type when we are
118 struct type *range_type
119 = create_range_type ((struct type *) NULL, builtin_type_int,
120 low_bound, count + low_bound - 1);
121 /* FIXME-type-allocation: need a way to free this type when we are
123 return allocate_value (create_array_type ((struct type *) NULL,
127 /* Return a mark in the value chain. All values allocated after the
128 mark is obtained (except for those released) are subject to being freed
129 if a subsequent value_free_to_mark is passed the mark. */
136 /* Free all values allocated since MARK was obtained by value_mark
137 (except for those released). */
139 value_free_to_mark (mark)
144 for (val = all_values; val && val != mark; val = next)
146 next = VALUE_NEXT (val);
152 /* Free all the values that have been allocated (except for those released).
153 Called after each command, successful or not. */
158 register value_ptr val, next;
160 for (val = all_values; val; val = next)
162 next = VALUE_NEXT (val);
169 /* Remove VAL from the chain all_values
170 so it will not be freed automatically. */
174 register value_ptr val;
176 register value_ptr v;
178 if (all_values == val)
180 all_values = val->next;
184 for (v = all_values; v; v = v->next)
194 /* Release all values up to mark */
196 value_release_to_mark (mark)
201 for (val = next = all_values; next; next = VALUE_NEXT (next))
202 if (VALUE_NEXT (next) == mark)
204 all_values = VALUE_NEXT (next);
205 VALUE_NEXT (next) = 0;
212 /* Return a copy of the value ARG.
213 It contains the same contents, for same memory address,
214 but it's a different block of storage. */
220 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
221 register value_ptr val = allocate_value (encl_type);
222 VALUE_TYPE (val) = VALUE_TYPE (arg);
223 VALUE_LVAL (val) = VALUE_LVAL (arg);
224 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
225 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
226 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
227 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
228 VALUE_FRAME (val) = VALUE_FRAME (arg);
229 VALUE_REGNO (val) = VALUE_REGNO (arg);
230 VALUE_LAZY (val) = VALUE_LAZY (arg);
231 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
232 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
233 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
234 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
235 val->modifiable = arg->modifiable;
236 if (!VALUE_LAZY (val))
238 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
239 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
245 /* Access to the value history. */
247 /* Record a new value in the value history.
248 Returns the absolute history index of the entry.
249 Result of -1 indicates the value was not saved; otherwise it is the
250 value history index of this new item. */
253 record_latest_value (val)
258 /* We don't want this value to have anything to do with the inferior anymore.
259 In particular, "set $1 = 50" should not affect the variable from which
260 the value was taken, and fast watchpoints should be able to assume that
261 a value on the value history never changes. */
262 if (VALUE_LAZY (val))
263 value_fetch_lazy (val);
264 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
265 from. This is a bit dubious, because then *&$1 does not just return $1
266 but the current contents of that location. c'est la vie... */
270 /* Here we treat value_history_count as origin-zero
271 and applying to the value being stored now. */
273 i = value_history_count % VALUE_HISTORY_CHUNK;
276 register struct value_history_chunk *new
277 = (struct value_history_chunk *)
278 xmalloc (sizeof (struct value_history_chunk));
279 memset (new->values, 0, sizeof new->values);
280 new->next = value_history_chain;
281 value_history_chain = new;
284 value_history_chain->values[i] = val;
286 /* Now we regard value_history_count as origin-one
287 and applying to the value just stored. */
289 return ++value_history_count;
292 /* Return a copy of the value in the history with sequence number NUM. */
295 access_value_history (num)
298 register struct value_history_chunk *chunk;
300 register int absnum = num;
303 absnum += value_history_count;
308 error ("The history is empty.");
310 error ("There is only one value in the history.");
312 error ("History does not go back to $$%d.", -num);
314 if (absnum > value_history_count)
315 error ("History has not yet reached $%d.", absnum);
319 /* Now absnum is always absolute and origin zero. */
321 chunk = value_history_chain;
322 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
326 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
329 /* Clear the value history entirely.
330 Must be done when new symbol tables are loaded,
331 because the type pointers become invalid. */
334 clear_value_history ()
336 register struct value_history_chunk *next;
338 register value_ptr val;
340 while (value_history_chain)
342 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
343 if ((val = value_history_chain->values[i]) != NULL)
345 next = value_history_chain->next;
346 free ((PTR) value_history_chain);
347 value_history_chain = next;
349 value_history_count = 0;
353 show_values (num_exp, from_tty)
358 register value_ptr val;
363 /* "info history +" should print from the stored position.
364 "info history <exp>" should print around value number <exp>. */
365 if (num_exp[0] != '+' || num_exp[1] != '\0')
366 num = parse_and_eval_address (num_exp) - 5;
370 /* "info history" means print the last 10 values. */
371 num = value_history_count - 9;
377 for (i = num; i < num + 10 && i <= value_history_count; i++)
379 val = access_value_history (i);
380 printf_filtered ("$%d = ", i);
381 value_print (val, gdb_stdout, 0, Val_pretty_default);
382 printf_filtered ("\n");
385 /* The next "info history +" should start after what we just printed. */
388 /* Hitting just return after this command should do the same thing as
389 "info history +". If num_exp is null, this is unnecessary, since
390 "info history +" is not useful after "info history". */
391 if (from_tty && num_exp)
398 /* Internal variables. These are variables within the debugger
399 that hold values assigned by debugger commands.
400 The user refers to them with a '$' prefix
401 that does not appear in the variable names stored internally. */
403 static struct internalvar *internalvars;
405 /* Look up an internal variable with name NAME. NAME should not
406 normally include a dollar sign.
408 If the specified internal variable does not exist,
409 one is created, with a void value. */
412 lookup_internalvar (name)
415 register struct internalvar *var;
417 for (var = internalvars; var; var = var->next)
418 if (STREQ (var->name, name))
421 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
422 var->name = concat (name, NULL);
423 var->value = allocate_value (builtin_type_void);
424 release_value (var->value);
425 var->next = internalvars;
431 value_of_internalvar (var)
432 struct internalvar *var;
434 register value_ptr val;
436 #ifdef IS_TRAPPED_INTERNALVAR
437 if (IS_TRAPPED_INTERNALVAR (var->name))
438 return VALUE_OF_TRAPPED_INTERNALVAR (var);
441 val = value_copy (var->value);
442 if (VALUE_LAZY (val))
443 value_fetch_lazy (val);
444 VALUE_LVAL (val) = lval_internalvar;
445 VALUE_INTERNALVAR (val) = var;
450 set_internalvar_component (var, offset, bitpos, bitsize, newval)
451 struct internalvar *var;
452 int offset, bitpos, bitsize;
455 register char *addr = VALUE_CONTENTS (var->value) + offset;
457 #ifdef IS_TRAPPED_INTERNALVAR
458 if (IS_TRAPPED_INTERNALVAR (var->name))
459 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
463 modify_field (addr, value_as_long (newval),
466 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
470 set_internalvar (var, val)
471 struct internalvar *var;
476 #ifdef IS_TRAPPED_INTERNALVAR
477 if (IS_TRAPPED_INTERNALVAR (var->name))
478 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
481 newval = value_copy (val);
482 newval->modifiable = 1;
484 /* Force the value to be fetched from the target now, to avoid problems
485 later when this internalvar is referenced and the target is gone or
487 if (VALUE_LAZY (newval))
488 value_fetch_lazy (newval);
490 /* Begin code which must not call error(). If var->value points to
491 something free'd, an error() obviously leaves a dangling pointer.
492 But we also get a danling pointer if var->value points to
493 something in the value chain (i.e., before release_value is
494 called), because after the error free_all_values will get called before
496 free ((PTR) var->value);
498 release_value (newval);
499 /* End code which must not call error(). */
503 internalvar_name (var)
504 struct internalvar *var;
509 /* Free all internalvars. Done when new symtabs are loaded,
510 because that makes the values invalid. */
513 clear_internalvars ()
515 register struct internalvar *var;
520 internalvars = var->next;
521 free ((PTR) var->name);
522 free ((PTR) var->value);
528 show_convenience (ignore, from_tty)
532 register struct internalvar *var;
535 for (var = internalvars; var; var = var->next)
537 #ifdef IS_TRAPPED_INTERNALVAR
538 if (IS_TRAPPED_INTERNALVAR (var->name))
545 printf_filtered ("$%s = ", var->name);
546 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
547 printf_filtered ("\n");
550 printf_unfiltered ("No debugger convenience variables now defined.\n\
551 Convenience variables have names starting with \"$\";\n\
552 use \"set\" as in \"set $foo = 5\" to define them.\n");
555 /* Extract a value as a C number (either long or double).
556 Knows how to convert fixed values to double, or
557 floating values to long.
558 Does not deallocate the value. */
562 register value_ptr val;
564 /* This coerces arrays and functions, which is necessary (e.g.
565 in disassemble_command). It also dereferences references, which
566 I suspect is the most logical thing to do. */
568 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
572 value_as_double (val)
573 register value_ptr val;
578 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
580 error ("Invalid floating value found in program.");
583 /* Extract a value as a C pointer.
584 Does not deallocate the value. */
586 value_as_pointer (val)
589 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
590 whether we want this to be true eventually. */
592 /* ADDR_BITS_REMOVE is wrong if we are being called for a
593 non-address (e.g. argument to "signal", "info break", etc.), or
594 for pointers to char, in which the low bits *are* significant. */
595 return ADDR_BITS_REMOVE (value_as_long (val));
597 return value_as_long (val);
601 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
602 as a long, or as a double, assuming the raw data is described
603 by type TYPE. Knows how to convert different sizes of values
604 and can convert between fixed and floating point. We don't assume
605 any alignment for the raw data. Return value is in host byte order.
607 If you want functions and arrays to be coerced to pointers, and
608 references to be dereferenced, call value_as_long() instead.
610 C++: It is assumed that the front-end has taken care of
611 all matters concerning pointers to members. A pointer
612 to member which reaches here is considered to be equivalent
613 to an INT (or some size). After all, it is only an offset. */
616 unpack_long (type, valaddr)
620 register enum type_code code = TYPE_CODE (type);
621 register int len = TYPE_LENGTH (type);
622 register int nosign = TYPE_UNSIGNED (type);
624 if (current_language->la_language == language_scm
625 && is_scmvalue_type (type))
626 return scm_unpack (type, valaddr, TYPE_CODE_INT);
630 case TYPE_CODE_TYPEDEF:
631 return unpack_long (check_typedef (type), valaddr);
636 case TYPE_CODE_RANGE:
638 return extract_unsigned_integer (valaddr, len);
640 return extract_signed_integer (valaddr, len);
643 return extract_floating (valaddr, len);
647 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
648 whether we want this to be true eventually. */
649 if (GDB_TARGET_IS_D10V
651 return D10V_MAKE_DADDR (extract_address (valaddr, len));
652 return extract_address (valaddr, len);
654 case TYPE_CODE_MEMBER:
655 error ("not implemented: member types in unpack_long");
658 error ("Value can't be converted to integer.");
660 return 0; /* Placate lint. */
663 /* Return a double value from the specified type and address.
664 INVP points to an int which is set to 0 for valid value,
665 1 for invalid value (bad float format). In either case,
666 the returned double is OK to use. Argument is in target
667 format, result is in host format. */
670 unpack_double (type, valaddr, invp)
679 *invp = 0; /* Assume valid. */
680 CHECK_TYPEDEF (type);
681 code = TYPE_CODE (type);
682 len = TYPE_LENGTH (type);
683 nosign = TYPE_UNSIGNED (type);
684 if (code == TYPE_CODE_FLT)
687 if (INVALID_FLOAT (valaddr, len))
690 return 1.234567891011121314;
693 return extract_floating (valaddr, len);
697 /* Unsigned -- be sure we compensate for signed LONGEST. */
698 #if !defined (_MSC_VER) || (_MSC_VER > 900)
699 return (ULONGEST) unpack_long (type, valaddr);
701 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
702 return (LONGEST) unpack_long (type, valaddr);
703 #endif /* _MSC_VER */
707 /* Signed -- we are OK with unpack_long. */
708 return unpack_long (type, valaddr);
712 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
713 as a CORE_ADDR, assuming the raw data is described by type TYPE.
714 We don't assume any alignment for the raw data. Return value is in
717 If you want functions and arrays to be coerced to pointers, and
718 references to be dereferenced, call value_as_pointer() instead.
720 C++: It is assumed that the front-end has taken care of
721 all matters concerning pointers to members. A pointer
722 to member which reaches here is considered to be equivalent
723 to an INT (or some size). After all, it is only an offset. */
726 unpack_pointer (type, valaddr)
730 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
731 whether we want this to be true eventually. */
732 return unpack_long (type, valaddr);
735 /* Get the value of the FIELDN'th field (which must be static) of TYPE. */
738 value_static_field (type, fieldno)
744 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
746 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
751 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
752 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
755 /* With some compilers, e.g. HP aCC, static data members are reported
756 as non-debuggable symbols */
757 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
762 addr = SYMBOL_VALUE_ADDRESS (msym);
763 sect = SYMBOL_BFD_SECTION (msym);
768 addr = SYMBOL_VALUE_ADDRESS (sym);
769 sect = SYMBOL_BFD_SECTION (sym);
771 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
773 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
776 /* Given a value ARG1 (offset by OFFSET bytes)
777 of a struct or union type ARG_TYPE,
778 extract and return the value of one of its (non-static) fields.
779 FIELDNO says which field. */
782 value_primitive_field (arg1, offset, fieldno, arg_type)
783 register value_ptr arg1;
785 register int fieldno;
786 register struct type *arg_type;
788 register value_ptr v;
789 register struct type *type;
791 CHECK_TYPEDEF (arg_type);
792 type = TYPE_FIELD_TYPE (arg_type, fieldno);
794 /* Handle packed fields */
796 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
798 v = value_from_longest (type,
799 unpack_field_as_long (arg_type,
800 VALUE_CONTENTS (arg1)
803 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
804 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
805 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
806 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
808 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
810 /* This field is actually a base subobject, so preserve the
811 entire object's contents for later references to virtual
813 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
814 VALUE_TYPE (v) = arg_type;
815 if (VALUE_LAZY (arg1))
818 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
819 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
820 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
821 VALUE_EMBEDDED_OFFSET (v)
823 VALUE_EMBEDDED_OFFSET (arg1) +
824 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
828 /* Plain old data member */
829 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
830 v = allocate_value (type);
831 if (VALUE_LAZY (arg1))
834 memcpy (VALUE_CONTENTS_RAW (v),
835 VALUE_CONTENTS_RAW (arg1) + offset,
837 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
839 VALUE_LVAL (v) = VALUE_LVAL (arg1);
840 if (VALUE_LVAL (arg1) == lval_internalvar)
841 VALUE_LVAL (v) = lval_internalvar_component;
842 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
843 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
844 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
848 /* Given a value ARG1 of a struct or union type,
849 extract and return the value of one of its (non-static) fields.
850 FIELDNO says which field. */
853 value_field (arg1, fieldno)
854 register value_ptr arg1;
855 register int fieldno;
857 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
860 /* Return a non-virtual function as a value.
861 F is the list of member functions which contains the desired method.
862 J is an index into F which provides the desired method. */
865 value_fn_field (arg1p, f, j, type, offset)
872 register value_ptr v;
873 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
876 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
877 0, VAR_NAMESPACE, 0, NULL);
881 error ("Internal error: could not find physical method named %s",
882 TYPE_FN_FIELD_PHYSNAME (f, j));
885 v = allocate_value (ftype);
886 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
887 VALUE_TYPE (v) = ftype;
891 if (type != VALUE_TYPE (*arg1p))
892 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
893 value_addr (*arg1p)));
895 /* Move the `this' pointer according to the offset.
896 VALUE_OFFSET (*arg1p) += offset;
903 /* Return a virtual function as a value.
904 ARG1 is the object which provides the virtual function
905 table pointer. *ARG1P is side-effected in calling this function.
906 F is the list of member functions which contains the desired virtual
908 J is an index into F which provides the desired virtual function.
910 TYPE is the type in which F is located. */
912 value_virtual_fn_field (arg1p, f, j, type, offset)
919 value_ptr arg1 = *arg1p;
920 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
922 if (TYPE_HAS_VTABLE (type))
924 /* Deal with HP/Taligent runtime model for virtual functions */
926 value_ptr argp; /* arg1 cast to base */
927 CORE_ADDR coreptr; /* pointer to target address */
928 int class_index; /* which class segment pointer to use */
929 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
931 argp = value_cast (type, *arg1p);
933 if (VALUE_ADDRESS (argp) == 0)
934 error ("Address of object is null; object may not have been created.");
936 /* pai: FIXME -- 32x64 possible problem? */
937 /* First word (4 bytes) in object layout is the vtable pointer */
938 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
939 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
942 error ("Virtual table pointer is null for object; object may not have been created.");
945 * FIXME: The code here currently handles only
946 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
947 * is introduced, the condition for the "if" below will have to
948 * be changed to be a test for the RRBC case. */
952 /* Non-RRBC case; the virtual function pointers are stored at fixed
953 * offsets in the virtual table. */
955 /* Retrieve the offset in the virtual table from the debug
956 * info. The offset of the vfunc's entry is in words from
957 * the beginning of the vtable; but first we have to adjust
958 * by HP_ACC_VFUNC_START to account for other entries */
960 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
961 * which case the multiplier should be 8 and values should be long */
962 vp = value_at (builtin_type_int,
963 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
965 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
966 /* coreptr now contains the address of the virtual function */
967 /* (Actually, it contains the pointer to the plabel for the function. */
971 /* RRBC case; the virtual function pointers are found by double
972 * indirection through the class segment tables. */
974 /* Choose class segment depending on type we were passed */
975 class_index = class_index_in_primary_list (type);
977 /* Find class segment pointer. These are in the vtable slots after
978 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
979 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
980 * the multiplier below has to be 8 and value should be long. */
981 vp = value_at (builtin_type_int,
982 coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
983 /* Indirect once more, offset by function index */
984 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
985 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
986 vp = value_at (builtin_type_int, coreptr, NULL);
987 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
989 /* coreptr now contains the address of the virtual function */
990 /* (Actually, it contains the pointer to the plabel for the function.) */
995 error ("Address of virtual function is null; error in virtual table?");
997 /* Wrap this addr in a value and return pointer */
998 vp = allocate_value (ftype);
999 VALUE_TYPE (vp) = ftype;
1000 VALUE_ADDRESS (vp) = coreptr;
1002 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
1006 { /* Not using HP/Taligent runtime conventions; so try to
1007 * use g++ conventions for virtual table */
1009 struct type *entry_type;
1010 /* First, get the virtual function table pointer. That comes
1011 with a strange type, so cast it to type `pointer to long' (which
1012 should serve just fine as a function type). Then, index into
1013 the table, and convert final value to appropriate function type. */
1014 value_ptr entry, vfn, vtbl;
1015 value_ptr vi = value_from_longest (builtin_type_int,
1016 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
1017 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
1018 struct type *context;
1019 if (fcontext == NULL)
1020 /* We don't have an fcontext (e.g. the program was compiled with
1021 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1022 This won't work right for multiple inheritance, but at least we
1023 should do as well as GDB 3.x did. */
1024 fcontext = TYPE_VPTR_BASETYPE (type);
1025 context = lookup_pointer_type (fcontext);
1026 /* Now context is a pointer to the basetype containing the vtbl. */
1027 if (TYPE_TARGET_TYPE (context) != type1)
1029 value_ptr tmp = value_cast (context, value_addr (arg1));
1030 VALUE_POINTED_TO_OFFSET (tmp) = 0;
1031 arg1 = value_ind (tmp);
1032 type1 = check_typedef (VALUE_TYPE (arg1));
1036 /* Now context is the basetype containing the vtbl. */
1038 /* This type may have been defined before its virtual function table
1039 was. If so, fill in the virtual function table entry for the
1041 if (TYPE_VPTR_FIELDNO (context) < 0)
1042 fill_in_vptr_fieldno (context);
1044 /* The virtual function table is now an array of structures
1045 which have the form { int16 offset, delta; void *pfn; }. */
1046 vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
1047 TYPE_VPTR_BASETYPE (context));
1049 /* With older versions of g++, the vtbl field pointed to an array
1050 of structures. Nowadays it points directly to the structure. */
1051 if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
1052 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
1054 /* Handle the case where the vtbl field points to an
1055 array of structures. */
1056 vtbl = value_ind (vtbl);
1058 /* Index into the virtual function table. This is hard-coded because
1059 looking up a field is not cheap, and it may be important to save
1060 time, e.g. if the user has set a conditional breakpoint calling
1061 a virtual function. */
1062 entry = value_subscript (vtbl, vi);
1066 /* Handle the case where the vtbl field points directly to a structure. */
1067 vtbl = value_add (vtbl, vi);
1068 entry = value_ind (vtbl);
1071 entry_type = check_typedef (VALUE_TYPE (entry));
1073 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
1075 /* Move the `this' pointer according to the virtual function table. */
1076 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
1078 if (!VALUE_LAZY (arg1))
1080 VALUE_LAZY (arg1) = 1;
1081 value_fetch_lazy (arg1);
1084 vfn = value_field (entry, 2);
1086 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
1089 error ("I'm confused: virtual function table has bad type");
1090 /* Reinstantiate the function pointer with the correct type. */
1091 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1098 /* ARG is a pointer to an object we know to be at least
1099 a DTYPE. BTYPE is the most derived basetype that has
1100 already been searched (and need not be searched again).
1101 After looking at the vtables between BTYPE and DTYPE,
1102 return the most derived type we find. The caller must
1103 be satisfied when the return value == DTYPE.
1105 FIXME-tiemann: should work with dossier entries as well. */
1108 value_headof (in_arg, btype, dtype)
1110 struct type *btype, *dtype;
1112 /* First collect the vtables we must look at for this object. */
1113 /* FIXME-tiemann: right now, just look at top-most vtable. */
1114 value_ptr arg, vtbl, entry, best_entry = 0;
1116 int offset, best_offset = 0;
1118 CORE_ADDR pc_for_sym;
1119 char *demangled_name;
1120 struct minimal_symbol *msymbol;
1122 btype = TYPE_VPTR_BASETYPE (dtype);
1123 CHECK_TYPEDEF (btype);
1126 arg = value_cast (lookup_pointer_type (btype), arg);
1127 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
1129 /* Check that VTBL looks like it points to a virtual function table. */
1130 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
1132 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
1133 || !VTBL_PREFIX_P (demangled_name))
1135 /* If we expected to find a vtable, but did not, let the user
1136 know that we aren't happy, but don't throw an error.
1137 FIXME: there has to be a better way to do this. */
1138 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
1139 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1140 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1141 VALUE_TYPE (in_arg) = error_type;
1145 /* Now search through the virtual function table. */
1146 entry = value_ind (vtbl);
1147 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
1148 for (i = 1; i <= nelems; i++)
1150 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1152 /* This won't work if we're using thunks. */
1153 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
1155 offset = longest_to_int (value_as_long (value_field (entry, 0)));
1156 /* If we use '<=' we can handle single inheritance
1157 * where all offsets are zero - just use the first entry found. */
1158 if (offset <= best_offset)
1160 best_offset = offset;
1164 /* Move the pointer according to BEST_ENTRY's offset, and figure
1165 out what type we should return as the new pointer. */
1166 if (best_entry == 0)
1168 /* An alternative method (which should no longer be necessary).
1169 * But we leave it in for future use, when we will hopefully
1170 * have optimizes the vtable to use thunks instead of offsets. */
1171 /* Use the name of vtable itself to extract a base type. */
1172 demangled_name += 4; /* Skip _vt$ prefix. */
1176 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1177 sym = find_pc_function (pc_for_sym);
1178 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
1179 *(strchr (demangled_name, ':')) = '\0';
1181 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1183 error ("could not find type declaration for `%s'", demangled_name);
1186 free (demangled_name);
1187 arg = value_add (value_cast (builtin_type_int, arg),
1188 value_field (best_entry, 0));
1192 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1196 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1197 function tables, probe ARG's tables (including the vtables
1198 of its baseclasses) to figure out the most derived type that ARG
1199 could actually be a pointer to. */
1202 value_from_vtable_info (arg, type)
1206 /* Take care of preliminaries. */
1207 if (TYPE_VPTR_FIELDNO (type) < 0)
1208 fill_in_vptr_fieldno (type);
1209 if (TYPE_VPTR_FIELDNO (type) < 0)
1212 return value_headof (arg, 0, type);
1215 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1216 pointer which is for the base class whose type is BASECLASS. */
1219 vb_match (type, index, basetype)
1222 struct type *basetype;
1224 struct type *fieldtype;
1225 char *name = TYPE_FIELD_NAME (type, index);
1226 char *field_class_name = NULL;
1230 /* gcc 2.4 uses _vb$. */
1231 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1232 field_class_name = name + 4;
1233 /* gcc 2.5 will use __vb_. */
1234 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1235 field_class_name = name + 5;
1237 if (field_class_name == NULL)
1238 /* This field is not a virtual base class pointer. */
1241 /* It's a virtual baseclass pointer, now we just need to find out whether
1242 it is for this baseclass. */
1243 fieldtype = TYPE_FIELD_TYPE (type, index);
1244 if (fieldtype == NULL
1245 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1246 /* "Can't happen". */
1249 /* What we check for is that either the types are equal (needed for
1250 nameless types) or have the same name. This is ugly, and a more
1251 elegant solution should be devised (which would probably just push
1252 the ugliness into symbol reading unless we change the stabs format). */
1253 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1256 if (TYPE_NAME (basetype) != NULL
1257 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1258 && STREQ (TYPE_NAME (basetype),
1259 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1264 /* Compute the offset of the baseclass which is
1265 the INDEXth baseclass of class TYPE,
1266 for value at VALADDR (in host) at ADDRESS (in target).
1267 The result is the offset of the baseclass value relative
1268 to (the address of)(ARG) + OFFSET.
1270 -1 is returned on error. */
1273 baseclass_offset (type, index, valaddr, address)
1279 struct type *basetype = TYPE_BASECLASS (type, index);
1281 if (BASETYPE_VIA_VIRTUAL (type, index))
1283 /* Must hunt for the pointer to this virtual baseclass. */
1284 register int i, len = TYPE_NFIELDS (type);
1285 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1287 /* First look for the virtual baseclass pointer
1289 for (i = n_baseclasses; i < len; i++)
1291 if (vb_match (type, i, basetype))
1294 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1295 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1297 return addr - (LONGEST) address;
1300 /* Not in the fields, so try looking through the baseclasses. */
1301 for (i = index + 1; i < n_baseclasses; i++)
1304 baseclass_offset (type, i, valaddr, address);
1312 /* Baseclass is easily computed. */
1313 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1316 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1319 Extracting bits depends on endianness of the machine. Compute the
1320 number of least significant bits to discard. For big endian machines,
1321 we compute the total number of bits in the anonymous object, subtract
1322 off the bit count from the MSB of the object to the MSB of the
1323 bitfield, then the size of the bitfield, which leaves the LSB discard
1324 count. For little endian machines, the discard count is simply the
1325 number of bits from the LSB of the anonymous object to the LSB of the
1328 If the field is signed, we also do sign extension. */
1331 unpack_field_as_long (type, valaddr, fieldno)
1338 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1339 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1341 struct type *field_type;
1343 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1344 field_type = TYPE_FIELD_TYPE (type, fieldno);
1345 CHECK_TYPEDEF (field_type);
1347 /* Extract bits. See comment above. */
1349 if (BITS_BIG_ENDIAN)
1350 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1352 lsbcount = (bitpos % 8);
1355 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1356 If the field is signed, and is negative, then sign extend. */
1358 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1360 valmask = (((ULONGEST) 1) << bitsize) - 1;
1362 if (!TYPE_UNSIGNED (field_type))
1364 if (val & (valmask ^ (valmask >> 1)))
1373 /* Modify the value of a bitfield. ADDR points to a block of memory in
1374 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1375 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1376 indicate which bits (in target bit order) comprise the bitfield. */
1379 modify_field (addr, fieldval, bitpos, bitsize)
1382 int bitpos, bitsize;
1386 /* If a negative fieldval fits in the field in question, chop
1387 off the sign extension bits. */
1388 if (bitsize < (8 * (int) sizeof (fieldval))
1389 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1390 fieldval = fieldval & ((1 << bitsize) - 1);
1392 /* Warn if value is too big to fit in the field in question. */
1393 if (bitsize < (8 * (int) sizeof (fieldval))
1394 && 0 != (fieldval & ~((1 << bitsize) - 1)))
1396 /* FIXME: would like to include fieldval in the message, but
1397 we don't have a sprintf_longest. */
1398 warning ("Value does not fit in %d bits.", bitsize);
1400 /* Truncate it, otherwise adjoining fields may be corrupted. */
1401 fieldval = fieldval & ((1 << bitsize) - 1);
1404 oword = extract_signed_integer (addr, sizeof oword);
1406 /* Shifting for bit field depends on endianness of the target machine. */
1407 if (BITS_BIG_ENDIAN)
1408 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1410 /* Mask out old value, while avoiding shifts >= size of oword */
1411 if (bitsize < 8 * (int) sizeof (oword))
1412 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
1414 oword &= ~((~(ULONGEST) 0) << bitpos);
1415 oword |= fieldval << bitpos;
1417 store_signed_integer (addr, sizeof oword, oword);
1420 /* Convert C numbers into newly allocated values */
1423 value_from_longest (type, num)
1425 register LONGEST num;
1427 register value_ptr val = allocate_value (type);
1428 register enum type_code code;
1431 code = TYPE_CODE (type);
1432 len = TYPE_LENGTH (type);
1436 case TYPE_CODE_TYPEDEF:
1437 type = check_typedef (type);
1440 case TYPE_CODE_CHAR:
1441 case TYPE_CODE_ENUM:
1442 case TYPE_CODE_BOOL:
1443 case TYPE_CODE_RANGE:
1444 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1449 /* This assumes that all pointers of a given length
1450 have the same form. */
1451 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1455 error ("Unexpected type (%d) encountered for integer constant.", code);
1460 /* Create a value for a string constant to be stored locally
1461 (not in the inferior's memory space, but in GDB memory).
1462 This is analogous to value_from_longest, which also does not
1463 use inferior memory. String shall NOT contain embedded nulls. */
1466 value_from_string (ptr)
1470 int len = strlen (ptr);
1471 int lowbound = current_language->string_lower_bound;
1472 struct type *rangetype =
1473 create_range_type ((struct type *) NULL,
1475 lowbound, len + lowbound - 1);
1476 struct type *stringtype =
1477 create_array_type ((struct type *) NULL,
1478 *current_language->string_char_type,
1481 val = allocate_value (stringtype);
1482 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1487 value_from_double (type, num)
1491 register value_ptr val = allocate_value (type);
1492 struct type *base_type = check_typedef (type);
1493 register enum type_code code = TYPE_CODE (base_type);
1494 register int len = TYPE_LENGTH (base_type);
1496 if (code == TYPE_CODE_FLT)
1498 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1501 error ("Unexpected type encountered for floating constant.");
1506 /* Deal with the value that is "about to be returned". */
1508 /* Return the value that a function returning now
1509 would be returning to its caller, assuming its type is VALTYPE.
1510 RETBUF is where we look for what ought to be the contents
1511 of the registers (in raw form). This is because it is often
1512 desirable to restore old values to those registers
1513 after saving the contents of interest, and then call
1514 this function using the saved values.
1515 struct_return is non-zero when the function in question is
1516 using the structure return conventions on the machine in question;
1517 0 when it is using the value returning conventions (this often
1518 means returning pointer to where structure is vs. returning value). */
1521 value_being_returned (valtype, retbuf, struct_return)
1522 register struct type *valtype;
1527 register value_ptr val;
1530 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1531 if (EXTRACT_STRUCT_VALUE_ADDRESS_P)
1534 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1536 error ("Function return value unknown");
1537 return value_at (valtype, addr, NULL);
1540 val = allocate_value (valtype);
1541 CHECK_TYPEDEF (valtype);
1542 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1547 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1548 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1549 and TYPE is the type (which is known to be struct, union or array).
1551 On most machines, the struct convention is used unless we are
1552 using gcc and the type is of a special size. */
1553 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1554 native compiler. GCC 2.3.3 was the last release that did it the
1555 old way. Since gcc2_compiled was not changed, we have no
1556 way to correctly win in all cases, so we just do the right thing
1557 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1558 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1559 would cause more chaos than dealing with some struct returns being
1563 generic_use_struct_convention (gcc_p, value_type)
1565 struct type *value_type;
1567 return !((gcc_p == 1)
1568 && (TYPE_LENGTH (value_type) == 1
1569 || TYPE_LENGTH (value_type) == 2
1570 || TYPE_LENGTH (value_type) == 4
1571 || TYPE_LENGTH (value_type) == 8));
1574 #ifndef USE_STRUCT_CONVENTION
1575 #define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1578 /* Some fundamental types (such as long double) are returned on the stack for
1579 certain architectures. This macro should return true for any type besides
1580 struct, union or array that gets returned on the stack. */
1582 #ifndef RETURN_VALUE_ON_STACK
1583 #define RETURN_VALUE_ON_STACK(TYPE) 0
1586 /* Return true if the function specified is using the structure returning
1587 convention on this machine to return arguments, or 0 if it is using
1588 the value returning convention. FUNCTION is the value representing
1589 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1590 is the type returned by the function. GCC_P is nonzero if compiled
1594 using_struct_return (function, funcaddr, value_type, gcc_p)
1597 struct type *value_type;
1601 register enum type_code code = TYPE_CODE (value_type);
1603 if (code == TYPE_CODE_ERROR)
1604 error ("Function return type unknown.");
1606 if (code == TYPE_CODE_STRUCT
1607 || code == TYPE_CODE_UNION
1608 || code == TYPE_CODE_ARRAY
1609 || RETURN_VALUE_ON_STACK (value_type))
1610 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1615 /* Store VAL so it will be returned if a function returns now.
1616 Does not verify that VAL's type matches what the current
1617 function wants to return. */
1620 set_return_value (val)
1623 struct type *type = check_typedef (VALUE_TYPE (val));
1624 register enum type_code code = TYPE_CODE (type);
1626 if (code == TYPE_CODE_ERROR)
1627 error ("Function return type unknown.");
1629 if (code == TYPE_CODE_STRUCT
1630 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1631 error ("GDB does not support specifying a struct or union return value.");
1633 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1637 _initialize_values ()
1639 add_cmd ("convenience", no_class, show_convenience,
1640 "Debugger convenience (\"$foo\") variables.\n\
1641 These variables are created when you assign them values;\n\
1642 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1643 A few convenience variables are given values automatically:\n\
1644 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1645 \"$__\" holds the contents of the last address examined with \"x\".",
1648 add_cmd ("values", no_class, show_values,
1649 "Elements of value history around item number IDX (or last ten).",