2 Copyright 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 /* ELF linker code. */
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
25 struct elf_info_failed
28 struct bfd_link_info *info;
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
55 static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57 static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
59 static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
63 /* Given an ELF BFD, add symbols to the global hash table as
67 elf_bfd_link_add_symbols (abfd, info)
69 struct bfd_link_info *info;
71 switch (bfd_get_format (abfd))
74 return elf_link_add_object_symbols (abfd, info);
76 return elf_link_add_archive_symbols (abfd, info);
78 bfd_set_error (bfd_error_wrong_format);
83 /* Return true iff this is a non-common definition of a symbol. */
85 is_global_symbol_definition (abfd, sym)
86 bfd * abfd ATTRIBUTE_UNUSED;
87 Elf_Internal_Sym * sym;
89 /* Local symbols do not count, but target specific ones might. */
90 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
91 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
94 /* If the section is undefined, then so is the symbol. */
95 if (sym->st_shndx == SHN_UNDEF)
98 /* If the symbol is defined in the common section, then
99 it is a common definition and so does not count. */
100 if (sym->st_shndx == SHN_COMMON)
103 /* If the symbol is in a target specific section then we
104 must rely upon the backend to tell us what it is. */
105 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
106 /* FIXME - this function is not coded yet:
108 return _bfd_is_global_symbol_definition (abfd, sym);
110 Instead for now assume that the definition is not global,
111 Even if this is wrong, at least the linker will behave
112 in the same way that it used to do. */
119 /* Search the symbol table of the archive element of the archive ABFD
120 whoes archove map contains a mention of SYMDEF, and determine if
121 the symbol is defined in this element. */
123 elf_link_is_defined_archive_symbol (abfd, symdef)
127 Elf_Internal_Shdr * hdr;
128 Elf_External_Sym * esym;
129 Elf_External_Sym * esymend;
130 Elf_External_Sym * buf = NULL;
134 boolean result = false;
136 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
137 if (abfd == (bfd *) NULL)
140 if (! bfd_check_format (abfd, bfd_object))
143 /* If we have already included the element containing this symbol in the
144 link then we do not need to include it again. Just claim that any symbol
145 it contains is not a definition, so that our caller will not decide to
146 (re)include this element. */
147 if (abfd->archive_pass)
150 /* Select the appropriate symbol table. */
151 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
152 hdr = &elf_tdata (abfd)->symtab_hdr;
154 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
156 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
158 /* The sh_info field of the symtab header tells us where the
159 external symbols start. We don't care about the local symbols. */
160 if (elf_bad_symtab (abfd))
162 extsymcount = symcount;
167 extsymcount = symcount - hdr->sh_info;
168 extsymoff = hdr->sh_info;
171 buf = ((Elf_External_Sym *)
172 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
173 if (buf == NULL && extsymcount != 0)
176 /* Read in the symbol table.
177 FIXME: This ought to be cached somewhere. */
179 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
181 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
182 != extsymcount * sizeof (Elf_External_Sym)))
188 /* Scan the symbol table looking for SYMDEF. */
189 esymend = buf + extsymcount;
194 Elf_Internal_Sym sym;
197 elf_swap_symbol_in (abfd, esym, & sym);
199 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
200 if (name == (const char *) NULL)
203 if (strcmp (name, symdef->name) == 0)
205 result = is_global_symbol_definition (abfd, & sym);
216 /* Add symbols from an ELF archive file to the linker hash table. We
217 don't use _bfd_generic_link_add_archive_symbols because of a
218 problem which arises on UnixWare. The UnixWare libc.so is an
219 archive which includes an entry libc.so.1 which defines a bunch of
220 symbols. The libc.so archive also includes a number of other
221 object files, which also define symbols, some of which are the same
222 as those defined in libc.so.1. Correct linking requires that we
223 consider each object file in turn, and include it if it defines any
224 symbols we need. _bfd_generic_link_add_archive_symbols does not do
225 this; it looks through the list of undefined symbols, and includes
226 any object file which defines them. When this algorithm is used on
227 UnixWare, it winds up pulling in libc.so.1 early and defining a
228 bunch of symbols. This means that some of the other objects in the
229 archive are not included in the link, which is incorrect since they
230 precede libc.so.1 in the archive.
232 Fortunately, ELF archive handling is simpler than that done by
233 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
234 oddities. In ELF, if we find a symbol in the archive map, and the
235 symbol is currently undefined, we know that we must pull in that
238 Unfortunately, we do have to make multiple passes over the symbol
239 table until nothing further is resolved. */
242 elf_link_add_archive_symbols (abfd, info)
244 struct bfd_link_info *info;
247 boolean *defined = NULL;
248 boolean *included = NULL;
252 if (! bfd_has_map (abfd))
254 /* An empty archive is a special case. */
255 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
257 bfd_set_error (bfd_error_no_armap);
261 /* Keep track of all symbols we know to be already defined, and all
262 files we know to be already included. This is to speed up the
263 second and subsequent passes. */
264 c = bfd_ardata (abfd)->symdef_count;
267 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
268 included = (boolean *) bfd_malloc (c * sizeof (boolean));
269 if (defined == (boolean *) NULL || included == (boolean *) NULL)
271 memset (defined, 0, c * sizeof (boolean));
272 memset (included, 0, c * sizeof (boolean));
274 symdefs = bfd_ardata (abfd)->symdefs;
287 symdefend = symdef + c;
288 for (i = 0; symdef < symdefend; symdef++, i++)
290 struct elf_link_hash_entry *h;
292 struct bfd_link_hash_entry *undefs_tail;
295 if (defined[i] || included[i])
297 if (symdef->file_offset == last)
303 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
304 false, false, false);
310 /* If this is a default version (the name contains @@),
311 look up the symbol again without the version. The
312 effect is that references to the symbol without the
313 version will be matched by the default symbol in the
316 p = strchr (symdef->name, ELF_VER_CHR);
317 if (p == NULL || p[1] != ELF_VER_CHR)
320 copy = bfd_alloc (abfd, p - symdef->name + 1);
323 memcpy (copy, symdef->name, p - symdef->name);
324 copy[p - symdef->name] = '\0';
326 h = elf_link_hash_lookup (elf_hash_table (info), copy,
327 false, false, false);
329 bfd_release (abfd, copy);
335 if (h->root.type == bfd_link_hash_common)
337 /* We currently have a common symbol. The archive map contains
338 a reference to this symbol, so we may want to include it. We
339 only want to include it however, if this archive element
340 contains a definition of the symbol, not just another common
343 Unfortunately some archivers (including GNU ar) will put
344 declarations of common symbols into their archive maps, as
345 well as real definitions, so we cannot just go by the archive
346 map alone. Instead we must read in the element's symbol
347 table and check that to see what kind of symbol definition
349 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
352 else if (h->root.type != bfd_link_hash_undefined)
354 if (h->root.type != bfd_link_hash_undefweak)
359 /* We need to include this archive member. */
360 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
361 if (element == (bfd *) NULL)
364 if (! bfd_check_format (element, bfd_object))
367 /* Doublecheck that we have not included this object
368 already--it should be impossible, but there may be
369 something wrong with the archive. */
370 if (element->archive_pass != 0)
372 bfd_set_error (bfd_error_bad_value);
375 element->archive_pass = 1;
377 undefs_tail = info->hash->undefs_tail;
379 if (! (*info->callbacks->add_archive_element) (info, element,
382 if (! elf_link_add_object_symbols (element, info))
385 /* If there are any new undefined symbols, we need to make
386 another pass through the archive in order to see whether
387 they can be defined. FIXME: This isn't perfect, because
388 common symbols wind up on undefs_tail and because an
389 undefined symbol which is defined later on in this pass
390 does not require another pass. This isn't a bug, but it
391 does make the code less efficient than it could be. */
392 if (undefs_tail != info->hash->undefs_tail)
395 /* Look backward to mark all symbols from this object file
396 which we have already seen in this pass. */
400 included[mark] = true;
405 while (symdefs[mark].file_offset == symdef->file_offset);
407 /* We mark subsequent symbols from this object file as we go
408 on through the loop. */
409 last = symdef->file_offset;
420 if (defined != (boolean *) NULL)
422 if (included != (boolean *) NULL)
427 /* This function is called when we want to define a new symbol. It
428 handles the various cases which arise when we find a definition in
429 a dynamic object, or when there is already a definition in a
430 dynamic object. The new symbol is described by NAME, SYM, PSEC,
431 and PVALUE. We set SYM_HASH to the hash table entry. We set
432 OVERRIDE if the old symbol is overriding a new definition. We set
433 TYPE_CHANGE_OK if it is OK for the type to change. We set
434 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
435 change, we mean that we shouldn't warn if the type or size does
439 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
440 override, type_change_ok, size_change_ok)
442 struct bfd_link_info *info;
444 Elf_Internal_Sym *sym;
447 struct elf_link_hash_entry **sym_hash;
449 boolean *type_change_ok;
450 boolean *size_change_ok;
453 struct elf_link_hash_entry *h;
456 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
461 bind = ELF_ST_BIND (sym->st_info);
463 if (! bfd_is_und_section (sec))
464 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
466 h = ((struct elf_link_hash_entry *)
467 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
472 /* This code is for coping with dynamic objects, and is only useful
473 if we are doing an ELF link. */
474 if (info->hash->creator != abfd->xvec)
477 /* For merging, we only care about real symbols. */
479 while (h->root.type == bfd_link_hash_indirect
480 || h->root.type == bfd_link_hash_warning)
481 h = (struct elf_link_hash_entry *) h->root.u.i.link;
483 /* If we just created the symbol, mark it as being an ELF symbol.
484 Other than that, there is nothing to do--there is no merge issue
485 with a newly defined symbol--so we just return. */
487 if (h->root.type == bfd_link_hash_new)
489 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
493 /* OLDBFD is a BFD associated with the existing symbol. */
495 switch (h->root.type)
501 case bfd_link_hash_undefined:
502 case bfd_link_hash_undefweak:
503 oldbfd = h->root.u.undef.abfd;
506 case bfd_link_hash_defined:
507 case bfd_link_hash_defweak:
508 oldbfd = h->root.u.def.section->owner;
511 case bfd_link_hash_common:
512 oldbfd = h->root.u.c.p->section->owner;
516 /* In cases involving weak versioned symbols, we may wind up trying
517 to merge a symbol with itself. Catch that here, to avoid the
518 confusion that results if we try to override a symbol with
519 itself. The additional tests catch cases like
520 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
521 dynamic object, which we do want to handle here. */
523 && ((abfd->flags & DYNAMIC) == 0
524 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
527 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
528 respectively, is from a dynamic object. */
530 if ((abfd->flags & DYNAMIC) != 0)
536 olddyn = (oldbfd->flags & DYNAMIC) != 0;
541 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
542 indices used by MIPS ELF. */
543 switch (h->root.type)
549 case bfd_link_hash_defined:
550 case bfd_link_hash_defweak:
551 hsec = h->root.u.def.section;
554 case bfd_link_hash_common:
555 hsec = h->root.u.c.p->section;
562 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
565 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
566 respectively, appear to be a definition rather than reference. */
568 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
573 if (h->root.type == bfd_link_hash_undefined
574 || h->root.type == bfd_link_hash_undefweak
575 || h->root.type == bfd_link_hash_common)
580 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
581 symbol, respectively, appears to be a common symbol in a dynamic
582 object. If a symbol appears in an uninitialized section, and is
583 not weak, and is not a function, then it may be a common symbol
584 which was resolved when the dynamic object was created. We want
585 to treat such symbols specially, because they raise special
586 considerations when setting the symbol size: if the symbol
587 appears as a common symbol in a regular object, and the size in
588 the regular object is larger, we must make sure that we use the
589 larger size. This problematic case can always be avoided in C,
590 but it must be handled correctly when using Fortran shared
593 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
594 likewise for OLDDYNCOMMON and OLDDEF.
596 Note that this test is just a heuristic, and that it is quite
597 possible to have an uninitialized symbol in a shared object which
598 is really a definition, rather than a common symbol. This could
599 lead to some minor confusion when the symbol really is a common
600 symbol in some regular object. However, I think it will be
605 && (sec->flags & SEC_ALLOC) != 0
606 && (sec->flags & SEC_LOAD) == 0
609 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
612 newdyncommon = false;
616 && h->root.type == bfd_link_hash_defined
617 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
618 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
619 && (h->root.u.def.section->flags & SEC_LOAD) == 0
621 && h->type != STT_FUNC)
624 olddyncommon = false;
626 /* It's OK to change the type if either the existing symbol or the
627 new symbol is weak. */
629 if (h->root.type == bfd_link_hash_defweak
630 || h->root.type == bfd_link_hash_undefweak
632 *type_change_ok = true;
634 /* It's OK to change the size if either the existing symbol or the
635 new symbol is weak, or if the old symbol is undefined. */
638 || h->root.type == bfd_link_hash_undefined)
639 *size_change_ok = true;
641 /* If both the old and the new symbols look like common symbols in a
642 dynamic object, set the size of the symbol to the larger of the
647 && sym->st_size != h->size)
649 /* Since we think we have two common symbols, issue a multiple
650 common warning if desired. Note that we only warn if the
651 size is different. If the size is the same, we simply let
652 the old symbol override the new one as normally happens with
653 symbols defined in dynamic objects. */
655 if (! ((*info->callbacks->multiple_common)
656 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
657 h->size, abfd, bfd_link_hash_common, sym->st_size)))
660 if (sym->st_size > h->size)
661 h->size = sym->st_size;
663 *size_change_ok = true;
666 /* If we are looking at a dynamic object, and we have found a
667 definition, we need to see if the symbol was already defined by
668 some other object. If so, we want to use the existing
669 definition, and we do not want to report a multiple symbol
670 definition error; we do this by clobbering *PSEC to be
673 We treat a common symbol as a definition if the symbol in the
674 shared library is a function, since common symbols always
675 represent variables; this can cause confusion in principle, but
676 any such confusion would seem to indicate an erroneous program or
677 shared library. We also permit a common symbol in a regular
678 object to override a weak symbol in a shared object.
680 We prefer a non-weak definition in a shared library to a weak
681 definition in the executable. */
686 || (h->root.type == bfd_link_hash_common
688 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
689 && (h->root.type != bfd_link_hash_defweak
690 || bind == STB_WEAK))
694 newdyncommon = false;
696 *psec = sec = bfd_und_section_ptr;
697 *size_change_ok = true;
699 /* If we get here when the old symbol is a common symbol, then
700 we are explicitly letting it override a weak symbol or
701 function in a dynamic object, and we don't want to warn about
702 a type change. If the old symbol is a defined symbol, a type
703 change warning may still be appropriate. */
705 if (h->root.type == bfd_link_hash_common)
706 *type_change_ok = true;
709 /* Handle the special case of an old common symbol merging with a
710 new symbol which looks like a common symbol in a shared object.
711 We change *PSEC and *PVALUE to make the new symbol look like a
712 common symbol, and let _bfd_generic_link_add_one_symbol will do
716 && h->root.type == bfd_link_hash_common)
720 newdyncommon = false;
721 *pvalue = sym->st_size;
722 *psec = sec = bfd_com_section_ptr;
723 *size_change_ok = true;
726 /* If the old symbol is from a dynamic object, and the new symbol is
727 a definition which is not from a dynamic object, then the new
728 symbol overrides the old symbol. Symbols from regular files
729 always take precedence over symbols from dynamic objects, even if
730 they are defined after the dynamic object in the link.
732 As above, we again permit a common symbol in a regular object to
733 override a definition in a shared object if the shared object
734 symbol is a function or is weak.
736 As above, we permit a non-weak definition in a shared object to
737 override a weak definition in a regular object. */
741 || (bfd_is_com_section (sec)
742 && (h->root.type == bfd_link_hash_defweak
743 || h->type == STT_FUNC)))
746 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
748 || h->root.type == bfd_link_hash_defweak))
750 /* Change the hash table entry to undefined, and let
751 _bfd_generic_link_add_one_symbol do the right thing with the
754 h->root.type = bfd_link_hash_undefined;
755 h->root.u.undef.abfd = h->root.u.def.section->owner;
756 *size_change_ok = true;
759 olddyncommon = false;
761 /* We again permit a type change when a common symbol may be
762 overriding a function. */
764 if (bfd_is_com_section (sec))
765 *type_change_ok = true;
767 /* This union may have been set to be non-NULL when this symbol
768 was seen in a dynamic object. We must force the union to be
769 NULL, so that it is correct for a regular symbol. */
771 h->verinfo.vertree = NULL;
773 /* In this special case, if H is the target of an indirection,
774 we want the caller to frob with H rather than with the
775 indirect symbol. That will permit the caller to redefine the
776 target of the indirection, rather than the indirect symbol
777 itself. FIXME: This will break the -y option if we store a
778 symbol with a different name. */
782 /* Handle the special case of a new common symbol merging with an
783 old symbol that looks like it might be a common symbol defined in
784 a shared object. Note that we have already handled the case in
785 which a new common symbol should simply override the definition
786 in the shared library. */
789 && bfd_is_com_section (sec)
792 /* It would be best if we could set the hash table entry to a
793 common symbol, but we don't know what to use for the section
795 if (! ((*info->callbacks->multiple_common)
796 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
797 h->size, abfd, bfd_link_hash_common, sym->st_size)))
800 /* If the predumed common symbol in the dynamic object is
801 larger, pretend that the new symbol has its size. */
803 if (h->size > *pvalue)
806 /* FIXME: We no longer know the alignment required by the symbol
807 in the dynamic object, so we just wind up using the one from
808 the regular object. */
811 olddyncommon = false;
813 h->root.type = bfd_link_hash_undefined;
814 h->root.u.undef.abfd = h->root.u.def.section->owner;
816 *size_change_ok = true;
817 *type_change_ok = true;
819 h->verinfo.vertree = NULL;
822 /* Handle the special case of a weak definition in a regular object
823 followed by a non-weak definition in a shared object. In this
824 case, we prefer the definition in the shared object. */
826 && h->root.type == bfd_link_hash_defweak
831 /* To make this work we have to frob the flags so that the rest
832 of the code does not think we are using the regular
834 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
835 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
836 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
837 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
838 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
839 | ELF_LINK_HASH_DEF_DYNAMIC);
841 /* If H is the target of an indirection, we want the caller to
842 use H rather than the indirect symbol. Otherwise if we are
843 defining a new indirect symbol we will wind up attaching it
844 to the entry we are overriding. */
848 /* Handle the special case of a non-weak definition in a shared
849 object followed by a weak definition in a regular object. In
850 this case we prefer to definition in the shared object. To make
851 this work we have to tell the caller to not treat the new symbol
855 && h->root.type != bfd_link_hash_defweak
864 /* Add symbols from an ELF object file to the linker hash table. */
867 elf_link_add_object_symbols (abfd, info)
869 struct bfd_link_info *info;
871 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
872 const Elf_Internal_Sym *,
873 const char **, flagword *,
874 asection **, bfd_vma *));
875 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
876 asection *, const Elf_Internal_Rela *));
878 Elf_Internal_Shdr *hdr;
882 Elf_External_Sym *buf = NULL;
883 struct elf_link_hash_entry **sym_hash;
885 bfd_byte *dynver = NULL;
886 Elf_External_Versym *extversym = NULL;
887 Elf_External_Versym *ever;
888 Elf_External_Dyn *dynbuf = NULL;
889 struct elf_link_hash_entry *weaks;
890 Elf_External_Sym *esym;
891 Elf_External_Sym *esymend;
892 struct elf_backend_data *bed;
894 bed = get_elf_backend_data (abfd);
895 add_symbol_hook = bed->elf_add_symbol_hook;
896 collect = bed->collect;
898 if ((abfd->flags & DYNAMIC) == 0)
904 /* You can't use -r against a dynamic object. Also, there's no
905 hope of using a dynamic object which does not exactly match
906 the format of the output file. */
907 if (info->relocateable || info->hash->creator != abfd->xvec)
909 bfd_set_error (bfd_error_invalid_operation);
914 /* As a GNU extension, any input sections which are named
915 .gnu.warning.SYMBOL are treated as warning symbols for the given
916 symbol. This differs from .gnu.warning sections, which generate
917 warnings when they are included in an output file. */
922 for (s = abfd->sections; s != NULL; s = s->next)
926 name = bfd_get_section_name (abfd, s);
927 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
932 name += sizeof ".gnu.warning." - 1;
934 /* If this is a shared object, then look up the symbol
935 in the hash table. If it is there, and it is already
936 been defined, then we will not be using the entry
937 from this shared object, so we don't need to warn.
938 FIXME: If we see the definition in a regular object
939 later on, we will warn, but we shouldn't. The only
940 fix is to keep track of what warnings we are supposed
941 to emit, and then handle them all at the end of the
943 if (dynamic && abfd->xvec == info->hash->creator)
945 struct elf_link_hash_entry *h;
947 h = elf_link_hash_lookup (elf_hash_table (info), name,
950 /* FIXME: What about bfd_link_hash_common? */
952 && (h->root.type == bfd_link_hash_defined
953 || h->root.type == bfd_link_hash_defweak))
955 /* We don't want to issue this warning. Clobber
956 the section size so that the warning does not
957 get copied into the output file. */
963 sz = bfd_section_size (abfd, s);
964 msg = (char *) bfd_alloc (abfd, sz + 1);
968 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
973 if (! (_bfd_generic_link_add_one_symbol
974 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
975 false, collect, (struct bfd_link_hash_entry **) NULL)))
978 if (! info->relocateable)
980 /* Clobber the section size so that the warning does
981 not get copied into the output file. */
988 /* If this is a dynamic object, we always link against the .dynsym
989 symbol table, not the .symtab symbol table. The dynamic linker
990 will only see the .dynsym symbol table, so there is no reason to
991 look at .symtab for a dynamic object. */
993 if (! dynamic || elf_dynsymtab (abfd) == 0)
994 hdr = &elf_tdata (abfd)->symtab_hdr;
996 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1000 /* Read in any version definitions. */
1002 if (! _bfd_elf_slurp_version_tables (abfd))
1005 /* Read in the symbol versions, but don't bother to convert them
1006 to internal format. */
1007 if (elf_dynversym (abfd) != 0)
1009 Elf_Internal_Shdr *versymhdr;
1011 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1012 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
1013 if (extversym == NULL)
1015 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1016 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1017 != versymhdr->sh_size))
1022 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1024 /* The sh_info field of the symtab header tells us where the
1025 external symbols start. We don't care about the local symbols at
1027 if (elf_bad_symtab (abfd))
1029 extsymcount = symcount;
1034 extsymcount = symcount - hdr->sh_info;
1035 extsymoff = hdr->sh_info;
1038 buf = ((Elf_External_Sym *)
1039 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1040 if (buf == NULL && extsymcount != 0)
1043 /* We store a pointer to the hash table entry for each external
1045 sym_hash = ((struct elf_link_hash_entry **)
1047 extsymcount * sizeof (struct elf_link_hash_entry *)));
1048 if (sym_hash == NULL)
1050 elf_sym_hashes (abfd) = sym_hash;
1054 /* If we are creating a shared library, create all the dynamic
1055 sections immediately. We need to attach them to something,
1056 so we attach them to this BFD, provided it is the right
1057 format. FIXME: If there are no input BFD's of the same
1058 format as the output, we can't make a shared library. */
1060 && ! elf_hash_table (info)->dynamic_sections_created
1061 && abfd->xvec == info->hash->creator)
1063 if (! elf_link_create_dynamic_sections (abfd, info))
1072 bfd_size_type oldsize;
1073 bfd_size_type strindex;
1075 /* Find the name to use in a DT_NEEDED entry that refers to this
1076 object. If the object has a DT_SONAME entry, we use it.
1077 Otherwise, if the generic linker stuck something in
1078 elf_dt_name, we use that. Otherwise, we just use the file
1079 name. If the generic linker put a null string into
1080 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1081 there is a DT_SONAME entry. */
1083 name = bfd_get_filename (abfd);
1084 if (elf_dt_name (abfd) != NULL)
1086 name = elf_dt_name (abfd);
1090 s = bfd_get_section_by_name (abfd, ".dynamic");
1093 Elf_External_Dyn *extdyn;
1094 Elf_External_Dyn *extdynend;
1098 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1102 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1103 (file_ptr) 0, s->_raw_size))
1106 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1109 link = elf_elfsections (abfd)[elfsec]->sh_link;
1112 /* The shared libraries distributed with hpux11 have a bogus
1113 sh_link field for the ".dynamic" section. This code detects
1114 when LINK refers to a section that is not a string table and
1115 tries to find the string table for the ".dynsym" section
1117 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1118 if (hdr->sh_type != SHT_STRTAB)
1120 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1121 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1124 link = elf_elfsections (abfd)[elfsec]->sh_link;
1129 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1130 for (; extdyn < extdynend; extdyn++)
1132 Elf_Internal_Dyn dyn;
1134 elf_swap_dyn_in (abfd, extdyn, &dyn);
1135 if (dyn.d_tag == DT_SONAME)
1137 name = bfd_elf_string_from_elf_section (abfd, link,
1142 if (dyn.d_tag == DT_NEEDED)
1144 struct bfd_link_needed_list *n, **pn;
1147 n = ((struct bfd_link_needed_list *)
1148 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1149 fnm = bfd_elf_string_from_elf_section (abfd, link,
1151 if (n == NULL || fnm == NULL)
1153 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1160 for (pn = &elf_hash_table (info)->needed;
1172 /* We do not want to include any of the sections in a dynamic
1173 object in the output file. We hack by simply clobbering the
1174 list of sections in the BFD. This could be handled more
1175 cleanly by, say, a new section flag; the existing
1176 SEC_NEVER_LOAD flag is not the one we want, because that one
1177 still implies that the section takes up space in the output
1179 abfd->sections = NULL;
1180 abfd->section_count = 0;
1182 /* If this is the first dynamic object found in the link, create
1183 the special sections required for dynamic linking. */
1184 if (! elf_hash_table (info)->dynamic_sections_created)
1186 if (! elf_link_create_dynamic_sections (abfd, info))
1192 /* Add a DT_NEEDED entry for this dynamic object. */
1193 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1194 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1196 if (strindex == (bfd_size_type) -1)
1199 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1202 Elf_External_Dyn *dyncon, *dynconend;
1204 /* The hash table size did not change, which means that
1205 the dynamic object name was already entered. If we
1206 have already included this dynamic object in the
1207 link, just ignore it. There is no reason to include
1208 a particular dynamic object more than once. */
1209 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1211 BFD_ASSERT (sdyn != NULL);
1213 dyncon = (Elf_External_Dyn *) sdyn->contents;
1214 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1216 for (; dyncon < dynconend; dyncon++)
1218 Elf_Internal_Dyn dyn;
1220 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1222 if (dyn.d_tag == DT_NEEDED
1223 && dyn.d_un.d_val == strindex)
1227 if (extversym != NULL)
1234 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1238 /* Save the SONAME, if there is one, because sometimes the
1239 linker emulation code will need to know it. */
1241 name = bfd_get_filename (abfd);
1242 elf_dt_name (abfd) = name;
1246 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1248 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1249 != extsymcount * sizeof (Elf_External_Sym)))
1254 ever = extversym != NULL ? extversym + extsymoff : NULL;
1255 esymend = buf + extsymcount;
1258 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1260 Elf_Internal_Sym sym;
1266 struct elf_link_hash_entry *h;
1268 boolean size_change_ok, type_change_ok;
1269 boolean new_weakdef;
1270 unsigned int old_alignment;
1272 elf_swap_symbol_in (abfd, esym, &sym);
1274 flags = BSF_NO_FLAGS;
1276 value = sym.st_value;
1279 bind = ELF_ST_BIND (sym.st_info);
1280 if (bind == STB_LOCAL)
1282 /* This should be impossible, since ELF requires that all
1283 global symbols follow all local symbols, and that sh_info
1284 point to the first global symbol. Unfortunatealy, Irix 5
1288 else if (bind == STB_GLOBAL)
1290 if (sym.st_shndx != SHN_UNDEF
1291 && sym.st_shndx != SHN_COMMON)
1296 else if (bind == STB_WEAK)
1300 /* Leave it up to the processor backend. */
1303 if (sym.st_shndx == SHN_UNDEF)
1304 sec = bfd_und_section_ptr;
1305 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1307 sec = section_from_elf_index (abfd, sym.st_shndx);
1309 sec = bfd_abs_section_ptr;
1310 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1313 else if (sym.st_shndx == SHN_ABS)
1314 sec = bfd_abs_section_ptr;
1315 else if (sym.st_shndx == SHN_COMMON)
1317 sec = bfd_com_section_ptr;
1318 /* What ELF calls the size we call the value. What ELF
1319 calls the value we call the alignment. */
1320 value = sym.st_size;
1324 /* Leave it up to the processor backend. */
1327 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1328 if (name == (const char *) NULL)
1331 if (add_symbol_hook)
1333 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1337 /* The hook function sets the name to NULL if this symbol
1338 should be skipped for some reason. */
1339 if (name == (const char *) NULL)
1343 /* Sanity check that all possibilities were handled. */
1344 if (sec == (asection *) NULL)
1346 bfd_set_error (bfd_error_bad_value);
1350 if (bfd_is_und_section (sec)
1351 || bfd_is_com_section (sec))
1356 size_change_ok = false;
1357 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1359 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1361 Elf_Internal_Versym iver;
1362 unsigned int vernum = 0;
1367 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1368 vernum = iver.vs_vers & VERSYM_VERSION;
1370 /* If this is a hidden symbol, or if it is not version
1371 1, we append the version name to the symbol name.
1372 However, we do not modify a non-hidden absolute
1373 symbol, because it might be the version symbol
1374 itself. FIXME: What if it isn't? */
1375 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1376 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1379 int namelen, newlen;
1382 if (sym.st_shndx != SHN_UNDEF)
1384 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1386 (*_bfd_error_handler)
1387 (_("%s: %s: invalid version %u (max %d)"),
1388 bfd_get_filename (abfd), name, vernum,
1389 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1390 bfd_set_error (bfd_error_bad_value);
1393 else if (vernum > 1)
1395 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1401 /* We cannot simply test for the number of
1402 entries in the VERNEED section since the
1403 numbers for the needed versions do not start
1405 Elf_Internal_Verneed *t;
1408 for (t = elf_tdata (abfd)->verref;
1412 Elf_Internal_Vernaux *a;
1414 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1416 if (a->vna_other == vernum)
1418 verstr = a->vna_nodename;
1427 (*_bfd_error_handler)
1428 (_("%s: %s: invalid needed version %d"),
1429 bfd_get_filename (abfd), name, vernum);
1430 bfd_set_error (bfd_error_bad_value);
1435 namelen = strlen (name);
1436 newlen = namelen + strlen (verstr) + 2;
1437 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1440 newname = (char *) bfd_alloc (abfd, newlen);
1441 if (newname == NULL)
1443 strcpy (newname, name);
1444 p = newname + namelen;
1446 /* If this is a defined non-hidden version symbol,
1447 we add another @ to the name. This indicates the
1448 default version of the symbol. */
1449 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1450 && sym.st_shndx != SHN_UNDEF)
1458 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1459 sym_hash, &override, &type_change_ok,
1467 while (h->root.type == bfd_link_hash_indirect
1468 || h->root.type == bfd_link_hash_warning)
1469 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1471 /* Remember the old alignment if this is a common symbol, so
1472 that we don't reduce the alignment later on. We can't
1473 check later, because _bfd_generic_link_add_one_symbol
1474 will set a default for the alignment which we want to
1476 if (h->root.type == bfd_link_hash_common)
1477 old_alignment = h->root.u.c.p->alignment_power;
1479 if (elf_tdata (abfd)->verdef != NULL
1483 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1486 if (! (_bfd_generic_link_add_one_symbol
1487 (info, abfd, name, flags, sec, value, (const char *) NULL,
1488 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1492 while (h->root.type == bfd_link_hash_indirect
1493 || h->root.type == bfd_link_hash_warning)
1494 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1497 new_weakdef = false;
1500 && (flags & BSF_WEAK) != 0
1501 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1502 && info->hash->creator->flavour == bfd_target_elf_flavour
1503 && h->weakdef == NULL)
1505 /* Keep a list of all weak defined non function symbols from
1506 a dynamic object, using the weakdef field. Later in this
1507 function we will set the weakdef field to the correct
1508 value. We only put non-function symbols from dynamic
1509 objects on this list, because that happens to be the only
1510 time we need to know the normal symbol corresponding to a
1511 weak symbol, and the information is time consuming to
1512 figure out. If the weakdef field is not already NULL,
1513 then this symbol was already defined by some previous
1514 dynamic object, and we will be using that previous
1515 definition anyhow. */
1522 /* Set the alignment of a common symbol. */
1523 if (sym.st_shndx == SHN_COMMON
1524 && h->root.type == bfd_link_hash_common)
1528 align = bfd_log2 (sym.st_value);
1529 if (align > old_alignment)
1530 h->root.u.c.p->alignment_power = align;
1533 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1539 /* Remember the symbol size and type. */
1540 if (sym.st_size != 0
1541 && (definition || h->size == 0))
1543 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1544 (*_bfd_error_handler)
1545 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1546 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1547 bfd_get_filename (abfd));
1549 h->size = sym.st_size;
1552 /* If this is a common symbol, then we always want H->SIZE
1553 to be the size of the common symbol. The code just above
1554 won't fix the size if a common symbol becomes larger. We
1555 don't warn about a size change here, because that is
1556 covered by --warn-common. */
1557 if (h->root.type == bfd_link_hash_common)
1558 h->size = h->root.u.c.size;
1560 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1561 && (definition || h->type == STT_NOTYPE))
1563 if (h->type != STT_NOTYPE
1564 && h->type != ELF_ST_TYPE (sym.st_info)
1565 && ! type_change_ok)
1566 (*_bfd_error_handler)
1567 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1568 name, h->type, ELF_ST_TYPE (sym.st_info),
1569 bfd_get_filename (abfd));
1571 h->type = ELF_ST_TYPE (sym.st_info);
1574 /* If st_other has a processor-specific meaning, specific code
1575 might be needed here. */
1576 if (sym.st_other != 0)
1578 /* Combine visibilities, using the most constraining one. */
1579 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1580 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1582 if (symvis && (hvis > symvis || hvis == 0))
1583 h->other = sym.st_other;
1585 /* If neither has visibility, use the st_other of the
1586 definition. This is an arbitrary choice, since the
1587 other bits have no general meaning. */
1588 if (!symvis && !hvis
1589 && (definition || h->other == 0))
1590 h->other = sym.st_other;
1593 /* Set a flag in the hash table entry indicating the type of
1594 reference or definition we just found. Keep a count of
1595 the number of dynamic symbols we find. A dynamic symbol
1596 is one which is referenced or defined by both a regular
1597 object and a shared object. */
1598 old_flags = h->elf_link_hash_flags;
1604 new_flag = ELF_LINK_HASH_REF_REGULAR;
1605 if (bind != STB_WEAK)
1606 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1609 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1611 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1612 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1618 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1620 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1621 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1622 | ELF_LINK_HASH_REF_REGULAR)) != 0
1623 || (h->weakdef != NULL
1625 && h->weakdef->dynindx != -1))
1629 h->elf_link_hash_flags |= new_flag;
1631 /* If this symbol has a version, and it is the default
1632 version, we create an indirect symbol from the default
1633 name to the fully decorated name. This will cause
1634 external references which do not specify a version to be
1635 bound to this version of the symbol. */
1640 p = strchr (name, ELF_VER_CHR);
1641 if (p != NULL && p[1] == ELF_VER_CHR)
1644 struct elf_link_hash_entry *hi;
1647 shortname = bfd_hash_allocate (&info->hash->table,
1649 if (shortname == NULL)
1651 strncpy (shortname, name, p - name);
1652 shortname[p - name] = '\0';
1654 /* We are going to create a new symbol. Merge it
1655 with any existing symbol with this name. For the
1656 purposes of the merge, act as though we were
1657 defining the symbol we just defined, although we
1658 actually going to define an indirect symbol. */
1659 type_change_ok = false;
1660 size_change_ok = false;
1661 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1662 &value, &hi, &override,
1663 &type_change_ok, &size_change_ok))
1668 if (! (_bfd_generic_link_add_one_symbol
1669 (info, abfd, shortname, BSF_INDIRECT,
1670 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1671 collect, (struct bfd_link_hash_entry **) &hi)))
1676 /* In this case the symbol named SHORTNAME is
1677 overriding the indirect symbol we want to
1678 add. We were planning on making SHORTNAME an
1679 indirect symbol referring to NAME. SHORTNAME
1680 is the name without a version. NAME is the
1681 fully versioned name, and it is the default
1684 Overriding means that we already saw a
1685 definition for the symbol SHORTNAME in a
1686 regular object, and it is overriding the
1687 symbol defined in the dynamic object.
1689 When this happens, we actually want to change
1690 NAME, the symbol we just added, to refer to
1691 SHORTNAME. This will cause references to
1692 NAME in the shared object to become
1693 references to SHORTNAME in the regular
1694 object. This is what we expect when we
1695 override a function in a shared object: that
1696 the references in the shared object will be
1697 mapped to the definition in the regular
1700 while (hi->root.type == bfd_link_hash_indirect
1701 || hi->root.type == bfd_link_hash_warning)
1702 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1704 h->root.type = bfd_link_hash_indirect;
1705 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1706 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1708 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1709 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1710 if (hi->elf_link_hash_flags
1711 & (ELF_LINK_HASH_REF_REGULAR
1712 | ELF_LINK_HASH_DEF_REGULAR))
1714 if (! _bfd_elf_link_record_dynamic_symbol (info,
1720 /* Now set HI to H, so that the following code
1721 will set the other fields correctly. */
1725 /* If there is a duplicate definition somewhere,
1726 then HI may not point to an indirect symbol. We
1727 will have reported an error to the user in that
1730 if (hi->root.type == bfd_link_hash_indirect)
1732 struct elf_link_hash_entry *ht;
1734 /* If the symbol became indirect, then we assume
1735 that we have not seen a definition before. */
1736 BFD_ASSERT ((hi->elf_link_hash_flags
1737 & (ELF_LINK_HASH_DEF_DYNAMIC
1738 | ELF_LINK_HASH_DEF_REGULAR))
1741 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1742 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1744 /* See if the new flags lead us to realize that
1745 the symbol must be dynamic. */
1751 || ((hi->elf_link_hash_flags
1752 & ELF_LINK_HASH_REF_DYNAMIC)
1758 if ((hi->elf_link_hash_flags
1759 & ELF_LINK_HASH_REF_REGULAR) != 0)
1765 /* We also need to define an indirection from the
1766 nondefault version of the symbol. */
1768 shortname = bfd_hash_allocate (&info->hash->table,
1770 if (shortname == NULL)
1772 strncpy (shortname, name, p - name);
1773 strcpy (shortname + (p - name), p + 1);
1775 /* Once again, merge with any existing symbol. */
1776 type_change_ok = false;
1777 size_change_ok = false;
1778 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1779 &value, &hi, &override,
1780 &type_change_ok, &size_change_ok))
1785 /* Here SHORTNAME is a versioned name, so we
1786 don't expect to see the type of override we
1787 do in the case above. */
1788 (*_bfd_error_handler)
1789 (_("%s: warning: unexpected redefinition of `%s'"),
1790 bfd_get_filename (abfd), shortname);
1794 if (! (_bfd_generic_link_add_one_symbol
1795 (info, abfd, shortname, BSF_INDIRECT,
1796 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1797 collect, (struct bfd_link_hash_entry **) &hi)))
1800 /* If there is a duplicate definition somewhere,
1801 then HI may not point to an indirect symbol.
1802 We will have reported an error to the user in
1805 if (hi->root.type == bfd_link_hash_indirect)
1807 /* If the symbol became indirect, then we
1808 assume that we have not seen a definition
1810 BFD_ASSERT ((hi->elf_link_hash_flags
1811 & (ELF_LINK_HASH_DEF_DYNAMIC
1812 | ELF_LINK_HASH_DEF_REGULAR))
1815 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1817 /* See if the new flags lead us to realize
1818 that the symbol must be dynamic. */
1824 || ((hi->elf_link_hash_flags
1825 & ELF_LINK_HASH_REF_DYNAMIC)
1831 if ((hi->elf_link_hash_flags
1832 & ELF_LINK_HASH_REF_REGULAR) != 0)
1841 if (dynsym && h->dynindx == -1)
1843 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1845 if (h->weakdef != NULL
1847 && h->weakdef->dynindx == -1)
1849 if (! _bfd_elf_link_record_dynamic_symbol (info,
1854 else if (dynsym && h->dynindx != -1)
1855 /* If the symbol already has a dynamic index, but
1856 visibility says it should not be visible, turn it into
1858 switch (ELF_ST_VISIBILITY (h->other))
1862 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1863 (*bed->elf_backend_hide_symbol) (info, h);
1869 /* Now set the weakdefs field correctly for all the weak defined
1870 symbols we found. The only way to do this is to search all the
1871 symbols. Since we only need the information for non functions in
1872 dynamic objects, that's the only time we actually put anything on
1873 the list WEAKS. We need this information so that if a regular
1874 object refers to a symbol defined weakly in a dynamic object, the
1875 real symbol in the dynamic object is also put in the dynamic
1876 symbols; we also must arrange for both symbols to point to the
1877 same memory location. We could handle the general case of symbol
1878 aliasing, but a general symbol alias can only be generated in
1879 assembler code, handling it correctly would be very time
1880 consuming, and other ELF linkers don't handle general aliasing
1882 while (weaks != NULL)
1884 struct elf_link_hash_entry *hlook;
1887 struct elf_link_hash_entry **hpp;
1888 struct elf_link_hash_entry **hppend;
1891 weaks = hlook->weakdef;
1892 hlook->weakdef = NULL;
1894 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1895 || hlook->root.type == bfd_link_hash_defweak
1896 || hlook->root.type == bfd_link_hash_common
1897 || hlook->root.type == bfd_link_hash_indirect);
1898 slook = hlook->root.u.def.section;
1899 vlook = hlook->root.u.def.value;
1901 hpp = elf_sym_hashes (abfd);
1902 hppend = hpp + extsymcount;
1903 for (; hpp < hppend; hpp++)
1905 struct elf_link_hash_entry *h;
1908 if (h != NULL && h != hlook
1909 && h->root.type == bfd_link_hash_defined
1910 && h->root.u.def.section == slook
1911 && h->root.u.def.value == vlook)
1915 /* If the weak definition is in the list of dynamic
1916 symbols, make sure the real definition is put there
1918 if (hlook->dynindx != -1
1919 && h->dynindx == -1)
1921 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1925 /* If the real definition is in the list of dynamic
1926 symbols, make sure the weak definition is put there
1927 as well. If we don't do this, then the dynamic
1928 loader might not merge the entries for the real
1929 definition and the weak definition. */
1930 if (h->dynindx != -1
1931 && hlook->dynindx == -1)
1933 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1948 if (extversym != NULL)
1954 /* If this object is the same format as the output object, and it is
1955 not a shared library, then let the backend look through the
1958 This is required to build global offset table entries and to
1959 arrange for dynamic relocs. It is not required for the
1960 particular common case of linking non PIC code, even when linking
1961 against shared libraries, but unfortunately there is no way of
1962 knowing whether an object file has been compiled PIC or not.
1963 Looking through the relocs is not particularly time consuming.
1964 The problem is that we must either (1) keep the relocs in memory,
1965 which causes the linker to require additional runtime memory or
1966 (2) read the relocs twice from the input file, which wastes time.
1967 This would be a good case for using mmap.
1969 I have no idea how to handle linking PIC code into a file of a
1970 different format. It probably can't be done. */
1971 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1973 && abfd->xvec == info->hash->creator
1974 && check_relocs != NULL)
1978 for (o = abfd->sections; o != NULL; o = o->next)
1980 Elf_Internal_Rela *internal_relocs;
1983 if ((o->flags & SEC_RELOC) == 0
1984 || o->reloc_count == 0
1985 || ((info->strip == strip_all || info->strip == strip_debugger)
1986 && (o->flags & SEC_DEBUGGING) != 0)
1987 || bfd_is_abs_section (o->output_section))
1990 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1991 (abfd, o, (PTR) NULL,
1992 (Elf_Internal_Rela *) NULL,
1993 info->keep_memory));
1994 if (internal_relocs == NULL)
1997 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1999 if (! info->keep_memory)
2000 free (internal_relocs);
2007 /* If this is a non-traditional, non-relocateable link, try to
2008 optimize the handling of the .stab/.stabstr sections. */
2010 && ! info->relocateable
2011 && ! info->traditional_format
2012 && info->hash->creator->flavour == bfd_target_elf_flavour
2013 && (info->strip != strip_all && info->strip != strip_debugger))
2015 asection *stab, *stabstr;
2017 stab = bfd_get_section_by_name (abfd, ".stab");
2020 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2022 if (stabstr != NULL)
2024 struct bfd_elf_section_data *secdata;
2026 secdata = elf_section_data (stab);
2027 if (! _bfd_link_section_stabs (abfd,
2028 &elf_hash_table (info)->stab_info,
2030 &secdata->stab_info))
2045 if (extversym != NULL)
2050 /* Create some sections which will be filled in with dynamic linking
2051 information. ABFD is an input file which requires dynamic sections
2052 to be created. The dynamic sections take up virtual memory space
2053 when the final executable is run, so we need to create them before
2054 addresses are assigned to the output sections. We work out the
2055 actual contents and size of these sections later. */
2058 elf_link_create_dynamic_sections (abfd, info)
2060 struct bfd_link_info *info;
2063 register asection *s;
2064 struct elf_link_hash_entry *h;
2065 struct elf_backend_data *bed;
2067 if (elf_hash_table (info)->dynamic_sections_created)
2070 /* Make sure that all dynamic sections use the same input BFD. */
2071 if (elf_hash_table (info)->dynobj == NULL)
2072 elf_hash_table (info)->dynobj = abfd;
2074 abfd = elf_hash_table (info)->dynobj;
2076 /* Note that we set the SEC_IN_MEMORY flag for all of these
2078 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2079 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2081 /* A dynamically linked executable has a .interp section, but a
2082 shared library does not. */
2085 s = bfd_make_section (abfd, ".interp");
2087 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2091 /* Create sections to hold version informations. These are removed
2092 if they are not needed. */
2093 s = bfd_make_section (abfd, ".gnu.version_d");
2095 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2096 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2099 s = bfd_make_section (abfd, ".gnu.version");
2101 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2102 || ! bfd_set_section_alignment (abfd, s, 1))
2105 s = bfd_make_section (abfd, ".gnu.version_r");
2107 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2108 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2111 s = bfd_make_section (abfd, ".dynsym");
2113 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2114 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2117 s = bfd_make_section (abfd, ".dynstr");
2119 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2122 /* Create a strtab to hold the dynamic symbol names. */
2123 if (elf_hash_table (info)->dynstr == NULL)
2125 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2126 if (elf_hash_table (info)->dynstr == NULL)
2130 s = bfd_make_section (abfd, ".dynamic");
2132 || ! bfd_set_section_flags (abfd, s, flags)
2133 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2136 /* The special symbol _DYNAMIC is always set to the start of the
2137 .dynamic section. This call occurs before we have processed the
2138 symbols for any dynamic object, so we don't have to worry about
2139 overriding a dynamic definition. We could set _DYNAMIC in a
2140 linker script, but we only want to define it if we are, in fact,
2141 creating a .dynamic section. We don't want to define it if there
2142 is no .dynamic section, since on some ELF platforms the start up
2143 code examines it to decide how to initialize the process. */
2145 if (! (_bfd_generic_link_add_one_symbol
2146 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2147 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2148 (struct bfd_link_hash_entry **) &h)))
2150 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2151 h->type = STT_OBJECT;
2154 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2157 bed = get_elf_backend_data (abfd);
2159 s = bfd_make_section (abfd, ".hash");
2161 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2162 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2164 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2166 /* Let the backend create the rest of the sections. This lets the
2167 backend set the right flags. The backend will normally create
2168 the .got and .plt sections. */
2169 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2172 elf_hash_table (info)->dynamic_sections_created = true;
2177 /* Add an entry to the .dynamic table. */
2180 elf_add_dynamic_entry (info, tag, val)
2181 struct bfd_link_info *info;
2185 Elf_Internal_Dyn dyn;
2189 bfd_byte *newcontents;
2191 dynobj = elf_hash_table (info)->dynobj;
2193 s = bfd_get_section_by_name (dynobj, ".dynamic");
2194 BFD_ASSERT (s != NULL);
2196 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2197 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2198 if (newcontents == NULL)
2202 dyn.d_un.d_val = val;
2203 elf_swap_dyn_out (dynobj, &dyn,
2204 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2206 s->_raw_size = newsize;
2207 s->contents = newcontents;
2212 /* Record a new local dynamic symbol. */
2215 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2216 struct bfd_link_info *info;
2220 struct elf_link_local_dynamic_entry *entry;
2221 struct elf_link_hash_table *eht;
2222 struct bfd_strtab_hash *dynstr;
2223 Elf_External_Sym esym;
2224 unsigned long dynstr_index;
2227 /* See if the entry exists already. */
2228 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2229 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2232 entry = (struct elf_link_local_dynamic_entry *)
2233 bfd_alloc (input_bfd, sizeof (*entry));
2237 /* Go find the symbol, so that we can find it's name. */
2238 if (bfd_seek (input_bfd,
2239 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2240 + input_indx * sizeof (Elf_External_Sym)),
2242 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2243 != sizeof (Elf_External_Sym)))
2245 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2247 name = (bfd_elf_string_from_elf_section
2248 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2249 entry->isym.st_name));
2251 dynstr = elf_hash_table (info)->dynstr;
2254 /* Create a strtab to hold the dynamic symbol names. */
2255 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2260 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2261 if (dynstr_index == (unsigned long) -1)
2263 entry->isym.st_name = dynstr_index;
2265 eht = elf_hash_table (info);
2267 entry->next = eht->dynlocal;
2268 eht->dynlocal = entry;
2269 entry->input_bfd = input_bfd;
2270 entry->input_indx = input_indx;
2273 /* Whatever binding the symbol had before, it's now local. */
2275 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2277 /* The dynindx will be set at the end of size_dynamic_sections. */
2283 /* Read and swap the relocs from the section indicated by SHDR. This
2284 may be either a REL or a RELA section. The relocations are
2285 translated into RELA relocations and stored in INTERNAL_RELOCS,
2286 which should have already been allocated to contain enough space.
2287 The EXTERNAL_RELOCS are a buffer where the external form of the
2288 relocations should be stored.
2290 Returns false if something goes wrong. */
2293 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2296 Elf_Internal_Shdr *shdr;
2297 PTR external_relocs;
2298 Elf_Internal_Rela *internal_relocs;
2300 struct elf_backend_data *bed;
2302 /* If there aren't any relocations, that's OK. */
2306 /* Position ourselves at the start of the section. */
2307 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2310 /* Read the relocations. */
2311 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2315 bed = get_elf_backend_data (abfd);
2317 /* Convert the external relocations to the internal format. */
2318 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2320 Elf_External_Rel *erel;
2321 Elf_External_Rel *erelend;
2322 Elf_Internal_Rela *irela;
2323 Elf_Internal_Rel *irel;
2325 erel = (Elf_External_Rel *) external_relocs;
2326 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2327 irela = internal_relocs;
2328 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2329 * sizeof (Elf_Internal_Rel)));
2330 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2334 if (bed->s->swap_reloc_in)
2335 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2337 elf_swap_reloc_in (abfd, erel, irel);
2339 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2341 irela[i].r_offset = irel[i].r_offset;
2342 irela[i].r_info = irel[i].r_info;
2343 irela[i].r_addend = 0;
2349 Elf_External_Rela *erela;
2350 Elf_External_Rela *erelaend;
2351 Elf_Internal_Rela *irela;
2353 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2355 erela = (Elf_External_Rela *) external_relocs;
2356 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2357 irela = internal_relocs;
2358 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2360 if (bed->s->swap_reloca_in)
2361 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2363 elf_swap_reloca_in (abfd, erela, irela);
2370 /* Read and swap the relocs for a section O. They may have been
2371 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2372 not NULL, they are used as buffers to read into. They are known to
2373 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2374 the return value is allocated using either malloc or bfd_alloc,
2375 according to the KEEP_MEMORY argument. If O has two relocation
2376 sections (both REL and RELA relocations), then the REL_HDR
2377 relocations will appear first in INTERNAL_RELOCS, followed by the
2378 REL_HDR2 relocations. */
2381 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2385 PTR external_relocs;
2386 Elf_Internal_Rela *internal_relocs;
2387 boolean keep_memory;
2389 Elf_Internal_Shdr *rel_hdr;
2391 Elf_Internal_Rela *alloc2 = NULL;
2392 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2394 if (elf_section_data (o)->relocs != NULL)
2395 return elf_section_data (o)->relocs;
2397 if (o->reloc_count == 0)
2400 rel_hdr = &elf_section_data (o)->rel_hdr;
2402 if (internal_relocs == NULL)
2406 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2407 * sizeof (Elf_Internal_Rela));
2409 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2411 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2412 if (internal_relocs == NULL)
2416 if (external_relocs == NULL)
2418 size_t size = (size_t) rel_hdr->sh_size;
2420 if (elf_section_data (o)->rel_hdr2)
2421 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2422 alloc1 = (PTR) bfd_malloc (size);
2425 external_relocs = alloc1;
2428 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2432 if (!elf_link_read_relocs_from_section
2434 elf_section_data (o)->rel_hdr2,
2435 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2436 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2437 * bed->s->int_rels_per_ext_rel)))
2440 /* Cache the results for next time, if we can. */
2442 elf_section_data (o)->relocs = internal_relocs;
2447 /* Don't free alloc2, since if it was allocated we are passing it
2448 back (under the name of internal_relocs). */
2450 return internal_relocs;
2461 /* Record an assignment to a symbol made by a linker script. We need
2462 this in case some dynamic object refers to this symbol. */
2466 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2467 bfd *output_bfd ATTRIBUTE_UNUSED;
2468 struct bfd_link_info *info;
2472 struct elf_link_hash_entry *h;
2474 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2477 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2481 if (h->root.type == bfd_link_hash_new)
2482 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2484 /* If this symbol is being provided by the linker script, and it is
2485 currently defined by a dynamic object, but not by a regular
2486 object, then mark it as undefined so that the generic linker will
2487 force the correct value. */
2489 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2490 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2491 h->root.type = bfd_link_hash_undefined;
2493 /* If this symbol is not being provided by the linker script, and it is
2494 currently defined by a dynamic object, but not by a regular object,
2495 then clear out any version information because the symbol will not be
2496 associated with the dynamic object any more. */
2498 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2499 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2500 h->verinfo.verdef = NULL;
2502 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2504 /* When possible, keep the original type of the symbol */
2505 if (h->type == STT_NOTYPE)
2506 h->type = STT_OBJECT;
2508 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2509 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2511 && h->dynindx == -1)
2513 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2516 /* If this is a weak defined symbol, and we know a corresponding
2517 real symbol from the same dynamic object, make sure the real
2518 symbol is also made into a dynamic symbol. */
2519 if (h->weakdef != NULL
2520 && h->weakdef->dynindx == -1)
2522 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2530 /* This structure is used to pass information to
2531 elf_link_assign_sym_version. */
2533 struct elf_assign_sym_version_info
2537 /* General link information. */
2538 struct bfd_link_info *info;
2540 struct bfd_elf_version_tree *verdefs;
2541 /* Whether we are exporting all dynamic symbols. */
2542 boolean export_dynamic;
2543 /* Whether we had a failure. */
2547 /* This structure is used to pass information to
2548 elf_link_find_version_dependencies. */
2550 struct elf_find_verdep_info
2554 /* General link information. */
2555 struct bfd_link_info *info;
2556 /* The number of dependencies. */
2558 /* Whether we had a failure. */
2562 /* Array used to determine the number of hash table buckets to use
2563 based on the number of symbols there are. If there are fewer than
2564 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2565 fewer than 37 we use 17 buckets, and so forth. We never use more
2566 than 32771 buckets. */
2568 static const size_t elf_buckets[] =
2570 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2574 /* Compute bucket count for hashing table. We do not use a static set
2575 of possible tables sizes anymore. Instead we determine for all
2576 possible reasonable sizes of the table the outcome (i.e., the
2577 number of collisions etc) and choose the best solution. The
2578 weighting functions are not too simple to allow the table to grow
2579 without bounds. Instead one of the weighting factors is the size.
2580 Therefore the result is always a good payoff between few collisions
2581 (= short chain lengths) and table size. */
2583 compute_bucket_count (info)
2584 struct bfd_link_info *info;
2586 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2587 size_t best_size = 0;
2588 unsigned long int *hashcodes;
2589 unsigned long int *hashcodesp;
2590 unsigned long int i;
2592 /* Compute the hash values for all exported symbols. At the same
2593 time store the values in an array so that we could use them for
2595 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2596 * sizeof (unsigned long int));
2597 if (hashcodes == NULL)
2599 hashcodesp = hashcodes;
2601 /* Put all hash values in HASHCODES. */
2602 elf_link_hash_traverse (elf_hash_table (info),
2603 elf_collect_hash_codes, &hashcodesp);
2605 /* We have a problem here. The following code to optimize the table
2606 size requires an integer type with more the 32 bits. If
2607 BFD_HOST_U_64_BIT is set we know about such a type. */
2608 #ifdef BFD_HOST_U_64_BIT
2609 if (info->optimize == true)
2611 unsigned long int nsyms = hashcodesp - hashcodes;
2614 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2615 unsigned long int *counts ;
2617 /* Possible optimization parameters: if we have NSYMS symbols we say
2618 that the hashing table must at least have NSYMS/4 and at most
2620 minsize = nsyms / 4;
2623 best_size = maxsize = nsyms * 2;
2625 /* Create array where we count the collisions in. We must use bfd_malloc
2626 since the size could be large. */
2627 counts = (unsigned long int *) bfd_malloc (maxsize
2628 * sizeof (unsigned long int));
2635 /* Compute the "optimal" size for the hash table. The criteria is a
2636 minimal chain length. The minor criteria is (of course) the size
2638 for (i = minsize; i < maxsize; ++i)
2640 /* Walk through the array of hashcodes and count the collisions. */
2641 BFD_HOST_U_64_BIT max;
2642 unsigned long int j;
2643 unsigned long int fact;
2645 memset (counts, '\0', i * sizeof (unsigned long int));
2647 /* Determine how often each hash bucket is used. */
2648 for (j = 0; j < nsyms; ++j)
2649 ++counts[hashcodes[j] % i];
2651 /* For the weight function we need some information about the
2652 pagesize on the target. This is information need not be 100%
2653 accurate. Since this information is not available (so far) we
2654 define it here to a reasonable default value. If it is crucial
2655 to have a better value some day simply define this value. */
2656 # ifndef BFD_TARGET_PAGESIZE
2657 # define BFD_TARGET_PAGESIZE (4096)
2660 /* We in any case need 2 + NSYMS entries for the size values and
2662 max = (2 + nsyms) * (ARCH_SIZE / 8);
2665 /* Variant 1: optimize for short chains. We add the squares
2666 of all the chain lengths (which favous many small chain
2667 over a few long chains). */
2668 for (j = 0; j < i; ++j)
2669 max += counts[j] * counts[j];
2671 /* This adds penalties for the overall size of the table. */
2672 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2675 /* Variant 2: Optimize a lot more for small table. Here we
2676 also add squares of the size but we also add penalties for
2677 empty slots (the +1 term). */
2678 for (j = 0; j < i; ++j)
2679 max += (1 + counts[j]) * (1 + counts[j]);
2681 /* The overall size of the table is considered, but not as
2682 strong as in variant 1, where it is squared. */
2683 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2687 /* Compare with current best results. */
2688 if (max < best_chlen)
2698 #endif /* defined (BFD_HOST_U_64_BIT) */
2700 /* This is the fallback solution if no 64bit type is available or if we
2701 are not supposed to spend much time on optimizations. We select the
2702 bucket count using a fixed set of numbers. */
2703 for (i = 0; elf_buckets[i] != 0; i++)
2705 best_size = elf_buckets[i];
2706 if (dynsymcount < elf_buckets[i + 1])
2711 /* Free the arrays we needed. */
2717 /* Set up the sizes and contents of the ELF dynamic sections. This is
2718 called by the ELF linker emulation before_allocation routine. We
2719 must set the sizes of the sections before the linker sets the
2720 addresses of the various sections. */
2723 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2724 export_dynamic, filter_shlib,
2725 auxiliary_filters, info, sinterpptr,
2730 boolean export_dynamic;
2731 const char *filter_shlib;
2732 const char * const *auxiliary_filters;
2733 struct bfd_link_info *info;
2734 asection **sinterpptr;
2735 struct bfd_elf_version_tree *verdefs;
2737 bfd_size_type soname_indx;
2739 struct elf_backend_data *bed;
2740 struct elf_assign_sym_version_info asvinfo;
2744 soname_indx = (bfd_size_type) -1;
2746 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2749 /* The backend may have to create some sections regardless of whether
2750 we're dynamic or not. */
2751 bed = get_elf_backend_data (output_bfd);
2752 if (bed->elf_backend_always_size_sections
2753 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2756 dynobj = elf_hash_table (info)->dynobj;
2758 /* If there were no dynamic objects in the link, there is nothing to
2763 if (elf_hash_table (info)->dynamic_sections_created)
2765 struct elf_info_failed eif;
2766 struct elf_link_hash_entry *h;
2767 bfd_size_type strsize;
2769 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2770 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2774 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2775 soname, true, true);
2776 if (soname_indx == (bfd_size_type) -1
2777 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2783 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2791 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2793 if (indx == (bfd_size_type) -1
2794 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2798 if (filter_shlib != NULL)
2802 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2803 filter_shlib, true, true);
2804 if (indx == (bfd_size_type) -1
2805 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2809 if (auxiliary_filters != NULL)
2811 const char * const *p;
2813 for (p = auxiliary_filters; *p != NULL; p++)
2817 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2819 if (indx == (bfd_size_type) -1
2820 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2825 /* If we are supposed to export all symbols into the dynamic symbol
2826 table (this is not the normal case), then do so. */
2829 struct elf_info_failed eif;
2833 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2839 /* Attach all the symbols to their version information. */
2840 asvinfo.output_bfd = output_bfd;
2841 asvinfo.info = info;
2842 asvinfo.verdefs = verdefs;
2843 asvinfo.export_dynamic = export_dynamic;
2844 asvinfo.failed = false;
2846 elf_link_hash_traverse (elf_hash_table (info),
2847 elf_link_assign_sym_version,
2852 /* Find all symbols which were defined in a dynamic object and make
2853 the backend pick a reasonable value for them. */
2856 elf_link_hash_traverse (elf_hash_table (info),
2857 elf_adjust_dynamic_symbol,
2862 /* Add some entries to the .dynamic section. We fill in some of the
2863 values later, in elf_bfd_final_link, but we must add the entries
2864 now so that we know the final size of the .dynamic section. */
2866 /* If there are initialization and/or finalization functions to
2867 call then add the corresponding DT_INIT/DT_FINI entries. */
2868 h = (info->init_function
2869 ? elf_link_hash_lookup (elf_hash_table (info),
2870 info->init_function, false,
2874 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2875 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2877 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2880 h = (info->fini_function
2881 ? elf_link_hash_lookup (elf_hash_table (info),
2882 info->fini_function, false,
2886 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2887 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2889 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2893 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2894 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2895 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2896 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2897 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2898 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2899 sizeof (Elf_External_Sym)))
2903 /* The backend must work out the sizes of all the other dynamic
2905 if (bed->elf_backend_size_dynamic_sections
2906 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2909 if (elf_hash_table (info)->dynamic_sections_created)
2913 size_t bucketcount = 0;
2914 Elf_Internal_Sym isym;
2915 size_t hash_entry_size;
2917 /* Set up the version definition section. */
2918 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2919 BFD_ASSERT (s != NULL);
2921 /* We may have created additional version definitions if we are
2922 just linking a regular application. */
2923 verdefs = asvinfo.verdefs;
2925 if (verdefs == NULL)
2926 _bfd_strip_section_from_output (info, s);
2931 struct bfd_elf_version_tree *t;
2933 Elf_Internal_Verdef def;
2934 Elf_Internal_Verdaux defaux;
2939 /* Make space for the base version. */
2940 size += sizeof (Elf_External_Verdef);
2941 size += sizeof (Elf_External_Verdaux);
2944 for (t = verdefs; t != NULL; t = t->next)
2946 struct bfd_elf_version_deps *n;
2948 size += sizeof (Elf_External_Verdef);
2949 size += sizeof (Elf_External_Verdaux);
2952 for (n = t->deps; n != NULL; n = n->next)
2953 size += sizeof (Elf_External_Verdaux);
2956 s->_raw_size = size;
2957 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2958 if (s->contents == NULL && s->_raw_size != 0)
2961 /* Fill in the version definition section. */
2965 def.vd_version = VER_DEF_CURRENT;
2966 def.vd_flags = VER_FLG_BASE;
2969 def.vd_aux = sizeof (Elf_External_Verdef);
2970 def.vd_next = (sizeof (Elf_External_Verdef)
2971 + sizeof (Elf_External_Verdaux));
2973 if (soname_indx != (bfd_size_type) -1)
2975 def.vd_hash = bfd_elf_hash (soname);
2976 defaux.vda_name = soname_indx;
2983 name = output_bfd->filename;
2984 def.vd_hash = bfd_elf_hash (name);
2985 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2987 if (indx == (bfd_size_type) -1)
2989 defaux.vda_name = indx;
2991 defaux.vda_next = 0;
2993 _bfd_elf_swap_verdef_out (output_bfd, &def,
2994 (Elf_External_Verdef *)p);
2995 p += sizeof (Elf_External_Verdef);
2996 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2997 (Elf_External_Verdaux *) p);
2998 p += sizeof (Elf_External_Verdaux);
3000 for (t = verdefs; t != NULL; t = t->next)
3003 struct bfd_elf_version_deps *n;
3004 struct elf_link_hash_entry *h;
3007 for (n = t->deps; n != NULL; n = n->next)
3010 /* Add a symbol representing this version. */
3012 if (! (_bfd_generic_link_add_one_symbol
3013 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3014 (bfd_vma) 0, (const char *) NULL, false,
3015 get_elf_backend_data (dynobj)->collect,
3016 (struct bfd_link_hash_entry **) &h)))
3018 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3019 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3020 h->type = STT_OBJECT;
3021 h->verinfo.vertree = t;
3023 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3026 def.vd_version = VER_DEF_CURRENT;
3028 if (t->globals == NULL && t->locals == NULL && ! t->used)
3029 def.vd_flags |= VER_FLG_WEAK;
3030 def.vd_ndx = t->vernum + 1;
3031 def.vd_cnt = cdeps + 1;
3032 def.vd_hash = bfd_elf_hash (t->name);
3033 def.vd_aux = sizeof (Elf_External_Verdef);
3034 if (t->next != NULL)
3035 def.vd_next = (sizeof (Elf_External_Verdef)
3036 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3040 _bfd_elf_swap_verdef_out (output_bfd, &def,
3041 (Elf_External_Verdef *) p);
3042 p += sizeof (Elf_External_Verdef);
3044 defaux.vda_name = h->dynstr_index;
3045 if (t->deps == NULL)
3046 defaux.vda_next = 0;
3048 defaux.vda_next = sizeof (Elf_External_Verdaux);
3049 t->name_indx = defaux.vda_name;
3051 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3052 (Elf_External_Verdaux *) p);
3053 p += sizeof (Elf_External_Verdaux);
3055 for (n = t->deps; n != NULL; n = n->next)
3057 if (n->version_needed == NULL)
3059 /* This can happen if there was an error in the
3061 defaux.vda_name = 0;
3064 defaux.vda_name = n->version_needed->name_indx;
3065 if (n->next == NULL)
3066 defaux.vda_next = 0;
3068 defaux.vda_next = sizeof (Elf_External_Verdaux);
3070 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3071 (Elf_External_Verdaux *) p);
3072 p += sizeof (Elf_External_Verdaux);
3076 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3077 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3080 elf_tdata (output_bfd)->cverdefs = cdefs;
3083 /* Work out the size of the version reference section. */
3085 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3086 BFD_ASSERT (s != NULL);
3088 struct elf_find_verdep_info sinfo;
3090 sinfo.output_bfd = output_bfd;
3092 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3093 if (sinfo.vers == 0)
3095 sinfo.failed = false;
3097 elf_link_hash_traverse (elf_hash_table (info),
3098 elf_link_find_version_dependencies,
3101 if (elf_tdata (output_bfd)->verref == NULL)
3102 _bfd_strip_section_from_output (info, s);
3105 Elf_Internal_Verneed *t;
3110 /* Build the version definition section. */
3113 for (t = elf_tdata (output_bfd)->verref;
3117 Elf_Internal_Vernaux *a;
3119 size += sizeof (Elf_External_Verneed);
3121 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3122 size += sizeof (Elf_External_Vernaux);
3125 s->_raw_size = size;
3126 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3127 if (s->contents == NULL)
3131 for (t = elf_tdata (output_bfd)->verref;
3136 Elf_Internal_Vernaux *a;
3140 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3143 t->vn_version = VER_NEED_CURRENT;
3145 if (elf_dt_name (t->vn_bfd) != NULL)
3146 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3147 elf_dt_name (t->vn_bfd),
3150 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3151 t->vn_bfd->filename, true, false);
3152 if (indx == (bfd_size_type) -1)
3155 t->vn_aux = sizeof (Elf_External_Verneed);
3156 if (t->vn_nextref == NULL)
3159 t->vn_next = (sizeof (Elf_External_Verneed)
3160 + caux * sizeof (Elf_External_Vernaux));
3162 _bfd_elf_swap_verneed_out (output_bfd, t,
3163 (Elf_External_Verneed *) p);
3164 p += sizeof (Elf_External_Verneed);
3166 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3168 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3169 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3170 a->vna_nodename, true, false);
3171 if (indx == (bfd_size_type) -1)
3174 if (a->vna_nextptr == NULL)
3177 a->vna_next = sizeof (Elf_External_Vernaux);
3179 _bfd_elf_swap_vernaux_out (output_bfd, a,
3180 (Elf_External_Vernaux *) p);
3181 p += sizeof (Elf_External_Vernaux);
3185 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3186 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3189 elf_tdata (output_bfd)->cverrefs = crefs;
3193 /* Assign dynsym indicies. In a shared library we generate a
3194 section symbol for each output section, which come first.
3195 Next come all of the back-end allocated local dynamic syms,
3196 followed by the rest of the global symbols. */
3198 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3200 /* Work out the size of the symbol version section. */
3201 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3202 BFD_ASSERT (s != NULL);
3203 if (dynsymcount == 0
3204 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3206 _bfd_strip_section_from_output (info, s);
3207 /* The DYNSYMCOUNT might have changed if we were going to
3208 output a dynamic symbol table entry for S. */
3209 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3213 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3214 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3215 if (s->contents == NULL)
3218 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3222 /* Set the size of the .dynsym and .hash sections. We counted
3223 the number of dynamic symbols in elf_link_add_object_symbols.
3224 We will build the contents of .dynsym and .hash when we build
3225 the final symbol table, because until then we do not know the
3226 correct value to give the symbols. We built the .dynstr
3227 section as we went along in elf_link_add_object_symbols. */
3228 s = bfd_get_section_by_name (dynobj, ".dynsym");
3229 BFD_ASSERT (s != NULL);
3230 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3231 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3232 if (s->contents == NULL && s->_raw_size != 0)
3235 /* The first entry in .dynsym is a dummy symbol. */
3242 elf_swap_symbol_out (output_bfd, &isym,
3243 (PTR) (Elf_External_Sym *) s->contents);
3245 /* Compute the size of the hashing table. As a side effect this
3246 computes the hash values for all the names we export. */
3247 bucketcount = compute_bucket_count (info);
3249 s = bfd_get_section_by_name (dynobj, ".hash");
3250 BFD_ASSERT (s != NULL);
3251 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3252 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3253 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3254 if (s->contents == NULL)
3256 memset (s->contents, 0, (size_t) s->_raw_size);
3258 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3259 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3260 s->contents + hash_entry_size);
3262 elf_hash_table (info)->bucketcount = bucketcount;
3264 s = bfd_get_section_by_name (dynobj, ".dynstr");
3265 BFD_ASSERT (s != NULL);
3266 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3268 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3275 /* Fix up the flags for a symbol. This handles various cases which
3276 can only be fixed after all the input files are seen. This is
3277 currently called by both adjust_dynamic_symbol and
3278 assign_sym_version, which is unnecessary but perhaps more robust in
3279 the face of future changes. */
3282 elf_fix_symbol_flags (h, eif)
3283 struct elf_link_hash_entry *h;
3284 struct elf_info_failed *eif;
3286 /* If this symbol was mentioned in a non-ELF file, try to set
3287 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3288 permit a non-ELF file to correctly refer to a symbol defined in
3289 an ELF dynamic object. */
3290 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3292 while (h->root.type == bfd_link_hash_indirect)
3293 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3295 if (h->root.type != bfd_link_hash_defined
3296 && h->root.type != bfd_link_hash_defweak)
3297 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3298 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3301 if (h->root.u.def.section->owner != NULL
3302 && (bfd_get_flavour (h->root.u.def.section->owner)
3303 == bfd_target_elf_flavour))
3304 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3305 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3307 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3310 if (h->dynindx == -1
3311 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3312 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3314 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3323 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3324 was first seen in a non-ELF file. Fortunately, if the symbol
3325 was first seen in an ELF file, we're probably OK unless the
3326 symbol was defined in a non-ELF file. Catch that case here.
3327 FIXME: We're still in trouble if the symbol was first seen in
3328 a dynamic object, and then later in a non-ELF regular object. */
3329 if ((h->root.type == bfd_link_hash_defined
3330 || h->root.type == bfd_link_hash_defweak)
3331 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3332 && (h->root.u.def.section->owner != NULL
3333 ? (bfd_get_flavour (h->root.u.def.section->owner)
3334 != bfd_target_elf_flavour)
3335 : (bfd_is_abs_section (h->root.u.def.section)
3336 && (h->elf_link_hash_flags
3337 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3338 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3341 /* If this is a final link, and the symbol was defined as a common
3342 symbol in a regular object file, and there was no definition in
3343 any dynamic object, then the linker will have allocated space for
3344 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3345 flag will not have been set. */
3346 if (h->root.type == bfd_link_hash_defined
3347 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3348 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3349 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3350 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3351 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3353 /* If -Bsymbolic was used (which means to bind references to global
3354 symbols to the definition within the shared object), and this
3355 symbol was defined in a regular object, then it actually doesn't
3356 need a PLT entry. Likewise, if the symbol has any kind of
3357 visibility (internal, hidden, or protected), it doesn't need a
3359 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3360 && eif->info->shared
3361 && (eif->info->symbolic || ELF_ST_VISIBILITY (h->other))
3362 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3364 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3365 h->plt.offset = (bfd_vma) -1;
3368 /* If this is a weak defined symbol in a dynamic object, and we know
3369 the real definition in the dynamic object, copy interesting flags
3370 over to the real definition. */
3371 if (h->weakdef != NULL)
3373 struct elf_link_hash_entry *weakdef;
3375 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3376 || h->root.type == bfd_link_hash_defweak);
3377 weakdef = h->weakdef;
3378 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3379 || weakdef->root.type == bfd_link_hash_defweak);
3380 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3382 /* If the real definition is defined by a regular object file,
3383 don't do anything special. See the longer description in
3384 elf_adjust_dynamic_symbol, below. */
3385 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3388 weakdef->elf_link_hash_flags |=
3389 (h->elf_link_hash_flags
3390 & (ELF_LINK_HASH_REF_REGULAR
3391 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3392 | ELF_LINK_NON_GOT_REF));
3398 /* Make the backend pick a good value for a dynamic symbol. This is
3399 called via elf_link_hash_traverse, and also calls itself
3403 elf_adjust_dynamic_symbol (h, data)
3404 struct elf_link_hash_entry *h;
3407 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3409 struct elf_backend_data *bed;
3411 /* Ignore indirect symbols. These are added by the versioning code. */
3412 if (h->root.type == bfd_link_hash_indirect)
3415 /* Fix the symbol flags. */
3416 if (! elf_fix_symbol_flags (h, eif))
3419 /* If this symbol does not require a PLT entry, and it is not
3420 defined by a dynamic object, or is not referenced by a regular
3421 object, ignore it. We do have to handle a weak defined symbol,
3422 even if no regular object refers to it, if we decided to add it
3423 to the dynamic symbol table. FIXME: Do we normally need to worry
3424 about symbols which are defined by one dynamic object and
3425 referenced by another one? */
3426 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3427 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3428 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3429 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3430 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3432 h->plt.offset = (bfd_vma) -1;
3436 /* If we've already adjusted this symbol, don't do it again. This
3437 can happen via a recursive call. */
3438 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3441 /* Don't look at this symbol again. Note that we must set this
3442 after checking the above conditions, because we may look at a
3443 symbol once, decide not to do anything, and then get called
3444 recursively later after REF_REGULAR is set below. */
3445 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3447 /* If this is a weak definition, and we know a real definition, and
3448 the real symbol is not itself defined by a regular object file,
3449 then get a good value for the real definition. We handle the
3450 real symbol first, for the convenience of the backend routine.
3452 Note that there is a confusing case here. If the real definition
3453 is defined by a regular object file, we don't get the real symbol
3454 from the dynamic object, but we do get the weak symbol. If the
3455 processor backend uses a COPY reloc, then if some routine in the
3456 dynamic object changes the real symbol, we will not see that
3457 change in the corresponding weak symbol. This is the way other
3458 ELF linkers work as well, and seems to be a result of the shared
3461 I will clarify this issue. Most SVR4 shared libraries define the
3462 variable _timezone and define timezone as a weak synonym. The
3463 tzset call changes _timezone. If you write
3464 extern int timezone;
3466 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3467 you might expect that, since timezone is a synonym for _timezone,
3468 the same number will print both times. However, if the processor
3469 backend uses a COPY reloc, then actually timezone will be copied
3470 into your process image, and, since you define _timezone
3471 yourself, _timezone will not. Thus timezone and _timezone will
3472 wind up at different memory locations. The tzset call will set
3473 _timezone, leaving timezone unchanged. */
3475 if (h->weakdef != NULL)
3477 /* If we get to this point, we know there is an implicit
3478 reference by a regular object file via the weak symbol H.
3479 FIXME: Is this really true? What if the traversal finds
3480 H->WEAKDEF before it finds H? */
3481 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3483 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3487 /* If a symbol has no type and no size and does not require a PLT
3488 entry, then we are probably about to do the wrong thing here: we
3489 are probably going to create a COPY reloc for an empty object.
3490 This case can arise when a shared object is built with assembly
3491 code, and the assembly code fails to set the symbol type. */
3493 && h->type == STT_NOTYPE
3494 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3495 (*_bfd_error_handler)
3496 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3497 h->root.root.string);
3499 dynobj = elf_hash_table (eif->info)->dynobj;
3500 bed = get_elf_backend_data (dynobj);
3501 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3510 /* This routine is used to export all defined symbols into the dynamic
3511 symbol table. It is called via elf_link_hash_traverse. */
3514 elf_export_symbol (h, data)
3515 struct elf_link_hash_entry *h;
3518 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3520 /* Ignore indirect symbols. These are added by the versioning code. */
3521 if (h->root.type == bfd_link_hash_indirect)
3524 if (h->dynindx == -1
3525 && (h->elf_link_hash_flags
3526 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3528 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3538 /* Look through the symbols which are defined in other shared
3539 libraries and referenced here. Update the list of version
3540 dependencies. This will be put into the .gnu.version_r section.
3541 This function is called via elf_link_hash_traverse. */
3544 elf_link_find_version_dependencies (h, data)
3545 struct elf_link_hash_entry *h;
3548 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3549 Elf_Internal_Verneed *t;
3550 Elf_Internal_Vernaux *a;
3552 /* We only care about symbols defined in shared objects with version
3554 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3555 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3557 || h->verinfo.verdef == NULL)
3560 /* See if we already know about this version. */
3561 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3563 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3566 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3567 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3573 /* This is a new version. Add it to tree we are building. */
3577 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3580 rinfo->failed = true;
3584 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3585 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3586 elf_tdata (rinfo->output_bfd)->verref = t;
3589 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3591 /* Note that we are copying a string pointer here, and testing it
3592 above. If bfd_elf_string_from_elf_section is ever changed to
3593 discard the string data when low in memory, this will have to be
3595 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3597 a->vna_flags = h->verinfo.verdef->vd_flags;
3598 a->vna_nextptr = t->vn_auxptr;
3600 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3603 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3610 /* Figure out appropriate versions for all the symbols. We may not
3611 have the version number script until we have read all of the input
3612 files, so until that point we don't know which symbols should be
3613 local. This function is called via elf_link_hash_traverse. */
3616 elf_link_assign_sym_version (h, data)
3617 struct elf_link_hash_entry *h;
3620 struct elf_assign_sym_version_info *sinfo =
3621 (struct elf_assign_sym_version_info *) data;
3622 struct bfd_link_info *info = sinfo->info;
3623 struct elf_backend_data *bed;
3624 struct elf_info_failed eif;
3627 /* Fix the symbol flags. */
3630 if (! elf_fix_symbol_flags (h, &eif))
3633 sinfo->failed = true;
3637 /* We only need version numbers for symbols defined in regular
3639 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3642 bed = get_elf_backend_data (sinfo->output_bfd);
3643 p = strchr (h->root.root.string, ELF_VER_CHR);
3644 if (p != NULL && h->verinfo.vertree == NULL)
3646 struct bfd_elf_version_tree *t;
3651 /* There are two consecutive ELF_VER_CHR characters if this is
3652 not a hidden symbol. */
3654 if (*p == ELF_VER_CHR)
3660 /* If there is no version string, we can just return out. */
3664 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3668 /* Look for the version. If we find it, it is no longer weak. */
3669 for (t = sinfo->verdefs; t != NULL; t = t->next)
3671 if (strcmp (t->name, p) == 0)
3675 struct bfd_elf_version_expr *d;
3677 len = p - h->root.root.string;
3678 alc = bfd_alloc (sinfo->output_bfd, len);
3681 strncpy (alc, h->root.root.string, len - 1);
3682 alc[len - 1] = '\0';
3683 if (alc[len - 2] == ELF_VER_CHR)
3684 alc[len - 2] = '\0';
3686 h->verinfo.vertree = t;
3690 if (t->globals != NULL)
3692 for (d = t->globals; d != NULL; d = d->next)
3693 if ((*d->match) (d, alc))
3697 /* See if there is anything to force this symbol to
3699 if (d == NULL && t->locals != NULL)
3701 for (d = t->locals; d != NULL; d = d->next)
3703 if ((*d->match) (d, alc))
3705 if (h->dynindx != -1
3707 && ! sinfo->export_dynamic)
3709 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3710 (*bed->elf_backend_hide_symbol) (info, h);
3711 /* FIXME: The name of the symbol has
3712 already been recorded in the dynamic
3713 string table section. */
3721 bfd_release (sinfo->output_bfd, alc);
3726 /* If we are building an application, we need to create a
3727 version node for this version. */
3728 if (t == NULL && ! info->shared)
3730 struct bfd_elf_version_tree **pp;
3733 /* If we aren't going to export this symbol, we don't need
3734 to worry about it. */
3735 if (h->dynindx == -1)
3738 t = ((struct bfd_elf_version_tree *)
3739 bfd_alloc (sinfo->output_bfd, sizeof *t));
3742 sinfo->failed = true;
3751 t->name_indx = (unsigned int) -1;
3755 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3757 t->vernum = version_index;
3761 h->verinfo.vertree = t;
3765 /* We could not find the version for a symbol when
3766 generating a shared archive. Return an error. */
3767 (*_bfd_error_handler)
3768 (_("%s: undefined versioned symbol name %s"),
3769 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3770 bfd_set_error (bfd_error_bad_value);
3771 sinfo->failed = true;
3776 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3779 /* If we don't have a version for this symbol, see if we can find
3781 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3783 struct bfd_elf_version_tree *t;
3784 struct bfd_elf_version_tree *deflt;
3785 struct bfd_elf_version_expr *d;
3787 /* See if can find what version this symbol is in. If the
3788 symbol is supposed to be local, then don't actually register
3791 for (t = sinfo->verdefs; t != NULL; t = t->next)
3793 if (t->globals != NULL)
3795 for (d = t->globals; d != NULL; d = d->next)
3797 if ((*d->match) (d, h->root.root.string))
3799 h->verinfo.vertree = t;
3808 if (t->locals != NULL)
3810 for (d = t->locals; d != NULL; d = d->next)
3812 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3814 else if ((*d->match) (d, h->root.root.string))
3816 h->verinfo.vertree = t;
3817 if (h->dynindx != -1
3819 && ! sinfo->export_dynamic)
3821 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3822 (*bed->elf_backend_hide_symbol) (info, h);
3823 /* FIXME: The name of the symbol has already
3824 been recorded in the dynamic string table
3836 if (deflt != NULL && h->verinfo.vertree == NULL)
3838 h->verinfo.vertree = deflt;
3839 if (h->dynindx != -1
3841 && ! sinfo->export_dynamic)
3843 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3844 (*bed->elf_backend_hide_symbol) (info, h);
3845 /* FIXME: The name of the symbol has already been
3846 recorded in the dynamic string table section. */
3854 /* Final phase of ELF linker. */
3856 /* A structure we use to avoid passing large numbers of arguments. */
3858 struct elf_final_link_info
3860 /* General link information. */
3861 struct bfd_link_info *info;
3864 /* Symbol string table. */
3865 struct bfd_strtab_hash *symstrtab;
3866 /* .dynsym section. */
3867 asection *dynsym_sec;
3868 /* .hash section. */
3870 /* symbol version section (.gnu.version). */
3871 asection *symver_sec;
3872 /* Buffer large enough to hold contents of any section. */
3874 /* Buffer large enough to hold external relocs of any section. */
3875 PTR external_relocs;
3876 /* Buffer large enough to hold internal relocs of any section. */
3877 Elf_Internal_Rela *internal_relocs;
3878 /* Buffer large enough to hold external local symbols of any input
3880 Elf_External_Sym *external_syms;
3881 /* Buffer large enough to hold internal local symbols of any input
3883 Elf_Internal_Sym *internal_syms;
3884 /* Array large enough to hold a symbol index for each local symbol
3885 of any input BFD. */
3887 /* Array large enough to hold a section pointer for each local
3888 symbol of any input BFD. */
3889 asection **sections;
3890 /* Buffer to hold swapped out symbols. */
3891 Elf_External_Sym *symbuf;
3892 /* Number of swapped out symbols in buffer. */
3893 size_t symbuf_count;
3894 /* Number of symbols which fit in symbuf. */
3898 static boolean elf_link_output_sym
3899 PARAMS ((struct elf_final_link_info *, const char *,
3900 Elf_Internal_Sym *, asection *));
3901 static boolean elf_link_flush_output_syms
3902 PARAMS ((struct elf_final_link_info *));
3903 static boolean elf_link_output_extsym
3904 PARAMS ((struct elf_link_hash_entry *, PTR));
3905 static boolean elf_link_input_bfd
3906 PARAMS ((struct elf_final_link_info *, bfd *));
3907 static boolean elf_reloc_link_order
3908 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3909 struct bfd_link_order *));
3911 /* This struct is used to pass information to elf_link_output_extsym. */
3913 struct elf_outext_info
3917 struct elf_final_link_info *finfo;
3920 /* Compute the size of, and allocate space for, REL_HDR which is the
3921 section header for a section containing relocations for O. */
3924 elf_link_size_reloc_section (abfd, rel_hdr, o)
3926 Elf_Internal_Shdr *rel_hdr;
3929 register struct elf_link_hash_entry **p, **pend;
3930 unsigned reloc_count;
3932 /* Figure out how many relocations there will be. */
3933 if (rel_hdr == &elf_section_data (o)->rel_hdr)
3934 reloc_count = elf_section_data (o)->rel_count;
3936 reloc_count = elf_section_data (o)->rel_count2;
3938 /* That allows us to calculate the size of the section. */
3939 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
3941 /* The contents field must last into write_object_contents, so we
3942 allocate it with bfd_alloc rather than malloc. */
3943 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3944 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3947 /* We only allocate one set of hash entries, so we only do it the
3948 first time we are called. */
3949 if (elf_section_data (o)->rel_hashes == NULL)
3951 p = ((struct elf_link_hash_entry **)
3952 bfd_malloc (o->reloc_count
3953 * sizeof (struct elf_link_hash_entry *)));
3954 if (p == NULL && o->reloc_count != 0)
3957 elf_section_data (o)->rel_hashes = p;
3958 pend = p + o->reloc_count;
3959 for (; p < pend; p++)
3966 /* When performing a relocateable link, the input relocations are
3967 preserved. But, if they reference global symbols, the indices
3968 referenced must be updated. Update all the relocations in
3969 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
3972 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
3974 Elf_Internal_Shdr *rel_hdr;
3976 struct elf_link_hash_entry **rel_hash;
3979 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3981 for (i = 0; i < count; i++, rel_hash++)
3983 if (*rel_hash == NULL)
3986 BFD_ASSERT ((*rel_hash)->indx >= 0);
3988 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3990 Elf_External_Rel *erel;
3991 Elf_Internal_Rel irel;
3993 erel = (Elf_External_Rel *) rel_hdr->contents + i;
3994 if (bed->s->swap_reloc_in)
3995 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &irel);
3997 elf_swap_reloc_in (abfd, erel, &irel);
3998 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
3999 ELF_R_TYPE (irel.r_info));
4000 if (bed->s->swap_reloc_out)
4001 (*bed->s->swap_reloc_out) (abfd, &irel, (bfd_byte *) erel);
4003 elf_swap_reloc_out (abfd, &irel, erel);
4007 Elf_External_Rela *erela;
4008 Elf_Internal_Rela irela;
4010 BFD_ASSERT (rel_hdr->sh_entsize
4011 == sizeof (Elf_External_Rela));
4013 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4014 if (bed->s->swap_reloca_in)
4015 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, &irela);
4017 elf_swap_reloca_in (abfd, erela, &irela);
4018 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4019 ELF_R_TYPE (irela.r_info));
4020 if (bed->s->swap_reloca_out)
4021 (*bed->s->swap_reloca_out) (abfd, &irela, (bfd_byte *) erela);
4023 elf_swap_reloca_out (abfd, &irela, erela);
4028 /* Do the final step of an ELF link. */
4031 elf_bfd_final_link (abfd, info)
4033 struct bfd_link_info *info;
4037 struct elf_final_link_info finfo;
4038 register asection *o;
4039 register struct bfd_link_order *p;
4041 size_t max_contents_size;
4042 size_t max_external_reloc_size;
4043 size_t max_internal_reloc_count;
4044 size_t max_sym_count;
4046 Elf_Internal_Sym elfsym;
4048 Elf_Internal_Shdr *symtab_hdr;
4049 Elf_Internal_Shdr *symstrtab_hdr;
4050 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4051 struct elf_outext_info eoinfo;
4054 abfd->flags |= DYNAMIC;
4056 dynamic = elf_hash_table (info)->dynamic_sections_created;
4057 dynobj = elf_hash_table (info)->dynobj;
4060 finfo.output_bfd = abfd;
4061 finfo.symstrtab = elf_stringtab_init ();
4062 if (finfo.symstrtab == NULL)
4067 finfo.dynsym_sec = NULL;
4068 finfo.hash_sec = NULL;
4069 finfo.symver_sec = NULL;
4073 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4074 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4075 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4076 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4077 /* Note that it is OK if symver_sec is NULL. */
4080 finfo.contents = NULL;
4081 finfo.external_relocs = NULL;
4082 finfo.internal_relocs = NULL;
4083 finfo.external_syms = NULL;
4084 finfo.internal_syms = NULL;
4085 finfo.indices = NULL;
4086 finfo.sections = NULL;
4087 finfo.symbuf = NULL;
4088 finfo.symbuf_count = 0;
4090 /* Count up the number of relocations we will output for each output
4091 section, so that we know the sizes of the reloc sections. We
4092 also figure out some maximum sizes. */
4093 max_contents_size = 0;
4094 max_external_reloc_size = 0;
4095 max_internal_reloc_count = 0;
4097 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4101 for (p = o->link_order_head; p != NULL; p = p->next)
4103 if (p->type == bfd_section_reloc_link_order
4104 || p->type == bfd_symbol_reloc_link_order)
4106 else if (p->type == bfd_indirect_link_order)
4110 sec = p->u.indirect.section;
4112 /* Mark all sections which are to be included in the
4113 link. This will normally be every section. We need
4114 to do this so that we can identify any sections which
4115 the linker has decided to not include. */
4116 sec->linker_mark = true;
4118 if (info->relocateable || info->emitrelocations)
4119 o->reloc_count += sec->reloc_count;
4121 if (sec->_raw_size > max_contents_size)
4122 max_contents_size = sec->_raw_size;
4123 if (sec->_cooked_size > max_contents_size)
4124 max_contents_size = sec->_cooked_size;
4126 /* We are interested in just local symbols, not all
4128 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4129 && (sec->owner->flags & DYNAMIC) == 0)
4133 if (elf_bad_symtab (sec->owner))
4134 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4135 / sizeof (Elf_External_Sym));
4137 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4139 if (sym_count > max_sym_count)
4140 max_sym_count = sym_count;
4142 if ((sec->flags & SEC_RELOC) != 0)
4146 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4147 if (ext_size > max_external_reloc_size)
4148 max_external_reloc_size = ext_size;
4149 if (sec->reloc_count > max_internal_reloc_count)
4150 max_internal_reloc_count = sec->reloc_count;
4156 if (o->reloc_count > 0)
4157 o->flags |= SEC_RELOC;
4160 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4161 set it (this is probably a bug) and if it is set
4162 assign_section_numbers will create a reloc section. */
4163 o->flags &=~ SEC_RELOC;
4166 /* If the SEC_ALLOC flag is not set, force the section VMA to
4167 zero. This is done in elf_fake_sections as well, but forcing
4168 the VMA to 0 here will ensure that relocs against these
4169 sections are handled correctly. */
4170 if ((o->flags & SEC_ALLOC) == 0
4171 && ! o->user_set_vma)
4175 /* Figure out the file positions for everything but the symbol table
4176 and the relocs. We set symcount to force assign_section_numbers
4177 to create a symbol table. */
4178 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4179 BFD_ASSERT (! abfd->output_has_begun);
4180 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4183 /* Figure out how many relocations we will have in each section.
4184 Just using RELOC_COUNT isn't good enough since that doesn't
4185 maintain a separate value for REL vs. RELA relocations. */
4186 if (info->relocateable || info->emitrelocations)
4187 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4188 for (o = sub->sections; o != NULL; o = o->next)
4190 asection *output_section;
4192 if (! o->linker_mark)
4194 /* This section was omitted from the link. */
4198 output_section = o->output_section;
4200 if (output_section != NULL
4201 && (o->flags & SEC_RELOC) != 0)
4203 struct bfd_elf_section_data *esdi
4204 = elf_section_data (o);
4205 struct bfd_elf_section_data *esdo
4206 = elf_section_data (output_section);
4207 unsigned int *rel_count;
4208 unsigned int *rel_count2;
4210 /* We must be careful to add the relocation froms the
4211 input section to the right output count. */
4212 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4214 rel_count = &esdo->rel_count;
4215 rel_count2 = &esdo->rel_count2;
4219 rel_count = &esdo->rel_count2;
4220 rel_count2 = &esdo->rel_count;
4223 *rel_count += (esdi->rel_hdr.sh_size
4224 / esdi->rel_hdr.sh_entsize);
4226 *rel_count2 += (esdi->rel_hdr2->sh_size
4227 / esdi->rel_hdr2->sh_entsize);
4231 /* That created the reloc sections. Set their sizes, and assign
4232 them file positions, and allocate some buffers. */
4233 for (o = abfd->sections; o != NULL; o = o->next)
4235 if ((o->flags & SEC_RELOC) != 0)
4237 if (!elf_link_size_reloc_section (abfd,
4238 &elf_section_data (o)->rel_hdr,
4242 if (elf_section_data (o)->rel_hdr2
4243 && !elf_link_size_reloc_section (abfd,
4244 elf_section_data (o)->rel_hdr2,
4249 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4250 to count upwards while actually outputting the relocations. */
4251 elf_section_data (o)->rel_count = 0;
4252 elf_section_data (o)->rel_count2 = 0;
4255 _bfd_elf_assign_file_positions_for_relocs (abfd);
4257 /* We have now assigned file positions for all the sections except
4258 .symtab and .strtab. We start the .symtab section at the current
4259 file position, and write directly to it. We build the .strtab
4260 section in memory. */
4261 bfd_get_symcount (abfd) = 0;
4262 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4263 /* sh_name is set in prep_headers. */
4264 symtab_hdr->sh_type = SHT_SYMTAB;
4265 symtab_hdr->sh_flags = 0;
4266 symtab_hdr->sh_addr = 0;
4267 symtab_hdr->sh_size = 0;
4268 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4269 /* sh_link is set in assign_section_numbers. */
4270 /* sh_info is set below. */
4271 /* sh_offset is set just below. */
4272 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4274 off = elf_tdata (abfd)->next_file_pos;
4275 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4277 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4278 incorrect. We do not yet know the size of the .symtab section.
4279 We correct next_file_pos below, after we do know the size. */
4281 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4282 continuously seeking to the right position in the file. */
4283 if (! info->keep_memory || max_sym_count < 20)
4284 finfo.symbuf_size = 20;
4286 finfo.symbuf_size = max_sym_count;
4287 finfo.symbuf = ((Elf_External_Sym *)
4288 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4289 if (finfo.symbuf == NULL)
4292 /* Start writing out the symbol table. The first symbol is always a
4294 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
4296 elfsym.st_value = 0;
4299 elfsym.st_other = 0;
4300 elfsym.st_shndx = SHN_UNDEF;
4301 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4302 &elfsym, bfd_und_section_ptr))
4307 /* Some standard ELF linkers do this, but we don't because it causes
4308 bootstrap comparison failures. */
4309 /* Output a file symbol for the output file as the second symbol.
4310 We output this even if we are discarding local symbols, although
4311 I'm not sure if this is correct. */
4312 elfsym.st_value = 0;
4314 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4315 elfsym.st_other = 0;
4316 elfsym.st_shndx = SHN_ABS;
4317 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4318 &elfsym, bfd_abs_section_ptr))
4322 /* Output a symbol for each section. We output these even if we are
4323 discarding local symbols, since they are used for relocs. These
4324 symbols have no names. We store the index of each one in the
4325 index field of the section, so that we can find it again when
4326 outputting relocs. */
4327 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
4330 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4331 elfsym.st_other = 0;
4332 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4334 o = section_from_elf_index (abfd, i);
4336 o->target_index = bfd_get_symcount (abfd);
4337 elfsym.st_shndx = i;
4338 if (info->relocateable || o == NULL)
4339 elfsym.st_value = 0;
4341 elfsym.st_value = o->vma;
4342 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4348 /* Allocate some memory to hold information read in from the input
4350 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4351 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4352 finfo.internal_relocs = ((Elf_Internal_Rela *)
4353 bfd_malloc (max_internal_reloc_count
4354 * sizeof (Elf_Internal_Rela)
4355 * bed->s->int_rels_per_ext_rel));
4356 finfo.external_syms = ((Elf_External_Sym *)
4357 bfd_malloc (max_sym_count
4358 * sizeof (Elf_External_Sym)));
4359 finfo.internal_syms = ((Elf_Internal_Sym *)
4360 bfd_malloc (max_sym_count
4361 * sizeof (Elf_Internal_Sym)));
4362 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4363 finfo.sections = ((asection **)
4364 bfd_malloc (max_sym_count * sizeof (asection *)));
4365 if ((finfo.contents == NULL && max_contents_size != 0)
4366 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4367 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4368 || (finfo.external_syms == NULL && max_sym_count != 0)
4369 || (finfo.internal_syms == NULL && max_sym_count != 0)
4370 || (finfo.indices == NULL && max_sym_count != 0)
4371 || (finfo.sections == NULL && max_sym_count != 0))
4374 /* Since ELF permits relocations to be against local symbols, we
4375 must have the local symbols available when we do the relocations.
4376 Since we would rather only read the local symbols once, and we
4377 would rather not keep them in memory, we handle all the
4378 relocations for a single input file at the same time.
4380 Unfortunately, there is no way to know the total number of local
4381 symbols until we have seen all of them, and the local symbol
4382 indices precede the global symbol indices. This means that when
4383 we are generating relocateable output, and we see a reloc against
4384 a global symbol, we can not know the symbol index until we have
4385 finished examining all the local symbols to see which ones we are
4386 going to output. To deal with this, we keep the relocations in
4387 memory, and don't output them until the end of the link. This is
4388 an unfortunate waste of memory, but I don't see a good way around
4389 it. Fortunately, it only happens when performing a relocateable
4390 link, which is not the common case. FIXME: If keep_memory is set
4391 we could write the relocs out and then read them again; I don't
4392 know how bad the memory loss will be. */
4394 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4395 sub->output_has_begun = false;
4396 for (o = abfd->sections; o != NULL; o = o->next)
4398 for (p = o->link_order_head; p != NULL; p = p->next)
4400 if (p->type == bfd_indirect_link_order
4401 && (bfd_get_flavour (p->u.indirect.section->owner)
4402 == bfd_target_elf_flavour))
4404 sub = p->u.indirect.section->owner;
4405 if (! sub->output_has_begun)
4407 if (! elf_link_input_bfd (&finfo, sub))
4409 sub->output_has_begun = true;
4412 else if (p->type == bfd_section_reloc_link_order
4413 || p->type == bfd_symbol_reloc_link_order)
4415 if (! elf_reloc_link_order (abfd, info, o, p))
4420 if (! _bfd_default_link_order (abfd, info, o, p))
4426 /* That wrote out all the local symbols. Finish up the symbol table
4427 with the global symbols. Even if we want to strip everything we
4428 can, we still need to deal with those global symbols that got
4429 converted to local in a version script. */
4433 /* Output any global symbols that got converted to local in a
4434 version script. We do this in a separate step since ELF
4435 requires all local symbols to appear prior to any global
4436 symbols. FIXME: We should only do this if some global
4437 symbols were, in fact, converted to become local. FIXME:
4438 Will this work correctly with the Irix 5 linker? */
4439 eoinfo.failed = false;
4440 eoinfo.finfo = &finfo;
4441 eoinfo.localsyms = true;
4442 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4448 /* The sh_info field records the index of the first non local symbol. */
4449 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4453 Elf_Internal_Sym sym;
4454 Elf_External_Sym *dynsym =
4455 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4456 long last_local = 0;
4458 /* Write out the section symbols for the output sections. */
4465 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4468 for (s = abfd->sections; s != NULL; s = s->next)
4471 indx = elf_section_data (s)->this_idx;
4472 BFD_ASSERT (indx > 0);
4473 sym.st_shndx = indx;
4474 sym.st_value = s->vma;
4476 elf_swap_symbol_out (abfd, &sym,
4477 dynsym + elf_section_data (s)->dynindx);
4480 last_local = bfd_count_sections (abfd);
4483 /* Write out the local dynsyms. */
4484 if (elf_hash_table (info)->dynlocal)
4486 struct elf_link_local_dynamic_entry *e;
4487 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4491 sym.st_size = e->isym.st_size;
4492 sym.st_other = e->isym.st_other;
4494 /* Copy the internal symbol as is.
4495 Note that we saved a word of storage and overwrote
4496 the original st_name with the dynstr_index. */
4499 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4501 s = bfd_section_from_elf_index (e->input_bfd,
4505 elf_section_data (s->output_section)->this_idx;
4506 sym.st_value = (s->output_section->vma
4508 + e->isym.st_value);
4511 if (last_local < e->dynindx)
4512 last_local = e->dynindx;
4514 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4518 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4522 /* We get the global symbols from the hash table. */
4523 eoinfo.failed = false;
4524 eoinfo.localsyms = false;
4525 eoinfo.finfo = &finfo;
4526 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4531 /* If backend needs to output some symbols not present in the hash
4532 table, do it now. */
4533 if (bed->elf_backend_output_arch_syms)
4535 if (! (*bed->elf_backend_output_arch_syms)
4536 (abfd, info, (PTR) &finfo,
4537 (boolean (*) PARAMS ((PTR, const char *,
4538 Elf_Internal_Sym *, asection *)))
4539 elf_link_output_sym))
4543 /* Flush all symbols to the file. */
4544 if (! elf_link_flush_output_syms (&finfo))
4547 /* Now we know the size of the symtab section. */
4548 off += symtab_hdr->sh_size;
4550 /* Finish up and write out the symbol string table (.strtab)
4552 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4553 /* sh_name was set in prep_headers. */
4554 symstrtab_hdr->sh_type = SHT_STRTAB;
4555 symstrtab_hdr->sh_flags = 0;
4556 symstrtab_hdr->sh_addr = 0;
4557 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4558 symstrtab_hdr->sh_entsize = 0;
4559 symstrtab_hdr->sh_link = 0;
4560 symstrtab_hdr->sh_info = 0;
4561 /* sh_offset is set just below. */
4562 symstrtab_hdr->sh_addralign = 1;
4564 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4565 elf_tdata (abfd)->next_file_pos = off;
4567 if (bfd_get_symcount (abfd) > 0)
4569 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4570 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4574 /* Adjust the relocs to have the correct symbol indices. */
4575 for (o = abfd->sections; o != NULL; o = o->next)
4577 if ((o->flags & SEC_RELOC) == 0)
4580 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4581 elf_section_data (o)->rel_count,
4582 elf_section_data (o)->rel_hashes);
4583 if (elf_section_data (o)->rel_hdr2 != NULL)
4584 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4585 elf_section_data (o)->rel_count2,
4586 (elf_section_data (o)->rel_hashes
4587 + elf_section_data (o)->rel_count));
4589 /* Set the reloc_count field to 0 to prevent write_relocs from
4590 trying to swap the relocs out itself. */
4594 /* If we are linking against a dynamic object, or generating a
4595 shared library, finish up the dynamic linking information. */
4598 Elf_External_Dyn *dyncon, *dynconend;
4600 /* Fix up .dynamic entries. */
4601 o = bfd_get_section_by_name (dynobj, ".dynamic");
4602 BFD_ASSERT (o != NULL);
4604 dyncon = (Elf_External_Dyn *) o->contents;
4605 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4606 for (; dyncon < dynconend; dyncon++)
4608 Elf_Internal_Dyn dyn;
4612 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4619 name = info->init_function;
4622 name = info->fini_function;
4625 struct elf_link_hash_entry *h;
4627 h = elf_link_hash_lookup (elf_hash_table (info), name,
4628 false, false, true);
4630 && (h->root.type == bfd_link_hash_defined
4631 || h->root.type == bfd_link_hash_defweak))
4633 dyn.d_un.d_val = h->root.u.def.value;
4634 o = h->root.u.def.section;
4635 if (o->output_section != NULL)
4636 dyn.d_un.d_val += (o->output_section->vma
4637 + o->output_offset);
4640 /* The symbol is imported from another shared
4641 library and does not apply to this one. */
4645 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4660 name = ".gnu.version_d";
4663 name = ".gnu.version_r";
4666 name = ".gnu.version";
4668 o = bfd_get_section_by_name (abfd, name);
4669 BFD_ASSERT (o != NULL);
4670 dyn.d_un.d_ptr = o->vma;
4671 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4678 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4683 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4685 Elf_Internal_Shdr *hdr;
4687 hdr = elf_elfsections (abfd)[i];
4688 if (hdr->sh_type == type
4689 && (hdr->sh_flags & SHF_ALLOC) != 0)
4691 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4692 dyn.d_un.d_val += hdr->sh_size;
4695 if (dyn.d_un.d_val == 0
4696 || hdr->sh_addr < dyn.d_un.d_val)
4697 dyn.d_un.d_val = hdr->sh_addr;
4701 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4707 /* If we have created any dynamic sections, then output them. */
4710 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4713 for (o = dynobj->sections; o != NULL; o = o->next)
4715 if ((o->flags & SEC_HAS_CONTENTS) == 0
4716 || o->_raw_size == 0)
4718 if ((o->flags & SEC_LINKER_CREATED) == 0)
4720 /* At this point, we are only interested in sections
4721 created by elf_link_create_dynamic_sections. */
4724 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4726 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4728 if (! bfd_set_section_contents (abfd, o->output_section,
4729 o->contents, o->output_offset,
4737 /* The contents of the .dynstr section are actually in a
4739 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4740 if (bfd_seek (abfd, off, SEEK_SET) != 0
4741 || ! _bfd_stringtab_emit (abfd,
4742 elf_hash_table (info)->dynstr))
4748 /* If we have optimized stabs strings, output them. */
4749 if (elf_hash_table (info)->stab_info != NULL)
4751 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4755 if (finfo.symstrtab != NULL)
4756 _bfd_stringtab_free (finfo.symstrtab);
4757 if (finfo.contents != NULL)
4758 free (finfo.contents);
4759 if (finfo.external_relocs != NULL)
4760 free (finfo.external_relocs);
4761 if (finfo.internal_relocs != NULL)
4762 free (finfo.internal_relocs);
4763 if (finfo.external_syms != NULL)
4764 free (finfo.external_syms);
4765 if (finfo.internal_syms != NULL)
4766 free (finfo.internal_syms);
4767 if (finfo.indices != NULL)
4768 free (finfo.indices);
4769 if (finfo.sections != NULL)
4770 free (finfo.sections);
4771 if (finfo.symbuf != NULL)
4772 free (finfo.symbuf);
4773 for (o = abfd->sections; o != NULL; o = o->next)
4775 if ((o->flags & SEC_RELOC) != 0
4776 && elf_section_data (o)->rel_hashes != NULL)
4777 free (elf_section_data (o)->rel_hashes);
4780 elf_tdata (abfd)->linker = true;
4785 if (finfo.symstrtab != NULL)
4786 _bfd_stringtab_free (finfo.symstrtab);
4787 if (finfo.contents != NULL)
4788 free (finfo.contents);
4789 if (finfo.external_relocs != NULL)
4790 free (finfo.external_relocs);
4791 if (finfo.internal_relocs != NULL)
4792 free (finfo.internal_relocs);
4793 if (finfo.external_syms != NULL)
4794 free (finfo.external_syms);
4795 if (finfo.internal_syms != NULL)
4796 free (finfo.internal_syms);
4797 if (finfo.indices != NULL)
4798 free (finfo.indices);
4799 if (finfo.sections != NULL)
4800 free (finfo.sections);
4801 if (finfo.symbuf != NULL)
4802 free (finfo.symbuf);
4803 for (o = abfd->sections; o != NULL; o = o->next)
4805 if ((o->flags & SEC_RELOC) != 0
4806 && elf_section_data (o)->rel_hashes != NULL)
4807 free (elf_section_data (o)->rel_hashes);
4813 /* Add a symbol to the output symbol table. */
4816 elf_link_output_sym (finfo, name, elfsym, input_sec)
4817 struct elf_final_link_info *finfo;
4819 Elf_Internal_Sym *elfsym;
4820 asection *input_sec;
4822 boolean (*output_symbol_hook) PARAMS ((bfd *,
4823 struct bfd_link_info *info,
4828 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4829 elf_backend_link_output_symbol_hook;
4830 if (output_symbol_hook != NULL)
4832 if (! ((*output_symbol_hook)
4833 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4837 if (name == (const char *) NULL || *name == '\0')
4838 elfsym->st_name = 0;
4839 else if (input_sec->flags & SEC_EXCLUDE)
4840 elfsym->st_name = 0;
4843 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4846 if (elfsym->st_name == (unsigned long) -1)
4850 if (finfo->symbuf_count >= finfo->symbuf_size)
4852 if (! elf_link_flush_output_syms (finfo))
4856 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4857 (PTR) (finfo->symbuf + finfo->symbuf_count));
4858 ++finfo->symbuf_count;
4860 ++ bfd_get_symcount (finfo->output_bfd);
4865 /* Flush the output symbols to the file. */
4868 elf_link_flush_output_syms (finfo)
4869 struct elf_final_link_info *finfo;
4871 if (finfo->symbuf_count > 0)
4873 Elf_Internal_Shdr *symtab;
4875 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4877 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4879 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4880 sizeof (Elf_External_Sym), finfo->output_bfd)
4881 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4884 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4886 finfo->symbuf_count = 0;
4892 /* Add an external symbol to the symbol table. This is called from
4893 the hash table traversal routine. When generating a shared object,
4894 we go through the symbol table twice. The first time we output
4895 anything that might have been forced to local scope in a version
4896 script. The second time we output the symbols that are still
4900 elf_link_output_extsym (h, data)
4901 struct elf_link_hash_entry *h;
4904 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4905 struct elf_final_link_info *finfo = eoinfo->finfo;
4907 Elf_Internal_Sym sym;
4908 asection *input_sec;
4910 /* Decide whether to output this symbol in this pass. */
4911 if (eoinfo->localsyms)
4913 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4918 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4922 /* If we are not creating a shared library, and this symbol is
4923 referenced by a shared library but is not defined anywhere, then
4924 warn that it is undefined. If we do not do this, the runtime
4925 linker will complain that the symbol is undefined when the
4926 program is run. We don't have to worry about symbols that are
4927 referenced by regular files, because we will already have issued
4928 warnings for them. */
4929 if (! finfo->info->relocateable
4930 && ! (finfo->info->shared
4931 && !finfo->info->no_undefined)
4932 && h->root.type == bfd_link_hash_undefined
4933 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4934 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4936 if (! ((*finfo->info->callbacks->undefined_symbol)
4937 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4938 (asection *) NULL, 0, true)))
4940 eoinfo->failed = true;
4945 /* We don't want to output symbols that have never been mentioned by
4946 a regular file, or that we have been told to strip. However, if
4947 h->indx is set to -2, the symbol is used by a reloc and we must
4951 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4952 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4953 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4954 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4956 else if (finfo->info->strip == strip_all
4957 || (finfo->info->strip == strip_some
4958 && bfd_hash_lookup (finfo->info->keep_hash,
4959 h->root.root.string,
4960 false, false) == NULL))
4965 /* If we're stripping it, and it's not a dynamic symbol, there's
4966 nothing else to do unless it is a forced local symbol. */
4969 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4973 sym.st_size = h->size;
4974 sym.st_other = h->other;
4975 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4976 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4977 else if (h->root.type == bfd_link_hash_undefweak
4978 || h->root.type == bfd_link_hash_defweak)
4979 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4981 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4983 switch (h->root.type)
4986 case bfd_link_hash_new:
4990 case bfd_link_hash_undefined:
4991 input_sec = bfd_und_section_ptr;
4992 sym.st_shndx = SHN_UNDEF;
4995 case bfd_link_hash_undefweak:
4996 input_sec = bfd_und_section_ptr;
4997 sym.st_shndx = SHN_UNDEF;
5000 case bfd_link_hash_defined:
5001 case bfd_link_hash_defweak:
5003 input_sec = h->root.u.def.section;
5004 if (input_sec->output_section != NULL)
5007 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
5008 input_sec->output_section);
5009 if (sym.st_shndx == (unsigned short) -1)
5011 (*_bfd_error_handler)
5012 (_("%s: could not find output section %s for input section %s"),
5013 bfd_get_filename (finfo->output_bfd),
5014 input_sec->output_section->name,
5016 eoinfo->failed = true;
5020 /* ELF symbols in relocateable files are section relative,
5021 but in nonrelocateable files they are virtual
5023 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5024 if (! finfo->info->relocateable)
5025 sym.st_value += input_sec->output_section->vma;
5029 BFD_ASSERT (input_sec->owner == NULL
5030 || (input_sec->owner->flags & DYNAMIC) != 0);
5031 sym.st_shndx = SHN_UNDEF;
5032 input_sec = bfd_und_section_ptr;
5037 case bfd_link_hash_common:
5038 input_sec = h->root.u.c.p->section;
5039 sym.st_shndx = SHN_COMMON;
5040 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5043 case bfd_link_hash_indirect:
5044 /* These symbols are created by symbol versioning. They point
5045 to the decorated version of the name. For example, if the
5046 symbol foo@@GNU_1.2 is the default, which should be used when
5047 foo is used with no version, then we add an indirect symbol
5048 foo which points to foo@@GNU_1.2. We ignore these symbols,
5049 since the indirected symbol is already in the hash table. */
5052 case bfd_link_hash_warning:
5053 /* We can't represent these symbols in ELF, although a warning
5054 symbol may have come from a .gnu.warning.SYMBOL section. We
5055 just put the target symbol in the hash table. If the target
5056 symbol does not really exist, don't do anything. */
5057 if (h->root.u.i.link->type == bfd_link_hash_new)
5059 return (elf_link_output_extsym
5060 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5063 /* Give the processor backend a chance to tweak the symbol value,
5064 and also to finish up anything that needs to be done for this
5066 if ((h->dynindx != -1
5067 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5068 && elf_hash_table (finfo->info)->dynamic_sections_created)
5070 struct elf_backend_data *bed;
5072 bed = get_elf_backend_data (finfo->output_bfd);
5073 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5074 (finfo->output_bfd, finfo->info, h, &sym)))
5076 eoinfo->failed = true;
5081 /* If we are marking the symbol as undefined, and there are no
5082 non-weak references to this symbol from a regular object, then
5083 mark the symbol as weak undefined; if there are non-weak
5084 references, mark the symbol as strong. We can't do this earlier,
5085 because it might not be marked as undefined until the
5086 finish_dynamic_symbol routine gets through with it. */
5087 if (sym.st_shndx == SHN_UNDEF
5088 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
5089 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5090 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5094 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5095 bindtype = STB_GLOBAL;
5097 bindtype = STB_WEAK;
5098 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5101 /* If a symbol is not defined locally, we clear the visibility
5103 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5104 sym.st_other ^= ELF_ST_VISIBILITY(sym.st_other);
5106 /* If this symbol should be put in the .dynsym section, then put it
5107 there now. We have already know the symbol index. We also fill
5108 in the entry in the .hash section. */
5109 if (h->dynindx != -1
5110 && elf_hash_table (finfo->info)->dynamic_sections_created)
5114 size_t hash_entry_size;
5115 bfd_byte *bucketpos;
5118 sym.st_name = h->dynstr_index;
5120 elf_swap_symbol_out (finfo->output_bfd, &sym,
5121 (PTR) (((Elf_External_Sym *)
5122 finfo->dynsym_sec->contents)
5125 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5126 bucket = h->elf_hash_value % bucketcount;
5128 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
5129 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5130 + (bucket + 2) * hash_entry_size);
5131 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5132 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5133 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5134 ((bfd_byte *) finfo->hash_sec->contents
5135 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
5137 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5139 Elf_Internal_Versym iversym;
5141 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5143 if (h->verinfo.verdef == NULL)
5144 iversym.vs_vers = 0;
5146 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5150 if (h->verinfo.vertree == NULL)
5151 iversym.vs_vers = 1;
5153 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5156 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5157 iversym.vs_vers |= VERSYM_HIDDEN;
5159 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5160 (((Elf_External_Versym *)
5161 finfo->symver_sec->contents)
5166 /* If we're stripping it, then it was just a dynamic symbol, and
5167 there's nothing else to do. */
5171 h->indx = bfd_get_symcount (finfo->output_bfd);
5173 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5175 eoinfo->failed = true;
5182 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5183 originated from the section given by INPUT_REL_HDR) to the
5187 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5190 asection *input_section;
5191 Elf_Internal_Shdr *input_rel_hdr;
5192 Elf_Internal_Rela *internal_relocs;
5194 Elf_Internal_Rela *irela;
5195 Elf_Internal_Rela *irelaend;
5196 Elf_Internal_Shdr *output_rel_hdr;
5197 asection *output_section;
5198 unsigned int *rel_countp = NULL;
5199 struct elf_backend_data *bed;
5201 output_section = input_section->output_section;
5202 output_rel_hdr = NULL;
5204 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5205 == input_rel_hdr->sh_entsize)
5207 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5208 rel_countp = &elf_section_data (output_section)->rel_count;
5210 else if (elf_section_data (output_section)->rel_hdr2
5211 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5212 == input_rel_hdr->sh_entsize))
5214 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5215 rel_countp = &elf_section_data (output_section)->rel_count2;
5218 BFD_ASSERT (output_rel_hdr != NULL);
5220 bed = get_elf_backend_data (output_bfd);
5221 irela = internal_relocs;
5222 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5223 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5225 Elf_External_Rel *erel;
5227 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5228 for (; irela < irelaend; irela++, erel++)
5230 Elf_Internal_Rel irel;
5232 irel.r_offset = irela->r_offset;
5233 irel.r_info = irela->r_info;
5234 BFD_ASSERT (irela->r_addend == 0);
5235 if (bed->s->swap_reloc_out)
5236 (*bed->s->swap_reloc_out) (output_bfd, &irel, (PTR) erel);
5238 elf_swap_reloc_out (output_bfd, &irel, erel);
5243 Elf_External_Rela *erela;
5245 BFD_ASSERT (input_rel_hdr->sh_entsize
5246 == sizeof (Elf_External_Rela));
5247 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5248 for (; irela < irelaend; irela++, erela++)
5249 if (bed->s->swap_reloca_out)
5250 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
5252 elf_swap_reloca_out (output_bfd, irela, erela);
5255 /* Bump the counter, so that we know where to add the next set of
5257 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5260 /* Link an input file into the linker output file. This function
5261 handles all the sections and relocations of the input file at once.
5262 This is so that we only have to read the local symbols once, and
5263 don't have to keep them in memory. */
5266 elf_link_input_bfd (finfo, input_bfd)
5267 struct elf_final_link_info *finfo;
5270 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5271 bfd *, asection *, bfd_byte *,
5272 Elf_Internal_Rela *,
5273 Elf_Internal_Sym *, asection **));
5275 Elf_Internal_Shdr *symtab_hdr;
5278 Elf_External_Sym *external_syms;
5279 Elf_External_Sym *esym;
5280 Elf_External_Sym *esymend;
5281 Elf_Internal_Sym *isym;
5283 asection **ppsection;
5285 struct elf_backend_data *bed;
5287 output_bfd = finfo->output_bfd;
5288 bed = get_elf_backend_data (output_bfd);
5289 relocate_section = bed->elf_backend_relocate_section;
5291 /* If this is a dynamic object, we don't want to do anything here:
5292 we don't want the local symbols, and we don't want the section
5294 if ((input_bfd->flags & DYNAMIC) != 0)
5297 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5298 if (elf_bad_symtab (input_bfd))
5300 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5305 locsymcount = symtab_hdr->sh_info;
5306 extsymoff = symtab_hdr->sh_info;
5309 /* Read the local symbols. */
5310 if (symtab_hdr->contents != NULL)
5311 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5312 else if (locsymcount == 0)
5313 external_syms = NULL;
5316 external_syms = finfo->external_syms;
5317 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5318 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5319 locsymcount, input_bfd)
5320 != locsymcount * sizeof (Elf_External_Sym)))
5324 /* Swap in the local symbols and write out the ones which we know
5325 are going into the output file. */
5326 esym = external_syms;
5327 esymend = esym + locsymcount;
5328 isym = finfo->internal_syms;
5329 pindex = finfo->indices;
5330 ppsection = finfo->sections;
5331 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5335 Elf_Internal_Sym osym;
5337 elf_swap_symbol_in (input_bfd, esym, isym);
5340 if (elf_bad_symtab (input_bfd))
5342 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5349 if (isym->st_shndx == SHN_UNDEF)
5350 isec = bfd_und_section_ptr;
5351 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5352 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5353 else if (isym->st_shndx == SHN_ABS)
5354 isec = bfd_abs_section_ptr;
5355 else if (isym->st_shndx == SHN_COMMON)
5356 isec = bfd_com_section_ptr;
5365 /* Don't output the first, undefined, symbol. */
5366 if (esym == external_syms)
5369 /* If we are stripping all symbols, we don't want to output this
5371 if (finfo->info->strip == strip_all)
5374 /* We never output section symbols. Instead, we use the section
5375 symbol of the corresponding section in the output file. */
5376 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5379 /* If we are discarding all local symbols, we don't want to
5380 output this one. If we are generating a relocateable output
5381 file, then some of the local symbols may be required by
5382 relocs; we output them below as we discover that they are
5384 if (finfo->info->discard == discard_all)
5387 /* If this symbol is defined in a section which we are
5388 discarding, we don't need to keep it, but note that
5389 linker_mark is only reliable for sections that have contents.
5390 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5391 as well as linker_mark. */
5392 if (isym->st_shndx > 0
5393 && isym->st_shndx < SHN_LORESERVE
5395 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5396 || (! finfo->info->relocateable
5397 && (isec->flags & SEC_EXCLUDE) != 0)))
5400 /* Get the name of the symbol. */
5401 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5406 /* See if we are discarding symbols with this name. */
5407 if ((finfo->info->strip == strip_some
5408 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5410 || (finfo->info->discard == discard_l
5411 && bfd_is_local_label_name (input_bfd, name)))
5414 /* If we get here, we are going to output this symbol. */
5418 /* Adjust the section index for the output file. */
5419 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5420 isec->output_section);
5421 if (osym.st_shndx == (unsigned short) -1)
5424 *pindex = bfd_get_symcount (output_bfd);
5426 /* ELF symbols in relocateable files are section relative, but
5427 in executable files they are virtual addresses. Note that
5428 this code assumes that all ELF sections have an associated
5429 BFD section with a reasonable value for output_offset; below
5430 we assume that they also have a reasonable value for
5431 output_section. Any special sections must be set up to meet
5432 these requirements. */
5433 osym.st_value += isec->output_offset;
5434 if (! finfo->info->relocateable)
5435 osym.st_value += isec->output_section->vma;
5437 if (! elf_link_output_sym (finfo, name, &osym, isec))
5441 /* Relocate the contents of each section. */
5442 for (o = input_bfd->sections; o != NULL; o = o->next)
5446 if (! o->linker_mark)
5448 /* This section was omitted from the link. */
5452 if ((o->flags & SEC_HAS_CONTENTS) == 0
5453 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5456 if ((o->flags & SEC_LINKER_CREATED) != 0)
5458 /* Section was created by elf_link_create_dynamic_sections
5463 /* Get the contents of the section. They have been cached by a
5464 relaxation routine. Note that o is a section in an input
5465 file, so the contents field will not have been set by any of
5466 the routines which work on output files. */
5467 if (elf_section_data (o)->this_hdr.contents != NULL)
5468 contents = elf_section_data (o)->this_hdr.contents;
5471 contents = finfo->contents;
5472 if (! bfd_get_section_contents (input_bfd, o, contents,
5473 (file_ptr) 0, o->_raw_size))
5477 if ((o->flags & SEC_RELOC) != 0)
5479 Elf_Internal_Rela *internal_relocs;
5481 /* Get the swapped relocs. */
5482 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5483 (input_bfd, o, finfo->external_relocs,
5484 finfo->internal_relocs, false));
5485 if (internal_relocs == NULL
5486 && o->reloc_count > 0)
5489 /* Relocate the section by invoking a back end routine.
5491 The back end routine is responsible for adjusting the
5492 section contents as necessary, and (if using Rela relocs
5493 and generating a relocateable output file) adjusting the
5494 reloc addend as necessary.
5496 The back end routine does not have to worry about setting
5497 the reloc address or the reloc symbol index.
5499 The back end routine is given a pointer to the swapped in
5500 internal symbols, and can access the hash table entries
5501 for the external symbols via elf_sym_hashes (input_bfd).
5503 When generating relocateable output, the back end routine
5504 must handle STB_LOCAL/STT_SECTION symbols specially. The
5505 output symbol is going to be a section symbol
5506 corresponding to the output section, which will require
5507 the addend to be adjusted. */
5509 if (! (*relocate_section) (output_bfd, finfo->info,
5510 input_bfd, o, contents,
5512 finfo->internal_syms,
5516 if (finfo->info->relocateable || finfo->info->emitrelocations)
5518 Elf_Internal_Rela *irela;
5519 Elf_Internal_Rela *irelaend;
5520 struct elf_link_hash_entry **rel_hash;
5521 Elf_Internal_Shdr *input_rel_hdr;
5523 /* Adjust the reloc addresses and symbol indices. */
5525 irela = internal_relocs;
5527 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5528 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5529 + elf_section_data (o->output_section)->rel_count
5530 + elf_section_data (o->output_section)->rel_count2);
5531 for (; irela < irelaend; irela++, rel_hash++)
5533 unsigned long r_symndx;
5534 Elf_Internal_Sym *isym;
5537 irela->r_offset += o->output_offset;
5539 /* Relocs in an executable have to be virtual addresses. */
5540 if (finfo->info->emitrelocations)
5541 irela->r_offset += o->output_section->vma;
5543 r_symndx = ELF_R_SYM (irela->r_info);
5548 if (r_symndx >= locsymcount
5549 || (elf_bad_symtab (input_bfd)
5550 && finfo->sections[r_symndx] == NULL))
5552 struct elf_link_hash_entry *rh;
5555 /* This is a reloc against a global symbol. We
5556 have not yet output all the local symbols, so
5557 we do not know the symbol index of any global
5558 symbol. We set the rel_hash entry for this
5559 reloc to point to the global hash table entry
5560 for this symbol. The symbol index is then
5561 set at the end of elf_bfd_final_link. */
5562 indx = r_symndx - extsymoff;
5563 rh = elf_sym_hashes (input_bfd)[indx];
5564 while (rh->root.type == bfd_link_hash_indirect
5565 || rh->root.type == bfd_link_hash_warning)
5566 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5568 /* Setting the index to -2 tells
5569 elf_link_output_extsym that this symbol is
5571 BFD_ASSERT (rh->indx < 0);
5579 /* This is a reloc against a local symbol. */
5582 isym = finfo->internal_syms + r_symndx;
5583 sec = finfo->sections[r_symndx];
5584 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5586 /* I suppose the backend ought to fill in the
5587 section of any STT_SECTION symbol against a
5588 processor specific section. If we have
5589 discarded a section, the output_section will
5590 be the absolute section. */
5592 && (bfd_is_abs_section (sec)
5593 || (sec->output_section != NULL
5594 && bfd_is_abs_section (sec->output_section))))
5596 else if (sec == NULL || sec->owner == NULL)
5598 bfd_set_error (bfd_error_bad_value);
5603 r_symndx = sec->output_section->target_index;
5604 BFD_ASSERT (r_symndx != 0);
5609 if (finfo->indices[r_symndx] == -1)
5615 if (finfo->info->strip == strip_all)
5617 /* You can't do ld -r -s. */
5618 bfd_set_error (bfd_error_invalid_operation);
5622 /* This symbol was skipped earlier, but
5623 since it is needed by a reloc, we
5624 must output it now. */
5625 link = symtab_hdr->sh_link;
5626 name = bfd_elf_string_from_elf_section (input_bfd,
5632 osec = sec->output_section;
5634 _bfd_elf_section_from_bfd_section (output_bfd,
5636 if (isym->st_shndx == (unsigned short) -1)
5639 isym->st_value += sec->output_offset;
5640 if (! finfo->info->relocateable)
5641 isym->st_value += osec->vma;
5643 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5645 if (! elf_link_output_sym (finfo, name, isym, sec))
5649 r_symndx = finfo->indices[r_symndx];
5652 irela->r_info = ELF_R_INFO (r_symndx,
5653 ELF_R_TYPE (irela->r_info));
5656 /* Swap out the relocs. */
5657 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5658 elf_link_output_relocs (output_bfd, o,
5662 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5663 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5665 elf_link_output_relocs (output_bfd, o,
5671 /* Write out the modified section contents. */
5672 if (elf_section_data (o)->stab_info == NULL)
5674 if (! (o->flags & SEC_EXCLUDE) &&
5675 ! bfd_set_section_contents (output_bfd, o->output_section,
5676 contents, o->output_offset,
5677 (o->_cooked_size != 0
5684 if (! (_bfd_write_section_stabs
5685 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5686 o, &elf_section_data (o)->stab_info, contents)))
5694 /* Generate a reloc when linking an ELF file. This is a reloc
5695 requested by the linker, and does come from any input file. This
5696 is used to build constructor and destructor tables when linking
5700 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5702 struct bfd_link_info *info;
5703 asection *output_section;
5704 struct bfd_link_order *link_order;
5706 reloc_howto_type *howto;
5710 struct elf_link_hash_entry **rel_hash_ptr;
5711 Elf_Internal_Shdr *rel_hdr;
5712 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
5714 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5717 bfd_set_error (bfd_error_bad_value);
5721 addend = link_order->u.reloc.p->addend;
5723 /* Figure out the symbol index. */
5724 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5725 + elf_section_data (output_section)->rel_count
5726 + elf_section_data (output_section)->rel_count2);
5727 if (link_order->type == bfd_section_reloc_link_order)
5729 indx = link_order->u.reloc.p->u.section->target_index;
5730 BFD_ASSERT (indx != 0);
5731 *rel_hash_ptr = NULL;
5735 struct elf_link_hash_entry *h;
5737 /* Treat a reloc against a defined symbol as though it were
5738 actually against the section. */
5739 h = ((struct elf_link_hash_entry *)
5740 bfd_wrapped_link_hash_lookup (output_bfd, info,
5741 link_order->u.reloc.p->u.name,
5742 false, false, true));
5744 && (h->root.type == bfd_link_hash_defined
5745 || h->root.type == bfd_link_hash_defweak))
5749 section = h->root.u.def.section;
5750 indx = section->output_section->target_index;
5751 *rel_hash_ptr = NULL;
5752 /* It seems that we ought to add the symbol value to the
5753 addend here, but in practice it has already been added
5754 because it was passed to constructor_callback. */
5755 addend += section->output_section->vma + section->output_offset;
5759 /* Setting the index to -2 tells elf_link_output_extsym that
5760 this symbol is used by a reloc. */
5767 if (! ((*info->callbacks->unattached_reloc)
5768 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5769 (asection *) NULL, (bfd_vma) 0)))
5775 /* If this is an inplace reloc, we must write the addend into the
5777 if (howto->partial_inplace && addend != 0)
5780 bfd_reloc_status_type rstat;
5784 size = bfd_get_reloc_size (howto);
5785 buf = (bfd_byte *) bfd_zmalloc (size);
5786 if (buf == (bfd_byte *) NULL)
5788 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5794 case bfd_reloc_outofrange:
5796 case bfd_reloc_overflow:
5797 if (! ((*info->callbacks->reloc_overflow)
5799 (link_order->type == bfd_section_reloc_link_order
5800 ? bfd_section_name (output_bfd,
5801 link_order->u.reloc.p->u.section)
5802 : link_order->u.reloc.p->u.name),
5803 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5811 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5812 (file_ptr) link_order->offset, size);
5818 /* The address of a reloc is relative to the section in a
5819 relocateable file, and is a virtual address in an executable
5821 offset = link_order->offset;
5822 if (! info->relocateable)
5823 offset += output_section->vma;
5825 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5827 if (rel_hdr->sh_type == SHT_REL)
5829 Elf_Internal_Rel irel;
5830 Elf_External_Rel *erel;
5832 irel.r_offset = offset;
5833 irel.r_info = ELF_R_INFO (indx, howto->type);
5834 erel = ((Elf_External_Rel *) rel_hdr->contents
5835 + elf_section_data (output_section)->rel_count);
5836 if (bed->s->swap_reloc_out)
5837 (*bed->s->swap_reloc_out) (output_bfd, &irel, (bfd_byte *) erel);
5839 elf_swap_reloc_out (output_bfd, &irel, erel);
5843 Elf_Internal_Rela irela;
5844 Elf_External_Rela *erela;
5846 irela.r_offset = offset;
5847 irela.r_info = ELF_R_INFO (indx, howto->type);
5848 irela.r_addend = addend;
5849 erela = ((Elf_External_Rela *) rel_hdr->contents
5850 + elf_section_data (output_section)->rel_count);
5851 if (bed->s->swap_reloca_out)
5852 (*bed->s->swap_reloca_out) (output_bfd, &irela, (bfd_byte *) erela);
5854 elf_swap_reloca_out (output_bfd, &irela, erela);
5857 ++elf_section_data (output_section)->rel_count;
5863 /* Allocate a pointer to live in a linker created section. */
5866 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5868 struct bfd_link_info *info;
5869 elf_linker_section_t *lsect;
5870 struct elf_link_hash_entry *h;
5871 const Elf_Internal_Rela *rel;
5873 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5874 elf_linker_section_pointers_t *linker_section_ptr;
5875 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5877 BFD_ASSERT (lsect != NULL);
5879 /* Is this a global symbol? */
5882 /* Has this symbol already been allocated, if so, our work is done */
5883 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5888 ptr_linker_section_ptr = &h->linker_section_pointer;
5889 /* Make sure this symbol is output as a dynamic symbol. */
5890 if (h->dynindx == -1)
5892 if (! elf_link_record_dynamic_symbol (info, h))
5896 if (lsect->rel_section)
5897 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5900 else /* Allocation of a pointer to a local symbol */
5902 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5904 /* Allocate a table to hold the local symbols if first time */
5907 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5908 register unsigned int i;
5910 ptr = (elf_linker_section_pointers_t **)
5911 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5916 elf_local_ptr_offsets (abfd) = ptr;
5917 for (i = 0; i < num_symbols; i++)
5918 ptr[i] = (elf_linker_section_pointers_t *)0;
5921 /* Has this symbol already been allocated, if so, our work is done */
5922 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5927 ptr_linker_section_ptr = &ptr[r_symndx];
5931 /* If we are generating a shared object, we need to
5932 output a R_<xxx>_RELATIVE reloc so that the
5933 dynamic linker can adjust this GOT entry. */
5934 BFD_ASSERT (lsect->rel_section != NULL);
5935 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5939 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5940 from internal memory. */
5941 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5942 linker_section_ptr = (elf_linker_section_pointers_t *)
5943 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5945 if (!linker_section_ptr)
5948 linker_section_ptr->next = *ptr_linker_section_ptr;
5949 linker_section_ptr->addend = rel->r_addend;
5950 linker_section_ptr->which = lsect->which;
5951 linker_section_ptr->written_address_p = false;
5952 *ptr_linker_section_ptr = linker_section_ptr;
5955 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5957 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5958 lsect->hole_offset += ARCH_SIZE / 8;
5959 lsect->sym_offset += ARCH_SIZE / 8;
5960 if (lsect->sym_hash) /* Bump up symbol value if needed */
5962 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5964 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5965 lsect->sym_hash->root.root.string,
5966 (long)ARCH_SIZE / 8,
5967 (long)lsect->sym_hash->root.u.def.value);
5973 linker_section_ptr->offset = lsect->section->_raw_size;
5975 lsect->section->_raw_size += ARCH_SIZE / 8;
5978 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5979 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5987 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5990 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5993 /* Fill in the address for a pointer generated in alinker section. */
5996 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5999 struct bfd_link_info *info;
6000 elf_linker_section_t *lsect;
6001 struct elf_link_hash_entry *h;
6003 const Elf_Internal_Rela *rel;
6006 elf_linker_section_pointers_t *linker_section_ptr;
6008 BFD_ASSERT (lsect != NULL);
6010 if (h != NULL) /* global symbol */
6012 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6016 BFD_ASSERT (linker_section_ptr != NULL);
6018 if (! elf_hash_table (info)->dynamic_sections_created
6021 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6023 /* This is actually a static link, or it is a
6024 -Bsymbolic link and the symbol is defined
6025 locally. We must initialize this entry in the
6028 When doing a dynamic link, we create a .rela.<xxx>
6029 relocation entry to initialize the value. This
6030 is done in the finish_dynamic_symbol routine. */
6031 if (!linker_section_ptr->written_address_p)
6033 linker_section_ptr->written_address_p = true;
6034 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6035 lsect->section->contents + linker_section_ptr->offset);
6039 else /* local symbol */
6041 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6042 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6043 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6044 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6048 BFD_ASSERT (linker_section_ptr != NULL);
6050 /* Write out pointer if it hasn't been rewritten out before */
6051 if (!linker_section_ptr->written_address_p)
6053 linker_section_ptr->written_address_p = true;
6054 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6055 lsect->section->contents + linker_section_ptr->offset);
6059 asection *srel = lsect->rel_section;
6060 Elf_Internal_Rela outrel;
6062 /* We need to generate a relative reloc for the dynamic linker. */
6064 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6067 BFD_ASSERT (srel != NULL);
6069 outrel.r_offset = (lsect->section->output_section->vma
6070 + lsect->section->output_offset
6071 + linker_section_ptr->offset);
6072 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6073 outrel.r_addend = 0;
6074 elf_swap_reloca_out (output_bfd, &outrel,
6075 (((Elf_External_Rela *)
6076 lsect->section->contents)
6077 + elf_section_data (lsect->section)->rel_count));
6078 ++elf_section_data (lsect->section)->rel_count;
6083 relocation = (lsect->section->output_offset
6084 + linker_section_ptr->offset
6085 - lsect->hole_offset
6086 - lsect->sym_offset);
6089 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6090 lsect->name, (long)relocation, (long)relocation);
6093 /* Subtract out the addend, because it will get added back in by the normal
6095 return relocation - linker_section_ptr->addend;
6098 /* Garbage collect unused sections. */
6100 static boolean elf_gc_mark
6101 PARAMS ((struct bfd_link_info *info, asection *sec,
6102 asection * (*gc_mark_hook)
6103 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6104 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6106 static boolean elf_gc_sweep
6107 PARAMS ((struct bfd_link_info *info,
6108 boolean (*gc_sweep_hook)
6109 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6110 const Elf_Internal_Rela *relocs))));
6112 static boolean elf_gc_sweep_symbol
6113 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6115 static boolean elf_gc_allocate_got_offsets
6116 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6118 static boolean elf_gc_propagate_vtable_entries_used
6119 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6121 static boolean elf_gc_smash_unused_vtentry_relocs
6122 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6124 /* The mark phase of garbage collection. For a given section, mark
6125 it, and all the sections which define symbols to which it refers. */
6128 elf_gc_mark (info, sec, gc_mark_hook)
6129 struct bfd_link_info *info;
6131 asection * (*gc_mark_hook)
6132 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6133 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6139 /* Look through the section relocs. */
6141 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6143 Elf_Internal_Rela *relstart, *rel, *relend;
6144 Elf_Internal_Shdr *symtab_hdr;
6145 struct elf_link_hash_entry **sym_hashes;
6148 Elf_External_Sym *locsyms, *freesyms = NULL;
6149 bfd *input_bfd = sec->owner;
6150 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
6152 /* GCFIXME: how to arrange so that relocs and symbols are not
6153 reread continually? */
6155 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6156 sym_hashes = elf_sym_hashes (input_bfd);
6158 /* Read the local symbols. */
6159 if (elf_bad_symtab (input_bfd))
6161 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6165 extsymoff = nlocsyms = symtab_hdr->sh_info;
6166 if (symtab_hdr->contents)
6167 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6168 else if (nlocsyms == 0)
6172 locsyms = freesyms =
6173 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6174 if (freesyms == NULL
6175 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6176 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6177 nlocsyms, input_bfd)
6178 != nlocsyms * sizeof (Elf_External_Sym)))
6185 /* Read the relocations. */
6186 relstart = (NAME(_bfd_elf,link_read_relocs)
6187 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6188 info->keep_memory));
6189 if (relstart == NULL)
6194 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6196 for (rel = relstart; rel < relend; rel++)
6198 unsigned long r_symndx;
6200 struct elf_link_hash_entry *h;
6203 r_symndx = ELF_R_SYM (rel->r_info);
6207 if (elf_bad_symtab (sec->owner))
6209 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6210 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6211 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6214 h = sym_hashes[r_symndx - extsymoff];
6215 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6218 else if (r_symndx >= nlocsyms)
6220 h = sym_hashes[r_symndx - extsymoff];
6221 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6225 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6226 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6229 if (rsec && !rsec->gc_mark)
6230 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6238 if (!info->keep_memory)
6248 /* The sweep phase of garbage collection. Remove all garbage sections. */
6251 elf_gc_sweep (info, gc_sweep_hook)
6252 struct bfd_link_info *info;
6253 boolean (*gc_sweep_hook)
6254 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6255 const Elf_Internal_Rela *relocs));
6259 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6263 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6266 for (o = sub->sections; o != NULL; o = o->next)
6268 /* Keep special sections. Keep .debug sections. */
6269 if ((o->flags & SEC_LINKER_CREATED)
6270 || (o->flags & SEC_DEBUGGING))
6276 /* Skip sweeping sections already excluded. */
6277 if (o->flags & SEC_EXCLUDE)
6280 /* Since this is early in the link process, it is simple
6281 to remove a section from the output. */
6282 o->flags |= SEC_EXCLUDE;
6284 /* But we also have to update some of the relocation
6285 info we collected before. */
6287 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6289 Elf_Internal_Rela *internal_relocs;
6292 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6293 (o->owner, o, NULL, NULL, info->keep_memory));
6294 if (internal_relocs == NULL)
6297 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6299 if (!info->keep_memory)
6300 free (internal_relocs);
6308 /* Remove the symbols that were in the swept sections from the dynamic
6309 symbol table. GCFIXME: Anyone know how to get them out of the
6310 static symbol table as well? */
6314 elf_link_hash_traverse (elf_hash_table (info),
6315 elf_gc_sweep_symbol,
6318 elf_hash_table (info)->dynsymcount = i;
6324 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6327 elf_gc_sweep_symbol (h, idxptr)
6328 struct elf_link_hash_entry *h;
6331 int *idx = (int *) idxptr;
6333 if (h->dynindx != -1
6334 && ((h->root.type != bfd_link_hash_defined
6335 && h->root.type != bfd_link_hash_defweak)
6336 || h->root.u.def.section->gc_mark))
6337 h->dynindx = (*idx)++;
6342 /* Propogate collected vtable information. This is called through
6343 elf_link_hash_traverse. */
6346 elf_gc_propagate_vtable_entries_used (h, okp)
6347 struct elf_link_hash_entry *h;
6350 /* Those that are not vtables. */
6351 if (h->vtable_parent == NULL)
6354 /* Those vtables that do not have parents, we cannot merge. */
6355 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6358 /* If we've already been done, exit. */
6359 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6362 /* Make sure the parent's table is up to date. */
6363 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6365 if (h->vtable_entries_used == NULL)
6367 /* None of this table's entries were referenced. Re-use the
6369 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6370 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6377 /* Or the parent's entries into ours. */
6378 cu = h->vtable_entries_used;
6380 pu = h->vtable_parent->vtable_entries_used;
6383 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6386 if (*pu) *cu = true;
6396 elf_gc_smash_unused_vtentry_relocs (h, okp)
6397 struct elf_link_hash_entry *h;
6401 bfd_vma hstart, hend;
6402 Elf_Internal_Rela *relstart, *relend, *rel;
6403 struct elf_backend_data *bed;
6405 /* Take care of both those symbols that do not describe vtables as
6406 well as those that are not loaded. */
6407 if (h->vtable_parent == NULL)
6410 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6411 || h->root.type == bfd_link_hash_defweak);
6413 sec = h->root.u.def.section;
6414 hstart = h->root.u.def.value;
6415 hend = hstart + h->size;
6417 relstart = (NAME(_bfd_elf,link_read_relocs)
6418 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6420 return *(boolean *)okp = false;
6421 bed = get_elf_backend_data (sec->owner);
6422 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6424 for (rel = relstart; rel < relend; ++rel)
6425 if (rel->r_offset >= hstart && rel->r_offset < hend)
6427 /* If the entry is in use, do nothing. */
6428 if (h->vtable_entries_used
6429 && (rel->r_offset - hstart) < h->vtable_entries_size)
6431 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6432 if (h->vtable_entries_used[entry])
6435 /* Otherwise, kill it. */
6436 rel->r_offset = rel->r_info = rel->r_addend = 0;
6442 /* Do mark and sweep of unused sections. */
6445 elf_gc_sections (abfd, info)
6447 struct bfd_link_info *info;
6451 asection * (*gc_mark_hook)
6452 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6453 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6455 if (!get_elf_backend_data (abfd)->can_gc_sections
6456 || info->relocateable || info->emitrelocations
6457 || elf_hash_table (info)->dynamic_sections_created)
6460 /* Apply transitive closure to the vtable entry usage info. */
6461 elf_link_hash_traverse (elf_hash_table (info),
6462 elf_gc_propagate_vtable_entries_used,
6467 /* Kill the vtable relocations that were not used. */
6468 elf_link_hash_traverse (elf_hash_table (info),
6469 elf_gc_smash_unused_vtentry_relocs,
6474 /* Grovel through relocs to find out who stays ... */
6476 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6477 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6481 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6484 for (o = sub->sections; o != NULL; o = o->next)
6486 if (o->flags & SEC_KEEP)
6487 if (!elf_gc_mark (info, o, gc_mark_hook))
6492 /* ... and mark SEC_EXCLUDE for those that go. */
6493 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6499 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6502 elf_gc_record_vtinherit (abfd, sec, h, offset)
6505 struct elf_link_hash_entry *h;
6508 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6509 struct elf_link_hash_entry **search, *child;
6510 bfd_size_type extsymcount;
6512 /* The sh_info field of the symtab header tells us where the
6513 external symbols start. We don't care about the local symbols at
6515 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6516 if (!elf_bad_symtab (abfd))
6517 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6519 sym_hashes = elf_sym_hashes (abfd);
6520 sym_hashes_end = sym_hashes + extsymcount;
6522 /* Hunt down the child symbol, which is in this section at the same
6523 offset as the relocation. */
6524 for (search = sym_hashes; search != sym_hashes_end; ++search)
6526 if ((child = *search) != NULL
6527 && (child->root.type == bfd_link_hash_defined
6528 || child->root.type == bfd_link_hash_defweak)
6529 && child->root.u.def.section == sec
6530 && child->root.u.def.value == offset)
6534 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6535 bfd_get_filename (abfd), sec->name,
6536 (unsigned long)offset);
6537 bfd_set_error (bfd_error_invalid_operation);
6543 /* This *should* only be the absolute section. It could potentially
6544 be that someone has defined a non-global vtable though, which
6545 would be bad. It isn't worth paging in the local symbols to be
6546 sure though; that case should simply be handled by the assembler. */
6548 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6551 child->vtable_parent = h;
6556 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6559 elf_gc_record_vtentry (abfd, sec, h, addend)
6560 bfd *abfd ATTRIBUTE_UNUSED;
6561 asection *sec ATTRIBUTE_UNUSED;
6562 struct elf_link_hash_entry *h;
6565 if (addend >= h->vtable_entries_size)
6568 boolean *ptr = h->vtable_entries_used;
6570 /* While the symbol is undefined, we have to be prepared to handle
6572 if (h->root.type == bfd_link_hash_undefined)
6579 /* Oops! We've got a reference past the defined end of
6580 the table. This is probably a bug -- shall we warn? */
6585 /* Allocate one extra entry for use as a "done" flag for the
6586 consolidation pass. */
6587 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
6591 ptr = bfd_realloc (ptr - 1, bytes);
6597 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6598 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6602 ptr = bfd_zmalloc (bytes);
6607 /* And arrange for that done flag to be at index -1. */
6608 h->vtable_entries_used = ptr + 1;
6609 h->vtable_entries_size = size;
6612 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6617 /* And an accompanying bit to work out final got entry offsets once
6618 we're done. Should be called from final_link. */
6621 elf_gc_common_finalize_got_offsets (abfd, info)
6623 struct bfd_link_info *info;
6626 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6629 /* The GOT offset is relative to the .got section, but the GOT header is
6630 put into the .got.plt section, if the backend uses it. */
6631 if (bed->want_got_plt)
6634 gotoff = bed->got_header_size;
6636 /* Do the local .got entries first. */
6637 for (i = info->input_bfds; i; i = i->link_next)
6639 bfd_signed_vma *local_got;
6640 bfd_size_type j, locsymcount;
6641 Elf_Internal_Shdr *symtab_hdr;
6643 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
6646 local_got = elf_local_got_refcounts (i);
6650 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6651 if (elf_bad_symtab (i))
6652 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6654 locsymcount = symtab_hdr->sh_info;
6656 for (j = 0; j < locsymcount; ++j)
6658 if (local_got[j] > 0)
6660 local_got[j] = gotoff;
6661 gotoff += ARCH_SIZE / 8;
6664 local_got[j] = (bfd_vma) -1;
6668 /* Then the global .got entries. .plt refcounts are handled by
6669 adjust_dynamic_symbol */
6670 elf_link_hash_traverse (elf_hash_table (info),
6671 elf_gc_allocate_got_offsets,
6676 /* We need a special top-level link routine to convert got reference counts
6677 to real got offsets. */
6680 elf_gc_allocate_got_offsets (h, offarg)
6681 struct elf_link_hash_entry *h;
6684 bfd_vma *off = (bfd_vma *) offarg;
6686 if (h->got.refcount > 0)
6688 h->got.offset = off[0];
6689 off[0] += ARCH_SIZE / 8;
6692 h->got.offset = (bfd_vma) -1;
6697 /* Many folk need no more in the way of final link than this, once
6698 got entry reference counting is enabled. */
6701 elf_gc_common_final_link (abfd, info)
6703 struct bfd_link_info *info;
6705 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6708 /* Invoke the regular ELF backend linker to do all the work. */
6709 return elf_bfd_final_link (abfd, info);
6712 /* This function will be called though elf_link_hash_traverse to store
6713 all hash value of the exported symbols in an array. */
6716 elf_collect_hash_codes (h, data)
6717 struct elf_link_hash_entry *h;
6720 unsigned long **valuep = (unsigned long **) data;
6726 /* Ignore indirect symbols. These are added by the versioning code. */
6727 if (h->dynindx == -1)
6730 name = h->root.root.string;
6731 p = strchr (name, ELF_VER_CHR);
6734 alc = bfd_malloc (p - name + 1);
6735 memcpy (alc, name, p - name);
6736 alc[p - name] = '\0';
6740 /* Compute the hash value. */
6741 ha = bfd_elf_hash (name);
6743 /* Store the found hash value in the array given as the argument. */
6746 /* And store it in the struct so that we can put it in the hash table
6748 h->elf_hash_value = ha;