1 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
9 @chapter 80386 Dependent Features
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
17 @cindex i80386 support
18 @cindex x86-64 support
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
48 @cindex options for i386
49 @cindex options for x86-64
51 @cindex x86-64 options
53 The i386 version of @code{@value{AS}} has a few machine
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
81 @cindex @samp{--divide} option, i386
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
133 In addition to the basic instruction set, the assembler can be told to
134 accept various extension mnemonics. For example,
135 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136 @var{vmx}. The following extensions are currently supported:
201 @code{avx512_4fmaps},
202 @code{avx512_4vnniw},
203 @code{avx512_vpopcntdq},
206 @code{avx512_bitalg},
207 @code{avx512_vp2intersect},
218 @code{noavx512_4fmaps},
219 @code{noavx512_4vnniw},
220 @code{noavx512_vpopcntdq},
221 @code{noavx512_vbmi2},
222 @code{noavx512_vnni},
223 @code{noavx512_bitalg},
224 @code{noavx512_vp2intersect},
225 @code{noavx512_bf16},
278 Note that rather than extending a basic instruction set, the extension
279 mnemonics starting with @code{no} revoke the respective functionality.
281 When the @code{.arch} directive is used with @option{-march}, the
282 @code{.arch} directive will take precedent.
284 @cindex @samp{-mtune=} option, i386
285 @cindex @samp{-mtune=} option, x86-64
286 @item -mtune=@var{CPU}
287 This option specifies a processor to optimize for. When used in
288 conjunction with the @option{-march} option, only instructions
289 of the processor specified by the @option{-march} option will be
292 Valid @var{CPU} values are identical to the processor list of
293 @option{-march=@var{CPU}}.
295 @cindex @samp{-msse2avx} option, i386
296 @cindex @samp{-msse2avx} option, x86-64
298 This option specifies that the assembler should encode SSE instructions
301 @cindex @samp{-msse-check=} option, i386
302 @cindex @samp{-msse-check=} option, x86-64
303 @item -msse-check=@var{none}
304 @itemx -msse-check=@var{warning}
305 @itemx -msse-check=@var{error}
306 These options control if the assembler should check SSE instructions.
307 @option{-msse-check=@var{none}} will make the assembler not to check SSE
308 instructions, which is the default. @option{-msse-check=@var{warning}}
309 will make the assembler issue a warning for any SSE instruction.
310 @option{-msse-check=@var{error}} will make the assembler issue an error
311 for any SSE instruction.
313 @cindex @samp{-mavxscalar=} option, i386
314 @cindex @samp{-mavxscalar=} option, x86-64
315 @item -mavxscalar=@var{128}
316 @itemx -mavxscalar=@var{256}
317 These options control how the assembler should encode scalar AVX
318 instructions. @option{-mavxscalar=@var{128}} will encode scalar
319 AVX instructions with 128bit vector length, which is the default.
320 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
321 with 256bit vector length.
323 WARNING: Don't use this for production code - due to CPU errata the
324 resulting code may not work on certain models.
326 @cindex @samp{-mvexwig=} option, i386
327 @cindex @samp{-mvexwig=} option, x86-64
328 @item -mvexwig=@var{0}
329 @itemx -mvexwig=@var{1}
330 These options control how the assembler should encode VEX.W-ignored (WIG)
331 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
332 instructions with vex.w = 0, which is the default.
333 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
336 WARNING: Don't use this for production code - due to CPU errata the
337 resulting code may not work on certain models.
339 @cindex @samp{-mevexlig=} option, i386
340 @cindex @samp{-mevexlig=} option, x86-64
341 @item -mevexlig=@var{128}
342 @itemx -mevexlig=@var{256}
343 @itemx -mevexlig=@var{512}
344 These options control how the assembler should encode length-ignored
345 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
346 EVEX instructions with 128bit vector length, which is the default.
347 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
348 encode LIG EVEX instructions with 256bit and 512bit vector length,
351 @cindex @samp{-mevexwig=} option, i386
352 @cindex @samp{-mevexwig=} option, x86-64
353 @item -mevexwig=@var{0}
354 @itemx -mevexwig=@var{1}
355 These options control how the assembler should encode w-ignored (WIG)
356 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
357 EVEX instructions with evex.w = 0, which is the default.
358 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
361 @cindex @samp{-mmnemonic=} option, i386
362 @cindex @samp{-mmnemonic=} option, x86-64
363 @item -mmnemonic=@var{att}
364 @itemx -mmnemonic=@var{intel}
365 This option specifies instruction mnemonic for matching instructions.
366 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
369 @cindex @samp{-msyntax=} option, i386
370 @cindex @samp{-msyntax=} option, x86-64
371 @item -msyntax=@var{att}
372 @itemx -msyntax=@var{intel}
373 This option specifies instruction syntax when processing instructions.
374 The @code{.att_syntax} and @code{.intel_syntax} directives will
377 @cindex @samp{-mnaked-reg} option, i386
378 @cindex @samp{-mnaked-reg} option, x86-64
380 This option specifies that registers don't require a @samp{%} prefix.
381 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
383 @cindex @samp{-madd-bnd-prefix} option, i386
384 @cindex @samp{-madd-bnd-prefix} option, x86-64
385 @item -madd-bnd-prefix
386 This option forces the assembler to add BND prefix to all branches, even
387 if such prefix was not explicitly specified in the source code.
389 @cindex @samp{-mshared} option, i386
390 @cindex @samp{-mshared} option, x86-64
392 On ELF target, the assembler normally optimizes out non-PLT relocations
393 against defined non-weak global branch targets with default visibility.
394 The @samp{-mshared} option tells the assembler to generate code which
395 may go into a shared library where all non-weak global branch targets
396 with default visibility can be preempted. The resulting code is
397 slightly bigger. This option only affects the handling of branch
400 @cindex @samp{-mbig-obj} option, i386
401 @cindex @samp{-mbig-obj} option, x86-64
403 On PE/COFF target this option forces the use of big object file
404 format, which allows more than 32768 sections.
406 @cindex @samp{-momit-lock-prefix=} option, i386
407 @cindex @samp{-momit-lock-prefix=} option, x86-64
408 @item -momit-lock-prefix=@var{no}
409 @itemx -momit-lock-prefix=@var{yes}
410 These options control how the assembler should encode lock prefix.
411 This option is intended as a workaround for processors, that fail on
412 lock prefix. This option can only be safely used with single-core,
413 single-thread computers
414 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
415 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
416 which is the default.
418 @cindex @samp{-mfence-as-lock-add=} option, i386
419 @cindex @samp{-mfence-as-lock-add=} option, x86-64
420 @item -mfence-as-lock-add=@var{no}
421 @itemx -mfence-as-lock-add=@var{yes}
422 These options control how the assembler should encode lfence, mfence and
424 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
425 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
426 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
427 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
428 sfence as usual, which is the default.
430 @cindex @samp{-mrelax-relocations=} option, i386
431 @cindex @samp{-mrelax-relocations=} option, x86-64
432 @item -mrelax-relocations=@var{no}
433 @itemx -mrelax-relocations=@var{yes}
434 These options control whether the assembler should generate relax
435 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
436 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
437 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
438 @option{-mrelax-relocations=@var{no}} will not generate relax
439 relocations. The default can be controlled by a configure option
440 @option{--enable-x86-relax-relocations}.
442 @cindex @samp{-malign-branch-boundary=} option, i386
443 @cindex @samp{-malign-branch-boundary=} option, x86-64
444 @item -malign-branch-boundary=@var{NUM}
445 This option controls how the assembler should align branches with segment
446 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
447 no less than 16. Branches will be aligned within @var{NUM} byte
448 boundary. @option{-malign-branch-boundary=0}, which is the default,
449 doesn't align branches.
451 @cindex @samp{-malign-branch=} option, i386
452 @cindex @samp{-malign-branch=} option, x86-64
453 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
454 This option specifies types of branches to align. @var{TYPE} is
455 combination of @samp{jcc}, which aligns conditional jumps,
456 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
457 which aligns unconditional jumps, @samp{call} which aligns calls,
458 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
459 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
461 @cindex @samp{-malign-branch-prefix-size=} option, i386
462 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
463 @item -malign-branch-prefix-size=@var{NUM}
464 This option specifies the maximum number of prefixes on an instruction
465 to align branches. @var{NUM} should be between 0 and 5. The default
468 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
469 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
470 @item -mbranches-within-32B-boundaries
471 This option aligns conditional jumps, fused conditional jumps and
472 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
473 on an instruction. It is equivalent to
474 @option{-malign-branch-boundary=32}
475 @option{-malign-branch=jcc+fused+jmp}
476 @option{-malign-branch-prefix-size=5}.
477 The default doesn't align branches.
479 @cindex @samp{-mlfence-after-load=} option, i386
480 @cindex @samp{-mlfence-after-load=} option, x86-64
481 @item -mlfence-after-load=@var{no}
482 @itemx -mlfence-after-load=@var{yes}
483 These options control whether the assembler should generate lfence
484 after load instructions. @option{-mlfence-after-load=@var{yes}} will
485 generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
486 lfence, which is the default.
488 @cindex @samp{-mlfence-before-indirect-branch=} option, i386
489 @cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
490 @item -mlfence-before-indirect-branch=@var{none}
491 @item -mlfence-before-indirect-branch=@var{all}
492 @item -mlfence-before-indirect-branch=@var{register}
493 @itemx -mlfence-before-indirect-branch=@var{memory}
494 These options control whether the assembler should generate lfence
495 before indirect near branch instructions.
496 @option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
497 before indirect near branch via register and issue a warning before
498 indirect near branch via memory.
499 It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
500 there's no explict @option{-mlfence-before-ret=}.
501 @option{-mlfence-before-indirect-branch=@var{register}} will generate
502 lfence before indirect near branch via register.
503 @option{-mlfence-before-indirect-branch=@var{memory}} will issue a
504 warning before indirect near branch via memory.
505 @option{-mlfence-before-indirect-branch=@var{none}} will not generate
506 lfence nor issue warning, which is the default. Note that lfence won't
507 be generated before indirect near branch via register with
508 @option{-mlfence-after-load=@var{yes}} since lfence will be generated
509 after loading branch target register.
511 @cindex @samp{-mlfence-before-ret=} option, i386
512 @cindex @samp{-mlfence-before-ret=} option, x86-64
513 @item -mlfence-before-ret=@var{none}
514 @item -mlfence-before-ret=@var{shl}
515 @item -mlfence-before-ret=@var{or}
516 @item -mlfence-before-ret=@var{yes}
517 @itemx -mlfence-before-ret=@var{not}
518 These options control whether the assembler should generate lfence
519 before ret. @option{-mlfence-before-ret=@var{or}} will generate
520 generate or instruction with lfence.
521 @option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
522 with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
523 instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
524 generate lfence, which is the default.
526 @cindex @samp{-mx86-used-note=} option, i386
527 @cindex @samp{-mx86-used-note=} option, x86-64
528 @item -mx86-used-note=@var{no}
529 @itemx -mx86-used-note=@var{yes}
530 These options control whether the assembler should generate
531 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
532 GNU property notes. The default can be controlled by the
533 @option{--enable-x86-used-note} configure option.
535 @cindex @samp{-mevexrcig=} option, i386
536 @cindex @samp{-mevexrcig=} option, x86-64
537 @item -mevexrcig=@var{rne}
538 @itemx -mevexrcig=@var{rd}
539 @itemx -mevexrcig=@var{ru}
540 @itemx -mevexrcig=@var{rz}
541 These options control how the assembler should encode SAE-only
542 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
543 of EVEX instruction with 00, which is the default.
544 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
545 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
546 with 01, 10 and 11 RC bits, respectively.
548 @cindex @samp{-mamd64} option, x86-64
549 @cindex @samp{-mintel64} option, x86-64
552 This option specifies that the assembler should accept only AMD64 or
553 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
556 @cindex @samp{-O0} option, i386
557 @cindex @samp{-O0} option, x86-64
558 @cindex @samp{-O} option, i386
559 @cindex @samp{-O} option, x86-64
560 @cindex @samp{-O1} option, i386
561 @cindex @samp{-O1} option, x86-64
562 @cindex @samp{-O2} option, i386
563 @cindex @samp{-O2} option, x86-64
564 @cindex @samp{-Os} option, i386
565 @cindex @samp{-Os} option, x86-64
566 @item -O0 | -O | -O1 | -O2 | -Os
567 Optimize instruction encoding with smaller instruction size. @samp{-O}
568 and @samp{-O1} encode 64-bit register load instructions with 64-bit
569 immediate as 32-bit register load instructions with 31-bit or 32-bits
570 immediates, encode 64-bit register clearing instructions with 32-bit
571 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
572 register clearing instructions with 128-bit VEX vector register
573 clearing instructions, encode 128-bit/256-bit EVEX vector
574 register load/store instructions with VEX vector register load/store
575 instructions, and encode 128-bit/256-bit EVEX packed integer logical
576 instructions with 128-bit/256-bit VEX packed integer logical.
578 @samp{-O2} includes @samp{-O1} optimization plus encodes
579 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
580 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
581 instructions with commutative source operands will also have their
582 source operands swapped if this allows using the 2-byte VEX prefix form
583 instead of the 3-byte one. Certain forms of AND as well as OR with the
584 same (register) operand specified twice will also be changed to TEST.
586 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
587 and 64-bit register tests with immediate as 8-bit register test with
588 immediate. @samp{-O0} turns off this optimization.
593 @node i386-Directives
594 @section x86 specific Directives
596 @cindex machine directives, x86
597 @cindex x86 machine directives
600 @cindex @code{lcomm} directive, COFF
601 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
602 Reserve @var{length} (an absolute expression) bytes for a local common
603 denoted by @var{symbol}. The section and value of @var{symbol} are
604 those of the new local common. The addresses are allocated in the bss
605 section, so that at run-time the bytes start off zeroed. Since
606 @var{symbol} is not declared global, it is normally not visible to
607 @code{@value{LD}}. The optional third parameter, @var{alignment},
608 specifies the desired alignment of the symbol in the bss section.
610 This directive is only available for COFF based x86 targets.
612 @cindex @code{largecomm} directive, ELF
613 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
614 This directive behaves in the same way as the @code{comm} directive
615 except that the data is placed into the @var{.lbss} section instead of
616 the @var{.bss} section @ref{Comm}.
618 The directive is intended to be used for data which requires a large
619 amount of space, and it is only available for ELF based x86_64
622 @cindex @code{value} directive
623 @item .value @var{expression} [, @var{expression}]
624 This directive behaves in the same way as the @code{.short} directive,
625 taking a series of comma separated expressions and storing them as
626 two-byte wide values into the current section.
628 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
633 @section i386 Syntactical Considerations
635 * i386-Variations:: AT&T Syntax versus Intel Syntax
636 * i386-Chars:: Special Characters
639 @node i386-Variations
640 @subsection AT&T Syntax versus Intel Syntax
642 @cindex i386 intel_syntax pseudo op
643 @cindex intel_syntax pseudo op, i386
644 @cindex i386 att_syntax pseudo op
645 @cindex att_syntax pseudo op, i386
646 @cindex i386 syntax compatibility
647 @cindex syntax compatibility, i386
648 @cindex x86-64 intel_syntax pseudo op
649 @cindex intel_syntax pseudo op, x86-64
650 @cindex x86-64 att_syntax pseudo op
651 @cindex att_syntax pseudo op, x86-64
652 @cindex x86-64 syntax compatibility
653 @cindex syntax compatibility, x86-64
655 @code{@value{AS}} now supports assembly using Intel assembler syntax.
656 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
657 back to the usual AT&T mode for compatibility with the output of
658 @code{@value{GCC}}. Either of these directives may have an optional
659 argument, @code{prefix}, or @code{noprefix} specifying whether registers
660 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
661 different from Intel syntax. We mention these differences because
662 almost all 80386 documents use Intel syntax. Notable differences
663 between the two syntaxes are:
665 @cindex immediate operands, i386
666 @cindex i386 immediate operands
667 @cindex register operands, i386
668 @cindex i386 register operands
669 @cindex jump/call operands, i386
670 @cindex i386 jump/call operands
671 @cindex operand delimiters, i386
673 @cindex immediate operands, x86-64
674 @cindex x86-64 immediate operands
675 @cindex register operands, x86-64
676 @cindex x86-64 register operands
677 @cindex jump/call operands, x86-64
678 @cindex x86-64 jump/call operands
679 @cindex operand delimiters, x86-64
682 AT&T immediate operands are preceded by @samp{$}; Intel immediate
683 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
684 AT&T register operands are preceded by @samp{%}; Intel register operands
685 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
686 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
688 @cindex i386 source, destination operands
689 @cindex source, destination operands; i386
690 @cindex x86-64 source, destination operands
691 @cindex source, destination operands; x86-64
693 AT&T and Intel syntax use the opposite order for source and destination
694 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
695 @samp{source, dest} convention is maintained for compatibility with
696 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
697 instructions with 2 immediate operands, such as the @samp{enter}
698 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
700 @cindex mnemonic suffixes, i386
701 @cindex sizes operands, i386
702 @cindex i386 size suffixes
703 @cindex mnemonic suffixes, x86-64
704 @cindex sizes operands, x86-64
705 @cindex x86-64 size suffixes
707 In AT&T syntax the size of memory operands is determined from the last
708 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
709 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
710 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
711 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
712 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
713 no other way to disambiguate an instruction. Intel syntax accomplishes this by
714 prefixing memory operands (@emph{not} the instruction mnemonics) with
715 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
716 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
717 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
718 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
719 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
721 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
722 instruction with the 64-bit displacement or immediate operand.
724 @cindex return instructions, i386
725 @cindex i386 jump, call, return
726 @cindex return instructions, x86-64
727 @cindex x86-64 jump, call, return
729 Immediate form long jumps and calls are
730 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
732 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
734 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
735 @samp{ret far @var{stack-adjust}}.
737 @cindex sections, i386
738 @cindex i386 sections
739 @cindex sections, x86-64
740 @cindex x86-64 sections
742 The AT&T assembler does not provide support for multiple section
743 programs. Unix style systems expect all programs to be single sections.
747 @subsection Special Characters
749 @cindex line comment character, i386
750 @cindex i386 line comment character
751 The presence of a @samp{#} appearing anywhere on a line indicates the
752 start of a comment that extends to the end of that line.
754 If a @samp{#} appears as the first character of a line then the whole
755 line is treated as a comment, but in this case the line can also be a
756 logical line number directive (@pxref{Comments}) or a preprocessor
757 control command (@pxref{Preprocessing}).
759 If the @option{--divide} command-line option has not been specified
760 then the @samp{/} character appearing anywhere on a line also
761 introduces a line comment.
763 @cindex line separator, i386
764 @cindex statement separator, i386
765 @cindex i386 line separator
766 The @samp{;} character can be used to separate statements on the same
770 @section i386-Mnemonics
771 @subsection Instruction Naming
773 @cindex i386 instruction naming
774 @cindex instruction naming, i386
775 @cindex x86-64 instruction naming
776 @cindex instruction naming, x86-64
778 Instruction mnemonics are suffixed with one character modifiers which
779 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
780 and @samp{q} specify byte, word, long and quadruple word operands. If
781 no suffix is specified by an instruction then @code{@value{AS}} tries to
782 fill in the missing suffix based on the destination register operand
783 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
784 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
785 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
786 assembler which assumes that a missing mnemonic suffix implies long
787 operand size. (This incompatibility does not affect compiler output
788 since compilers always explicitly specify the mnemonic suffix.)
790 When there is no sizing suffix and no (suitable) register operands to
791 deduce the size of memory operands, with a few exceptions and where long
792 operand size is possible in the first place, operand size will default
793 to long in 32- and 64-bit modes. Similarly it will default to short in
794 16-bit mode. Noteworthy exceptions are
798 Instructions with an implicit on-stack operand as well as branches,
799 which default to quad in 64-bit mode.
802 Sign- and zero-extending moves, which default to byte size source
806 Floating point insns with integer operands, which default to short (for
807 perhaps historical reasons).
810 CRC32 with a 64-bit destination, which defaults to a quad source
815 @cindex encoding options, i386
816 @cindex encoding options, x86-64
818 Different encoding options can be specified via pseudo prefixes:
822 @samp{@{disp8@}} -- prefer 8-bit displacement.
825 @samp{@{disp32@}} -- prefer 32-bit displacement.
828 @samp{@{load@}} -- prefer load-form instruction.
831 @samp{@{store@}} -- prefer store-form instruction.
834 @samp{@{vex@}} -- encode with VEX prefix.
837 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
840 @samp{@{evex@}} -- encode with EVEX prefix.
843 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
844 instructions (x86-64 only). Note that this differs from the @samp{rex}
845 prefix which generates REX prefix unconditionally.
848 @samp{@{nooptimize@}} -- disable instruction size optimization.
851 @cindex conversion instructions, i386
852 @cindex i386 conversion instructions
853 @cindex conversion instructions, x86-64
854 @cindex x86-64 conversion instructions
855 The Intel-syntax conversion instructions
859 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
862 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
865 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
868 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
871 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
875 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
876 @samp{%rdx:%rax} (x86-64 only),
880 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
881 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
884 @cindex extension instructions, i386
885 @cindex i386 extension instructions
886 @cindex extension instructions, x86-64
887 @cindex x86-64 extension instructions
888 The Intel-syntax extension instructions
892 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
895 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
898 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
902 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
905 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
909 @samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
913 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
916 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
919 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
923 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
926 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
931 are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
932 @samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
933 @samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
934 @samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
935 @samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
937 @cindex jump instructions, i386
938 @cindex call instructions, i386
939 @cindex jump instructions, x86-64
940 @cindex call instructions, x86-64
941 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
942 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
945 @subsection AT&T Mnemonic versus Intel Mnemonic
947 @cindex i386 mnemonic compatibility
948 @cindex mnemonic compatibility, i386
950 @code{@value{AS}} supports assembly using Intel mnemonic.
951 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
952 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
953 syntax for compatibility with the output of @code{@value{GCC}}.
954 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
955 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
956 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
957 assembler with different mnemonics from those in Intel IA32 specification.
958 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
961 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
962 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
963 destination register with both AT&T and Intel mnemonics.
967 @section Register Naming
969 @cindex i386 registers
970 @cindex registers, i386
971 @cindex x86-64 registers
972 @cindex registers, x86-64
973 Register operands are always prefixed with @samp{%}. The 80386 registers
978 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
979 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
980 frame pointer), and @samp{%esp} (the stack pointer).
983 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
984 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
987 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
988 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
989 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
990 @samp{%cx}, and @samp{%dx})
993 the 6 section registers @samp{%cs} (code section), @samp{%ds}
994 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
998 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
999 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
1002 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
1003 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
1006 the 2 test registers @samp{%tr6} and @samp{%tr7}.
1009 the 8 floating point register stack @samp{%st} or equivalently
1010 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1011 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
1012 These registers are overloaded by 8 MMX registers @samp{%mm0},
1013 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1014 @samp{%mm6} and @samp{%mm7}.
1017 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
1018 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1021 The AMD x86-64 architecture extends the register set by:
1025 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1026 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1027 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1031 the 8 extended registers @samp{%r8}--@samp{%r15}.
1034 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
1037 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
1040 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
1043 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1046 the 8 debug registers: @samp{%db8}--@samp{%db15}.
1049 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1052 With the AVX extensions more registers were made available:
1057 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1058 available in 32-bit mode). The bottom 128 bits are overlaid with the
1059 @samp{xmm0}--@samp{xmm15} registers.
1063 The AVX512 extensions added the following registers:
1068 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1069 available in 32-bit mode). The bottom 128 bits are overlaid with the
1070 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1071 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1074 the 8 mask registers @samp{%k0}--@samp{%k7}.
1079 @section Instruction Prefixes
1081 @cindex i386 instruction prefixes
1082 @cindex instruction prefixes, i386
1083 @cindex prefixes, i386
1084 Instruction prefixes are used to modify the following instruction. They
1085 are used to repeat string instructions, to provide section overrides, to
1086 perform bus lock operations, and to change operand and address sizes.
1087 (Most instructions that normally operate on 32-bit operands will use
1088 16-bit operands if the instruction has an ``operand size'' prefix.)
1089 Instruction prefixes are best written on the same line as the instruction
1090 they act upon. For example, the @samp{scas} (scan string) instruction is
1094 repne scas %es:(%edi),%al
1097 You may also place prefixes on the lines immediately preceding the
1098 instruction, but this circumvents checks that @code{@value{AS}} does
1099 with prefixes, and will not work with all prefixes.
1101 Here is a list of instruction prefixes:
1103 @cindex section override prefixes, i386
1106 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1107 @samp{fs}, @samp{gs}. These are automatically added by specifying
1108 using the @var{section}:@var{memory-operand} form for memory references.
1110 @cindex size prefixes, i386
1112 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1113 change 32-bit operands/addresses into 16-bit operands/addresses,
1114 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1115 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1116 @emph{must} appear on the same line of code as the instruction they
1117 modify. For example, in a 16-bit @code{.code16} section, you might
1124 @cindex bus lock prefixes, i386
1125 @cindex inhibiting interrupts, i386
1127 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1128 the instruction it precedes. (This is only valid with certain
1129 instructions; see a 80386 manual for details).
1131 @cindex coprocessor wait, i386
1133 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1134 complete the current instruction. This should never be needed for the
1135 80386/80387 combination.
1137 @cindex repeat prefixes, i386
1139 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1140 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1141 times if the current address size is 16-bits).
1142 @cindex REX prefixes, i386
1144 The @samp{rex} family of prefixes is used by x86-64 to encode
1145 extensions to i386 instruction set. The @samp{rex} prefix has four
1146 bits --- an operand size overwrite (@code{64}) used to change operand size
1147 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1150 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1151 instruction emits @samp{rex} prefix with all the bits set. By omitting
1152 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1153 prefixes as well. Normally, there is no need to write the prefixes
1154 explicitly, since gas will automatically generate them based on the
1155 instruction operands.
1159 @section Memory References
1161 @cindex i386 memory references
1162 @cindex memory references, i386
1163 @cindex x86-64 memory references
1164 @cindex memory references, x86-64
1165 An Intel syntax indirect memory reference of the form
1168 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1172 is translated into the AT&T syntax
1175 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1179 where @var{base} and @var{index} are the optional 32-bit base and
1180 index registers, @var{disp} is the optional displacement, and
1181 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1182 to calculate the address of the operand. If no @var{scale} is
1183 specified, @var{scale} is taken to be 1. @var{section} specifies the
1184 optional section register for the memory operand, and may override the
1185 default section register (see a 80386 manual for section register
1186 defaults). Note that section overrides in AT&T syntax @emph{must}
1187 be preceded by a @samp{%}. If you specify a section override which
1188 coincides with the default section register, @code{@value{AS}} does @emph{not}
1189 output any section register override prefixes to assemble the given
1190 instruction. Thus, section overrides can be specified to emphasize which
1191 section register is used for a given memory operand.
1193 Here are some examples of Intel and AT&T style memory references:
1196 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1197 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1198 missing, and the default section is used (@samp{%ss} for addressing with
1199 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1201 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1202 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1203 @samp{foo}. All other fields are missing. The section register here
1204 defaults to @samp{%ds}.
1206 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1207 This uses the value pointed to by @samp{foo} as a memory operand.
1208 Note that @var{base} and @var{index} are both missing, but there is only
1209 @emph{one} @samp{,}. This is a syntactic exception.
1211 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1212 This selects the contents of the variable @samp{foo} with section
1213 register @var{section} being @samp{%gs}.
1216 Absolute (as opposed to PC relative) call and jump operands must be
1217 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1218 always chooses PC relative addressing for jump/call labels.
1220 Any instruction that has a memory operand, but no register operand,
1221 @emph{must} specify its size (byte, word, long, or quadruple) with an
1222 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1225 The x86-64 architecture adds an RIP (instruction pointer relative)
1226 addressing. This addressing mode is specified by using @samp{rip} as a
1227 base register. Only constant offsets are valid. For example:
1230 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1231 Points to the address 1234 bytes past the end of the current
1234 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1235 Points to the @code{symbol} in RIP relative way, this is shorter than
1236 the default absolute addressing.
1239 Other addressing modes remain unchanged in x86-64 architecture, except
1240 registers used are 64-bit instead of 32-bit.
1243 @section Handling of Jump Instructions
1245 @cindex jump optimization, i386
1246 @cindex i386 jump optimization
1247 @cindex jump optimization, x86-64
1248 @cindex x86-64 jump optimization
1249 Jump instructions are always optimized to use the smallest possible
1250 displacements. This is accomplished by using byte (8-bit) displacement
1251 jumps whenever the target is sufficiently close. If a byte displacement
1252 is insufficient a long displacement is used. We do not support
1253 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1254 instruction with the @samp{data16} instruction prefix), since the 80386
1255 insists upon masking @samp{%eip} to 16 bits after the word displacement
1256 is added. (See also @pxref{i386-Arch})
1258 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1259 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1260 displacements, so that if you use these instructions (@code{@value{GCC}} does
1261 not use them) you may get an error message (and incorrect code). The AT&T
1262 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1273 @section Floating Point
1275 @cindex i386 floating point
1276 @cindex floating point, i386
1277 @cindex x86-64 floating point
1278 @cindex floating point, x86-64
1279 All 80387 floating point types except packed BCD are supported.
1280 (BCD support may be added without much difficulty). These data
1281 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1282 double (64-bit), and extended (80-bit) precision floating point.
1283 Each supported type has an instruction mnemonic suffix and a constructor
1284 associated with it. Instruction mnemonic suffixes specify the operand's
1285 data type. Constructors build these data types into memory.
1287 @cindex @code{float} directive, i386
1288 @cindex @code{single} directive, i386
1289 @cindex @code{double} directive, i386
1290 @cindex @code{tfloat} directive, i386
1291 @cindex @code{float} directive, x86-64
1292 @cindex @code{single} directive, x86-64
1293 @cindex @code{double} directive, x86-64
1294 @cindex @code{tfloat} directive, x86-64
1297 Floating point constructors are @samp{.float} or @samp{.single},
1298 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1299 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1300 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1301 only supports this format via the @samp{fldt} (load 80-bit real to stack
1302 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1304 @cindex @code{word} directive, i386
1305 @cindex @code{long} directive, i386
1306 @cindex @code{int} directive, i386
1307 @cindex @code{quad} directive, i386
1308 @cindex @code{word} directive, x86-64
1309 @cindex @code{long} directive, x86-64
1310 @cindex @code{int} directive, x86-64
1311 @cindex @code{quad} directive, x86-64
1313 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1314 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1315 corresponding instruction mnemonic suffixes are @samp{s} (single),
1316 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1317 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1318 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1319 stack) instructions.
1322 Register to register operations should not use instruction mnemonic suffixes.
1323 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1324 wrote @samp{fst %st, %st(1)}, since all register to register operations
1325 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1326 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1327 then stores the result in the 4 byte location @samp{mem})
1330 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1333 @cindex 3DNow!, i386
1336 @cindex 3DNow!, x86-64
1337 @cindex SIMD, x86-64
1339 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1340 instructions for integer data), available on Intel's Pentium MMX
1341 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1342 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1343 instruction set (SIMD instructions for 32-bit floating point data)
1344 available on AMD's K6-2 processor and possibly others in the future.
1346 Currently, @code{@value{AS}} does not support Intel's floating point
1349 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1350 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1351 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1352 floating point values. The MMX registers cannot be used at the same time
1353 as the floating point stack.
1355 See Intel and AMD documentation, keeping in mind that the operand order in
1356 instructions is reversed from the Intel syntax.
1359 @section AMD's Lightweight Profiling Instructions
1364 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1365 instruction set, available on AMD's Family 15h (Orochi) processors.
1367 LWP enables applications to collect and manage performance data, and
1368 react to performance events. The collection of performance data
1369 requires no context switches. LWP runs in the context of a thread and
1370 so several counters can be used independently across multiple threads.
1371 LWP can be used in both 64-bit and legacy 32-bit modes.
1373 For detailed information on the LWP instruction set, see the
1374 @cite{AMD Lightweight Profiling Specification} available at
1375 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1378 @section Bit Manipulation Instructions
1383 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1385 BMI instructions provide several instructions implementing individual
1386 bit manipulation operations such as isolation, masking, setting, or
1389 @c Need to add a specification citation here when available.
1392 @section AMD's Trailing Bit Manipulation Instructions
1397 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1398 instruction set, available on AMD's BDVER2 processors (Trinity and
1401 TBM instructions provide instructions implementing individual bit
1402 manipulation operations such as isolating, masking, setting, resetting,
1403 complementing, and operations on trailing zeros and ones.
1405 @c Need to add a specification citation here when available.
1408 @section Writing 16-bit Code
1410 @cindex i386 16-bit code
1411 @cindex 16-bit code, i386
1412 @cindex real-mode code, i386
1413 @cindex @code{code16gcc} directive, i386
1414 @cindex @code{code16} directive, i386
1415 @cindex @code{code32} directive, i386
1416 @cindex @code{code64} directive, i386
1417 @cindex @code{code64} directive, x86-64
1418 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1419 or 64-bit x86-64 code depending on the default configuration,
1420 it also supports writing code to run in real mode or in 16-bit protected
1421 mode code segments. To do this, put a @samp{.code16} or
1422 @samp{.code16gcc} directive before the assembly language instructions to
1423 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1424 32-bit code with the @samp{.code32} directive or 64-bit code with the
1425 @samp{.code64} directive.
1427 @samp{.code16gcc} provides experimental support for generating 16-bit
1428 code from gcc, and differs from @samp{.code16} in that @samp{call},
1429 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1430 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1431 default to 32-bit size. This is so that the stack pointer is
1432 manipulated in the same way over function calls, allowing access to
1433 function parameters at the same stack offsets as in 32-bit mode.
1434 @samp{.code16gcc} also automatically adds address size prefixes where
1435 necessary to use the 32-bit addressing modes that gcc generates.
1437 The code which @code{@value{AS}} generates in 16-bit mode will not
1438 necessarily run on a 16-bit pre-80386 processor. To write code that
1439 runs on such a processor, you must refrain from using @emph{any} 32-bit
1440 constructs which require @code{@value{AS}} to output address or operand
1443 Note that writing 16-bit code instructions by explicitly specifying a
1444 prefix or an instruction mnemonic suffix within a 32-bit code section
1445 generates different machine instructions than those generated for a
1446 16-bit code segment. In a 32-bit code section, the following code
1447 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1448 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1454 The same code in a 16-bit code section would generate the machine
1455 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1456 is correct since the processor default operand size is assumed to be 16
1457 bits in a 16-bit code section.
1460 @section Specifying CPU Architecture
1462 @cindex arch directive, i386
1463 @cindex i386 arch directive
1464 @cindex arch directive, x86-64
1465 @cindex x86-64 arch directive
1467 @code{@value{AS}} may be told to assemble for a particular CPU
1468 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1469 directive enables a warning when gas detects an instruction that is not
1470 supported on the CPU specified. The choices for @var{cpu_type} are:
1472 @multitable @columnfractions .20 .20 .20 .20
1473 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1474 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1475 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1476 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1477 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1478 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1479 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1480 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1481 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1482 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1483 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
1484 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1485 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1486 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1487 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1488 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1489 @item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1491 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1492 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1493 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1494 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1495 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1496 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1497 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1498 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1499 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1500 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1501 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1502 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1503 @item @samp{.amx_int8} @tab @samp{.amx_bf16} @tab @samp{.amx_tile}
1504 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1505 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1506 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1507 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1508 @item @samp{.mcommit} @tab @samp{.sev_es}
1511 Apart from the warning, there are only two other effects on
1512 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1513 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1514 will automatically use a two byte opcode sequence. The larger three
1515 byte opcode sequence is used on the 486 (and when no architecture is
1516 specified) because it executes faster on the 486. Note that you can
1517 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1518 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1519 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1520 conditional jumps will be promoted when necessary to a two instruction
1521 sequence consisting of a conditional jump of the opposite sense around
1522 an unconditional jump to the target.
1524 Following the CPU architecture (but not a sub-architecture, which are those
1525 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1526 control automatic promotion of conditional jumps. @samp{jumps} is the
1527 default, and enables jump promotion; All external jumps will be of the long
1528 variety, and file-local jumps will be promoted as necessary.
1529 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1530 byte offset jumps, and warns about file-local conditional jumps that
1531 @code{@value{AS}} promotes.
1532 Unconditional jumps are treated as for @samp{jumps}.
1541 @section AMD64 ISA vs. Intel64 ISA
1543 There are some discrepancies between AMD64 and Intel64 ISAs.
1546 @item For @samp{movsxd} with 16-bit destination register, AMD64
1547 supports 32-bit source operand and Intel64 supports 16-bit source
1550 @item For far branches (with explicit memory operand), both ISAs support
1551 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1552 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1553 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1556 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1557 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1558 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1564 @section AT&T Syntax bugs
1566 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1567 assemblers, generate floating point instructions with reversed source
1568 and destination registers in certain cases. Unfortunately, gcc and
1569 possibly many other programs use this reversed syntax, so we're stuck
1578 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1579 than the expected @samp{%st(3) - %st}. This happens with all the
1580 non-commutative arithmetic floating point operations with two register
1581 operands where the source register is @samp{%st} and the destination
1582 register is @samp{%st(i)}.
1587 @cindex i386 @code{mul}, @code{imul} instructions
1588 @cindex @code{mul} instruction, i386
1589 @cindex @code{imul} instruction, i386
1590 @cindex @code{mul} instruction, x86-64
1591 @cindex @code{imul} instruction, x86-64
1592 There is some trickery concerning the @samp{mul} and @samp{imul}
1593 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1594 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1595 for @samp{imul}) can be output only in the one operand form. Thus,
1596 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1597 the expanding multiply would clobber the @samp{%edx} register, and this
1598 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1599 64-bit product in @samp{%edx:%eax}.
1601 We have added a two operand form of @samp{imul} when the first operand
1602 is an immediate mode expression and the second operand is a register.
1603 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1604 example, can be done with @samp{imul $69, %eax} rather than @samp{imul