1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static void extract_string (CORE_ADDR addr, char *buf);
74 static void modify_general_field (char *, LONGEST, int, int);
76 static struct type *desc_base_type (struct type *);
78 static struct type *desc_bounds_type (struct type *);
80 static struct value *desc_bounds (struct value *);
82 static int fat_pntr_bounds_bitpos (struct type *);
84 static int fat_pntr_bounds_bitsize (struct type *);
86 static struct type *desc_data_type (struct type *);
88 static struct value *desc_data (struct value *);
90 static int fat_pntr_data_bitpos (struct type *);
92 static int fat_pntr_data_bitsize (struct type *);
94 static struct value *desc_one_bound (struct value *, int, int);
96 static int desc_bound_bitpos (struct type *, int, int);
98 static int desc_bound_bitsize (struct type *, int, int);
100 static struct type *desc_index_type (struct type *, int);
102 static int desc_arity (struct type *);
104 static int ada_type_match (struct type *, struct type *, int);
106 static int ada_args_match (struct symbol *, struct value **, int);
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
110 static struct value *convert_actual (struct value *, struct type *,
113 static struct value *make_array_descriptor (struct type *, struct value *,
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *, int);
120 static int is_nonfunction (struct ada_symbol_info *, int);
122 static void add_defn_to_vec (struct obstack *, struct symbol *,
125 static int num_defns_collected (struct obstack *);
127 static struct ada_symbol_info *defns_collected (struct obstack *, int);
129 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
130 *, const char *, int,
133 static struct symtab *symtab_for_sym (struct symbol *);
135 static struct value *resolve_subexp (struct expression **, int *, int,
138 static void replace_operator_with_call (struct expression **, int, int, int,
139 struct symbol *, struct block *);
141 static int possible_user_operator_p (enum exp_opcode, struct value **);
143 static char *ada_op_name (enum exp_opcode);
145 static const char *ada_decoded_op_name (enum exp_opcode);
147 static int numeric_type_p (struct type *);
149 static int integer_type_p (struct type *);
151 static int scalar_type_p (struct type *);
153 static int discrete_type_p (struct type *);
155 static enum ada_renaming_category parse_old_style_renaming (struct type *,
160 static struct symbol *find_old_style_renaming_symbol (const char *,
163 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
166 static struct value *evaluate_subexp (struct type *, struct expression *,
169 static struct value *evaluate_subexp_type (struct expression *, int *);
171 static int is_dynamic_field (struct type *, int);
173 static struct type *to_fixed_variant_branch_type (struct type *,
175 CORE_ADDR, struct value *);
177 static struct type *to_fixed_array_type (struct type *, struct value *, int);
179 static struct type *to_fixed_range_type (char *, struct value *,
182 static struct type *to_static_fixed_type (struct type *);
183 static struct type *static_unwrap_type (struct type *type);
185 static struct value *unwrap_value (struct value *);
187 static struct type *packed_array_type (struct type *, long *);
189 static struct type *decode_packed_array_type (struct type *);
191 static struct value *decode_packed_array (struct value *);
193 static struct value *value_subscript_packed (struct value *, int,
196 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198 static struct value *coerce_unspec_val_to_type (struct value *,
201 static struct value *get_var_value (char *, char *);
203 static int lesseq_defined_than (struct symbol *, struct symbol *);
205 static int equiv_types (struct type *, struct type *);
207 static int is_name_suffix (const char *);
209 static int wild_match (const char *, int, const char *);
211 static struct value *ada_coerce_ref (struct value *);
213 static LONGEST pos_atr (struct value *);
215 static struct value *value_pos_atr (struct value *);
217 static struct value *value_val_atr (struct type *, struct value *);
219 static struct symbol *standard_lookup (const char *, const struct block *,
222 static struct value *ada_search_struct_field (char *, struct value *, int,
225 static struct value *ada_value_primitive_field (struct value *, int, int,
228 static int find_struct_field (char *, struct type *, int,
229 struct type **, int *, int *, int *, int *);
231 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
234 static struct value *ada_to_fixed_value (struct value *);
236 static int ada_resolve_function (struct ada_symbol_info *, int,
237 struct value **, int, const char *,
240 static struct value *ada_coerce_to_simple_array (struct value *);
242 static int ada_is_direct_array_type (struct type *);
244 static void ada_language_arch_info (struct gdbarch *,
245 struct language_arch_info *);
247 static void check_size (const struct type *);
249 static struct value *ada_index_struct_field (int, struct value *, int,
252 static struct value *assign_aggregate (struct value *, struct value *,
253 struct expression *, int *, enum noside);
255 static void aggregate_assign_from_choices (struct value *, struct value *,
257 int *, LONGEST *, int *,
258 int, LONGEST, LONGEST);
260 static void aggregate_assign_positional (struct value *, struct value *,
262 int *, LONGEST *, int *, int,
266 static void aggregate_assign_others (struct value *, struct value *,
268 int *, LONGEST *, int, LONGEST, LONGEST);
271 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
274 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
277 static void ada_forward_operator_length (struct expression *, int, int *,
282 /* Maximum-sized dynamic type. */
283 static unsigned int varsize_limit;
285 /* FIXME: brobecker/2003-09-17: No longer a const because it is
286 returned by a function that does not return a const char *. */
287 static char *ada_completer_word_break_characters =
289 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
294 /* The name of the symbol to use to get the name of the main subprogram. */
295 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
296 = "__gnat_ada_main_program_name";
298 /* Limit on the number of warnings to raise per expression evaluation. */
299 static int warning_limit = 2;
301 /* Number of warning messages issued; reset to 0 by cleanups after
302 expression evaluation. */
303 static int warnings_issued = 0;
305 static const char *known_runtime_file_name_patterns[] = {
306 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
309 static const char *known_auxiliary_function_name_patterns[] = {
310 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
313 /* Space for allocating results of ada_lookup_symbol_list. */
314 static struct obstack symbol_list_obstack;
318 /* Given DECODED_NAME a string holding a symbol name in its
319 decoded form (ie using the Ada dotted notation), returns
320 its unqualified name. */
323 ada_unqualified_name (const char *decoded_name)
325 const char *result = strrchr (decoded_name, '.');
328 result++; /* Skip the dot... */
330 result = decoded_name;
335 /* Return a string starting with '<', followed by STR, and '>'.
336 The result is good until the next call. */
339 add_angle_brackets (const char *str)
341 static char *result = NULL;
344 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
346 sprintf (result, "<%s>", str);
351 ada_get_gdb_completer_word_break_characters (void)
353 return ada_completer_word_break_characters;
356 /* Print an array element index using the Ada syntax. */
359 ada_print_array_index (struct value *index_value, struct ui_file *stream,
360 int format, enum val_prettyprint pretty)
362 LA_VALUE_PRINT (index_value, stream, format, pretty);
363 fprintf_filtered (stream, " => ");
366 /* Read the string located at ADDR from the inferior and store the
370 extract_string (CORE_ADDR addr, char *buf)
374 /* Loop, reading one byte at a time, until we reach the '\000'
375 end-of-string marker. */
378 target_read_memory (addr + char_index * sizeof (char),
379 buf + char_index * sizeof (char), sizeof (char));
382 while (buf[char_index - 1] != '\000');
385 /* Assuming VECT points to an array of *SIZE objects of size
386 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
387 updating *SIZE as necessary and returning the (new) array. */
390 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
392 if (*size < min_size)
395 if (*size < min_size)
397 vect = xrealloc (vect, *size * element_size);
402 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
403 suffix of FIELD_NAME beginning "___". */
406 field_name_match (const char *field_name, const char *target)
408 int len = strlen (target);
410 (strncmp (field_name, target, len) == 0
411 && (field_name[len] == '\0'
412 || (strncmp (field_name + len, "___", 3) == 0
413 && strcmp (field_name + strlen (field_name) - 6,
418 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
419 FIELD_NAME, and return its index. This function also handles fields
420 whose name have ___ suffixes because the compiler sometimes alters
421 their name by adding such a suffix to represent fields with certain
422 constraints. If the field could not be found, return a negative
423 number if MAYBE_MISSING is set. Otherwise raise an error. */
426 ada_get_field_index (const struct type *type, const char *field_name,
430 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
431 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
435 error (_("Unable to find field %s in struct %s. Aborting"),
436 field_name, TYPE_NAME (type));
441 /* The length of the prefix of NAME prior to any "___" suffix. */
444 ada_name_prefix_len (const char *name)
450 const char *p = strstr (name, "___");
452 return strlen (name);
458 /* Return non-zero if SUFFIX is a suffix of STR.
459 Return zero if STR is null. */
462 is_suffix (const char *str, const char *suffix)
468 len2 = strlen (suffix);
469 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
472 /* Create a value of type TYPE whose contents come from VALADDR, if it
473 is non-null, and whose memory address (in the inferior) is
477 value_from_contents_and_address (struct type *type,
478 const gdb_byte *valaddr,
481 struct value *v = allocate_value (type);
483 set_value_lazy (v, 1);
485 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
486 VALUE_ADDRESS (v) = address;
488 VALUE_LVAL (v) = lval_memory;
492 /* The contents of value VAL, treated as a value of type TYPE. The
493 result is an lval in memory if VAL is. */
495 static struct value *
496 coerce_unspec_val_to_type (struct value *val, struct type *type)
498 type = ada_check_typedef (type);
499 if (value_type (val) == type)
503 struct value *result;
505 /* Make sure that the object size is not unreasonable before
506 trying to allocate some memory for it. */
509 result = allocate_value (type);
510 VALUE_LVAL (result) = VALUE_LVAL (val);
511 set_value_bitsize (result, value_bitsize (val));
512 set_value_bitpos (result, value_bitpos (val));
513 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
515 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
516 set_value_lazy (result, 1);
518 memcpy (value_contents_raw (result), value_contents (val),
524 static const gdb_byte *
525 cond_offset_host (const gdb_byte *valaddr, long offset)
530 return valaddr + offset;
534 cond_offset_target (CORE_ADDR address, long offset)
539 return address + offset;
542 /* Issue a warning (as for the definition of warning in utils.c, but
543 with exactly one argument rather than ...), unless the limit on the
544 number of warnings has passed during the evaluation of the current
547 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
548 provided by "complaint". */
549 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
552 lim_warning (const char *format, ...)
555 va_start (args, format);
557 warnings_issued += 1;
558 if (warnings_issued <= warning_limit)
559 vwarning (format, args);
564 /* Issue an error if the size of an object of type T is unreasonable,
565 i.e. if it would be a bad idea to allocate a value of this type in
569 check_size (const struct type *type)
571 if (TYPE_LENGTH (type) > varsize_limit)
572 error (_("object size is larger than varsize-limit"));
576 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
577 gdbtypes.h, but some of the necessary definitions in that file
578 seem to have gone missing. */
580 /* Maximum value of a SIZE-byte signed integer type. */
582 max_of_size (int size)
584 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
585 return top_bit | (top_bit - 1);
588 /* Minimum value of a SIZE-byte signed integer type. */
590 min_of_size (int size)
592 return -max_of_size (size) - 1;
595 /* Maximum value of a SIZE-byte unsigned integer type. */
597 umax_of_size (int size)
599 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
600 return top_bit | (top_bit - 1);
603 /* Maximum value of integral type T, as a signed quantity. */
605 max_of_type (struct type *t)
607 if (TYPE_UNSIGNED (t))
608 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
610 return max_of_size (TYPE_LENGTH (t));
613 /* Minimum value of integral type T, as a signed quantity. */
615 min_of_type (struct type *t)
617 if (TYPE_UNSIGNED (t))
620 return min_of_size (TYPE_LENGTH (t));
623 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
624 static struct value *
625 discrete_type_high_bound (struct type *type)
627 switch (TYPE_CODE (type))
629 case TYPE_CODE_RANGE:
630 return value_from_longest (TYPE_TARGET_TYPE (type),
631 TYPE_HIGH_BOUND (type));
634 value_from_longest (type,
635 TYPE_FIELD_BITPOS (type,
636 TYPE_NFIELDS (type) - 1));
638 return value_from_longest (type, max_of_type (type));
640 error (_("Unexpected type in discrete_type_high_bound."));
644 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
645 static struct value *
646 discrete_type_low_bound (struct type *type)
648 switch (TYPE_CODE (type))
650 case TYPE_CODE_RANGE:
651 return value_from_longest (TYPE_TARGET_TYPE (type),
652 TYPE_LOW_BOUND (type));
654 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
656 return value_from_longest (type, min_of_type (type));
658 error (_("Unexpected type in discrete_type_low_bound."));
662 /* The identity on non-range types. For range types, the underlying
663 non-range scalar type. */
666 base_type (struct type *type)
668 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
670 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
672 type = TYPE_TARGET_TYPE (type);
678 /* Language Selection */
680 /* If the main program is in Ada, return language_ada, otherwise return LANG
681 (the main program is in Ada iif the adainit symbol is found).
683 MAIN_PST is not used. */
686 ada_update_initial_language (enum language lang,
687 struct partial_symtab *main_pst)
689 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
690 (struct objfile *) NULL) != NULL)
696 /* If the main procedure is written in Ada, then return its name.
697 The result is good until the next call. Return NULL if the main
698 procedure doesn't appear to be in Ada. */
703 struct minimal_symbol *msym;
704 CORE_ADDR main_program_name_addr;
705 static char main_program_name[1024];
707 /* For Ada, the name of the main procedure is stored in a specific
708 string constant, generated by the binder. Look for that symbol,
709 extract its address, and then read that string. If we didn't find
710 that string, then most probably the main procedure is not written
712 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
716 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
717 if (main_program_name_addr == 0)
718 error (_("Invalid address for Ada main program name."));
720 extract_string (main_program_name_addr, main_program_name);
721 return main_program_name;
724 /* The main procedure doesn't seem to be in Ada. */
730 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
733 const struct ada_opname_map ada_opname_table[] = {
734 {"Oadd", "\"+\"", BINOP_ADD},
735 {"Osubtract", "\"-\"", BINOP_SUB},
736 {"Omultiply", "\"*\"", BINOP_MUL},
737 {"Odivide", "\"/\"", BINOP_DIV},
738 {"Omod", "\"mod\"", BINOP_MOD},
739 {"Orem", "\"rem\"", BINOP_REM},
740 {"Oexpon", "\"**\"", BINOP_EXP},
741 {"Olt", "\"<\"", BINOP_LESS},
742 {"Ole", "\"<=\"", BINOP_LEQ},
743 {"Ogt", "\">\"", BINOP_GTR},
744 {"Oge", "\">=\"", BINOP_GEQ},
745 {"Oeq", "\"=\"", BINOP_EQUAL},
746 {"One", "\"/=\"", BINOP_NOTEQUAL},
747 {"Oand", "\"and\"", BINOP_BITWISE_AND},
748 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
749 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
750 {"Oconcat", "\"&\"", BINOP_CONCAT},
751 {"Oabs", "\"abs\"", UNOP_ABS},
752 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
753 {"Oadd", "\"+\"", UNOP_PLUS},
754 {"Osubtract", "\"-\"", UNOP_NEG},
758 /* Return non-zero if STR should be suppressed in info listings. */
761 is_suppressed_name (const char *str)
763 if (strncmp (str, "_ada_", 5) == 0)
765 if (str[0] == '_' || str[0] == '\000')
770 const char *suffix = strstr (str, "___");
771 if (suffix != NULL && suffix[3] != 'X')
774 suffix = str + strlen (str);
775 for (p = suffix - 1; p != str; p -= 1)
779 if (p[0] == 'X' && p[-1] != '_')
783 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
784 if (strncmp (ada_opname_table[i].encoded, p,
785 strlen (ada_opname_table[i].encoded)) == 0)
794 /* The "encoded" form of DECODED, according to GNAT conventions.
795 The result is valid until the next call to ada_encode. */
798 ada_encode (const char *decoded)
800 static char *encoding_buffer = NULL;
801 static size_t encoding_buffer_size = 0;
808 GROW_VECT (encoding_buffer, encoding_buffer_size,
809 2 * strlen (decoded) + 10);
812 for (p = decoded; *p != '\0'; p += 1)
814 if (!ADA_RETAIN_DOTS && *p == '.')
816 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
821 const struct ada_opname_map *mapping;
823 for (mapping = ada_opname_table;
824 mapping->encoded != NULL
825 && strncmp (mapping->decoded, p,
826 strlen (mapping->decoded)) != 0; mapping += 1)
828 if (mapping->encoded == NULL)
829 error (_("invalid Ada operator name: %s"), p);
830 strcpy (encoding_buffer + k, mapping->encoded);
831 k += strlen (mapping->encoded);
836 encoding_buffer[k] = *p;
841 encoding_buffer[k] = '\0';
842 return encoding_buffer;
845 /* Return NAME folded to lower case, or, if surrounded by single
846 quotes, unfolded, but with the quotes stripped away. Result good
850 ada_fold_name (const char *name)
852 static char *fold_buffer = NULL;
853 static size_t fold_buffer_size = 0;
855 int len = strlen (name);
856 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
860 strncpy (fold_buffer, name + 1, len - 2);
861 fold_buffer[len - 2] = '\000';
866 for (i = 0; i <= len; i += 1)
867 fold_buffer[i] = tolower (name[i]);
873 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
876 is_lower_alphanum (const char c)
878 return (isdigit (c) || (isalpha (c) && islower (c)));
881 /* Remove either of these suffixes:
886 These are suffixes introduced by the compiler for entities such as
887 nested subprogram for instance, in order to avoid name clashes.
888 They do not serve any purpose for the debugger. */
891 ada_remove_trailing_digits (const char *encoded, int *len)
893 if (*len > 1 && isdigit (encoded[*len - 1]))
896 while (i > 0 && isdigit (encoded[i]))
898 if (i >= 0 && encoded[i] == '.')
900 else if (i >= 0 && encoded[i] == '$')
902 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
904 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
909 /* Remove the suffix introduced by the compiler for protected object
913 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
915 /* Remove trailing N. */
917 /* Protected entry subprograms are broken into two
918 separate subprograms: The first one is unprotected, and has
919 a 'N' suffix; the second is the protected version, and has
920 the 'P' suffix. The second calls the first one after handling
921 the protection. Since the P subprograms are internally generated,
922 we leave these names undecoded, giving the user a clue that this
923 entity is internal. */
926 && encoded[*len - 1] == 'N'
927 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
931 /* If ENCODED follows the GNAT entity encoding conventions, then return
932 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
935 The resulting string is valid until the next call of ada_decode.
936 If the string is unchanged by decoding, the original string pointer
940 ada_decode (const char *encoded)
947 static char *decoding_buffer = NULL;
948 static size_t decoding_buffer_size = 0;
950 /* The name of the Ada main procedure starts with "_ada_".
951 This prefix is not part of the decoded name, so skip this part
952 if we see this prefix. */
953 if (strncmp (encoded, "_ada_", 5) == 0)
956 /* If the name starts with '_', then it is not a properly encoded
957 name, so do not attempt to decode it. Similarly, if the name
958 starts with '<', the name should not be decoded. */
959 if (encoded[0] == '_' || encoded[0] == '<')
962 len0 = strlen (encoded);
964 ada_remove_trailing_digits (encoded, &len0);
965 ada_remove_po_subprogram_suffix (encoded, &len0);
967 /* Remove the ___X.* suffix if present. Do not forget to verify that
968 the suffix is located before the current "end" of ENCODED. We want
969 to avoid re-matching parts of ENCODED that have previously been
970 marked as discarded (by decrementing LEN0). */
971 p = strstr (encoded, "___");
972 if (p != NULL && p - encoded < len0 - 3)
980 /* Remove any trailing TKB suffix. It tells us that this symbol
981 is for the body of a task, but that information does not actually
982 appear in the decoded name. */
984 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
987 /* Remove trailing "B" suffixes. */
988 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
990 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
993 /* Make decoded big enough for possible expansion by operator name. */
995 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
996 decoded = decoding_buffer;
998 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1000 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1003 while ((i >= 0 && isdigit (encoded[i]))
1004 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1006 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1008 else if (encoded[i] == '$')
1012 /* The first few characters that are not alphabetic are not part
1013 of any encoding we use, so we can copy them over verbatim. */
1015 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1016 decoded[j] = encoded[i];
1021 /* Is this a symbol function? */
1022 if (at_start_name && encoded[i] == 'O')
1025 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1027 int op_len = strlen (ada_opname_table[k].encoded);
1028 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1030 && !isalnum (encoded[i + op_len]))
1032 strcpy (decoded + j, ada_opname_table[k].decoded);
1035 j += strlen (ada_opname_table[k].decoded);
1039 if (ada_opname_table[k].encoded != NULL)
1044 /* Replace "TK__" with "__", which will eventually be translated
1045 into "." (just below). */
1047 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1050 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1051 be translated into "." (just below). These are internal names
1052 generated for anonymous blocks inside which our symbol is nested. */
1054 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1055 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1056 && isdigit (encoded [i+4]))
1060 while (k < len0 && isdigit (encoded[k]))
1061 k++; /* Skip any extra digit. */
1063 /* Double-check that the "__B_{DIGITS}+" sequence we found
1064 is indeed followed by "__". */
1065 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1069 /* Remove _E{DIGITS}+[sb] */
1071 /* Just as for protected object subprograms, there are 2 categories
1072 of subprograms created by the compiler for each entry. The first
1073 one implements the actual entry code, and has a suffix following
1074 the convention above; the second one implements the barrier and
1075 uses the same convention as above, except that the 'E' is replaced
1078 Just as above, we do not decode the name of barrier functions
1079 to give the user a clue that the code he is debugging has been
1080 internally generated. */
1082 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1083 && isdigit (encoded[i+2]))
1087 while (k < len0 && isdigit (encoded[k]))
1091 && (encoded[k] == 'b' || encoded[k] == 's'))
1094 /* Just as an extra precaution, make sure that if this
1095 suffix is followed by anything else, it is a '_'.
1096 Otherwise, we matched this sequence by accident. */
1098 || (k < len0 && encoded[k] == '_'))
1103 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1104 the GNAT front-end in protected object subprograms. */
1107 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1109 /* Backtrack a bit up until we reach either the begining of
1110 the encoded name, or "__". Make sure that we only find
1111 digits or lowercase characters. */
1112 const char *ptr = encoded + i - 1;
1114 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1117 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1121 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1123 /* This is a X[bn]* sequence not separated from the previous
1124 part of the name with a non-alpha-numeric character (in other
1125 words, immediately following an alpha-numeric character), then
1126 verify that it is placed at the end of the encoded name. If
1127 not, then the encoding is not valid and we should abort the
1128 decoding. Otherwise, just skip it, it is used in body-nested
1132 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1136 else if (!ADA_RETAIN_DOTS
1137 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1139 /* Replace '__' by '.'. */
1147 /* It's a character part of the decoded name, so just copy it
1149 decoded[j] = encoded[i];
1154 decoded[j] = '\000';
1156 /* Decoded names should never contain any uppercase character.
1157 Double-check this, and abort the decoding if we find one. */
1159 for (i = 0; decoded[i] != '\0'; i += 1)
1160 if (isupper (decoded[i]) || decoded[i] == ' ')
1163 if (strcmp (decoded, encoded) == 0)
1169 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1170 decoded = decoding_buffer;
1171 if (encoded[0] == '<')
1172 strcpy (decoded, encoded);
1174 sprintf (decoded, "<%s>", encoded);
1179 /* Table for keeping permanent unique copies of decoded names. Once
1180 allocated, names in this table are never released. While this is a
1181 storage leak, it should not be significant unless there are massive
1182 changes in the set of decoded names in successive versions of a
1183 symbol table loaded during a single session. */
1184 static struct htab *decoded_names_store;
1186 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1187 in the language-specific part of GSYMBOL, if it has not been
1188 previously computed. Tries to save the decoded name in the same
1189 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1190 in any case, the decoded symbol has a lifetime at least that of
1192 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1193 const, but nevertheless modified to a semantically equivalent form
1194 when a decoded name is cached in it.
1198 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1201 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1202 if (*resultp == NULL)
1204 const char *decoded = ada_decode (gsymbol->name);
1205 if (gsymbol->bfd_section != NULL)
1207 bfd *obfd = gsymbol->bfd_section->owner;
1210 struct objfile *objf;
1213 if (obfd == objf->obfd)
1215 *resultp = obsavestring (decoded, strlen (decoded),
1216 &objf->objfile_obstack);
1222 /* Sometimes, we can't find a corresponding objfile, in which
1223 case, we put the result on the heap. Since we only decode
1224 when needed, we hope this usually does not cause a
1225 significant memory leak (FIXME). */
1226 if (*resultp == NULL)
1228 char **slot = (char **) htab_find_slot (decoded_names_store,
1231 *slot = xstrdup (decoded);
1240 ada_la_decode (const char *encoded, int options)
1242 return xstrdup (ada_decode (encoded));
1245 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1246 suffixes that encode debugging information or leading _ada_ on
1247 SYM_NAME (see is_name_suffix commentary for the debugging
1248 information that is ignored). If WILD, then NAME need only match a
1249 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1250 either argument is NULL. */
1253 ada_match_name (const char *sym_name, const char *name, int wild)
1255 if (sym_name == NULL || name == NULL)
1258 return wild_match (name, strlen (name), sym_name);
1261 int len_name = strlen (name);
1262 return (strncmp (sym_name, name, len_name) == 0
1263 && is_name_suffix (sym_name + len_name))
1264 || (strncmp (sym_name, "_ada_", 5) == 0
1265 && strncmp (sym_name + 5, name, len_name) == 0
1266 && is_name_suffix (sym_name + len_name + 5));
1270 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1271 suppressed in info listings. */
1274 ada_suppress_symbol_printing (struct symbol *sym)
1276 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1279 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1285 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1287 static char *bound_name[] = {
1288 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1289 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1292 /* Maximum number of array dimensions we are prepared to handle. */
1294 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1296 /* Like modify_field, but allows bitpos > wordlength. */
1299 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1301 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1305 /* The desc_* routines return primitive portions of array descriptors
1308 /* The descriptor or array type, if any, indicated by TYPE; removes
1309 level of indirection, if needed. */
1311 static struct type *
1312 desc_base_type (struct type *type)
1316 type = ada_check_typedef (type);
1318 && (TYPE_CODE (type) == TYPE_CODE_PTR
1319 || TYPE_CODE (type) == TYPE_CODE_REF))
1320 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1325 /* True iff TYPE indicates a "thin" array pointer type. */
1328 is_thin_pntr (struct type *type)
1331 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1332 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1335 /* The descriptor type for thin pointer type TYPE. */
1337 static struct type *
1338 thin_descriptor_type (struct type *type)
1340 struct type *base_type = desc_base_type (type);
1341 if (base_type == NULL)
1343 if (is_suffix (ada_type_name (base_type), "___XVE"))
1347 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1348 if (alt_type == NULL)
1355 /* A pointer to the array data for thin-pointer value VAL. */
1357 static struct value *
1358 thin_data_pntr (struct value *val)
1360 struct type *type = value_type (val);
1361 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1362 return value_cast (desc_data_type (thin_descriptor_type (type)),
1365 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1366 VALUE_ADDRESS (val) + value_offset (val));
1369 /* True iff TYPE indicates a "thick" array pointer type. */
1372 is_thick_pntr (struct type *type)
1374 type = desc_base_type (type);
1375 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1376 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1379 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1380 pointer to one, the type of its bounds data; otherwise, NULL. */
1382 static struct type *
1383 desc_bounds_type (struct type *type)
1387 type = desc_base_type (type);
1391 else if (is_thin_pntr (type))
1393 type = thin_descriptor_type (type);
1396 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1398 return ada_check_typedef (r);
1400 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1402 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1404 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1409 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1410 one, a pointer to its bounds data. Otherwise NULL. */
1412 static struct value *
1413 desc_bounds (struct value *arr)
1415 struct type *type = ada_check_typedef (value_type (arr));
1416 if (is_thin_pntr (type))
1418 struct type *bounds_type =
1419 desc_bounds_type (thin_descriptor_type (type));
1422 if (bounds_type == NULL)
1423 error (_("Bad GNAT array descriptor"));
1425 /* NOTE: The following calculation is not really kosher, but
1426 since desc_type is an XVE-encoded type (and shouldn't be),
1427 the correct calculation is a real pain. FIXME (and fix GCC). */
1428 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1429 addr = value_as_long (arr);
1431 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1434 value_from_longest (lookup_pointer_type (bounds_type),
1435 addr - TYPE_LENGTH (bounds_type));
1438 else if (is_thick_pntr (type))
1439 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1440 _("Bad GNAT array descriptor"));
1445 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1446 position of the field containing the address of the bounds data. */
1449 fat_pntr_bounds_bitpos (struct type *type)
1451 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1454 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1455 size of the field containing the address of the bounds data. */
1458 fat_pntr_bounds_bitsize (struct type *type)
1460 type = desc_base_type (type);
1462 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1463 return TYPE_FIELD_BITSIZE (type, 1);
1465 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1468 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1469 pointer to one, the type of its array data (a
1470 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1471 ada_type_of_array to get an array type with bounds data. */
1473 static struct type *
1474 desc_data_type (struct type *type)
1476 type = desc_base_type (type);
1478 /* NOTE: The following is bogus; see comment in desc_bounds. */
1479 if (is_thin_pntr (type))
1480 return lookup_pointer_type
1481 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1482 else if (is_thick_pntr (type))
1483 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1488 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1491 static struct value *
1492 desc_data (struct value *arr)
1494 struct type *type = value_type (arr);
1495 if (is_thin_pntr (type))
1496 return thin_data_pntr (arr);
1497 else if (is_thick_pntr (type))
1498 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1499 _("Bad GNAT array descriptor"));
1505 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1506 position of the field containing the address of the data. */
1509 fat_pntr_data_bitpos (struct type *type)
1511 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1514 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1515 size of the field containing the address of the data. */
1518 fat_pntr_data_bitsize (struct type *type)
1520 type = desc_base_type (type);
1522 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1523 return TYPE_FIELD_BITSIZE (type, 0);
1525 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1528 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1529 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1530 bound, if WHICH is 1. The first bound is I=1. */
1532 static struct value *
1533 desc_one_bound (struct value *bounds, int i, int which)
1535 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1536 _("Bad GNAT array descriptor bounds"));
1539 /* If BOUNDS is an array-bounds structure type, return the bit position
1540 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1541 bound, if WHICH is 1. The first bound is I=1. */
1544 desc_bound_bitpos (struct type *type, int i, int which)
1546 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1549 /* If BOUNDS is an array-bounds structure type, return the bit field size
1550 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1551 bound, if WHICH is 1. The first bound is I=1. */
1554 desc_bound_bitsize (struct type *type, int i, int which)
1556 type = desc_base_type (type);
1558 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1559 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1561 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1564 /* If TYPE is the type of an array-bounds structure, the type of its
1565 Ith bound (numbering from 1). Otherwise, NULL. */
1567 static struct type *
1568 desc_index_type (struct type *type, int i)
1570 type = desc_base_type (type);
1572 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1573 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1578 /* The number of index positions in the array-bounds type TYPE.
1579 Return 0 if TYPE is NULL. */
1582 desc_arity (struct type *type)
1584 type = desc_base_type (type);
1587 return TYPE_NFIELDS (type) / 2;
1591 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1592 an array descriptor type (representing an unconstrained array
1596 ada_is_direct_array_type (struct type *type)
1600 type = ada_check_typedef (type);
1601 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1602 || ada_is_array_descriptor_type (type));
1605 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1609 ada_is_array_type (struct type *type)
1612 && (TYPE_CODE (type) == TYPE_CODE_PTR
1613 || TYPE_CODE (type) == TYPE_CODE_REF))
1614 type = TYPE_TARGET_TYPE (type);
1615 return ada_is_direct_array_type (type);
1618 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1621 ada_is_simple_array_type (struct type *type)
1625 type = ada_check_typedef (type);
1626 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1627 || (TYPE_CODE (type) == TYPE_CODE_PTR
1628 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1631 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1634 ada_is_array_descriptor_type (struct type *type)
1636 struct type *data_type = desc_data_type (type);
1640 type = ada_check_typedef (type);
1643 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1644 && TYPE_TARGET_TYPE (data_type) != NULL
1645 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1646 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1647 && desc_arity (desc_bounds_type (type)) > 0;
1650 /* Non-zero iff type is a partially mal-formed GNAT array
1651 descriptor. FIXME: This is to compensate for some problems with
1652 debugging output from GNAT. Re-examine periodically to see if it
1656 ada_is_bogus_array_descriptor (struct type *type)
1660 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1661 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1662 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1663 && !ada_is_array_descriptor_type (type);
1667 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1668 (fat pointer) returns the type of the array data described---specifically,
1669 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1670 in from the descriptor; otherwise, they are left unspecified. If
1671 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1672 returns NULL. The result is simply the type of ARR if ARR is not
1675 ada_type_of_array (struct value *arr, int bounds)
1677 if (ada_is_packed_array_type (value_type (arr)))
1678 return decode_packed_array_type (value_type (arr));
1680 if (!ada_is_array_descriptor_type (value_type (arr)))
1681 return value_type (arr);
1685 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1688 struct type *elt_type;
1690 struct value *descriptor;
1691 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1693 elt_type = ada_array_element_type (value_type (arr), -1);
1694 arity = ada_array_arity (value_type (arr));
1696 if (elt_type == NULL || arity == 0)
1697 return ada_check_typedef (value_type (arr));
1699 descriptor = desc_bounds (arr);
1700 if (value_as_long (descriptor) == 0)
1704 struct type *range_type = alloc_type (objf);
1705 struct type *array_type = alloc_type (objf);
1706 struct value *low = desc_one_bound (descriptor, arity, 0);
1707 struct value *high = desc_one_bound (descriptor, arity, 1);
1710 create_range_type (range_type, value_type (low),
1711 longest_to_int (value_as_long (low)),
1712 longest_to_int (value_as_long (high)));
1713 elt_type = create_array_type (array_type, elt_type, range_type);
1716 return lookup_pointer_type (elt_type);
1720 /* If ARR does not represent an array, returns ARR unchanged.
1721 Otherwise, returns either a standard GDB array with bounds set
1722 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1723 GDB array. Returns NULL if ARR is a null fat pointer. */
1726 ada_coerce_to_simple_array_ptr (struct value *arr)
1728 if (ada_is_array_descriptor_type (value_type (arr)))
1730 struct type *arrType = ada_type_of_array (arr, 1);
1731 if (arrType == NULL)
1733 return value_cast (arrType, value_copy (desc_data (arr)));
1735 else if (ada_is_packed_array_type (value_type (arr)))
1736 return decode_packed_array (arr);
1741 /* If ARR does not represent an array, returns ARR unchanged.
1742 Otherwise, returns a standard GDB array describing ARR (which may
1743 be ARR itself if it already is in the proper form). */
1745 static struct value *
1746 ada_coerce_to_simple_array (struct value *arr)
1748 if (ada_is_array_descriptor_type (value_type (arr)))
1750 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1752 error (_("Bounds unavailable for null array pointer."));
1753 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1754 return value_ind (arrVal);
1756 else if (ada_is_packed_array_type (value_type (arr)))
1757 return decode_packed_array (arr);
1762 /* If TYPE represents a GNAT array type, return it translated to an
1763 ordinary GDB array type (possibly with BITSIZE fields indicating
1764 packing). For other types, is the identity. */
1767 ada_coerce_to_simple_array_type (struct type *type)
1769 struct value *mark = value_mark ();
1770 struct value *dummy = value_from_longest (builtin_type_long, 0);
1771 struct type *result;
1772 deprecated_set_value_type (dummy, type);
1773 result = ada_type_of_array (dummy, 0);
1774 value_free_to_mark (mark);
1778 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1781 ada_is_packed_array_type (struct type *type)
1785 type = desc_base_type (type);
1786 type = ada_check_typedef (type);
1788 ada_type_name (type) != NULL
1789 && strstr (ada_type_name (type), "___XP") != NULL;
1792 /* Given that TYPE is a standard GDB array type with all bounds filled
1793 in, and that the element size of its ultimate scalar constituents
1794 (that is, either its elements, or, if it is an array of arrays, its
1795 elements' elements, etc.) is *ELT_BITS, return an identical type,
1796 but with the bit sizes of its elements (and those of any
1797 constituent arrays) recorded in the BITSIZE components of its
1798 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1801 static struct type *
1802 packed_array_type (struct type *type, long *elt_bits)
1804 struct type *new_elt_type;
1805 struct type *new_type;
1806 LONGEST low_bound, high_bound;
1808 type = ada_check_typedef (type);
1809 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1812 new_type = alloc_type (TYPE_OBJFILE (type));
1813 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1815 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1816 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1817 TYPE_NAME (new_type) = ada_type_name (type);
1819 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1820 &low_bound, &high_bound) < 0)
1821 low_bound = high_bound = 0;
1822 if (high_bound < low_bound)
1823 *elt_bits = TYPE_LENGTH (new_type) = 0;
1826 *elt_bits *= (high_bound - low_bound + 1);
1827 TYPE_LENGTH (new_type) =
1828 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1831 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1835 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1837 static struct type *
1838 decode_packed_array_type (struct type *type)
1841 struct block **blocks;
1842 char *raw_name = ada_type_name (ada_check_typedef (type));
1845 struct type *shadow_type;
1850 raw_name = ada_type_name (desc_base_type (type));
1855 name = (char *) alloca (strlen (raw_name) + 1);
1856 tail = strstr (raw_name, "___XP");
1857 type = desc_base_type (type);
1859 memcpy (name, raw_name, tail - raw_name);
1860 name[tail - raw_name] = '\000';
1862 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1863 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1865 lim_warning (_("could not find bounds information on packed array"));
1868 shadow_type = SYMBOL_TYPE (sym);
1870 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1872 lim_warning (_("could not understand bounds information on packed array"));
1876 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1879 (_("could not understand bit size information on packed array"));
1883 return packed_array_type (shadow_type, &bits);
1886 /* Given that ARR is a struct value *indicating a GNAT packed array,
1887 returns a simple array that denotes that array. Its type is a
1888 standard GDB array type except that the BITSIZEs of the array
1889 target types are set to the number of bits in each element, and the
1890 type length is set appropriately. */
1892 static struct value *
1893 decode_packed_array (struct value *arr)
1897 arr = ada_coerce_ref (arr);
1898 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1899 arr = ada_value_ind (arr);
1901 type = decode_packed_array_type (value_type (arr));
1904 error (_("can't unpack array"));
1908 if (gdbarch_bits_big_endian (current_gdbarch)
1909 && ada_is_modular_type (value_type (arr)))
1911 /* This is a (right-justified) modular type representing a packed
1912 array with no wrapper. In order to interpret the value through
1913 the (left-justified) packed array type we just built, we must
1914 first left-justify it. */
1915 int bit_size, bit_pos;
1918 mod = ada_modulus (value_type (arr)) - 1;
1925 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1926 arr = ada_value_primitive_packed_val (arr, NULL,
1927 bit_pos / HOST_CHAR_BIT,
1928 bit_pos % HOST_CHAR_BIT,
1933 return coerce_unspec_val_to_type (arr, type);
1937 /* The value of the element of packed array ARR at the ARITY indices
1938 given in IND. ARR must be a simple array. */
1940 static struct value *
1941 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1944 int bits, elt_off, bit_off;
1945 long elt_total_bit_offset;
1946 struct type *elt_type;
1950 elt_total_bit_offset = 0;
1951 elt_type = ada_check_typedef (value_type (arr));
1952 for (i = 0; i < arity; i += 1)
1954 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1955 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1957 (_("attempt to do packed indexing of something other than a packed array"));
1960 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1961 LONGEST lowerbound, upperbound;
1964 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1966 lim_warning (_("don't know bounds of array"));
1967 lowerbound = upperbound = 0;
1970 idx = value_as_long (value_pos_atr (ind[i]));
1971 if (idx < lowerbound || idx > upperbound)
1972 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1973 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1974 elt_total_bit_offset += (idx - lowerbound) * bits;
1975 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1978 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1979 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1981 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1986 /* Non-zero iff TYPE includes negative integer values. */
1989 has_negatives (struct type *type)
1991 switch (TYPE_CODE (type))
1996 return !TYPE_UNSIGNED (type);
1997 case TYPE_CODE_RANGE:
1998 return TYPE_LOW_BOUND (type) < 0;
2003 /* Create a new value of type TYPE from the contents of OBJ starting
2004 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2005 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2006 assigning through the result will set the field fetched from.
2007 VALADDR is ignored unless OBJ is NULL, in which case,
2008 VALADDR+OFFSET must address the start of storage containing the
2009 packed value. The value returned in this case is never an lval.
2010 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2013 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2014 long offset, int bit_offset, int bit_size,
2018 int src, /* Index into the source area */
2019 targ, /* Index into the target area */
2020 srcBitsLeft, /* Number of source bits left to move */
2021 nsrc, ntarg, /* Number of source and target bytes */
2022 unusedLS, /* Number of bits in next significant
2023 byte of source that are unused */
2024 accumSize; /* Number of meaningful bits in accum */
2025 unsigned char *bytes; /* First byte containing data to unpack */
2026 unsigned char *unpacked;
2027 unsigned long accum; /* Staging area for bits being transferred */
2029 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2030 /* Transmit bytes from least to most significant; delta is the direction
2031 the indices move. */
2032 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
2034 type = ada_check_typedef (type);
2038 v = allocate_value (type);
2039 bytes = (unsigned char *) (valaddr + offset);
2041 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2044 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2045 bytes = (unsigned char *) alloca (len);
2046 read_memory (VALUE_ADDRESS (v), bytes, len);
2050 v = allocate_value (type);
2051 bytes = (unsigned char *) value_contents (obj) + offset;
2056 VALUE_LVAL (v) = VALUE_LVAL (obj);
2057 if (VALUE_LVAL (obj) == lval_internalvar)
2058 VALUE_LVAL (v) = lval_internalvar_component;
2059 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2060 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2061 set_value_bitsize (v, bit_size);
2062 if (value_bitpos (v) >= HOST_CHAR_BIT)
2064 VALUE_ADDRESS (v) += 1;
2065 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2069 set_value_bitsize (v, bit_size);
2070 unpacked = (unsigned char *) value_contents (v);
2072 srcBitsLeft = bit_size;
2074 ntarg = TYPE_LENGTH (type);
2078 memset (unpacked, 0, TYPE_LENGTH (type));
2081 else if (gdbarch_bits_big_endian (current_gdbarch))
2084 if (has_negatives (type)
2085 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2089 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2092 switch (TYPE_CODE (type))
2094 case TYPE_CODE_ARRAY:
2095 case TYPE_CODE_UNION:
2096 case TYPE_CODE_STRUCT:
2097 /* Non-scalar values must be aligned at a byte boundary... */
2099 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2100 /* ... And are placed at the beginning (most-significant) bytes
2102 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2106 targ = TYPE_LENGTH (type) - 1;
2112 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2115 unusedLS = bit_offset;
2118 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2125 /* Mask for removing bits of the next source byte that are not
2126 part of the value. */
2127 unsigned int unusedMSMask =
2128 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2130 /* Sign-extend bits for this byte. */
2131 unsigned int signMask = sign & ~unusedMSMask;
2133 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2134 accumSize += HOST_CHAR_BIT - unusedLS;
2135 if (accumSize >= HOST_CHAR_BIT)
2137 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2138 accumSize -= HOST_CHAR_BIT;
2139 accum >>= HOST_CHAR_BIT;
2143 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2150 accum |= sign << accumSize;
2151 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2152 accumSize -= HOST_CHAR_BIT;
2153 accum >>= HOST_CHAR_BIT;
2161 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2162 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2165 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2166 int src_offset, int n)
2168 unsigned int accum, mask;
2169 int accum_bits, chunk_size;
2171 target += targ_offset / HOST_CHAR_BIT;
2172 targ_offset %= HOST_CHAR_BIT;
2173 source += src_offset / HOST_CHAR_BIT;
2174 src_offset %= HOST_CHAR_BIT;
2175 if (gdbarch_bits_big_endian (current_gdbarch))
2177 accum = (unsigned char) *source;
2179 accum_bits = HOST_CHAR_BIT - src_offset;
2184 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2185 accum_bits += HOST_CHAR_BIT;
2187 chunk_size = HOST_CHAR_BIT - targ_offset;
2190 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2191 mask = ((1 << chunk_size) - 1) << unused_right;
2194 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2196 accum_bits -= chunk_size;
2203 accum = (unsigned char) *source >> src_offset;
2205 accum_bits = HOST_CHAR_BIT - src_offset;
2209 accum = accum + ((unsigned char) *source << accum_bits);
2210 accum_bits += HOST_CHAR_BIT;
2212 chunk_size = HOST_CHAR_BIT - targ_offset;
2215 mask = ((1 << chunk_size) - 1) << targ_offset;
2216 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2218 accum_bits -= chunk_size;
2219 accum >>= chunk_size;
2226 /* Store the contents of FROMVAL into the location of TOVAL.
2227 Return a new value with the location of TOVAL and contents of
2228 FROMVAL. Handles assignment into packed fields that have
2229 floating-point or non-scalar types. */
2231 static struct value *
2232 ada_value_assign (struct value *toval, struct value *fromval)
2234 struct type *type = value_type (toval);
2235 int bits = value_bitsize (toval);
2237 toval = ada_coerce_ref (toval);
2238 fromval = ada_coerce_ref (fromval);
2240 if (ada_is_direct_array_type (value_type (toval)))
2241 toval = ada_coerce_to_simple_array (toval);
2242 if (ada_is_direct_array_type (value_type (fromval)))
2243 fromval = ada_coerce_to_simple_array (fromval);
2245 if (!deprecated_value_modifiable (toval))
2246 error (_("Left operand of assignment is not a modifiable lvalue."));
2248 if (VALUE_LVAL (toval) == lval_memory
2250 && (TYPE_CODE (type) == TYPE_CODE_FLT
2251 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2253 int len = (value_bitpos (toval)
2254 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2255 char *buffer = (char *) alloca (len);
2257 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2259 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2260 fromval = value_cast (type, fromval);
2262 read_memory (to_addr, buffer, len);
2263 if (gdbarch_bits_big_endian (current_gdbarch))
2264 move_bits (buffer, value_bitpos (toval),
2265 value_contents (fromval),
2266 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2269 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2271 write_memory (to_addr, buffer, len);
2272 if (deprecated_memory_changed_hook)
2273 deprecated_memory_changed_hook (to_addr, len);
2275 val = value_copy (toval);
2276 memcpy (value_contents_raw (val), value_contents (fromval),
2277 TYPE_LENGTH (type));
2278 deprecated_set_value_type (val, type);
2283 return value_assign (toval, fromval);
2287 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2288 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2289 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2290 * COMPONENT, and not the inferior's memory. The current contents
2291 * of COMPONENT are ignored. */
2293 value_assign_to_component (struct value *container, struct value *component,
2296 LONGEST offset_in_container =
2297 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2298 - VALUE_ADDRESS (container) - value_offset (container));
2299 int bit_offset_in_container =
2300 value_bitpos (component) - value_bitpos (container);
2303 val = value_cast (value_type (component), val);
2305 if (value_bitsize (component) == 0)
2306 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2308 bits = value_bitsize (component);
2310 if (gdbarch_bits_big_endian (current_gdbarch))
2311 move_bits (value_contents_writeable (container) + offset_in_container,
2312 value_bitpos (container) + bit_offset_in_container,
2313 value_contents (val),
2314 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2317 move_bits (value_contents_writeable (container) + offset_in_container,
2318 value_bitpos (container) + bit_offset_in_container,
2319 value_contents (val), 0, bits);
2322 /* The value of the element of array ARR at the ARITY indices given in IND.
2323 ARR may be either a simple array, GNAT array descriptor, or pointer
2327 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2331 struct type *elt_type;
2333 elt = ada_coerce_to_simple_array (arr);
2335 elt_type = ada_check_typedef (value_type (elt));
2336 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2337 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2338 return value_subscript_packed (elt, arity, ind);
2340 for (k = 0; k < arity; k += 1)
2342 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2343 error (_("too many subscripts (%d expected)"), k);
2344 elt = value_subscript (elt, value_pos_atr (ind[k]));
2349 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2350 value of the element of *ARR at the ARITY indices given in
2351 IND. Does not read the entire array into memory. */
2354 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2359 for (k = 0; k < arity; k += 1)
2364 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2365 error (_("too many subscripts (%d expected)"), k);
2366 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2368 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2369 idx = value_pos_atr (ind[k]);
2371 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2372 arr = value_add (arr, idx);
2373 type = TYPE_TARGET_TYPE (type);
2376 return value_ind (arr);
2379 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2380 actual type of ARRAY_PTR is ignored), returns a reference to
2381 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2382 bound of this array is LOW, as per Ada rules. */
2383 static struct value *
2384 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2387 CORE_ADDR base = value_as_address (array_ptr)
2388 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2389 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2390 struct type *index_type =
2391 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2393 struct type *slice_type =
2394 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2395 return value_from_pointer (lookup_reference_type (slice_type), base);
2399 static struct value *
2400 ada_value_slice (struct value *array, int low, int high)
2402 struct type *type = value_type (array);
2403 struct type *index_type =
2404 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2405 struct type *slice_type =
2406 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2407 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2410 /* If type is a record type in the form of a standard GNAT array
2411 descriptor, returns the number of dimensions for type. If arr is a
2412 simple array, returns the number of "array of"s that prefix its
2413 type designation. Otherwise, returns 0. */
2416 ada_array_arity (struct type *type)
2423 type = desc_base_type (type);
2426 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2427 return desc_arity (desc_bounds_type (type));
2429 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2432 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2438 /* If TYPE is a record type in the form of a standard GNAT array
2439 descriptor or a simple array type, returns the element type for
2440 TYPE after indexing by NINDICES indices, or by all indices if
2441 NINDICES is -1. Otherwise, returns NULL. */
2444 ada_array_element_type (struct type *type, int nindices)
2446 type = desc_base_type (type);
2448 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2451 struct type *p_array_type;
2453 p_array_type = desc_data_type (type);
2455 k = ada_array_arity (type);
2459 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2460 if (nindices >= 0 && k > nindices)
2462 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2463 while (k > 0 && p_array_type != NULL)
2465 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2468 return p_array_type;
2470 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2472 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2474 type = TYPE_TARGET_TYPE (type);
2483 /* The type of nth index in arrays of given type (n numbering from 1).
2484 Does not examine memory. */
2487 ada_index_type (struct type *type, int n)
2489 struct type *result_type;
2491 type = desc_base_type (type);
2493 if (n > ada_array_arity (type))
2496 if (ada_is_simple_array_type (type))
2500 for (i = 1; i < n; i += 1)
2501 type = TYPE_TARGET_TYPE (type);
2502 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2503 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2504 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2505 perhaps stabsread.c would make more sense. */
2506 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2507 result_type = builtin_type_int;
2512 return desc_index_type (desc_bounds_type (type), n);
2515 /* Given that arr is an array type, returns the lower bound of the
2516 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2517 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2518 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2519 bounds type. It works for other arrays with bounds supplied by
2520 run-time quantities other than discriminants. */
2523 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2524 struct type ** typep)
2527 struct type *index_type_desc;
2529 if (ada_is_packed_array_type (arr_type))
2530 arr_type = decode_packed_array_type (arr_type);
2532 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2535 *typep = builtin_type_int;
2536 return (LONGEST) - which;
2539 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2540 type = TYPE_TARGET_TYPE (arr_type);
2544 index_type_desc = ada_find_parallel_type (type, "___XA");
2545 if (index_type_desc == NULL)
2547 struct type *index_type;
2551 type = TYPE_TARGET_TYPE (type);
2555 index_type = TYPE_INDEX_TYPE (type);
2557 *typep = index_type;
2559 /* The index type is either a range type or an enumerated type.
2560 For the range type, we have some macros that allow us to
2561 extract the value of the low and high bounds. But they
2562 do now work for enumerated types. The expressions used
2563 below work for both range and enum types. */
2565 (LONGEST) (which == 0
2566 ? TYPE_FIELD_BITPOS (index_type, 0)
2567 : TYPE_FIELD_BITPOS (index_type,
2568 TYPE_NFIELDS (index_type) - 1));
2572 struct type *index_type =
2573 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2574 NULL, TYPE_OBJFILE (arr_type));
2577 *typep = index_type;
2580 (LONGEST) (which == 0
2581 ? TYPE_LOW_BOUND (index_type)
2582 : TYPE_HIGH_BOUND (index_type));
2586 /* Given that arr is an array value, returns the lower bound of the
2587 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2588 WHICH is 1. This routine will also work for arrays with bounds
2589 supplied by run-time quantities other than discriminants. */
2592 ada_array_bound (struct value *arr, int n, int which)
2594 struct type *arr_type = value_type (arr);
2596 if (ada_is_packed_array_type (arr_type))
2597 return ada_array_bound (decode_packed_array (arr), n, which);
2598 else if (ada_is_simple_array_type (arr_type))
2601 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2602 return value_from_longest (type, v);
2605 return desc_one_bound (desc_bounds (arr), n, which);
2608 /* Given that arr is an array value, returns the length of the
2609 nth index. This routine will also work for arrays with bounds
2610 supplied by run-time quantities other than discriminants.
2611 Does not work for arrays indexed by enumeration types with representation
2612 clauses at the moment. */
2615 ada_array_length (struct value *arr, int n)
2617 struct type *arr_type = ada_check_typedef (value_type (arr));
2619 if (ada_is_packed_array_type (arr_type))
2620 return ada_array_length (decode_packed_array (arr), n);
2622 if (ada_is_simple_array_type (arr_type))
2626 ada_array_bound_from_type (arr_type, n, 1, &type) -
2627 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2628 return value_from_longest (type, v);
2632 value_from_longest (builtin_type_int,
2633 value_as_long (desc_one_bound (desc_bounds (arr),
2635 - value_as_long (desc_one_bound (desc_bounds (arr),
2639 /* An empty array whose type is that of ARR_TYPE (an array type),
2640 with bounds LOW to LOW-1. */
2642 static struct value *
2643 empty_array (struct type *arr_type, int low)
2645 struct type *index_type =
2646 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2648 struct type *elt_type = ada_array_element_type (arr_type, 1);
2649 return allocate_value (create_array_type (NULL, elt_type, index_type));
2653 /* Name resolution */
2655 /* The "decoded" name for the user-definable Ada operator corresponding
2659 ada_decoded_op_name (enum exp_opcode op)
2663 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2665 if (ada_opname_table[i].op == op)
2666 return ada_opname_table[i].decoded;
2668 error (_("Could not find operator name for opcode"));
2672 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2673 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2674 undefined namespace) and converts operators that are
2675 user-defined into appropriate function calls. If CONTEXT_TYPE is
2676 non-null, it provides a preferred result type [at the moment, only
2677 type void has any effect---causing procedures to be preferred over
2678 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2679 return type is preferred. May change (expand) *EXP. */
2682 resolve (struct expression **expp, int void_context_p)
2686 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2689 /* Resolve the operator of the subexpression beginning at
2690 position *POS of *EXPP. "Resolving" consists of replacing
2691 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2692 with their resolutions, replacing built-in operators with
2693 function calls to user-defined operators, where appropriate, and,
2694 when DEPROCEDURE_P is non-zero, converting function-valued variables
2695 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2696 are as in ada_resolve, above. */
2698 static struct value *
2699 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2700 struct type *context_type)
2704 struct expression *exp; /* Convenience: == *expp. */
2705 enum exp_opcode op = (*expp)->elts[pc].opcode;
2706 struct value **argvec; /* Vector of operand types (alloca'ed). */
2707 int nargs; /* Number of operands. */
2714 /* Pass one: resolve operands, saving their types and updating *pos,
2719 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2720 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2725 resolve_subexp (expp, pos, 0, NULL);
2727 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2732 resolve_subexp (expp, pos, 0, NULL);
2737 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2740 case OP_ATR_MODULUS:
2750 case TERNOP_IN_RANGE:
2751 case BINOP_IN_BOUNDS:
2757 case OP_DISCRETE_RANGE:
2759 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2768 arg1 = resolve_subexp (expp, pos, 0, NULL);
2770 resolve_subexp (expp, pos, 1, NULL);
2772 resolve_subexp (expp, pos, 1, value_type (arg1));
2789 case BINOP_LOGICAL_AND:
2790 case BINOP_LOGICAL_OR:
2791 case BINOP_BITWISE_AND:
2792 case BINOP_BITWISE_IOR:
2793 case BINOP_BITWISE_XOR:
2796 case BINOP_NOTEQUAL:
2803 case BINOP_SUBSCRIPT:
2811 case UNOP_LOGICAL_NOT:
2827 case OP_INTERNALVAR:
2837 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2840 case STRUCTOP_STRUCT:
2841 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2854 error (_("Unexpected operator during name resolution"));
2857 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2858 for (i = 0; i < nargs; i += 1)
2859 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2863 /* Pass two: perform any resolution on principal operator. */
2870 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2872 struct ada_symbol_info *candidates;
2876 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2877 (exp->elts[pc + 2].symbol),
2878 exp->elts[pc + 1].block, VAR_DOMAIN,
2881 if (n_candidates > 1)
2883 /* Types tend to get re-introduced locally, so if there
2884 are any local symbols that are not types, first filter
2887 for (j = 0; j < n_candidates; j += 1)
2888 switch (SYMBOL_CLASS (candidates[j].sym))
2894 case LOC_REGPARM_ADDR:
2898 case LOC_BASEREG_ARG:
2900 case LOC_COMPUTED_ARG:
2906 if (j < n_candidates)
2909 while (j < n_candidates)
2911 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2913 candidates[j] = candidates[n_candidates - 1];
2922 if (n_candidates == 0)
2923 error (_("No definition found for %s"),
2924 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2925 else if (n_candidates == 1)
2927 else if (deprocedure_p
2928 && !is_nonfunction (candidates, n_candidates))
2930 i = ada_resolve_function
2931 (candidates, n_candidates, NULL, 0,
2932 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2935 error (_("Could not find a match for %s"),
2936 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2940 printf_filtered (_("Multiple matches for %s\n"),
2941 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2942 user_select_syms (candidates, n_candidates, 1);
2946 exp->elts[pc + 1].block = candidates[i].block;
2947 exp->elts[pc + 2].symbol = candidates[i].sym;
2948 if (innermost_block == NULL
2949 || contained_in (candidates[i].block, innermost_block))
2950 innermost_block = candidates[i].block;
2954 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2957 replace_operator_with_call (expp, pc, 0, 0,
2958 exp->elts[pc + 2].symbol,
2959 exp->elts[pc + 1].block);
2966 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2967 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2969 struct ada_symbol_info *candidates;
2973 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2974 (exp->elts[pc + 5].symbol),
2975 exp->elts[pc + 4].block, VAR_DOMAIN,
2977 if (n_candidates == 1)
2981 i = ada_resolve_function
2982 (candidates, n_candidates,
2984 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2987 error (_("Could not find a match for %s"),
2988 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2991 exp->elts[pc + 4].block = candidates[i].block;
2992 exp->elts[pc + 5].symbol = candidates[i].sym;
2993 if (innermost_block == NULL
2994 || contained_in (candidates[i].block, innermost_block))
2995 innermost_block = candidates[i].block;
3006 case BINOP_BITWISE_AND:
3007 case BINOP_BITWISE_IOR:
3008 case BINOP_BITWISE_XOR:
3010 case BINOP_NOTEQUAL:
3018 case UNOP_LOGICAL_NOT:
3020 if (possible_user_operator_p (op, argvec))
3022 struct ada_symbol_info *candidates;
3026 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3027 (struct block *) NULL, VAR_DOMAIN,
3029 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3030 ada_decoded_op_name (op), NULL);
3034 replace_operator_with_call (expp, pc, nargs, 1,
3035 candidates[i].sym, candidates[i].block);
3046 return evaluate_subexp_type (exp, pos);
3049 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3050 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3051 a non-pointer. A type of 'void' (which is never a valid expression type)
3052 by convention matches anything. */
3053 /* The term "match" here is rather loose. The match is heuristic and
3054 liberal. FIXME: TOO liberal, in fact. */
3057 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3059 ftype = ada_check_typedef (ftype);
3060 atype = ada_check_typedef (atype);
3062 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3063 ftype = TYPE_TARGET_TYPE (ftype);
3064 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3065 atype = TYPE_TARGET_TYPE (atype);
3067 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3068 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3071 switch (TYPE_CODE (ftype))
3076 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3077 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3078 TYPE_TARGET_TYPE (atype), 0);
3081 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3083 case TYPE_CODE_ENUM:
3084 case TYPE_CODE_RANGE:
3085 switch (TYPE_CODE (atype))
3088 case TYPE_CODE_ENUM:
3089 case TYPE_CODE_RANGE:
3095 case TYPE_CODE_ARRAY:
3096 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3097 || ada_is_array_descriptor_type (atype));
3099 case TYPE_CODE_STRUCT:
3100 if (ada_is_array_descriptor_type (ftype))
3101 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3102 || ada_is_array_descriptor_type (atype));
3104 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3105 && !ada_is_array_descriptor_type (atype));
3107 case TYPE_CODE_UNION:
3109 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3113 /* Return non-zero if the formals of FUNC "sufficiently match" the
3114 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3115 may also be an enumeral, in which case it is treated as a 0-
3116 argument function. */
3119 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3122 struct type *func_type = SYMBOL_TYPE (func);
3124 if (SYMBOL_CLASS (func) == LOC_CONST
3125 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3126 return (n_actuals == 0);
3127 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3130 if (TYPE_NFIELDS (func_type) != n_actuals)
3133 for (i = 0; i < n_actuals; i += 1)
3135 if (actuals[i] == NULL)
3139 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3140 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3142 if (!ada_type_match (ftype, atype, 1))
3149 /* False iff function type FUNC_TYPE definitely does not produce a value
3150 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3151 FUNC_TYPE is not a valid function type with a non-null return type
3152 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3155 return_match (struct type *func_type, struct type *context_type)
3157 struct type *return_type;
3159 if (func_type == NULL)
3162 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3163 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3165 return_type = base_type (func_type);
3166 if (return_type == NULL)
3169 context_type = base_type (context_type);
3171 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3172 return context_type == NULL || return_type == context_type;
3173 else if (context_type == NULL)
3174 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3176 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3180 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3181 function (if any) that matches the types of the NARGS arguments in
3182 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3183 that returns that type, then eliminate matches that don't. If
3184 CONTEXT_TYPE is void and there is at least one match that does not
3185 return void, eliminate all matches that do.
3187 Asks the user if there is more than one match remaining. Returns -1
3188 if there is no such symbol or none is selected. NAME is used
3189 solely for messages. May re-arrange and modify SYMS in
3190 the process; the index returned is for the modified vector. */
3193 ada_resolve_function (struct ada_symbol_info syms[],
3194 int nsyms, struct value **args, int nargs,
3195 const char *name, struct type *context_type)
3198 int m; /* Number of hits */
3199 struct type *fallback;
3200 struct type *return_type;
3202 return_type = context_type;
3203 if (context_type == NULL)
3204 fallback = builtin_type_void;
3211 for (k = 0; k < nsyms; k += 1)
3213 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3215 if (ada_args_match (syms[k].sym, args, nargs)
3216 && return_match (type, return_type))
3222 if (m > 0 || return_type == fallback)
3225 return_type = fallback;
3232 printf_filtered (_("Multiple matches for %s\n"), name);
3233 user_select_syms (syms, m, 1);
3239 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3240 in a listing of choices during disambiguation (see sort_choices, below).
3241 The idea is that overloadings of a subprogram name from the
3242 same package should sort in their source order. We settle for ordering
3243 such symbols by their trailing number (__N or $N). */
3246 encoded_ordered_before (char *N0, char *N1)
3250 else if (N0 == NULL)
3255 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3257 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3259 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3260 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3264 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3267 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3269 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3270 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3272 return (strcmp (N0, N1) < 0);
3276 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3280 sort_choices (struct ada_symbol_info syms[], int nsyms)
3283 for (i = 1; i < nsyms; i += 1)
3285 struct ada_symbol_info sym = syms[i];
3288 for (j = i - 1; j >= 0; j -= 1)
3290 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3291 SYMBOL_LINKAGE_NAME (sym.sym)))
3293 syms[j + 1] = syms[j];
3299 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3300 by asking the user (if necessary), returning the number selected,
3301 and setting the first elements of SYMS items. Error if no symbols
3304 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3305 to be re-integrated one of these days. */
3308 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3311 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3313 int first_choice = (max_results == 1) ? 1 : 2;
3314 const char *select_mode = multiple_symbols_select_mode ();
3316 if (max_results < 1)
3317 error (_("Request to select 0 symbols!"));
3321 if (select_mode == multiple_symbols_cancel)
3323 canceled because the command is ambiguous\n\
3324 See set/show multiple-symbol."));
3326 /* If select_mode is "all", then return all possible symbols.
3327 Only do that if more than one symbol can be selected, of course.
3328 Otherwise, display the menu as usual. */
3329 if (select_mode == multiple_symbols_all && max_results > 1)
3332 printf_unfiltered (_("[0] cancel\n"));
3333 if (max_results > 1)
3334 printf_unfiltered (_("[1] all\n"));
3336 sort_choices (syms, nsyms);
3338 for (i = 0; i < nsyms; i += 1)
3340 if (syms[i].sym == NULL)
3343 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3345 struct symtab_and_line sal =
3346 find_function_start_sal (syms[i].sym, 1);
3347 if (sal.symtab == NULL)
3348 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3350 SYMBOL_PRINT_NAME (syms[i].sym),
3353 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3354 SYMBOL_PRINT_NAME (syms[i].sym),
3355 sal.symtab->filename, sal.line);
3361 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3362 && SYMBOL_TYPE (syms[i].sym) != NULL
3363 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3364 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3366 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3367 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3369 SYMBOL_PRINT_NAME (syms[i].sym),
3370 symtab->filename, SYMBOL_LINE (syms[i].sym));
3371 else if (is_enumeral
3372 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3374 printf_unfiltered (("[%d] "), i + first_choice);
3375 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3377 printf_unfiltered (_("'(%s) (enumeral)\n"),
3378 SYMBOL_PRINT_NAME (syms[i].sym));
3380 else if (symtab != NULL)
3381 printf_unfiltered (is_enumeral
3382 ? _("[%d] %s in %s (enumeral)\n")
3383 : _("[%d] %s at %s:?\n"),
3385 SYMBOL_PRINT_NAME (syms[i].sym),
3388 printf_unfiltered (is_enumeral
3389 ? _("[%d] %s (enumeral)\n")
3390 : _("[%d] %s at ?\n"),
3392 SYMBOL_PRINT_NAME (syms[i].sym));
3396 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3399 for (i = 0; i < n_chosen; i += 1)
3400 syms[i] = syms[chosen[i]];
3405 /* Read and validate a set of numeric choices from the user in the
3406 range 0 .. N_CHOICES-1. Place the results in increasing
3407 order in CHOICES[0 .. N-1], and return N.
3409 The user types choices as a sequence of numbers on one line
3410 separated by blanks, encoding them as follows:
3412 + A choice of 0 means to cancel the selection, throwing an error.
3413 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3414 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3416 The user is not allowed to choose more than MAX_RESULTS values.
3418 ANNOTATION_SUFFIX, if present, is used to annotate the input
3419 prompts (for use with the -f switch). */
3422 get_selections (int *choices, int n_choices, int max_results,
3423 int is_all_choice, char *annotation_suffix)
3428 int first_choice = is_all_choice ? 2 : 1;
3430 prompt = getenv ("PS2");
3434 args = command_line_input (prompt, 0, annotation_suffix);
3437 error_no_arg (_("one or more choice numbers"));
3441 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3442 order, as given in args. Choices are validated. */
3448 while (isspace (*args))
3450 if (*args == '\0' && n_chosen == 0)
3451 error_no_arg (_("one or more choice numbers"));
3452 else if (*args == '\0')
3455 choice = strtol (args, &args2, 10);
3456 if (args == args2 || choice < 0
3457 || choice > n_choices + first_choice - 1)
3458 error (_("Argument must be choice number"));
3462 error (_("cancelled"));
3464 if (choice < first_choice)
3466 n_chosen = n_choices;
3467 for (j = 0; j < n_choices; j += 1)
3471 choice -= first_choice;
3473 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3477 if (j < 0 || choice != choices[j])
3480 for (k = n_chosen - 1; k > j; k -= 1)
3481 choices[k + 1] = choices[k];
3482 choices[j + 1] = choice;
3487 if (n_chosen > max_results)
3488 error (_("Select no more than %d of the above"), max_results);
3493 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3494 on the function identified by SYM and BLOCK, and taking NARGS
3495 arguments. Update *EXPP as needed to hold more space. */
3498 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3499 int oplen, struct symbol *sym,
3500 struct block *block)
3502 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3503 symbol, -oplen for operator being replaced). */
3504 struct expression *newexp = (struct expression *)
3505 xmalloc (sizeof (struct expression)
3506 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3507 struct expression *exp = *expp;
3509 newexp->nelts = exp->nelts + 7 - oplen;
3510 newexp->language_defn = exp->language_defn;
3511 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3512 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3513 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3515 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3516 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3518 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3519 newexp->elts[pc + 4].block = block;
3520 newexp->elts[pc + 5].symbol = sym;
3526 /* Type-class predicates */
3528 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3532 numeric_type_p (struct type *type)
3538 switch (TYPE_CODE (type))
3543 case TYPE_CODE_RANGE:
3544 return (type == TYPE_TARGET_TYPE (type)
3545 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3552 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3555 integer_type_p (struct type *type)
3561 switch (TYPE_CODE (type))
3565 case TYPE_CODE_RANGE:
3566 return (type == TYPE_TARGET_TYPE (type)
3567 || integer_type_p (TYPE_TARGET_TYPE (type)));
3574 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3577 scalar_type_p (struct type *type)
3583 switch (TYPE_CODE (type))
3586 case TYPE_CODE_RANGE:
3587 case TYPE_CODE_ENUM:
3596 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3599 discrete_type_p (struct type *type)
3605 switch (TYPE_CODE (type))
3608 case TYPE_CODE_RANGE:
3609 case TYPE_CODE_ENUM:
3617 /* Returns non-zero if OP with operands in the vector ARGS could be
3618 a user-defined function. Errs on the side of pre-defined operators
3619 (i.e., result 0). */
3622 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3624 struct type *type0 =
3625 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3626 struct type *type1 =
3627 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3641 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3645 case BINOP_BITWISE_AND:
3646 case BINOP_BITWISE_IOR:
3647 case BINOP_BITWISE_XOR:
3648 return (!(integer_type_p (type0) && integer_type_p (type1)));
3651 case BINOP_NOTEQUAL:
3656 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3659 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3662 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3666 case UNOP_LOGICAL_NOT:
3668 return (!numeric_type_p (type0));
3677 1. In the following, we assume that a renaming type's name may
3678 have an ___XD suffix. It would be nice if this went away at some
3680 2. We handle both the (old) purely type-based representation of
3681 renamings and the (new) variable-based encoding. At some point,
3682 it is devoutly to be hoped that the former goes away
3683 (FIXME: hilfinger-2007-07-09).
3684 3. Subprogram renamings are not implemented, although the XRS
3685 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3687 /* If SYM encodes a renaming,
3689 <renaming> renames <renamed entity>,
3691 sets *LEN to the length of the renamed entity's name,
3692 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3693 the string describing the subcomponent selected from the renamed
3694 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3695 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3696 are undefined). Otherwise, returns a value indicating the category
3697 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3698 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3699 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3700 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3701 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3702 may be NULL, in which case they are not assigned.
3704 [Currently, however, GCC does not generate subprogram renamings.] */
3706 enum ada_renaming_category
3707 ada_parse_renaming (struct symbol *sym,
3708 const char **renamed_entity, int *len,
3709 const char **renaming_expr)
3711 enum ada_renaming_category kind;
3716 return ADA_NOT_RENAMING;
3717 switch (SYMBOL_CLASS (sym))
3720 return ADA_NOT_RENAMING;
3722 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3723 renamed_entity, len, renaming_expr);
3727 case LOC_OPTIMIZED_OUT:
3728 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3730 return ADA_NOT_RENAMING;
3734 kind = ADA_OBJECT_RENAMING;
3738 kind = ADA_EXCEPTION_RENAMING;
3742 kind = ADA_PACKAGE_RENAMING;
3746 kind = ADA_SUBPROGRAM_RENAMING;
3750 return ADA_NOT_RENAMING;
3754 if (renamed_entity != NULL)
3755 *renamed_entity = info;
3756 suffix = strstr (info, "___XE");
3757 if (suffix == NULL || suffix == info)
3758 return ADA_NOT_RENAMING;
3760 *len = strlen (info) - strlen (suffix);
3762 if (renaming_expr != NULL)
3763 *renaming_expr = suffix;
3767 /* Assuming TYPE encodes a renaming according to the old encoding in
3768 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3769 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3770 ADA_NOT_RENAMING otherwise. */
3771 static enum ada_renaming_category
3772 parse_old_style_renaming (struct type *type,
3773 const char **renamed_entity, int *len,
3774 const char **renaming_expr)
3776 enum ada_renaming_category kind;
3781 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3782 || TYPE_NFIELDS (type) != 1)
3783 return ADA_NOT_RENAMING;
3785 name = type_name_no_tag (type);
3787 return ADA_NOT_RENAMING;
3789 name = strstr (name, "___XR");
3791 return ADA_NOT_RENAMING;
3796 kind = ADA_OBJECT_RENAMING;
3799 kind = ADA_EXCEPTION_RENAMING;
3802 kind = ADA_PACKAGE_RENAMING;
3805 kind = ADA_SUBPROGRAM_RENAMING;
3808 return ADA_NOT_RENAMING;
3811 info = TYPE_FIELD_NAME (type, 0);
3813 return ADA_NOT_RENAMING;
3814 if (renamed_entity != NULL)
3815 *renamed_entity = info;
3816 suffix = strstr (info, "___XE");
3817 if (renaming_expr != NULL)
3818 *renaming_expr = suffix + 5;
3819 if (suffix == NULL || suffix == info)
3820 return ADA_NOT_RENAMING;
3822 *len = suffix - info;
3828 /* Evaluation: Function Calls */
3830 /* Return an lvalue containing the value VAL. This is the identity on
3831 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3832 on the stack, using and updating *SP as the stack pointer, and
3833 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3835 static struct value *
3836 ensure_lval (struct value *val, CORE_ADDR *sp)
3838 if (! VALUE_LVAL (val))
3840 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3842 /* The following is taken from the structure-return code in
3843 call_function_by_hand. FIXME: Therefore, some refactoring seems
3845 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3847 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3848 reserving sufficient space. */
3850 if (gdbarch_frame_align_p (current_gdbarch))
3851 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3852 VALUE_ADDRESS (val) = *sp;
3856 /* Stack grows upward. Align the frame, allocate space, and
3857 then again, re-align the frame. */
3858 if (gdbarch_frame_align_p (current_gdbarch))
3859 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3860 VALUE_ADDRESS (val) = *sp;
3862 if (gdbarch_frame_align_p (current_gdbarch))
3863 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3865 VALUE_LVAL (val) = lval_memory;
3867 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3873 /* Return the value ACTUAL, converted to be an appropriate value for a
3874 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3875 allocating any necessary descriptors (fat pointers), or copies of
3876 values not residing in memory, updating it as needed. */
3879 ada_convert_actual (struct value *actual, struct type *formal_type0,
3882 struct type *actual_type = ada_check_typedef (value_type (actual));
3883 struct type *formal_type = ada_check_typedef (formal_type0);
3884 struct type *formal_target =
3885 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3886 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3887 struct type *actual_target =
3888 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3889 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3891 if (ada_is_array_descriptor_type (formal_target)
3892 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3893 return make_array_descriptor (formal_type, actual, sp);
3894 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3895 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3897 struct value *result;
3898 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3899 && ada_is_array_descriptor_type (actual_target))
3900 result = desc_data (actual);
3901 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3903 if (VALUE_LVAL (actual) != lval_memory)
3906 actual_type = ada_check_typedef (value_type (actual));
3907 val = allocate_value (actual_type);
3908 memcpy ((char *) value_contents_raw (val),
3909 (char *) value_contents (actual),
3910 TYPE_LENGTH (actual_type));
3911 actual = ensure_lval (val, sp);
3913 result = value_addr (actual);
3917 return value_cast_pointers (formal_type, result);
3919 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3920 return ada_value_ind (actual);
3926 /* Push a descriptor of type TYPE for array value ARR on the stack at
3927 *SP, updating *SP to reflect the new descriptor. Return either
3928 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3929 to-descriptor type rather than a descriptor type), a struct value *
3930 representing a pointer to this descriptor. */
3932 static struct value *
3933 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3935 struct type *bounds_type = desc_bounds_type (type);
3936 struct type *desc_type = desc_base_type (type);
3937 struct value *descriptor = allocate_value (desc_type);
3938 struct value *bounds = allocate_value (bounds_type);
3941 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3943 modify_general_field (value_contents_writeable (bounds),
3944 value_as_long (ada_array_bound (arr, i, 0)),
3945 desc_bound_bitpos (bounds_type, i, 0),
3946 desc_bound_bitsize (bounds_type, i, 0));
3947 modify_general_field (value_contents_writeable (bounds),
3948 value_as_long (ada_array_bound (arr, i, 1)),
3949 desc_bound_bitpos (bounds_type, i, 1),
3950 desc_bound_bitsize (bounds_type, i, 1));
3953 bounds = ensure_lval (bounds, sp);
3955 modify_general_field (value_contents_writeable (descriptor),
3956 VALUE_ADDRESS (ensure_lval (arr, sp)),
3957 fat_pntr_data_bitpos (desc_type),
3958 fat_pntr_data_bitsize (desc_type));
3960 modify_general_field (value_contents_writeable (descriptor),
3961 VALUE_ADDRESS (bounds),
3962 fat_pntr_bounds_bitpos (desc_type),
3963 fat_pntr_bounds_bitsize (desc_type));
3965 descriptor = ensure_lval (descriptor, sp);
3967 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3968 return value_addr (descriptor);
3973 /* Dummy definitions for an experimental caching module that is not
3974 * used in the public sources. */
3977 lookup_cached_symbol (const char *name, domain_enum namespace,
3978 struct symbol **sym, struct block **block)
3984 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3985 struct block *block)
3991 /* Return the result of a standard (literal, C-like) lookup of NAME in
3992 given DOMAIN, visible from lexical block BLOCK. */
3994 static struct symbol *
3995 standard_lookup (const char *name, const struct block *block,
4000 if (lookup_cached_symbol (name, domain, &sym, NULL))
4002 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4003 cache_symbol (name, domain, sym, block_found);
4008 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4009 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4010 since they contend in overloading in the same way. */
4012 is_nonfunction (struct ada_symbol_info syms[], int n)
4016 for (i = 0; i < n; i += 1)
4017 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4018 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4019 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4025 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4026 struct types. Otherwise, they may not. */
4029 equiv_types (struct type *type0, struct type *type1)
4033 if (type0 == NULL || type1 == NULL
4034 || TYPE_CODE (type0) != TYPE_CODE (type1))
4036 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4037 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4038 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4039 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4045 /* True iff SYM0 represents the same entity as SYM1, or one that is
4046 no more defined than that of SYM1. */
4049 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4053 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4054 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4057 switch (SYMBOL_CLASS (sym0))
4063 struct type *type0 = SYMBOL_TYPE (sym0);
4064 struct type *type1 = SYMBOL_TYPE (sym1);
4065 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4066 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4067 int len0 = strlen (name0);
4069 TYPE_CODE (type0) == TYPE_CODE (type1)
4070 && (equiv_types (type0, type1)
4071 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4072 && strncmp (name1 + len0, "___XV", 5) == 0));
4075 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4076 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4082 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4083 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4086 add_defn_to_vec (struct obstack *obstackp,
4088 struct block *block)
4092 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4094 /* Do not try to complete stub types, as the debugger is probably
4095 already scanning all symbols matching a certain name at the
4096 time when this function is called. Trying to replace the stub
4097 type by its associated full type will cause us to restart a scan
4098 which may lead to an infinite recursion. Instead, the client
4099 collecting the matching symbols will end up collecting several
4100 matches, with at least one of them complete. It can then filter
4101 out the stub ones if needed. */
4103 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4105 if (lesseq_defined_than (sym, prevDefns[i].sym))
4107 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4109 prevDefns[i].sym = sym;
4110 prevDefns[i].block = block;
4116 struct ada_symbol_info info;
4120 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4124 /* Number of ada_symbol_info structures currently collected in
4125 current vector in *OBSTACKP. */
4128 num_defns_collected (struct obstack *obstackp)
4130 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4133 /* Vector of ada_symbol_info structures currently collected in current
4134 vector in *OBSTACKP. If FINISH, close off the vector and return
4135 its final address. */
4137 static struct ada_symbol_info *
4138 defns_collected (struct obstack *obstackp, int finish)
4141 return obstack_finish (obstackp);
4143 return (struct ada_symbol_info *) obstack_base (obstackp);
4146 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4147 Check the global symbols if GLOBAL, the static symbols if not.
4148 Do wild-card match if WILD. */
4150 static struct partial_symbol *
4151 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4152 int global, domain_enum namespace, int wild)
4154 struct partial_symbol **start;
4155 int name_len = strlen (name);
4156 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4165 pst->objfile->global_psymbols.list + pst->globals_offset :
4166 pst->objfile->static_psymbols.list + pst->statics_offset);
4170 for (i = 0; i < length; i += 1)
4172 struct partial_symbol *psym = start[i];
4174 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4175 SYMBOL_DOMAIN (psym), namespace)
4176 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4190 int M = (U + i) >> 1;
4191 struct partial_symbol *psym = start[M];
4192 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4194 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4196 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4207 struct partial_symbol *psym = start[i];
4209 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4210 SYMBOL_DOMAIN (psym), namespace))
4212 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4220 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4234 int M = (U + i) >> 1;
4235 struct partial_symbol *psym = start[M];
4236 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4238 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4240 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4251 struct partial_symbol *psym = start[i];
4253 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4254 SYMBOL_DOMAIN (psym), namespace))
4258 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4261 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4263 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4273 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4283 /* Find a symbol table containing symbol SYM or NULL if none. */
4285 static struct symtab *
4286 symtab_for_sym (struct symbol *sym)
4289 struct objfile *objfile;
4291 struct symbol *tmp_sym;
4292 struct dict_iterator iter;
4295 ALL_PRIMARY_SYMTABS (objfile, s)
4297 switch (SYMBOL_CLASS (sym))
4305 case LOC_CONST_BYTES:
4306 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4307 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4309 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4310 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4316 switch (SYMBOL_CLASS (sym))
4322 case LOC_REGPARM_ADDR:
4327 case LOC_BASEREG_ARG:
4329 case LOC_COMPUTED_ARG:
4330 for (j = FIRST_LOCAL_BLOCK;
4331 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4333 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4334 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4345 /* Return a minimal symbol matching NAME according to Ada decoding
4346 rules. Returns NULL if there is no such minimal symbol. Names
4347 prefixed with "standard__" are handled specially: "standard__" is
4348 first stripped off, and only static and global symbols are searched. */
4350 struct minimal_symbol *
4351 ada_lookup_simple_minsym (const char *name)
4353 struct objfile *objfile;
4354 struct minimal_symbol *msymbol;
4357 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4359 name += sizeof ("standard__") - 1;
4363 wild_match = (strstr (name, "__") == NULL);
4365 ALL_MSYMBOLS (objfile, msymbol)
4367 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4368 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4375 /* For all subprograms that statically enclose the subprogram of the
4376 selected frame, add symbols matching identifier NAME in DOMAIN
4377 and their blocks to the list of data in OBSTACKP, as for
4378 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4382 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4383 const char *name, domain_enum namespace,
4388 /* True if TYPE is definitely an artificial type supplied to a symbol
4389 for which no debugging information was given in the symbol file. */
4392 is_nondebugging_type (struct type *type)
4394 char *name = ada_type_name (type);
4395 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4398 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4399 duplicate other symbols in the list (The only case I know of where
4400 this happens is when object files containing stabs-in-ecoff are
4401 linked with files containing ordinary ecoff debugging symbols (or no
4402 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4403 Returns the number of items in the modified list. */
4406 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4413 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4414 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4415 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4417 for (j = 0; j < nsyms; j += 1)
4420 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4421 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4422 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4423 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4424 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4425 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4428 for (k = i + 1; k < nsyms; k += 1)
4429 syms[k - 1] = syms[k];
4442 /* Given a type that corresponds to a renaming entity, use the type name
4443 to extract the scope (package name or function name, fully qualified,
4444 and following the GNAT encoding convention) where this renaming has been
4445 defined. The string returned needs to be deallocated after use. */
4448 xget_renaming_scope (struct type *renaming_type)
4450 /* The renaming types adhere to the following convention:
4451 <scope>__<rename>___<XR extension>.
4452 So, to extract the scope, we search for the "___XR" extension,
4453 and then backtrack until we find the first "__". */
4455 const char *name = type_name_no_tag (renaming_type);
4456 char *suffix = strstr (name, "___XR");
4461 /* Now, backtrack a bit until we find the first "__". Start looking
4462 at suffix - 3, as the <rename> part is at least one character long. */
4464 for (last = suffix - 3; last > name; last--)
4465 if (last[0] == '_' && last[1] == '_')
4468 /* Make a copy of scope and return it. */
4470 scope_len = last - name;
4471 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4473 strncpy (scope, name, scope_len);
4474 scope[scope_len] = '\0';
4479 /* Return nonzero if NAME corresponds to a package name. */
4482 is_package_name (const char *name)
4484 /* Here, We take advantage of the fact that no symbols are generated
4485 for packages, while symbols are generated for each function.
4486 So the condition for NAME represent a package becomes equivalent
4487 to NAME not existing in our list of symbols. There is only one
4488 small complication with library-level functions (see below). */
4492 /* If it is a function that has not been defined at library level,
4493 then we should be able to look it up in the symbols. */
4494 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4497 /* Library-level function names start with "_ada_". See if function
4498 "_ada_" followed by NAME can be found. */
4500 /* Do a quick check that NAME does not contain "__", since library-level
4501 functions names cannot contain "__" in them. */
4502 if (strstr (name, "__") != NULL)
4505 fun_name = xstrprintf ("_ada_%s", name);
4507 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4510 /* Return nonzero if SYM corresponds to a renaming entity that is
4511 not visible from FUNCTION_NAME. */
4514 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4518 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4521 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4523 make_cleanup (xfree, scope);
4525 /* If the rename has been defined in a package, then it is visible. */
4526 if (is_package_name (scope))
4529 /* Check that the rename is in the current function scope by checking
4530 that its name starts with SCOPE. */
4532 /* If the function name starts with "_ada_", it means that it is
4533 a library-level function. Strip this prefix before doing the
4534 comparison, as the encoding for the renaming does not contain
4536 if (strncmp (function_name, "_ada_", 5) == 0)
4539 return (strncmp (function_name, scope, strlen (scope)) != 0);
4542 /* Remove entries from SYMS that corresponds to a renaming entity that
4543 is not visible from the function associated with CURRENT_BLOCK or
4544 that is superfluous due to the presence of more specific renaming
4545 information. Places surviving symbols in the initial entries of
4546 SYMS and returns the number of surviving symbols.
4549 First, in cases where an object renaming is implemented as a
4550 reference variable, GNAT may produce both the actual reference
4551 variable and the renaming encoding. In this case, we discard the
4554 Second, GNAT emits a type following a specified encoding for each renaming
4555 entity. Unfortunately, STABS currently does not support the definition
4556 of types that are local to a given lexical block, so all renamings types
4557 are emitted at library level. As a consequence, if an application
4558 contains two renaming entities using the same name, and a user tries to
4559 print the value of one of these entities, the result of the ada symbol
4560 lookup will also contain the wrong renaming type.
4562 This function partially covers for this limitation by attempting to
4563 remove from the SYMS list renaming symbols that should be visible
4564 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4565 method with the current information available. The implementation
4566 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4568 - When the user tries to print a rename in a function while there
4569 is another rename entity defined in a package: Normally, the
4570 rename in the function has precedence over the rename in the
4571 package, so the latter should be removed from the list. This is
4572 currently not the case.
4574 - This function will incorrectly remove valid renames if
4575 the CURRENT_BLOCK corresponds to a function which symbol name
4576 has been changed by an "Export" pragma. As a consequence,
4577 the user will be unable to print such rename entities. */
4580 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4581 int nsyms, const struct block *current_block)
4583 struct symbol *current_function;
4584 char *current_function_name;
4586 int is_new_style_renaming;
4588 /* If there is both a renaming foo___XR... encoded as a variable and
4589 a simple variable foo in the same block, discard the latter.
4590 First, zero out such symbols, then compress. */
4591 is_new_style_renaming = 0;
4592 for (i = 0; i < nsyms; i += 1)
4594 struct symbol *sym = syms[i].sym;
4595 struct block *block = syms[i].block;
4599 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4601 name = SYMBOL_LINKAGE_NAME (sym);
4602 suffix = strstr (name, "___XR");
4606 int name_len = suffix - name;
4608 is_new_style_renaming = 1;
4609 for (j = 0; j < nsyms; j += 1)
4610 if (i != j && syms[j].sym != NULL
4611 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4613 && block == syms[j].block)
4617 if (is_new_style_renaming)
4621 for (j = k = 0; j < nsyms; j += 1)
4622 if (syms[j].sym != NULL)
4630 /* Extract the function name associated to CURRENT_BLOCK.
4631 Abort if unable to do so. */
4633 if (current_block == NULL)
4636 current_function = block_function (current_block);
4637 if (current_function == NULL)
4640 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4641 if (current_function_name == NULL)
4644 /* Check each of the symbols, and remove it from the list if it is
4645 a type corresponding to a renaming that is out of the scope of
4646 the current block. */
4651 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4652 == ADA_OBJECT_RENAMING
4653 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4656 for (j = i + 1; j < nsyms; j += 1)
4657 syms[j - 1] = syms[j];
4667 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4668 scope and in global scopes, returning the number of matches. Sets
4669 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4670 indicating the symbols found and the blocks and symbol tables (if
4671 any) in which they were found. This vector are transient---good only to
4672 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4673 symbol match within the nest of blocks whose innermost member is BLOCK0,
4674 is the one match returned (no other matches in that or
4675 enclosing blocks is returned). If there are any matches in or
4676 surrounding BLOCK0, then these alone are returned. Otherwise, the
4677 search extends to global and file-scope (static) symbol tables.
4678 Names prefixed with "standard__" are handled specially: "standard__"
4679 is first stripped off, and only static and global symbols are searched. */
4682 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4683 domain_enum namespace,
4684 struct ada_symbol_info **results)
4688 struct partial_symtab *ps;
4689 struct blockvector *bv;
4690 struct objfile *objfile;
4691 struct block *block;
4693 struct minimal_symbol *msymbol;
4699 obstack_free (&symbol_list_obstack, NULL);
4700 obstack_init (&symbol_list_obstack);
4704 /* Search specified block and its superiors. */
4706 wild_match = (strstr (name0, "__") == NULL);
4708 block = (struct block *) block0; /* FIXME: No cast ought to be
4709 needed, but adding const will
4710 have a cascade effect. */
4711 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4715 name = name0 + sizeof ("standard__") - 1;
4719 while (block != NULL)
4722 ada_add_block_symbols (&symbol_list_obstack, block, name,
4723 namespace, NULL, wild_match);
4725 /* If we found a non-function match, assume that's the one. */
4726 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4727 num_defns_collected (&symbol_list_obstack)))
4730 block = BLOCK_SUPERBLOCK (block);
4733 /* If no luck so far, try to find NAME as a local symbol in some lexically
4734 enclosing subprogram. */
4735 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4736 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4737 name, namespace, wild_match);
4739 /* If we found ANY matches among non-global symbols, we're done. */
4741 if (num_defns_collected (&symbol_list_obstack) > 0)
4745 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4748 add_defn_to_vec (&symbol_list_obstack, sym, block);
4752 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4753 tables, and psymtab's. */
4755 ALL_PRIMARY_SYMTABS (objfile, s)
4758 bv = BLOCKVECTOR (s);
4759 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4760 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4761 objfile, wild_match);
4764 if (namespace == VAR_DOMAIN)
4766 ALL_MSYMBOLS (objfile, msymbol)
4768 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4770 switch (MSYMBOL_TYPE (msymbol))
4772 case mst_solib_trampoline:
4775 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4778 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4780 bv = BLOCKVECTOR (s);
4781 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4782 ada_add_block_symbols (&symbol_list_obstack, block,
4783 SYMBOL_LINKAGE_NAME (msymbol),
4784 namespace, objfile, wild_match);
4786 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4788 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4789 ada_add_block_symbols (&symbol_list_obstack, block,
4790 SYMBOL_LINKAGE_NAME (msymbol),
4800 ALL_PSYMTABS (objfile, ps)
4804 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4806 s = PSYMTAB_TO_SYMTAB (ps);
4809 bv = BLOCKVECTOR (s);
4810 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4811 ada_add_block_symbols (&symbol_list_obstack, block, name,
4812 namespace, objfile, wild_match);
4816 /* Now add symbols from all per-file blocks if we've gotten no hits
4817 (Not strictly correct, but perhaps better than an error).
4818 Do the symtabs first, then check the psymtabs. */
4820 if (num_defns_collected (&symbol_list_obstack) == 0)
4823 ALL_PRIMARY_SYMTABS (objfile, s)
4826 bv = BLOCKVECTOR (s);
4827 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4828 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4829 objfile, wild_match);
4832 ALL_PSYMTABS (objfile, ps)
4836 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4838 s = PSYMTAB_TO_SYMTAB (ps);
4839 bv = BLOCKVECTOR (s);
4842 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4843 ada_add_block_symbols (&symbol_list_obstack, block, name,
4844 namespace, objfile, wild_match);
4850 ndefns = num_defns_collected (&symbol_list_obstack);
4851 *results = defns_collected (&symbol_list_obstack, 1);
4853 ndefns = remove_extra_symbols (*results, ndefns);
4856 cache_symbol (name0, namespace, NULL, NULL);
4858 if (ndefns == 1 && cacheIfUnique)
4859 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4861 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4867 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4868 domain_enum namespace, struct block **block_found)
4870 struct ada_symbol_info *candidates;
4873 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4875 if (n_candidates == 0)
4878 if (block_found != NULL)
4879 *block_found = candidates[0].block;
4881 return fixup_symbol_section (candidates[0].sym, NULL);
4884 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4885 scope and in global scopes, or NULL if none. NAME is folded and
4886 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4887 choosing the first symbol if there are multiple choices.
4888 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4889 table in which the symbol was found (in both cases, these
4890 assignments occur only if the pointers are non-null). */
4892 ada_lookup_symbol (const char *name, const struct block *block0,
4893 domain_enum namespace, int *is_a_field_of_this)
4895 if (is_a_field_of_this != NULL)
4896 *is_a_field_of_this = 0;
4899 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4900 block0, namespace, NULL);
4903 static struct symbol *
4904 ada_lookup_symbol_nonlocal (const char *name,
4905 const char *linkage_name,
4906 const struct block *block,
4907 const domain_enum domain)
4909 if (linkage_name == NULL)
4910 linkage_name = name;
4911 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4916 /* True iff STR is a possible encoded suffix of a normal Ada name
4917 that is to be ignored for matching purposes. Suffixes of parallel
4918 names (e.g., XVE) are not included here. Currently, the possible suffixes
4919 are given by either of the regular expression:
4921 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4922 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4923 _E[0-9]+[bs]$ [protected object entry suffixes]
4924 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4926 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4927 match is performed. This sequence is used to differentiate homonyms,
4928 is an optional part of a valid name suffix. */
4931 is_name_suffix (const char *str)
4934 const char *matching;
4935 const int len = strlen (str);
4937 /* Skip optional leading __[0-9]+. */
4939 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4942 while (isdigit (str[0]))
4948 if (str[0] == '.' || str[0] == '$')
4951 while (isdigit (matching[0]))
4953 if (matching[0] == '\0')
4959 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4962 while (isdigit (matching[0]))
4964 if (matching[0] == '\0')
4969 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4970 with a N at the end. Unfortunately, the compiler uses the same
4971 convention for other internal types it creates. So treating
4972 all entity names that end with an "N" as a name suffix causes
4973 some regressions. For instance, consider the case of an enumerated
4974 type. To support the 'Image attribute, it creates an array whose
4976 Having a single character like this as a suffix carrying some
4977 information is a bit risky. Perhaps we should change the encoding
4978 to be something like "_N" instead. In the meantime, do not do
4979 the following check. */
4980 /* Protected Object Subprograms */
4981 if (len == 1 && str [0] == 'N')
4986 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4989 while (isdigit (matching[0]))
4991 if ((matching[0] == 'b' || matching[0] == 's')
4992 && matching [1] == '\0')
4996 /* ??? We should not modify STR directly, as we are doing below. This
4997 is fine in this case, but may become problematic later if we find
4998 that this alternative did not work, and want to try matching
4999 another one from the begining of STR. Since we modified it, we
5000 won't be able to find the begining of the string anymore! */
5004 while (str[0] != '_' && str[0] != '\0')
5006 if (str[0] != 'n' && str[0] != 'b')
5012 if (str[0] == '\000')
5017 if (str[1] != '_' || str[2] == '\000')
5021 if (strcmp (str + 3, "JM") == 0)
5023 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5024 the LJM suffix in favor of the JM one. But we will
5025 still accept LJM as a valid suffix for a reasonable
5026 amount of time, just to allow ourselves to debug programs
5027 compiled using an older version of GNAT. */
5028 if (strcmp (str + 3, "LJM") == 0)
5032 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5033 || str[4] == 'U' || str[4] == 'P')
5035 if (str[4] == 'R' && str[5] != 'T')
5039 if (!isdigit (str[2]))
5041 for (k = 3; str[k] != '\0'; k += 1)
5042 if (!isdigit (str[k]) && str[k] != '_')
5046 if (str[0] == '$' && isdigit (str[1]))
5048 for (k = 2; str[k] != '\0'; k += 1)
5049 if (!isdigit (str[k]) && str[k] != '_')
5056 /* Return nonzero if the given string starts with a dot ('.')
5057 followed by zero or more digits.
5059 Note: brobecker/2003-11-10: A forward declaration has not been
5060 added at the begining of this file yet, because this function
5061 is only used to work around a problem found during wild matching
5062 when trying to match minimal symbol names against symbol names
5063 obtained from dwarf-2 data. This function is therefore currently
5064 only used in wild_match() and is likely to be deleted when the
5065 problem in dwarf-2 is fixed. */
5068 is_dot_digits_suffix (const char *str)
5074 while (isdigit (str[0]))
5076 return (str[0] == '\0');
5079 /* Return non-zero if the string starting at NAME and ending before
5080 NAME_END contains no capital letters. */
5083 is_valid_name_for_wild_match (const char *name0)
5085 const char *decoded_name = ada_decode (name0);
5088 for (i=0; decoded_name[i] != '\0'; i++)
5089 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5095 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5096 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5097 informational suffixes of NAME (i.e., for which is_name_suffix is
5101 wild_match (const char *patn0, int patn_len, const char *name0)
5108 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5109 stored in the symbol table for nested function names is sometimes
5110 different from the name of the associated entity stored in
5111 the dwarf-2 data: This is the case for nested subprograms, where
5112 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5113 while the symbol name from the dwarf-2 data does not.
5115 Although the DWARF-2 standard documents that entity names stored
5116 in the dwarf-2 data should be identical to the name as seen in
5117 the source code, GNAT takes a different approach as we already use
5118 a special encoding mechanism to convey the information so that
5119 a C debugger can still use the information generated to debug
5120 Ada programs. A corollary is that the symbol names in the dwarf-2
5121 data should match the names found in the symbol table. I therefore
5122 consider this issue as a compiler defect.
5124 Until the compiler is properly fixed, we work-around the problem
5125 by ignoring such suffixes during the match. We do so by making
5126 a copy of PATN0 and NAME0, and then by stripping such a suffix
5127 if present. We then perform the match on the resulting strings. */
5130 name_len = strlen (name0);
5132 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5133 strcpy (name, name0);
5134 dot = strrchr (name, '.');
5135 if (dot != NULL && is_dot_digits_suffix (dot))
5138 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5139 strncpy (patn, patn0, patn_len);
5140 patn[patn_len] = '\0';
5141 dot = strrchr (patn, '.');
5142 if (dot != NULL && is_dot_digits_suffix (dot))
5145 patn_len = dot - patn;
5149 /* Now perform the wild match. */
5151 name_len = strlen (name);
5152 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5153 && strncmp (patn, name + 5, patn_len) == 0
5154 && is_name_suffix (name + patn_len + 5))
5157 while (name_len >= patn_len)
5159 if (strncmp (patn, name, patn_len) == 0
5160 && is_name_suffix (name + patn_len))
5161 return (name == name_start || is_valid_name_for_wild_match (name0));
5168 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5173 if (!islower (name[2]))
5180 if (!islower (name[1]))
5191 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5192 vector *defn_symbols, updating the list of symbols in OBSTACKP
5193 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5194 OBJFILE is the section containing BLOCK.
5195 SYMTAB is recorded with each symbol added. */
5198 ada_add_block_symbols (struct obstack *obstackp,
5199 struct block *block, const char *name,
5200 domain_enum domain, struct objfile *objfile,
5203 struct dict_iterator iter;
5204 int name_len = strlen (name);
5205 /* A matching argument symbol, if any. */
5206 struct symbol *arg_sym;
5207 /* Set true when we find a matching non-argument symbol. */
5216 ALL_BLOCK_SYMBOLS (block, iter, sym)
5218 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5219 SYMBOL_DOMAIN (sym), domain)
5220 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5222 switch (SYMBOL_CLASS (sym))
5228 case LOC_REGPARM_ADDR:
5229 case LOC_BASEREG_ARG:
5230 case LOC_COMPUTED_ARG:
5233 case LOC_UNRESOLVED:
5237 add_defn_to_vec (obstackp,
5238 fixup_symbol_section (sym, objfile),
5247 ALL_BLOCK_SYMBOLS (block, iter, sym)
5249 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5250 SYMBOL_DOMAIN (sym), domain))
5252 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5254 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5256 switch (SYMBOL_CLASS (sym))
5262 case LOC_REGPARM_ADDR:
5263 case LOC_BASEREG_ARG:
5264 case LOC_COMPUTED_ARG:
5267 case LOC_UNRESOLVED:
5271 add_defn_to_vec (obstackp,
5272 fixup_symbol_section (sym, objfile),
5281 if (!found_sym && arg_sym != NULL)
5283 add_defn_to_vec (obstackp,
5284 fixup_symbol_section (arg_sym, objfile),
5293 ALL_BLOCK_SYMBOLS (block, iter, sym)
5295 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5296 SYMBOL_DOMAIN (sym), domain))
5300 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5303 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5305 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5310 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5312 switch (SYMBOL_CLASS (sym))
5318 case LOC_REGPARM_ADDR:
5319 case LOC_BASEREG_ARG:
5320 case LOC_COMPUTED_ARG:
5323 case LOC_UNRESOLVED:
5327 add_defn_to_vec (obstackp,
5328 fixup_symbol_section (sym, objfile),
5336 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5337 They aren't parameters, right? */
5338 if (!found_sym && arg_sym != NULL)
5340 add_defn_to_vec (obstackp,
5341 fixup_symbol_section (arg_sym, objfile),
5348 /* Symbol Completion */
5350 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5351 name in a form that's appropriate for the completion. The result
5352 does not need to be deallocated, but is only good until the next call.
5354 TEXT_LEN is equal to the length of TEXT.
5355 Perform a wild match if WILD_MATCH is set.
5356 ENCODED should be set if TEXT represents the start of a symbol name
5357 in its encoded form. */
5360 symbol_completion_match (const char *sym_name,
5361 const char *text, int text_len,
5362 int wild_match, int encoded)
5365 const int verbatim_match = (text[0] == '<');
5370 /* Strip the leading angle bracket. */
5375 /* First, test against the fully qualified name of the symbol. */
5377 if (strncmp (sym_name, text, text_len) == 0)
5380 if (match && !encoded)
5382 /* One needed check before declaring a positive match is to verify
5383 that iff we are doing a verbatim match, the decoded version
5384 of the symbol name starts with '<'. Otherwise, this symbol name
5385 is not a suitable completion. */
5386 const char *sym_name_copy = sym_name;
5387 int has_angle_bracket;
5389 sym_name = ada_decode (sym_name);
5390 has_angle_bracket = (sym_name[0] == '<');
5391 match = (has_angle_bracket == verbatim_match);
5392 sym_name = sym_name_copy;
5395 if (match && !verbatim_match)
5397 /* When doing non-verbatim match, another check that needs to
5398 be done is to verify that the potentially matching symbol name
5399 does not include capital letters, because the ada-mode would
5400 not be able to understand these symbol names without the
5401 angle bracket notation. */
5404 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5409 /* Second: Try wild matching... */
5411 if (!match && wild_match)
5413 /* Since we are doing wild matching, this means that TEXT
5414 may represent an unqualified symbol name. We therefore must
5415 also compare TEXT against the unqualified name of the symbol. */
5416 sym_name = ada_unqualified_name (ada_decode (sym_name));
5418 if (strncmp (sym_name, text, text_len) == 0)
5422 /* Finally: If we found a mach, prepare the result to return. */
5428 sym_name = add_angle_brackets (sym_name);
5431 sym_name = ada_decode (sym_name);
5436 typedef char *char_ptr;
5437 DEF_VEC_P (char_ptr);
5439 /* A companion function to ada_make_symbol_completion_list().
5440 Check if SYM_NAME represents a symbol which name would be suitable
5441 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5442 it is appended at the end of the given string vector SV.
5444 ORIG_TEXT is the string original string from the user command
5445 that needs to be completed. WORD is the entire command on which
5446 completion should be performed. These two parameters are used to
5447 determine which part of the symbol name should be added to the
5449 if WILD_MATCH is set, then wild matching is performed.
5450 ENCODED should be set if TEXT represents a symbol name in its
5451 encoded formed (in which case the completion should also be
5455 symbol_completion_add (VEC(char_ptr) **sv,
5456 const char *sym_name,
5457 const char *text, int text_len,
5458 const char *orig_text, const char *word,
5459 int wild_match, int encoded)
5461 const char *match = symbol_completion_match (sym_name, text, text_len,
5462 wild_match, encoded);
5468 /* We found a match, so add the appropriate completion to the given
5471 if (word == orig_text)
5473 completion = xmalloc (strlen (match) + 5);
5474 strcpy (completion, match);
5476 else if (word > orig_text)
5478 /* Return some portion of sym_name. */
5479 completion = xmalloc (strlen (match) + 5);
5480 strcpy (completion, match + (word - orig_text));
5484 /* Return some of ORIG_TEXT plus sym_name. */
5485 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5486 strncpy (completion, word, orig_text - word);
5487 completion[orig_text - word] = '\0';
5488 strcat (completion, match);
5491 VEC_safe_push (char_ptr, *sv, completion);
5494 /* Return a list of possible symbol names completing TEXT0. The list
5495 is NULL terminated. WORD is the entire command on which completion
5499 ada_make_symbol_completion_list (char *text0, char *word)
5505 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5508 struct partial_symtab *ps;
5509 struct minimal_symbol *msymbol;
5510 struct objfile *objfile;
5511 struct block *b, *surrounding_static_block = 0;
5513 struct dict_iterator iter;
5515 if (text0[0] == '<')
5517 text = xstrdup (text0);
5518 make_cleanup (xfree, text);
5519 text_len = strlen (text);
5525 text = xstrdup (ada_encode (text0));
5526 make_cleanup (xfree, text);
5527 text_len = strlen (text);
5528 for (i = 0; i < text_len; i++)
5529 text[i] = tolower (text[i]);
5531 encoded = (strstr (text0, "__") != NULL);
5532 /* If the name contains a ".", then the user is entering a fully
5533 qualified entity name, and the match must not be done in wild
5534 mode. Similarly, if the user wants to complete what looks like
5535 an encoded name, the match must not be done in wild mode. */
5536 wild_match = (strchr (text0, '.') == NULL && !encoded);
5539 /* First, look at the partial symtab symbols. */
5540 ALL_PSYMTABS (objfile, ps)
5542 struct partial_symbol **psym;
5544 /* If the psymtab's been read in we'll get it when we search
5545 through the blockvector. */
5549 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5550 psym < (objfile->global_psymbols.list + ps->globals_offset
5551 + ps->n_global_syms); psym++)
5554 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5555 text, text_len, text0, word,
5556 wild_match, encoded);
5559 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5560 psym < (objfile->static_psymbols.list + ps->statics_offset
5561 + ps->n_static_syms); psym++)
5564 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5565 text, text_len, text0, word,
5566 wild_match, encoded);
5570 /* At this point scan through the misc symbol vectors and add each
5571 symbol you find to the list. Eventually we want to ignore
5572 anything that isn't a text symbol (everything else will be
5573 handled by the psymtab code above). */
5575 ALL_MSYMBOLS (objfile, msymbol)
5578 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5579 text, text_len, text0, word, wild_match, encoded);
5582 /* Search upwards from currently selected frame (so that we can
5583 complete on local vars. */
5585 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5587 if (!BLOCK_SUPERBLOCK (b))
5588 surrounding_static_block = b; /* For elmin of dups */
5590 ALL_BLOCK_SYMBOLS (b, iter, sym)
5592 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5593 text, text_len, text0, word,
5594 wild_match, encoded);
5598 /* Go through the symtabs and check the externs and statics for
5599 symbols which match. */
5601 ALL_SYMTABS (objfile, s)
5604 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5605 ALL_BLOCK_SYMBOLS (b, iter, sym)
5607 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5608 text, text_len, text0, word,
5609 wild_match, encoded);
5613 ALL_SYMTABS (objfile, s)
5616 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5617 /* Don't do this block twice. */
5618 if (b == surrounding_static_block)
5620 ALL_BLOCK_SYMBOLS (b, iter, sym)
5622 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5623 text, text_len, text0, word,
5624 wild_match, encoded);
5628 /* Append the closing NULL entry. */
5629 VEC_safe_push (char_ptr, completions, NULL);
5631 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5632 return the copy. It's unfortunate that we have to make a copy
5633 of an array that we're about to destroy, but there is nothing much
5634 we can do about it. Fortunately, it's typically not a very large
5637 const size_t completions_size =
5638 VEC_length (char_ptr, completions) * sizeof (char *);
5639 char **result = malloc (completions_size);
5641 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5643 VEC_free (char_ptr, completions);
5650 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5651 for tagged types. */
5654 ada_is_dispatch_table_ptr_type (struct type *type)
5658 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5661 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5665 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5668 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5669 to be invisible to users. */
5672 ada_is_ignored_field (struct type *type, int field_num)
5674 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5677 /* Check the name of that field. */
5679 const char *name = TYPE_FIELD_NAME (type, field_num);
5681 /* Anonymous field names should not be printed.
5682 brobecker/2007-02-20: I don't think this can actually happen
5683 but we don't want to print the value of annonymous fields anyway. */
5687 /* A field named "_parent" is internally generated by GNAT for
5688 tagged types, and should not be printed either. */
5689 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5693 /* If this is the dispatch table of a tagged type, then ignore. */
5694 if (ada_is_tagged_type (type, 1)
5695 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5698 /* Not a special field, so it should not be ignored. */
5702 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5703 pointer or reference type whose ultimate target has a tag field. */
5706 ada_is_tagged_type (struct type *type, int refok)
5708 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5711 /* True iff TYPE represents the type of X'Tag */
5714 ada_is_tag_type (struct type *type)
5716 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5720 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5721 return (name != NULL
5722 && strcmp (name, "ada__tags__dispatch_table") == 0);
5726 /* The type of the tag on VAL. */
5729 ada_tag_type (struct value *val)
5731 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5734 /* The value of the tag on VAL. */
5737 ada_value_tag (struct value *val)
5739 return ada_value_struct_elt (val, "_tag", 0);
5742 /* The value of the tag on the object of type TYPE whose contents are
5743 saved at VALADDR, if it is non-null, or is at memory address
5746 static struct value *
5747 value_tag_from_contents_and_address (struct type *type,
5748 const gdb_byte *valaddr,
5751 int tag_byte_offset, dummy1, dummy2;
5752 struct type *tag_type;
5753 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5756 const gdb_byte *valaddr1 = ((valaddr == NULL)
5758 : valaddr + tag_byte_offset);
5759 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5761 return value_from_contents_and_address (tag_type, valaddr1, address1);
5766 static struct type *
5767 type_from_tag (struct value *tag)
5769 const char *type_name = ada_tag_name (tag);
5770 if (type_name != NULL)
5771 return ada_find_any_type (ada_encode (type_name));
5782 static int ada_tag_name_1 (void *);
5783 static int ada_tag_name_2 (struct tag_args *);
5785 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5786 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5787 The value stored in ARGS->name is valid until the next call to
5791 ada_tag_name_1 (void *args0)
5793 struct tag_args *args = (struct tag_args *) args0;
5794 static char name[1024];
5798 val = ada_value_struct_elt (args->tag, "tsd", 1);
5800 return ada_tag_name_2 (args);
5801 val = ada_value_struct_elt (val, "expanded_name", 1);
5804 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5805 for (p = name; *p != '\0'; p += 1)
5812 /* Utility function for ada_tag_name_1 that tries the second
5813 representation for the dispatch table (in which there is no
5814 explicit 'tsd' field in the referent of the tag pointer, and instead
5815 the tsd pointer is stored just before the dispatch table. */
5818 ada_tag_name_2 (struct tag_args *args)
5820 struct type *info_type;
5821 static char name[1024];
5823 struct value *val, *valp;
5826 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5827 if (info_type == NULL)
5829 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5830 valp = value_cast (info_type, args->tag);
5833 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5836 val = ada_value_struct_elt (val, "expanded_name", 1);
5839 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5840 for (p = name; *p != '\0'; p += 1)
5847 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5851 ada_tag_name (struct value *tag)
5853 struct tag_args args;
5854 if (!ada_is_tag_type (value_type (tag)))
5858 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5862 /* The parent type of TYPE, or NULL if none. */
5865 ada_parent_type (struct type *type)
5869 type = ada_check_typedef (type);
5871 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5874 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5875 if (ada_is_parent_field (type, i))
5876 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5881 /* True iff field number FIELD_NUM of structure type TYPE contains the
5882 parent-type (inherited) fields of a derived type. Assumes TYPE is
5883 a structure type with at least FIELD_NUM+1 fields. */
5886 ada_is_parent_field (struct type *type, int field_num)
5888 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5889 return (name != NULL
5890 && (strncmp (name, "PARENT", 6) == 0
5891 || strncmp (name, "_parent", 7) == 0));
5894 /* True iff field number FIELD_NUM of structure type TYPE is a
5895 transparent wrapper field (which should be silently traversed when doing
5896 field selection and flattened when printing). Assumes TYPE is a
5897 structure type with at least FIELD_NUM+1 fields. Such fields are always
5901 ada_is_wrapper_field (struct type *type, int field_num)
5903 const char *name = TYPE_FIELD_NAME (type, field_num);
5904 return (name != NULL
5905 && (strncmp (name, "PARENT", 6) == 0
5906 || strcmp (name, "REP") == 0
5907 || strncmp (name, "_parent", 7) == 0
5908 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5911 /* True iff field number FIELD_NUM of structure or union type TYPE
5912 is a variant wrapper. Assumes TYPE is a structure type with at least
5913 FIELD_NUM+1 fields. */
5916 ada_is_variant_part (struct type *type, int field_num)
5918 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5919 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5920 || (is_dynamic_field (type, field_num)
5921 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5922 == TYPE_CODE_UNION)));
5925 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5926 whose discriminants are contained in the record type OUTER_TYPE,
5927 returns the type of the controlling discriminant for the variant. */
5930 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5932 char *name = ada_variant_discrim_name (var_type);
5934 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5936 return builtin_type_int;
5941 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5942 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5943 represents a 'when others' clause; otherwise 0. */
5946 ada_is_others_clause (struct type *type, int field_num)
5948 const char *name = TYPE_FIELD_NAME (type, field_num);
5949 return (name != NULL && name[0] == 'O');
5952 /* Assuming that TYPE0 is the type of the variant part of a record,
5953 returns the name of the discriminant controlling the variant.
5954 The value is valid until the next call to ada_variant_discrim_name. */
5957 ada_variant_discrim_name (struct type *type0)
5959 static char *result = NULL;
5960 static size_t result_len = 0;
5963 const char *discrim_end;
5964 const char *discrim_start;
5966 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5967 type = TYPE_TARGET_TYPE (type0);
5971 name = ada_type_name (type);
5973 if (name == NULL || name[0] == '\000')
5976 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5979 if (strncmp (discrim_end, "___XVN", 6) == 0)
5982 if (discrim_end == name)
5985 for (discrim_start = discrim_end; discrim_start != name + 3;
5988 if (discrim_start == name + 1)
5990 if ((discrim_start > name + 3
5991 && strncmp (discrim_start - 3, "___", 3) == 0)
5992 || discrim_start[-1] == '.')
5996 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5997 strncpy (result, discrim_start, discrim_end - discrim_start);
5998 result[discrim_end - discrim_start] = '\0';
6002 /* Scan STR for a subtype-encoded number, beginning at position K.
6003 Put the position of the character just past the number scanned in
6004 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6005 Return 1 if there was a valid number at the given position, and 0
6006 otherwise. A "subtype-encoded" number consists of the absolute value
6007 in decimal, followed by the letter 'm' to indicate a negative number.
6008 Assumes 0m does not occur. */
6011 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6015 if (!isdigit (str[k]))
6018 /* Do it the hard way so as not to make any assumption about
6019 the relationship of unsigned long (%lu scan format code) and
6022 while (isdigit (str[k]))
6024 RU = RU * 10 + (str[k] - '0');
6031 *R = (-(LONGEST) (RU - 1)) - 1;
6037 /* NOTE on the above: Technically, C does not say what the results of
6038 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6039 number representable as a LONGEST (although either would probably work
6040 in most implementations). When RU>0, the locution in the then branch
6041 above is always equivalent to the negative of RU. */
6048 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6049 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6050 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6053 ada_in_variant (LONGEST val, struct type *type, int field_num)
6055 const char *name = TYPE_FIELD_NAME (type, field_num);
6068 if (!ada_scan_number (name, p + 1, &W, &p))
6077 if (!ada_scan_number (name, p + 1, &L, &p)
6078 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6080 if (val >= L && val <= U)
6092 /* FIXME: Lots of redundancy below. Try to consolidate. */
6094 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6095 ARG_TYPE, extract and return the value of one of its (non-static)
6096 fields. FIELDNO says which field. Differs from value_primitive_field
6097 only in that it can handle packed values of arbitrary type. */
6099 static struct value *
6100 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6101 struct type *arg_type)
6105 arg_type = ada_check_typedef (arg_type);
6106 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6108 /* Handle packed fields. */
6110 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6112 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6113 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6115 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6116 offset + bit_pos / 8,
6117 bit_pos % 8, bit_size, type);
6120 return value_primitive_field (arg1, offset, fieldno, arg_type);
6123 /* Find field with name NAME in object of type TYPE. If found,
6124 set the following for each argument that is non-null:
6125 - *FIELD_TYPE_P to the field's type;
6126 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6127 an object of that type;
6128 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6129 - *BIT_SIZE_P to its size in bits if the field is packed, and
6131 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6132 fields up to but not including the desired field, or by the total
6133 number of fields if not found. A NULL value of NAME never
6134 matches; the function just counts visible fields in this case.
6136 Returns 1 if found, 0 otherwise. */
6139 find_struct_field (char *name, struct type *type, int offset,
6140 struct type **field_type_p,
6141 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6146 type = ada_check_typedef (type);
6148 if (field_type_p != NULL)
6149 *field_type_p = NULL;
6150 if (byte_offset_p != NULL)
6152 if (bit_offset_p != NULL)
6154 if (bit_size_p != NULL)
6157 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6159 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6160 int fld_offset = offset + bit_pos / 8;
6161 char *t_field_name = TYPE_FIELD_NAME (type, i);
6163 if (t_field_name == NULL)
6166 else if (name != NULL && field_name_match (t_field_name, name))
6168 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6169 if (field_type_p != NULL)
6170 *field_type_p = TYPE_FIELD_TYPE (type, i);
6171 if (byte_offset_p != NULL)
6172 *byte_offset_p = fld_offset;
6173 if (bit_offset_p != NULL)
6174 *bit_offset_p = bit_pos % 8;
6175 if (bit_size_p != NULL)
6176 *bit_size_p = bit_size;
6179 else if (ada_is_wrapper_field (type, i))
6181 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6182 field_type_p, byte_offset_p, bit_offset_p,
6183 bit_size_p, index_p))
6186 else if (ada_is_variant_part (type, i))
6188 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6191 struct type *field_type
6192 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6194 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6196 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6198 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6199 field_type_p, byte_offset_p,
6200 bit_offset_p, bit_size_p, index_p))
6204 else if (index_p != NULL)
6210 /* Number of user-visible fields in record type TYPE. */
6213 num_visible_fields (struct type *type)
6217 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6221 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6222 and search in it assuming it has (class) type TYPE.
6223 If found, return value, else return NULL.
6225 Searches recursively through wrapper fields (e.g., '_parent'). */
6227 static struct value *
6228 ada_search_struct_field (char *name, struct value *arg, int offset,
6232 type = ada_check_typedef (type);
6234 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6236 char *t_field_name = TYPE_FIELD_NAME (type, i);
6238 if (t_field_name == NULL)
6241 else if (field_name_match (t_field_name, name))
6242 return ada_value_primitive_field (arg, offset, i, type);
6244 else if (ada_is_wrapper_field (type, i))
6246 struct value *v = /* Do not let indent join lines here. */
6247 ada_search_struct_field (name, arg,
6248 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6249 TYPE_FIELD_TYPE (type, i));
6254 else if (ada_is_variant_part (type, i))
6256 /* PNH: Do we ever get here? See find_struct_field. */
6258 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6259 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6261 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6263 struct value *v = ada_search_struct_field /* Force line break. */
6265 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6266 TYPE_FIELD_TYPE (field_type, j));
6275 static struct value *ada_index_struct_field_1 (int *, struct value *,
6276 int, struct type *);
6279 /* Return field #INDEX in ARG, where the index is that returned by
6280 * find_struct_field through its INDEX_P argument. Adjust the address
6281 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6282 * If found, return value, else return NULL. */
6284 static struct value *
6285 ada_index_struct_field (int index, struct value *arg, int offset,
6288 return ada_index_struct_field_1 (&index, arg, offset, type);
6292 /* Auxiliary function for ada_index_struct_field. Like
6293 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6296 static struct value *
6297 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6301 type = ada_check_typedef (type);
6303 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6305 if (TYPE_FIELD_NAME (type, i) == NULL)
6307 else if (ada_is_wrapper_field (type, i))
6309 struct value *v = /* Do not let indent join lines here. */
6310 ada_index_struct_field_1 (index_p, arg,
6311 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6312 TYPE_FIELD_TYPE (type, i));
6317 else if (ada_is_variant_part (type, i))
6319 /* PNH: Do we ever get here? See ada_search_struct_field,
6320 find_struct_field. */
6321 error (_("Cannot assign this kind of variant record"));
6323 else if (*index_p == 0)
6324 return ada_value_primitive_field (arg, offset, i, type);
6331 /* Given ARG, a value of type (pointer or reference to a)*
6332 structure/union, extract the component named NAME from the ultimate
6333 target structure/union and return it as a value with its
6334 appropriate type. If ARG is a pointer or reference and the field
6335 is not packed, returns a reference to the field, otherwise the
6336 value of the field (an lvalue if ARG is an lvalue).
6338 The routine searches for NAME among all members of the structure itself
6339 and (recursively) among all members of any wrapper members
6342 If NO_ERR, then simply return NULL in case of error, rather than
6346 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6348 struct type *t, *t1;
6352 t1 = t = ada_check_typedef (value_type (arg));
6353 if (TYPE_CODE (t) == TYPE_CODE_REF)
6355 t1 = TYPE_TARGET_TYPE (t);
6358 t1 = ada_check_typedef (t1);
6359 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6361 arg = coerce_ref (arg);
6366 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6368 t1 = TYPE_TARGET_TYPE (t);
6371 t1 = ada_check_typedef (t1);
6372 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6374 arg = value_ind (arg);
6381 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6385 v = ada_search_struct_field (name, arg, 0, t);
6388 int bit_offset, bit_size, byte_offset;
6389 struct type *field_type;
6392 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6393 address = value_as_address (arg);
6395 address = unpack_pointer (t, value_contents (arg));
6397 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6398 if (find_struct_field (name, t1, 0,
6399 &field_type, &byte_offset, &bit_offset,
6404 if (TYPE_CODE (t) == TYPE_CODE_REF)
6405 arg = ada_coerce_ref (arg);
6407 arg = ada_value_ind (arg);
6408 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6409 bit_offset, bit_size,
6413 v = value_from_pointer (lookup_reference_type (field_type),
6414 address + byte_offset);
6418 if (v != NULL || no_err)
6421 error (_("There is no member named %s."), name);
6427 error (_("Attempt to extract a component of a value that is not a record."));
6430 /* Given a type TYPE, look up the type of the component of type named NAME.
6431 If DISPP is non-null, add its byte displacement from the beginning of a
6432 structure (pointed to by a value) of type TYPE to *DISPP (does not
6433 work for packed fields).
6435 Matches any field whose name has NAME as a prefix, possibly
6438 TYPE can be either a struct or union. If REFOK, TYPE may also
6439 be a (pointer or reference)+ to a struct or union, and the
6440 ultimate target type will be searched.
6442 Looks recursively into variant clauses and parent types.
6444 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6445 TYPE is not a type of the right kind. */
6447 static struct type *
6448 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6449 int noerr, int *dispp)
6456 if (refok && type != NULL)
6459 type = ada_check_typedef (type);
6460 if (TYPE_CODE (type) != TYPE_CODE_PTR
6461 && TYPE_CODE (type) != TYPE_CODE_REF)
6463 type = TYPE_TARGET_TYPE (type);
6467 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6468 && TYPE_CODE (type) != TYPE_CODE_UNION))
6474 target_terminal_ours ();
6475 gdb_flush (gdb_stdout);
6477 error (_("Type (null) is not a structure or union type"));
6480 /* XXX: type_sprint */
6481 fprintf_unfiltered (gdb_stderr, _("Type "));
6482 type_print (type, "", gdb_stderr, -1);
6483 error (_(" is not a structure or union type"));
6488 type = to_static_fixed_type (type);
6490 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6492 char *t_field_name = TYPE_FIELD_NAME (type, i);
6496 if (t_field_name == NULL)
6499 else if (field_name_match (t_field_name, name))
6502 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6503 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6506 else if (ada_is_wrapper_field (type, i))
6509 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6514 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6519 else if (ada_is_variant_part (type, i))
6522 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6524 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6527 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6532 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6543 target_terminal_ours ();
6544 gdb_flush (gdb_stdout);
6547 /* XXX: type_sprint */
6548 fprintf_unfiltered (gdb_stderr, _("Type "));
6549 type_print (type, "", gdb_stderr, -1);
6550 error (_(" has no component named <null>"));
6554 /* XXX: type_sprint */
6555 fprintf_unfiltered (gdb_stderr, _("Type "));
6556 type_print (type, "", gdb_stderr, -1);
6557 error (_(" has no component named %s"), name);
6564 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6565 within a value of type OUTER_TYPE that is stored in GDB at
6566 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6567 numbering from 0) is applicable. Returns -1 if none are. */
6570 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6571 const gdb_byte *outer_valaddr)
6575 char *discrim_name = ada_variant_discrim_name (var_type);
6576 struct value *outer;
6577 struct value *discrim;
6578 LONGEST discrim_val;
6580 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6581 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6582 if (discrim == NULL)
6584 discrim_val = value_as_long (discrim);
6587 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6589 if (ada_is_others_clause (var_type, i))
6591 else if (ada_in_variant (discrim_val, var_type, i))
6595 return others_clause;
6600 /* Dynamic-Sized Records */
6602 /* Strategy: The type ostensibly attached to a value with dynamic size
6603 (i.e., a size that is not statically recorded in the debugging
6604 data) does not accurately reflect the size or layout of the value.
6605 Our strategy is to convert these values to values with accurate,
6606 conventional types that are constructed on the fly. */
6608 /* There is a subtle and tricky problem here. In general, we cannot
6609 determine the size of dynamic records without its data. However,
6610 the 'struct value' data structure, which GDB uses to represent
6611 quantities in the inferior process (the target), requires the size
6612 of the type at the time of its allocation in order to reserve space
6613 for GDB's internal copy of the data. That's why the
6614 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6615 rather than struct value*s.
6617 However, GDB's internal history variables ($1, $2, etc.) are
6618 struct value*s containing internal copies of the data that are not, in
6619 general, the same as the data at their corresponding addresses in
6620 the target. Fortunately, the types we give to these values are all
6621 conventional, fixed-size types (as per the strategy described
6622 above), so that we don't usually have to perform the
6623 'to_fixed_xxx_type' conversions to look at their values.
6624 Unfortunately, there is one exception: if one of the internal
6625 history variables is an array whose elements are unconstrained
6626 records, then we will need to create distinct fixed types for each
6627 element selected. */
6629 /* The upshot of all of this is that many routines take a (type, host
6630 address, target address) triple as arguments to represent a value.
6631 The host address, if non-null, is supposed to contain an internal
6632 copy of the relevant data; otherwise, the program is to consult the
6633 target at the target address. */
6635 /* Assuming that VAL0 represents a pointer value, the result of
6636 dereferencing it. Differs from value_ind in its treatment of
6637 dynamic-sized types. */
6640 ada_value_ind (struct value *val0)
6642 struct value *val = unwrap_value (value_ind (val0));
6643 return ada_to_fixed_value (val);
6646 /* The value resulting from dereferencing any "reference to"
6647 qualifiers on VAL0. */
6649 static struct value *
6650 ada_coerce_ref (struct value *val0)
6652 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6654 struct value *val = val0;
6655 val = coerce_ref (val);
6656 val = unwrap_value (val);
6657 return ada_to_fixed_value (val);
6663 /* Return OFF rounded upward if necessary to a multiple of
6664 ALIGNMENT (a power of 2). */
6667 align_value (unsigned int off, unsigned int alignment)
6669 return (off + alignment - 1) & ~(alignment - 1);
6672 /* Return the bit alignment required for field #F of template type TYPE. */
6675 field_alignment (struct type *type, int f)
6677 const char *name = TYPE_FIELD_NAME (type, f);
6681 /* The field name should never be null, unless the debugging information
6682 is somehow malformed. In this case, we assume the field does not
6683 require any alignment. */
6687 len = strlen (name);
6689 if (!isdigit (name[len - 1]))
6692 if (isdigit (name[len - 2]))
6693 align_offset = len - 2;
6695 align_offset = len - 1;
6697 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6698 return TARGET_CHAR_BIT;
6700 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6703 /* Find a symbol named NAME. Ignores ambiguity. */
6706 ada_find_any_symbol (const char *name)
6710 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6711 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6714 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6718 /* Find a type named NAME. Ignores ambiguity. */
6721 ada_find_any_type (const char *name)
6723 struct symbol *sym = ada_find_any_symbol (name);
6726 return SYMBOL_TYPE (sym);
6731 /* Given NAME and an associated BLOCK, search all symbols for
6732 NAME suffixed with "___XR", which is the ``renaming'' symbol
6733 associated to NAME. Return this symbol if found, return
6737 ada_find_renaming_symbol (const char *name, struct block *block)
6741 sym = find_old_style_renaming_symbol (name, block);
6746 /* Not right yet. FIXME pnh 7/20/2007. */
6747 sym = ada_find_any_symbol (name);
6748 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6754 static struct symbol *
6755 find_old_style_renaming_symbol (const char *name, struct block *block)
6757 const struct symbol *function_sym = block_function (block);
6760 if (function_sym != NULL)
6762 /* If the symbol is defined inside a function, NAME is not fully
6763 qualified. This means we need to prepend the function name
6764 as well as adding the ``___XR'' suffix to build the name of
6765 the associated renaming symbol. */
6766 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6767 /* Function names sometimes contain suffixes used
6768 for instance to qualify nested subprograms. When building
6769 the XR type name, we need to make sure that this suffix is
6770 not included. So do not include any suffix in the function
6771 name length below. */
6772 const int function_name_len = ada_name_prefix_len (function_name);
6773 const int rename_len = function_name_len + 2 /* "__" */
6774 + strlen (name) + 6 /* "___XR\0" */ ;
6776 /* Strip the suffix if necessary. */
6777 function_name[function_name_len] = '\0';
6779 /* Library-level functions are a special case, as GNAT adds
6780 a ``_ada_'' prefix to the function name to avoid namespace
6781 pollution. However, the renaming symbols themselves do not
6782 have this prefix, so we need to skip this prefix if present. */
6783 if (function_name_len > 5 /* "_ada_" */
6784 && strstr (function_name, "_ada_") == function_name)
6785 function_name = function_name + 5;
6787 rename = (char *) alloca (rename_len * sizeof (char));
6788 sprintf (rename, "%s__%s___XR", function_name, name);
6792 const int rename_len = strlen (name) + 6;
6793 rename = (char *) alloca (rename_len * sizeof (char));
6794 sprintf (rename, "%s___XR", name);
6797 return ada_find_any_symbol (rename);
6800 /* Because of GNAT encoding conventions, several GDB symbols may match a
6801 given type name. If the type denoted by TYPE0 is to be preferred to
6802 that of TYPE1 for purposes of type printing, return non-zero;
6803 otherwise return 0. */
6806 ada_prefer_type (struct type *type0, struct type *type1)
6810 else if (type0 == NULL)
6812 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6814 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6816 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6818 else if (ada_is_packed_array_type (type0))
6820 else if (ada_is_array_descriptor_type (type0)
6821 && !ada_is_array_descriptor_type (type1))
6825 const char *type0_name = type_name_no_tag (type0);
6826 const char *type1_name = type_name_no_tag (type1);
6828 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6829 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6835 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6836 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6839 ada_type_name (struct type *type)
6843 else if (TYPE_NAME (type) != NULL)
6844 return TYPE_NAME (type);
6846 return TYPE_TAG_NAME (type);
6849 /* Find a parallel type to TYPE whose name is formed by appending
6850 SUFFIX to the name of TYPE. */
6853 ada_find_parallel_type (struct type *type, const char *suffix)
6856 static size_t name_len = 0;
6858 char *typename = ada_type_name (type);
6860 if (typename == NULL)
6863 len = strlen (typename);
6865 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6867 strcpy (name, typename);
6868 strcpy (name + len, suffix);
6870 return ada_find_any_type (name);
6874 /* If TYPE is a variable-size record type, return the corresponding template
6875 type describing its fields. Otherwise, return NULL. */
6877 static struct type *
6878 dynamic_template_type (struct type *type)
6880 type = ada_check_typedef (type);
6882 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6883 || ada_type_name (type) == NULL)
6887 int len = strlen (ada_type_name (type));
6888 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6891 return ada_find_parallel_type (type, "___XVE");
6895 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6896 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6899 is_dynamic_field (struct type *templ_type, int field_num)
6901 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6903 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6904 && strstr (name, "___XVL") != NULL;
6907 /* The index of the variant field of TYPE, or -1 if TYPE does not
6908 represent a variant record type. */
6911 variant_field_index (struct type *type)
6915 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6918 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6920 if (ada_is_variant_part (type, f))
6926 /* A record type with no fields. */
6928 static struct type *
6929 empty_record (struct objfile *objfile)
6931 struct type *type = alloc_type (objfile);
6932 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6933 TYPE_NFIELDS (type) = 0;
6934 TYPE_FIELDS (type) = NULL;
6935 TYPE_NAME (type) = "<empty>";
6936 TYPE_TAG_NAME (type) = NULL;
6937 TYPE_FLAGS (type) = 0;
6938 TYPE_LENGTH (type) = 0;
6942 /* An ordinary record type (with fixed-length fields) that describes
6943 the value of type TYPE at VALADDR or ADDRESS (see comments at
6944 the beginning of this section) VAL according to GNAT conventions.
6945 DVAL0 should describe the (portion of a) record that contains any
6946 necessary discriminants. It should be NULL if value_type (VAL) is
6947 an outer-level type (i.e., as opposed to a branch of a variant.) A
6948 variant field (unless unchecked) is replaced by a particular branch
6951 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6952 length are not statically known are discarded. As a consequence,
6953 VALADDR, ADDRESS and DVAL0 are ignored.
6955 NOTE: Limitations: For now, we assume that dynamic fields and
6956 variants occupy whole numbers of bytes. However, they need not be
6960 ada_template_to_fixed_record_type_1 (struct type *type,
6961 const gdb_byte *valaddr,
6962 CORE_ADDR address, struct value *dval0,
6963 int keep_dynamic_fields)
6965 struct value *mark = value_mark ();
6968 int nfields, bit_len;
6971 int fld_bit_len, bit_incr;
6974 /* Compute the number of fields in this record type that are going
6975 to be processed: unless keep_dynamic_fields, this includes only
6976 fields whose position and length are static will be processed. */
6977 if (keep_dynamic_fields)
6978 nfields = TYPE_NFIELDS (type);
6982 while (nfields < TYPE_NFIELDS (type)
6983 && !ada_is_variant_part (type, nfields)
6984 && !is_dynamic_field (type, nfields))
6988 rtype = alloc_type (TYPE_OBJFILE (type));
6989 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6990 INIT_CPLUS_SPECIFIC (rtype);
6991 TYPE_NFIELDS (rtype) = nfields;
6992 TYPE_FIELDS (rtype) = (struct field *)
6993 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6994 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6995 TYPE_NAME (rtype) = ada_type_name (type);
6996 TYPE_TAG_NAME (rtype) = NULL;
6997 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7003 for (f = 0; f < nfields; f += 1)
7005 off = align_value (off, field_alignment (type, f))
7006 + TYPE_FIELD_BITPOS (type, f);
7007 TYPE_FIELD_BITPOS (rtype, f) = off;
7008 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7010 if (ada_is_variant_part (type, f))
7013 fld_bit_len = bit_incr = 0;
7015 else if (is_dynamic_field (type, f))
7018 dval = value_from_contents_and_address (rtype, valaddr, address);
7022 /* Get the fixed type of the field. Note that, in this case, we
7023 do not want to get the real type out of the tag: if the current
7024 field is the parent part of a tagged record, we will get the
7025 tag of the object. Clearly wrong: the real type of the parent
7026 is not the real type of the child. We would end up in an infinite
7028 TYPE_FIELD_TYPE (rtype, f) =
7031 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
7032 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7033 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
7034 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7035 bit_incr = fld_bit_len =
7036 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7040 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7041 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7042 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7043 bit_incr = fld_bit_len =
7044 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7046 bit_incr = fld_bit_len =
7047 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
7049 if (off + fld_bit_len > bit_len)
7050 bit_len = off + fld_bit_len;
7052 TYPE_LENGTH (rtype) =
7053 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7056 /* We handle the variant part, if any, at the end because of certain
7057 odd cases in which it is re-ordered so as NOT the last field of
7058 the record. This can happen in the presence of representation
7060 if (variant_field >= 0)
7062 struct type *branch_type;
7064 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7067 dval = value_from_contents_and_address (rtype, valaddr, address);
7072 to_fixed_variant_branch_type
7073 (TYPE_FIELD_TYPE (type, variant_field),
7074 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7075 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7076 if (branch_type == NULL)
7078 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7079 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7080 TYPE_NFIELDS (rtype) -= 1;
7084 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7085 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7087 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7089 if (off + fld_bit_len > bit_len)
7090 bit_len = off + fld_bit_len;
7091 TYPE_LENGTH (rtype) =
7092 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7096 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7097 should contain the alignment of that record, which should be a strictly
7098 positive value. If null or negative, then something is wrong, most
7099 probably in the debug info. In that case, we don't round up the size
7100 of the resulting type. If this record is not part of another structure,
7101 the current RTYPE length might be good enough for our purposes. */
7102 if (TYPE_LENGTH (type) <= 0)
7104 if (TYPE_NAME (rtype))
7105 warning (_("Invalid type size for `%s' detected: %d."),
7106 TYPE_NAME (rtype), TYPE_LENGTH (type));
7108 warning (_("Invalid type size for <unnamed> detected: %d."),
7109 TYPE_LENGTH (type));
7113 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7114 TYPE_LENGTH (type));
7117 value_free_to_mark (mark);
7118 if (TYPE_LENGTH (rtype) > varsize_limit)
7119 error (_("record type with dynamic size is larger than varsize-limit"));
7123 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7126 static struct type *
7127 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7128 CORE_ADDR address, struct value *dval0)
7130 return ada_template_to_fixed_record_type_1 (type, valaddr,
7134 /* An ordinary record type in which ___XVL-convention fields and
7135 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7136 static approximations, containing all possible fields. Uses
7137 no runtime values. Useless for use in values, but that's OK,
7138 since the results are used only for type determinations. Works on both
7139 structs and unions. Representation note: to save space, we memorize
7140 the result of this function in the TYPE_TARGET_TYPE of the
7143 static struct type *
7144 template_to_static_fixed_type (struct type *type0)
7150 if (TYPE_TARGET_TYPE (type0) != NULL)
7151 return TYPE_TARGET_TYPE (type0);
7153 nfields = TYPE_NFIELDS (type0);
7156 for (f = 0; f < nfields; f += 1)
7158 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7159 struct type *new_type;
7161 if (is_dynamic_field (type0, f))
7162 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7164 new_type = static_unwrap_type (field_type);
7165 if (type == type0 && new_type != field_type)
7167 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7168 TYPE_CODE (type) = TYPE_CODE (type0);
7169 INIT_CPLUS_SPECIFIC (type);
7170 TYPE_NFIELDS (type) = nfields;
7171 TYPE_FIELDS (type) = (struct field *)
7172 TYPE_ALLOC (type, nfields * sizeof (struct field));
7173 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7174 sizeof (struct field) * nfields);
7175 TYPE_NAME (type) = ada_type_name (type0);
7176 TYPE_TAG_NAME (type) = NULL;
7177 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
7178 TYPE_LENGTH (type) = 0;
7180 TYPE_FIELD_TYPE (type, f) = new_type;
7181 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7186 /* Given an object of type TYPE whose contents are at VALADDR and
7187 whose address in memory is ADDRESS, returns a revision of TYPE --
7188 a non-dynamic-sized record with a variant part -- in which
7189 the variant part is replaced with the appropriate branch. Looks
7190 for discriminant values in DVAL0, which can be NULL if the record
7191 contains the necessary discriminant values. */
7193 static struct type *
7194 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7195 CORE_ADDR address, struct value *dval0)
7197 struct value *mark = value_mark ();
7200 struct type *branch_type;
7201 int nfields = TYPE_NFIELDS (type);
7202 int variant_field = variant_field_index (type);
7204 if (variant_field == -1)
7208 dval = value_from_contents_and_address (type, valaddr, address);
7212 rtype = alloc_type (TYPE_OBJFILE (type));
7213 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7214 INIT_CPLUS_SPECIFIC (rtype);
7215 TYPE_NFIELDS (rtype) = nfields;
7216 TYPE_FIELDS (rtype) =
7217 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7218 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7219 sizeof (struct field) * nfields);
7220 TYPE_NAME (rtype) = ada_type_name (type);
7221 TYPE_TAG_NAME (rtype) = NULL;
7222 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7223 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7225 branch_type = to_fixed_variant_branch_type
7226 (TYPE_FIELD_TYPE (type, variant_field),
7227 cond_offset_host (valaddr,
7228 TYPE_FIELD_BITPOS (type, variant_field)
7230 cond_offset_target (address,
7231 TYPE_FIELD_BITPOS (type, variant_field)
7232 / TARGET_CHAR_BIT), dval);
7233 if (branch_type == NULL)
7236 for (f = variant_field + 1; f < nfields; f += 1)
7237 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7238 TYPE_NFIELDS (rtype) -= 1;
7242 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7243 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7244 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7245 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7247 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7249 value_free_to_mark (mark);
7253 /* An ordinary record type (with fixed-length fields) that describes
7254 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7255 beginning of this section]. Any necessary discriminants' values
7256 should be in DVAL, a record value; it may be NULL if the object
7257 at ADDR itself contains any necessary discriminant values.
7258 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7259 values from the record are needed. Except in the case that DVAL,
7260 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7261 unchecked) is replaced by a particular branch of the variant.
7263 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7264 is questionable and may be removed. It can arise during the
7265 processing of an unconstrained-array-of-record type where all the
7266 variant branches have exactly the same size. This is because in
7267 such cases, the compiler does not bother to use the XVS convention
7268 when encoding the record. I am currently dubious of this
7269 shortcut and suspect the compiler should be altered. FIXME. */
7271 static struct type *
7272 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7273 CORE_ADDR address, struct value *dval)
7275 struct type *templ_type;
7277 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7280 templ_type = dynamic_template_type (type0);
7282 if (templ_type != NULL)
7283 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7284 else if (variant_field_index (type0) >= 0)
7286 if (dval == NULL && valaddr == NULL && address == 0)
7288 return to_record_with_fixed_variant_part (type0, valaddr, address,
7293 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
7299 /* An ordinary record type (with fixed-length fields) that describes
7300 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7301 union type. Any necessary discriminants' values should be in DVAL,
7302 a record value. That is, this routine selects the appropriate
7303 branch of the union at ADDR according to the discriminant value
7304 indicated in the union's type name. */
7306 static struct type *
7307 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7308 CORE_ADDR address, struct value *dval)
7311 struct type *templ_type;
7312 struct type *var_type;
7314 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7315 var_type = TYPE_TARGET_TYPE (var_type0);
7317 var_type = var_type0;
7319 templ_type = ada_find_parallel_type (var_type, "___XVU");
7321 if (templ_type != NULL)
7322 var_type = templ_type;
7325 ada_which_variant_applies (var_type,
7326 value_type (dval), value_contents (dval));
7329 return empty_record (TYPE_OBJFILE (var_type));
7330 else if (is_dynamic_field (var_type, which))
7331 return to_fixed_record_type
7332 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7333 valaddr, address, dval);
7334 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7336 to_fixed_record_type
7337 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7339 return TYPE_FIELD_TYPE (var_type, which);
7342 /* Assuming that TYPE0 is an array type describing the type of a value
7343 at ADDR, and that DVAL describes a record containing any
7344 discriminants used in TYPE0, returns a type for the value that
7345 contains no dynamic components (that is, no components whose sizes
7346 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7347 true, gives an error message if the resulting type's size is over
7350 static struct type *
7351 to_fixed_array_type (struct type *type0, struct value *dval,
7354 struct type *index_type_desc;
7355 struct type *result;
7357 if (ada_is_packed_array_type (type0) /* revisit? */
7358 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7361 index_type_desc = ada_find_parallel_type (type0, "___XA");
7362 if (index_type_desc == NULL)
7364 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7365 /* NOTE: elt_type---the fixed version of elt_type0---should never
7366 depend on the contents of the array in properly constructed
7368 /* Create a fixed version of the array element type.
7369 We're not providing the address of an element here,
7370 and thus the actual object value cannot be inspected to do
7371 the conversion. This should not be a problem, since arrays of
7372 unconstrained objects are not allowed. In particular, all
7373 the elements of an array of a tagged type should all be of
7374 the same type specified in the debugging info. No need to
7375 consult the object tag. */
7376 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7378 if (elt_type0 == elt_type)
7381 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7382 elt_type, TYPE_INDEX_TYPE (type0));
7387 struct type *elt_type0;
7390 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7391 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7393 /* NOTE: result---the fixed version of elt_type0---should never
7394 depend on the contents of the array in properly constructed
7396 /* Create a fixed version of the array element type.
7397 We're not providing the address of an element here,
7398 and thus the actual object value cannot be inspected to do
7399 the conversion. This should not be a problem, since arrays of
7400 unconstrained objects are not allowed. In particular, all
7401 the elements of an array of a tagged type should all be of
7402 the same type specified in the debugging info. No need to
7403 consult the object tag. */
7405 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7406 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7408 struct type *range_type =
7409 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7410 dval, TYPE_OBJFILE (type0));
7411 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7412 result, range_type);
7414 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7415 error (_("array type with dynamic size is larger than varsize-limit"));
7418 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7423 /* A standard type (containing no dynamically sized components)
7424 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7425 DVAL describes a record containing any discriminants used in TYPE0,
7426 and may be NULL if there are none, or if the object of type TYPE at
7427 ADDRESS or in VALADDR contains these discriminants.
7429 If CHECK_TAG is not null, in the case of tagged types, this function
7430 attempts to locate the object's tag and use it to compute the actual
7431 type. However, when ADDRESS is null, we cannot use it to determine the
7432 location of the tag, and therefore compute the tagged type's actual type.
7433 So we return the tagged type without consulting the tag. */
7435 static struct type *
7436 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7437 CORE_ADDR address, struct value *dval, int check_tag)
7439 type = ada_check_typedef (type);
7440 switch (TYPE_CODE (type))
7444 case TYPE_CODE_STRUCT:
7446 struct type *static_type = to_static_fixed_type (type);
7447 struct type *fixed_record_type =
7448 to_fixed_record_type (type, valaddr, address, NULL);
7449 /* If STATIC_TYPE is a tagged type and we know the object's address,
7450 then we can determine its tag, and compute the object's actual
7451 type from there. Note that we have to use the fixed record
7452 type (the parent part of the record may have dynamic fields
7453 and the way the location of _tag is expressed may depend on
7456 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7458 struct type *real_type =
7459 type_from_tag (value_tag_from_contents_and_address
7463 if (real_type != NULL)
7464 return to_fixed_record_type (real_type, valaddr, address, NULL);
7466 return fixed_record_type;
7468 case TYPE_CODE_ARRAY:
7469 return to_fixed_array_type (type, dval, 1);
7470 case TYPE_CODE_UNION:
7474 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7478 /* The same as ada_to_fixed_type_1, except that it preserves the type
7479 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7480 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7483 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7484 CORE_ADDR address, struct value *dval, int check_tag)
7487 struct type *fixed_type =
7488 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7490 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7491 && TYPE_TARGET_TYPE (type) == fixed_type)
7497 /* A standard (static-sized) type corresponding as well as possible to
7498 TYPE0, but based on no runtime data. */
7500 static struct type *
7501 to_static_fixed_type (struct type *type0)
7508 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7511 type0 = ada_check_typedef (type0);
7513 switch (TYPE_CODE (type0))
7517 case TYPE_CODE_STRUCT:
7518 type = dynamic_template_type (type0);
7520 return template_to_static_fixed_type (type);
7522 return template_to_static_fixed_type (type0);
7523 case TYPE_CODE_UNION:
7524 type = ada_find_parallel_type (type0, "___XVU");
7526 return template_to_static_fixed_type (type);
7528 return template_to_static_fixed_type (type0);
7532 /* A static approximation of TYPE with all type wrappers removed. */
7534 static struct type *
7535 static_unwrap_type (struct type *type)
7537 if (ada_is_aligner_type (type))
7539 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7540 if (ada_type_name (type1) == NULL)
7541 TYPE_NAME (type1) = ada_type_name (type);
7543 return static_unwrap_type (type1);
7547 struct type *raw_real_type = ada_get_base_type (type);
7548 if (raw_real_type == type)
7551 return to_static_fixed_type (raw_real_type);
7555 /* In some cases, incomplete and private types require
7556 cross-references that are not resolved as records (for example,
7558 type FooP is access Foo;
7560 type Foo is array ...;
7561 ). In these cases, since there is no mechanism for producing
7562 cross-references to such types, we instead substitute for FooP a
7563 stub enumeration type that is nowhere resolved, and whose tag is
7564 the name of the actual type. Call these types "non-record stubs". */
7566 /* A type equivalent to TYPE that is not a non-record stub, if one
7567 exists, otherwise TYPE. */
7570 ada_check_typedef (struct type *type)
7575 CHECK_TYPEDEF (type);
7576 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7577 || !TYPE_STUB (type)
7578 || TYPE_TAG_NAME (type) == NULL)
7582 char *name = TYPE_TAG_NAME (type);
7583 struct type *type1 = ada_find_any_type (name);
7584 return (type1 == NULL) ? type : type1;
7588 /* A value representing the data at VALADDR/ADDRESS as described by
7589 type TYPE0, but with a standard (static-sized) type that correctly
7590 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7591 type, then return VAL0 [this feature is simply to avoid redundant
7592 creation of struct values]. */
7594 static struct value *
7595 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7598 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7599 if (type == type0 && val0 != NULL)
7602 return value_from_contents_and_address (type, 0, address);
7605 /* A value representing VAL, but with a standard (static-sized) type
7606 that correctly describes it. Does not necessarily create a new
7609 static struct value *
7610 ada_to_fixed_value (struct value *val)
7612 return ada_to_fixed_value_create (value_type (val),
7613 VALUE_ADDRESS (val) + value_offset (val),
7617 /* A value representing VAL, but with a standard (static-sized) type
7618 chosen to approximate the real type of VAL as well as possible, but
7619 without consulting any runtime values. For Ada dynamic-sized
7620 types, therefore, the type of the result is likely to be inaccurate. */
7623 ada_to_static_fixed_value (struct value *val)
7626 to_static_fixed_type (static_unwrap_type (value_type (val)));
7627 if (type == value_type (val))
7630 return coerce_unspec_val_to_type (val, type);
7636 /* Table mapping attribute numbers to names.
7637 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7639 static const char *attribute_names[] = {
7657 ada_attribute_name (enum exp_opcode n)
7659 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7660 return attribute_names[n - OP_ATR_FIRST + 1];
7662 return attribute_names[0];
7665 /* Evaluate the 'POS attribute applied to ARG. */
7668 pos_atr (struct value *arg)
7670 struct type *type = value_type (arg);
7672 if (!discrete_type_p (type))
7673 error (_("'POS only defined on discrete types"));
7675 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7678 LONGEST v = value_as_long (arg);
7680 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7682 if (v == TYPE_FIELD_BITPOS (type, i))
7685 error (_("enumeration value is invalid: can't find 'POS"));
7688 return value_as_long (arg);
7691 static struct value *
7692 value_pos_atr (struct value *arg)
7694 return value_from_longest (builtin_type_int, pos_atr (arg));
7697 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7699 static struct value *
7700 value_val_atr (struct type *type, struct value *arg)
7702 if (!discrete_type_p (type))
7703 error (_("'VAL only defined on discrete types"));
7704 if (!integer_type_p (value_type (arg)))
7705 error (_("'VAL requires integral argument"));
7707 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7709 long pos = value_as_long (arg);
7710 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7711 error (_("argument to 'VAL out of range"));
7712 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7715 return value_from_longest (type, value_as_long (arg));
7721 /* True if TYPE appears to be an Ada character type.
7722 [At the moment, this is true only for Character and Wide_Character;
7723 It is a heuristic test that could stand improvement]. */
7726 ada_is_character_type (struct type *type)
7730 /* If the type code says it's a character, then assume it really is,
7731 and don't check any further. */
7732 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7735 /* Otherwise, assume it's a character type iff it is a discrete type
7736 with a known character type name. */
7737 name = ada_type_name (type);
7738 return (name != NULL
7739 && (TYPE_CODE (type) == TYPE_CODE_INT
7740 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7741 && (strcmp (name, "character") == 0
7742 || strcmp (name, "wide_character") == 0
7743 || strcmp (name, "wide_wide_character") == 0
7744 || strcmp (name, "unsigned char") == 0));
7747 /* True if TYPE appears to be an Ada string type. */
7750 ada_is_string_type (struct type *type)
7752 type = ada_check_typedef (type);
7754 && TYPE_CODE (type) != TYPE_CODE_PTR
7755 && (ada_is_simple_array_type (type)
7756 || ada_is_array_descriptor_type (type))
7757 && ada_array_arity (type) == 1)
7759 struct type *elttype = ada_array_element_type (type, 1);
7761 return ada_is_character_type (elttype);
7768 /* True if TYPE is a struct type introduced by the compiler to force the
7769 alignment of a value. Such types have a single field with a
7770 distinctive name. */
7773 ada_is_aligner_type (struct type *type)
7775 type = ada_check_typedef (type);
7777 /* If we can find a parallel XVS type, then the XVS type should
7778 be used instead of this type. And hence, this is not an aligner
7780 if (ada_find_parallel_type (type, "___XVS") != NULL)
7783 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7784 && TYPE_NFIELDS (type) == 1
7785 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7788 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7789 the parallel type. */
7792 ada_get_base_type (struct type *raw_type)
7794 struct type *real_type_namer;
7795 struct type *raw_real_type;
7797 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7800 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7801 if (real_type_namer == NULL
7802 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7803 || TYPE_NFIELDS (real_type_namer) != 1)
7806 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7807 if (raw_real_type == NULL)
7810 return raw_real_type;
7813 /* The type of value designated by TYPE, with all aligners removed. */
7816 ada_aligned_type (struct type *type)
7818 if (ada_is_aligner_type (type))
7819 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7821 return ada_get_base_type (type);
7825 /* The address of the aligned value in an object at address VALADDR
7826 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7829 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7831 if (ada_is_aligner_type (type))
7832 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7834 TYPE_FIELD_BITPOS (type,
7835 0) / TARGET_CHAR_BIT);
7842 /* The printed representation of an enumeration literal with encoded
7843 name NAME. The value is good to the next call of ada_enum_name. */
7845 ada_enum_name (const char *name)
7847 static char *result;
7848 static size_t result_len = 0;
7851 /* First, unqualify the enumeration name:
7852 1. Search for the last '.' character. If we find one, then skip
7853 all the preceeding characters, the unqualified name starts
7854 right after that dot.
7855 2. Otherwise, we may be debugging on a target where the compiler
7856 translates dots into "__". Search forward for double underscores,
7857 but stop searching when we hit an overloading suffix, which is
7858 of the form "__" followed by digits. */
7860 tmp = strrchr (name, '.');
7865 while ((tmp = strstr (name, "__")) != NULL)
7867 if (isdigit (tmp[2]))
7877 if (name[1] == 'U' || name[1] == 'W')
7879 if (sscanf (name + 2, "%x", &v) != 1)
7885 GROW_VECT (result, result_len, 16);
7886 if (isascii (v) && isprint (v))
7887 sprintf (result, "'%c'", v);
7888 else if (name[1] == 'U')
7889 sprintf (result, "[\"%02x\"]", v);
7891 sprintf (result, "[\"%04x\"]", v);
7897 tmp = strstr (name, "__");
7899 tmp = strstr (name, "$");
7902 GROW_VECT (result, result_len, tmp - name + 1);
7903 strncpy (result, name, tmp - name);
7904 result[tmp - name] = '\0';
7912 static struct value *
7913 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7916 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7917 (expect_type, exp, pos, noside);
7920 /* Evaluate the subexpression of EXP starting at *POS as for
7921 evaluate_type, updating *POS to point just past the evaluated
7924 static struct value *
7925 evaluate_subexp_type (struct expression *exp, int *pos)
7927 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7928 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7931 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7934 static struct value *
7935 unwrap_value (struct value *val)
7937 struct type *type = ada_check_typedef (value_type (val));
7938 if (ada_is_aligner_type (type))
7940 struct value *v = ada_value_struct_elt (val, "F", 0);
7941 struct type *val_type = ada_check_typedef (value_type (v));
7942 if (ada_type_name (val_type) == NULL)
7943 TYPE_NAME (val_type) = ada_type_name (type);
7945 return unwrap_value (v);
7949 struct type *raw_real_type =
7950 ada_check_typedef (ada_get_base_type (type));
7952 if (type == raw_real_type)
7956 coerce_unspec_val_to_type
7957 (val, ada_to_fixed_type (raw_real_type, 0,
7958 VALUE_ADDRESS (val) + value_offset (val),
7963 static struct value *
7964 cast_to_fixed (struct type *type, struct value *arg)
7968 if (type == value_type (arg))
7970 else if (ada_is_fixed_point_type (value_type (arg)))
7971 val = ada_float_to_fixed (type,
7972 ada_fixed_to_float (value_type (arg),
7973 value_as_long (arg)));
7977 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7978 val = ada_float_to_fixed (type, argd);
7981 return value_from_longest (type, val);
7984 static struct value *
7985 cast_from_fixed_to_double (struct value *arg)
7987 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7988 value_as_long (arg));
7989 return value_from_double (builtin_type_double, val);
7992 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7993 return the converted value. */
7995 static struct value *
7996 coerce_for_assign (struct type *type, struct value *val)
7998 struct type *type2 = value_type (val);
8002 type2 = ada_check_typedef (type2);
8003 type = ada_check_typedef (type);
8005 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8006 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8008 val = ada_value_ind (val);
8009 type2 = value_type (val);
8012 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8013 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8015 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8016 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8017 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8018 error (_("Incompatible types in assignment"));
8019 deprecated_set_value_type (val, type);
8024 static struct value *
8025 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8028 struct type *type1, *type2;
8031 arg1 = coerce_ref (arg1);
8032 arg2 = coerce_ref (arg2);
8033 type1 = base_type (ada_check_typedef (value_type (arg1)));
8034 type2 = base_type (ada_check_typedef (value_type (arg2)));
8036 if (TYPE_CODE (type1) != TYPE_CODE_INT
8037 || TYPE_CODE (type2) != TYPE_CODE_INT)
8038 return value_binop (arg1, arg2, op);
8047 return value_binop (arg1, arg2, op);
8050 v2 = value_as_long (arg2);
8052 error (_("second operand of %s must not be zero."), op_string (op));
8054 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8055 return value_binop (arg1, arg2, op);
8057 v1 = value_as_long (arg1);
8062 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8063 v += v > 0 ? -1 : 1;
8071 /* Should not reach this point. */
8075 val = allocate_value (type1);
8076 store_unsigned_integer (value_contents_raw (val),
8077 TYPE_LENGTH (value_type (val)), v);
8082 ada_value_equal (struct value *arg1, struct value *arg2)
8084 if (ada_is_direct_array_type (value_type (arg1))
8085 || ada_is_direct_array_type (value_type (arg2)))
8087 /* Automatically dereference any array reference before
8088 we attempt to perform the comparison. */
8089 arg1 = ada_coerce_ref (arg1);
8090 arg2 = ada_coerce_ref (arg2);
8092 arg1 = ada_coerce_to_simple_array (arg1);
8093 arg2 = ada_coerce_to_simple_array (arg2);
8094 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8095 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8096 error (_("Attempt to compare array with non-array"));
8097 /* FIXME: The following works only for types whose
8098 representations use all bits (no padding or undefined bits)
8099 and do not have user-defined equality. */
8101 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8102 && memcmp (value_contents (arg1), value_contents (arg2),
8103 TYPE_LENGTH (value_type (arg1))) == 0;
8105 return value_equal (arg1, arg2);
8108 /* Total number of component associations in the aggregate starting at
8109 index PC in EXP. Assumes that index PC is the start of an
8113 num_component_specs (struct expression *exp, int pc)
8116 m = exp->elts[pc + 1].longconst;
8119 for (i = 0; i < m; i += 1)
8121 switch (exp->elts[pc].opcode)
8127 n += exp->elts[pc + 1].longconst;
8130 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8135 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8136 component of LHS (a simple array or a record), updating *POS past
8137 the expression, assuming that LHS is contained in CONTAINER. Does
8138 not modify the inferior's memory, nor does it modify LHS (unless
8139 LHS == CONTAINER). */
8142 assign_component (struct value *container, struct value *lhs, LONGEST index,
8143 struct expression *exp, int *pos)
8145 struct value *mark = value_mark ();
8147 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8149 struct value *index_val = value_from_longest (builtin_type_int, index);
8150 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8154 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8155 elt = ada_to_fixed_value (unwrap_value (elt));
8158 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8159 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8161 value_assign_to_component (container, elt,
8162 ada_evaluate_subexp (NULL, exp, pos,
8165 value_free_to_mark (mark);
8168 /* Assuming that LHS represents an lvalue having a record or array
8169 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8170 of that aggregate's value to LHS, advancing *POS past the
8171 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8172 lvalue containing LHS (possibly LHS itself). Does not modify
8173 the inferior's memory, nor does it modify the contents of
8174 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8176 static struct value *
8177 assign_aggregate (struct value *container,
8178 struct value *lhs, struct expression *exp,
8179 int *pos, enum noside noside)
8181 struct type *lhs_type;
8182 int n = exp->elts[*pos+1].longconst;
8183 LONGEST low_index, high_index;
8186 int max_indices, num_indices;
8187 int is_array_aggregate;
8189 struct value *mark = value_mark ();
8192 if (noside != EVAL_NORMAL)
8195 for (i = 0; i < n; i += 1)
8196 ada_evaluate_subexp (NULL, exp, pos, noside);
8200 container = ada_coerce_ref (container);
8201 if (ada_is_direct_array_type (value_type (container)))
8202 container = ada_coerce_to_simple_array (container);
8203 lhs = ada_coerce_ref (lhs);
8204 if (!deprecated_value_modifiable (lhs))
8205 error (_("Left operand of assignment is not a modifiable lvalue."));
8207 lhs_type = value_type (lhs);
8208 if (ada_is_direct_array_type (lhs_type))
8210 lhs = ada_coerce_to_simple_array (lhs);
8211 lhs_type = value_type (lhs);
8212 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8213 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8214 is_array_aggregate = 1;
8216 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8219 high_index = num_visible_fields (lhs_type) - 1;
8220 is_array_aggregate = 0;
8223 error (_("Left-hand side must be array or record."));
8225 num_specs = num_component_specs (exp, *pos - 3);
8226 max_indices = 4 * num_specs + 4;
8227 indices = alloca (max_indices * sizeof (indices[0]));
8228 indices[0] = indices[1] = low_index - 1;
8229 indices[2] = indices[3] = high_index + 1;
8232 for (i = 0; i < n; i += 1)
8234 switch (exp->elts[*pos].opcode)
8237 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8238 &num_indices, max_indices,
8239 low_index, high_index);
8242 aggregate_assign_positional (container, lhs, exp, pos, indices,
8243 &num_indices, max_indices,
8244 low_index, high_index);
8248 error (_("Misplaced 'others' clause"));
8249 aggregate_assign_others (container, lhs, exp, pos, indices,
8250 num_indices, low_index, high_index);
8253 error (_("Internal error: bad aggregate clause"));
8260 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8261 construct at *POS, updating *POS past the construct, given that
8262 the positions are relative to lower bound LOW, where HIGH is the
8263 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8264 updating *NUM_INDICES as needed. CONTAINER is as for
8265 assign_aggregate. */
8267 aggregate_assign_positional (struct value *container,
8268 struct value *lhs, struct expression *exp,
8269 int *pos, LONGEST *indices, int *num_indices,
8270 int max_indices, LONGEST low, LONGEST high)
8272 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8274 if (ind - 1 == high)
8275 warning (_("Extra components in aggregate ignored."));
8278 add_component_interval (ind, ind, indices, num_indices, max_indices);
8280 assign_component (container, lhs, ind, exp, pos);
8283 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8286 /* Assign into the components of LHS indexed by the OP_CHOICES
8287 construct at *POS, updating *POS past the construct, given that
8288 the allowable indices are LOW..HIGH. Record the indices assigned
8289 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8290 needed. CONTAINER is as for assign_aggregate. */
8292 aggregate_assign_from_choices (struct value *container,
8293 struct value *lhs, struct expression *exp,
8294 int *pos, LONGEST *indices, int *num_indices,
8295 int max_indices, LONGEST low, LONGEST high)
8298 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8299 int choice_pos, expr_pc;
8300 int is_array = ada_is_direct_array_type (value_type (lhs));
8302 choice_pos = *pos += 3;
8304 for (j = 0; j < n_choices; j += 1)
8305 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8307 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8309 for (j = 0; j < n_choices; j += 1)
8311 LONGEST lower, upper;
8312 enum exp_opcode op = exp->elts[choice_pos].opcode;
8313 if (op == OP_DISCRETE_RANGE)
8316 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8318 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8323 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8334 name = &exp->elts[choice_pos + 2].string;
8337 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8340 error (_("Invalid record component association."));
8342 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8344 if (! find_struct_field (name, value_type (lhs), 0,
8345 NULL, NULL, NULL, NULL, &ind))
8346 error (_("Unknown component name: %s."), name);
8347 lower = upper = ind;
8350 if (lower <= upper && (lower < low || upper > high))
8351 error (_("Index in component association out of bounds."));
8353 add_component_interval (lower, upper, indices, num_indices,
8355 while (lower <= upper)
8359 assign_component (container, lhs, lower, exp, &pos1);
8365 /* Assign the value of the expression in the OP_OTHERS construct in
8366 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8367 have not been previously assigned. The index intervals already assigned
8368 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8369 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8371 aggregate_assign_others (struct value *container,
8372 struct value *lhs, struct expression *exp,
8373 int *pos, LONGEST *indices, int num_indices,
8374 LONGEST low, LONGEST high)
8377 int expr_pc = *pos+1;
8379 for (i = 0; i < num_indices - 2; i += 2)
8382 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8386 assign_component (container, lhs, ind, exp, &pos);
8389 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8392 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8393 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8394 modifying *SIZE as needed. It is an error if *SIZE exceeds
8395 MAX_SIZE. The resulting intervals do not overlap. */
8397 add_component_interval (LONGEST low, LONGEST high,
8398 LONGEST* indices, int *size, int max_size)
8401 for (i = 0; i < *size; i += 2) {
8402 if (high >= indices[i] && low <= indices[i + 1])
8405 for (kh = i + 2; kh < *size; kh += 2)
8406 if (high < indices[kh])
8408 if (low < indices[i])
8410 indices[i + 1] = indices[kh - 1];
8411 if (high > indices[i + 1])
8412 indices[i + 1] = high;
8413 memcpy (indices + i + 2, indices + kh, *size - kh);
8414 *size -= kh - i - 2;
8417 else if (high < indices[i])
8421 if (*size == max_size)
8422 error (_("Internal error: miscounted aggregate components."));
8424 for (j = *size-1; j >= i+2; j -= 1)
8425 indices[j] = indices[j - 2];
8427 indices[i + 1] = high;
8430 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8433 static struct value *
8434 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8436 if (type == ada_check_typedef (value_type (arg2)))
8439 if (ada_is_fixed_point_type (type))
8440 return (cast_to_fixed (type, arg2));
8442 if (ada_is_fixed_point_type (value_type (arg2)))
8443 return value_cast (type, cast_from_fixed_to_double (arg2));
8445 return value_cast (type, arg2);
8448 static struct value *
8449 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8450 int *pos, enum noside noside)
8453 int tem, tem2, tem3;
8455 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8458 struct value **argvec;
8462 op = exp->elts[pc].opcode;
8468 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8469 arg1 = unwrap_value (arg1);
8471 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8472 then we need to perform the conversion manually, because
8473 evaluate_subexp_standard doesn't do it. This conversion is
8474 necessary in Ada because the different kinds of float/fixed
8475 types in Ada have different representations.
8477 Similarly, we need to perform the conversion from OP_LONG
8479 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8480 arg1 = ada_value_cast (expect_type, arg1, noside);
8486 struct value *result;
8488 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8489 /* The result type will have code OP_STRING, bashed there from
8490 OP_ARRAY. Bash it back. */
8491 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8492 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8498 type = exp->elts[pc + 1].type;
8499 arg1 = evaluate_subexp (type, exp, pos, noside);
8500 if (noside == EVAL_SKIP)
8502 arg1 = ada_value_cast (type, arg1, noside);
8507 type = exp->elts[pc + 1].type;
8508 return ada_evaluate_subexp (type, exp, pos, noside);
8511 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8512 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8514 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8515 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8517 return ada_value_assign (arg1, arg1);
8519 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8520 except if the lhs of our assignment is a convenience variable.
8521 In the case of assigning to a convenience variable, the lhs
8522 should be exactly the result of the evaluation of the rhs. */
8523 type = value_type (arg1);
8524 if (VALUE_LVAL (arg1) == lval_internalvar)
8526 arg2 = evaluate_subexp (type, exp, pos, noside);
8527 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8529 if (ada_is_fixed_point_type (value_type (arg1)))
8530 arg2 = cast_to_fixed (value_type (arg1), arg2);
8531 else if (ada_is_fixed_point_type (value_type (arg2)))
8533 (_("Fixed-point values must be assigned to fixed-point variables"));
8535 arg2 = coerce_for_assign (value_type (arg1), arg2);
8536 return ada_value_assign (arg1, arg2);
8539 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8540 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8541 if (noside == EVAL_SKIP)
8543 if ((ada_is_fixed_point_type (value_type (arg1))
8544 || ada_is_fixed_point_type (value_type (arg2)))
8545 && value_type (arg1) != value_type (arg2))
8546 error (_("Operands of fixed-point addition must have the same type"));
8547 /* Do the addition, and cast the result to the type of the first
8548 argument. We cannot cast the result to a reference type, so if
8549 ARG1 is a reference type, find its underlying type. */
8550 type = value_type (arg1);
8551 while (TYPE_CODE (type) == TYPE_CODE_REF)
8552 type = TYPE_TARGET_TYPE (type);
8553 return value_cast (type, value_add (arg1, arg2));
8556 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8557 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8558 if (noside == EVAL_SKIP)
8560 if ((ada_is_fixed_point_type (value_type (arg1))
8561 || ada_is_fixed_point_type (value_type (arg2)))
8562 && value_type (arg1) != value_type (arg2))
8563 error (_("Operands of fixed-point subtraction must have the same type"));
8564 /* Do the substraction, and cast the result to the type of the first
8565 argument. We cannot cast the result to a reference type, so if
8566 ARG1 is a reference type, find its underlying type. */
8567 type = value_type (arg1);
8568 while (TYPE_CODE (type) == TYPE_CODE_REF)
8569 type = TYPE_TARGET_TYPE (type);
8570 return value_cast (type, value_sub (arg1, arg2));
8574 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8575 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8576 if (noside == EVAL_SKIP)
8578 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8579 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8580 return value_zero (value_type (arg1), not_lval);
8583 if (ada_is_fixed_point_type (value_type (arg1)))
8584 arg1 = cast_from_fixed_to_double (arg1);
8585 if (ada_is_fixed_point_type (value_type (arg2)))
8586 arg2 = cast_from_fixed_to_double (arg2);
8587 return ada_value_binop (arg1, arg2, op);
8592 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8593 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8594 if (noside == EVAL_SKIP)
8596 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8597 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8598 return value_zero (value_type (arg1), not_lval);
8600 return ada_value_binop (arg1, arg2, op);
8603 case BINOP_NOTEQUAL:
8604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8605 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8606 if (noside == EVAL_SKIP)
8608 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8611 tem = ada_value_equal (arg1, arg2);
8612 if (op == BINOP_NOTEQUAL)
8614 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8617 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8618 if (noside == EVAL_SKIP)
8620 else if (ada_is_fixed_point_type (value_type (arg1)))
8621 return value_cast (value_type (arg1), value_neg (arg1));
8623 return value_neg (arg1);
8625 case BINOP_LOGICAL_AND:
8626 case BINOP_LOGICAL_OR:
8627 case UNOP_LOGICAL_NOT:
8632 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8633 return value_cast (LA_BOOL_TYPE, val);
8636 case BINOP_BITWISE_AND:
8637 case BINOP_BITWISE_IOR:
8638 case BINOP_BITWISE_XOR:
8642 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8644 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8646 return value_cast (value_type (arg1), val);
8652 /* Tagged types are a little special in the fact that the real type
8653 is dynamic and can only be determined by inspecting the object
8654 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8655 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8656 if (noside == EVAL_AVOID_SIDE_EFFECTS
8657 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8658 noside = EVAL_NORMAL;
8660 if (noside == EVAL_SKIP)
8665 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8666 /* Only encountered when an unresolved symbol occurs in a
8667 context other than a function call, in which case, it is
8669 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8670 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8671 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8675 (to_static_fixed_type
8676 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8682 unwrap_value (evaluate_subexp_standard
8683 (expect_type, exp, pos, noside));
8684 return ada_to_fixed_value (arg1);
8690 /* Allocate arg vector, including space for the function to be
8691 called in argvec[0] and a terminating NULL. */
8692 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8694 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8696 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8697 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8698 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8699 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8702 for (tem = 0; tem <= nargs; tem += 1)
8703 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8706 if (noside == EVAL_SKIP)
8710 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8711 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8712 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8713 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8714 && VALUE_LVAL (argvec[0]) == lval_memory))
8715 argvec[0] = value_addr (argvec[0]);
8717 type = ada_check_typedef (value_type (argvec[0]));
8718 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8720 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8722 case TYPE_CODE_FUNC:
8723 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8725 case TYPE_CODE_ARRAY:
8727 case TYPE_CODE_STRUCT:
8728 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8729 argvec[0] = ada_value_ind (argvec[0]);
8730 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8733 error (_("cannot subscript or call something of type `%s'"),
8734 ada_type_name (value_type (argvec[0])));
8739 switch (TYPE_CODE (type))
8741 case TYPE_CODE_FUNC:
8742 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8743 return allocate_value (TYPE_TARGET_TYPE (type));
8744 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8745 case TYPE_CODE_STRUCT:
8749 arity = ada_array_arity (type);
8750 type = ada_array_element_type (type, nargs);
8752 error (_("cannot subscript or call a record"));
8754 error (_("wrong number of subscripts; expecting %d"), arity);
8755 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8756 return value_zero (ada_aligned_type (type), lval_memory);
8758 unwrap_value (ada_value_subscript
8759 (argvec[0], nargs, argvec + 1));
8761 case TYPE_CODE_ARRAY:
8762 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8764 type = ada_array_element_type (type, nargs);
8766 error (_("element type of array unknown"));
8768 return value_zero (ada_aligned_type (type), lval_memory);
8771 unwrap_value (ada_value_subscript
8772 (ada_coerce_to_simple_array (argvec[0]),
8773 nargs, argvec + 1));
8774 case TYPE_CODE_PTR: /* Pointer to array */
8775 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8776 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8778 type = ada_array_element_type (type, nargs);
8780 error (_("element type of array unknown"));
8782 return value_zero (ada_aligned_type (type), lval_memory);
8785 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8786 nargs, argvec + 1));
8789 error (_("Attempt to index or call something other than an "
8790 "array or function"));
8795 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8796 struct value *low_bound_val =
8797 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8798 struct value *high_bound_val =
8799 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8802 low_bound_val = coerce_ref (low_bound_val);
8803 high_bound_val = coerce_ref (high_bound_val);
8804 low_bound = pos_atr (low_bound_val);
8805 high_bound = pos_atr (high_bound_val);
8807 if (noside == EVAL_SKIP)
8810 /* If this is a reference to an aligner type, then remove all
8812 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8813 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8814 TYPE_TARGET_TYPE (value_type (array)) =
8815 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8817 if (ada_is_packed_array_type (value_type (array)))
8818 error (_("cannot slice a packed array"));
8820 /* If this is a reference to an array or an array lvalue,
8821 convert to a pointer. */
8822 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8823 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8824 && VALUE_LVAL (array) == lval_memory))
8825 array = value_addr (array);
8827 if (noside == EVAL_AVOID_SIDE_EFFECTS
8828 && ada_is_array_descriptor_type (ada_check_typedef
8829 (value_type (array))))
8830 return empty_array (ada_type_of_array (array, 0), low_bound);
8832 array = ada_coerce_to_simple_array_ptr (array);
8834 /* If we have more than one level of pointer indirection,
8835 dereference the value until we get only one level. */
8836 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8837 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8839 array = value_ind (array);
8841 /* Make sure we really do have an array type before going further,
8842 to avoid a SEGV when trying to get the index type or the target
8843 type later down the road if the debug info generated by
8844 the compiler is incorrect or incomplete. */
8845 if (!ada_is_simple_array_type (value_type (array)))
8846 error (_("cannot take slice of non-array"));
8848 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8850 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8851 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8855 struct type *arr_type0 =
8856 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8858 return ada_value_slice_ptr (array, arr_type0,
8859 longest_to_int (low_bound),
8860 longest_to_int (high_bound));
8863 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8865 else if (high_bound < low_bound)
8866 return empty_array (value_type (array), low_bound);
8868 return ada_value_slice (array, longest_to_int (low_bound),
8869 longest_to_int (high_bound));
8874 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8875 type = exp->elts[pc + 1].type;
8877 if (noside == EVAL_SKIP)
8880 switch (TYPE_CODE (type))
8883 lim_warning (_("Membership test incompletely implemented; "
8884 "always returns true"));
8885 return value_from_longest (builtin_type_int, (LONGEST) 1);
8887 case TYPE_CODE_RANGE:
8888 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8889 arg3 = value_from_longest (builtin_type_int,
8890 TYPE_HIGH_BOUND (type));
8892 value_from_longest (builtin_type_int,
8893 (value_less (arg1, arg3)
8894 || value_equal (arg1, arg3))
8895 && (value_less (arg2, arg1)
8896 || value_equal (arg2, arg1)));
8899 case BINOP_IN_BOUNDS:
8901 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8902 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8904 if (noside == EVAL_SKIP)
8907 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8908 return value_zero (builtin_type_int, not_lval);
8910 tem = longest_to_int (exp->elts[pc + 1].longconst);
8912 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8913 error (_("invalid dimension number to 'range"));
8915 arg3 = ada_array_bound (arg2, tem, 1);
8916 arg2 = ada_array_bound (arg2, tem, 0);
8919 value_from_longest (builtin_type_int,
8920 (value_less (arg1, arg3)
8921 || value_equal (arg1, arg3))
8922 && (value_less (arg2, arg1)
8923 || value_equal (arg2, arg1)));
8925 case TERNOP_IN_RANGE:
8926 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8927 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8928 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8930 if (noside == EVAL_SKIP)
8934 value_from_longest (builtin_type_int,
8935 (value_less (arg1, arg3)
8936 || value_equal (arg1, arg3))
8937 && (value_less (arg2, arg1)
8938 || value_equal (arg2, arg1)));
8944 struct type *type_arg;
8945 if (exp->elts[*pos].opcode == OP_TYPE)
8947 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8949 type_arg = exp->elts[pc + 2].type;
8953 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8957 if (exp->elts[*pos].opcode != OP_LONG)
8958 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8959 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8962 if (noside == EVAL_SKIP)
8965 if (type_arg == NULL)
8967 arg1 = ada_coerce_ref (arg1);
8969 if (ada_is_packed_array_type (value_type (arg1)))
8970 arg1 = ada_coerce_to_simple_array (arg1);
8972 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8973 error (_("invalid dimension number to '%s"),
8974 ada_attribute_name (op));
8976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8978 type = ada_index_type (value_type (arg1), tem);
8981 (_("attempt to take bound of something that is not an array"));
8982 return allocate_value (type);
8987 default: /* Should never happen. */
8988 error (_("unexpected attribute encountered"));
8990 return ada_array_bound (arg1, tem, 0);
8992 return ada_array_bound (arg1, tem, 1);
8994 return ada_array_length (arg1, tem);
8997 else if (discrete_type_p (type_arg))
8999 struct type *range_type;
9000 char *name = ada_type_name (type_arg);
9002 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9004 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9005 if (range_type == NULL)
9006 range_type = type_arg;
9010 error (_("unexpected attribute encountered"));
9012 return discrete_type_low_bound (range_type);
9014 return discrete_type_high_bound (range_type);
9016 error (_("the 'length attribute applies only to array types"));
9019 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9020 error (_("unimplemented type attribute"));
9025 if (ada_is_packed_array_type (type_arg))
9026 type_arg = decode_packed_array_type (type_arg);
9028 if (tem < 1 || tem > ada_array_arity (type_arg))
9029 error (_("invalid dimension number to '%s"),
9030 ada_attribute_name (op));
9032 type = ada_index_type (type_arg, tem);
9035 (_("attempt to take bound of something that is not an array"));
9036 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9037 return allocate_value (type);
9042 error (_("unexpected attribute encountered"));
9044 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9045 return value_from_longest (type, low);
9047 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9048 return value_from_longest (type, high);
9050 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9051 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9052 return value_from_longest (type, high - low + 1);
9058 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9059 if (noside == EVAL_SKIP)
9062 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9063 return value_zero (ada_tag_type (arg1), not_lval);
9065 return ada_value_tag (arg1);
9069 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9070 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9071 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9072 if (noside == EVAL_SKIP)
9074 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9075 return value_zero (value_type (arg1), not_lval);
9077 return value_binop (arg1, arg2,
9078 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9080 case OP_ATR_MODULUS:
9082 struct type *type_arg = exp->elts[pc + 2].type;
9083 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9085 if (noside == EVAL_SKIP)
9088 if (!ada_is_modular_type (type_arg))
9089 error (_("'modulus must be applied to modular type"));
9091 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9092 ada_modulus (type_arg));
9097 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9099 if (noside == EVAL_SKIP)
9101 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9102 return value_zero (builtin_type_int, not_lval);
9104 return value_pos_atr (arg1);
9107 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9108 if (noside == EVAL_SKIP)
9110 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9111 return value_zero (builtin_type_int, not_lval);
9113 return value_from_longest (builtin_type_int,
9115 * TYPE_LENGTH (value_type (arg1)));
9118 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9119 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9120 type = exp->elts[pc + 2].type;
9121 if (noside == EVAL_SKIP)
9123 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9124 return value_zero (type, not_lval);
9126 return value_val_atr (type, arg1);
9129 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9130 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9131 if (noside == EVAL_SKIP)
9133 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9134 return value_zero (value_type (arg1), not_lval);
9136 return value_binop (arg1, arg2, op);
9139 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9140 if (noside == EVAL_SKIP)
9146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9147 if (noside == EVAL_SKIP)
9149 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9150 return value_neg (arg1);
9155 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9156 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
9157 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9158 if (noside == EVAL_SKIP)
9160 type = ada_check_typedef (value_type (arg1));
9161 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9163 if (ada_is_array_descriptor_type (type))
9164 /* GDB allows dereferencing GNAT array descriptors. */
9166 struct type *arrType = ada_type_of_array (arg1, 0);
9167 if (arrType == NULL)
9168 error (_("Attempt to dereference null array pointer."));
9169 return value_at_lazy (arrType, 0);
9171 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9172 || TYPE_CODE (type) == TYPE_CODE_REF
9173 /* In C you can dereference an array to get the 1st elt. */
9174 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9176 type = to_static_fixed_type
9178 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9180 return value_zero (type, lval_memory);
9182 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9183 /* GDB allows dereferencing an int. */
9184 return value_zero (builtin_type_int, lval_memory);
9186 error (_("Attempt to take contents of a non-pointer value."));
9188 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9189 type = ada_check_typedef (value_type (arg1));
9191 if (ada_is_array_descriptor_type (type))
9192 /* GDB allows dereferencing GNAT array descriptors. */
9193 return ada_coerce_to_simple_array (arg1);
9195 return ada_value_ind (arg1);
9197 case STRUCTOP_STRUCT:
9198 tem = longest_to_int (exp->elts[pc + 1].longconst);
9199 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9200 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9201 if (noside == EVAL_SKIP)
9203 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9205 struct type *type1 = value_type (arg1);
9206 if (ada_is_tagged_type (type1, 1))
9208 type = ada_lookup_struct_elt_type (type1,
9209 &exp->elts[pc + 2].string,
9212 /* In this case, we assume that the field COULD exist
9213 in some extension of the type. Return an object of
9214 "type" void, which will match any formal
9215 (see ada_type_match). */
9216 return value_zero (builtin_type_void, lval_memory);
9220 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9223 return value_zero (ada_aligned_type (type), lval_memory);
9227 ada_to_fixed_value (unwrap_value
9228 (ada_value_struct_elt
9229 (arg1, &exp->elts[pc + 2].string, 0)));
9231 /* The value is not supposed to be used. This is here to make it
9232 easier to accommodate expressions that contain types. */
9234 if (noside == EVAL_SKIP)
9236 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9237 return allocate_value (exp->elts[pc + 1].type);
9239 error (_("Attempt to use a type name as an expression"));
9244 case OP_DISCRETE_RANGE:
9247 if (noside == EVAL_NORMAL)
9251 error (_("Undefined name, ambiguous name, or renaming used in "
9252 "component association: %s."), &exp->elts[pc+2].string);
9254 error (_("Aggregates only allowed on the right of an assignment"));
9256 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9259 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9261 for (tem = 0; tem < nargs; tem += 1)
9262 ada_evaluate_subexp (NULL, exp, pos, noside);
9267 return value_from_longest (builtin_type_long, (LONGEST) 1);
9273 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9274 type name that encodes the 'small and 'delta information.
9275 Otherwise, return NULL. */
9278 fixed_type_info (struct type *type)
9280 const char *name = ada_type_name (type);
9281 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9283 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9285 const char *tail = strstr (name, "___XF_");
9291 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9292 return fixed_type_info (TYPE_TARGET_TYPE (type));
9297 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9300 ada_is_fixed_point_type (struct type *type)
9302 return fixed_type_info (type) != NULL;
9305 /* Return non-zero iff TYPE represents a System.Address type. */
9308 ada_is_system_address_type (struct type *type)
9310 return (TYPE_NAME (type)
9311 && strcmp (TYPE_NAME (type), "system__address") == 0);
9314 /* Assuming that TYPE is the representation of an Ada fixed-point
9315 type, return its delta, or -1 if the type is malformed and the
9316 delta cannot be determined. */
9319 ada_delta (struct type *type)
9321 const char *encoding = fixed_type_info (type);
9324 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9327 return (DOUBLEST) num / (DOUBLEST) den;
9330 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9331 factor ('SMALL value) associated with the type. */
9334 scaling_factor (struct type *type)
9336 const char *encoding = fixed_type_info (type);
9337 unsigned long num0, den0, num1, den1;
9340 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9345 return (DOUBLEST) num1 / (DOUBLEST) den1;
9347 return (DOUBLEST) num0 / (DOUBLEST) den0;
9351 /* Assuming that X is the representation of a value of fixed-point
9352 type TYPE, return its floating-point equivalent. */
9355 ada_fixed_to_float (struct type *type, LONGEST x)
9357 return (DOUBLEST) x *scaling_factor (type);
9360 /* The representation of a fixed-point value of type TYPE
9361 corresponding to the value X. */
9364 ada_float_to_fixed (struct type *type, DOUBLEST x)
9366 return (LONGEST) (x / scaling_factor (type) + 0.5);
9370 /* VAX floating formats */
9372 /* Non-zero iff TYPE represents one of the special VAX floating-point
9376 ada_is_vax_floating_type (struct type *type)
9379 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9382 && (TYPE_CODE (type) == TYPE_CODE_INT
9383 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9384 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9387 /* The type of special VAX floating-point type this is, assuming
9388 ada_is_vax_floating_point. */
9391 ada_vax_float_type_suffix (struct type *type)
9393 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9396 /* A value representing the special debugging function that outputs
9397 VAX floating-point values of the type represented by TYPE. Assumes
9398 ada_is_vax_floating_type (TYPE). */
9401 ada_vax_float_print_function (struct type *type)
9403 switch (ada_vax_float_type_suffix (type))
9406 return get_var_value ("DEBUG_STRING_F", 0);
9408 return get_var_value ("DEBUG_STRING_D", 0);
9410 return get_var_value ("DEBUG_STRING_G", 0);
9412 error (_("invalid VAX floating-point type"));
9419 /* Scan STR beginning at position K for a discriminant name, and
9420 return the value of that discriminant field of DVAL in *PX. If
9421 PNEW_K is not null, put the position of the character beyond the
9422 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9423 not alter *PX and *PNEW_K if unsuccessful. */
9426 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9429 static char *bound_buffer = NULL;
9430 static size_t bound_buffer_len = 0;
9433 struct value *bound_val;
9435 if (dval == NULL || str == NULL || str[k] == '\0')
9438 pend = strstr (str + k, "__");
9442 k += strlen (bound);
9446 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9447 bound = bound_buffer;
9448 strncpy (bound_buffer, str + k, pend - (str + k));
9449 bound[pend - (str + k)] = '\0';
9453 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9454 if (bound_val == NULL)
9457 *px = value_as_long (bound_val);
9463 /* Value of variable named NAME in the current environment. If
9464 no such variable found, then if ERR_MSG is null, returns 0, and
9465 otherwise causes an error with message ERR_MSG. */
9467 static struct value *
9468 get_var_value (char *name, char *err_msg)
9470 struct ada_symbol_info *syms;
9473 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9478 if (err_msg == NULL)
9481 error (("%s"), err_msg);
9484 return value_of_variable (syms[0].sym, syms[0].block);
9487 /* Value of integer variable named NAME in the current environment. If
9488 no such variable found, returns 0, and sets *FLAG to 0. If
9489 successful, sets *FLAG to 1. */
9492 get_int_var_value (char *name, int *flag)
9494 struct value *var_val = get_var_value (name, 0);
9506 return value_as_long (var_val);
9511 /* Return a range type whose base type is that of the range type named
9512 NAME in the current environment, and whose bounds are calculated
9513 from NAME according to the GNAT range encoding conventions.
9514 Extract discriminant values, if needed, from DVAL. If a new type
9515 must be created, allocate in OBJFILE's space. The bounds
9516 information, in general, is encoded in NAME, the base type given in
9517 the named range type. */
9519 static struct type *
9520 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9522 struct type *raw_type = ada_find_any_type (name);
9523 struct type *base_type;
9526 if (raw_type == NULL)
9527 base_type = builtin_type_int;
9528 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9529 base_type = TYPE_TARGET_TYPE (raw_type);
9531 base_type = raw_type;
9533 subtype_info = strstr (name, "___XD");
9534 if (subtype_info == NULL)
9538 static char *name_buf = NULL;
9539 static size_t name_len = 0;
9540 int prefix_len = subtype_info - name;
9546 GROW_VECT (name_buf, name_len, prefix_len + 5);
9547 strncpy (name_buf, name, prefix_len);
9548 name_buf[prefix_len] = '\0';
9551 bounds_str = strchr (subtype_info, '_');
9554 if (*subtype_info == 'L')
9556 if (!ada_scan_number (bounds_str, n, &L, &n)
9557 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9559 if (bounds_str[n] == '_')
9561 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9568 strcpy (name_buf + prefix_len, "___L");
9569 L = get_int_var_value (name_buf, &ok);
9572 lim_warning (_("Unknown lower bound, using 1."));
9577 if (*subtype_info == 'U')
9579 if (!ada_scan_number (bounds_str, n, &U, &n)
9580 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9586 strcpy (name_buf + prefix_len, "___U");
9587 U = get_int_var_value (name_buf, &ok);
9590 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9595 if (objfile == NULL)
9596 objfile = TYPE_OBJFILE (base_type);
9597 type = create_range_type (alloc_type (objfile), base_type, L, U);
9598 TYPE_NAME (type) = name;
9603 /* True iff NAME is the name of a range type. */
9606 ada_is_range_type_name (const char *name)
9608 return (name != NULL && strstr (name, "___XD"));
9614 /* True iff TYPE is an Ada modular type. */
9617 ada_is_modular_type (struct type *type)
9619 struct type *subranged_type = base_type (type);
9621 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9622 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9623 && TYPE_UNSIGNED (subranged_type));
9626 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9629 ada_modulus (struct type * type)
9631 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9635 /* Ada exception catchpoint support:
9636 ---------------------------------
9638 We support 3 kinds of exception catchpoints:
9639 . catchpoints on Ada exceptions
9640 . catchpoints on unhandled Ada exceptions
9641 . catchpoints on failed assertions
9643 Exceptions raised during failed assertions, or unhandled exceptions
9644 could perfectly be caught with the general catchpoint on Ada exceptions.
9645 However, we can easily differentiate these two special cases, and having
9646 the option to distinguish these two cases from the rest can be useful
9647 to zero-in on certain situations.
9649 Exception catchpoints are a specialized form of breakpoint,
9650 since they rely on inserting breakpoints inside known routines
9651 of the GNAT runtime. The implementation therefore uses a standard
9652 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9655 Support in the runtime for exception catchpoints have been changed
9656 a few times already, and these changes affect the implementation
9657 of these catchpoints. In order to be able to support several
9658 variants of the runtime, we use a sniffer that will determine
9659 the runtime variant used by the program being debugged.
9661 At this time, we do not support the use of conditions on Ada exception
9662 catchpoints. The COND and COND_STRING fields are therefore set
9663 to NULL (most of the time, see below).
9665 Conditions where EXP_STRING, COND, and COND_STRING are used:
9667 When a user specifies the name of a specific exception in the case
9668 of catchpoints on Ada exceptions, we store the name of that exception
9669 in the EXP_STRING. We then translate this request into an actual
9670 condition stored in COND_STRING, and then parse it into an expression
9673 /* The different types of catchpoints that we introduced for catching
9676 enum exception_catchpoint_kind
9679 ex_catch_exception_unhandled,
9683 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9685 /* A structure that describes how to support exception catchpoints
9686 for a given executable. */
9688 struct exception_support_info
9690 /* The name of the symbol to break on in order to insert
9691 a catchpoint on exceptions. */
9692 const char *catch_exception_sym;
9694 /* The name of the symbol to break on in order to insert
9695 a catchpoint on unhandled exceptions. */
9696 const char *catch_exception_unhandled_sym;
9698 /* The name of the symbol to break on in order to insert
9699 a catchpoint on failed assertions. */
9700 const char *catch_assert_sym;
9702 /* Assuming that the inferior just triggered an unhandled exception
9703 catchpoint, this function is responsible for returning the address
9704 in inferior memory where the name of that exception is stored.
9705 Return zero if the address could not be computed. */
9706 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9709 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9710 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9712 /* The following exception support info structure describes how to
9713 implement exception catchpoints with the latest version of the
9714 Ada runtime (as of 2007-03-06). */
9716 static const struct exception_support_info default_exception_support_info =
9718 "__gnat_debug_raise_exception", /* catch_exception_sym */
9719 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9720 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9721 ada_unhandled_exception_name_addr
9724 /* The following exception support info structure describes how to
9725 implement exception catchpoints with a slightly older version
9726 of the Ada runtime. */
9728 static const struct exception_support_info exception_support_info_fallback =
9730 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9731 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9732 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9733 ada_unhandled_exception_name_addr_from_raise
9736 /* For each executable, we sniff which exception info structure to use
9737 and cache it in the following global variable. */
9739 static const struct exception_support_info *exception_info = NULL;
9741 /* Inspect the Ada runtime and determine which exception info structure
9742 should be used to provide support for exception catchpoints.
9744 This function will always set exception_info, or raise an error. */
9747 ada_exception_support_info_sniffer (void)
9751 /* If the exception info is already known, then no need to recompute it. */
9752 if (exception_info != NULL)
9755 /* Check the latest (default) exception support info. */
9756 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9760 exception_info = &default_exception_support_info;
9764 /* Try our fallback exception suport info. */
9765 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9769 exception_info = &exception_support_info_fallback;
9773 /* Sometimes, it is normal for us to not be able to find the routine
9774 we are looking for. This happens when the program is linked with
9775 the shared version of the GNAT runtime, and the program has not been
9776 started yet. Inform the user of these two possible causes if
9779 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9780 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9782 /* If the symbol does not exist, then check that the program is
9783 already started, to make sure that shared libraries have been
9784 loaded. If it is not started, this may mean that the symbol is
9785 in a shared library. */
9787 if (ptid_get_pid (inferior_ptid) == 0)
9788 error (_("Unable to insert catchpoint. Try to start the program first."));
9790 /* At this point, we know that we are debugging an Ada program and
9791 that the inferior has been started, but we still are not able to
9792 find the run-time symbols. That can mean that we are in
9793 configurable run time mode, or that a-except as been optimized
9794 out by the linker... In any case, at this point it is not worth
9795 supporting this feature. */
9797 error (_("Cannot insert catchpoints in this configuration."));
9800 /* An observer of "executable_changed" events.
9801 Its role is to clear certain cached values that need to be recomputed
9802 each time a new executable is loaded by GDB. */
9805 ada_executable_changed_observer (void *unused)
9807 /* If the executable changed, then it is possible that the Ada runtime
9808 is different. So we need to invalidate the exception support info
9810 exception_info = NULL;
9813 /* Return the name of the function at PC, NULL if could not find it.
9814 This function only checks the debugging information, not the symbol
9818 function_name_from_pc (CORE_ADDR pc)
9822 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9828 /* True iff FRAME is very likely to be that of a function that is
9829 part of the runtime system. This is all very heuristic, but is
9830 intended to be used as advice as to what frames are uninteresting
9834 is_known_support_routine (struct frame_info *frame)
9836 struct symtab_and_line sal;
9840 /* If this code does not have any debugging information (no symtab),
9841 This cannot be any user code. */
9843 find_frame_sal (frame, &sal);
9844 if (sal.symtab == NULL)
9847 /* If there is a symtab, but the associated source file cannot be
9848 located, then assume this is not user code: Selecting a frame
9849 for which we cannot display the code would not be very helpful
9850 for the user. This should also take care of case such as VxWorks
9851 where the kernel has some debugging info provided for a few units. */
9853 if (symtab_to_fullname (sal.symtab) == NULL)
9856 /* Check the unit filename againt the Ada runtime file naming.
9857 We also check the name of the objfile against the name of some
9858 known system libraries that sometimes come with debugging info
9861 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9863 re_comp (known_runtime_file_name_patterns[i]);
9864 if (re_exec (sal.symtab->filename))
9866 if (sal.symtab->objfile != NULL
9867 && re_exec (sal.symtab->objfile->name))
9871 /* Check whether the function is a GNAT-generated entity. */
9873 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9874 if (func_name == NULL)
9877 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9879 re_comp (known_auxiliary_function_name_patterns[i]);
9880 if (re_exec (func_name))
9887 /* Find the first frame that contains debugging information and that is not
9888 part of the Ada run-time, starting from FI and moving upward. */
9891 ada_find_printable_frame (struct frame_info *fi)
9893 for (; fi != NULL; fi = get_prev_frame (fi))
9895 if (!is_known_support_routine (fi))
9904 /* Assuming that the inferior just triggered an unhandled exception
9905 catchpoint, return the address in inferior memory where the name
9906 of the exception is stored.
9908 Return zero if the address could not be computed. */
9911 ada_unhandled_exception_name_addr (void)
9913 return parse_and_eval_address ("e.full_name");
9916 /* Same as ada_unhandled_exception_name_addr, except that this function
9917 should be used when the inferior uses an older version of the runtime,
9918 where the exception name needs to be extracted from a specific frame
9919 several frames up in the callstack. */
9922 ada_unhandled_exception_name_addr_from_raise (void)
9925 struct frame_info *fi;
9927 /* To determine the name of this exception, we need to select
9928 the frame corresponding to RAISE_SYM_NAME. This frame is
9929 at least 3 levels up, so we simply skip the first 3 frames
9930 without checking the name of their associated function. */
9931 fi = get_current_frame ();
9932 for (frame_level = 0; frame_level < 3; frame_level += 1)
9934 fi = get_prev_frame (fi);
9938 const char *func_name =
9939 function_name_from_pc (get_frame_address_in_block (fi));
9940 if (func_name != NULL
9941 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9942 break; /* We found the frame we were looking for... */
9943 fi = get_prev_frame (fi);
9950 return parse_and_eval_address ("id.full_name");
9953 /* Assuming the inferior just triggered an Ada exception catchpoint
9954 (of any type), return the address in inferior memory where the name
9955 of the exception is stored, if applicable.
9957 Return zero if the address could not be computed, or if not relevant. */
9960 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9961 struct breakpoint *b)
9965 case ex_catch_exception:
9966 return (parse_and_eval_address ("e.full_name"));
9969 case ex_catch_exception_unhandled:
9970 return exception_info->unhandled_exception_name_addr ();
9973 case ex_catch_assert:
9974 return 0; /* Exception name is not relevant in this case. */
9978 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9982 return 0; /* Should never be reached. */
9985 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9986 any error that ada_exception_name_addr_1 might cause to be thrown.
9987 When an error is intercepted, a warning with the error message is printed,
9988 and zero is returned. */
9991 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9992 struct breakpoint *b)
9994 struct gdb_exception e;
9995 CORE_ADDR result = 0;
9997 TRY_CATCH (e, RETURN_MASK_ERROR)
9999 result = ada_exception_name_addr_1 (ex, b);
10004 warning (_("failed to get exception name: %s"), e.message);
10011 /* Implement the PRINT_IT method in the breakpoint_ops structure
10012 for all exception catchpoint kinds. */
10014 static enum print_stop_action
10015 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10017 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10018 char exception_name[256];
10022 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10023 exception_name [sizeof (exception_name) - 1] = '\0';
10026 ada_find_printable_frame (get_current_frame ());
10028 annotate_catchpoint (b->number);
10031 case ex_catch_exception:
10033 printf_filtered (_("\nCatchpoint %d, %s at "),
10034 b->number, exception_name);
10036 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10038 case ex_catch_exception_unhandled:
10040 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10041 b->number, exception_name);
10043 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10046 case ex_catch_assert:
10047 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10052 return PRINT_SRC_AND_LOC;
10055 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10056 for all exception catchpoint kinds. */
10059 print_one_exception (enum exception_catchpoint_kind ex,
10060 struct breakpoint *b, CORE_ADDR *last_addr)
10064 annotate_field (4);
10065 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10068 annotate_field (5);
10069 *last_addr = b->loc->address;
10072 case ex_catch_exception:
10073 if (b->exp_string != NULL)
10075 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10077 ui_out_field_string (uiout, "what", msg);
10081 ui_out_field_string (uiout, "what", "all Ada exceptions");
10085 case ex_catch_exception_unhandled:
10086 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10089 case ex_catch_assert:
10090 ui_out_field_string (uiout, "what", "failed Ada assertions");
10094 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10099 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10100 for all exception catchpoint kinds. */
10103 print_mention_exception (enum exception_catchpoint_kind ex,
10104 struct breakpoint *b)
10108 case ex_catch_exception:
10109 if (b->exp_string != NULL)
10110 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10111 b->number, b->exp_string);
10113 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10117 case ex_catch_exception_unhandled:
10118 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10122 case ex_catch_assert:
10123 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10127 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10132 /* Virtual table for "catch exception" breakpoints. */
10134 static enum print_stop_action
10135 print_it_catch_exception (struct breakpoint *b)
10137 return print_it_exception (ex_catch_exception, b);
10141 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10143 print_one_exception (ex_catch_exception, b, last_addr);
10147 print_mention_catch_exception (struct breakpoint *b)
10149 print_mention_exception (ex_catch_exception, b);
10152 static struct breakpoint_ops catch_exception_breakpoint_ops =
10154 print_it_catch_exception,
10155 print_one_catch_exception,
10156 print_mention_catch_exception
10159 /* Virtual table for "catch exception unhandled" breakpoints. */
10161 static enum print_stop_action
10162 print_it_catch_exception_unhandled (struct breakpoint *b)
10164 return print_it_exception (ex_catch_exception_unhandled, b);
10168 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10170 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10174 print_mention_catch_exception_unhandled (struct breakpoint *b)
10176 print_mention_exception (ex_catch_exception_unhandled, b);
10179 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10180 print_it_catch_exception_unhandled,
10181 print_one_catch_exception_unhandled,
10182 print_mention_catch_exception_unhandled
10185 /* Virtual table for "catch assert" breakpoints. */
10187 static enum print_stop_action
10188 print_it_catch_assert (struct breakpoint *b)
10190 return print_it_exception (ex_catch_assert, b);
10194 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10196 print_one_exception (ex_catch_assert, b, last_addr);
10200 print_mention_catch_assert (struct breakpoint *b)
10202 print_mention_exception (ex_catch_assert, b);
10205 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10206 print_it_catch_assert,
10207 print_one_catch_assert,
10208 print_mention_catch_assert
10211 /* Return non-zero if B is an Ada exception catchpoint. */
10214 ada_exception_catchpoint_p (struct breakpoint *b)
10216 return (b->ops == &catch_exception_breakpoint_ops
10217 || b->ops == &catch_exception_unhandled_breakpoint_ops
10218 || b->ops == &catch_assert_breakpoint_ops);
10221 /* Return a newly allocated copy of the first space-separated token
10222 in ARGSP, and then adjust ARGSP to point immediately after that
10225 Return NULL if ARGPS does not contain any more tokens. */
10228 ada_get_next_arg (char **argsp)
10230 char *args = *argsp;
10234 /* Skip any leading white space. */
10236 while (isspace (*args))
10239 if (args[0] == '\0')
10240 return NULL; /* No more arguments. */
10242 /* Find the end of the current argument. */
10245 while (*end != '\0' && !isspace (*end))
10248 /* Adjust ARGSP to point to the start of the next argument. */
10252 /* Make a copy of the current argument and return it. */
10254 result = xmalloc (end - args + 1);
10255 strncpy (result, args, end - args);
10256 result[end - args] = '\0';
10261 /* Split the arguments specified in a "catch exception" command.
10262 Set EX to the appropriate catchpoint type.
10263 Set EXP_STRING to the name of the specific exception if
10264 specified by the user. */
10267 catch_ada_exception_command_split (char *args,
10268 enum exception_catchpoint_kind *ex,
10271 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10272 char *exception_name;
10274 exception_name = ada_get_next_arg (&args);
10275 make_cleanup (xfree, exception_name);
10277 /* Check that we do not have any more arguments. Anything else
10280 while (isspace (*args))
10283 if (args[0] != '\0')
10284 error (_("Junk at end of expression"));
10286 discard_cleanups (old_chain);
10288 if (exception_name == NULL)
10290 /* Catch all exceptions. */
10291 *ex = ex_catch_exception;
10292 *exp_string = NULL;
10294 else if (strcmp (exception_name, "unhandled") == 0)
10296 /* Catch unhandled exceptions. */
10297 *ex = ex_catch_exception_unhandled;
10298 *exp_string = NULL;
10302 /* Catch a specific exception. */
10303 *ex = ex_catch_exception;
10304 *exp_string = exception_name;
10308 /* Return the name of the symbol on which we should break in order to
10309 implement a catchpoint of the EX kind. */
10311 static const char *
10312 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10314 gdb_assert (exception_info != NULL);
10318 case ex_catch_exception:
10319 return (exception_info->catch_exception_sym);
10321 case ex_catch_exception_unhandled:
10322 return (exception_info->catch_exception_unhandled_sym);
10324 case ex_catch_assert:
10325 return (exception_info->catch_assert_sym);
10328 internal_error (__FILE__, __LINE__,
10329 _("unexpected catchpoint kind (%d)"), ex);
10333 /* Return the breakpoint ops "virtual table" used for catchpoints
10336 static struct breakpoint_ops *
10337 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10341 case ex_catch_exception:
10342 return (&catch_exception_breakpoint_ops);
10344 case ex_catch_exception_unhandled:
10345 return (&catch_exception_unhandled_breakpoint_ops);
10347 case ex_catch_assert:
10348 return (&catch_assert_breakpoint_ops);
10351 internal_error (__FILE__, __LINE__,
10352 _("unexpected catchpoint kind (%d)"), ex);
10356 /* Return the condition that will be used to match the current exception
10357 being raised with the exception that the user wants to catch. This
10358 assumes that this condition is used when the inferior just triggered
10359 an exception catchpoint.
10361 The string returned is a newly allocated string that needs to be
10362 deallocated later. */
10365 ada_exception_catchpoint_cond_string (const char *exp_string)
10367 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10370 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10372 static struct expression *
10373 ada_parse_catchpoint_condition (char *cond_string,
10374 struct symtab_and_line sal)
10376 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10379 /* Return the symtab_and_line that should be used to insert an exception
10380 catchpoint of the TYPE kind.
10382 EX_STRING should contain the name of a specific exception
10383 that the catchpoint should catch, or NULL otherwise.
10385 The idea behind all the remaining parameters is that their names match
10386 the name of certain fields in the breakpoint structure that are used to
10387 handle exception catchpoints. This function returns the value to which
10388 these fields should be set, depending on the type of catchpoint we need
10391 If COND and COND_STRING are both non-NULL, any value they might
10392 hold will be free'ed, and then replaced by newly allocated ones.
10393 These parameters are left untouched otherwise. */
10395 static struct symtab_and_line
10396 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10397 char **addr_string, char **cond_string,
10398 struct expression **cond, struct breakpoint_ops **ops)
10400 const char *sym_name;
10401 struct symbol *sym;
10402 struct symtab_and_line sal;
10404 /* First, find out which exception support info to use. */
10405 ada_exception_support_info_sniffer ();
10407 /* Then lookup the function on which we will break in order to catch
10408 the Ada exceptions requested by the user. */
10410 sym_name = ada_exception_sym_name (ex);
10411 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10413 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10414 that should be compiled with debugging information. As a result, we
10415 expect to find that symbol in the symtabs. If we don't find it, then
10416 the target most likely does not support Ada exceptions, or we cannot
10417 insert exception breakpoints yet, because the GNAT runtime hasn't been
10420 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10421 in such a way that no debugging information is produced for the symbol
10422 we are looking for. In this case, we could search the minimal symbols
10423 as a fall-back mechanism. This would still be operating in degraded
10424 mode, however, as we would still be missing the debugging information
10425 that is needed in order to extract the name of the exception being
10426 raised (this name is printed in the catchpoint message, and is also
10427 used when trying to catch a specific exception). We do not handle
10428 this case for now. */
10431 error (_("Unable to break on '%s' in this configuration."), sym_name);
10433 /* Make sure that the symbol we found corresponds to a function. */
10434 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10435 error (_("Symbol \"%s\" is not a function (class = %d)"),
10436 sym_name, SYMBOL_CLASS (sym));
10438 sal = find_function_start_sal (sym, 1);
10440 /* Set ADDR_STRING. */
10442 *addr_string = xstrdup (sym_name);
10444 /* Set the COND and COND_STRING (if not NULL). */
10446 if (cond_string != NULL && cond != NULL)
10448 if (*cond_string != NULL)
10450 xfree (*cond_string);
10451 *cond_string = NULL;
10458 if (exp_string != NULL)
10460 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10461 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10466 *ops = ada_exception_breakpoint_ops (ex);
10471 /* Parse the arguments (ARGS) of the "catch exception" command.
10473 Set TYPE to the appropriate exception catchpoint type.
10474 If the user asked the catchpoint to catch only a specific
10475 exception, then save the exception name in ADDR_STRING.
10477 See ada_exception_sal for a description of all the remaining
10478 function arguments of this function. */
10480 struct symtab_and_line
10481 ada_decode_exception_location (char *args, char **addr_string,
10482 char **exp_string, char **cond_string,
10483 struct expression **cond,
10484 struct breakpoint_ops **ops)
10486 enum exception_catchpoint_kind ex;
10488 catch_ada_exception_command_split (args, &ex, exp_string);
10489 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10493 struct symtab_and_line
10494 ada_decode_assert_location (char *args, char **addr_string,
10495 struct breakpoint_ops **ops)
10497 /* Check that no argument where provided at the end of the command. */
10501 while (isspace (*args))
10504 error (_("Junk at end of arguments."));
10507 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10512 /* Information about operators given special treatment in functions
10514 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10516 #define ADA_OPERATORS \
10517 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10518 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10519 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10520 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10521 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10522 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10523 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10524 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10525 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10526 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10527 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10528 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10529 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10530 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10531 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10532 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10533 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10534 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10535 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10538 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10540 switch (exp->elts[pc - 1].opcode)
10543 operator_length_standard (exp, pc, oplenp, argsp);
10546 #define OP_DEFN(op, len, args, binop) \
10547 case op: *oplenp = len; *argsp = args; break;
10553 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10558 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10564 ada_op_name (enum exp_opcode opcode)
10569 return op_name_standard (opcode);
10571 #define OP_DEFN(op, len, args, binop) case op: return #op;
10576 return "OP_AGGREGATE";
10578 return "OP_CHOICES";
10584 /* As for operator_length, but assumes PC is pointing at the first
10585 element of the operator, and gives meaningful results only for the
10586 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10589 ada_forward_operator_length (struct expression *exp, int pc,
10590 int *oplenp, int *argsp)
10592 switch (exp->elts[pc].opcode)
10595 *oplenp = *argsp = 0;
10598 #define OP_DEFN(op, len, args, binop) \
10599 case op: *oplenp = len; *argsp = args; break;
10605 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10610 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10616 int len = longest_to_int (exp->elts[pc + 1].longconst);
10617 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10625 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10627 enum exp_opcode op = exp->elts[elt].opcode;
10632 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10636 /* Ada attributes ('Foo). */
10639 case OP_ATR_LENGTH:
10643 case OP_ATR_MODULUS:
10650 case UNOP_IN_RANGE:
10652 /* XXX: gdb_sprint_host_address, type_sprint */
10653 fprintf_filtered (stream, _("Type @"));
10654 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10655 fprintf_filtered (stream, " (");
10656 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10657 fprintf_filtered (stream, ")");
10659 case BINOP_IN_BOUNDS:
10660 fprintf_filtered (stream, " (%d)",
10661 longest_to_int (exp->elts[pc + 2].longconst));
10663 case TERNOP_IN_RANGE:
10668 case OP_DISCRETE_RANGE:
10669 case OP_POSITIONAL:
10676 char *name = &exp->elts[elt + 2].string;
10677 int len = longest_to_int (exp->elts[elt + 1].longconst);
10678 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10683 return dump_subexp_body_standard (exp, stream, elt);
10687 for (i = 0; i < nargs; i += 1)
10688 elt = dump_subexp (exp, stream, elt);
10693 /* The Ada extension of print_subexp (q.v.). */
10696 ada_print_subexp (struct expression *exp, int *pos,
10697 struct ui_file *stream, enum precedence prec)
10699 int oplen, nargs, i;
10701 enum exp_opcode op = exp->elts[pc].opcode;
10703 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10710 print_subexp_standard (exp, pos, stream, prec);
10714 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10717 case BINOP_IN_BOUNDS:
10718 /* XXX: sprint_subexp */
10719 print_subexp (exp, pos, stream, PREC_SUFFIX);
10720 fputs_filtered (" in ", stream);
10721 print_subexp (exp, pos, stream, PREC_SUFFIX);
10722 fputs_filtered ("'range", stream);
10723 if (exp->elts[pc + 1].longconst > 1)
10724 fprintf_filtered (stream, "(%ld)",
10725 (long) exp->elts[pc + 1].longconst);
10728 case TERNOP_IN_RANGE:
10729 if (prec >= PREC_EQUAL)
10730 fputs_filtered ("(", stream);
10731 /* XXX: sprint_subexp */
10732 print_subexp (exp, pos, stream, PREC_SUFFIX);
10733 fputs_filtered (" in ", stream);
10734 print_subexp (exp, pos, stream, PREC_EQUAL);
10735 fputs_filtered (" .. ", stream);
10736 print_subexp (exp, pos, stream, PREC_EQUAL);
10737 if (prec >= PREC_EQUAL)
10738 fputs_filtered (")", stream);
10743 case OP_ATR_LENGTH:
10747 case OP_ATR_MODULUS:
10752 if (exp->elts[*pos].opcode == OP_TYPE)
10754 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10755 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10759 print_subexp (exp, pos, stream, PREC_SUFFIX);
10760 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10764 for (tem = 1; tem < nargs; tem += 1)
10766 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10767 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10769 fputs_filtered (")", stream);
10774 type_print (exp->elts[pc + 1].type, "", stream, 0);
10775 fputs_filtered ("'(", stream);
10776 print_subexp (exp, pos, stream, PREC_PREFIX);
10777 fputs_filtered (")", stream);
10780 case UNOP_IN_RANGE:
10781 /* XXX: sprint_subexp */
10782 print_subexp (exp, pos, stream, PREC_SUFFIX);
10783 fputs_filtered (" in ", stream);
10784 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10787 case OP_DISCRETE_RANGE:
10788 print_subexp (exp, pos, stream, PREC_SUFFIX);
10789 fputs_filtered ("..", stream);
10790 print_subexp (exp, pos, stream, PREC_SUFFIX);
10794 fputs_filtered ("others => ", stream);
10795 print_subexp (exp, pos, stream, PREC_SUFFIX);
10799 for (i = 0; i < nargs-1; i += 1)
10802 fputs_filtered ("|", stream);
10803 print_subexp (exp, pos, stream, PREC_SUFFIX);
10805 fputs_filtered (" => ", stream);
10806 print_subexp (exp, pos, stream, PREC_SUFFIX);
10809 case OP_POSITIONAL:
10810 print_subexp (exp, pos, stream, PREC_SUFFIX);
10814 fputs_filtered ("(", stream);
10815 for (i = 0; i < nargs; i += 1)
10818 fputs_filtered (", ", stream);
10819 print_subexp (exp, pos, stream, PREC_SUFFIX);
10821 fputs_filtered (")", stream);
10826 /* Table mapping opcodes into strings for printing operators
10827 and precedences of the operators. */
10829 static const struct op_print ada_op_print_tab[] = {
10830 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10831 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10832 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10833 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10834 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10835 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10836 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10837 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10838 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10839 {">=", BINOP_GEQ, PREC_ORDER, 0},
10840 {">", BINOP_GTR, PREC_ORDER, 0},
10841 {"<", BINOP_LESS, PREC_ORDER, 0},
10842 {">>", BINOP_RSH, PREC_SHIFT, 0},
10843 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10844 {"+", BINOP_ADD, PREC_ADD, 0},
10845 {"-", BINOP_SUB, PREC_ADD, 0},
10846 {"&", BINOP_CONCAT, PREC_ADD, 0},
10847 {"*", BINOP_MUL, PREC_MUL, 0},
10848 {"/", BINOP_DIV, PREC_MUL, 0},
10849 {"rem", BINOP_REM, PREC_MUL, 0},
10850 {"mod", BINOP_MOD, PREC_MUL, 0},
10851 {"**", BINOP_EXP, PREC_REPEAT, 0},
10852 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10853 {"-", UNOP_NEG, PREC_PREFIX, 0},
10854 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10855 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10856 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10857 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10858 {".all", UNOP_IND, PREC_SUFFIX, 1},
10859 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10860 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10864 enum ada_primitive_types {
10865 ada_primitive_type_int,
10866 ada_primitive_type_long,
10867 ada_primitive_type_short,
10868 ada_primitive_type_char,
10869 ada_primitive_type_float,
10870 ada_primitive_type_double,
10871 ada_primitive_type_void,
10872 ada_primitive_type_long_long,
10873 ada_primitive_type_long_double,
10874 ada_primitive_type_natural,
10875 ada_primitive_type_positive,
10876 ada_primitive_type_system_address,
10877 nr_ada_primitive_types
10881 ada_language_arch_info (struct gdbarch *gdbarch,
10882 struct language_arch_info *lai)
10884 const struct builtin_type *builtin = builtin_type (gdbarch);
10885 lai->primitive_type_vector
10886 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10888 lai->primitive_type_vector [ada_primitive_type_int] =
10889 init_type (TYPE_CODE_INT,
10890 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10891 0, "integer", (struct objfile *) NULL);
10892 lai->primitive_type_vector [ada_primitive_type_long] =
10893 init_type (TYPE_CODE_INT,
10894 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10895 0, "long_integer", (struct objfile *) NULL);
10896 lai->primitive_type_vector [ada_primitive_type_short] =
10897 init_type (TYPE_CODE_INT,
10898 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10899 0, "short_integer", (struct objfile *) NULL);
10900 lai->string_char_type =
10901 lai->primitive_type_vector [ada_primitive_type_char] =
10902 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10903 0, "character", (struct objfile *) NULL);
10904 lai->primitive_type_vector [ada_primitive_type_float] =
10905 init_type (TYPE_CODE_FLT,
10906 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10907 0, "float", (struct objfile *) NULL);
10908 lai->primitive_type_vector [ada_primitive_type_double] =
10909 init_type (TYPE_CODE_FLT,
10910 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10911 0, "long_float", (struct objfile *) NULL);
10912 lai->primitive_type_vector [ada_primitive_type_long_long] =
10913 init_type (TYPE_CODE_INT,
10914 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10915 0, "long_long_integer", (struct objfile *) NULL);
10916 lai->primitive_type_vector [ada_primitive_type_long_double] =
10917 init_type (TYPE_CODE_FLT,
10918 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10919 0, "long_long_float", (struct objfile *) NULL);
10920 lai->primitive_type_vector [ada_primitive_type_natural] =
10921 init_type (TYPE_CODE_INT,
10922 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10923 0, "natural", (struct objfile *) NULL);
10924 lai->primitive_type_vector [ada_primitive_type_positive] =
10925 init_type (TYPE_CODE_INT,
10926 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10927 0, "positive", (struct objfile *) NULL);
10928 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10930 lai->primitive_type_vector [ada_primitive_type_system_address] =
10931 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10932 (struct objfile *) NULL));
10933 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10934 = "system__address";
10937 /* Language vector */
10939 /* Not really used, but needed in the ada_language_defn. */
10942 emit_char (int c, struct ui_file *stream, int quoter)
10944 ada_emit_char (c, stream, quoter, 1);
10950 warnings_issued = 0;
10951 return ada_parse ();
10954 static const struct exp_descriptor ada_exp_descriptor = {
10956 ada_operator_length,
10958 ada_dump_subexp_body,
10959 ada_evaluate_subexp
10962 const struct language_defn ada_language_defn = {
10963 "ada", /* Language name */
10967 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10968 that's not quite what this means. */
10970 &ada_exp_descriptor,
10974 ada_printchar, /* Print a character constant */
10975 ada_printstr, /* Function to print string constant */
10976 emit_char, /* Function to print single char (not used) */
10977 ada_print_type, /* Print a type using appropriate syntax */
10978 ada_val_print, /* Print a value using appropriate syntax */
10979 ada_value_print, /* Print a top-level value */
10980 NULL, /* Language specific skip_trampoline */
10981 NULL, /* name_of_this */
10982 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10983 basic_lookup_transparent_type, /* lookup_transparent_type */
10984 ada_la_decode, /* Language specific symbol demangler */
10985 NULL, /* Language specific class_name_from_physname */
10986 ada_op_print_tab, /* expression operators for printing */
10987 0, /* c-style arrays */
10988 1, /* String lower bound */
10989 ada_get_gdb_completer_word_break_characters,
10990 ada_make_symbol_completion_list,
10991 ada_language_arch_info,
10992 ada_print_array_index,
10993 default_pass_by_reference,
10998 _initialize_ada_language (void)
11000 add_language (&ada_language_defn);
11002 varsize_limit = 65536;
11004 obstack_init (&symbol_list_obstack);
11006 decoded_names_store = htab_create_alloc
11007 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11008 NULL, xcalloc, xfree);
11010 observer_attach_executable_changed (ada_executable_changed_observer);