1 /* Remote target communications for serial-line targets in custom GDB protocol
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
24 /* See the GDB User Guide for details of the GDB remote protocol. */
27 #include "gdb_string.h"
33 #include "exceptions.h"
35 /*#include "terminal.h" */
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
43 #include "gdb_assert.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48 #include "target-descriptions.h"
53 #include "event-loop.h"
54 #include "event-top.h"
60 #include "gdbcore.h" /* for exec_bfd */
62 #include "remote-fileio.h"
64 #include "memory-map.h"
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
88 static void remote_files_info (struct target_ops *ignore);
90 static void remote_prepare_to_store (struct regcache *regcache);
92 static void remote_fetch_registers (struct regcache *regcache, int regno);
94 static void remote_resume (ptid_t ptid, int step,
95 enum target_signal siggnal);
96 static void remote_async_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_open (char *name, int from_tty);
99 static void remote_async_open (char *name, int from_tty);
101 static void extended_remote_open (char *name, int from_tty);
102 static void extended_remote_async_open (char *name, int from_tty);
104 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
107 static void remote_close (int quitting);
109 static void remote_store_registers (struct regcache *regcache, int regno);
111 static void remote_mourn (void);
112 static void remote_async_mourn (void);
114 static void extended_remote_restart (void);
116 static void extended_remote_mourn (void);
118 static void remote_mourn_1 (struct target_ops *);
120 static void remote_send (char **buf, long *sizeof_buf_p);
122 static int readchar (int timeout);
124 static ptid_t remote_wait (ptid_t ptid,
125 struct target_waitstatus *status);
126 static ptid_t remote_async_wait (ptid_t ptid,
127 struct target_waitstatus *status);
129 static void remote_kill (void);
130 static void remote_async_kill (void);
132 static int tohex (int nib);
134 static void remote_detach (char *args, int from_tty);
136 static void remote_interrupt (int signo);
138 static void remote_interrupt_twice (int signo);
140 static void interrupt_query (void);
142 static void set_thread (int, int);
144 static int remote_thread_alive (ptid_t);
146 static void get_offsets (void);
148 static void skip_frame (void);
150 static long read_frame (char **buf_p, long *sizeof_buf);
152 static int hexnumlen (ULONGEST num);
154 static void init_remote_ops (void);
156 static void init_extended_remote_ops (void);
158 static void remote_stop (void);
160 static int ishex (int ch, int *val);
162 static int stubhex (int ch);
164 static int hexnumstr (char *, ULONGEST);
166 static int hexnumnstr (char *, ULONGEST, int);
168 static CORE_ADDR remote_address_masked (CORE_ADDR);
170 static void print_packet (char *);
172 static unsigned long crc32 (unsigned char *, int, unsigned int);
174 static void compare_sections_command (char *, int);
176 static void packet_command (char *, int);
178 static int stub_unpack_int (char *buff, int fieldlength);
180 static ptid_t remote_current_thread (ptid_t oldptid);
182 static void remote_find_new_threads (void);
184 static void record_currthread (int currthread);
186 static int fromhex (int a);
188 static int hex2bin (const char *hex, gdb_byte *bin, int count);
190 static int bin2hex (const gdb_byte *bin, char *hex, int count);
192 static int putpkt_binary (char *buf, int cnt);
194 static void check_binary_download (CORE_ADDR addr);
196 struct packet_config;
198 static void show_packet_config_cmd (struct packet_config *config);
200 static void update_packet_config (struct packet_config *config);
202 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
203 struct cmd_list_element *c);
205 static void show_remote_protocol_packet_cmd (struct ui_file *file,
207 struct cmd_list_element *c,
210 void _initialize_remote (void);
212 /* For "set remote" and "show remote". */
214 static struct cmd_list_element *remote_set_cmdlist;
215 static struct cmd_list_element *remote_show_cmdlist;
217 /* Description of the remote protocol state for the currently
218 connected target. This is per-target state, and independent of the
219 selected architecture. */
223 /* A buffer to use for incoming packets, and its current size. The
224 buffer is grown dynamically for larger incoming packets.
225 Outgoing packets may also be constructed in this buffer.
226 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
227 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
232 /* If we negotiated packet size explicitly (and thus can bypass
233 heuristics for the largest packet size that will not overflow
234 a buffer in the stub), this will be set to that packet size.
235 Otherwise zero, meaning to use the guessed size. */
236 long explicit_packet_size;
239 /* This data could be associated with a target, but we do not always
240 have access to the current target when we need it, so for now it is
241 static. This will be fine for as long as only one target is in use
243 static struct remote_state remote_state;
245 static struct remote_state *
246 get_remote_state_raw (void)
248 return &remote_state;
251 /* Description of the remote protocol for a given architecture. */
255 long offset; /* Offset into G packet. */
256 long regnum; /* GDB's internal register number. */
257 LONGEST pnum; /* Remote protocol register number. */
258 int in_g_packet; /* Always part of G packet. */
259 /* long size in bytes; == register_size (current_gdbarch, regnum);
261 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
265 struct remote_arch_state
267 /* Description of the remote protocol registers. */
268 long sizeof_g_packet;
270 /* Description of the remote protocol registers indexed by REGNUM
271 (making an array gdbarch_num_regs in size). */
272 struct packet_reg *regs;
274 /* This is the size (in chars) of the first response to the ``g''
275 packet. It is used as a heuristic when determining the maximum
276 size of memory-read and memory-write packets. A target will
277 typically only reserve a buffer large enough to hold the ``g''
278 packet. The size does not include packet overhead (headers and
280 long actual_register_packet_size;
282 /* This is the maximum size (in chars) of a non read/write packet.
283 It is also used as a cap on the size of read/write packets. */
284 long remote_packet_size;
288 /* Handle for retreving the remote protocol data from gdbarch. */
289 static struct gdbarch_data *remote_gdbarch_data_handle;
291 static struct remote_arch_state *
292 get_remote_arch_state (void)
294 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
297 /* Fetch the global remote target state. */
299 static struct remote_state *
300 get_remote_state (void)
302 /* Make sure that the remote architecture state has been
303 initialized, because doing so might reallocate rs->buf. Any
304 function which calls getpkt also needs to be mindful of changes
305 to rs->buf, but this call limits the number of places which run
307 get_remote_arch_state ();
309 return get_remote_state_raw ();
313 compare_pnums (const void *lhs_, const void *rhs_)
315 const struct packet_reg * const *lhs = lhs_;
316 const struct packet_reg * const *rhs = rhs_;
318 if ((*lhs)->pnum < (*rhs)->pnum)
320 else if ((*lhs)->pnum == (*rhs)->pnum)
327 init_remote_state (struct gdbarch *gdbarch)
329 int regnum, num_remote_regs, offset;
330 struct remote_state *rs = get_remote_state_raw ();
331 struct remote_arch_state *rsa;
332 struct packet_reg **remote_regs;
334 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
336 /* Use the architecture to build a regnum<->pnum table, which will be
337 1:1 unless a feature set specifies otherwise. */
338 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
339 gdbarch_num_regs (current_gdbarch),
341 for (regnum = 0; regnum < gdbarch_num_regs (current_gdbarch); regnum++)
343 struct packet_reg *r = &rsa->regs[regnum];
345 if (register_size (current_gdbarch, regnum) == 0)
346 /* Do not try to fetch zero-sized (placeholder) registers. */
349 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
354 /* Define the g/G packet format as the contents of each register
355 with a remote protocol number, in order of ascending protocol
358 remote_regs = alloca (gdbarch_num_regs (current_gdbarch)
359 * sizeof (struct packet_reg *));
360 for (num_remote_regs = 0, regnum = 0;
361 regnum < gdbarch_num_regs (current_gdbarch);
363 if (rsa->regs[regnum].pnum != -1)
364 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
366 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
369 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
371 remote_regs[regnum]->in_g_packet = 1;
372 remote_regs[regnum]->offset = offset;
373 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
376 /* Record the maximum possible size of the g packet - it may turn out
378 rsa->sizeof_g_packet = offset;
380 /* Default maximum number of characters in a packet body. Many
381 remote stubs have a hardwired buffer size of 400 bytes
382 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
383 as the maximum packet-size to ensure that the packet and an extra
384 NUL character can always fit in the buffer. This stops GDB
385 trashing stubs that try to squeeze an extra NUL into what is
386 already a full buffer (As of 1999-12-04 that was most stubs). */
387 rsa->remote_packet_size = 400 - 1;
389 /* This one is filled in when a ``g'' packet is received. */
390 rsa->actual_register_packet_size = 0;
392 /* Should rsa->sizeof_g_packet needs more space than the
393 default, adjust the size accordingly. Remember that each byte is
394 encoded as two characters. 32 is the overhead for the packet
395 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
396 (``$NN:G...#NN'') is a better guess, the below has been padded a
398 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
399 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
401 /* Make sure that the packet buffer is plenty big enough for
402 this architecture. */
403 if (rs->buf_size < rsa->remote_packet_size)
405 rs->buf_size = 2 * rsa->remote_packet_size;
406 rs->buf = xrealloc (rs->buf, rs->buf_size);
412 /* Return the current allowed size of a remote packet. This is
413 inferred from the current architecture, and should be used to
414 limit the length of outgoing packets. */
416 get_remote_packet_size (void)
418 struct remote_state *rs = get_remote_state ();
419 struct remote_arch_state *rsa = get_remote_arch_state ();
421 if (rs->explicit_packet_size)
422 return rs->explicit_packet_size;
424 return rsa->remote_packet_size;
427 static struct packet_reg *
428 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
430 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
434 struct packet_reg *r = &rsa->regs[regnum];
435 gdb_assert (r->regnum == regnum);
440 static struct packet_reg *
441 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
444 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
446 struct packet_reg *r = &rsa->regs[i];
453 /* FIXME: graces/2002-08-08: These variables should eventually be
454 bound to an instance of the target object (as in gdbarch-tdep()),
455 when such a thing exists. */
457 /* This is set to the data address of the access causing the target
458 to stop for a watchpoint. */
459 static CORE_ADDR remote_watch_data_address;
461 /* This is non-zero if target stopped for a watchpoint. */
462 static int remote_stopped_by_watchpoint_p;
464 static struct target_ops remote_ops;
466 static struct target_ops extended_remote_ops;
468 /* Temporary target ops. Just like the remote_ops and
469 extended_remote_ops, but with asynchronous support. */
470 static struct target_ops remote_async_ops;
472 static struct target_ops extended_async_remote_ops;
474 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
475 ``forever'' still use the normal timeout mechanism. This is
476 currently used by the ASYNC code to guarentee that target reads
477 during the initial connect always time-out. Once getpkt has been
478 modified to return a timeout indication and, in turn
479 remote_wait()/wait_for_inferior() have gained a timeout parameter
481 static int wait_forever_enabled_p = 1;
484 /* This variable chooses whether to send a ^C or a break when the user
485 requests program interruption. Although ^C is usually what remote
486 systems expect, and that is the default here, sometimes a break is
487 preferable instead. */
489 static int remote_break;
491 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
492 remote_open knows that we don't have a file open when the program
494 static struct serial *remote_desc = NULL;
496 /* This variable sets the number of bits in an address that are to be
497 sent in a memory ("M" or "m") packet. Normally, after stripping
498 leading zeros, the entire address would be sent. This variable
499 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
500 initial implementation of remote.c restricted the address sent in
501 memory packets to ``host::sizeof long'' bytes - (typically 32
502 bits). Consequently, for 64 bit targets, the upper 32 bits of an
503 address was never sent. Since fixing this bug may cause a break in
504 some remote targets this variable is principly provided to
505 facilitate backward compatibility. */
507 static int remote_address_size;
509 /* Tempoary to track who currently owns the terminal. See
510 target_async_terminal_* for more details. */
512 static int remote_async_terminal_ours_p;
515 /* User configurable variables for the number of characters in a
516 memory read/write packet. MIN (rsa->remote_packet_size,
517 rsa->sizeof_g_packet) is the default. Some targets need smaller
518 values (fifo overruns, et.al.) and some users need larger values
519 (speed up transfers). The variables ``preferred_*'' (the user
520 request), ``current_*'' (what was actually set) and ``forced_*''
521 (Positive - a soft limit, negative - a hard limit). */
523 struct memory_packet_config
530 /* Compute the current size of a read/write packet. Since this makes
531 use of ``actual_register_packet_size'' the computation is dynamic. */
534 get_memory_packet_size (struct memory_packet_config *config)
536 struct remote_state *rs = get_remote_state ();
537 struct remote_arch_state *rsa = get_remote_arch_state ();
539 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
540 law?) that some hosts don't cope very well with large alloca()
541 calls. Eventually the alloca() code will be replaced by calls to
542 xmalloc() and make_cleanups() allowing this restriction to either
543 be lifted or removed. */
544 #ifndef MAX_REMOTE_PACKET_SIZE
545 #define MAX_REMOTE_PACKET_SIZE 16384
547 /* NOTE: 20 ensures we can write at least one byte. */
548 #ifndef MIN_REMOTE_PACKET_SIZE
549 #define MIN_REMOTE_PACKET_SIZE 20
554 if (config->size <= 0)
555 what_they_get = MAX_REMOTE_PACKET_SIZE;
557 what_they_get = config->size;
561 what_they_get = get_remote_packet_size ();
562 /* Limit the packet to the size specified by the user. */
564 && what_they_get > config->size)
565 what_they_get = config->size;
567 /* Limit it to the size of the targets ``g'' response unless we have
568 permission from the stub to use a larger packet size. */
569 if (rs->explicit_packet_size == 0
570 && rsa->actual_register_packet_size > 0
571 && what_they_get > rsa->actual_register_packet_size)
572 what_they_get = rsa->actual_register_packet_size;
574 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
575 what_they_get = MAX_REMOTE_PACKET_SIZE;
576 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
577 what_they_get = MIN_REMOTE_PACKET_SIZE;
579 /* Make sure there is room in the global buffer for this packet
580 (including its trailing NUL byte). */
581 if (rs->buf_size < what_they_get + 1)
583 rs->buf_size = 2 * what_they_get;
584 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
587 return what_they_get;
590 /* Update the size of a read/write packet. If they user wants
591 something really big then do a sanity check. */
594 set_memory_packet_size (char *args, struct memory_packet_config *config)
596 int fixed_p = config->fixed_p;
597 long size = config->size;
599 error (_("Argument required (integer, `fixed' or `limited')."));
600 else if (strcmp (args, "hard") == 0
601 || strcmp (args, "fixed") == 0)
603 else if (strcmp (args, "soft") == 0
604 || strcmp (args, "limit") == 0)
609 size = strtoul (args, &end, 0);
611 error (_("Invalid %s (bad syntax)."), config->name);
613 /* Instead of explicitly capping the size of a packet to
614 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
615 instead allowed to set the size to something arbitrarily
617 if (size > MAX_REMOTE_PACKET_SIZE)
618 error (_("Invalid %s (too large)."), config->name);
622 if (fixed_p && !config->fixed_p)
624 if (! query (_("The target may not be able to correctly handle a %s\n"
625 "of %ld bytes. Change the packet size? "),
627 error (_("Packet size not changed."));
629 /* Update the config. */
630 config->fixed_p = fixed_p;
635 show_memory_packet_size (struct memory_packet_config *config)
637 printf_filtered (_("The %s is %ld. "), config->name, config->size);
639 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
640 get_memory_packet_size (config));
642 printf_filtered (_("Packets are limited to %ld bytes.\n"),
643 get_memory_packet_size (config));
646 static struct memory_packet_config memory_write_packet_config =
648 "memory-write-packet-size",
652 set_memory_write_packet_size (char *args, int from_tty)
654 set_memory_packet_size (args, &memory_write_packet_config);
658 show_memory_write_packet_size (char *args, int from_tty)
660 show_memory_packet_size (&memory_write_packet_config);
664 get_memory_write_packet_size (void)
666 return get_memory_packet_size (&memory_write_packet_config);
669 static struct memory_packet_config memory_read_packet_config =
671 "memory-read-packet-size",
675 set_memory_read_packet_size (char *args, int from_tty)
677 set_memory_packet_size (args, &memory_read_packet_config);
681 show_memory_read_packet_size (char *args, int from_tty)
683 show_memory_packet_size (&memory_read_packet_config);
687 get_memory_read_packet_size (void)
689 long size = get_memory_packet_size (&memory_read_packet_config);
690 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
691 extra buffer size argument before the memory read size can be
692 increased beyond this. */
693 if (size > get_remote_packet_size ())
694 size = get_remote_packet_size ();
699 /* Generic configuration support for packets the stub optionally
700 supports. Allows the user to specify the use of the packet as well
701 as allowing GDB to auto-detect support in the remote stub. */
705 PACKET_SUPPORT_UNKNOWN = 0,
714 enum auto_boolean detect;
715 enum packet_support support;
718 /* Analyze a packet's return value and update the packet config
729 update_packet_config (struct packet_config *config)
731 switch (config->detect)
733 case AUTO_BOOLEAN_TRUE:
734 config->support = PACKET_ENABLE;
736 case AUTO_BOOLEAN_FALSE:
737 config->support = PACKET_DISABLE;
739 case AUTO_BOOLEAN_AUTO:
740 config->support = PACKET_SUPPORT_UNKNOWN;
746 show_packet_config_cmd (struct packet_config *config)
748 char *support = "internal-error";
749 switch (config->support)
755 support = "disabled";
757 case PACKET_SUPPORT_UNKNOWN:
761 switch (config->detect)
763 case AUTO_BOOLEAN_AUTO:
764 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
765 config->name, support);
767 case AUTO_BOOLEAN_TRUE:
768 case AUTO_BOOLEAN_FALSE:
769 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
770 config->name, support);
776 add_packet_config_cmd (struct packet_config *config, const char *name,
777 const char *title, int legacy)
784 config->title = title;
785 config->detect = AUTO_BOOLEAN_AUTO;
786 config->support = PACKET_SUPPORT_UNKNOWN;
787 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
789 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
791 /* set/show TITLE-packet {auto,on,off} */
792 cmd_name = xstrprintf ("%s-packet", title);
793 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
794 &config->detect, set_doc, show_doc, NULL, /* help_doc */
795 set_remote_protocol_packet_cmd,
796 show_remote_protocol_packet_cmd,
797 &remote_set_cmdlist, &remote_show_cmdlist);
798 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
802 legacy_name = xstrprintf ("%s-packet", name);
803 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
804 &remote_set_cmdlist);
805 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
806 &remote_show_cmdlist);
810 static enum packet_result
811 packet_check_result (const char *buf)
815 /* The stub recognized the packet request. Check that the
816 operation succeeded. */
818 && isxdigit (buf[1]) && isxdigit (buf[2])
820 /* "Enn" - definitly an error. */
823 /* Always treat "E." as an error. This will be used for
824 more verbose error messages, such as E.memtypes. */
825 if (buf[0] == 'E' && buf[1] == '.')
828 /* The packet may or may not be OK. Just assume it is. */
832 /* The stub does not support the packet. */
833 return PACKET_UNKNOWN;
836 static enum packet_result
837 packet_ok (const char *buf, struct packet_config *config)
839 enum packet_result result;
841 result = packet_check_result (buf);
846 /* The stub recognized the packet request. */
847 switch (config->support)
849 case PACKET_SUPPORT_UNKNOWN:
851 fprintf_unfiltered (gdb_stdlog,
852 "Packet %s (%s) is supported\n",
853 config->name, config->title);
854 config->support = PACKET_ENABLE;
857 internal_error (__FILE__, __LINE__,
858 _("packet_ok: attempt to use a disabled packet"));
865 /* The stub does not support the packet. */
866 switch (config->support)
869 if (config->detect == AUTO_BOOLEAN_AUTO)
870 /* If the stub previously indicated that the packet was
871 supported then there is a protocol error.. */
872 error (_("Protocol error: %s (%s) conflicting enabled responses."),
873 config->name, config->title);
875 /* The user set it wrong. */
876 error (_("Enabled packet %s (%s) not recognized by stub"),
877 config->name, config->title);
879 case PACKET_SUPPORT_UNKNOWN:
881 fprintf_unfiltered (gdb_stdlog,
882 "Packet %s (%s) is NOT supported\n",
883 config->name, config->title);
884 config->support = PACKET_DISABLE;
907 PACKET_qXfer_features,
908 PACKET_qXfer_libraries,
909 PACKET_qXfer_memory_map,
910 PACKET_qXfer_spu_read,
911 PACKET_qXfer_spu_write,
918 static struct packet_config remote_protocol_packets[PACKET_MAX];
921 set_remote_protocol_packet_cmd (char *args, int from_tty,
922 struct cmd_list_element *c)
924 struct packet_config *packet;
926 for (packet = remote_protocol_packets;
927 packet < &remote_protocol_packets[PACKET_MAX];
930 if (&packet->detect == c->var)
932 update_packet_config (packet);
936 internal_error (__FILE__, __LINE__, "Could not find config for %s",
941 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
942 struct cmd_list_element *c,
945 struct packet_config *packet;
947 for (packet = remote_protocol_packets;
948 packet < &remote_protocol_packets[PACKET_MAX];
951 if (&packet->detect == c->var)
953 show_packet_config_cmd (packet);
957 internal_error (__FILE__, __LINE__, "Could not find config for %s",
961 /* Should we try one of the 'Z' requests? */
965 Z_PACKET_SOFTWARE_BP,
966 Z_PACKET_HARDWARE_BP,
973 /* For compatibility with older distributions. Provide a ``set remote
974 Z-packet ...'' command that updates all the Z packet types. */
976 static enum auto_boolean remote_Z_packet_detect;
979 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
980 struct cmd_list_element *c)
983 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
985 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
986 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
991 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
992 struct cmd_list_element *c,
996 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
998 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1002 /* Should we try the 'ThreadInfo' query packet?
1004 This variable (NOT available to the user: auto-detect only!)
1005 determines whether GDB will use the new, simpler "ThreadInfo"
1006 query or the older, more complex syntax for thread queries.
1007 This is an auto-detect variable (set to true at each connect,
1008 and set to false when the target fails to recognize it). */
1010 static int use_threadinfo_query;
1011 static int use_threadextra_query;
1013 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1014 static struct async_signal_handler *sigint_remote_twice_token;
1015 static struct async_signal_handler *sigint_remote_token;
1017 /* These are pointers to hook functions that may be set in order to
1018 modify resume/wait behavior for a particular architecture. */
1020 void (*deprecated_target_resume_hook) (void);
1021 void (*deprecated_target_wait_loop_hook) (void);
1025 /* These are the threads which we last sent to the remote system.
1026 -1 for all or -2 for not sent yet. */
1027 static int general_thread;
1028 static int continue_thread;
1030 /* Call this function as a result of
1031 1) A halt indication (T packet) containing a thread id
1032 2) A direct query of currthread
1033 3) Successful execution of set thread
1037 record_currthread (int currthread)
1039 general_thread = currthread;
1041 /* If this is a new thread, add it to GDB's thread list.
1042 If we leave it up to WFI to do this, bad things will happen. */
1043 if (!in_thread_list (pid_to_ptid (currthread)))
1045 add_thread (pid_to_ptid (currthread));
1046 ui_out_text (uiout, "[New ");
1047 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1048 ui_out_text (uiout, "]\n");
1052 static char *last_pass_packet;
1054 /* If 'QPassSignals' is supported, tell the remote stub what signals
1055 it can simply pass through to the inferior without reporting. */
1058 remote_pass_signals (void)
1060 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1062 char *pass_packet, *p;
1063 int numsigs = (int) TARGET_SIGNAL_LAST;
1066 gdb_assert (numsigs < 256);
1067 for (i = 0; i < numsigs; i++)
1069 if (signal_stop_state (i) == 0
1070 && signal_print_state (i) == 0
1071 && signal_pass_state (i) == 1)
1074 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1075 strcpy (pass_packet, "QPassSignals:");
1076 p = pass_packet + strlen (pass_packet);
1077 for (i = 0; i < numsigs; i++)
1079 if (signal_stop_state (i) == 0
1080 && signal_print_state (i) == 0
1081 && signal_pass_state (i) == 1)
1084 *p++ = tohex (i >> 4);
1085 *p++ = tohex (i & 15);
1094 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1096 struct remote_state *rs = get_remote_state ();
1097 char *buf = rs->buf;
1099 putpkt (pass_packet);
1100 getpkt (&rs->buf, &rs->buf_size, 0);
1101 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1102 if (last_pass_packet)
1103 xfree (last_pass_packet);
1104 last_pass_packet = pass_packet;
1107 xfree (pass_packet);
1111 #define MAGIC_NULL_PID 42000
1114 set_thread (int th, int gen)
1116 struct remote_state *rs = get_remote_state ();
1117 char *buf = rs->buf;
1118 int state = gen ? general_thread : continue_thread;
1124 buf[1] = gen ? 'g' : 'c';
1125 if (th == MAGIC_NULL_PID)
1131 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1133 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1135 getpkt (&rs->buf, &rs->buf_size, 0);
1137 general_thread = th;
1139 continue_thread = th;
1142 /* Return nonzero if the thread TH is still alive on the remote system. */
1145 remote_thread_alive (ptid_t ptid)
1147 struct remote_state *rs = get_remote_state ();
1148 int tid = PIDGET (ptid);
1151 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1153 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1155 getpkt (&rs->buf, &rs->buf_size, 0);
1156 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1159 /* About these extended threadlist and threadinfo packets. They are
1160 variable length packets but, the fields within them are often fixed
1161 length. They are redundent enough to send over UDP as is the
1162 remote protocol in general. There is a matching unit test module
1165 #define OPAQUETHREADBYTES 8
1167 /* a 64 bit opaque identifier */
1168 typedef unsigned char threadref[OPAQUETHREADBYTES];
1170 /* WARNING: This threadref data structure comes from the remote O.S.,
1171 libstub protocol encoding, and remote.c. it is not particularly
1174 /* Right now, the internal structure is int. We want it to be bigger.
1178 typedef int gdb_threadref; /* Internal GDB thread reference. */
1180 /* gdb_ext_thread_info is an internal GDB data structure which is
1181 equivalent to the reply of the remote threadinfo packet. */
1183 struct gdb_ext_thread_info
1185 threadref threadid; /* External form of thread reference. */
1186 int active; /* Has state interesting to GDB?
1188 char display[256]; /* Brief state display, name,
1189 blocked/suspended. */
1190 char shortname[32]; /* To be used to name threads. */
1191 char more_display[256]; /* Long info, statistics, queue depth,
1195 /* The volume of remote transfers can be limited by submitting
1196 a mask containing bits specifying the desired information.
1197 Use a union of these values as the 'selection' parameter to
1198 get_thread_info. FIXME: Make these TAG names more thread specific.
1201 #define TAG_THREADID 1
1202 #define TAG_EXISTS 2
1203 #define TAG_DISPLAY 4
1204 #define TAG_THREADNAME 8
1205 #define TAG_MOREDISPLAY 16
1207 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1209 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1211 static char *unpack_nibble (char *buf, int *val);
1213 static char *pack_nibble (char *buf, int nibble);
1215 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1217 static char *unpack_byte (char *buf, int *value);
1219 static char *pack_int (char *buf, int value);
1221 static char *unpack_int (char *buf, int *value);
1223 static char *unpack_string (char *src, char *dest, int length);
1225 static char *pack_threadid (char *pkt, threadref *id);
1227 static char *unpack_threadid (char *inbuf, threadref *id);
1229 void int_to_threadref (threadref *id, int value);
1231 static int threadref_to_int (threadref *ref);
1233 static void copy_threadref (threadref *dest, threadref *src);
1235 static int threadmatch (threadref *dest, threadref *src);
1237 static char *pack_threadinfo_request (char *pkt, int mode,
1240 static int remote_unpack_thread_info_response (char *pkt,
1241 threadref *expectedref,
1242 struct gdb_ext_thread_info
1246 static int remote_get_threadinfo (threadref *threadid,
1247 int fieldset, /*TAG mask */
1248 struct gdb_ext_thread_info *info);
1250 static char *pack_threadlist_request (char *pkt, int startflag,
1252 threadref *nextthread);
1254 static int parse_threadlist_response (char *pkt,
1256 threadref *original_echo,
1257 threadref *resultlist,
1260 static int remote_get_threadlist (int startflag,
1261 threadref *nextthread,
1265 threadref *threadlist);
1267 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1269 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1270 void *context, int looplimit);
1272 static int remote_newthread_step (threadref *ref, void *context);
1274 /* Encode 64 bits in 16 chars of hex. */
1276 static const char hexchars[] = "0123456789abcdef";
1279 ishex (int ch, int *val)
1281 if ((ch >= 'a') && (ch <= 'f'))
1283 *val = ch - 'a' + 10;
1286 if ((ch >= 'A') && (ch <= 'F'))
1288 *val = ch - 'A' + 10;
1291 if ((ch >= '0') && (ch <= '9'))
1302 if (ch >= 'a' && ch <= 'f')
1303 return ch - 'a' + 10;
1304 if (ch >= '0' && ch <= '9')
1306 if (ch >= 'A' && ch <= 'F')
1307 return ch - 'A' + 10;
1312 stub_unpack_int (char *buff, int fieldlength)
1319 nibble = stubhex (*buff++);
1323 retval = retval << 4;
1329 unpack_varlen_hex (char *buff, /* packet to parse */
1333 ULONGEST retval = 0;
1335 while (ishex (*buff, &nibble))
1338 retval = retval << 4;
1339 retval |= nibble & 0x0f;
1346 unpack_nibble (char *buf, int *val)
1348 ishex (*buf++, val);
1353 pack_nibble (char *buf, int nibble)
1355 *buf++ = hexchars[(nibble & 0x0f)];
1360 pack_hex_byte (char *pkt, int byte)
1362 *pkt++ = hexchars[(byte >> 4) & 0xf];
1363 *pkt++ = hexchars[(byte & 0xf)];
1368 unpack_byte (char *buf, int *value)
1370 *value = stub_unpack_int (buf, 2);
1375 pack_int (char *buf, int value)
1377 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1378 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1379 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1380 buf = pack_hex_byte (buf, (value & 0xff));
1385 unpack_int (char *buf, int *value)
1387 *value = stub_unpack_int (buf, 8);
1391 #if 0 /* Currently unused, uncomment when needed. */
1392 static char *pack_string (char *pkt, char *string);
1395 pack_string (char *pkt, char *string)
1400 len = strlen (string);
1402 len = 200; /* Bigger than most GDB packets, junk??? */
1403 pkt = pack_hex_byte (pkt, len);
1407 if ((ch == '\0') || (ch == '#'))
1408 ch = '*'; /* Protect encapsulation. */
1413 #endif /* 0 (unused) */
1416 unpack_string (char *src, char *dest, int length)
1425 pack_threadid (char *pkt, threadref *id)
1428 unsigned char *altid;
1430 altid = (unsigned char *) id;
1431 limit = pkt + BUF_THREAD_ID_SIZE;
1433 pkt = pack_hex_byte (pkt, *altid++);
1439 unpack_threadid (char *inbuf, threadref *id)
1442 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1445 altref = (char *) id;
1447 while (inbuf < limit)
1449 x = stubhex (*inbuf++);
1450 y = stubhex (*inbuf++);
1451 *altref++ = (x << 4) | y;
1456 /* Externally, threadrefs are 64 bits but internally, they are still
1457 ints. This is due to a mismatch of specifications. We would like
1458 to use 64bit thread references internally. This is an adapter
1462 int_to_threadref (threadref *id, int value)
1464 unsigned char *scan;
1466 scan = (unsigned char *) id;
1472 *scan++ = (value >> 24) & 0xff;
1473 *scan++ = (value >> 16) & 0xff;
1474 *scan++ = (value >> 8) & 0xff;
1475 *scan++ = (value & 0xff);
1479 threadref_to_int (threadref *ref)
1482 unsigned char *scan;
1488 value = (value << 8) | ((*scan++) & 0xff);
1493 copy_threadref (threadref *dest, threadref *src)
1496 unsigned char *csrc, *cdest;
1498 csrc = (unsigned char *) src;
1499 cdest = (unsigned char *) dest;
1506 threadmatch (threadref *dest, threadref *src)
1508 /* Things are broken right now, so just assume we got a match. */
1510 unsigned char *srcp, *destp;
1512 srcp = (char *) src;
1513 destp = (char *) dest;
1517 result &= (*srcp++ == *destp++) ? 1 : 0;
1524 threadid:1, # always request threadid
1531 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1534 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1536 *pkt++ = 'q'; /* Info Query */
1537 *pkt++ = 'P'; /* process or thread info */
1538 pkt = pack_int (pkt, mode); /* mode */
1539 pkt = pack_threadid (pkt, id); /* threadid */
1540 *pkt = '\0'; /* terminate */
1544 /* These values tag the fields in a thread info response packet. */
1545 /* Tagging the fields allows us to request specific fields and to
1546 add more fields as time goes by. */
1548 #define TAG_THREADID 1 /* Echo the thread identifier. */
1549 #define TAG_EXISTS 2 /* Is this process defined enough to
1550 fetch registers and its stack? */
1551 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1552 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1553 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1557 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1558 struct gdb_ext_thread_info *info)
1560 struct remote_state *rs = get_remote_state ();
1564 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1567 /* info->threadid = 0; FIXME: implement zero_threadref. */
1569 info->display[0] = '\0';
1570 info->shortname[0] = '\0';
1571 info->more_display[0] = '\0';
1573 /* Assume the characters indicating the packet type have been
1575 pkt = unpack_int (pkt, &mask); /* arg mask */
1576 pkt = unpack_threadid (pkt, &ref);
1579 warning (_("Incomplete response to threadinfo request."));
1580 if (!threadmatch (&ref, expectedref))
1581 { /* This is an answer to a different request. */
1582 warning (_("ERROR RMT Thread info mismatch."));
1585 copy_threadref (&info->threadid, &ref);
1587 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1589 /* Packets are terminated with nulls. */
1590 while ((pkt < limit) && mask && *pkt)
1592 pkt = unpack_int (pkt, &tag); /* tag */
1593 pkt = unpack_byte (pkt, &length); /* length */
1594 if (!(tag & mask)) /* Tags out of synch with mask. */
1596 warning (_("ERROR RMT: threadinfo tag mismatch."));
1600 if (tag == TAG_THREADID)
1604 warning (_("ERROR RMT: length of threadid is not 16."));
1608 pkt = unpack_threadid (pkt, &ref);
1609 mask = mask & ~TAG_THREADID;
1612 if (tag == TAG_EXISTS)
1614 info->active = stub_unpack_int (pkt, length);
1616 mask = mask & ~(TAG_EXISTS);
1619 warning (_("ERROR RMT: 'exists' length too long."));
1625 if (tag == TAG_THREADNAME)
1627 pkt = unpack_string (pkt, &info->shortname[0], length);
1628 mask = mask & ~TAG_THREADNAME;
1631 if (tag == TAG_DISPLAY)
1633 pkt = unpack_string (pkt, &info->display[0], length);
1634 mask = mask & ~TAG_DISPLAY;
1637 if (tag == TAG_MOREDISPLAY)
1639 pkt = unpack_string (pkt, &info->more_display[0], length);
1640 mask = mask & ~TAG_MOREDISPLAY;
1643 warning (_("ERROR RMT: unknown thread info tag."));
1644 break; /* Not a tag we know about. */
1650 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1651 struct gdb_ext_thread_info *info)
1653 struct remote_state *rs = get_remote_state ();
1656 pack_threadinfo_request (rs->buf, fieldset, threadid);
1658 getpkt (&rs->buf, &rs->buf_size, 0);
1659 result = remote_unpack_thread_info_response (rs->buf + 2,
1664 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1667 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1668 threadref *nextthread)
1670 *pkt++ = 'q'; /* info query packet */
1671 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1672 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1673 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1674 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1679 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1682 parse_threadlist_response (char *pkt, int result_limit,
1683 threadref *original_echo, threadref *resultlist,
1686 struct remote_state *rs = get_remote_state ();
1688 int count, resultcount, done;
1691 /* Assume the 'q' and 'M chars have been stripped. */
1692 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1693 /* done parse past here */
1694 pkt = unpack_byte (pkt, &count); /* count field */
1695 pkt = unpack_nibble (pkt, &done);
1696 /* The first threadid is the argument threadid. */
1697 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1698 while ((count-- > 0) && (pkt < limit))
1700 pkt = unpack_threadid (pkt, resultlist++);
1701 if (resultcount++ >= result_limit)
1710 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1711 int *done, int *result_count, threadref *threadlist)
1713 struct remote_state *rs = get_remote_state ();
1714 static threadref echo_nextthread;
1717 /* Trancate result limit to be smaller than the packet size. */
1718 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1719 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1721 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1723 getpkt (&rs->buf, &rs->buf_size, 0);
1726 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1729 if (!threadmatch (&echo_nextthread, nextthread))
1731 /* FIXME: This is a good reason to drop the packet. */
1732 /* Possably, there is a duplicate response. */
1734 retransmit immediatly - race conditions
1735 retransmit after timeout - yes
1737 wait for packet, then exit
1739 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1740 return 0; /* I choose simply exiting. */
1742 if (*result_count <= 0)
1746 warning (_("RMT ERROR : failed to get remote thread list."));
1749 return result; /* break; */
1751 if (*result_count > result_limit)
1754 warning (_("RMT ERROR: threadlist response longer than requested."));
1760 /* This is the interface between remote and threads, remotes upper
1763 /* remote_find_new_threads retrieves the thread list and for each
1764 thread in the list, looks up the thread in GDB's internal list,
1765 ading the thread if it does not already exist. This involves
1766 getting partial thread lists from the remote target so, polling the
1767 quit_flag is required. */
1770 /* About this many threadisds fit in a packet. */
1772 #define MAXTHREADLISTRESULTS 32
1775 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1778 int done, i, result_count;
1782 static threadref nextthread;
1783 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1788 if (loopcount++ > looplimit)
1791 warning (_("Remote fetch threadlist -infinite loop-."));
1794 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1795 &done, &result_count, resultthreadlist))
1800 /* Clear for later iterations. */
1802 /* Setup to resume next batch of thread references, set nextthread. */
1803 if (result_count >= 1)
1804 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1806 while (result_count--)
1807 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1814 remote_newthread_step (threadref *ref, void *context)
1818 ptid = pid_to_ptid (threadref_to_int (ref));
1820 if (!in_thread_list (ptid))
1822 return 1; /* continue iterator */
1825 #define CRAZY_MAX_THREADS 1000
1828 remote_current_thread (ptid_t oldpid)
1830 struct remote_state *rs = get_remote_state ();
1833 getpkt (&rs->buf, &rs->buf_size, 0);
1834 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1835 /* Use strtoul here, so we'll correctly parse values whose highest
1836 bit is set. The protocol carries them as a simple series of
1837 hex digits; in the absence of a sign, strtol will see such
1838 values as positive numbers out of range for signed 'long', and
1839 return LONG_MAX to indicate an overflow. */
1840 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1845 /* Find new threads for info threads command.
1846 * Original version, using John Metzler's thread protocol.
1850 remote_find_new_threads (void)
1852 remote_threadlist_iterator (remote_newthread_step, 0,
1854 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1855 inferior_ptid = remote_current_thread (inferior_ptid);
1859 * Find all threads for info threads command.
1860 * Uses new thread protocol contributed by Cisco.
1861 * Falls back and attempts to use the older method (above)
1862 * if the target doesn't respond to the new method.
1866 remote_threads_info (void)
1868 struct remote_state *rs = get_remote_state ();
1872 if (remote_desc == 0) /* paranoia */
1873 error (_("Command can only be used when connected to the remote target."));
1875 if (use_threadinfo_query)
1877 putpkt ("qfThreadInfo");
1878 getpkt (&rs->buf, &rs->buf_size, 0);
1880 if (bufp[0] != '\0') /* q packet recognized */
1882 while (*bufp++ == 'm') /* reply contains one or more TID */
1886 /* Use strtoul here, so we'll correctly parse values
1887 whose highest bit is set. The protocol carries
1888 them as a simple series of hex digits; in the
1889 absence of a sign, strtol will see such values as
1890 positive numbers out of range for signed 'long',
1891 and return LONG_MAX to indicate an overflow. */
1892 tid = strtoul (bufp, &bufp, 16);
1893 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1894 add_thread (pid_to_ptid (tid));
1896 while (*bufp++ == ','); /* comma-separated list */
1897 putpkt ("qsThreadInfo");
1898 getpkt (&rs->buf, &rs->buf_size, 0);
1905 /* Else fall back to old method based on jmetzler protocol. */
1906 use_threadinfo_query = 0;
1907 remote_find_new_threads ();
1912 * Collect a descriptive string about the given thread.
1913 * The target may say anything it wants to about the thread
1914 * (typically info about its blocked / runnable state, name, etc.).
1915 * This string will appear in the info threads display.
1917 * Optional: targets are not required to implement this function.
1921 remote_threads_extra_info (struct thread_info *tp)
1923 struct remote_state *rs = get_remote_state ();
1927 struct gdb_ext_thread_info threadinfo;
1928 static char display_buf[100]; /* arbitrary... */
1929 int n = 0; /* position in display_buf */
1931 if (remote_desc == 0) /* paranoia */
1932 internal_error (__FILE__, __LINE__,
1933 _("remote_threads_extra_info"));
1935 if (use_threadextra_query)
1937 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1940 getpkt (&rs->buf, &rs->buf_size, 0);
1941 if (rs->buf[0] != 0)
1943 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1944 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1945 display_buf [result] = '\0';
1950 /* If the above query fails, fall back to the old method. */
1951 use_threadextra_query = 0;
1952 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1953 | TAG_MOREDISPLAY | TAG_DISPLAY;
1954 int_to_threadref (&id, PIDGET (tp->ptid));
1955 if (remote_get_threadinfo (&id, set, &threadinfo))
1956 if (threadinfo.active)
1958 if (*threadinfo.shortname)
1959 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1960 " Name: %s,", threadinfo.shortname);
1961 if (*threadinfo.display)
1962 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1963 " State: %s,", threadinfo.display);
1964 if (*threadinfo.more_display)
1965 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1966 " Priority: %s", threadinfo.more_display);
1970 /* For purely cosmetic reasons, clear up trailing commas. */
1971 if (',' == display_buf[n-1])
1972 display_buf[n-1] = ' ';
1980 /* Restart the remote side; this is an extended protocol operation. */
1983 extended_remote_restart (void)
1985 struct remote_state *rs = get_remote_state ();
1987 /* Send the restart command; for reasons I don't understand the
1988 remote side really expects a number after the "R". */
1989 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1992 remote_fileio_reset ();
1994 /* Now query for status so this looks just like we restarted
1995 gdbserver from scratch. */
1997 getpkt (&rs->buf, &rs->buf_size, 0);
2000 /* Clean up connection to a remote debugger. */
2003 remote_close (int quitting)
2006 serial_close (remote_desc);
2010 /* Query the remote side for the text, data and bss offsets. */
2015 struct remote_state *rs = get_remote_state ();
2018 int lose, num_segments = 0, do_sections, do_segments;
2019 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2020 struct section_offsets *offs;
2021 struct symfile_segment_data *data;
2023 if (symfile_objfile == NULL)
2026 putpkt ("qOffsets");
2027 getpkt (&rs->buf, &rs->buf_size, 0);
2030 if (buf[0] == '\000')
2031 return; /* Return silently. Stub doesn't support
2035 warning (_("Remote failure reply: %s"), buf);
2039 /* Pick up each field in turn. This used to be done with scanf, but
2040 scanf will make trouble if CORE_ADDR size doesn't match
2041 conversion directives correctly. The following code will work
2042 with any size of CORE_ADDR. */
2043 text_addr = data_addr = bss_addr = 0;
2047 if (strncmp (ptr, "Text=", 5) == 0)
2050 /* Don't use strtol, could lose on big values. */
2051 while (*ptr && *ptr != ';')
2052 text_addr = (text_addr << 4) + fromhex (*ptr++);
2054 if (strncmp (ptr, ";Data=", 6) == 0)
2057 while (*ptr && *ptr != ';')
2058 data_addr = (data_addr << 4) + fromhex (*ptr++);
2063 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2066 while (*ptr && *ptr != ';')
2067 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2069 if (bss_addr != data_addr)
2070 warning (_("Target reported unsupported offsets: %s"), buf);
2075 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2078 /* Don't use strtol, could lose on big values. */
2079 while (*ptr && *ptr != ';')
2080 text_addr = (text_addr << 4) + fromhex (*ptr++);
2083 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2086 while (*ptr && *ptr != ';')
2087 data_addr = (data_addr << 4) + fromhex (*ptr++);
2095 error (_("Malformed response to offset query, %s"), buf);
2096 else if (*ptr != '\0')
2097 warning (_("Target reported unsupported offsets: %s"), buf);
2099 offs = ((struct section_offsets *)
2100 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2101 memcpy (offs, symfile_objfile->section_offsets,
2102 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2104 data = get_symfile_segment_data (symfile_objfile->obfd);
2105 do_segments = (data != NULL);
2106 do_sections = num_segments == 0;
2108 /* Text= and Data= specify offsets for the text and data sections,
2109 but symfile_map_offsets_to_segments expects base addresses
2110 instead of offsets. If we have two segments, we can still
2111 try to relocate the whole segments instead of just ".text"
2113 if (num_segments == 0)
2116 if (data == NULL || data->num_segments != 2)
2120 segments[0] = data->segment_bases[0] + text_addr;
2121 segments[1] = data->segment_bases[1] + data_addr;
2127 segments[0] = text_addr;
2128 segments[1] = data_addr;
2133 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2134 offs, num_segments, segments);
2136 if (ret == 0 && !do_sections)
2137 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2143 free_symfile_segment_data (data);
2147 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2149 /* This is a temporary kludge to force data and bss to use the same offsets
2150 because that's what nlmconv does now. The real solution requires changes
2151 to the stub and remote.c that I don't have time to do right now. */
2153 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2154 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2157 objfile_relocate (symfile_objfile, offs);
2160 /* Stub for catch_exception. */
2163 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2165 int from_tty = * (int *) from_tty_p;
2167 immediate_quit++; /* Allow user to interrupt it. */
2169 /* Ack any packet which the remote side has already sent. */
2170 serial_write (remote_desc, "+", 1);
2172 /* Let the stub know that we want it to return the thread. */
2175 inferior_ptid = remote_current_thread (inferior_ptid);
2177 get_offsets (); /* Get text, data & bss offsets. */
2179 putpkt ("?"); /* Initiate a query from remote machine. */
2182 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2185 /* Open a connection to a remote debugger.
2186 NAME is the filename used for communication. */
2189 remote_open (char *name, int from_tty)
2191 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2194 /* Just like remote_open, but with asynchronous support. */
2196 remote_async_open (char *name, int from_tty)
2198 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2201 /* Open a connection to a remote debugger using the extended
2202 remote gdb protocol. NAME is the filename used for communication. */
2205 extended_remote_open (char *name, int from_tty)
2207 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2211 /* Just like extended_remote_open, but with asynchronous support. */
2213 extended_remote_async_open (char *name, int from_tty)
2215 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2216 1 /*extended_p */, 1 /* async_p */);
2219 /* Generic code for opening a connection to a remote target. */
2222 init_all_packet_configs (void)
2225 for (i = 0; i < PACKET_MAX; i++)
2226 update_packet_config (&remote_protocol_packets[i]);
2229 /* Symbol look-up. */
2232 remote_check_symbols (struct objfile *objfile)
2234 struct remote_state *rs = get_remote_state ();
2235 char *msg, *reply, *tmp;
2236 struct minimal_symbol *sym;
2239 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2242 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2243 because we need both at the same time. */
2244 msg = alloca (get_remote_packet_size ());
2246 /* Invite target to request symbol lookups. */
2248 putpkt ("qSymbol::");
2249 getpkt (&rs->buf, &rs->buf_size, 0);
2250 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2253 while (strncmp (reply, "qSymbol:", 8) == 0)
2256 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2258 sym = lookup_minimal_symbol (msg, NULL, NULL);
2260 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2263 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2265 /* If this is a function address, return the start of code
2266 instead of any data function descriptor. */
2267 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2271 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2272 paddr_nz (sym_addr), &reply[8]);
2276 getpkt (&rs->buf, &rs->buf_size, 0);
2281 static struct serial *
2282 remote_serial_open (char *name)
2284 static int udp_warning = 0;
2286 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2287 of in ser-tcp.c, because it is the remote protocol assuming that the
2288 serial connection is reliable and not the serial connection promising
2290 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2293 The remote protocol may be unreliable over UDP.\n\
2294 Some events may be lost, rendering further debugging impossible."));
2298 return serial_open (name);
2301 /* This type describes each known response to the qSupported
2303 struct protocol_feature
2305 /* The name of this protocol feature. */
2308 /* The default for this protocol feature. */
2309 enum packet_support default_support;
2311 /* The function to call when this feature is reported, or after
2312 qSupported processing if the feature is not supported.
2313 The first argument points to this structure. The second
2314 argument indicates whether the packet requested support be
2315 enabled, disabled, or probed (or the default, if this function
2316 is being called at the end of processing and this feature was
2317 not reported). The third argument may be NULL; if not NULL, it
2318 is a NUL-terminated string taken from the packet following
2319 this feature's name and an equals sign. */
2320 void (*func) (const struct protocol_feature *, enum packet_support,
2323 /* The corresponding packet for this feature. Only used if
2324 FUNC is remote_supported_packet. */
2329 remote_supported_packet (const struct protocol_feature *feature,
2330 enum packet_support support,
2331 const char *argument)
2335 warning (_("Remote qSupported response supplied an unexpected value for"
2336 " \"%s\"."), feature->name);
2340 if (remote_protocol_packets[feature->packet].support
2341 == PACKET_SUPPORT_UNKNOWN)
2342 remote_protocol_packets[feature->packet].support = support;
2346 remote_packet_size (const struct protocol_feature *feature,
2347 enum packet_support support, const char *value)
2349 struct remote_state *rs = get_remote_state ();
2354 if (support != PACKET_ENABLE)
2357 if (value == NULL || *value == '\0')
2359 warning (_("Remote target reported \"%s\" without a size."),
2365 packet_size = strtol (value, &value_end, 16);
2366 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2368 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2369 feature->name, value);
2373 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2375 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2376 packet_size, MAX_REMOTE_PACKET_SIZE);
2377 packet_size = MAX_REMOTE_PACKET_SIZE;
2380 /* Record the new maximum packet size. */
2381 rs->explicit_packet_size = packet_size;
2384 static struct protocol_feature remote_protocol_features[] = {
2385 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2386 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2387 PACKET_qXfer_auxv },
2388 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2389 PACKET_qXfer_features },
2390 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2391 PACKET_qXfer_libraries },
2392 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2393 PACKET_qXfer_memory_map },
2394 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2395 PACKET_qXfer_spu_read },
2396 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2397 PACKET_qXfer_spu_write },
2398 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2399 PACKET_QPassSignals },
2403 remote_query_supported (void)
2405 struct remote_state *rs = get_remote_state ();
2408 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2410 /* The packet support flags are handled differently for this packet
2411 than for most others. We treat an error, a disabled packet, and
2412 an empty response identically: any features which must be reported
2413 to be used will be automatically disabled. An empty buffer
2414 accomplishes this, since that is also the representation for a list
2415 containing no features. */
2418 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2420 putpkt ("qSupported");
2421 getpkt (&rs->buf, &rs->buf_size, 0);
2423 /* If an error occured, warn, but do not return - just reset the
2424 buffer to empty and go on to disable features. */
2425 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2428 warning (_("Remote failure reply: %s"), rs->buf);
2433 memset (seen, 0, sizeof (seen));
2438 enum packet_support is_supported;
2439 char *p, *end, *name_end, *value;
2441 /* First separate out this item from the rest of the packet. If
2442 there's another item after this, we overwrite the separator
2443 (terminated strings are much easier to work with). */
2445 end = strchr (p, ';');
2448 end = p + strlen (p);
2458 warning (_("empty item in \"qSupported\" response"));
2463 name_end = strchr (p, '=');
2466 /* This is a name=value entry. */
2467 is_supported = PACKET_ENABLE;
2468 value = name_end + 1;
2477 is_supported = PACKET_ENABLE;
2481 is_supported = PACKET_DISABLE;
2485 is_supported = PACKET_SUPPORT_UNKNOWN;
2489 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2495 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2496 if (strcmp (remote_protocol_features[i].name, p) == 0)
2498 const struct protocol_feature *feature;
2501 feature = &remote_protocol_features[i];
2502 feature->func (feature, is_supported, value);
2507 /* If we increased the packet size, make sure to increase the global
2508 buffer size also. We delay this until after parsing the entire
2509 qSupported packet, because this is the same buffer we were
2511 if (rs->buf_size < rs->explicit_packet_size)
2513 rs->buf_size = rs->explicit_packet_size;
2514 rs->buf = xrealloc (rs->buf, rs->buf_size);
2517 /* Handle the defaults for unmentioned features. */
2518 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2521 const struct protocol_feature *feature;
2523 feature = &remote_protocol_features[i];
2524 feature->func (feature, feature->default_support, NULL);
2530 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2531 int extended_p, int async_p)
2533 struct remote_state *rs = get_remote_state ();
2535 error (_("To open a remote debug connection, you need to specify what\n"
2536 "serial device is attached to the remote system\n"
2537 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2539 /* See FIXME above. */
2541 wait_forever_enabled_p = 1;
2543 target_preopen (from_tty);
2545 unpush_target (target);
2547 /* Make sure we send the passed signals list the next time we resume. */
2548 xfree (last_pass_packet);
2549 last_pass_packet = NULL;
2551 remote_fileio_reset ();
2552 reopen_exec_file ();
2555 remote_desc = remote_serial_open (name);
2557 perror_with_name (name);
2559 if (baud_rate != -1)
2561 if (serial_setbaudrate (remote_desc, baud_rate))
2563 /* The requested speed could not be set. Error out to
2564 top level after closing remote_desc. Take care to
2565 set remote_desc to NULL to avoid closing remote_desc
2567 serial_close (remote_desc);
2569 perror_with_name (name);
2573 serial_raw (remote_desc);
2575 /* If there is something sitting in the buffer we might take it as a
2576 response to a command, which would be bad. */
2577 serial_flush_input (remote_desc);
2581 puts_filtered ("Remote debugging using ");
2582 puts_filtered (name);
2583 puts_filtered ("\n");
2585 push_target (target); /* Switch to using remote target now. */
2587 /* Reset the target state; these things will be queried either by
2588 remote_query_supported or as they are needed. */
2589 init_all_packet_configs ();
2590 rs->explicit_packet_size = 0;
2592 general_thread = -2;
2593 continue_thread = -2;
2595 /* Probe for ability to use "ThreadInfo" query, as required. */
2596 use_threadinfo_query = 1;
2597 use_threadextra_query = 1;
2599 /* The first packet we send to the target is the optional "supported
2600 packets" request. If the target can answer this, it will tell us
2601 which later probes to skip. */
2602 remote_query_supported ();
2604 /* Next, if the target can specify a description, read it. We do
2605 this before anything involving memory or registers. */
2606 target_find_description ();
2608 /* Without this, some commands which require an active target (such
2609 as kill) won't work. This variable serves (at least) double duty
2610 as both the pid of the target process (if it has such), and as a
2611 flag indicating that a target is active. These functions should
2612 be split out into seperate variables, especially since GDB will
2613 someday have a notion of debugging several processes. */
2615 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2619 /* With this target we start out by owning the terminal. */
2620 remote_async_terminal_ours_p = 1;
2622 /* FIXME: cagney/1999-09-23: During the initial connection it is
2623 assumed that the target is already ready and able to respond to
2624 requests. Unfortunately remote_start_remote() eventually calls
2625 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2626 around this. Eventually a mechanism that allows
2627 wait_for_inferior() to expect/get timeouts will be
2629 wait_forever_enabled_p = 0;
2632 /* First delete any symbols previously loaded from shared libraries. */
2633 no_shared_libraries (NULL, 0);
2635 /* Start the remote connection. If error() or QUIT, discard this
2636 target (we'd otherwise be in an inconsistent state) and then
2637 propogate the error on up the exception chain. This ensures that
2638 the caller doesn't stumble along blindly assuming that the
2639 function succeeded. The CLI doesn't have this problem but other
2640 UI's, such as MI do.
2642 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2643 this function should return an error indication letting the
2644 caller restore the previous state. Unfortunately the command
2645 ``target remote'' is directly wired to this function making that
2646 impossible. On a positive note, the CLI side of this problem has
2647 been fixed - the function set_cmd_context() makes it possible for
2648 all the ``target ....'' commands to share a common callback
2649 function. See cli-dump.c. */
2651 struct gdb_exception ex
2652 = catch_exception (uiout, remote_start_remote, &from_tty,
2658 wait_forever_enabled_p = 1;
2659 throw_exception (ex);
2664 wait_forever_enabled_p = 1;
2668 /* Tell the remote that we are using the extended protocol. */
2670 getpkt (&rs->buf, &rs->buf_size, 0);
2673 if (exec_bfd) /* No use without an exec file. */
2674 remote_check_symbols (symfile_objfile);
2677 /* This takes a program previously attached to and detaches it. After
2678 this is done, GDB can be used to debug some other program. We
2679 better not have left any breakpoints in the target program or it'll
2680 die when it hits one. */
2683 remote_detach (char *args, int from_tty)
2685 struct remote_state *rs = get_remote_state ();
2688 error (_("Argument given to \"detach\" when remotely debugging."));
2690 /* Tell the remote target to detach. */
2691 strcpy (rs->buf, "D");
2693 getpkt (&rs->buf, &rs->buf_size, 0);
2695 if (rs->buf[0] == 'E')
2696 error (_("Can't detach process."));
2698 /* Unregister the file descriptor from the event loop. */
2699 if (target_is_async_p ())
2700 serial_async (remote_desc, NULL, 0);
2702 target_mourn_inferior ();
2704 puts_filtered ("Ending remote debugging.\n");
2707 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2710 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2713 error (_("Argument given to \"detach\" when remotely debugging."));
2715 /* Unregister the file descriptor from the event loop. */
2716 if (target_is_async_p ())
2717 serial_async (remote_desc, NULL, 0);
2719 target_mourn_inferior ();
2721 puts_filtered ("Ending remote debugging.\n");
2724 /* Convert hex digit A to a number. */
2729 if (a >= '0' && a <= '9')
2731 else if (a >= 'a' && a <= 'f')
2732 return a - 'a' + 10;
2733 else if (a >= 'A' && a <= 'F')
2734 return a - 'A' + 10;
2736 error (_("Reply contains invalid hex digit %d"), a);
2740 hex2bin (const char *hex, gdb_byte *bin, int count)
2744 for (i = 0; i < count; i++)
2746 if (hex[0] == 0 || hex[1] == 0)
2748 /* Hex string is short, or of uneven length.
2749 Return the count that has been converted so far. */
2752 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2758 /* Convert number NIB to a hex digit. */
2766 return 'a' + nib - 10;
2770 bin2hex (const gdb_byte *bin, char *hex, int count)
2773 /* May use a length, or a nul-terminated string as input. */
2775 count = strlen ((char *) bin);
2777 for (i = 0; i < count; i++)
2779 *hex++ = tohex ((*bin >> 4) & 0xf);
2780 *hex++ = tohex (*bin++ & 0xf);
2786 /* Check for the availability of vCont. This function should also check
2790 remote_vcont_probe (struct remote_state *rs)
2794 strcpy (rs->buf, "vCont?");
2796 getpkt (&rs->buf, &rs->buf_size, 0);
2799 /* Make sure that the features we assume are supported. */
2800 if (strncmp (buf, "vCont", 5) == 0)
2803 int support_s, support_S, support_c, support_C;
2809 while (p && *p == ';')
2812 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2814 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2816 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2818 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2821 p = strchr (p, ';');
2824 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2825 BUF will make packet_ok disable the packet. */
2826 if (!support_s || !support_S || !support_c || !support_C)
2830 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2833 /* Resume the remote inferior by using a "vCont" packet. The thread
2834 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2835 resumed thread should be single-stepped and/or signalled. If PTID's
2836 PID is -1, then all threads are resumed; the thread to be stepped and/or
2837 signalled is given in the global INFERIOR_PTID. This function returns
2838 non-zero iff it resumes the inferior.
2840 This function issues a strict subset of all possible vCont commands at the
2844 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2846 struct remote_state *rs = get_remote_state ();
2847 int pid = PIDGET (ptid);
2848 char *buf = NULL, *outbuf;
2849 struct cleanup *old_cleanup;
2851 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2852 remote_vcont_probe (rs);
2854 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2857 /* If we could generate a wider range of packets, we'd have to worry
2858 about overflowing BUF. Should there be a generic
2859 "multi-part-packet" packet? */
2861 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2863 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2864 don't have any PID numbers the inferior will understand. Make sure
2865 to only send forms that do not specify a PID. */
2866 if (step && siggnal != TARGET_SIGNAL_0)
2867 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2869 outbuf = xstrprintf ("vCont;s");
2870 else if (siggnal != TARGET_SIGNAL_0)
2871 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2873 outbuf = xstrprintf ("vCont;c");
2877 /* Resume all threads, with preference for INFERIOR_PTID. */
2878 if (step && siggnal != TARGET_SIGNAL_0)
2879 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2880 PIDGET (inferior_ptid));
2882 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2883 else if (siggnal != TARGET_SIGNAL_0)
2884 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2885 PIDGET (inferior_ptid));
2887 outbuf = xstrprintf ("vCont;c");
2891 /* Scheduler locking; resume only PTID. */
2892 if (step && siggnal != TARGET_SIGNAL_0)
2893 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2895 outbuf = xstrprintf ("vCont;s:%x", pid);
2896 else if (siggnal != TARGET_SIGNAL_0)
2897 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2899 outbuf = xstrprintf ("vCont;c:%x", pid);
2902 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2903 old_cleanup = make_cleanup (xfree, outbuf);
2907 do_cleanups (old_cleanup);
2912 /* Tell the remote machine to resume. */
2914 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2916 static int last_sent_step;
2919 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2921 struct remote_state *rs = get_remote_state ();
2923 int pid = PIDGET (ptid);
2925 last_sent_signal = siggnal;
2926 last_sent_step = step;
2928 /* A hook for when we need to do something at the last moment before
2930 if (deprecated_target_resume_hook)
2931 (*deprecated_target_resume_hook) ();
2933 /* Update the inferior on signals to silently pass, if they've changed. */
2934 remote_pass_signals ();
2936 /* The vCont packet doesn't need to specify threads via Hc. */
2937 if (remote_vcont_resume (ptid, step, siggnal))
2940 /* All other supported resume packets do use Hc, so call set_thread. */
2942 set_thread (0, 0); /* Run any thread. */
2944 set_thread (pid, 0); /* Run this thread. */
2947 if (siggnal != TARGET_SIGNAL_0)
2949 buf[0] = step ? 'S' : 'C';
2950 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2951 buf[2] = tohex (((int) siggnal) & 0xf);
2955 strcpy (buf, step ? "s" : "c");
2960 /* Same as remote_resume, but with async support. */
2962 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2964 remote_resume (ptid, step, siggnal);
2966 /* We are about to start executing the inferior, let's register it
2967 with the event loop. NOTE: this is the one place where all the
2968 execution commands end up. We could alternatively do this in each
2969 of the execution commands in infcmd.c. */
2970 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2971 into infcmd.c in order to allow inferior function calls to work
2972 NOT asynchronously. */
2973 if (target_can_async_p ())
2974 target_async (inferior_event_handler, 0);
2975 /* Tell the world that the target is now executing. */
2976 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2977 this? Instead, should the client of target just assume (for
2978 async targets) that the target is going to start executing? Is
2979 this information already found in the continuation block? */
2980 if (target_is_async_p ())
2981 target_executing = 1;
2985 /* Set up the signal handler for SIGINT, while the target is
2986 executing, ovewriting the 'regular' SIGINT signal handler. */
2988 initialize_sigint_signal_handler (void)
2990 sigint_remote_token =
2991 create_async_signal_handler (async_remote_interrupt, NULL);
2992 signal (SIGINT, handle_remote_sigint);
2995 /* Signal handler for SIGINT, while the target is executing. */
2997 handle_remote_sigint (int sig)
2999 signal (sig, handle_remote_sigint_twice);
3000 sigint_remote_twice_token =
3001 create_async_signal_handler (async_remote_interrupt_twice, NULL);
3002 mark_async_signal_handler_wrapper (sigint_remote_token);
3005 /* Signal handler for SIGINT, installed after SIGINT has already been
3006 sent once. It will take effect the second time that the user sends
3009 handle_remote_sigint_twice (int sig)
3011 signal (sig, handle_sigint);
3012 sigint_remote_twice_token =
3013 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
3014 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3017 /* Perform the real interruption of the target execution, in response
3020 async_remote_interrupt (gdb_client_data arg)
3023 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3028 /* Perform interrupt, if the first attempt did not succeed. Just give
3029 up on the target alltogether. */
3031 async_remote_interrupt_twice (gdb_client_data arg)
3034 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3035 /* Do something only if the target was not killed by the previous
3037 if (target_executing)
3040 signal (SIGINT, handle_remote_sigint);
3044 /* Reinstall the usual SIGINT handlers, after the target has
3047 cleanup_sigint_signal_handler (void *dummy)
3049 signal (SIGINT, handle_sigint);
3050 if (sigint_remote_twice_token)
3051 delete_async_signal_handler (&sigint_remote_twice_token);
3052 if (sigint_remote_token)
3053 delete_async_signal_handler (&sigint_remote_token);
3056 /* Send ^C to target to halt it. Target will respond, and send us a
3058 static void (*ofunc) (int);
3060 /* The command line interface's stop routine. This function is installed
3061 as a signal handler for SIGINT. The first time a user requests a
3062 stop, we call remote_stop to send a break or ^C. If there is no
3063 response from the target (it didn't stop when the user requested it),
3064 we ask the user if he'd like to detach from the target. */
3066 remote_interrupt (int signo)
3068 /* If this doesn't work, try more severe steps. */
3069 signal (signo, remote_interrupt_twice);
3072 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3077 /* The user typed ^C twice. */
3080 remote_interrupt_twice (int signo)
3082 signal (signo, ofunc);
3084 signal (signo, remote_interrupt);
3087 /* This is the generic stop called via the target vector. When a target
3088 interrupt is requested, either by the command line or the GUI, we
3089 will eventually end up here. */
3093 /* Send a break or a ^C, depending on user preference. */
3095 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3098 serial_send_break (remote_desc);
3100 serial_write (remote_desc, "\003", 1);
3103 /* Ask the user what to do when an interrupt is received. */
3106 interrupt_query (void)
3108 target_terminal_ours ();
3110 if (query ("Interrupted while waiting for the program.\n\
3111 Give up (and stop debugging it)? "))
3113 target_mourn_inferior ();
3114 deprecated_throw_reason (RETURN_QUIT);
3117 target_terminal_inferior ();
3120 /* Enable/disable target terminal ownership. Most targets can use
3121 terminal groups to control terminal ownership. Remote targets are
3122 different in that explicit transfer of ownership to/from GDB/target
3126 remote_async_terminal_inferior (void)
3128 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3129 sync_execution here. This function should only be called when
3130 GDB is resuming the inferior in the forground. A background
3131 resume (``run&'') should leave GDB in control of the terminal and
3132 consequently should not call this code. */
3133 if (!sync_execution)
3135 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3136 calls target_terminal_*() idenpotent. The event-loop GDB talking
3137 to an asynchronous target with a synchronous command calls this
3138 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3139 stops trying to transfer the terminal to the target when it
3140 shouldn't this guard can go away. */
3141 if (!remote_async_terminal_ours_p)
3143 delete_file_handler (input_fd);
3144 remote_async_terminal_ours_p = 0;
3145 initialize_sigint_signal_handler ();
3146 /* NOTE: At this point we could also register our selves as the
3147 recipient of all input. Any characters typed could then be
3148 passed on down to the target. */
3152 remote_async_terminal_ours (void)
3154 /* See FIXME in remote_async_terminal_inferior. */
3155 if (!sync_execution)
3157 /* See FIXME in remote_async_terminal_inferior. */
3158 if (remote_async_terminal_ours_p)
3160 cleanup_sigint_signal_handler (NULL);
3161 add_file_handler (input_fd, stdin_event_handler, 0);
3162 remote_async_terminal_ours_p = 1;
3165 /* If nonzero, ignore the next kill. */
3170 remote_console_output (char *msg)
3174 for (p = msg; p[0] && p[1]; p += 2)
3177 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3180 fputs_unfiltered (tb, gdb_stdtarg);
3182 gdb_flush (gdb_stdtarg);
3185 /* Wait until the remote machine stops, then return,
3186 storing status in STATUS just as `wait' would.
3187 Returns "pid", which in the case of a multi-threaded
3188 remote OS, is the thread-id. */
3191 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3193 struct remote_state *rs = get_remote_state ();
3194 struct remote_arch_state *rsa = get_remote_arch_state ();
3195 ULONGEST thread_num = -1;
3197 int solibs_changed = 0;
3199 status->kind = TARGET_WAITKIND_EXITED;
3200 status->value.integer = 0;
3206 ofunc = signal (SIGINT, remote_interrupt);
3207 getpkt (&rs->buf, &rs->buf_size, 1);
3208 signal (SIGINT, ofunc);
3212 /* This is a hook for when we need to do something (perhaps the
3213 collection of trace data) every time the target stops. */
3214 if (deprecated_target_wait_loop_hook)
3215 (*deprecated_target_wait_loop_hook) ();
3217 remote_stopped_by_watchpoint_p = 0;
3221 case 'E': /* Error of some sort. */
3222 warning (_("Remote failure reply: %s"), buf);
3224 case 'F': /* File-I/O request. */
3225 remote_fileio_request (buf);
3227 case 'T': /* Status with PC, SP, FP, ... */
3229 gdb_byte regs[MAX_REGISTER_SIZE];
3231 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3232 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3234 n... = register number
3235 r... = register contents
3237 p = &buf[3]; /* after Txx */
3246 /* If the packet contains a register number save it in
3247 pnum and set p1 to point to the character following
3248 it. Otherwise p1 points to p. */
3250 /* If this packet is an awatch packet, don't parse the
3251 'a' as a register number. */
3253 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3255 /* Read the ``P'' register number. */
3256 pnum = strtol (p, &p_temp, 16);
3262 if (p1 == p) /* No register number present here. */
3264 p1 = strchr (p, ':');
3266 error (_("Malformed packet(a) (missing colon): %s\n\
3269 if (strncmp (p, "thread", p1 - p) == 0)
3271 p_temp = unpack_varlen_hex (++p1, &thread_num);
3272 record_currthread (thread_num);
3275 else if ((strncmp (p, "watch", p1 - p) == 0)
3276 || (strncmp (p, "rwatch", p1 - p) == 0)
3277 || (strncmp (p, "awatch", p1 - p) == 0))
3279 remote_stopped_by_watchpoint_p = 1;
3280 p = unpack_varlen_hex (++p1, &addr);
3281 remote_watch_data_address = (CORE_ADDR)addr;
3283 else if (strncmp (p, "library", p1 - p) == 0)
3287 while (*p_temp && *p_temp != ';')
3295 /* Silently skip unknown optional info. */
3296 p_temp = strchr (p1 + 1, ';');
3303 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3307 error (_("Malformed packet(b) (missing colon): %s\n\
3312 error (_("Remote sent bad register number %s: %s\n\
3314 phex_nz (pnum, 0), p, buf);
3316 fieldsize = hex2bin (p, regs,
3317 register_size (current_gdbarch,
3320 if (fieldsize < register_size (current_gdbarch,
3322 warning (_("Remote reply is too short: %s"), buf);
3323 regcache_raw_supply (get_current_regcache (),
3328 error (_("Remote register badly formatted: %s\nhere: %s"),
3333 case 'S': /* Old style status, just signal only. */
3335 status->kind = TARGET_WAITKIND_LOADED;
3338 status->kind = TARGET_WAITKIND_STOPPED;
3339 status->value.sig = (enum target_signal)
3340 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3345 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3346 record_currthread (thread_num);
3349 case 'W': /* Target exited. */
3351 /* The remote process exited. */
3352 status->kind = TARGET_WAITKIND_EXITED;
3353 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3357 status->kind = TARGET_WAITKIND_SIGNALLED;
3358 status->value.sig = (enum target_signal)
3359 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3363 case 'O': /* Console output. */
3364 remote_console_output (buf + 1);
3367 if (last_sent_signal != TARGET_SIGNAL_0)
3369 /* Zero length reply means that we tried 'S' or 'C' and
3370 the remote system doesn't support it. */
3371 target_terminal_ours_for_output ();
3373 ("Can't send signals to this remote system. %s not sent.\n",
3374 target_signal_to_name (last_sent_signal));
3375 last_sent_signal = TARGET_SIGNAL_0;
3376 target_terminal_inferior ();
3378 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3379 putpkt ((char *) buf);
3382 /* else fallthrough */
3384 warning (_("Invalid remote reply: %s"), buf);
3389 if (thread_num != -1)
3391 return pid_to_ptid (thread_num);
3393 return inferior_ptid;
3396 /* Async version of remote_wait. */
3398 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3400 struct remote_state *rs = get_remote_state ();
3401 struct remote_arch_state *rsa = get_remote_arch_state ();
3402 ULONGEST thread_num = -1;
3404 int solibs_changed = 0;
3406 status->kind = TARGET_WAITKIND_EXITED;
3407 status->value.integer = 0;
3409 remote_stopped_by_watchpoint_p = 0;
3415 if (!target_is_async_p ())
3416 ofunc = signal (SIGINT, remote_interrupt);
3417 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3418 _never_ wait for ever -> test on target_is_async_p().
3419 However, before we do that we need to ensure that the caller
3420 knows how to take the target into/out of async mode. */
3421 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3422 if (!target_is_async_p ())
3423 signal (SIGINT, ofunc);
3427 /* This is a hook for when we need to do something (perhaps the
3428 collection of trace data) every time the target stops. */
3429 if (deprecated_target_wait_loop_hook)
3430 (*deprecated_target_wait_loop_hook) ();
3434 case 'E': /* Error of some sort. */
3435 warning (_("Remote failure reply: %s"), buf);
3437 case 'F': /* File-I/O request. */
3438 remote_fileio_request (buf);
3440 case 'T': /* Status with PC, SP, FP, ... */
3442 gdb_byte regs[MAX_REGISTER_SIZE];
3444 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3445 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3447 n... = register number
3448 r... = register contents
3450 p = &buf[3]; /* after Txx */
3459 /* If the packet contains a register number, save it
3460 in pnum and set p1 to point to the character
3461 following it. Otherwise p1 points to p. */
3463 /* If this packet is an awatch packet, don't parse the 'a'
3464 as a register number. */
3466 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3468 /* Read the register number. */
3469 pnum = strtol (p, &p_temp, 16);
3475 if (p1 == p) /* No register number present here. */
3477 p1 = strchr (p, ':');
3479 error (_("Malformed packet(a) (missing colon): %s\n\
3482 if (strncmp (p, "thread", p1 - p) == 0)
3484 p_temp = unpack_varlen_hex (++p1, &thread_num);
3485 record_currthread (thread_num);
3488 else if ((strncmp (p, "watch", p1 - p) == 0)
3489 || (strncmp (p, "rwatch", p1 - p) == 0)
3490 || (strncmp (p, "awatch", p1 - p) == 0))
3492 remote_stopped_by_watchpoint_p = 1;
3493 p = unpack_varlen_hex (++p1, &addr);
3494 remote_watch_data_address = (CORE_ADDR)addr;
3496 else if (strncmp (p, "library", p1 - p) == 0)
3500 while (*p_temp && *p_temp != ';')
3508 /* Silently skip unknown optional info. */
3509 p_temp = strchr (p1 + 1, ';');
3517 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3520 error (_("Malformed packet(b) (missing colon): %s\n\
3525 error (_("Remote sent bad register number %ld: %s\n\
3529 fieldsize = hex2bin (p, regs,
3530 register_size (current_gdbarch,
3533 if (fieldsize < register_size (current_gdbarch,
3535 warning (_("Remote reply is too short: %s"), buf);
3536 regcache_raw_supply (get_current_regcache (),
3541 error (_("Remote register badly formatted: %s\nhere: %s"),
3546 case 'S': /* Old style status, just signal only. */
3548 status->kind = TARGET_WAITKIND_LOADED;
3551 status->kind = TARGET_WAITKIND_STOPPED;
3552 status->value.sig = (enum target_signal)
3553 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3558 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3559 record_currthread (thread_num);
3562 case 'W': /* Target exited. */
3564 /* The remote process exited. */
3565 status->kind = TARGET_WAITKIND_EXITED;
3566 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3570 status->kind = TARGET_WAITKIND_SIGNALLED;
3571 status->value.sig = (enum target_signal)
3572 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3576 case 'O': /* Console output. */
3577 remote_console_output (buf + 1);
3578 /* Return immediately to the event loop. The event loop will
3579 still be waiting on the inferior afterwards. */
3580 status->kind = TARGET_WAITKIND_IGNORE;
3583 if (last_sent_signal != TARGET_SIGNAL_0)
3585 /* Zero length reply means that we tried 'S' or 'C' and
3586 the remote system doesn't support it. */
3587 target_terminal_ours_for_output ();
3589 ("Can't send signals to this remote system. %s not sent.\n",
3590 target_signal_to_name (last_sent_signal));
3591 last_sent_signal = TARGET_SIGNAL_0;
3592 target_terminal_inferior ();
3594 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3595 putpkt ((char *) buf);
3598 /* else fallthrough */
3600 warning (_("Invalid remote reply: %s"), buf);
3605 if (thread_num != -1)
3607 return pid_to_ptid (thread_num);
3609 return inferior_ptid;
3612 /* Fetch a single register using a 'p' packet. */
3615 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3617 struct remote_state *rs = get_remote_state ();
3619 char regp[MAX_REGISTER_SIZE];
3622 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3625 if (reg->pnum == -1)
3630 p += hexnumstr (p, reg->pnum);
3632 remote_send (&rs->buf, &rs->buf_size);
3636 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3640 case PACKET_UNKNOWN:
3643 error (_("Could not fetch register \"%s\""),
3644 gdbarch_register_name (current_gdbarch, reg->regnum));
3647 /* If this register is unfetchable, tell the regcache. */
3650 regcache_raw_supply (regcache, reg->regnum, NULL);
3654 /* Otherwise, parse and supply the value. */
3660 error (_("fetch_register_using_p: early buf termination"));
3662 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3665 regcache_raw_supply (regcache, reg->regnum, regp);
3669 /* Fetch the registers included in the target's 'g' packet. */
3672 send_g_packet (void)
3674 struct remote_state *rs = get_remote_state ();
3679 sprintf (rs->buf, "g");
3680 remote_send (&rs->buf, &rs->buf_size);
3682 /* We can get out of synch in various cases. If the first character
3683 in the buffer is not a hex character, assume that has happened
3684 and try to fetch another packet to read. */
3685 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3686 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3687 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3688 && rs->buf[0] != 'x') /* New: unavailable register value. */
3691 fprintf_unfiltered (gdb_stdlog,
3692 "Bad register packet; fetching a new packet\n");
3693 getpkt (&rs->buf, &rs->buf_size, 0);
3696 buf_len = strlen (rs->buf);
3698 /* Sanity check the received packet. */
3699 if (buf_len % 2 != 0)
3700 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3706 process_g_packet (struct regcache *regcache)
3708 struct remote_state *rs = get_remote_state ();
3709 struct remote_arch_state *rsa = get_remote_arch_state ();
3714 buf_len = strlen (rs->buf);
3716 /* Further sanity checks, with knowledge of the architecture. */
3717 if (buf_len > 2 * rsa->sizeof_g_packet)
3718 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3720 /* Save the size of the packet sent to us by the target. It is used
3721 as a heuristic when determining the max size of packets that the
3722 target can safely receive. */
3723 if (rsa->actual_register_packet_size == 0)
3724 rsa->actual_register_packet_size = buf_len;
3726 /* If this is smaller than we guessed the 'g' packet would be,
3727 update our records. A 'g' reply that doesn't include a register's
3728 value implies either that the register is not available, or that
3729 the 'p' packet must be used. */
3730 if (buf_len < 2 * rsa->sizeof_g_packet)
3732 rsa->sizeof_g_packet = buf_len / 2;
3734 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3736 if (rsa->regs[i].pnum == -1)
3739 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3740 rsa->regs[i].in_g_packet = 0;
3742 rsa->regs[i].in_g_packet = 1;
3746 regs = alloca (rsa->sizeof_g_packet);
3748 /* Unimplemented registers read as all bits zero. */
3749 memset (regs, 0, rsa->sizeof_g_packet);
3751 /* Reply describes registers byte by byte, each byte encoded as two
3752 hex characters. Suck them all up, then supply them to the
3753 register cacheing/storage mechanism. */
3756 for (i = 0; i < rsa->sizeof_g_packet; i++)
3758 if (p[0] == 0 || p[1] == 0)
3759 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3760 internal_error (__FILE__, __LINE__,
3761 "unexpected end of 'g' packet reply");
3763 if (p[0] == 'x' && p[1] == 'x')
3764 regs[i] = 0; /* 'x' */
3766 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3772 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3774 struct packet_reg *r = &rsa->regs[i];
3777 if (r->offset * 2 >= strlen (rs->buf))
3778 /* This shouldn't happen - we adjusted in_g_packet above. */
3779 internal_error (__FILE__, __LINE__,
3780 "unexpected end of 'g' packet reply");
3781 else if (rs->buf[r->offset * 2] == 'x')
3783 gdb_assert (r->offset * 2 < strlen (rs->buf));
3784 /* The register isn't available, mark it as such (at
3785 the same time setting the value to zero). */
3786 regcache_raw_supply (regcache, r->regnum, NULL);
3789 regcache_raw_supply (regcache, r->regnum,
3797 fetch_registers_using_g (struct regcache *regcache)
3800 process_g_packet (regcache);
3804 remote_fetch_registers (struct regcache *regcache, int regnum)
3806 struct remote_state *rs = get_remote_state ();
3807 struct remote_arch_state *rsa = get_remote_arch_state ();
3810 set_thread (PIDGET (inferior_ptid), 1);
3814 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3815 gdb_assert (reg != NULL);
3817 /* If this register might be in the 'g' packet, try that first -
3818 we are likely to read more than one register. If this is the
3819 first 'g' packet, we might be overly optimistic about its
3820 contents, so fall back to 'p'. */
3821 if (reg->in_g_packet)
3823 fetch_registers_using_g (regcache);
3824 if (reg->in_g_packet)
3828 if (fetch_register_using_p (regcache, reg))
3831 /* This register is not available. */
3832 regcache_raw_supply (regcache, reg->regnum, NULL);
3837 fetch_registers_using_g (regcache);
3839 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3840 if (!rsa->regs[i].in_g_packet)
3841 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3843 /* This register is not available. */
3844 regcache_raw_supply (regcache, i, NULL);
3848 /* Prepare to store registers. Since we may send them all (using a
3849 'G' request), we have to read out the ones we don't want to change
3853 remote_prepare_to_store (struct regcache *regcache)
3855 struct remote_arch_state *rsa = get_remote_arch_state ();
3857 gdb_byte buf[MAX_REGISTER_SIZE];
3859 /* Make sure the entire registers array is valid. */
3860 switch (remote_protocol_packets[PACKET_P].support)
3862 case PACKET_DISABLE:
3863 case PACKET_SUPPORT_UNKNOWN:
3864 /* Make sure all the necessary registers are cached. */
3865 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3866 if (rsa->regs[i].in_g_packet)
3867 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3874 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3875 packet was not recognized. */
3878 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3880 struct remote_state *rs = get_remote_state ();
3881 struct remote_arch_state *rsa = get_remote_arch_state ();
3882 /* Try storing a single register. */
3883 char *buf = rs->buf;
3884 gdb_byte regp[MAX_REGISTER_SIZE];
3887 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3890 if (reg->pnum == -1)
3893 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3894 p = buf + strlen (buf);
3895 regcache_raw_collect (regcache, reg->regnum, regp);
3896 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3897 remote_send (&rs->buf, &rs->buf_size);
3899 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3904 error (_("Could not write register \"%s\""),
3905 gdbarch_register_name (current_gdbarch, reg->regnum));
3906 case PACKET_UNKNOWN:
3909 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3913 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3914 contents of the register cache buffer. FIXME: ignores errors. */
3917 store_registers_using_G (const struct regcache *regcache)
3919 struct remote_state *rs = get_remote_state ();
3920 struct remote_arch_state *rsa = get_remote_arch_state ();
3924 /* Extract all the registers in the regcache copying them into a
3928 regs = alloca (rsa->sizeof_g_packet);
3929 memset (regs, 0, rsa->sizeof_g_packet);
3930 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3932 struct packet_reg *r = &rsa->regs[i];
3934 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3938 /* Command describes registers byte by byte,
3939 each byte encoded as two hex characters. */
3942 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3944 bin2hex (regs, p, rsa->sizeof_g_packet);
3945 remote_send (&rs->buf, &rs->buf_size);
3948 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3949 of the register cache buffer. FIXME: ignores errors. */
3952 remote_store_registers (struct regcache *regcache, int regnum)
3954 struct remote_state *rs = get_remote_state ();
3955 struct remote_arch_state *rsa = get_remote_arch_state ();
3958 set_thread (PIDGET (inferior_ptid), 1);
3962 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3963 gdb_assert (reg != NULL);
3965 /* Always prefer to store registers using the 'P' packet if
3966 possible; we often change only a small number of registers.
3967 Sometimes we change a larger number; we'd need help from a
3968 higher layer to know to use 'G'. */
3969 if (store_register_using_P (regcache, reg))
3972 /* For now, don't complain if we have no way to write the
3973 register. GDB loses track of unavailable registers too
3974 easily. Some day, this may be an error. We don't have
3975 any way to read the register, either... */
3976 if (!reg->in_g_packet)
3979 store_registers_using_G (regcache);
3983 store_registers_using_G (regcache);
3985 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3986 if (!rsa->regs[i].in_g_packet)
3987 if (!store_register_using_P (regcache, &rsa->regs[i]))
3988 /* See above for why we do not issue an error here. */
3993 /* Return the number of hex digits in num. */
3996 hexnumlen (ULONGEST num)
4000 for (i = 0; num != 0; i++)
4006 /* Set BUF to the minimum number of hex digits representing NUM. */
4009 hexnumstr (char *buf, ULONGEST num)
4011 int len = hexnumlen (num);
4012 return hexnumnstr (buf, num, len);
4016 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4019 hexnumnstr (char *buf, ULONGEST num, int width)
4025 for (i = width - 1; i >= 0; i--)
4027 buf[i] = "0123456789abcdef"[(num & 0xf)];
4034 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4037 remote_address_masked (CORE_ADDR addr)
4039 int address_size = remote_address_size;
4040 /* If "remoteaddresssize" was not set, default to target address size. */
4042 address_size = gdbarch_addr_bit (current_gdbarch);
4044 if (address_size > 0
4045 && address_size < (sizeof (ULONGEST) * 8))
4047 /* Only create a mask when that mask can safely be constructed
4048 in a ULONGEST variable. */
4050 mask = (mask << address_size) - 1;
4056 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4057 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4058 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4059 (which may be more than *OUT_LEN due to escape characters). The
4060 total number of bytes in the output buffer will be at most
4064 remote_escape_output (const gdb_byte *buffer, int len,
4065 gdb_byte *out_buf, int *out_len,
4068 int input_index, output_index;
4071 for (input_index = 0; input_index < len; input_index++)
4073 gdb_byte b = buffer[input_index];
4075 if (b == '$' || b == '#' || b == '}')
4077 /* These must be escaped. */
4078 if (output_index + 2 > out_maxlen)
4080 out_buf[output_index++] = '}';
4081 out_buf[output_index++] = b ^ 0x20;
4085 if (output_index + 1 > out_maxlen)
4087 out_buf[output_index++] = b;
4091 *out_len = input_index;
4092 return output_index;
4095 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4096 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4097 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4099 This function reverses remote_escape_output. It allows more
4100 escaped characters than that function does, in particular because
4101 '*' must be escaped to avoid the run-length encoding processing
4102 in reading packets. */
4105 remote_unescape_input (const gdb_byte *buffer, int len,
4106 gdb_byte *out_buf, int out_maxlen)
4108 int input_index, output_index;
4113 for (input_index = 0; input_index < len; input_index++)
4115 gdb_byte b = buffer[input_index];
4117 if (output_index + 1 > out_maxlen)
4119 warning (_("Received too much data from remote target;"
4120 " ignoring overflow."));
4121 return output_index;
4126 out_buf[output_index++] = b ^ 0x20;
4132 out_buf[output_index++] = b;
4136 error (_("Unmatched escape character in target response."));
4138 return output_index;
4141 /* Determine whether the remote target supports binary downloading.
4142 This is accomplished by sending a no-op memory write of zero length
4143 to the target at the specified address. It does not suffice to send
4144 the whole packet, since many stubs strip the eighth bit and
4145 subsequently compute a wrong checksum, which causes real havoc with
4148 NOTE: This can still lose if the serial line is not eight-bit
4149 clean. In cases like this, the user should clear "remote
4153 check_binary_download (CORE_ADDR addr)
4155 struct remote_state *rs = get_remote_state ();
4157 switch (remote_protocol_packets[PACKET_X].support)
4159 case PACKET_DISABLE:
4163 case PACKET_SUPPORT_UNKNOWN:
4169 p += hexnumstr (p, (ULONGEST) addr);
4171 p += hexnumstr (p, (ULONGEST) 0);
4175 putpkt_binary (rs->buf, (int) (p - rs->buf));
4176 getpkt (&rs->buf, &rs->buf_size, 0);
4178 if (rs->buf[0] == '\0')
4181 fprintf_unfiltered (gdb_stdlog,
4182 "binary downloading NOT suppported by target\n");
4183 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4188 fprintf_unfiltered (gdb_stdlog,
4189 "binary downloading suppported by target\n");
4190 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4197 /* Write memory data directly to the remote machine.
4198 This does not inform the data cache; the data cache uses this.
4199 HEADER is the starting part of the packet.
4200 MEMADDR is the address in the remote memory space.
4201 MYADDR is the address of the buffer in our space.
4202 LEN is the number of bytes.
4203 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4204 should send data as binary ('X'), or hex-encoded ('M').
4206 The function creates packet of the form
4207 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4209 where encoding of <DATA> is termined by PACKET_FORMAT.
4211 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4214 Returns the number of bytes transferred, or 0 (setting errno) for
4215 error. Only transfer a single packet. */
4218 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4219 const gdb_byte *myaddr, int len,
4220 char packet_format, int use_length)
4222 struct remote_state *rs = get_remote_state ();
4232 if (packet_format != 'X' && packet_format != 'M')
4233 internal_error (__FILE__, __LINE__,
4234 "remote_write_bytes_aux: bad packet format");
4239 payload_size = get_memory_write_packet_size ();
4241 /* The packet buffer will be large enough for the payload;
4242 get_memory_packet_size ensures this. */
4245 /* Compute the size of the actual payload by subtracting out the
4246 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4248 payload_size -= strlen ("$,:#NN");
4250 /* The comma won't be used. */
4252 header_length = strlen (header);
4253 payload_size -= header_length;
4254 payload_size -= hexnumlen (memaddr);
4256 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4258 strcat (rs->buf, header);
4259 p = rs->buf + strlen (header);
4261 /* Compute a best guess of the number of bytes actually transfered. */
4262 if (packet_format == 'X')
4264 /* Best guess at number of bytes that will fit. */
4265 todo = min (len, payload_size);
4267 payload_size -= hexnumlen (todo);
4268 todo = min (todo, payload_size);
4272 /* Num bytes that will fit. */
4273 todo = min (len, payload_size / 2);
4275 payload_size -= hexnumlen (todo);
4276 todo = min (todo, payload_size / 2);
4280 internal_error (__FILE__, __LINE__,
4281 _("minumum packet size too small to write data"));
4283 /* If we already need another packet, then try to align the end
4284 of this packet to a useful boundary. */
4285 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4286 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4288 /* Append "<memaddr>". */
4289 memaddr = remote_address_masked (memaddr);
4290 p += hexnumstr (p, (ULONGEST) memaddr);
4297 /* Append <len>. Retain the location/size of <len>. It may need to
4298 be adjusted once the packet body has been created. */
4300 plenlen = hexnumstr (p, (ULONGEST) todo);
4308 /* Append the packet body. */
4309 if (packet_format == 'X')
4311 /* Binary mode. Send target system values byte by byte, in
4312 increasing byte addresses. Only escape certain critical
4314 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4317 /* If not all TODO bytes fit, then we'll need another packet. Make
4318 a second try to keep the end of the packet aligned. Don't do
4319 this if the packet is tiny. */
4320 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4324 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4326 if (new_nr_bytes != nr_bytes)
4327 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4332 p += payload_length;
4333 if (use_length && nr_bytes < todo)
4335 /* Escape chars have filled up the buffer prematurely,
4336 and we have actually sent fewer bytes than planned.
4337 Fix-up the length field of the packet. Use the same
4338 number of characters as before. */
4339 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4340 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4345 /* Normal mode: Send target system values byte by byte, in
4346 increasing byte addresses. Each byte is encoded as a two hex
4348 nr_bytes = bin2hex (myaddr, p, todo);
4352 putpkt_binary (rs->buf, (int) (p - rs->buf));
4353 getpkt (&rs->buf, &rs->buf_size, 0);
4355 if (rs->buf[0] == 'E')
4357 /* There is no correspondance between what the remote protocol
4358 uses for errors and errno codes. We would like a cleaner way
4359 of representing errors (big enough to include errno codes,
4360 bfd_error codes, and others). But for now just return EIO. */
4365 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4366 fewer bytes than we'd planned. */
4370 /* Write memory data directly to the remote machine.
4371 This does not inform the data cache; the data cache uses this.
4372 MEMADDR is the address in the remote memory space.
4373 MYADDR is the address of the buffer in our space.
4374 LEN is the number of bytes.
4376 Returns number of bytes transferred, or 0 (setting errno) for
4377 error. Only transfer a single packet. */
4380 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4382 char *packet_format = 0;
4384 /* Check whether the target supports binary download. */
4385 check_binary_download (memaddr);
4387 switch (remote_protocol_packets[PACKET_X].support)
4390 packet_format = "X";
4392 case PACKET_DISABLE:
4393 packet_format = "M";
4395 case PACKET_SUPPORT_UNKNOWN:
4396 internal_error (__FILE__, __LINE__,
4397 _("remote_write_bytes: bad internal state"));
4399 internal_error (__FILE__, __LINE__, _("bad switch"));
4402 return remote_write_bytes_aux (packet_format,
4403 memaddr, myaddr, len, packet_format[0], 1);
4406 /* Read memory data directly from the remote machine.
4407 This does not use the data cache; the data cache uses this.
4408 MEMADDR is the address in the remote memory space.
4409 MYADDR is the address of the buffer in our space.
4410 LEN is the number of bytes.
4412 Returns number of bytes transferred, or 0 for error. */
4414 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4415 remote targets) shouldn't attempt to read the entire buffer.
4416 Instead it should read a single packet worth of data and then
4417 return the byte size of that packet to the caller. The caller (its
4418 caller and its callers caller ;-) already contains code for
4419 handling partial reads. */
4422 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4424 struct remote_state *rs = get_remote_state ();
4425 int max_buf_size; /* Max size of packet output buffer. */
4431 max_buf_size = get_memory_read_packet_size ();
4432 /* The packet buffer will be large enough for the payload;
4433 get_memory_packet_size ensures this. */
4442 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4444 /* construct "m"<memaddr>","<len>" */
4445 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4446 memaddr = remote_address_masked (memaddr);
4449 p += hexnumstr (p, (ULONGEST) memaddr);
4451 p += hexnumstr (p, (ULONGEST) todo);
4455 getpkt (&rs->buf, &rs->buf_size, 0);
4457 if (rs->buf[0] == 'E'
4458 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4459 && rs->buf[3] == '\0')
4461 /* There is no correspondance between what the remote
4462 protocol uses for errors and errno codes. We would like
4463 a cleaner way of representing errors (big enough to
4464 include errno codes, bfd_error codes, and others). But
4465 for now just return EIO. */
4470 /* Reply describes memory byte by byte,
4471 each byte encoded as two hex characters. */
4474 if ((i = hex2bin (p, myaddr, todo)) < todo)
4476 /* Reply is short. This means that we were able to read
4477 only part of what we wanted to. */
4478 return i + (origlen - len);
4487 /* Read or write LEN bytes from inferior memory at MEMADDR,
4488 transferring to or from debugger address BUFFER. Write to inferior
4489 if SHOULD_WRITE is nonzero. Returns length of data written or
4490 read; 0 for error. TARGET is unused. */
4493 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4494 int should_write, struct mem_attrib *attrib,
4495 struct target_ops *target)
4500 res = remote_write_bytes (mem_addr, buffer, mem_len);
4502 res = remote_read_bytes (mem_addr, buffer, mem_len);
4507 /* Sends a packet with content determined by the printf format string
4508 FORMAT and the remaining arguments, then gets the reply. Returns
4509 whether the packet was a success, a failure, or unknown. */
4512 remote_send_printf (const char *format, ...)
4514 struct remote_state *rs = get_remote_state ();
4515 int max_size = get_remote_packet_size ();
4518 va_start (ap, format);
4521 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4522 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4524 if (putpkt (rs->buf) < 0)
4525 error (_("Communication problem with target."));
4528 getpkt (&rs->buf, &rs->buf_size, 0);
4530 return packet_check_result (rs->buf);
4534 restore_remote_timeout (void *p)
4536 int value = *(int *)p;
4537 remote_timeout = value;
4540 /* Flash writing can take quite some time. We'll set
4541 effectively infinite timeout for flash operations.
4542 In future, we'll need to decide on a better approach. */
4543 static const int remote_flash_timeout = 1000;
4546 remote_flash_erase (struct target_ops *ops,
4547 ULONGEST address, LONGEST length)
4549 int saved_remote_timeout = remote_timeout;
4550 enum packet_result ret;
4552 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4553 &saved_remote_timeout);
4554 remote_timeout = remote_flash_timeout;
4556 ret = remote_send_printf ("vFlashErase:%s,%s",
4561 case PACKET_UNKNOWN:
4562 error (_("Remote target does not support flash erase"));
4564 error (_("Error erasing flash with vFlashErase packet"));
4569 do_cleanups (back_to);
4573 remote_flash_write (struct target_ops *ops,
4574 ULONGEST address, LONGEST length,
4575 const gdb_byte *data)
4577 int saved_remote_timeout = remote_timeout;
4579 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4580 &saved_remote_timeout);
4582 remote_timeout = remote_flash_timeout;
4583 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4584 do_cleanups (back_to);
4590 remote_flash_done (struct target_ops *ops)
4592 int saved_remote_timeout = remote_timeout;
4594 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4595 &saved_remote_timeout);
4597 remote_timeout = remote_flash_timeout;
4598 ret = remote_send_printf ("vFlashDone");
4599 do_cleanups (back_to);
4603 case PACKET_UNKNOWN:
4604 error (_("Remote target does not support vFlashDone"));
4606 error (_("Error finishing flash operation"));
4613 remote_files_info (struct target_ops *ignore)
4615 puts_filtered ("Debugging a target over a serial line.\n");
4618 /* Stuff for dealing with the packets which are part of this protocol.
4619 See comment at top of file for details. */
4621 /* Read a single character from the remote end. */
4624 readchar (int timeout)
4628 ch = serial_readchar (remote_desc, timeout);
4633 switch ((enum serial_rc) ch)
4636 target_mourn_inferior ();
4637 error (_("Remote connection closed"));
4640 perror_with_name (_("Remote communication error"));
4642 case SERIAL_TIMEOUT:
4648 /* Send the command in *BUF to the remote machine, and read the reply
4649 into *BUF. Report an error if we get an error reply. Resize
4650 *BUF using xrealloc if necessary to hold the result, and update
4654 remote_send (char **buf,
4658 getpkt (buf, sizeof_buf, 0);
4660 if ((*buf)[0] == 'E')
4661 error (_("Remote failure reply: %s"), *buf);
4664 /* Display a null-terminated packet on stdout, for debugging, using C
4668 print_packet (char *buf)
4670 puts_filtered ("\"");
4671 fputstr_filtered (buf, '"', gdb_stdout);
4672 puts_filtered ("\"");
4678 return putpkt_binary (buf, strlen (buf));
4681 /* Send a packet to the remote machine, with error checking. The data
4682 of the packet is in BUF. The string in BUF can be at most
4683 get_remote_packet_size () - 5 to account for the $, # and checksum,
4684 and for a possible /0 if we are debugging (remote_debug) and want
4685 to print the sent packet as a string. */
4688 putpkt_binary (char *buf, int cnt)
4691 unsigned char csum = 0;
4692 char *buf2 = alloca (cnt + 6);
4698 /* Copy the packet into buffer BUF2, encapsulating it
4699 and giving it a checksum. */
4704 for (i = 0; i < cnt; i++)
4710 *p++ = tohex ((csum >> 4) & 0xf);
4711 *p++ = tohex (csum & 0xf);
4713 /* Send it over and over until we get a positive ack. */
4717 int started_error_output = 0;
4722 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4723 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4724 fprintf_unfiltered (gdb_stdlog, "...");
4725 gdb_flush (gdb_stdlog);
4727 if (serial_write (remote_desc, buf2, p - buf2))
4728 perror_with_name (_("putpkt: write failed"));
4730 /* Read until either a timeout occurs (-2) or '+' is read. */
4733 ch = readchar (remote_timeout);
4741 case SERIAL_TIMEOUT:
4743 if (started_error_output)
4745 putchar_unfiltered ('\n');
4746 started_error_output = 0;
4755 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4759 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4760 case SERIAL_TIMEOUT:
4764 break; /* Retransmit buffer. */
4768 fprintf_unfiltered (gdb_stdlog,
4769 "Packet instead of Ack, ignoring it\n");
4770 /* It's probably an old response sent because an ACK
4771 was lost. Gobble up the packet and ack it so it
4772 doesn't get retransmitted when we resend this
4775 serial_write (remote_desc, "+", 1);
4776 continue; /* Now, go look for +. */
4781 if (!started_error_output)
4783 started_error_output = 1;
4784 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4786 fputc_unfiltered (ch & 0177, gdb_stdlog);
4790 break; /* Here to retransmit. */
4794 /* This is wrong. If doing a long backtrace, the user should be
4795 able to get out next time we call QUIT, without anything as
4796 violent as interrupt_query. If we want to provide a way out of
4797 here without getting to the next QUIT, it should be based on
4798 hitting ^C twice as in remote_wait. */
4808 /* Come here after finding the start of a frame when we expected an
4809 ack. Do our best to discard the rest of this packet. */
4818 c = readchar (remote_timeout);
4821 case SERIAL_TIMEOUT:
4822 /* Nothing we can do. */
4825 /* Discard the two bytes of checksum and stop. */
4826 c = readchar (remote_timeout);
4828 c = readchar (remote_timeout);
4831 case '*': /* Run length encoding. */
4832 /* Discard the repeat count. */
4833 c = readchar (remote_timeout);
4838 /* A regular character. */
4844 /* Come here after finding the start of the frame. Collect the rest
4845 into *BUF, verifying the checksum, length, and handling run-length
4846 compression. NUL terminate the buffer. If there is not enough room,
4847 expand *BUF using xrealloc.
4849 Returns -1 on error, number of characters in buffer (ignoring the
4850 trailing NULL) on success. (could be extended to return one of the
4851 SERIAL status indications). */
4854 read_frame (char **buf_p,
4867 c = readchar (remote_timeout);
4870 case SERIAL_TIMEOUT:
4872 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4876 fputs_filtered ("Saw new packet start in middle of old one\n",
4878 return -1; /* Start a new packet, count retries. */
4881 unsigned char pktcsum;
4887 check_0 = readchar (remote_timeout);
4889 check_1 = readchar (remote_timeout);
4891 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4894 fputs_filtered ("Timeout in checksum, retrying\n",
4898 else if (check_0 < 0 || check_1 < 0)
4901 fputs_filtered ("Communication error in checksum\n",
4906 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4907 if (csum == pktcsum)
4912 fprintf_filtered (gdb_stdlog,
4913 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4915 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4916 fputs_filtered ("\n", gdb_stdlog);
4918 /* Number of characters in buffer ignoring trailing
4922 case '*': /* Run length encoding. */
4927 c = readchar (remote_timeout);
4929 repeat = c - ' ' + 3; /* Compute repeat count. */
4931 /* The character before ``*'' is repeated. */
4933 if (repeat > 0 && repeat <= 255 && bc > 0)
4935 if (bc + repeat - 1 >= *sizeof_buf - 1)
4937 /* Make some more room in the buffer. */
4938 *sizeof_buf += repeat;
4939 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4943 memset (&buf[bc], buf[bc - 1], repeat);
4949 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4953 if (bc >= *sizeof_buf - 1)
4955 /* Make some more room in the buffer. */
4957 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4968 /* Read a packet from the remote machine, with error checking, and
4969 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4970 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4971 rather than timing out; this is used (in synchronous mode) to wait
4972 for a target that is is executing user code to stop. */
4973 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4974 don't have to change all the calls to getpkt to deal with the
4975 return value, because at the moment I don't know what the right
4976 thing to do it for those. */
4984 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4988 /* Read a packet from the remote machine, with error checking, and
4989 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4990 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4991 rather than timing out; this is used (in synchronous mode) to wait
4992 for a target that is is executing user code to stop. If FOREVER ==
4993 0, this function is allowed to time out gracefully and return an
4994 indication of this to the caller. Otherwise return the number
4997 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5004 strcpy (*buf, "timeout");
5008 timeout = watchdog > 0 ? watchdog : -1;
5012 timeout = remote_timeout;
5016 for (tries = 1; tries <= MAX_TRIES; tries++)
5018 /* This can loop forever if the remote side sends us characters
5019 continuously, but if it pauses, we'll get a zero from
5020 readchar because of timeout. Then we'll count that as a
5023 /* Note that we will only wait forever prior to the start of a
5024 packet. After that, we expect characters to arrive at a
5025 brisk pace. They should show up within remote_timeout
5030 c = readchar (timeout);
5032 if (c == SERIAL_TIMEOUT)
5034 if (forever) /* Watchdog went off? Kill the target. */
5037 target_mourn_inferior ();
5038 error (_("Watchdog has expired. Target detached."));
5041 fputs_filtered ("Timed out.\n", gdb_stdlog);
5047 /* We've found the start of a packet, now collect the data. */
5049 val = read_frame (buf, sizeof_buf);
5055 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5056 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5057 fprintf_unfiltered (gdb_stdlog, "\n");
5059 serial_write (remote_desc, "+", 1);
5063 /* Try the whole thing again. */
5065 serial_write (remote_desc, "-", 1);
5068 /* We have tried hard enough, and just can't receive the packet.
5071 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5072 serial_write (remote_desc, "+", 1);
5079 /* For some mysterious reason, wait_for_inferior calls kill instead of
5080 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5084 target_mourn_inferior ();
5088 /* Use catch_errors so the user can quit from gdb even when we aren't on
5089 speaking terms with the remote system. */
5090 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5092 /* Don't wait for it to die. I'm not really sure it matters whether
5093 we do or not. For the existing stubs, kill is a noop. */
5094 target_mourn_inferior ();
5097 /* Async version of remote_kill. */
5099 remote_async_kill (void)
5101 /* Unregister the file descriptor from the event loop. */
5102 if (target_is_async_p ())
5103 serial_async (remote_desc, NULL, 0);
5105 /* For some mysterious reason, wait_for_inferior calls kill instead of
5106 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5110 target_mourn_inferior ();
5114 /* Use catch_errors so the user can quit from gdb even when we
5115 aren't on speaking terms with the remote system. */
5116 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5118 /* Don't wait for it to die. I'm not really sure it matters whether
5119 we do or not. For the existing stubs, kill is a noop. */
5120 target_mourn_inferior ();
5126 remote_mourn_1 (&remote_ops);
5130 remote_async_mourn (void)
5132 remote_mourn_1 (&remote_async_ops);
5136 extended_remote_mourn (void)
5138 /* We do _not_ want to mourn the target like this; this will
5139 remove the extended remote target from the target stack,
5140 and the next time the user says "run" it'll fail.
5142 FIXME: What is the right thing to do here? */
5144 remote_mourn_1 (&extended_remote_ops);
5148 /* Worker function for remote_mourn. */
5150 remote_mourn_1 (struct target_ops *target)
5152 unpush_target (target);
5153 generic_mourn_inferior ();
5156 /* In the extended protocol we want to be able to do things like
5157 "run" and have them basically work as expected. So we need
5158 a special create_inferior function.
5160 FIXME: One day add support for changing the exec file
5161 we're debugging, arguments and an environment. */
5164 extended_remote_create_inferior (char *exec_file, char *args,
5165 char **env, int from_tty)
5167 /* Rip out the breakpoints; we'll reinsert them after restarting
5168 the remote server. */
5169 remove_breakpoints ();
5171 /* Now restart the remote server. */
5172 extended_remote_restart ();
5174 /* NOTE: We don't need to recheck for a target description here; but
5175 if we gain the ability to switch the remote executable we may
5176 need to, if for instance we are running a process which requested
5177 different emulated hardware from the operating system. A
5178 concrete example of this is ARM GNU/Linux, where some binaries
5179 will have a legacy FPA coprocessor emulated and others may have
5180 access to a hardware VFP unit. */
5182 /* Now put the breakpoints back in. This way we're safe if the
5183 restart function works via a unix fork on the remote side. */
5184 insert_breakpoints ();
5186 /* Clean up from the last time we were running. */
5187 clear_proceed_status ();
5190 /* Async version of extended_remote_create_inferior. */
5192 extended_remote_async_create_inferior (char *exec_file, char *args,
5193 char **env, int from_tty)
5195 /* Rip out the breakpoints; we'll reinsert them after restarting
5196 the remote server. */
5197 remove_breakpoints ();
5199 /* If running asynchronously, register the target file descriptor
5200 with the event loop. */
5201 if (target_can_async_p ())
5202 target_async (inferior_event_handler, 0);
5204 /* Now restart the remote server. */
5205 extended_remote_restart ();
5207 /* NOTE: We don't need to recheck for a target description here; but
5208 if we gain the ability to switch the remote executable we may
5209 need to, if for instance we are running a process which requested
5210 different emulated hardware from the operating system. A
5211 concrete example of this is ARM GNU/Linux, where some binaries
5212 will have a legacy FPA coprocessor emulated and others may have
5213 access to a hardware VFP unit. */
5215 /* Now put the breakpoints back in. This way we're safe if the
5216 restart function works via a unix fork on the remote side. */
5217 insert_breakpoints ();
5219 /* Clean up from the last time we were running. */
5220 clear_proceed_status ();
5224 /* Insert a breakpoint. On targets that have software breakpoint
5225 support, we ask the remote target to do the work; on targets
5226 which don't, we insert a traditional memory breakpoint. */
5229 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5231 CORE_ADDR addr = bp_tgt->placed_address;
5232 struct remote_state *rs = get_remote_state ();
5234 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5235 If it succeeds, then set the support to PACKET_ENABLE. If it
5236 fails, and the user has explicitly requested the Z support then
5237 report an error, otherwise, mark it disabled and go on. */
5239 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5246 gdbarch_breakpoint_from_pc
5247 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5248 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5249 p += hexnumstr (p, addr);
5250 sprintf (p, ",%d", bp_tgt->placed_size);
5253 getpkt (&rs->buf, &rs->buf_size, 0);
5255 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5261 case PACKET_UNKNOWN:
5266 return memory_insert_breakpoint (bp_tgt);
5270 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5272 CORE_ADDR addr = bp_tgt->placed_address;
5273 struct remote_state *rs = get_remote_state ();
5276 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5284 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5285 p += hexnumstr (p, addr);
5286 sprintf (p, ",%d", bp_tgt->placed_size);
5289 getpkt (&rs->buf, &rs->buf_size, 0);
5291 return (rs->buf[0] == 'E');
5294 return memory_remove_breakpoint (bp_tgt);
5298 watchpoint_to_Z_packet (int type)
5303 return Z_PACKET_WRITE_WP;
5306 return Z_PACKET_READ_WP;
5309 return Z_PACKET_ACCESS_WP;
5312 internal_error (__FILE__, __LINE__,
5313 _("hw_bp_to_z: bad watchpoint type %d"), type);
5318 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5320 struct remote_state *rs = get_remote_state ();
5322 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5324 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5327 sprintf (rs->buf, "Z%x,", packet);
5328 p = strchr (rs->buf, '\0');
5329 addr = remote_address_masked (addr);
5330 p += hexnumstr (p, (ULONGEST) addr);
5331 sprintf (p, ",%x", len);
5334 getpkt (&rs->buf, &rs->buf_size, 0);
5336 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5339 case PACKET_UNKNOWN:
5344 internal_error (__FILE__, __LINE__,
5345 _("remote_insert_watchpoint: reached end of function"));
5350 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5352 struct remote_state *rs = get_remote_state ();
5354 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5356 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5359 sprintf (rs->buf, "z%x,", packet);
5360 p = strchr (rs->buf, '\0');
5361 addr = remote_address_masked (addr);
5362 p += hexnumstr (p, (ULONGEST) addr);
5363 sprintf (p, ",%x", len);
5365 getpkt (&rs->buf, &rs->buf_size, 0);
5367 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5370 case PACKET_UNKNOWN:
5375 internal_error (__FILE__, __LINE__,
5376 _("remote_remove_watchpoint: reached end of function"));
5380 int remote_hw_watchpoint_limit = -1;
5381 int remote_hw_breakpoint_limit = -1;
5384 remote_check_watch_resources (int type, int cnt, int ot)
5386 if (type == bp_hardware_breakpoint)
5388 if (remote_hw_breakpoint_limit == 0)
5390 else if (remote_hw_breakpoint_limit < 0)
5392 else if (cnt <= remote_hw_breakpoint_limit)
5397 if (remote_hw_watchpoint_limit == 0)
5399 else if (remote_hw_watchpoint_limit < 0)
5403 else if (cnt <= remote_hw_watchpoint_limit)
5410 remote_stopped_by_watchpoint (void)
5412 return remote_stopped_by_watchpoint_p;
5415 extern int stepped_after_stopped_by_watchpoint;
5418 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5421 if (remote_stopped_by_watchpoint ()
5422 || stepped_after_stopped_by_watchpoint)
5424 *addr_p = remote_watch_data_address;
5433 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5436 struct remote_state *rs = get_remote_state ();
5439 /* The length field should be set to the size of a breakpoint
5440 instruction, even though we aren't inserting one ourselves. */
5442 gdbarch_breakpoint_from_pc
5443 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5445 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5452 addr = remote_address_masked (bp_tgt->placed_address);
5453 p += hexnumstr (p, (ULONGEST) addr);
5454 sprintf (p, ",%x", bp_tgt->placed_size);
5457 getpkt (&rs->buf, &rs->buf_size, 0);
5459 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5462 case PACKET_UNKNOWN:
5467 internal_error (__FILE__, __LINE__,
5468 _("remote_insert_hw_breakpoint: reached end of function"));
5473 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5476 struct remote_state *rs = get_remote_state ();
5479 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5486 addr = remote_address_masked (bp_tgt->placed_address);
5487 p += hexnumstr (p, (ULONGEST) addr);
5488 sprintf (p, ",%x", bp_tgt->placed_size);
5491 getpkt (&rs->buf, &rs->buf_size, 0);
5493 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5496 case PACKET_UNKNOWN:
5501 internal_error (__FILE__, __LINE__,
5502 _("remote_remove_hw_breakpoint: reached end of function"));
5505 /* Some targets are only capable of doing downloads, and afterwards
5506 they switch to the remote serial protocol. This function provides
5507 a clean way to get from the download target to the remote target.
5508 It's basically just a wrapper so that we don't have to expose any
5509 of the internal workings of remote.c.
5511 Prior to calling this routine, you should shutdown the current
5512 target code, else you will get the "A program is being debugged
5513 already..." message. Usually a call to pop_target() suffices. */
5516 push_remote_target (char *name, int from_tty)
5518 printf_filtered (_("Switching to remote protocol\n"));
5519 remote_open (name, from_tty);
5522 /* Table used by the crc32 function to calcuate the checksum. */
5524 static unsigned long crc32_table[256] =
5527 static unsigned long
5528 crc32 (unsigned char *buf, int len, unsigned int crc)
5530 if (!crc32_table[1])
5532 /* Initialize the CRC table and the decoding table. */
5536 for (i = 0; i < 256; i++)
5538 for (c = i << 24, j = 8; j > 0; --j)
5539 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5546 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5552 /* compare-sections command
5554 With no arguments, compares each loadable section in the exec bfd
5555 with the same memory range on the target, and reports mismatches.
5556 Useful for verifying the image on the target against the exec file.
5557 Depends on the target understanding the new "qCRC:" request. */
5559 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5560 target method (target verify memory) and generic version of the
5561 actual command. This will allow other high-level code (especially
5562 generic_load()) to make use of this target functionality. */
5565 compare_sections_command (char *args, int from_tty)
5567 struct remote_state *rs = get_remote_state ();
5569 unsigned long host_crc, target_crc;
5570 extern bfd *exec_bfd;
5571 struct cleanup *old_chain;
5574 const char *sectname;
5581 error (_("command cannot be used without an exec file"));
5582 if (!current_target.to_shortname ||
5583 strcmp (current_target.to_shortname, "remote") != 0)
5584 error (_("command can only be used with remote target"));
5586 for (s = exec_bfd->sections; s; s = s->next)
5588 if (!(s->flags & SEC_LOAD))
5589 continue; /* skip non-loadable section */
5591 size = bfd_get_section_size (s);
5593 continue; /* skip zero-length section */
5595 sectname = bfd_get_section_name (exec_bfd, s);
5596 if (args && strcmp (args, sectname) != 0)
5597 continue; /* not the section selected by user */
5599 matched = 1; /* do this section */
5601 /* FIXME: assumes lma can fit into long. */
5602 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5603 (long) lma, (long) size);
5606 /* Be clever; compute the host_crc before waiting for target
5608 sectdata = xmalloc (size);
5609 old_chain = make_cleanup (xfree, sectdata);
5610 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5611 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5613 getpkt (&rs->buf, &rs->buf_size, 0);
5614 if (rs->buf[0] == 'E')
5615 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5616 sectname, paddr (lma), paddr (lma + size));
5617 if (rs->buf[0] != 'C')
5618 error (_("remote target does not support this operation"));
5620 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5621 target_crc = target_crc * 16 + fromhex (*tmp);
5623 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5624 sectname, paddr (lma), paddr (lma + size));
5625 if (host_crc == target_crc)
5626 printf_filtered ("matched.\n");
5629 printf_filtered ("MIS-MATCHED!\n");
5633 do_cleanups (old_chain);
5636 warning (_("One or more sections of the remote executable does not match\n\
5637 the loaded file\n"));
5638 if (args && !matched)
5639 printf_filtered (_("No loaded section named '%s'.\n"), args);
5642 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5643 into remote target. The number of bytes written to the remote
5644 target is returned, or -1 for error. */
5647 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5648 const char *annex, const gdb_byte *writebuf,
5649 ULONGEST offset, LONGEST len,
5650 struct packet_config *packet)
5655 struct remote_state *rs = get_remote_state ();
5656 int max_size = get_memory_write_packet_size ();
5658 if (packet->support == PACKET_DISABLE)
5661 /* Insert header. */
5662 i = snprintf (rs->buf, max_size,
5663 "qXfer:%s:write:%s:%s:",
5664 object_name, annex ? annex : "",
5665 phex_nz (offset, sizeof offset));
5666 max_size -= (i + 1);
5668 /* Escape as much data as fits into rs->buf. */
5669 buf_len = remote_escape_output
5670 (writebuf, len, (rs->buf + i), &max_size, max_size);
5672 if (putpkt_binary (rs->buf, i + buf_len) < 0
5673 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5674 || packet_ok (rs->buf, packet) != PACKET_OK)
5677 unpack_varlen_hex (rs->buf, &n);
5681 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5682 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5683 number of bytes read is returned, or 0 for EOF, or -1 for error.
5684 The number of bytes read may be less than LEN without indicating an
5685 EOF. PACKET is checked and updated to indicate whether the remote
5686 target supports this object. */
5689 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5691 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5692 struct packet_config *packet)
5694 static char *finished_object;
5695 static char *finished_annex;
5696 static ULONGEST finished_offset;
5698 struct remote_state *rs = get_remote_state ();
5699 unsigned int total = 0;
5700 LONGEST i, n, packet_len;
5702 if (packet->support == PACKET_DISABLE)
5705 /* Check whether we've cached an end-of-object packet that matches
5707 if (finished_object)
5709 if (strcmp (object_name, finished_object) == 0
5710 && strcmp (annex ? annex : "", finished_annex) == 0
5711 && offset == finished_offset)
5714 /* Otherwise, we're now reading something different. Discard
5716 xfree (finished_object);
5717 xfree (finished_annex);
5718 finished_object = NULL;
5719 finished_annex = NULL;
5722 /* Request only enough to fit in a single packet. The actual data
5723 may not, since we don't know how much of it will need to be escaped;
5724 the target is free to respond with slightly less data. We subtract
5725 five to account for the response type and the protocol frame. */
5726 n = min (get_remote_packet_size () - 5, len);
5727 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5728 object_name, annex ? annex : "",
5729 phex_nz (offset, sizeof offset),
5730 phex_nz (n, sizeof n));
5731 i = putpkt (rs->buf);
5736 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5737 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5740 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5741 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5743 /* 'm' means there is (or at least might be) more data after this
5744 batch. That does not make sense unless there's at least one byte
5745 of data in this reply. */
5746 if (rs->buf[0] == 'm' && packet_len == 1)
5747 error (_("Remote qXfer reply contained no data."));
5749 /* Got some data. */
5750 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5752 /* 'l' is an EOF marker, possibly including a final block of data,
5753 or possibly empty. If we have the final block of a non-empty
5754 object, record this fact to bypass a subsequent partial read. */
5755 if (rs->buf[0] == 'l' && offset + i > 0)
5757 finished_object = xstrdup (object_name);
5758 finished_annex = xstrdup (annex ? annex : "");
5759 finished_offset = offset + i;
5766 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5767 const char *annex, gdb_byte *readbuf,
5768 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5770 struct remote_state *rs = get_remote_state ();
5775 /* Handle memory using the standard memory routines. */
5776 if (object == TARGET_OBJECT_MEMORY)
5781 if (writebuf != NULL)
5782 xfered = remote_write_bytes (offset, writebuf, len);
5784 xfered = remote_read_bytes (offset, readbuf, len);
5788 else if (xfered == 0 && errno == 0)
5794 /* Handle SPU memory using qxfer packets. */
5795 if (object == TARGET_OBJECT_SPU)
5798 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5799 &remote_protocol_packets
5800 [PACKET_qXfer_spu_read]);
5802 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5803 &remote_protocol_packets
5804 [PACKET_qXfer_spu_write]);
5807 /* Only handle flash writes. */
5808 if (writebuf != NULL)
5814 case TARGET_OBJECT_FLASH:
5815 xfered = remote_flash_write (ops, offset, len, writebuf);
5819 else if (xfered == 0 && errno == 0)
5829 /* Map pre-existing objects onto letters. DO NOT do this for new
5830 objects!!! Instead specify new query packets. */
5833 case TARGET_OBJECT_AVR:
5837 case TARGET_OBJECT_AUXV:
5838 gdb_assert (annex == NULL);
5839 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5840 &remote_protocol_packets[PACKET_qXfer_auxv]);
5842 case TARGET_OBJECT_AVAILABLE_FEATURES:
5843 return remote_read_qxfer
5844 (ops, "features", annex, readbuf, offset, len,
5845 &remote_protocol_packets[PACKET_qXfer_features]);
5847 case TARGET_OBJECT_LIBRARIES:
5848 return remote_read_qxfer
5849 (ops, "libraries", annex, readbuf, offset, len,
5850 &remote_protocol_packets[PACKET_qXfer_libraries]);
5852 case TARGET_OBJECT_MEMORY_MAP:
5853 gdb_assert (annex == NULL);
5854 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5855 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5861 /* Note: a zero OFFSET and LEN can be used to query the minimum
5863 if (offset == 0 && len == 0)
5864 return (get_remote_packet_size ());
5865 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5866 large enough let the caller deal with it. */
5867 if (len < get_remote_packet_size ())
5869 len = get_remote_packet_size ();
5871 /* Except for querying the minimum buffer size, target must be open. */
5873 error (_("remote query is only available after target open"));
5875 gdb_assert (annex != NULL);
5876 gdb_assert (readbuf != NULL);
5882 /* We used one buffer char for the remote protocol q command and
5883 another for the query type. As the remote protocol encapsulation
5884 uses 4 chars plus one extra in case we are debugging
5885 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5888 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5890 /* Bad caller may have sent forbidden characters. */
5891 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5896 gdb_assert (annex[i] == '\0');
5898 i = putpkt (rs->buf);
5902 getpkt (&rs->buf, &rs->buf_size, 0);
5903 strcpy ((char *) readbuf, rs->buf);
5905 return strlen ((char *) readbuf);
5909 remote_rcmd (char *command,
5910 struct ui_file *outbuf)
5912 struct remote_state *rs = get_remote_state ();
5916 error (_("remote rcmd is only available after target open"));
5918 /* Send a NULL command across as an empty command. */
5919 if (command == NULL)
5922 /* The query prefix. */
5923 strcpy (rs->buf, "qRcmd,");
5924 p = strchr (rs->buf, '\0');
5926 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5927 error (_("\"monitor\" command ``%s'' is too long."), command);
5929 /* Encode the actual command. */
5930 bin2hex ((gdb_byte *) command, p, 0);
5932 if (putpkt (rs->buf) < 0)
5933 error (_("Communication problem with target."));
5935 /* get/display the response */
5940 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5942 getpkt (&rs->buf, &rs->buf_size, 0);
5945 error (_("Target does not support this command."));
5946 if (buf[0] == 'O' && buf[1] != 'K')
5948 remote_console_output (buf + 1); /* 'O' message from stub. */
5951 if (strcmp (buf, "OK") == 0)
5953 if (strlen (buf) == 3 && buf[0] == 'E'
5954 && isdigit (buf[1]) && isdigit (buf[2]))
5956 error (_("Protocol error with Rcmd"));
5958 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5960 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5961 fputc_unfiltered (c, outbuf);
5967 static VEC(mem_region_s) *
5968 remote_memory_map (struct target_ops *ops)
5970 VEC(mem_region_s) *result = NULL;
5971 char *text = target_read_stralloc (¤t_target,
5972 TARGET_OBJECT_MEMORY_MAP, NULL);
5976 struct cleanup *back_to = make_cleanup (xfree, text);
5977 result = parse_memory_map (text);
5978 do_cleanups (back_to);
5985 packet_command (char *args, int from_tty)
5987 struct remote_state *rs = get_remote_state ();
5990 error (_("command can only be used with remote target"));
5993 error (_("remote-packet command requires packet text as argument"));
5995 puts_filtered ("sending: ");
5996 print_packet (args);
5997 puts_filtered ("\n");
6000 getpkt (&rs->buf, &rs->buf_size, 0);
6001 puts_filtered ("received: ");
6002 print_packet (rs->buf);
6003 puts_filtered ("\n");
6007 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6009 static void display_thread_info (struct gdb_ext_thread_info *info);
6011 static void threadset_test_cmd (char *cmd, int tty);
6013 static void threadalive_test (char *cmd, int tty);
6015 static void threadlist_test_cmd (char *cmd, int tty);
6017 int get_and_display_threadinfo (threadref *ref);
6019 static void threadinfo_test_cmd (char *cmd, int tty);
6021 static int thread_display_step (threadref *ref, void *context);
6023 static void threadlist_update_test_cmd (char *cmd, int tty);
6025 static void init_remote_threadtests (void);
6027 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6030 threadset_test_cmd (char *cmd, int tty)
6032 int sample_thread = SAMPLE_THREAD;
6034 printf_filtered (_("Remote threadset test\n"));
6035 set_thread (sample_thread, 1);
6040 threadalive_test (char *cmd, int tty)
6042 int sample_thread = SAMPLE_THREAD;
6044 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6045 printf_filtered ("PASS: Thread alive test\n");
6047 printf_filtered ("FAIL: Thread alive test\n");
6050 void output_threadid (char *title, threadref *ref);
6053 output_threadid (char *title, threadref *ref)
6057 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6059 printf_filtered ("%s %s\n", title, (&hexid[0]));
6063 threadlist_test_cmd (char *cmd, int tty)
6066 threadref nextthread;
6067 int done, result_count;
6068 threadref threadlist[3];
6070 printf_filtered ("Remote Threadlist test\n");
6071 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6072 &result_count, &threadlist[0]))
6073 printf_filtered ("FAIL: threadlist test\n");
6076 threadref *scan = threadlist;
6077 threadref *limit = scan + result_count;
6079 while (scan < limit)
6080 output_threadid (" thread ", scan++);
6085 display_thread_info (struct gdb_ext_thread_info *info)
6087 output_threadid ("Threadid: ", &info->threadid);
6088 printf_filtered ("Name: %s\n ", info->shortname);
6089 printf_filtered ("State: %s\n", info->display);
6090 printf_filtered ("other: %s\n\n", info->more_display);
6094 get_and_display_threadinfo (threadref *ref)
6098 struct gdb_ext_thread_info threadinfo;
6100 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6101 | TAG_MOREDISPLAY | TAG_DISPLAY;
6102 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6103 display_thread_info (&threadinfo);
6108 threadinfo_test_cmd (char *cmd, int tty)
6110 int athread = SAMPLE_THREAD;
6114 int_to_threadref (&thread, athread);
6115 printf_filtered ("Remote Threadinfo test\n");
6116 if (!get_and_display_threadinfo (&thread))
6117 printf_filtered ("FAIL cannot get thread info\n");
6121 thread_display_step (threadref *ref, void *context)
6123 /* output_threadid(" threadstep ",ref); *//* simple test */
6124 return get_and_display_threadinfo (ref);
6128 threadlist_update_test_cmd (char *cmd, int tty)
6130 printf_filtered ("Remote Threadlist update test\n");
6131 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6135 init_remote_threadtests (void)
6137 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6138 Fetch and print the remote list of thread identifiers, one pkt only"));
6139 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6140 _("Fetch and display info about one thread"));
6141 add_com ("tset", class_obscure, threadset_test_cmd,
6142 _("Test setting to a different thread"));
6143 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6144 _("Iterate through updating all remote thread info"));
6145 add_com ("talive", class_obscure, threadalive_test,
6146 _(" Remote thread alive test "));
6151 /* Convert a thread ID to a string. Returns the string in a static
6155 remote_pid_to_str (ptid_t ptid)
6157 static char buf[32];
6159 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6163 /* Get the address of the thread local variable in OBJFILE which is
6164 stored at OFFSET within the thread local storage for thread PTID. */
6167 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6169 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6171 struct remote_state *rs = get_remote_state ();
6173 enum packet_result result;
6175 strcpy (p, "qGetTLSAddr:");
6177 p += hexnumstr (p, PIDGET (ptid));
6179 p += hexnumstr (p, offset);
6181 p += hexnumstr (p, lm);
6185 getpkt (&rs->buf, &rs->buf_size, 0);
6186 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6187 if (result == PACKET_OK)
6191 unpack_varlen_hex (rs->buf, &result);
6194 else if (result == PACKET_UNKNOWN)
6195 throw_error (TLS_GENERIC_ERROR,
6196 _("Remote target doesn't support qGetTLSAddr packet"));
6198 throw_error (TLS_GENERIC_ERROR,
6199 _("Remote target failed to process qGetTLSAddr request"));
6202 throw_error (TLS_GENERIC_ERROR,
6203 _("TLS not supported or disabled on this target"));
6208 /* Support for inferring a target description based on the current
6209 architecture and the size of a 'g' packet. While the 'g' packet
6210 can have any size (since optional registers can be left off the
6211 end), some sizes are easily recognizable given knowledge of the
6212 approximate architecture. */
6214 struct remote_g_packet_guess
6217 const struct target_desc *tdesc;
6219 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6220 DEF_VEC_O(remote_g_packet_guess_s);
6222 struct remote_g_packet_data
6224 VEC(remote_g_packet_guess_s) *guesses;
6227 static struct gdbarch_data *remote_g_packet_data_handle;
6230 remote_g_packet_data_init (struct obstack *obstack)
6232 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6236 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6237 const struct target_desc *tdesc)
6239 struct remote_g_packet_data *data
6240 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6241 struct remote_g_packet_guess new_guess, *guess;
6244 gdb_assert (tdesc != NULL);
6247 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6249 if (guess->bytes == bytes)
6250 internal_error (__FILE__, __LINE__,
6251 "Duplicate g packet description added for size %d",
6254 new_guess.bytes = bytes;
6255 new_guess.tdesc = tdesc;
6256 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6259 static const struct target_desc *
6260 remote_read_description (struct target_ops *target)
6262 struct remote_g_packet_data *data
6263 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6265 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6267 struct remote_g_packet_guess *guess;
6269 int bytes = send_g_packet ();
6272 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6274 if (guess->bytes == bytes)
6275 return guess->tdesc;
6277 /* We discard the g packet. A minor optimization would be to
6278 hold on to it, and fill the register cache once we have selected
6279 an architecture, but it's too tricky to do safely. */
6286 init_remote_ops (void)
6288 remote_ops.to_shortname = "remote";
6289 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6291 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6292 Specify the serial device it is connected to\n\
6293 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6294 remote_ops.to_open = remote_open;
6295 remote_ops.to_close = remote_close;
6296 remote_ops.to_detach = remote_detach;
6297 remote_ops.to_disconnect = remote_disconnect;
6298 remote_ops.to_resume = remote_resume;
6299 remote_ops.to_wait = remote_wait;
6300 remote_ops.to_fetch_registers = remote_fetch_registers;
6301 remote_ops.to_store_registers = remote_store_registers;
6302 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6303 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6304 remote_ops.to_files_info = remote_files_info;
6305 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6306 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6307 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6308 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6309 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6310 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6311 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6312 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6313 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6314 remote_ops.to_kill = remote_kill;
6315 remote_ops.to_load = generic_load;
6316 remote_ops.to_mourn_inferior = remote_mourn;
6317 remote_ops.to_thread_alive = remote_thread_alive;
6318 remote_ops.to_find_new_threads = remote_threads_info;
6319 remote_ops.to_pid_to_str = remote_pid_to_str;
6320 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6321 remote_ops.to_stop = remote_stop;
6322 remote_ops.to_xfer_partial = remote_xfer_partial;
6323 remote_ops.to_rcmd = remote_rcmd;
6324 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6325 remote_ops.to_stratum = process_stratum;
6326 remote_ops.to_has_all_memory = 1;
6327 remote_ops.to_has_memory = 1;
6328 remote_ops.to_has_stack = 1;
6329 remote_ops.to_has_registers = 1;
6330 remote_ops.to_has_execution = 1;
6331 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6332 remote_ops.to_magic = OPS_MAGIC;
6333 remote_ops.to_memory_map = remote_memory_map;
6334 remote_ops.to_flash_erase = remote_flash_erase;
6335 remote_ops.to_flash_done = remote_flash_done;
6336 remote_ops.to_read_description = remote_read_description;
6339 /* Set up the extended remote vector by making a copy of the standard
6340 remote vector and adding to it. */
6343 init_extended_remote_ops (void)
6345 extended_remote_ops = remote_ops;
6347 extended_remote_ops.to_shortname = "extended-remote";
6348 extended_remote_ops.to_longname =
6349 "Extended remote serial target in gdb-specific protocol";
6350 extended_remote_ops.to_doc =
6351 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6352 Specify the serial device it is connected to (e.g. /dev/ttya).",
6353 extended_remote_ops.to_open = extended_remote_open;
6354 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6355 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6359 remote_can_async_p (void)
6361 /* We're async whenever the serial device is. */
6362 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6366 remote_is_async_p (void)
6368 /* We're async whenever the serial device is. */
6369 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6372 /* Pass the SERIAL event on and up to the client. One day this code
6373 will be able to delay notifying the client of an event until the
6374 point where an entire packet has been received. */
6376 static void (*async_client_callback) (enum inferior_event_type event_type,
6378 static void *async_client_context;
6379 static serial_event_ftype remote_async_serial_handler;
6382 remote_async_serial_handler (struct serial *scb, void *context)
6384 /* Don't propogate error information up to the client. Instead let
6385 the client find out about the error by querying the target. */
6386 async_client_callback (INF_REG_EVENT, async_client_context);
6390 remote_async (void (*callback) (enum inferior_event_type event_type,
6391 void *context), void *context)
6393 if (current_target.to_async_mask_value == 0)
6394 internal_error (__FILE__, __LINE__,
6395 _("Calling remote_async when async is masked"));
6397 if (callback != NULL)
6399 serial_async (remote_desc, remote_async_serial_handler, NULL);
6400 async_client_callback = callback;
6401 async_client_context = context;
6404 serial_async (remote_desc, NULL, NULL);
6407 /* Target async and target extended-async.
6409 This are temporary targets, until it is all tested. Eventually
6410 async support will be incorporated int the usual 'remote'
6414 init_remote_async_ops (void)
6416 remote_async_ops.to_shortname = "async";
6417 remote_async_ops.to_longname =
6418 "Remote serial target in async version of the gdb-specific protocol";
6419 remote_async_ops.to_doc =
6420 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6421 Specify the serial device it is connected to (e.g. /dev/ttya).";
6422 remote_async_ops.to_open = remote_async_open;
6423 remote_async_ops.to_close = remote_close;
6424 remote_async_ops.to_detach = remote_detach;
6425 remote_async_ops.to_disconnect = remote_disconnect;
6426 remote_async_ops.to_resume = remote_async_resume;
6427 remote_async_ops.to_wait = remote_async_wait;
6428 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6429 remote_async_ops.to_store_registers = remote_store_registers;
6430 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6431 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6432 remote_async_ops.to_files_info = remote_files_info;
6433 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6434 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6435 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6436 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6437 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6438 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6439 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6440 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6441 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6442 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6443 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6444 remote_async_ops.to_kill = remote_async_kill;
6445 remote_async_ops.to_load = generic_load;
6446 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6447 remote_async_ops.to_thread_alive = remote_thread_alive;
6448 remote_async_ops.to_find_new_threads = remote_threads_info;
6449 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6450 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6451 remote_async_ops.to_stop = remote_stop;
6452 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6453 remote_async_ops.to_rcmd = remote_rcmd;
6454 remote_async_ops.to_stratum = process_stratum;
6455 remote_async_ops.to_has_all_memory = 1;
6456 remote_async_ops.to_has_memory = 1;
6457 remote_async_ops.to_has_stack = 1;
6458 remote_async_ops.to_has_registers = 1;
6459 remote_async_ops.to_has_execution = 1;
6460 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6461 remote_async_ops.to_can_async_p = remote_can_async_p;
6462 remote_async_ops.to_is_async_p = remote_is_async_p;
6463 remote_async_ops.to_async = remote_async;
6464 remote_async_ops.to_async_mask_value = 1;
6465 remote_async_ops.to_magic = OPS_MAGIC;
6466 remote_async_ops.to_memory_map = remote_memory_map;
6467 remote_async_ops.to_flash_erase = remote_flash_erase;
6468 remote_async_ops.to_flash_done = remote_flash_done;
6469 remote_async_ops.to_read_description = remote_read_description;
6472 /* Set up the async extended remote vector by making a copy of the standard
6473 remote vector and adding to it. */
6476 init_extended_async_remote_ops (void)
6478 extended_async_remote_ops = remote_async_ops;
6480 extended_async_remote_ops.to_shortname = "extended-async";
6481 extended_async_remote_ops.to_longname =
6482 "Extended remote serial target in async gdb-specific protocol";
6483 extended_async_remote_ops.to_doc =
6484 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6485 Specify the serial device it is connected to (e.g. /dev/ttya).",
6486 extended_async_remote_ops.to_open = extended_remote_async_open;
6487 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6488 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6492 set_remote_cmd (char *args, int from_tty)
6494 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6498 show_remote_cmd (char *args, int from_tty)
6500 /* We can't just use cmd_show_list here, because we want to skip
6501 the redundant "show remote Z-packet" and the legacy aliases. */
6502 struct cleanup *showlist_chain;
6503 struct cmd_list_element *list = remote_show_cmdlist;
6505 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6506 for (; list != NULL; list = list->next)
6507 if (strcmp (list->name, "Z-packet") == 0)
6509 else if (list->type == not_set_cmd)
6510 /* Alias commands are exactly like the original, except they
6511 don't have the normal type. */
6515 struct cleanup *option_chain
6516 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6517 ui_out_field_string (uiout, "name", list->name);
6518 ui_out_text (uiout, ": ");
6519 if (list->type == show_cmd)
6520 do_setshow_command ((char *) NULL, from_tty, list);
6522 cmd_func (list, NULL, from_tty);
6523 /* Close the tuple. */
6524 do_cleanups (option_chain);
6527 /* Close the tuple. */
6528 do_cleanups (showlist_chain);
6532 /* Function to be called whenever a new objfile (shlib) is detected. */
6534 remote_new_objfile (struct objfile *objfile)
6536 if (remote_desc != 0) /* Have a remote connection. */
6537 remote_check_symbols (objfile);
6541 _initialize_remote (void)
6543 struct remote_state *rs;
6545 /* architecture specific data */
6546 remote_gdbarch_data_handle =
6547 gdbarch_data_register_post_init (init_remote_state);
6548 remote_g_packet_data_handle =
6549 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6551 /* Initialize the per-target state. At the moment there is only one
6552 of these, not one per target. Only one target is active at a
6553 time. The default buffer size is unimportant; it will be expanded
6554 whenever a larger buffer is needed. */
6555 rs = get_remote_state_raw ();
6557 rs->buf = xmalloc (rs->buf_size);
6560 add_target (&remote_ops);
6562 init_extended_remote_ops ();
6563 add_target (&extended_remote_ops);
6565 init_remote_async_ops ();
6566 add_target (&remote_async_ops);
6568 init_extended_async_remote_ops ();
6569 add_target (&extended_async_remote_ops);
6571 /* Hook into new objfile notification. */
6572 observer_attach_new_objfile (remote_new_objfile);
6575 init_remote_threadtests ();
6578 /* set/show remote ... */
6580 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6581 Remote protocol specific variables\n\
6582 Configure various remote-protocol specific variables such as\n\
6583 the packets being used"),
6584 &remote_set_cmdlist, "set remote ",
6585 0 /* allow-unknown */, &setlist);
6586 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6587 Remote protocol specific variables\n\
6588 Configure various remote-protocol specific variables such as\n\
6589 the packets being used"),
6590 &remote_show_cmdlist, "show remote ",
6591 0 /* allow-unknown */, &showlist);
6593 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6594 Compare section data on target to the exec file.\n\
6595 Argument is a single section name (default: all loaded sections)."),
6598 add_cmd ("packet", class_maintenance, packet_command, _("\
6599 Send an arbitrary packet to a remote target.\n\
6600 maintenance packet TEXT\n\
6601 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6602 this command sends the string TEXT to the inferior, and displays the\n\
6603 response packet. GDB supplies the initial `$' character, and the\n\
6604 terminating `#' character and checksum."),
6607 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6608 Set whether to send break if interrupted."), _("\
6609 Show whether to send break if interrupted."), _("\
6610 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6611 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6612 &setlist, &showlist);
6614 /* Install commands for configuring memory read/write packets. */
6616 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6617 Set the maximum number of bytes per memory write packet (deprecated)."),
6619 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6620 Show the maximum number of bytes per memory write packet (deprecated)."),
6622 add_cmd ("memory-write-packet-size", no_class,
6623 set_memory_write_packet_size, _("\
6624 Set the maximum number of bytes per memory-write packet.\n\
6625 Specify the number of bytes in a packet or 0 (zero) for the\n\
6626 default packet size. The actual limit is further reduced\n\
6627 dependent on the target. Specify ``fixed'' to disable the\n\
6628 further restriction and ``limit'' to enable that restriction."),
6629 &remote_set_cmdlist);
6630 add_cmd ("memory-read-packet-size", no_class,
6631 set_memory_read_packet_size, _("\
6632 Set the maximum number of bytes per memory-read packet.\n\
6633 Specify the number of bytes in a packet or 0 (zero) for the\n\
6634 default packet size. The actual limit is further reduced\n\
6635 dependent on the target. Specify ``fixed'' to disable the\n\
6636 further restriction and ``limit'' to enable that restriction."),
6637 &remote_set_cmdlist);
6638 add_cmd ("memory-write-packet-size", no_class,
6639 show_memory_write_packet_size,
6640 _("Show the maximum number of bytes per memory-write packet."),
6641 &remote_show_cmdlist);
6642 add_cmd ("memory-read-packet-size", no_class,
6643 show_memory_read_packet_size,
6644 _("Show the maximum number of bytes per memory-read packet."),
6645 &remote_show_cmdlist);
6647 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6648 &remote_hw_watchpoint_limit, _("\
6649 Set the maximum number of target hardware watchpoints."), _("\
6650 Show the maximum number of target hardware watchpoints."), _("\
6651 Specify a negative limit for unlimited."),
6652 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6653 &remote_set_cmdlist, &remote_show_cmdlist);
6654 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6655 &remote_hw_breakpoint_limit, _("\
6656 Set the maximum number of target hardware breakpoints."), _("\
6657 Show the maximum number of target hardware breakpoints."), _("\
6658 Specify a negative limit for unlimited."),
6659 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6660 &remote_set_cmdlist, &remote_show_cmdlist);
6662 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6663 &remote_address_size, _("\
6664 Set the maximum size of the address (in bits) in a memory packet."), _("\
6665 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6667 NULL, /* FIXME: i18n: */
6668 &setlist, &showlist);
6670 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6671 "X", "binary-download", 1);
6673 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6674 "vCont", "verbose-resume", 0);
6676 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6677 "QPassSignals", "pass-signals", 0);
6679 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6680 "qSymbol", "symbol-lookup", 0);
6682 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6683 "P", "set-register", 1);
6685 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6686 "p", "fetch-register", 1);
6688 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6689 "Z0", "software-breakpoint", 0);
6691 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6692 "Z1", "hardware-breakpoint", 0);
6694 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6695 "Z2", "write-watchpoint", 0);
6697 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6698 "Z3", "read-watchpoint", 0);
6700 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6701 "Z4", "access-watchpoint", 0);
6703 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6704 "qXfer:auxv:read", "read-aux-vector", 0);
6706 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6707 "qXfer:features:read", "target-features", 0);
6709 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
6710 "qXfer:libraries:read", "library-info", 0);
6712 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6713 "qXfer:memory-map:read", "memory-map", 0);
6715 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
6716 "qXfer:spu:read", "read-spu-object", 0);
6718 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
6719 "qXfer:spu:write", "write-spu-object", 0);
6721 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6722 "qGetTLSAddr", "get-thread-local-storage-address",
6725 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6726 "qSupported", "supported-packets", 0);
6728 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6729 Z sub-packet has its own set and show commands, but users may
6730 have sets to this variable in their .gdbinit files (or in their
6732 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6733 &remote_Z_packet_detect, _("\
6734 Set use of remote protocol `Z' packets"), _("\
6735 Show use of remote protocol `Z' packets "), _("\
6736 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6738 set_remote_protocol_Z_packet_cmd,
6739 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6740 &remote_set_cmdlist, &remote_show_cmdlist);
6742 /* Eventually initialize fileio. See fileio.c */
6743 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);