1 /* Symbol table definitions for GDB.
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 #if !defined (SYMTAB_H)
26 /* Some definitions and declarations to go with use of obstacks. */
29 #define obstack_chunk_alloc xmalloc
30 #define obstack_chunk_free xfree
32 /* Don't do this; it means that if some .o's are compiled with GNU C
33 and some are not (easy to do accidentally the way we configure
34 things; also it is a pain to have to "make clean" every time you
35 want to switch compilers), then GDB dies a horrible death. */
36 /* GNU C supports enums that are bitfields. Some compilers don't. */
37 #if 0 && defined(__GNUC__) && !defined(BYTE_BITFIELD)
38 #define BYTE_BITFIELD :8;
40 #define BYTE_BITFIELD /*nothing */
43 /* Define a structure for the information that is common to all symbol types,
44 including minimal symbols, partial symbols, and full symbols. In a
45 multilanguage environment, some language specific information may need to
46 be recorded along with each symbol.
48 These fields are ordered to encourage good packing, since we frequently
49 have tens or hundreds of thousands of these. */
51 struct general_symbol_info
53 /* Name of the symbol. This is a required field. Storage for the name is
54 allocated on the psymbol_obstack or symbol_obstack for the associated
59 /* Value of the symbol. Which member of this union to use, and what
60 it means, depends on what kind of symbol this is and its
61 SYMBOL_CLASS. See comments there for more details. All of these
62 are in host byte order (though what they point to might be in
63 target byte order, e.g. LOC_CONST_BYTES). */
67 /* The fact that this is a long not a LONGEST mainly limits the
68 range of a LOC_CONST. Since LOC_CONST_BYTES exists, I'm not
69 sure that is a big deal. */
78 /* for opaque typedef struct chain */
84 /* Since one and only one language can apply, wrap the language specific
85 information inside a union. */
89 struct cplus_specific /* For C++ */
95 struct chill_specific /* For Chill */
103 /* Record the source code language that applies to this symbol.
104 This is used to select one of the fields from the language specific
107 enum language language BYTE_BITFIELD;
109 /* Which section is this symbol in? This is an index into
110 section_offsets for this objfile. Negative means that the symbol
111 does not get relocated relative to a section.
112 Disclaimer: currently this is just used for xcoff, so don't
113 expect all symbol-reading code to set it correctly (the ELF code
114 also tries to set it correctly). */
118 /* The bfd section associated with this symbol. */
120 asection *bfd_section;
123 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, asection *);
125 #define SYMBOL_NAME(symbol) (symbol)->ginfo.name
126 #define SYMBOL_VALUE(symbol) (symbol)->ginfo.value.ivalue
127 #define SYMBOL_VALUE_ADDRESS(symbol) (symbol)->ginfo.value.address
128 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->ginfo.value.bytes
129 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->ginfo.value.block
130 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->ginfo.value.chain
131 #define SYMBOL_LANGUAGE(symbol) (symbol)->ginfo.language
132 #define SYMBOL_SECTION(symbol) (symbol)->ginfo.section
133 #define SYMBOL_BFD_SECTION(symbol) (symbol)->ginfo.bfd_section
135 #define SYMBOL_CPLUS_DEMANGLED_NAME(symbol) \
136 (symbol)->ginfo.language_specific.cplus_specific.demangled_name
138 /* Macro that initializes the language dependent portion of a symbol
139 depending upon the language for the symbol. */
141 #define SYMBOL_INIT_LANGUAGE_SPECIFIC(symbol,language) \
143 SYMBOL_LANGUAGE (symbol) = language; \
144 if (SYMBOL_LANGUAGE (symbol) == language_cplus \
145 || SYMBOL_LANGUAGE (symbol) == language_java \
148 SYMBOL_CPLUS_DEMANGLED_NAME (symbol) = NULL; \
150 else if (SYMBOL_LANGUAGE (symbol) == language_chill) \
152 SYMBOL_CHILL_DEMANGLED_NAME (symbol) = NULL; \
156 memset (&(symbol)->ginfo.language_specific, 0, \
157 sizeof ((symbol)->ginfo.language_specific)); \
161 #define SYMBOL_INIT_DEMANGLED_NAME(symbol,obstack) \
162 (symbol_init_demangled_name (&symbol->ginfo, (obstack)))
163 extern void symbol_init_demangled_name (struct general_symbol_info *symbol,
164 struct obstack *obstack);
167 /* Macro that returns the demangled name for a symbol based on the language
168 for that symbol. If no demangled name exists, returns NULL. */
170 #define SYMBOL_DEMANGLED_NAME(symbol) \
171 (SYMBOL_LANGUAGE (symbol) == language_cplus \
172 || SYMBOL_LANGUAGE (symbol) == language_java \
173 ? SYMBOL_CPLUS_DEMANGLED_NAME (symbol) \
174 : (SYMBOL_LANGUAGE (symbol) == language_chill \
175 ? SYMBOL_CHILL_DEMANGLED_NAME (symbol) \
178 #define SYMBOL_CHILL_DEMANGLED_NAME(symbol) \
179 (symbol)->ginfo.language_specific.chill_specific.demangled_name
181 /* Macro that returns the "natural source name" of a symbol. In C++ this is
182 the "demangled" form of the name if demangle is on and the "mangled" form
183 of the name if demangle is off. In other languages this is just the
184 symbol name. The result should never be NULL. */
186 #define SYMBOL_SOURCE_NAME(symbol) \
187 (demangle && SYMBOL_DEMANGLED_NAME (symbol) != NULL \
188 ? SYMBOL_DEMANGLED_NAME (symbol) \
189 : SYMBOL_NAME (symbol))
191 /* Macro that returns the "natural assembly name" of a symbol. In C++ this is
192 the "mangled" form of the name if demangle is off, or if demangle is on and
193 asm_demangle is off. Otherwise if asm_demangle is on it is the "demangled"
194 form. In other languages this is just the symbol name. The result should
197 #define SYMBOL_LINKAGE_NAME(symbol) \
198 (demangle && asm_demangle && SYMBOL_DEMANGLED_NAME (symbol) != NULL \
199 ? SYMBOL_DEMANGLED_NAME (symbol) \
200 : SYMBOL_NAME (symbol))
202 /* Macro that tests a symbol for a match against a specified name string.
203 First test the unencoded name, then looks for and test a C++ encoded
204 name if it exists. Note that whitespace is ignored while attempting to
205 match a C++ encoded name, so that "foo::bar(int,long)" is the same as
206 "foo :: bar (int, long)".
207 Evaluates to zero if the match fails, or nonzero if it succeeds. */
209 #define SYMBOL_MATCHES_NAME(symbol, name) \
210 (STREQ (SYMBOL_NAME (symbol), (name)) \
211 || (SYMBOL_DEMANGLED_NAME (symbol) != NULL \
212 && strcmp_iw (SYMBOL_DEMANGLED_NAME (symbol), (name)) == 0))
214 /* Macro that tests a symbol for an re-match against the last compiled regular
215 expression. First test the unencoded name, then look for and test a C++
216 encoded name if it exists.
217 Evaluates to zero if the match fails, or nonzero if it succeeds. */
219 #define SYMBOL_MATCHES_REGEXP(symbol) \
220 (re_exec (SYMBOL_NAME (symbol)) != 0 \
221 || (SYMBOL_DEMANGLED_NAME (symbol) != NULL \
222 && re_exec (SYMBOL_DEMANGLED_NAME (symbol)) != 0))
224 /* Define a simple structure used to hold some very basic information about
225 all defined global symbols (text, data, bss, abs, etc). The only required
226 information is the general_symbol_info.
228 In many cases, even if a file was compiled with no special options for
229 debugging at all, as long as was not stripped it will contain sufficient
230 information to build a useful minimal symbol table using this structure.
231 Even when a file contains enough debugging information to build a full
232 symbol table, these minimal symbols are still useful for quickly mapping
233 between names and addresses, and vice versa. They are also sometimes
234 used to figure out what full symbol table entries need to be read in. */
236 struct minimal_symbol
239 /* The general symbol info required for all types of symbols.
241 The SYMBOL_VALUE_ADDRESS contains the address that this symbol
244 struct general_symbol_info ginfo;
246 /* The info field is available for caching machine-specific information
247 so it doesn't have to rederive the info constantly (over a serial line).
248 It is initialized to zero and stays that way until target-dependent code
249 sets it. Storage for any data pointed to by this field should be allo-
250 cated on the symbol_obstack for the associated objfile.
251 The type would be "void *" except for reasons of compatibility with older
252 compilers. This field is optional.
254 Currently, the AMD 29000 tdep.c uses it to remember things it has decoded
255 from the instructions in the function header, and the MIPS-16 code uses
256 it to identify 16-bit procedures. */
260 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
261 /* Which source file is this symbol in? Only relevant for mst_file_*. */
265 /* Classification types for this symbol. These should be taken as "advisory
266 only", since if gdb can't easily figure out a classification it simply
267 selects mst_unknown. It may also have to guess when it can't figure out
268 which is a better match between two types (mst_data versus mst_bss) for
269 example. Since the minimal symbol info is sometimes derived from the
270 BFD library's view of a file, we need to live with what information bfd
273 enum minimal_symbol_type
275 mst_unknown = 0, /* Unknown type, the default */
276 mst_text, /* Generally executable instructions */
277 mst_data, /* Generally initialized data */
278 mst_bss, /* Generally uninitialized data */
279 mst_abs, /* Generally absolute (nonrelocatable) */
280 /* GDB uses mst_solib_trampoline for the start address of a shared
281 library trampoline entry. Breakpoints for shared library functions
282 are put there if the shared library is not yet loaded.
283 After the shared library is loaded, lookup_minimal_symbol will
284 prefer the minimal symbol from the shared library (usually
285 a mst_text symbol) over the mst_solib_trampoline symbol, and the
286 breakpoints will be moved to their true address in the shared
287 library via breakpoint_re_set. */
288 mst_solib_trampoline, /* Shared library trampoline code */
289 /* For the mst_file* types, the names are only guaranteed to be unique
290 within a given .o file. */
291 mst_file_text, /* Static version of mst_text */
292 mst_file_data, /* Static version of mst_data */
293 mst_file_bss /* Static version of mst_bss */
297 /* Minimal symbols with the same hash key are kept on a linked
298 list. This is the link. */
300 struct minimal_symbol *hash_next;
302 /* Minimal symbols are stored in two different hash tables. This is
303 the `next' pointer for the demangled hash table. */
305 struct minimal_symbol *demangled_hash_next;
308 #define MSYMBOL_INFO(msymbol) (msymbol)->info
309 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
313 /* All of the name-scope contours of the program
314 are represented by `struct block' objects.
315 All of these objects are pointed to by the blockvector.
317 Each block represents one name scope.
318 Each lexical context has its own block.
320 The blockvector begins with some special blocks.
321 The GLOBAL_BLOCK contains all the symbols defined in this compilation
322 whose scope is the entire program linked together.
323 The STATIC_BLOCK contains all the symbols whose scope is the
324 entire compilation excluding other separate compilations.
325 Blocks starting with the FIRST_LOCAL_BLOCK are not special.
327 Each block records a range of core addresses for the code that
328 is in the scope of the block. The STATIC_BLOCK and GLOBAL_BLOCK
329 give, for the range of code, the entire range of code produced
330 by the compilation that the symbol segment belongs to.
332 The blocks appear in the blockvector
333 in order of increasing starting-address,
334 and, within that, in order of decreasing ending-address.
336 This implies that within the body of one function
337 the blocks appear in the order of a depth-first tree walk. */
341 /* Number of blocks in the list. */
343 /* The blocks themselves. */
344 struct block *block[1];
347 #define BLOCKVECTOR_NBLOCKS(blocklist) (blocklist)->nblocks
348 #define BLOCKVECTOR_BLOCK(blocklist,n) (blocklist)->block[n]
350 /* Special block numbers */
352 #define GLOBAL_BLOCK 0
353 #define STATIC_BLOCK 1
354 #define FIRST_LOCAL_BLOCK 2
359 /* Addresses in the executable code that are in this block. */
364 /* The symbol that names this block, if the block is the body of a
365 function; otherwise, zero. */
367 struct symbol *function;
369 /* The `struct block' for the containing block, or 0 if none.
371 The superblock of a top-level local block (i.e. a function in the
372 case of C) is the STATIC_BLOCK. The superblock of the
373 STATIC_BLOCK is the GLOBAL_BLOCK. */
375 struct block *superblock;
377 /* Version of GCC used to compile the function corresponding
378 to this block, or 0 if not compiled with GCC. When possible,
379 GCC should be compatible with the native compiler, or if that
380 is not feasible, the differences should be fixed during symbol
381 reading. As of 16 Apr 93, this flag is never used to distinguish
382 between gcc2 and the native compiler.
384 If there is no function corresponding to this block, this meaning
385 of this flag is undefined. */
387 unsigned char gcc_compile_flag;
389 /* The symbols for this block are either in a simple linear list or
390 in a simple hashtable. Blocks which correspond to a function
391 (which have a list of symbols corresponding to arguments) use
392 a linear list, as do some older symbol readers (currently only
393 mdebugread and dstread). Other blocks are hashed.
395 The hashtable uses the same hash function as the minsym hashtables,
396 found in minsyms.c:minsym_hash_iw. Symbols are hashed based on
397 their demangled name if appropriate, and on their name otherwise.
398 The hash function ignores space, and stops at the beginning of the
399 argument list if any.
401 The table is laid out in NSYMS/5 buckets and symbols are chained via
402 their hash_next field. */
404 /* If this is really a hashtable of the symbols, this flag is 1. */
406 unsigned char hashtable;
408 /* Number of local symbols. */
412 /* The symbols. If some of them are arguments, then they must be
413 in the order in which we would like to print them. */
415 struct symbol *sym[1];
418 #define BLOCK_START(bl) (bl)->startaddr
419 #define BLOCK_END(bl) (bl)->endaddr
420 #define BLOCK_FUNCTION(bl) (bl)->function
421 #define BLOCK_SUPERBLOCK(bl) (bl)->superblock
422 #define BLOCK_GCC_COMPILED(bl) (bl)->gcc_compile_flag
423 #define BLOCK_HASHTABLE(bl) (bl)->hashtable
425 /* For blocks without a hashtable (BLOCK_HASHTABLE (bl) == 0) only. */
426 #define BLOCK_NSYMS(bl) (bl)->nsyms
427 #define BLOCK_SYM(bl, n) (bl)->sym[n]
429 /* For blocks with a hashtable, but these are valid for non-hashed blocks as
430 well - each symbol will appear to be one bucket by itself. */
431 #define BLOCK_BUCKETS(bl) (bl)->nsyms
432 #define BLOCK_BUCKET(bl, n) (bl)->sym[n]
434 /* Macro used to set the size of a hashtable for N symbols. */
435 #define BLOCK_HASHTABLE_SIZE(n) ((n)/5 + 1)
437 /* Macro to loop through all symbols in a block BL, in no particular order.
438 i counts which bucket we are in, and sym points to the current symbol. */
440 #define ALL_BLOCK_SYMBOLS(bl, i, sym) \
441 for ((i) = 0; (i) < BLOCK_BUCKETS ((bl)); (i)++) \
442 for ((sym) = BLOCK_BUCKET ((bl), (i)); (sym); \
443 (sym) = (sym)->hash_next)
445 /* Nonzero if symbols of block BL should be sorted alphabetically.
446 Don't sort a block which corresponds to a function. If we did the
447 sorting would have to preserve the order of the symbols for the
448 arguments. Also don't sort any block that we chose to hash. */
450 #define BLOCK_SHOULD_SORT(bl) (! BLOCK_HASHTABLE (bl) \
451 && BLOCK_FUNCTION (bl) == NULL)
454 /* Represent one symbol name; a variable, constant, function or typedef. */
456 /* Different name spaces for symbols. Looking up a symbol specifies a
457 namespace and ignores symbol definitions in other name spaces. */
461 /* UNDEF_NAMESPACE is used when a namespace has not been discovered or
462 none of the following apply. This usually indicates an error either
463 in the symbol information or in gdb's handling of symbols. */
467 /* VAR_NAMESPACE is the usual namespace. In C, this contains variables,
468 function names, typedef names and enum type values. */
472 /* STRUCT_NAMESPACE is used in C to hold struct, union and enum type names.
473 Thus, if `struct foo' is used in a C program, it produces a symbol named
474 `foo' in the STRUCT_NAMESPACE. */
478 /* LABEL_NAMESPACE may be used for names of labels (for gotos);
479 currently it is not used and labels are not recorded at all. */
483 /* Searching namespaces. These overlap with VAR_NAMESPACE, providing
484 some granularity with the search_symbols function. */
486 /* Everything in VAR_NAMESPACE minus FUNCTIONS_-, TYPES_-, and
490 /* All functions -- for some reason not methods, though. */
493 /* All defined types */
496 /* All class methods -- why is this separated out? */
502 /* An address-class says where to find the value of a symbol. */
506 /* Not used; catches errors */
510 /* Value is constant int SYMBOL_VALUE, host byteorder */
514 /* Value is at fixed address SYMBOL_VALUE_ADDRESS */
518 /* Value is in register. SYMBOL_VALUE is the register number. */
522 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
526 /* Value address is at SYMBOL_VALUE offset in arglist. */
530 /* Value is in register number SYMBOL_VALUE. Just like LOC_REGISTER
531 except this is an argument. Probably the cleaner way to handle
532 this would be to separate address_class (which would include
533 separate ARG and LOCAL to deal with FRAME_ARGS_ADDRESS versus
534 FRAME_LOCALS_ADDRESS), and an is_argument flag.
536 For some symbol formats (stabs, for some compilers at least),
537 the compiler generates two symbols, an argument and a register.
538 In some cases we combine them to a single LOC_REGPARM in symbol
539 reading, but currently not for all cases (e.g. it's passed on the
540 stack and then loaded into a register). */
544 /* Value is in specified register. Just like LOC_REGPARM except the
545 register holds the address of the argument instead of the argument
546 itself. This is currently used for the passing of structs and unions
547 on sparc and hppa. It is also used for call by reference where the
548 address is in a register, at least by mipsread.c. */
552 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
556 /* Value not used; definition in SYMBOL_TYPE. Symbols in the namespace
557 STRUCT_NAMESPACE all have this class. */
561 /* Value is address SYMBOL_VALUE_ADDRESS in the code */
565 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
566 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
567 of the block. Function names have this class. */
571 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
572 target byte order. */
576 /* Value is arg at SYMBOL_VALUE offset in stack frame. Differs from
577 LOC_LOCAL in that symbol is an argument; differs from LOC_ARG in
578 that we find it in the frame (FRAME_LOCALS_ADDRESS), not in the
579 arglist (FRAME_ARGS_ADDRESS). Added for i960, which passes args
580 in regs then copies to frame. */
584 /* Value is at SYMBOL_VALUE offset from the current value of
585 register number SYMBOL_BASEREG. This exists mainly for the same
586 things that LOC_LOCAL and LOC_ARG do; but we need to do this
587 instead because on 88k DWARF gives us the offset from the
588 frame/stack pointer, rather than the offset from the "canonical
589 frame address" used by COFF, stabs, etc., and we don't know how
590 to convert between these until we start examining prologues.
592 Note that LOC_BASEREG is much less general than a DWARF expression.
593 We don't need the generality (at least not yet), and storing a general
594 DWARF expression would presumably take up more space than the existing
599 /* Same as LOC_BASEREG but it is an argument. */
603 /* Value is at fixed address, but the address of the variable has
604 to be determined from the minimal symbol table whenever the
605 variable is referenced.
606 This happens if debugging information for a global symbol is
607 emitted and the corresponding minimal symbol is defined
608 in another object file or runtime common storage.
609 The linker might even remove the minimal symbol if the global
610 symbol is never referenced, in which case the symbol remains
615 /* Value is at a thread-specific location calculated by a
616 target-specific method. */
618 LOC_THREAD_LOCAL_STATIC,
620 /* The variable does not actually exist in the program.
621 The value is ignored. */
625 /* The variable is static, but actually lives at * (address).
626 * I.e. do an extra indirection to get to it.
627 * This is used on HP-UX to get at globals that are allocated
628 * in shared libraries, where references from images other
629 * than the one where the global was allocated are done
630 * with a level of indirection.
637 /* Linked list of symbol's live ranges. */
643 struct range_list *next;
646 /* Linked list of aliases for a particular main/primary symbol. */
650 struct alias_list *next;
656 /* The general symbol info required for all types of symbols. */
658 struct general_symbol_info ginfo;
660 /* Data type of value */
664 /* Name space code. */
667 /* FIXME: don't conflict with C++'s namespace */
668 /* would be safer to do a global change for all namespace identifiers. */
669 #define namespace _namespace
671 namespace_enum namespace BYTE_BITFIELD;
675 enum address_class aclass BYTE_BITFIELD;
677 /* Line number of definition. FIXME: Should we really make the assumption
678 that nobody will try to debug files longer than 64K lines? What about
679 machine generated programs? */
683 /* Some symbols require an additional value to be recorded on a per-
684 symbol basis. Stash those values here. */
688 /* Used by LOC_BASEREG and LOC_BASEREG_ARG. */
694 /* Link to a list of aliases for this symbol.
695 Only a "primary/main symbol may have aliases. */
696 struct alias_list *aliases;
698 /* List of ranges where this symbol is active. This is only
699 used by alias symbols at the current time. */
700 struct range_list *ranges;
702 struct symbol *hash_next;
706 #define SYMBOL_NAMESPACE(symbol) (symbol)->namespace
707 #define SYMBOL_CLASS(symbol) (symbol)->aclass
708 #define SYMBOL_TYPE(symbol) (symbol)->type
709 #define SYMBOL_LINE(symbol) (symbol)->line
710 #define SYMBOL_BASEREG(symbol) (symbol)->aux_value.basereg
711 #define SYMBOL_ALIASES(symbol) (symbol)->aliases
712 #define SYMBOL_RANGES(symbol) (symbol)->ranges
714 /* A partial_symbol records the name, namespace, and address class of
715 symbols whose types we have not parsed yet. For functions, it also
716 contains their memory address, so we can find them from a PC value.
717 Each partial_symbol sits in a partial_symtab, all of which are chained
718 on a partial symtab list and which points to the corresponding
719 normal symtab once the partial_symtab has been referenced. */
721 struct partial_symbol
724 /* The general symbol info required for all types of symbols. */
726 struct general_symbol_info ginfo;
728 /* Name space code. */
730 namespace_enum namespace BYTE_BITFIELD;
732 /* Address class (for info_symbols) */
734 enum address_class aclass BYTE_BITFIELD;
738 #define PSYMBOL_NAMESPACE(psymbol) (psymbol)->namespace
739 #define PSYMBOL_CLASS(psymbol) (psymbol)->aclass
742 /* Source-file information. This describes the relation between source files,
743 line numbers and addresses in the program text. */
747 int length; /* Number of source files described */
748 struct source *source[1]; /* Descriptions of the files */
751 /* Each item represents a line-->pc (or the reverse) mapping. This is
752 somewhat more wasteful of space than one might wish, but since only
753 the files which are actually debugged are read in to core, we don't
756 struct linetable_entry
762 /* The order of entries in the linetable is significant. They should
763 be sorted by increasing values of the pc field. If there is more than
764 one entry for a given pc, then I'm not sure what should happen (and
765 I not sure whether we currently handle it the best way).
767 Example: a C for statement generally looks like this
769 10 0x100 - for the init/test part of a for stmt.
772 10 0x400 - for the increment part of a for stmt.
774 If an entry has a line number of zero, it marks the start of a PC
775 range for which no line number information is available. It is
776 acceptable, though wasteful of table space, for such a range to be
783 /* Actually NITEMS elements. If you don't like this use of the
784 `struct hack', you can shove it up your ANSI (seriously, if the
785 committee tells us how to do it, we can probably go along). */
786 struct linetable_entry item[1];
789 /* All the information on one source file. */
793 char *name; /* Name of file */
794 struct linetable contents;
797 /* How to relocate the symbols from each section in a symbol file.
798 Each struct contains an array of offsets.
799 The ordering and meaning of the offsets is file-type-dependent;
800 typically it is indexed by section numbers or symbol types or
803 To give us flexibility in changing the internal representation
804 of these offsets, the ANOFFSET macro must be used to insert and
805 extract offset values in the struct. */
807 struct section_offsets
809 CORE_ADDR offsets[1]; /* As many as needed. */
812 #define ANOFFSET(secoff, whichone) \
814 ? (internal_error (__FILE__, __LINE__, "Section index is uninitialized"), -1) \
815 : secoff->offsets[whichone])
817 /* The maximum possible size of a section_offsets table. */
819 #define SIZEOF_SECTION_OFFSETS \
820 (sizeof (struct section_offsets) \
821 + sizeof (((struct section_offsets *) 0)->offsets) * (SECT_OFF_MAX-1))
823 /* Each source file or header is represented by a struct symtab.
824 These objects are chained through the `next' field. */
829 /* Chain of all existing symtabs. */
833 /* List of all symbol scope blocks for this symtab. May be shared
834 between different symtabs (and normally is for all the symtabs
835 in a given compilation unit). */
837 struct blockvector *blockvector;
839 /* Table mapping core addresses to line numbers for this file.
840 Can be NULL if none. Never shared between different symtabs. */
842 struct linetable *linetable;
844 /* Section in objfile->section_offsets for the blockvector and
845 the linetable. Probably always SECT_OFF_TEXT. */
847 int block_line_section;
849 /* If several symtabs share a blockvector, exactly one of them
850 should be designated the primary, so that the blockvector
851 is relocated exactly once by objfile_relocate. */
855 /* The macro table for this symtab. Like the blockvector, this
856 may be shared between different symtabs --- and normally is for
857 all the symtabs in a given compilation unit. */
858 struct macro_table *macro_table;
860 /* Name of this source file. */
864 /* Directory in which it was compiled, or NULL if we don't know. */
868 /* This component says how to free the data we point to:
869 free_contents => do a tree walk and free each object.
870 free_nothing => do nothing; some other symtab will free
871 the data this one uses.
872 free_linetable => free just the linetable. FIXME: Is this redundant
873 with the primary field? */
877 free_nothing, free_contents, free_linetable
881 /* Pointer to one block of storage to be freed, if nonzero. */
882 /* This is IN ADDITION to the action indicated by free_code. */
886 /* Total number of lines found in source file. */
890 /* line_charpos[N] is the position of the (N-1)th line of the
891 source file. "position" means something we can lseek() to; it
892 is not guaranteed to be useful any other way. */
896 /* Language of this source file. */
898 enum language language;
900 /* String that identifies the format of the debugging information, such
901 as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
902 for automated testing of gdb but may also be information that is
903 useful to the user. */
907 /* String of version information. May be zero. */
911 /* Full name of file as found by searching the source path.
912 NULL if not yet known. */
916 /* Object file from which this symbol information was read. */
918 struct objfile *objfile;
922 #define BLOCKVECTOR(symtab) (symtab)->blockvector
923 #define LINETABLE(symtab) (symtab)->linetable
926 /* Each source file that has not been fully read in is represented by
927 a partial_symtab. This contains the information on where in the
928 executable the debugging symbols for a specific file are, and a
929 list of names of global symbols which are located in this file.
930 They are all chained on partial symtab lists.
932 Even after the source file has been read into a symtab, the
933 partial_symtab remains around. They are allocated on an obstack,
934 psymbol_obstack. FIXME, this is bad for dynamic linking or VxWorks-
935 style execution of a bunch of .o's. */
937 struct partial_symtab
940 /* Chain of all existing partial symtabs. */
942 struct partial_symtab *next;
944 /* Name of the source file which this partial_symtab defines */
948 /* Full path of the source file. NULL if not known. */
952 /* Information about the object file from which symbols should be read. */
954 struct objfile *objfile;
956 /* Set of relocation offsets to apply to each section. */
958 struct section_offsets *section_offsets;
960 /* Range of text addresses covered by this file; texthigh is the
961 beginning of the next section. */
966 /* Array of pointers to all of the partial_symtab's which this one
967 depends on. Since this array can only be set to previous or
968 the current (?) psymtab, this dependency tree is guaranteed not
969 to have any loops. "depends on" means that symbols must be read
970 for the dependencies before being read for this psymtab; this is
971 for type references in stabs, where if foo.c includes foo.h, declarations
972 in foo.h may use type numbers defined in foo.c. For other debugging
973 formats there may be no need to use dependencies. */
975 struct partial_symtab **dependencies;
977 int number_of_dependencies;
979 /* Global symbol list. This list will be sorted after readin to
980 improve access. Binary search will be the usual method of
981 finding a symbol within it. globals_offset is an integer offset
982 within global_psymbols[]. */
987 /* Static symbol list. This list will *not* be sorted after readin;
988 to find a symbol in it, exhaustive search must be used. This is
989 reasonable because searches through this list will eventually
990 lead to either the read in of a files symbols for real (assumed
991 to take a *lot* of time; check) or an error (and we don't care
992 how long errors take). This is an offset and size within
993 static_psymbols[]. */
998 /* Pointer to symtab eventually allocated for this source file, 0 if
999 !readin or if we haven't looked for the symtab after it was readin. */
1001 struct symtab *symtab;
1003 /* Pointer to function which will read in the symtab corresponding to
1006 void (*read_symtab) (struct partial_symtab *);
1008 /* Information that lets read_symtab() locate the part of the symbol table
1009 that this psymtab corresponds to. This information is private to the
1010 format-dependent symbol reading routines. For further detail examine
1011 the various symbol reading modules. Should really be (void *) but is
1012 (char *) as with other such gdb variables. (FIXME) */
1014 char *read_symtab_private;
1016 /* Non-zero if the symtab corresponding to this psymtab has been readin */
1018 unsigned char readin;
1021 /* A fast way to get from a psymtab to its symtab (after the first time). */
1022 #define PSYMTAB_TO_SYMTAB(pst) \
1023 ((pst) -> symtab != NULL ? (pst) -> symtab : psymtab_to_symtab (pst))
1026 /* The virtual function table is now an array of structures which have the
1027 form { int16 offset, delta; void *pfn; }.
1029 In normal virtual function tables, OFFSET is unused.
1030 DELTA is the amount which is added to the apparent object's base
1031 address in order to point to the actual object to which the
1032 virtual function should be applied.
1033 PFN is a pointer to the virtual function.
1035 Note that this macro is g++ specific (FIXME). */
1037 #define VTBL_FNADDR_OFFSET 2
1039 /* External variables and functions for the objects described above. */
1041 /* This symtab variable specifies the current file for printing source lines */
1043 extern struct symtab *current_source_symtab;
1045 /* This is the next line to print for listing source lines. */
1047 extern int current_source_line;
1049 /* See the comment in symfile.c about how current_objfile is used. */
1051 extern struct objfile *current_objfile;
1053 /* True if we are nested inside psymtab_to_symtab. */
1055 extern int currently_reading_symtab;
1058 extern int demangle;
1059 extern int asm_demangle;
1061 /* symtab.c lookup functions */
1063 /* lookup a symbol table by source file name */
1065 extern struct symtab *lookup_symtab (const char *);
1067 /* lookup a symbol by name (optional block, optional symtab) */
1069 extern struct symbol *lookup_symbol (const char *, const struct block *,
1070 const namespace_enum, int *,
1073 /* lookup a symbol by name, within a specified block */
1075 extern struct symbol *lookup_block_symbol (const struct block *, const char *,
1077 const namespace_enum);
1079 /* lookup a [struct, union, enum] by name, within a specified block */
1081 extern struct type *lookup_struct (char *, struct block *);
1083 extern struct type *lookup_union (char *, struct block *);
1085 extern struct type *lookup_enum (char *, struct block *);
1087 /* lookup the function corresponding to the block */
1089 extern struct symbol *block_function (struct block *);
1091 /* from blockframe.c: */
1093 /* lookup the function symbol corresponding to the address */
1095 extern struct symbol *find_pc_function (CORE_ADDR);
1097 /* lookup the function corresponding to the address and section */
1099 extern struct symbol *find_pc_sect_function (CORE_ADDR, asection *);
1101 /* lookup function from address, return name, start addr and end addr */
1104 find_pc_partial_function (CORE_ADDR, char **, CORE_ADDR *, CORE_ADDR *);
1106 extern void clear_pc_function_cache (void);
1108 extern int find_pc_sect_partial_function (CORE_ADDR, asection *,
1109 char **, CORE_ADDR *, CORE_ADDR *);
1111 /* from symtab.c: */
1113 /* lookup partial symbol table by filename */
1115 extern struct partial_symtab *lookup_partial_symtab (const char *);
1117 /* lookup partial symbol table by address */
1119 extern struct partial_symtab *find_pc_psymtab (CORE_ADDR);
1121 /* lookup partial symbol table by address and section */
1123 extern struct partial_symtab *find_pc_sect_psymtab (CORE_ADDR, asection *);
1125 /* lookup full symbol table by address */
1127 extern struct symtab *find_pc_symtab (CORE_ADDR);
1129 /* lookup full symbol table by address and section */
1131 extern struct symtab *find_pc_sect_symtab (CORE_ADDR, asection *);
1133 /* lookup partial symbol by address */
1135 extern struct partial_symbol *find_pc_psymbol (struct partial_symtab *,
1138 /* lookup partial symbol by address and section */
1140 extern struct partial_symbol *find_pc_sect_psymbol (struct partial_symtab *,
1141 CORE_ADDR, asection *);
1143 extern int find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1145 extern int contained_in (struct block *, struct block *);
1147 extern void reread_symbols (void);
1149 extern struct type *lookup_transparent_type (const char *);
1152 /* Macro for name of symbol to indicate a file compiled with gcc. */
1153 #ifndef GCC_COMPILED_FLAG_SYMBOL
1154 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1157 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1158 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1159 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1162 /* Functions for dealing with the minimal symbol table, really a misc
1163 address<->symbol mapping for things we don't have debug symbols for. */
1165 extern void prim_record_minimal_symbol (const char *, CORE_ADDR,
1166 enum minimal_symbol_type,
1169 extern struct minimal_symbol *prim_record_minimal_symbol_and_info
1170 (const char *, CORE_ADDR,
1171 enum minimal_symbol_type,
1172 char *info, int section, asection * bfd_section, struct objfile *);
1174 extern unsigned int msymbol_hash_iw (const char *);
1176 extern unsigned int msymbol_hash (const char *);
1179 add_minsym_to_hash_table (struct minimal_symbol *sym,
1180 struct minimal_symbol **table);
1182 extern struct minimal_symbol *lookup_minimal_symbol (const char *,
1186 extern struct minimal_symbol *lookup_minimal_symbol_text (const char *,
1190 struct minimal_symbol *lookup_minimal_symbol_solib_trampoline (const char *,
1195 extern struct minimal_symbol *lookup_minimal_symbol_by_pc (CORE_ADDR);
1197 extern struct minimal_symbol *lookup_minimal_symbol_by_pc_section (CORE_ADDR,
1201 extern struct minimal_symbol
1202 *lookup_solib_trampoline_symbol_by_pc (CORE_ADDR);
1204 extern CORE_ADDR find_solib_trampoline_target (CORE_ADDR);
1206 extern void init_minimal_symbol_collection (void);
1208 extern struct cleanup *make_cleanup_discard_minimal_symbols (void);
1210 extern void install_minimal_symbols (struct objfile *);
1212 /* Sort all the minimal symbols in OBJFILE. */
1214 extern void msymbols_sort (struct objfile *objfile);
1216 struct symtab_and_line
1218 struct symtab *symtab;
1220 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1221 0 is never a valid line number; it is used to indicate that line number
1222 information is not available. */
1229 #define INIT_SAL(sal) { \
1230 (sal)->symtab = 0; \
1231 (sal)->section = 0; \
1237 struct symtabs_and_lines
1239 struct symtab_and_line *sals;
1245 /* Some types and macros needed for exception catchpoints.
1246 Can't put these in target.h because symtab_and_line isn't
1247 known there. This file will be included by breakpoint.c,
1248 hppa-tdep.c, etc. */
1250 /* Enums for exception-handling support */
1251 enum exception_event_kind
1257 /* Type for returning info about an exception */
1258 struct exception_event_record
1260 enum exception_event_kind kind;
1261 struct symtab_and_line throw_sal;
1262 struct symtab_and_line catch_sal;
1263 /* This may need to be extended in the future, if
1264 some platforms allow reporting more information,
1265 such as point of rethrow, type of exception object,
1266 type expected by catch clause, etc. */
1269 #define CURRENT_EXCEPTION_KIND (current_exception_event->kind)
1270 #define CURRENT_EXCEPTION_CATCH_SAL (current_exception_event->catch_sal)
1271 #define CURRENT_EXCEPTION_CATCH_LINE (current_exception_event->catch_sal.line)
1272 #define CURRENT_EXCEPTION_CATCH_FILE (current_exception_event->catch_sal.symtab->filename)
1273 #define CURRENT_EXCEPTION_CATCH_PC (current_exception_event->catch_sal.pc)
1274 #define CURRENT_EXCEPTION_THROW_SAL (current_exception_event->throw_sal)
1275 #define CURRENT_EXCEPTION_THROW_LINE (current_exception_event->throw_sal.line)
1276 #define CURRENT_EXCEPTION_THROW_FILE (current_exception_event->throw_sal.symtab->filename)
1277 #define CURRENT_EXCEPTION_THROW_PC (current_exception_event->throw_sal.pc)
1280 /* Given a pc value, return line number it is in. Second arg nonzero means
1281 if pc is on the boundary use the previous statement's line number. */
1283 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1285 /* Same function, but specify a section as well as an address */
1287 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR, asection *, int);
1289 /* Given an address, return the nearest symbol at or below it in memory.
1290 Optionally return the symtab it's from through 2nd arg, and the
1291 address in inferior memory of the symbol through 3rd arg. */
1293 extern struct symbol *find_addr_symbol (CORE_ADDR, struct symtab **,
1296 /* Given a symtab and line number, return the pc there. */
1298 extern int find_line_pc (struct symtab *, int, CORE_ADDR *);
1301 find_line_pc_range (struct symtab_and_line, CORE_ADDR *, CORE_ADDR *);
1303 extern void resolve_sal_pc (struct symtab_and_line *);
1305 /* Given a string, return the line specified by it. For commands like "list"
1306 and "breakpoint". */
1308 extern struct symtabs_and_lines decode_line_spec (char *, int);
1310 extern struct symtabs_and_lines decode_line_spec_1 (char *, int);
1314 void maintenance_print_symbols (char *, int);
1316 void maintenance_print_psymbols (char *, int);
1318 void maintenance_print_msymbols (char *, int);
1320 void maintenance_print_objfiles (char *, int);
1322 void maintenance_check_symtabs (char *, int);
1326 void maintenance_print_statistics (char *, int);
1328 extern void free_symtab (struct symtab *);
1330 /* Symbol-reading stuff in symfile.c and solib.c. */
1332 extern struct symtab *psymtab_to_symtab (struct partial_symtab *);
1334 extern void clear_solib (void);
1338 extern int identify_source_line (struct symtab *, int, int, CORE_ADDR);
1340 extern void print_source_lines (struct symtab *, int, int, int);
1342 extern void forget_cached_source_info (void);
1344 extern void select_source_symtab (struct symtab *);
1346 extern char **make_symbol_completion_list (char *, char *);
1348 extern char **make_file_symbol_completion_list (char *, char *, char *);
1350 extern struct symbol **make_symbol_overload_list (struct symbol *);
1352 extern char **make_source_files_completion_list (char *, char *);
1356 extern struct partial_symtab *find_main_psymtab (void);
1358 extern struct symtab *find_line_symtab (struct symtab *, int, int *, int *);
1360 extern struct symtab_and_line find_function_start_sal (struct symbol *sym, int);
1364 extern struct blockvector *blockvector_for_pc (CORE_ADDR, int *);
1366 extern struct blockvector *blockvector_for_pc_sect (CORE_ADDR, asection *,
1367 int *, struct symtab *);
1371 extern void clear_symtab_users (void);
1373 extern enum language deduce_language_from_filename (char *);
1377 extern int in_prologue (CORE_ADDR pc, CORE_ADDR func_start);
1379 extern struct symbol *fixup_symbol_section (struct symbol *,
1382 extern struct partial_symbol *fixup_psymbol_section (struct partial_symbol
1384 struct objfile *objfile);
1386 /* Symbol searching */
1388 /* When using search_symbols, a list of the following structs is returned.
1389 Callers must free the search list using free_search_symbols! */
1390 struct symbol_search
1392 /* The block in which the match was found. Could be, for example,
1393 STATIC_BLOCK or GLOBAL_BLOCK. */
1396 /* Information describing what was found.
1398 If symtab abd symbol are NOT NULL, then information was found
1400 struct symtab *symtab;
1401 struct symbol *symbol;
1403 /* If msymbol is non-null, then a match was made on something for
1404 which only minimal_symbols exist. */
1405 struct minimal_symbol *msymbol;
1407 /* A link to the next match, or NULL for the end. */
1408 struct symbol_search *next;
1411 extern void search_symbols (char *, namespace_enum, int, char **,
1412 struct symbol_search **);
1413 extern void free_search_symbols (struct symbol_search *);
1414 extern struct cleanup *make_cleanup_free_search_symbols (struct symbol_search *);
1416 /* The name of the ``main'' function.
1417 FIXME: cagney/2001-03-20: Can't make main_name() const since some
1418 of the calling code currently assumes that the string isn't
1420 extern void set_main_name (const char *name);
1421 extern /*const*/ char *main_name (void);
1423 #endif /* !defined(SYMTAB_H) */