1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *elf_i386_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
38 static boolean create_got_section PARAMS((bfd *, struct bfd_link_info *));
39 static boolean elf_i386_create_dynamic_sections
40 PARAMS((bfd *, struct bfd_link_info *));
41 static boolean elf_i386_check_relocs
42 PARAMS ((bfd *, struct bfd_link_info *, asection *,
43 const Elf_Internal_Rela *));
44 static asection *elf_i386_gc_mark_hook
45 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
46 struct elf_link_hash_entry *, Elf_Internal_Sym *));
47 static boolean elf_i386_gc_sweep_hook
48 PARAMS ((bfd *, struct bfd_link_info *, asection *,
49 const Elf_Internal_Rela *));
50 static boolean elf_i386_adjust_dynamic_symbol
51 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
52 static boolean allocate_plt_and_got_and_discard_relocs
53 PARAMS ((struct elf_link_hash_entry *, PTR));
54 static boolean elf_i386_size_dynamic_sections
55 PARAMS ((bfd *, struct bfd_link_info *));
56 static boolean elf_i386_relocate_section
57 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
58 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
59 static boolean elf_i386_finish_dynamic_symbol
60 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
62 static boolean elf_i386_finish_dynamic_sections
63 PARAMS ((bfd *, struct bfd_link_info *));
64 static boolean elf_i386_fake_sections
65 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
66 static enum elf_reloc_type_class elf_i386_reloc_type_class PARAMS ((int));
67 static boolean elf_i386_grok_prstatus
68 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
69 static boolean elf_i386_grok_psinfo
70 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
72 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
76 static reloc_howto_type elf_howto_table[]=
78 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_386_NONE",
80 true, 0x00000000, 0x00000000, false),
81 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_386_32",
83 true, 0xffffffff, 0xffffffff, false),
84 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_386_PC32",
86 true, 0xffffffff, 0xffffffff, true),
87 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_386_GOT32",
89 true, 0xffffffff, 0xffffffff, false),
90 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
91 bfd_elf_generic_reloc, "R_386_PLT32",
92 true, 0xffffffff, 0xffffffff, true),
93 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
94 bfd_elf_generic_reloc, "R_386_COPY",
95 true, 0xffffffff, 0xffffffff, false),
96 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
98 true, 0xffffffff, 0xffffffff, false),
99 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
100 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
101 true, 0xffffffff, 0xffffffff, false),
102 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
103 bfd_elf_generic_reloc, "R_386_RELATIVE",
104 true, 0xffffffff, 0xffffffff, false),
105 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
106 bfd_elf_generic_reloc, "R_386_GOTOFF",
107 true, 0xffffffff, 0xffffffff, false),
108 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_386_GOTPC",
110 true, 0xffffffff, 0xffffffff, true),
112 /* We have a gap in the reloc numbers here.
113 R_386_standard counts the number up to this point, and
114 R_386_ext_offset is the value to subtract from a reloc type of
115 R_386_16 thru R_386_PC8 to form an index into this table. */
116 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
117 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
119 /* The remaining relocs are a GNU extension. */
120 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
121 bfd_elf_generic_reloc, "R_386_16",
122 true, 0xffff, 0xffff, false),
123 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
124 bfd_elf_generic_reloc, "R_386_PC16",
125 true, 0xffff, 0xffff, true),
126 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
127 bfd_elf_generic_reloc, "R_386_8",
128 true, 0xff, 0xff, false),
129 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
130 bfd_elf_generic_reloc, "R_386_PC8",
131 true, 0xff, 0xff, true),
134 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
135 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
137 /* GNU extension to record C++ vtable hierarchy. */
138 HOWTO (R_386_GNU_VTINHERIT, /* type */
140 2, /* size (0 = byte, 1 = short, 2 = long) */
142 false, /* pc_relative */
144 complain_overflow_dont, /* complain_on_overflow */
145 NULL, /* special_function */
146 "R_386_GNU_VTINHERIT", /* name */
147 false, /* partial_inplace */
152 /* GNU extension to record C++ vtable member usage. */
153 HOWTO (R_386_GNU_VTENTRY, /* type */
155 2, /* size (0 = byte, 1 = short, 2 = long) */
157 false, /* pc_relative */
159 complain_overflow_dont, /* complain_on_overflow */
160 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
161 "R_386_GNU_VTENTRY", /* name */
162 false, /* partial_inplace */
167 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
171 #ifdef DEBUG_GEN_RELOC
172 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
177 static reloc_howto_type *
178 elf_i386_reloc_type_lookup (abfd, code)
179 bfd *abfd ATTRIBUTE_UNUSED;
180 bfd_reloc_code_real_type code;
185 TRACE ("BFD_RELOC_NONE");
186 return &elf_howto_table[(unsigned int) R_386_NONE ];
189 TRACE ("BFD_RELOC_32");
190 return &elf_howto_table[(unsigned int) R_386_32 ];
193 TRACE ("BFD_RELOC_CTOR");
194 return &elf_howto_table[(unsigned int) R_386_32 ];
196 case BFD_RELOC_32_PCREL:
197 TRACE ("BFD_RELOC_PC32");
198 return &elf_howto_table[(unsigned int) R_386_PC32 ];
200 case BFD_RELOC_386_GOT32:
201 TRACE ("BFD_RELOC_386_GOT32");
202 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
204 case BFD_RELOC_386_PLT32:
205 TRACE ("BFD_RELOC_386_PLT32");
206 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
208 case BFD_RELOC_386_COPY:
209 TRACE ("BFD_RELOC_386_COPY");
210 return &elf_howto_table[(unsigned int) R_386_COPY ];
212 case BFD_RELOC_386_GLOB_DAT:
213 TRACE ("BFD_RELOC_386_GLOB_DAT");
214 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
216 case BFD_RELOC_386_JUMP_SLOT:
217 TRACE ("BFD_RELOC_386_JUMP_SLOT");
218 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
220 case BFD_RELOC_386_RELATIVE:
221 TRACE ("BFD_RELOC_386_RELATIVE");
222 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
224 case BFD_RELOC_386_GOTOFF:
225 TRACE ("BFD_RELOC_386_GOTOFF");
226 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
228 case BFD_RELOC_386_GOTPC:
229 TRACE ("BFD_RELOC_386_GOTPC");
230 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
232 /* The remaining relocs are a GNU extension. */
234 TRACE ("BFD_RELOC_16");
235 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
237 case BFD_RELOC_16_PCREL:
238 TRACE ("BFD_RELOC_16_PCREL");
239 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
242 TRACE ("BFD_RELOC_8");
243 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
245 case BFD_RELOC_8_PCREL:
246 TRACE ("BFD_RELOC_8_PCREL");
247 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
249 case BFD_RELOC_VTABLE_INHERIT:
250 TRACE ("BFD_RELOC_VTABLE_INHERIT");
251 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
254 case BFD_RELOC_VTABLE_ENTRY:
255 TRACE ("BFD_RELOC_VTABLE_ENTRY");
256 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
268 elf_i386_info_to_howto (abfd, cache_ptr, dst)
269 bfd *abfd ATTRIBUTE_UNUSED;
270 arelent *cache_ptr ATTRIBUTE_UNUSED;
271 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
277 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
278 bfd *abfd ATTRIBUTE_UNUSED;
280 Elf32_Internal_Rel *dst;
282 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
285 if ((indx = r_type) >= R_386_standard
286 && ((indx = r_type - R_386_ext_offset) - R_386_standard
287 >= R_386_ext - R_386_standard)
288 && ((indx = r_type - R_386_vt_offset) - R_386_ext
289 >= R_386_vt - R_386_ext))
291 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
292 bfd_get_filename (abfd), (int) r_type);
293 indx = (unsigned int) R_386_NONE;
295 cache_ptr->howto = &elf_howto_table[indx];
298 /* Return whether a symbol name implies a local label. The UnixWare
299 2.1 cc generates temporary symbols that start with .X, so we
300 recognize them here. FIXME: do other SVR4 compilers also use .X?.
301 If so, we should move the .X recognition into
302 _bfd_elf_is_local_label_name. */
305 elf_i386_is_local_label_name (abfd, name)
309 if (name[0] == '.' && name[1] == 'X')
312 return _bfd_elf_is_local_label_name (abfd, name);
315 /* Functions for the i386 ELF linker. */
317 /* The name of the dynamic interpreter. This is put in the .interp
320 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
322 /* The size in bytes of an entry in the procedure linkage table. */
324 #define PLT_ENTRY_SIZE 16
326 /* The first entry in an absolute procedure linkage table looks like
327 this. See the SVR4 ABI i386 supplement to see how this works. */
329 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
331 0xff, 0x35, /* pushl contents of address */
332 0, 0, 0, 0, /* replaced with address of .got + 4. */
333 0xff, 0x25, /* jmp indirect */
334 0, 0, 0, 0, /* replaced with address of .got + 8. */
335 0, 0, 0, 0 /* pad out to 16 bytes. */
338 /* Subsequent entries in an absolute procedure linkage table look like
341 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
343 0xff, 0x25, /* jmp indirect */
344 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
345 0x68, /* pushl immediate */
346 0, 0, 0, 0, /* replaced with offset into relocation table. */
347 0xe9, /* jmp relative */
348 0, 0, 0, 0 /* replaced with offset to start of .plt. */
351 /* The first entry in a PIC procedure linkage table look like this. */
353 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
355 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
356 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
357 0, 0, 0, 0 /* pad out to 16 bytes. */
360 /* Subsequent entries in a PIC procedure linkage table look like this. */
362 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
364 0xff, 0xa3, /* jmp *offset(%ebx) */
365 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
366 0x68, /* pushl immediate */
367 0, 0, 0, 0, /* replaced with offset into relocation table. */
368 0xe9, /* jmp relative */
369 0, 0, 0, 0 /* replaced with offset to start of .plt. */
372 /* The i386 linker needs to keep track of the number of relocs that it
373 decides to copy as dynamic relocs in check_relocs for each symbol.
374 This is so that it can later discard them if they are found to be
375 unnecessary. We store the information in a field extending the
376 regular ELF linker hash table. */
378 struct elf_i386_dyn_relocs
381 struct elf_i386_dyn_relocs *next;
382 /* A section in dynobj. */
384 /* Number of relocs copied in this section. */
388 /* i386 ELF linker hash entry. */
390 struct elf_i386_link_hash_entry
392 struct elf_link_hash_entry root;
394 /* Number of PC relative relocs copied for this symbol. */
395 struct elf_i386_dyn_relocs *dyn_relocs;
398 /* i386 ELF linker hash table. */
400 struct elf_i386_link_hash_table
402 struct elf_link_hash_table root;
404 /* Short-cuts to get to dynamic linker sections. */
414 /* Get the i386 ELF linker hash table from a link_info structure. */
416 #define elf_i386_hash_table(p) \
417 ((struct elf_i386_link_hash_table *) ((p)->hash))
419 /* Create an entry in an i386 ELF linker hash table. */
421 static struct bfd_hash_entry *
422 elf_i386_link_hash_newfunc (entry, table, string)
423 struct bfd_hash_entry *entry;
424 struct bfd_hash_table *table;
427 struct elf_i386_link_hash_entry *ret =
428 (struct elf_i386_link_hash_entry *) entry;
430 /* Allocate the structure if it has not already been allocated by a
432 if (ret == (struct elf_i386_link_hash_entry *) NULL)
433 ret = ((struct elf_i386_link_hash_entry *)
434 bfd_hash_allocate (table,
435 sizeof (struct elf_i386_link_hash_entry)));
436 if (ret == (struct elf_i386_link_hash_entry *) NULL)
437 return (struct bfd_hash_entry *) ret;
439 /* Call the allocation method of the superclass. */
440 ret = ((struct elf_i386_link_hash_entry *)
441 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
443 if (ret != (struct elf_i386_link_hash_entry *) NULL)
445 ret->dyn_relocs = NULL;
448 return (struct bfd_hash_entry *) ret;
451 /* Create an i386 ELF linker hash table. */
453 static struct bfd_link_hash_table *
454 elf_i386_link_hash_table_create (abfd)
457 struct elf_i386_link_hash_table *ret;
459 ret = ((struct elf_i386_link_hash_table *)
460 bfd_alloc (abfd, sizeof (struct elf_i386_link_hash_table)));
461 if (ret == (struct elf_i386_link_hash_table *) NULL)
464 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
465 elf_i386_link_hash_newfunc))
467 bfd_release (abfd, ret);
479 return &ret->root.root;
482 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
483 shortcuts to them in our hash table. */
486 create_got_section (dynobj, info)
488 struct bfd_link_info *info;
490 struct elf_i386_link_hash_table *htab;
492 if (! _bfd_elf_create_got_section (dynobj, info))
495 htab = elf_i386_hash_table (info);
496 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
497 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
498 if (!htab->sgot || !htab->sgotplt)
501 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
502 if (htab->srelgot == NULL
503 || ! bfd_set_section_flags (dynobj, htab->srelgot,
504 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
505 | SEC_IN_MEMORY | SEC_LINKER_CREATED
507 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
512 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
513 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
517 elf_i386_create_dynamic_sections (dynobj, info)
519 struct bfd_link_info *info;
521 struct elf_i386_link_hash_table *htab;
523 htab = elf_i386_hash_table (info);
524 if (!htab->sgot && !create_got_section (dynobj, info))
527 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
530 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
531 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
532 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
534 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
536 if (!htab->splt || !htab->srelplt || !htab->sdynbss
537 || (!info->shared && !htab->srelbss))
543 /* Look through the relocs for a section during the first phase, and
544 allocate space in the global offset table or procedure linkage
548 elf_i386_check_relocs (abfd, info, sec, relocs)
550 struct bfd_link_info *info;
552 const Elf_Internal_Rela *relocs;
554 struct elf_i386_link_hash_table *htab;
556 Elf_Internal_Shdr *symtab_hdr;
557 struct elf_link_hash_entry **sym_hashes;
558 bfd_signed_vma *local_got_refcounts;
559 const Elf_Internal_Rela *rel;
560 const Elf_Internal_Rela *rel_end;
563 if (info->relocateable)
566 htab = elf_i386_hash_table (info);
567 dynobj = htab->root.dynobj;
568 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
569 sym_hashes = elf_sym_hashes (abfd);
570 local_got_refcounts = elf_local_got_refcounts (abfd);
574 rel_end = relocs + sec->reloc_count;
575 for (rel = relocs; rel < rel_end; rel++)
577 unsigned long r_symndx;
578 struct elf_link_hash_entry *h;
580 r_symndx = ELF32_R_SYM (rel->r_info);
582 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
584 if (abfd->my_archive)
585 (*_bfd_error_handler) (_("%s(%s): bad symbol index: %d"),
586 bfd_get_filename (abfd->my_archive),
587 bfd_get_filename (abfd),
590 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
591 bfd_get_filename (abfd),
596 if (r_symndx < symtab_hdr->sh_info)
599 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
601 /* Some relocs require a global offset table. */
602 if (htab->sgot == NULL)
604 switch (ELF32_R_TYPE (rel->r_info))
610 htab->root.dynobj = dynobj = abfd;
611 if (!create_got_section (dynobj, info))
620 switch (ELF32_R_TYPE (rel->r_info))
623 /* This symbol requires a global offset table entry. */
626 if (h->got.refcount == -1)
629 h->got.refcount += 1;
633 /* This is a global offset table entry for a local symbol. */
634 if (local_got_refcounts == NULL)
638 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
639 local_got_refcounts = ((bfd_signed_vma *)
640 bfd_alloc (abfd, size));
641 if (local_got_refcounts == NULL)
643 elf_local_got_refcounts (abfd) = local_got_refcounts;
644 memset (local_got_refcounts, -1, size);
646 if (local_got_refcounts[r_symndx] == -1)
647 local_got_refcounts[r_symndx] = 1;
649 local_got_refcounts[r_symndx] += 1;
654 /* This symbol requires a procedure linkage table entry. We
655 actually build the entry in adjust_dynamic_symbol,
656 because this might be a case of linking PIC code which is
657 never referenced by a dynamic object, in which case we
658 don't need to generate a procedure linkage table entry
661 /* If this is a local symbol, we resolve it directly without
662 creating a procedure linkage table entry. */
666 if (h->plt.refcount == -1)
668 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
672 h->plt.refcount += 1;
677 if (h != NULL && !info->shared)
679 /* If this reloc is in a read-only section, we might
680 need a copy reloc. */
681 if ((sec->flags & SEC_READONLY) != 0)
682 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
684 /* We may need a .plt entry if the function this reloc
685 refers to is in a shared lib. */
686 if (h->plt.refcount == -1)
689 h->plt.refcount += 1;
692 /* If we are creating a shared library, and this is a reloc
693 against a global symbol, or a non PC relative reloc
694 against a local symbol, then we need to copy the reloc
695 into the shared library. However, if we are linking with
696 -Bsymbolic, we do not need to copy a reloc against a
697 global symbol which is defined in an object we are
698 including in the link (i.e., DEF_REGULAR is set). At
699 this point we have not seen all the input files, so it is
700 possible that DEF_REGULAR is not set now but will be set
701 later (it is never cleared). In case of a weak definition,
702 DEF_REGULAR may be cleared later by a strong definition in
703 a shared library. We account for that possibility below by
704 storing information in the relocs_copied field of the hash
705 table entry. A similar situation occurs when creating
706 shared libraries and symbol visibility changes render the
708 If on the other hand, we are creating an executable, we
709 may need to keep relocations for symbols satisfied by a
710 dynamic library if we manage to avoid copy relocs for the
713 && (sec->flags & SEC_ALLOC) != 0
714 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
717 || h->root.type == bfd_link_hash_defweak
718 || (h->elf_link_hash_flags
719 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
721 && (sec->flags & SEC_ALLOC) != 0
723 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
724 && (h->root.type == bfd_link_hash_defweak
725 || (h->elf_link_hash_flags
726 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
728 /* We must copy these reloc types into the output file.
729 Create a reloc section in dynobj and make room for
732 htab->root.dynobj = dynobj = abfd;
738 name = (bfd_elf_string_from_elf_section
740 elf_elfheader (abfd)->e_shstrndx,
741 elf_section_data (sec)->rel_hdr.sh_name));
745 if (strncmp (name, ".rel", 4) != 0
746 || strcmp (bfd_get_section_name (abfd, sec),
749 if (abfd->my_archive)
750 (*_bfd_error_handler) (_("%s(%s): bad relocation section name `%s\'"),
751 bfd_get_filename (abfd->my_archive),
752 bfd_get_filename (abfd),
755 (*_bfd_error_handler) (_("%s: bad relocation section name `%s\'"),
756 bfd_get_filename (abfd),
760 sreloc = bfd_get_section_by_name (dynobj, name);
765 sreloc = bfd_make_section (dynobj, name);
766 flags = (SEC_HAS_CONTENTS | SEC_READONLY
767 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
768 if ((sec->flags & SEC_ALLOC) != 0)
769 flags |= SEC_ALLOC | SEC_LOAD;
771 || ! bfd_set_section_flags (dynobj, sreloc, flags)
772 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
775 if (sec->flags & SEC_READONLY)
776 info->flags |= DF_TEXTREL;
779 sreloc->_raw_size += sizeof (Elf32_External_Rel);
781 /* If this is a global symbol, we count the number of PC
782 relative relocations we have entered for this symbol,
783 so that we can discard them later as necessary. Note
784 that this function is only called if we are using an
785 elf_i386 linker hash table, which means that h is
786 really a pointer to an elf_i386_link_hash_entry. */
789 && ELF32_R_TYPE (rel->r_info) == R_386_PC32))
791 struct elf_i386_link_hash_entry *eh;
792 struct elf_i386_dyn_relocs *p;
794 eh = (struct elf_i386_link_hash_entry *) h;
796 for (p = eh->dyn_relocs; p != NULL; p = p->next)
797 if (p->section == sreloc)
802 p = ((struct elf_i386_dyn_relocs *)
803 bfd_alloc (dynobj, sizeof *p));
806 p->next = eh->dyn_relocs;
818 /* This relocation describes the C++ object vtable hierarchy.
819 Reconstruct it for later use during GC. */
820 case R_386_GNU_VTINHERIT:
821 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
825 /* This relocation describes which C++ vtable entries are actually
826 used. Record for later use during GC. */
827 case R_386_GNU_VTENTRY:
828 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
840 /* Return the section that should be marked against GC for a given
844 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
846 struct bfd_link_info *info ATTRIBUTE_UNUSED;
847 Elf_Internal_Rela *rel;
848 struct elf_link_hash_entry *h;
849 Elf_Internal_Sym *sym;
853 switch (ELF32_R_TYPE (rel->r_info))
855 case R_386_GNU_VTINHERIT:
856 case R_386_GNU_VTENTRY:
860 switch (h->root.type)
862 case bfd_link_hash_defined:
863 case bfd_link_hash_defweak:
864 return h->root.u.def.section;
866 case bfd_link_hash_common:
867 return h->root.u.c.p->section;
876 if (!(elf_bad_symtab (abfd)
877 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
878 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
879 && sym->st_shndx != SHN_COMMON))
881 return bfd_section_from_elf_index (abfd, sym->st_shndx);
888 /* Update the got entry reference counts for the section being removed. */
891 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
893 struct bfd_link_info *info;
895 const Elf_Internal_Rela *relocs;
897 Elf_Internal_Shdr *symtab_hdr;
898 struct elf_link_hash_entry **sym_hashes;
899 bfd_signed_vma *local_got_refcounts;
900 const Elf_Internal_Rela *rel, *relend;
901 unsigned long r_symndx;
902 struct elf_link_hash_entry *h;
905 dynobj = elf_hash_table (info)->dynobj;
909 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
910 sym_hashes = elf_sym_hashes (abfd);
911 local_got_refcounts = elf_local_got_refcounts (abfd);
913 relend = relocs + sec->reloc_count;
914 for (rel = relocs; rel < relend; rel++)
915 switch (ELF32_R_TYPE (rel->r_info))
920 r_symndx = ELF32_R_SYM (rel->r_info);
921 if (r_symndx >= symtab_hdr->sh_info)
923 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
924 if (h->got.refcount > 0)
925 h->got.refcount -= 1;
927 else if (local_got_refcounts != NULL)
929 if (local_got_refcounts[r_symndx] > 0)
930 local_got_refcounts[r_symndx] -= 1;
941 r_symndx = ELF32_R_SYM (rel->r_info);
942 if (r_symndx >= symtab_hdr->sh_info)
944 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
945 if (h->plt.refcount > 0)
946 h->plt.refcount -= 1;
957 /* Adjust a symbol defined by a dynamic object and referenced by a
958 regular object. The current definition is in some section of the
959 dynamic object, but we're not including those sections. We have to
960 change the definition to something the rest of the link can
964 elf_i386_adjust_dynamic_symbol (info, h)
965 struct bfd_link_info *info;
966 struct elf_link_hash_entry *h;
968 struct elf_i386_link_hash_table *htab;
971 unsigned int power_of_two;
973 htab = elf_i386_hash_table (info);
974 dynobj = htab->root.dynobj;
976 /* If this is a function, put it in the procedure linkage table. We
977 will fill in the contents of the procedure linkage table later,
978 when we know the address of the .got section. */
979 if (h->type == STT_FUNC
980 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
982 if (h->plt.refcount <= 0
984 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
985 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
987 /* This case can occur if we saw a PLT32 reloc in an input
988 file, but the symbol was never referred to by a dynamic
989 object, or if all references were garbage collected. In
990 such a case, we don't actually need to build a procedure
991 linkage table, and we can just do a PC32 reloc instead. */
992 h->plt.refcount = (bfd_vma) -1;
993 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
999 /* It's possible that we incorrectly decided a .plt reloc was
1000 needed for an R_386_PC32 reloc to a non-function sym in
1001 check_relocs. We can't decide accurately between function and
1002 non-function syms in check-relocs; Objects loaded later in
1003 the link may change h->type. So fix it now. */
1004 h->plt.refcount = (bfd_vma) -1;
1006 /* If this is a weak symbol, and there is a real definition, the
1007 processor independent code will have arranged for us to see the
1008 real definition first, and we can just use the same value. */
1009 if (h->weakdef != NULL)
1011 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1012 || h->weakdef->root.type == bfd_link_hash_defweak);
1013 h->root.u.def.section = h->weakdef->root.u.def.section;
1014 h->root.u.def.value = h->weakdef->root.u.def.value;
1018 /* This is a reference to a symbol defined by a dynamic object which
1019 is not a function. */
1021 /* If we are creating a shared library, we must presume that the
1022 only references to the symbol are via the global offset table.
1023 For such cases we need not do anything here; the relocations will
1024 be handled correctly by relocate_section. */
1028 /* If there are no references to this symbol that do not use the
1029 GOT, we don't need to generate a copy reloc. */
1030 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1033 /* We must allocate the symbol in our .dynbss section, which will
1034 become part of the .bss section of the executable. There will be
1035 an entry for this symbol in the .dynsym section. The dynamic
1036 object will contain position independent code, so all references
1037 from the dynamic object to this symbol will go through the global
1038 offset table. The dynamic linker will use the .dynsym entry to
1039 determine the address it must put in the global offset table, so
1040 both the dynamic object and the regular object will refer to the
1041 same memory location for the variable. */
1047 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1048 copy the initial value out of the dynamic object and into the
1049 runtime process image. We need to remember the offset into the
1050 .rel.bss section we are going to use. */
1051 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1055 srel = htab->srelbss;
1058 srel->_raw_size += sizeof (Elf32_External_Rel);
1059 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1062 /* We need to figure out the alignment required for this symbol. I
1063 have no idea how ELF linkers handle this. */
1064 power_of_two = bfd_log2 (h->size);
1065 if (power_of_two > 3)
1068 /* Apply the required alignment. */
1069 s->_raw_size = BFD_ALIGN (s->_raw_size,
1070 (bfd_size_type) (1 << power_of_two));
1071 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1073 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1077 /* Define the symbol as being at this point in the section. */
1078 h->root.u.def.section = s;
1079 h->root.u.def.value = s->_raw_size;
1081 /* Increment the section size to make room for the symbol. */
1082 s->_raw_size += h->size;
1087 /* This is the condition under which elf_i386_finish_dynamic_symbol
1088 will be called from elflink.h. If elflink.h doesn't call our
1089 finish_dynamic_symbol routine, we'll need to do something about
1090 initializing any .plt and .got entries in elf_i386_relocate_section. */
1091 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1093 && ((INFO)->shared \
1094 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1095 && ((H)->dynindx != -1 \
1096 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1098 /* Allocate space in .plt, .got and associated reloc sections for
1099 global syms. Also discards space allocated for relocs in the
1100 check_relocs function that we subsequently have found to be
1104 allocate_plt_and_got_and_discard_relocs (h, inf)
1105 struct elf_link_hash_entry *h;
1108 struct bfd_link_info *info;
1109 struct elf_i386_link_hash_table *htab;
1111 struct elf_i386_link_hash_entry *eh;
1113 if (h->root.type == bfd_link_hash_indirect
1114 || h->root.type == bfd_link_hash_warning)
1117 info = (struct bfd_link_info *) inf;
1118 htab = elf_i386_hash_table (info);
1120 if (htab->root.dynamic_sections_created
1121 && h->plt.refcount > 0)
1123 /* Make sure this symbol is output as a dynamic symbol.
1124 Undefined weak syms won't yet be marked as dynamic. */
1125 if (h->dynindx == -1
1126 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1128 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1136 /* If this is the first .plt entry, make room for the special
1138 if (s->_raw_size == 0)
1139 s->_raw_size += PLT_ENTRY_SIZE;
1141 h->plt.offset = s->_raw_size;
1143 /* If this symbol is not defined in a regular file, and we are
1144 not generating a shared library, then set the symbol to this
1145 location in the .plt. This is required to make function
1146 pointers compare as equal between the normal executable and
1147 the shared library. */
1149 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1151 h->root.u.def.section = s;
1152 h->root.u.def.value = h->plt.offset;
1155 /* Make room for this entry. */
1156 s->_raw_size += PLT_ENTRY_SIZE;
1158 /* We also need to make an entry in the .got.plt section, which
1159 will be placed in the .got section by the linker script. */
1165 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1167 /* We also need to make an entry in the .rel.plt section. */
1171 s->_raw_size += sizeof (Elf32_External_Rel);
1176 h->plt.offset = (bfd_vma) -1;
1177 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1180 if (h->got.refcount > 0)
1184 /* Make sure this symbol is output as a dynamic symbol.
1185 Undefined weak syms won't yet be marked as dynamic. */
1186 if (h->dynindx == -1
1187 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1189 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1194 h->got.offset = s->_raw_size;
1196 dyn = htab->root.dynamic_sections_created;
1197 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1198 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1201 h->got.offset = (bfd_vma) -1;
1203 /* In the shared -Bsymbolic case, discard space allocated for
1204 dynamic relocs against symbols which turn out to be defined
1205 in regular objects. For the normal shared case, discard space
1206 for relocs that have become local due to symbol visibility
1207 changes. For the non-shared case, discard space for symbols
1208 which turn out to need copy relocs or are not dynamic. */
1210 eh = (struct elf_i386_link_hash_entry *) h;
1211 if (eh->dyn_relocs == NULL)
1215 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1216 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1217 || (htab->root.dynamic_sections_created
1218 && (h->root.type == bfd_link_hash_undefweak
1219 || h->root.type == bfd_link_hash_undefined))))
1221 /* Make sure this symbol is output as a dynamic symbol.
1222 Undefined weak syms won't yet be marked as dynamic. */
1223 if (h->dynindx == -1
1224 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1226 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1230 /* If that succeeded, we know we'll be keeping all the relocs. */
1231 if (h->dynindx != -1)
1236 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1237 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1238 || info->symbolic)))
1240 struct elf_i386_dyn_relocs *c;
1242 for (c = eh->dyn_relocs; c != NULL; c = c->next)
1243 c->section->_raw_size -= c->count * sizeof (Elf32_External_Rel);
1249 /* Set the sizes of the dynamic sections. */
1252 elf_i386_size_dynamic_sections (output_bfd, info)
1253 bfd *output_bfd ATTRIBUTE_UNUSED;
1254 struct bfd_link_info *info;
1256 struct elf_i386_link_hash_table *htab;
1262 htab = elf_i386_hash_table (info);
1263 dynobj = htab->root.dynobj;
1267 if (htab->root.dynamic_sections_created)
1269 /* Set the contents of the .interp section to the interpreter. */
1272 s = bfd_get_section_by_name (dynobj, ".interp");
1275 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1276 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1280 /* Set up .got offsets for local syms. */
1281 for (i = info->input_bfds; i; i = i->link_next)
1283 bfd_signed_vma *local_got;
1284 bfd_signed_vma *end_local_got;
1285 bfd_size_type locsymcount;
1286 Elf_Internal_Shdr *symtab_hdr;
1289 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
1292 local_got = elf_local_got_refcounts (i);
1296 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1297 locsymcount = symtab_hdr->sh_info;
1298 end_local_got = local_got + locsymcount;
1300 srel = htab->srelgot;
1301 for (; local_got < end_local_got; ++local_got)
1305 *local_got = s->_raw_size;
1308 srel->_raw_size += sizeof (Elf32_External_Rel);
1311 *local_got = (bfd_vma) -1;
1315 /* Allocate global sym .plt and .got entries. Also discard all
1317 elf_link_hash_traverse (&htab->root,
1318 allocate_plt_and_got_and_discard_relocs,
1321 /* We now have determined the sizes of the various dynamic sections.
1322 Allocate memory for them. */
1324 for (s = dynobj->sections; s != NULL; s = s->next)
1326 if ((s->flags & SEC_LINKER_CREATED) == 0)
1331 || s == htab->sgotplt)
1333 /* Strip this section if we don't need it; see the
1336 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1338 if (s->_raw_size == 0)
1340 /* If we don't need this section, strip it from the
1341 output file. This is mostly to handle .rel.bss and
1342 .rel.plt. We must create both sections in
1343 create_dynamic_sections, because they must be created
1344 before the linker maps input sections to output
1345 sections. The linker does that before
1346 adjust_dynamic_symbol is called, and it is that
1347 function which decides whether anything needs to go
1348 into these sections. */
1352 if (s != htab->srelplt)
1355 /* We use the reloc_count field as a counter if we need
1356 to copy relocs into the output file. */
1362 /* It's not one of our sections, so don't allocate space. */
1366 if (s->_raw_size == 0)
1368 _bfd_strip_section_from_output (info, s);
1372 /* Allocate memory for the section contents. We use bfd_zalloc
1373 here in case unused entries are not reclaimed before the
1374 section's contents are written out. This should not happen,
1375 but this way if it does, we get a R_386_NONE reloc instead
1377 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1378 if (s->contents == NULL)
1382 if (htab->root.dynamic_sections_created)
1384 /* Add some entries to the .dynamic section. We fill in the
1385 values later, in elf_i386_finish_dynamic_sections, but we
1386 must add the entries now so that we get the correct size for
1387 the .dynamic section. The DT_DEBUG entry is filled in by the
1388 dynamic linker and used by the debugger. */
1391 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
1395 if (htab->splt->_raw_size != 0)
1397 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
1398 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1399 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
1400 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
1406 if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
1407 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
1408 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
1409 sizeof (Elf32_External_Rel)))
1413 if ((info->flags & DF_TEXTREL) != 0)
1415 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
1423 /* Relocate an i386 ELF section. */
1426 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1427 contents, relocs, local_syms, local_sections)
1429 struct bfd_link_info *info;
1431 asection *input_section;
1433 Elf_Internal_Rela *relocs;
1434 Elf_Internal_Sym *local_syms;
1435 asection **local_sections;
1437 struct elf_i386_link_hash_table *htab;
1439 Elf_Internal_Shdr *symtab_hdr;
1440 struct elf_link_hash_entry **sym_hashes;
1441 bfd_vma *local_got_offsets;
1443 Elf_Internal_Rela *rel;
1444 Elf_Internal_Rela *relend;
1446 htab = elf_i386_hash_table (info);
1447 dynobj = htab->root.dynobj;
1448 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1449 sym_hashes = elf_sym_hashes (input_bfd);
1450 local_got_offsets = elf_local_got_offsets (input_bfd);
1454 relend = relocs + input_section->reloc_count;
1455 for (; rel < relend; rel++)
1458 reloc_howto_type *howto;
1459 unsigned long r_symndx;
1460 struct elf_link_hash_entry *h;
1461 Elf_Internal_Sym *sym;
1465 boolean unresolved_reloc;
1466 bfd_reloc_status_type r;
1469 r_type = ELF32_R_TYPE (rel->r_info);
1470 if (r_type == (int) R_386_GNU_VTINHERIT
1471 || r_type == (int) R_386_GNU_VTENTRY)
1474 if ((indx = (unsigned) r_type) >= R_386_standard
1475 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1476 >= R_386_ext - R_386_standard))
1478 bfd_set_error (bfd_error_bad_value);
1481 howto = elf_howto_table + indx;
1483 r_symndx = ELF32_R_SYM (rel->r_info);
1485 if (info->relocateable)
1487 /* This is a relocateable link. We don't have to change
1488 anything, unless the reloc is against a section symbol,
1489 in which case we have to adjust according to where the
1490 section symbol winds up in the output section. */
1491 if (r_symndx < symtab_hdr->sh_info)
1493 sym = local_syms + r_symndx;
1494 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1498 sec = local_sections[r_symndx];
1499 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1500 val += sec->output_offset + sym->st_value;
1501 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1508 /* This is a final link. */
1512 unresolved_reloc = false;
1513 if (r_symndx < symtab_hdr->sh_info)
1515 sym = local_syms + r_symndx;
1516 sec = local_sections[r_symndx];
1517 relocation = (sec->output_section->vma
1518 + sec->output_offset
1523 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1524 while (h->root.type == bfd_link_hash_indirect
1525 || h->root.type == bfd_link_hash_warning)
1526 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1529 if (h->root.type == bfd_link_hash_defined
1530 || h->root.type == bfd_link_hash_defweak)
1532 sec = h->root.u.def.section;
1533 if (sec->output_section == NULL)
1534 /* Set a flag that will be cleared later if we find a
1535 relocation value for this symbol. output_section
1536 is typically NULL for symbols satisfied by a shared
1538 unresolved_reloc = true;
1540 relocation = (h->root.u.def.value
1541 + sec->output_section->vma
1542 + sec->output_offset);
1544 else if (h->root.type == bfd_link_hash_undefweak)
1546 else if (info->shared && !info->symbolic
1547 && !info->no_undefined
1548 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1552 if (! ((*info->callbacks->undefined_symbol)
1553 (info, h->root.root.string, input_bfd,
1554 input_section, rel->r_offset,
1555 (!info->shared || info->no_undefined
1556 || ELF_ST_VISIBILITY (h->other)))))
1564 /* Relocation is to the entry for this symbol in the global
1566 if (htab->sgot == NULL)
1573 off = h->got.offset;
1574 dyn = htab->root.dynamic_sections_created;
1575 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1579 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1580 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1582 /* This is actually a static link, or it is a
1583 -Bsymbolic link and the symbol is defined
1584 locally, or the symbol was forced to be local
1585 because of a version file. We must initialize
1586 this entry in the global offset table. Since the
1587 offset must always be a multiple of 4, we use the
1588 least significant bit to record whether we have
1589 initialized it already.
1591 When doing a dynamic link, we create a .rel.got
1592 relocation entry to initialize the value. This
1593 is done in the finish_dynamic_symbol routine. */
1598 bfd_put_32 (output_bfd, relocation,
1599 htab->sgot->contents + off);
1604 unresolved_reloc = false;
1608 if (local_got_offsets == NULL)
1611 off = local_got_offsets[r_symndx];
1613 /* The offset must always be a multiple of 4. We use
1614 the least significant bit to record whether we have
1615 already generated the necessary reloc. */
1620 bfd_put_32 (output_bfd, relocation,
1621 htab->sgot->contents + off);
1626 Elf_Internal_Rel outrel;
1628 srelgot = htab->srelgot;
1629 if (srelgot == NULL)
1632 outrel.r_offset = (htab->sgot->output_section->vma
1633 + htab->sgot->output_offset
1635 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1636 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1637 (((Elf32_External_Rel *)
1639 + srelgot->reloc_count));
1640 ++srelgot->reloc_count;
1643 local_got_offsets[r_symndx] |= 1;
1647 if (off >= (bfd_vma) -2)
1650 relocation = htab->sgot->output_offset + off;
1654 /* Relocation is relative to the start of the global offset
1657 /* Note that sgot->output_offset is not involved in this
1658 calculation. We always want the start of .got. If we
1659 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1660 permitted by the ABI, we might have to change this
1662 relocation -= htab->sgot->output_section->vma;
1666 /* Use global offset table as symbol value. */
1667 relocation = htab->sgot->output_section->vma;
1668 unresolved_reloc = false;
1672 /* Relocation is to the entry for this symbol in the
1673 procedure linkage table. */
1675 /* Resolve a PLT32 reloc against a local symbol directly,
1676 without using the procedure linkage table. */
1680 if (h->plt.offset == (bfd_vma) -1
1681 || htab->splt == NULL)
1683 /* We didn't make a PLT entry for this symbol. This
1684 happens when statically linking PIC code, or when
1685 using -Bsymbolic. */
1689 relocation = (htab->splt->output_section->vma
1690 + htab->splt->output_offset
1692 unresolved_reloc = false;
1698 && (input_section->flags & SEC_ALLOC) != 0
1699 && (r_type != R_386_PC32
1702 && (! info->symbolic
1703 || (h->elf_link_hash_flags
1704 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1706 && (input_section->flags & SEC_ALLOC) != 0
1709 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1710 && ((h->elf_link_hash_flags
1711 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1712 || h->root.type == bfd_link_hash_undefweak
1713 || h->root.type == bfd_link_hash_undefined)))
1715 Elf_Internal_Rel outrel;
1716 boolean skip, relocate;
1718 /* When generating a shared object, these relocations
1719 are copied into the output file to be resolved at run
1726 name = (bfd_elf_string_from_elf_section
1728 elf_elfheader (input_bfd)->e_shstrndx,
1729 elf_section_data (input_section)->rel_hdr.sh_name));
1733 if (strncmp (name, ".rel", 4) != 0
1734 || strcmp (bfd_get_section_name (input_bfd,
1738 if (input_bfd->my_archive)
1739 (*_bfd_error_handler)\
1740 (_("%s(%s): bad relocation section name `%s\'"),
1741 bfd_get_filename (input_bfd->my_archive),
1742 bfd_get_filename (input_bfd),
1745 (*_bfd_error_handler)
1746 (_("%s: bad relocation section name `%s\'"),
1747 bfd_get_filename (input_bfd),
1752 sreloc = bfd_get_section_by_name (dynobj, name);
1759 if (elf_section_data (input_section)->stab_info == NULL)
1760 outrel.r_offset = rel->r_offset;
1765 off = (_bfd_stab_section_offset
1766 (output_bfd, htab->root.stab_info, input_section,
1767 &elf_section_data (input_section)->stab_info,
1769 if (off == (bfd_vma) -1)
1771 outrel.r_offset = off;
1774 outrel.r_offset += (input_section->output_section->vma
1775 + input_section->output_offset);
1779 memset (&outrel, 0, sizeof outrel);
1784 && (r_type == R_386_PC32
1787 || (h->elf_link_hash_flags
1788 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1792 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1796 /* This symbol is local, or marked to become local. */
1798 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1801 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1802 (((Elf32_External_Rel *)
1804 + sreloc->reloc_count));
1805 ++sreloc->reloc_count;
1807 /* If this reloc is against an external symbol, we do
1808 not want to fiddle with the addend. Otherwise, we
1809 need to include the symbol value so that it becomes
1810 an addend for the dynamic reloc. */
1821 /* FIXME: Why do we allow debugging sections to escape this error?
1822 More importantly, why do we not emit dynamic relocs for
1823 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
1824 If we had emitted the dynamic reloc, we could remove the
1826 if (unresolved_reloc
1828 && (input_section->flags & SEC_DEBUGGING) != 0
1829 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1830 (*_bfd_error_handler)
1831 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
1832 bfd_get_filename (input_bfd),
1833 bfd_get_section_name (input_bfd, input_section),
1834 (long) rel->r_offset,
1835 h->root.root.string);
1837 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1838 contents, rel->r_offset,
1839 relocation, (bfd_vma) 0);
1846 case bfd_reloc_overflow:
1851 name = h->root.root.string;
1854 name = bfd_elf_string_from_elf_section (input_bfd,
1855 symtab_hdr->sh_link,
1860 name = bfd_section_name (input_bfd, sec);
1862 if (! ((*info->callbacks->reloc_overflow)
1863 (info, name, howto->name, (bfd_vma) 0,
1864 input_bfd, input_section, rel->r_offset)))
1870 case bfd_reloc_outofrange:
1879 /* Finish up dynamic symbol handling. We set the contents of various
1880 dynamic sections here. */
1883 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
1885 struct bfd_link_info *info;
1886 struct elf_link_hash_entry *h;
1887 Elf_Internal_Sym *sym;
1889 struct elf_i386_link_hash_table *htab;
1892 htab = elf_i386_hash_table (info);
1893 dynobj = htab->root.dynobj;
1895 if (h->plt.offset != (bfd_vma) -1)
1899 Elf_Internal_Rel rel;
1901 /* This symbol has an entry in the procedure linkage table. Set
1904 if (h->dynindx == -1
1905 || htab->splt == NULL
1906 || htab->sgotplt == NULL
1907 || htab->srelplt == NULL)
1910 /* Get the index in the procedure linkage table which
1911 corresponds to this symbol. This is the index of this symbol
1912 in all the symbols for which we are making plt entries. The
1913 first entry in the procedure linkage table is reserved. */
1914 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1916 /* Get the offset into the .got table of the entry that
1917 corresponds to this function. Each .got entry is 4 bytes.
1918 The first three are reserved. */
1919 got_offset = (plt_index + 3) * 4;
1921 /* Fill in the entry in the procedure linkage table. */
1924 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
1926 bfd_put_32 (output_bfd,
1927 (htab->sgotplt->output_section->vma
1928 + htab->sgotplt->output_offset
1930 htab->splt->contents + h->plt.offset + 2);
1934 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
1936 bfd_put_32 (output_bfd, got_offset,
1937 htab->splt->contents + h->plt.offset + 2);
1940 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
1941 htab->splt->contents + h->plt.offset + 7);
1942 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1943 htab->splt->contents + h->plt.offset + 12);
1945 /* Fill in the entry in the global offset table. */
1946 bfd_put_32 (output_bfd,
1947 (htab->splt->output_section->vma
1948 + htab->splt->output_offset
1951 htab->sgotplt->contents + got_offset);
1953 /* Fill in the entry in the .rel.plt section. */
1954 rel.r_offset = (htab->sgotplt->output_section->vma
1955 + htab->sgotplt->output_offset
1957 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
1958 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1959 ((Elf32_External_Rel *) htab->srelplt->contents
1962 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1964 /* Mark the symbol as undefined, rather than as defined in
1965 the .plt section. Leave the value alone. */
1966 sym->st_shndx = SHN_UNDEF;
1970 if (h->got.offset != (bfd_vma) -1)
1972 Elf_Internal_Rel rel;
1974 /* This symbol has an entry in the global offset table. Set it
1977 if (htab->sgot == NULL || htab->srelgot == NULL)
1980 rel.r_offset = (htab->sgot->output_section->vma
1981 + htab->sgot->output_offset
1982 + (h->got.offset &~ 1));
1984 /* If this is a static link, or it is a -Bsymbolic link and the
1985 symbol is defined locally or was forced to be local because
1986 of a version file, we just want to emit a RELATIVE reloc.
1987 The entry in the global offset table will already have been
1988 initialized in the relocate_section function. */
1992 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1993 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1995 BFD_ASSERT((h->got.offset & 1) != 0);
1996 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2000 BFD_ASSERT((h->got.offset & 1) == 0);
2001 bfd_put_32 (output_bfd, (bfd_vma) 0,
2002 htab->sgot->contents + h->got.offset);
2003 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2006 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2007 ((Elf32_External_Rel *) htab->srelgot->contents
2008 + htab->srelgot->reloc_count));
2009 ++htab->srelgot->reloc_count;
2012 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2014 Elf_Internal_Rel rel;
2016 /* This symbol needs a copy reloc. Set it up. */
2018 if (h->dynindx == -1
2019 || (h->root.type != bfd_link_hash_defined
2020 && h->root.type != bfd_link_hash_defweak)
2021 || htab->srelbss == NULL)
2024 rel.r_offset = (h->root.u.def.value
2025 + h->root.u.def.section->output_section->vma
2026 + h->root.u.def.section->output_offset);
2027 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2028 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2029 ((Elf32_External_Rel *) htab->srelbss->contents
2030 + htab->srelbss->reloc_count));
2031 ++htab->srelbss->reloc_count;
2034 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2035 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2036 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2037 sym->st_shndx = SHN_ABS;
2042 /* Finish up the dynamic sections. */
2045 elf_i386_finish_dynamic_sections (output_bfd, info)
2047 struct bfd_link_info *info;
2049 struct elf_i386_link_hash_table *htab;
2053 htab = elf_i386_hash_table (info);
2054 dynobj = htab->root.dynobj;
2055 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2057 if (htab->root.dynamic_sections_created)
2059 Elf32_External_Dyn *dyncon, *dynconend;
2061 if (sdyn == NULL || htab->sgot == NULL)
2064 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2065 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2066 for (; dyncon < dynconend; dyncon++)
2068 Elf_Internal_Dyn dyn;
2070 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2078 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2079 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2083 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2084 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2088 if (htab->srelplt->output_section->_cooked_size != 0)
2089 dyn.d_un.d_val = htab->srelplt->output_section->_cooked_size;
2091 dyn.d_un.d_val = htab->srelplt->output_section->_raw_size;
2092 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2096 /* My reading of the SVR4 ABI indicates that the
2097 procedure linkage table relocs (DT_JMPREL) should be
2098 included in the overall relocs (DT_REL). This is
2099 what Solaris does. However, UnixWare can not handle
2100 that case. Therefore, we override the DT_RELSZ entry
2101 here to make it not include the JMPREL relocs. Since
2102 the linker script arranges for .rel.plt to follow all
2103 other relocation sections, we don't have to worry
2104 about changing the DT_REL entry. */
2105 if (htab->srelplt != NULL)
2107 if (htab->srelplt->output_section->_cooked_size != 0)
2108 dyn.d_un.d_val -= htab->srelplt->output_section->_cooked_size;
2110 dyn.d_un.d_val -= htab->srelplt->output_section->_raw_size;
2112 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2117 /* Fill in the first entry in the procedure linkage table. */
2118 if (htab->splt && htab->splt->_raw_size > 0)
2121 memcpy (htab->splt->contents,
2122 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2125 memcpy (htab->splt->contents,
2126 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2127 bfd_put_32 (output_bfd,
2128 (htab->sgotplt->output_section->vma
2129 + htab->sgotplt->output_offset
2131 htab->splt->contents + 2);
2132 bfd_put_32 (output_bfd,
2133 (htab->sgotplt->output_section->vma
2134 + htab->sgotplt->output_offset
2136 htab->splt->contents + 8);
2139 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2140 really seem like the right value. */
2141 elf_section_data (htab->splt->output_section)
2142 ->this_hdr.sh_entsize = 4;
2148 /* Fill in the first three entries in the global offset table. */
2149 if (htab->sgotplt->_raw_size > 0)
2151 bfd_put_32 (output_bfd,
2152 (sdyn == NULL ? (bfd_vma) 0
2153 : sdyn->output_section->vma + sdyn->output_offset),
2154 htab->sgotplt->contents);
2155 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2156 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2159 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2164 /* Set the correct type for an x86 ELF section. We do this by the
2165 section name, which is a hack, but ought to work. */
2168 elf_i386_fake_sections (abfd, hdr, sec)
2169 bfd *abfd ATTRIBUTE_UNUSED;
2170 Elf32_Internal_Shdr *hdr;
2173 register const char *name;
2175 name = bfd_get_section_name (abfd, sec);
2177 if (strcmp (name, ".reloc") == 0)
2179 * This is an ugly, but unfortunately necessary hack that is
2180 * needed when producing EFI binaries on x86. It tells
2181 * elf.c:elf_fake_sections() not to consider ".reloc" as a section
2182 * containing ELF relocation info. We need this hack in order to
2183 * be able to generate ELF binaries that can be translated into
2184 * EFI applications (which are essentially COFF objects). Those
2185 * files contain a COFF ".reloc" section inside an ELFNN object,
2186 * which would normally cause BFD to segfault because it would
2187 * attempt to interpret this section as containing relocation
2188 * entries for section "oc". With this hack enabled, ".reloc"
2189 * will be treated as a normal data section, which will avoid the
2190 * segfault. However, you won't be able to create an ELFNN binary
2191 * with a section named "oc" that needs relocations, but that's
2192 * the kind of ugly side-effects you get when detecting section
2193 * types based on their names... In practice, this limitation is
2196 hdr->sh_type = SHT_PROGBITS;
2201 static enum elf_reloc_type_class
2202 elf_i386_reloc_type_class (type)
2207 case R_386_RELATIVE:
2208 return reloc_class_relative;
2209 case R_386_JUMP_SLOT:
2210 return reloc_class_plt;
2212 return reloc_class_copy;
2214 return reloc_class_normal;
2218 /* Support for core dump NOTE sections */
2220 elf_i386_grok_prstatus (abfd, note)
2222 Elf_Internal_Note *note;
2227 switch (note->descsz)
2232 case 144: /* Linux/i386 */
2234 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2237 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
2246 /* Make a ".reg/999" section. */
2247 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2248 raw_size, note->descpos + offset);
2252 elf_i386_grok_psinfo (abfd, note)
2254 Elf_Internal_Note *note;
2256 switch (note->descsz)
2261 case 128: /* Linux/MIPS elf_prpsinfo */
2262 elf_tdata (abfd)->core_program
2263 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2264 elf_tdata (abfd)->core_command
2265 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2268 /* Note that for some reason, a spurious space is tacked
2269 onto the end of the args in some (at least one anyway)
2270 implementations, so strip it off if it exists. */
2273 char *command = elf_tdata (abfd)->core_command;
2274 int n = strlen (command);
2276 if (0 < n && command[n - 1] == ' ')
2277 command[n - 1] = '\0';
2283 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2284 #define TARGET_LITTLE_NAME "elf32-i386"
2285 #define ELF_ARCH bfd_arch_i386
2286 #define ELF_MACHINE_CODE EM_386
2287 #define ELF_MAXPAGESIZE 0x1000
2289 #define elf_backend_can_gc_sections 1
2290 #define elf_backend_want_got_plt 1
2291 #define elf_backend_plt_readonly 1
2292 #define elf_backend_want_plt_sym 0
2293 #define elf_backend_got_header_size 12
2294 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2296 #define elf_info_to_howto elf_i386_info_to_howto
2297 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2299 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2300 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2301 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2303 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2304 #define elf_backend_check_relocs elf_i386_check_relocs
2305 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2306 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2307 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2308 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2309 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2310 #define elf_backend_relocate_section elf_i386_relocate_section
2311 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2312 #define elf_backend_fake_sections elf_i386_fake_sections
2313 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
2314 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
2315 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
2317 #include "elf32-target.h"