1 /* tc-vax.c - vax-specific -
2 Copyright (C) 1987, 91, 92, 93, 94, 95, 1998 Free Software Foundation, Inc.
4 This file is part of GAS, the GNU Assembler.
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "obstack.h" /* For FRAG_APPEND_1_CHAR macro in "frags.h" */
26 /* These chars start a comment anywhere in a source file (except inside
28 const char comment_chars[] = "#";
30 /* These chars only start a comment at the beginning of a line. */
31 /* Note that for the VAX the are the same as comment_chars above. */
32 const char line_comment_chars[] = "#";
34 const char line_separator_chars[] = "";
36 /* Chars that can be used to separate mant from exp in floating point nums */
37 const char EXP_CHARS[] = "eE";
39 /* Chars that mean this number is a floating point constant */
41 /* or 0H1.234E-12 (see exp chars above) */
42 const char FLT_CHARS[] = "dDfFgGhH";
44 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
45 changed in read.c . Ideally it shouldn't have to know about it at all,
46 but nothing is ideal around here. */
48 /* Hold details of an operand expression */
49 static expressionS exp_of_operand[VIT_MAX_OPERANDS];
50 static segT seg_of_operand[VIT_MAX_OPERANDS];
52 /* A vax instruction after decoding. */
55 /* Hold details of big operands. */
56 LITTLENUM_TYPE big_operand_bits[VIT_MAX_OPERANDS][SIZE_OF_LARGE_NUMBER];
57 FLONUM_TYPE float_operand[VIT_MAX_OPERANDS];
58 /* Above is made to point into big_operand_bits by md_begin(). */
60 int flag_hash_long_names; /* -+ */
61 int flag_one; /* -1 */
62 int flag_show_after_trunc; /* -H */
63 int flag_no_hash_mixed_case; /* -h NUM */
66 * For VAX, relative addresses of "just the right length" are easy.
67 * The branch displacement is always the last operand, even in
68 * synthetic instructions.
69 * For VAX, we encode the relax_substateTs (in e.g. fr_substate) as:
71 * 4 3 2 1 0 bit number
72 * ---/ /--+-------+-------+-------+-------+-------+
73 * | what state ? | how long ? |
74 * ---/ /--+-------+-------+-------+-------+-------+
76 * The "how long" bits are 00=byte, 01=word, 10=long.
77 * This is a Un*x convention.
78 * Not all lengths are legit for a given value of (what state).
79 * The "how long" refers merely to the displacement length.
80 * The address usually has some constant bytes in it as well.
83 groups for VAX address relaxing.
86 length of byte, word, long
88 2a. J<cond> where <cond> is a simple flag test.
89 length of byte, word, long.
90 VAX opcodes are: (Hex)
103 Always, you complement 0th bit to reverse condition.
104 Always, 1-byte opcode, then 1-byte displacement.
106 2b. J<cond> where cond tests a memory bit.
107 length of byte, word, long.
108 Vax opcodes are: (Hex)
117 Always, you complement 0th bit to reverse condition.
118 Always, 1-byte opcde, longword-address, byte-address, 1-byte-displacement
120 2c. J<cond> where cond tests low-order memory bit
121 length of byte,word,long.
122 Vax opcodes are: (Hex)
125 Always, you complement 0th bit to reverse condition.
126 Always, 1-byte opcode, longword-address, 1-byte displacement.
129 length of byte,word,long.
130 Vax opcodes are: (Hex)
133 These are like (2) but there is no condition to reverse.
134 Always, 1 byte opcode, then displacement/absolute.
137 length of word, long.
138 Vax opcodes are: (Hex)
146 Always, we cannot reverse the sense of the branch; we have a word
148 The double-byte op-codes don't hurt: we never want to modify the
149 opcode, so we don't care how many bytes are between the opcode and
153 length of long, long, byte.
154 Vax opcodes are: (Hex)
159 Always, we cannot reverse the sense of the branch; we have a byte
162 The only time we need to modify the opcode is for class 2 instructions.
163 After relax() we may complement the lowest order bit of such instruction
164 to reverse sense of branch.
166 For class 2 instructions, we store context of "where is the opcode literal".
167 We can change an opcode's lowest order bit without breaking anything else.
169 We sometimes store context in the operand literal. This way we can figure out
170 after relax() what the original addressing mode was.
173 /* These displacements are relative to the start address of the
174 displacement. The first letter is Byte, Word. 2nd letter is
175 Forward, Backward. */
178 #define WF (2+ 32767)
179 #define WB (2+-32768)
180 /* Dont need LF, LB because they always reach. [They are coded as 0.] */
183 #define C(a,b) ENCODE_RELAX(a,b)
184 /* This macro has no side-effects. */
185 #define ENCODE_RELAX(what,length) (((what) << 2) + (length))
187 const relax_typeS md_relax_table[] =
189 {1, 1, 0, 0}, /* error sentinel 0,0 */
190 {1, 1, 0, 0}, /* unused 0,1 */
191 {1, 1, 0, 0}, /* unused 0,2 */
192 {1, 1, 0, 0}, /* unused 0,3 */
193 {BF + 1, BB + 1, 2, C (1, 1)},/* B^"foo" 1,0 */
194 {WF + 1, WB + 1, 3, C (1, 2)},/* W^"foo" 1,1 */
195 {0, 0, 5, 0}, /* L^"foo" 1,2 */
196 {1, 1, 0, 0}, /* unused 1,3 */
197 {BF, BB, 1, C (2, 1)}, /* b<cond> B^"foo" 2,0 */
198 {WF + 2, WB + 2, 4, C (2, 2)},/* br.+? brw X 2,1 */
199 {0, 0, 7, 0}, /* br.+? jmp X 2,2 */
200 {1, 1, 0, 0}, /* unused 2,3 */
201 {BF, BB, 1, C (3, 1)}, /* brb B^foo 3,0 */
202 {WF, WB, 2, C (3, 2)}, /* brw W^foo 3,1 */
203 {0, 0, 5, 0}, /* Jmp L^foo 3,2 */
204 {1, 1, 0, 0}, /* unused 3,3 */
205 {1, 1, 0, 0}, /* unused 4,0 */
206 {WF, WB, 2, C (4, 2)}, /* acb_ ^Wfoo 4,1 */
207 {0, 0, 10, 0}, /* acb_,br,jmp L^foo4,2 */
208 {1, 1, 0, 0}, /* unused 4,3 */
209 {BF, BB, 1, C (5, 1)}, /* Xob___,,foo 5,0 */
210 {WF + 4, WB + 4, 6, C (5, 2)},/* Xob.+2,brb.+3,brw5,1 */
211 {0, 0, 9, 0}, /* Xob.+2,brb.+6,jmp5,2 */
222 const pseudo_typeS md_pseudo_table[] =
224 {"dfloat", float_cons, 'd'},
225 {"ffloat", float_cons, 'f'},
226 {"gfloat", float_cons, 'g'},
227 {"hfloat", float_cons, 'h'},
231 #define STATE_PC_RELATIVE (1)
232 #define STATE_CONDITIONAL_BRANCH (2)
233 #define STATE_ALWAYS_BRANCH (3) /* includes BSB... */
234 #define STATE_COMPLEX_BRANCH (4)
235 #define STATE_COMPLEX_HOP (5)
237 #define STATE_BYTE (0)
238 #define STATE_WORD (1)
239 #define STATE_LONG (2)
240 #define STATE_UNDF (3) /* Symbol undefined in pass1 */
243 #define min(a, b) ((a) < (b) ? (a) : (b))
245 int flonum_gen2vax PARAMS ((char format_letter, FLONUM_TYPE * f,
246 LITTLENUM_TYPE * words));
247 static const char *vip_begin PARAMS ((int, const char *, const char *,
249 static void vip_op_defaults PARAMS ((const char *, const char *, const char *));
250 static void vip_op PARAMS ((char *, struct vop *));
251 static void vip PARAMS ((struct vit *, char *));
260 if ((errtxt = vip_begin (1, "$", "*", "`")) != 0)
262 as_fatal (_("VIP_BEGIN error:%s"), errtxt);
265 for (i = 0, fP = float_operand;
266 fP < float_operand + VIT_MAX_OPERANDS;
269 fP->low = &big_operand_bits[i][0];
270 fP->high = &big_operand_bits[i][SIZE_OF_LARGE_NUMBER - 1];
275 md_number_to_chars (con, value, nbytes)
280 number_to_chars_littleendian (con, value, nbytes);
283 /* Fix up some data or instructions after we find out the value of a symbol
284 that they reference. */
286 void /* Knows about order of bytes in address. */
287 md_apply_fix (fixP, value)
291 number_to_chars_littleendian (fixP->fx_where + fixP->fx_frag->fr_literal,
292 (valueT) value, fixP->fx_size);
296 md_chars_to_number (con, nbytes)
297 unsigned char con[]; /* Low order byte 1st. */
298 int nbytes; /* Number of bytes in the input. */
301 for (retval = 0, con += nbytes - 1; nbytes--; con--)
303 retval <<= BITS_PER_CHAR;
309 /* vax:md_assemble() emit frags for 1 instruction */
312 md_assemble (instruction_string)
313 char *instruction_string; /* A string: assemble 1 instruction. */
315 /* Non-zero if operand expression's segment is not known yet. */
320 /* An operand. Scans all operands. */
321 struct vop *operandP;
322 char *save_input_line_pointer;
323 /* What used to live after an expression. */
325 /* 1: instruction_string bad for all passes. */
327 /* Points to slot just after last operand. */
328 struct vop *end_operandP;
329 /* Points to expression values for this operand. */
333 /* These refer to an instruction operand expression. */
334 /* Target segment of the address. */
336 valueT this_add_number;
337 /* Positive (minuend) symbol. */
338 struct symbol *this_add_symbol;
340 long opcode_as_number;
341 /* Least significant byte 1st. */
342 char *opcode_as_chars;
343 /* As an array of characters. */
344 /* Least significant byte 1st */
345 char *opcode_low_byteP;
346 /* length (bytes) meant by vop_short. */
348 /* 0, or 1 if '@' is in addressing mode. */
350 /* From vop_nbytes: vax_operand_width (in bytes) */
353 LITTLENUM_TYPE literal_float[8];
354 /* Big enough for any floating point literal. */
356 vip (&v, instruction_string);
359 * Now we try to find as many as_warn()s as we can. If we do any as_warn()s
360 * then goofed=1. Notice that we don't make any frags yet.
361 * Should goofed be 1, then this instruction will wedge in any pass,
362 * and we can safely flush it, without causing interpass symbol phase
363 * errors. That is, without changing label values in different passes.
365 if ((goofed = (*v.vit_error)) != 0)
367 as_warn (_("Ignoring statement due to \"%s\""), v.vit_error);
370 * We need to use expression() and friends, which require us to diddle
371 * input_line_pointer. So we save it and restore it later.
373 save_input_line_pointer = input_line_pointer;
374 for (operandP = v.vit_operand,
375 expP = exp_of_operand,
376 segP = seg_of_operand,
377 floatP = float_operand,
378 end_operandP = v.vit_operand + v.vit_operands;
380 operandP < end_operandP;
382 operandP++, expP++, segP++, floatP++)
383 { /* for each operand */
384 if (operandP->vop_error)
386 as_warn (_("Ignoring statement because \"%s\""), operandP->vop_error);
391 /* statement has no syntax goofs: lets sniff the expression */
392 int can_be_short = 0; /* 1 if a bignum can be reduced to a short literal. */
394 input_line_pointer = operandP->vop_expr_begin;
395 c_save = operandP->vop_expr_end[1];
396 operandP->vop_expr_end[1] = '\0';
397 /* If to_seg == SEG_PASS1, expression() will have set need_pass_2 = 1. */
398 *segP = expression (expP);
402 /* for BSD4.2 compatibility, missing expression is absolute 0 */
403 expP->X_op = O_constant;
404 expP->X_add_number = 0;
405 /* For SEG_ABSOLUTE, we shouldn't need to set X_op_symbol,
406 X_add_symbol to any particular value. But, we will program
407 defensively. Since this situation occurs rarely so it costs
408 us little to do, and stops Dean worrying about the origin of
409 random bits in expressionS's. */
410 expP->X_add_symbol = NULL;
411 expP->X_op_symbol = NULL;
420 * Major bug. We can't handle the case of a
421 * SEG_OP expression in a VIT_OPCODE_SYNTHETIC
422 * variable-length instruction.
423 * We don't have a frag type that is smart enough to
424 * relax a SEG_OP, and so we just force all
425 * SEG_OPs to behave like SEG_PASS1s.
426 * Clearly, if there is a demand we can invent a new or
427 * modified frag type and then coding up a frag for this
428 * case will be easy. SEG_OP was invented for the
429 * .words after a CASE opcode, and was never intended for
430 * instruction operands.
433 as_warn (_("Can't relocate expression"));
437 /* Preserve the bits. */
438 if (expP->X_add_number > 0)
440 bignum_copy (generic_bignum, expP->X_add_number,
441 floatP->low, SIZE_OF_LARGE_NUMBER);
445 know (expP->X_add_number < 0);
446 flonum_copy (&generic_floating_point_number,
448 if (strchr ("s i", operandP->vop_short))
450 /* Could possibly become S^# */
451 flonum_gen2vax (-expP->X_add_number, floatP, literal_float);
452 switch (-expP->X_add_number)
456 (literal_float[0] & 0xFC0F) == 0x4000
457 && literal_float[1] == 0;
462 (literal_float[0] & 0xFC0F) == 0x4000
463 && literal_float[1] == 0
464 && literal_float[2] == 0
465 && literal_float[3] == 0;
470 (literal_float[0] & 0xFF81) == 0x4000
471 && literal_float[1] == 0
472 && literal_float[2] == 0
473 && literal_float[3] == 0;
477 can_be_short = ((literal_float[0] & 0xFFF8) == 0x4000
478 && (literal_float[1] & 0xE000) == 0
479 && literal_float[2] == 0
480 && literal_float[3] == 0
481 && literal_float[4] == 0
482 && literal_float[5] == 0
483 && literal_float[6] == 0
484 && literal_float[7] == 0);
488 BAD_CASE (-expP->X_add_number);
490 } /* switch (float type) */
491 } /* if (could want to become S^#...) */
492 } /* bignum or flonum ? */
494 if (operandP->vop_short == 's'
495 || operandP->vop_short == 'i'
496 || (operandP->vop_short == ' '
497 && operandP->vop_reg == 0xF
498 && (operandP->vop_mode & 0xE) == 0x8))
501 if (operandP->vop_short == ' ')
503 /* We must chose S^ or I^. */
504 if (expP->X_add_number > 0)
506 /* Bignum: Short literal impossible. */
507 operandP->vop_short = 'i';
508 operandP->vop_mode = 8;
509 operandP->vop_reg = 0xF; /* VAX PC. */
513 /* Flonum: Try to do it. */
516 operandP->vop_short = 's';
517 operandP->vop_mode = 0;
518 operandP->vop_ndx = -1;
519 operandP->vop_reg = -1;
520 expP->X_op = O_constant;
524 operandP->vop_short = 'i';
525 operandP->vop_mode = 8;
526 operandP->vop_reg = 0xF; /* VAX PC */
528 } /* bignum or flonum ? */
529 } /* if #, but no S^ or I^ seen. */
530 /* No more ' ' case: either 's' or 'i'. */
531 if (operandP->vop_short == 's')
533 /* Wants to be a short literal. */
534 if (expP->X_add_number > 0)
536 as_warn (_("Bignum not permitted in short literal. Immediate mode assumed."));
537 operandP->vop_short = 'i';
538 operandP->vop_mode = 8;
539 operandP->vop_reg = 0xF; /* VAX PC. */
545 as_warn (_("Can't do flonum short literal: immediate mode used."));
546 operandP->vop_short = 'i';
547 operandP->vop_mode = 8;
548 operandP->vop_reg = 0xF; /* VAX PC. */
551 { /* Encode short literal now. */
554 switch (-expP->X_add_number)
558 temp = literal_float[0] >> 4;
562 temp = literal_float[0] >> 1;
566 temp = ((literal_float[0] << 3) & 070)
567 | ((literal_float[1] >> 13) & 07);
571 BAD_CASE (-expP->X_add_number);
575 floatP->low[0] = temp & 077;
577 } /* if can be short literal float */
578 } /* flonum or bignum ? */
581 { /* I^# seen: set it up if float. */
582 if (expP->X_add_number < 0)
584 memcpy (floatP->low, literal_float, sizeof (literal_float));
590 as_warn (_("A bignum/flonum may not be a displacement: 0x%lx used"),
591 (expP->X_add_number = 0x80000000L));
592 /* Chosen so luser gets the most offset bits to patch later. */
594 expP->X_add_number = floatP->low[0]
595 | ((LITTLENUM_MASK & (floatP->low[1])) << LITTLENUM_NUMBER_OF_BITS);
597 * For the O_big case we have:
598 * If vop_short == 's' then a short floating literal is in the
599 * lowest 6 bits of floatP -> low [0], which is
600 * big_operand_bits [---] [0].
601 * If vop_short == 'i' then the appropriate number of elements
602 * of big_operand_bits [---] [...] are set up with the correct
604 * Also, just in case width is byte word or long, we copy the lowest
605 * 32 bits of the number to X_add_number.
609 if (input_line_pointer != operandP->vop_expr_end + 1)
611 as_warn ("Junk at end of expression \"%s\"", input_line_pointer);
614 operandP->vop_expr_end[1] = c_save;
616 } /* for(each operand) */
618 input_line_pointer = save_input_line_pointer;
620 if (need_pass_2 || goofed)
627 /* Remember where it is, in case we want to modify the op-code later. */
628 opcode_low_byteP = frag_more (v.vit_opcode_nbytes);
629 memcpy (opcode_low_byteP, v.vit_opcode, v.vit_opcode_nbytes);
630 opcode_as_number = md_chars_to_number (opcode_as_chars = v.vit_opcode, 4);
631 for (operandP = v.vit_operand,
632 expP = exp_of_operand,
633 segP = seg_of_operand,
634 floatP = float_operand,
635 end_operandP = v.vit_operand + v.vit_operands;
637 operandP < end_operandP;
644 if (operandP->vop_ndx >= 0)
646 /* indexed addressing byte */
647 /* Legality of indexed mode already checked: it is OK */
648 FRAG_APPEND_1_CHAR (0x40 + operandP->vop_ndx);
649 } /* if(vop_ndx>=0) */
651 /* Here to make main operand frag(s). */
652 this_add_number = expP->X_add_number;
653 this_add_symbol = expP->X_add_symbol;
655 is_undefined = (to_seg == SEG_UNKNOWN);
656 at = operandP->vop_mode & 1;
657 length = (operandP->vop_short == 'b'
658 ? 1 : (operandP->vop_short == 'w'
659 ? 2 : (operandP->vop_short == 'l'
661 nbytes = operandP->vop_nbytes;
662 if (operandP->vop_access == 'b')
664 if (to_seg == now_seg || is_undefined)
666 /* If is_undefined, then it might BECOME now_seg. */
669 p = frag_more (nbytes);
670 fix_new (frag_now, p - frag_now->fr_literal, nbytes,
671 this_add_symbol, this_add_number, 1, NO_RELOC);
674 { /* to_seg==now_seg || to_seg == SEG_UNKNOWN */
676 length_code = is_undefined ? STATE_UNDF : STATE_BYTE;
677 if (opcode_as_number & VIT_OPCODE_SPECIAL)
679 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
682 frag_var (rs_machine_dependent, 5, 1,
683 ENCODE_RELAX (STATE_ALWAYS_BRANCH, length_code),
684 this_add_symbol, this_add_number,
689 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
691 length_code = STATE_WORD;
692 /* JF: There is no state_byte for this one! */
693 frag_var (rs_machine_dependent, 10, 2,
694 ENCODE_RELAX (STATE_COMPLEX_BRANCH, length_code),
695 this_add_symbol, this_add_number,
700 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
701 frag_var (rs_machine_dependent, 9, 1,
702 ENCODE_RELAX (STATE_COMPLEX_HOP, length_code),
703 this_add_symbol, this_add_number,
710 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
711 frag_var (rs_machine_dependent, 7, 1,
712 ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, length_code),
713 this_add_symbol, this_add_number,
720 /* to_seg != now_seg && to_seg != SEG_UNKNOWN */
722 * --- SEG FLOAT MAY APPEAR HERE ----
724 if (to_seg == SEG_ABSOLUTE)
728 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
729 p = frag_more (nbytes);
730 /* Conventional relocation. */
731 fix_new (frag_now, p - frag_now->fr_literal,
732 nbytes, &abs_symbol, this_add_number,
737 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
738 if (opcode_as_number & VIT_OPCODE_SPECIAL)
740 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
743 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
744 know (opcode_as_chars[1] == 0);
746 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
747 md_number_to_chars (p + 1, this_add_number, 4);
748 /* Now (eg) JMP @#foo or JSB @#foo. */
752 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
760 p[5] = VAX_ABSOLUTE_MODE; /* @#... */
761 md_number_to_chars (p + 6, this_add_number, 4);
771 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
777 p[4] = VAX_PC_RELATIVE_MODE + 1; /* @#... */
778 md_number_to_chars (p + 5, this_add_number, 4);
791 *opcode_low_byteP ^= 1;
792 /* To reverse the condition in a VAX branch,
793 complement the lowest order bit. */
797 p[2] = VAX_ABSOLUTE_MODE; /* @#... */
798 md_number_to_chars (p + 3, this_add_number, 4);
809 /* to_seg != now_seg && to_seg != SEG_UNKNOWN && to_Seg != SEG_ABSOLUTE */
812 /* Pc-relative. Conventional relocation. */
813 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
814 p = frag_more (nbytes);
815 fix_new (frag_now, p - frag_now->fr_literal,
816 nbytes, &abs_symbol, this_add_number,
821 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
822 if (opcode_as_number & VIT_OPCODE_SPECIAL)
824 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
827 know (opcode_as_chars[1] == 0);
828 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
830 p[0] = VAX_PC_RELATIVE_MODE;
832 p + 1 - frag_now->fr_literal, 4,
834 this_add_number, 1, NO_RELOC);
835 /* Now eg JMP foo or JSB foo. */
839 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
847 p[5] = VAX_PC_RELATIVE_MODE;
849 p + 6 - frag_now->fr_literal, 4,
851 this_add_number, 1, NO_RELOC);
861 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
867 p[4] = VAX_PC_RELATIVE_MODE;
869 p + 5 - frag_now->fr_literal,
871 this_add_number, 1, NO_RELOC);
883 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
884 *opcode_low_byteP ^= 1; /* Reverse branch condition. */
888 p[2] = VAX_PC_RELATIVE_MODE;
889 fix_new (frag_now, p + 3 - frag_now->fr_literal,
891 this_add_number, 1, NO_RELOC);
899 know (operandP->vop_access != 'b'); /* So it is ordinary operand. */
900 know (operandP->vop_access != ' '); /* ' ' target-independent: elsewhere. */
901 know (operandP->vop_access == 'a'
902 || operandP->vop_access == 'm'
903 || operandP->vop_access == 'r'
904 || operandP->vop_access == 'v'
905 || operandP->vop_access == 'w');
906 if (operandP->vop_short == 's')
908 if (to_seg == SEG_ABSOLUTE)
910 if (this_add_number >= 64)
912 as_warn (_("Short literal overflow(%ld.), immediate mode assumed."),
913 (long) this_add_number);
914 operandP->vop_short = 'i';
915 operandP->vop_mode = 8;
916 operandP->vop_reg = 0xF;
921 as_warn (_("Forced short literal to immediate mode. now_seg=%s to_seg=%s"),
922 segment_name (now_seg), segment_name (to_seg));
923 operandP->vop_short = 'i';
924 operandP->vop_mode = 8;
925 operandP->vop_reg = 0xF;
928 if (operandP->vop_reg >= 0 && (operandP->vop_mode < 8
929 || (operandP->vop_reg != 0xF && operandP->vop_mode < 10)))
931 /* One byte operand. */
932 know (operandP->vop_mode > 3);
933 FRAG_APPEND_1_CHAR (operandP->vop_mode << 4 | operandP->vop_reg);
934 /* All 1-bytes except S^# happen here. */
938 /* {@}{q^}foo{(Rn)} or S^#foo */
939 if (operandP->vop_reg == -1 && operandP->vop_short != 's')
942 if (to_seg == now_seg)
946 know (operandP->vop_short == ' ');
947 p = frag_var (rs_machine_dependent, 10, 2,
948 ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE),
949 this_add_symbol, this_add_number,
951 know (operandP->vop_mode == 10 + at);
953 /* At is the only context we need to carry
954 to other side of relax() process. Must
955 be in the correct bit position of VAX
956 operand spec. byte. */
961 know (operandP->vop_short != ' ');
962 p = frag_more (length + 1);
963 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
964 fix_new (frag_now, p + 1 - frag_now->fr_literal,
965 length, this_add_symbol,
966 this_add_number, 1, NO_RELOC);
970 { /* to_seg != now_seg */
971 if (this_add_symbol == NULL)
973 know (to_seg == SEG_ABSOLUTE);
974 /* Do @#foo: simpler relocation than foo-.(pc) anyway. */
976 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
977 md_number_to_chars (p + 1, this_add_number, 4);
978 if (length && length != 4)
980 as_warn (_("Length specification ignored. Address mode 9F used"));
985 /* {@}{q^}other_seg */
986 know ((length == 0 && operandP->vop_short == ' ')
987 || (length > 0 && operandP->vop_short != ' '));
991 * We have a SEG_UNKNOWN symbol. It might
992 * turn out to be in the same segment as
993 * the instruction, permitting relaxation.
995 p = frag_var (rs_machine_dependent, 5, 2,
996 ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF),
997 this_add_symbol, this_add_number,
1005 know (operandP->vop_short == ' ');
1006 length = 4; /* Longest possible. */
1008 p = frag_more (length + 1);
1009 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
1010 md_number_to_chars (p + 1, this_add_number, length);
1012 p + 1 - frag_now->fr_literal,
1013 length, this_add_symbol,
1014 this_add_number, 1, NO_RELOC);
1021 /* {@}{q^}foo(Rn) or S^# or I^# or # */
1022 if (operandP->vop_mode < 0xA)
1024 /* # or S^# or I^# */
1025 if (operandP->vop_access == 'v'
1026 || operandP->vop_access == 'a')
1028 if (operandP->vop_access == 'v')
1029 as_warn (_("Invalid operand: immediate value used as base address."));
1031 as_warn (_("Invalid operand: immediate value used as address."));
1032 /* gcc 2.6.3 is known to generate these in at least
1036 && to_seg == SEG_ABSOLUTE && (expP->X_op != O_big)
1037 && operandP->vop_mode == 8 /* No '@'. */
1038 && this_add_number < 64)
1040 operandP->vop_short = 's';
1042 if (operandP->vop_short == 's')
1044 FRAG_APPEND_1_CHAR (this_add_number);
1050 p = frag_more (nbytes + 1);
1051 know (operandP->vop_reg == 0xF);
1052 p[0] = (operandP->vop_mode << 4) | 0xF;
1053 if ((to_seg == SEG_ABSOLUTE) && (expP->X_op != O_big))
1056 * If nbytes > 4, then we are scrod. We
1057 * don't know if the high order bytes
1058 * are to be 0xFF or 0x00. BSD4.2 & RMS
1059 * say use 0x00. OK --- but this
1060 * assembler needs ANOTHER rewrite to
1061 * cope properly with this bug. */
1062 md_number_to_chars (p + 1, this_add_number, min (4, nbytes));
1065 memset (p + 5, '\0', nbytes - 4);
1070 if (expP->X_op == O_big)
1073 * Problem here is to get the bytes
1074 * in the right order. We stored
1075 * our constant as LITTLENUMs, not
1087 for (p++; nbytes; nbytes -= 2, p += 2, lP++)
1089 md_number_to_chars (p, *lP, 2);
1095 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1096 nbytes, this_add_symbol,
1097 this_add_number, 0, NO_RELOC);
1103 { /* {@}{q^}foo(Rn) */
1104 know ((length == 0 && operandP->vop_short == ' ')
1105 || (length > 0 && operandP->vop_short != ' '));
1108 if (to_seg == SEG_ABSOLUTE)
1112 test = this_add_number;
1117 length = test & 0xffff8000 ? 4
1118 : test & 0xffffff80 ? 2
1126 p = frag_more (1 + length);
1127 know (operandP->vop_reg >= 0);
1128 p[0] = operandP->vop_reg
1129 | ((at | "?\12\14?\16"[length]) << 4);
1130 if (to_seg == SEG_ABSOLUTE)
1132 md_number_to_chars (p + 1, this_add_number, length);
1136 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1137 length, this_add_symbol,
1138 this_add_number, 0, NO_RELOC);
1142 } /* if(single-byte-operand) */
1144 } /* for(operandP) */
1145 } /* vax_assemble() */
1148 * md_estimate_size_before_relax()
1150 * Called just before relax().
1151 * Any symbol that is now undefined will not become defined.
1152 * Return the correct fr_subtype in the frag.
1153 * Return the initial "guess for fr_var" to caller.
1154 * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
1155 * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
1156 * Although it may not be explicit in the frag, pretend fr_var starts with a
1160 md_estimate_size_before_relax (fragP, segment)
1167 old_fr_fix = fragP->fr_fix;
1168 switch (fragP->fr_subtype)
1170 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF):
1171 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1172 { /* A relaxable case. */
1173 fragP->fr_subtype = ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE);
1177 p = fragP->fr_literal + old_fr_fix;
1178 p[0] |= VAX_PC_RELATIVE_MODE; /* Preserve @ bit. */
1179 fragP->fr_fix += 1 + 4;
1180 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol,
1181 fragP->fr_offset, 1, NO_RELOC);
1186 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_UNDF):
1187 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1189 fragP->fr_subtype = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE);
1193 p = fragP->fr_literal + old_fr_fix;
1194 *fragP->fr_opcode ^= 1; /* Reverse sense of branch. */
1197 p[2] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
1198 fragP->fr_fix += 1 + 1 + 1 + 4;
1199 fix_new (fragP, old_fr_fix + 3, 4, fragP->fr_symbol,
1200 fragP->fr_offset, 1, NO_RELOC);
1205 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_UNDF):
1206 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1208 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD);
1212 p = fragP->fr_literal + old_fr_fix;
1218 p[5] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
1219 fragP->fr_fix += 2 + 2 + 1 + 1 + 4;
1220 fix_new (fragP, old_fr_fix + 6, 4, fragP->fr_symbol,
1221 fragP->fr_offset, 1, NO_RELOC);
1226 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_UNDF):
1227 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1229 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE);
1233 p = fragP->fr_literal + old_fr_fix;
1238 p[4] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
1239 fragP->fr_fix += 1 + 2 + 1 + 1 + 4;
1240 fix_new (fragP, old_fr_fix + 5, 4, fragP->fr_symbol,
1241 fragP->fr_offset, 1, NO_RELOC);
1246 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_UNDF):
1247 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1249 fragP->fr_subtype = ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE);
1253 p = fragP->fr_literal + old_fr_fix;
1254 *fragP->fr_opcode += VAX_WIDEN_LONG;
1255 p[0] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
1256 fragP->fr_fix += 1 + 4;
1257 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol,
1258 fragP->fr_offset, 1, NO_RELOC);
1266 return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
1267 } /* md_estimate_size_before_relax() */
1270 * md_convert_frag();
1272 * Called after relax() is finished.
1273 * In: Address of frag.
1274 * fr_type == rs_machine_dependent.
1275 * fr_subtype is what the address relaxed to.
1277 * Out: Any fixSs and constants are set up.
1278 * Caller will turn frag into a ".space 0".
1281 md_convert_frag (headers, seg, fragP)
1282 object_headers *headers;
1286 char *addressP; /* -> _var to change. */
1287 char *opcodeP; /* -> opcode char(s) to change. */
1288 short int length_code; /* 2=long 1=word 0=byte */
1289 short int extension = 0; /* Size of relaxed address. */
1290 /* Added to fr_fix: incl. ALL var chars. */
1293 long address_of_var;
1294 /* Where, in file space, is _var of *fragP? */
1295 long target_address = 0;
1296 /* Where, in file space, does addr point? */
1298 know (fragP->fr_type == rs_machine_dependent);
1299 length_code = fragP->fr_subtype & 3; /* depends on ENCODE_RELAX() */
1300 know (length_code >= 0 && length_code < 3);
1301 where = fragP->fr_fix;
1302 addressP = fragP->fr_literal + where;
1303 opcodeP = fragP->fr_opcode;
1304 symbolP = fragP->fr_symbol;
1306 target_address = S_GET_VALUE (symbolP) + fragP->fr_offset;
1307 address_of_var = fragP->fr_address + where;
1309 switch (fragP->fr_subtype)
1312 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE):
1313 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1314 addressP[0] |= 0xAF; /* Byte displacement. */
1315 addressP[1] = target_address - (address_of_var + 2);
1319 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_WORD):
1320 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1321 addressP[0] |= 0xCF; /* Word displacement. */
1322 md_number_to_chars (addressP + 1, target_address - (address_of_var + 3), 2);
1326 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_LONG):
1327 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1328 addressP[0] |= 0xEF; /* Long word displacement. */
1329 md_number_to_chars (addressP + 1, target_address - (address_of_var + 5), 4);
1333 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
1334 addressP[0] = target_address - (address_of_var + 1);
1338 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
1339 opcodeP[0] ^= 1; /* Reverse sense of test. */
1341 addressP[1] = VAX_BRB + VAX_WIDEN_WORD;
1342 md_number_to_chars (addressP + 2, target_address - (address_of_var + 4), 2);
1346 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_LONG):
1347 opcodeP[0] ^= 1; /* Reverse sense of test. */
1349 addressP[1] = VAX_JMP;
1350 addressP[2] = VAX_PC_RELATIVE_MODE;
1351 md_number_to_chars (addressP + 3, target_address, 4);
1355 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE):
1356 addressP[0] = target_address - (address_of_var + 1);
1360 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_WORD):
1361 opcodeP[0] += VAX_WIDEN_WORD; /* brb -> brw, bsbb -> bsbw */
1362 md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
1366 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_LONG):
1367 opcodeP[0] += VAX_WIDEN_LONG; /* brb -> jmp, bsbb -> jsb */
1368 addressP[0] = VAX_PC_RELATIVE_MODE;
1369 md_number_to_chars (addressP + 1, target_address - (address_of_var + 5), 4);
1373 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD):
1374 md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
1378 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_LONG):
1381 addressP[2] = VAX_BRB;
1383 addressP[4] = VAX_JMP;
1384 addressP[5] = VAX_PC_RELATIVE_MODE;
1385 md_number_to_chars (addressP + 6, target_address, 4);
1389 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE):
1390 addressP[0] = target_address - (address_of_var + 1);
1394 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_WORD):
1396 addressP[1] = VAX_BRB;
1398 addressP[3] = VAX_BRW;
1399 md_number_to_chars (addressP + 4, target_address - (address_of_var + 6), 2);
1403 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_LONG):
1405 addressP[1] = VAX_BRB;
1407 addressP[3] = VAX_JMP;
1408 addressP[4] = VAX_PC_RELATIVE_MODE;
1409 md_number_to_chars (addressP + 5, target_address, 4);
1414 BAD_CASE (fragP->fr_subtype);
1417 fragP->fr_fix += extension;
1418 } /* md_convert_frag() */
1420 /* Translate internal format of relocation info into target format.
1422 On vax: first 4 bytes are normal unsigned long, next three bytes
1423 are symbolnum, least sig. byte first. Last byte is broken up with
1424 the upper nibble as nuthin, bit 3 as extern, bits 2 & 1 as length, and
1428 md_ri_to_chars (the_bytes, ri)
1430 struct reloc_info_generic ri;
1433 md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address));
1434 /* now the fun stuff */
1435 the_bytes[6] = (ri.r_symbolnum >> 16) & 0x0ff;
1436 the_bytes[5] = (ri.r_symbolnum >> 8) & 0x0ff;
1437 the_bytes[4] = ri.r_symbolnum & 0x0ff;
1438 the_bytes[7] = (((ri.r_extern << 3) & 0x08) | ((ri.r_length << 1) & 0x06) |
1439 ((ri.r_pcrel << 0) & 0x01)) & 0x0F;
1442 #endif /* comment */
1445 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
1448 relax_addressT segment_address_in_file;
1451 * In: length of relocation (or of address) in chars: 1, 2 or 4.
1452 * Out: GNU LD relocation length code: 0, 1, or 2.
1455 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
1458 know (fixP->fx_addsy != NULL);
1460 md_number_to_chars (where,
1461 fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
1464 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
1465 ? S_GET_TYPE (fixP->fx_addsy)
1466 : fixP->fx_addsy->sy_number);
1468 where[6] = (r_symbolnum >> 16) & 0x0ff;
1469 where[5] = (r_symbolnum >> 8) & 0x0ff;
1470 where[4] = r_symbolnum & 0x0ff;
1471 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
1472 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
1473 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
1477 * BUGS, GRIPES, APOLOGIA, etc.
1479 * The opcode table 'votstrs' needs to be sorted on opcode frequency.
1480 * That is, AFTER we hash it with hash_...(), we want most-used opcodes
1481 * to come out of the hash table faster.
1483 * I am sorry to inflict yet another VAX assembler on the world, but
1484 * RMS says we must do everything from scratch, to prevent pin-heads
1485 * restricting this software.
1489 * This is a vaguely modular set of routines in C to parse VAX
1490 * assembly code using DEC mnemonics. It is NOT un*x specific.
1492 * The idea here is that the assembler has taken care of all:
1499 * condensing any whitespace down to exactly one space
1500 * and all we have to do is parse 1 line into a vax instruction
1501 * partially formed. We will accept a line, and deliver:
1502 * an error message (hopefully empty)
1503 * a skeleton VAX instruction (tree structure)
1504 * textual pointers to all the operand expressions
1505 * a warning message that notes a silly operand (hopefully empty)
1509 * E D I T H I S T O R Y
1511 * 17may86 Dean Elsner. Bug if line ends immediately after opcode.
1512 * 30apr86 Dean Elsner. New vip_op() uses arg block so change call.
1513 * 6jan86 Dean Elsner. Crock vip_begin() to call vip_op_defaults().
1514 * 2jan86 Dean Elsner. Invent synthetic opcodes.
1515 * Widen vax_opcodeT to 32 bits. Use a bit for VIT_OPCODE_SYNTHETIC,
1516 * which means this is not a real opcode, it is like a macro; it will
1517 * be relax()ed into 1 or more instructions.
1518 * Use another bit for VIT_OPCODE_SPECIAL if the op-code is not optimised
1519 * like a regular branch instruction. Option added to vip_begin():
1520 * exclude synthetic opcodes. Invent synthetic_votstrs[].
1521 * 31dec85 Dean Elsner. Invent vit_opcode_nbytes.
1522 * Also make vit_opcode into a char[]. We now have n-byte vax opcodes,
1523 * so caller's don't have to know the difference between a 1-byte & a
1524 * 2-byte op-code. Still need vax_opcodeT concept, so we know how
1525 * big an object must be to hold an op.code.
1526 * 30dec85 Dean Elsner. Widen typedef vax_opcodeT in "vax-inst.h"
1527 * because vax opcodes may be 16 bits. Our crufty C compiler was
1528 * happily initialising 8-bit vot_codes with 16-bit numbers!
1529 * (Wouldn't the 'phone company like to compress data so easily!)
1530 * 29dec85 Dean Elsner. New static table vax_operand_width_size[].
1531 * Invented so we know hw many bytes a "I^#42" needs in its immediate
1532 * operand. Revised struct vop in "vax-inst.h": explicitly include
1533 * byte length of each operand, and it's letter-code datum type.
1534 * 17nov85 Dean Elsner. Name Change.
1535 * Due to ar(1) truncating names, we learned the hard way that
1536 * "vax-inst-parse.c" -> "vax-inst-parse." dropping the "o" off
1537 * the archived object name. SO... we shortened the name of this
1538 * source file, and changed the makefile.
1541 /* handle of the OPCODE hash table */
1542 static struct hash_control *op_hash;
1545 * In: 1 character, from "bdfghloqpw" being the data-type of an operand
1546 * of a vax instruction.
1548 * Out: the length of an operand of that type, in bytes.
1549 * Special branch operands types "-?!" have length 0.
1552 static const short int vax_operand_width_size[256] =
1554 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1555 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1556 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1557 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1558 0, 0, 1, 0, 8, 0, 4, 8, 16, 0, 0, 0, 4, 0, 0,16, /* ..b.d.fgh...l..o */
1559 0, 8, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* .q.....w........ */
1560 0, 0, 1, 0, 8, 0, 4, 8, 16, 0, 0, 0, 4, 0, 0,16, /* ..b.d.fgh...l..o */
1561 0, 8, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* .q.....w........ */
1562 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1563 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1564 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1565 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1566 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1567 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1568 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1569 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1573 * This perversion encodes all the vax opcodes as a bunch of strings.
1574 * RMS says we should build our hash-table at run-time. Hmm.
1575 * Please would someone arrange these in decreasing frequency of opcode?
1576 * Because of the way hash_...() works, the most frequently used opcode
1577 * should be textually first and so on.
1579 * Input for this table was 'vax.opcodes', awk(1)ed by 'vax.opcodes.c.awk' .
1580 * So change 'vax.opcodes', then re-generate this table.
1583 #include "opcode/vax.h"
1586 * This is a table of optional op-codes. All of them represent
1587 * 'synthetic' instructions that seem popular.
1589 * Here we make some pseudo op-codes. Every code has a bit set to say
1590 * it is synthetic. This lets you catch them if you want to
1591 * ban these opcodes. They are mnemonics for "elastic" instructions
1592 * that are supposed to assemble into the fewest bytes needed to do a
1593 * branch, or to do a conditional branch, or whatever.
1595 * The opcode is in the usual place [low-order n*8 bits]. This means
1596 * that if you mask off the bucky bits, the usual rules apply about
1597 * how long the opcode is.
1599 * All VAX branch displacements come at the end of the instruction.
1600 * For simple branches (1-byte opcode + 1-byte displacement) the last
1601 * operand is coded 'b?' where the "data type" '?' is a clue that we
1602 * may reverse the sense of the branch (complement lowest order bit)
1603 * and branch around a jump. This is by far the most common case.
1604 * That is why the VIT_OPCODE_SYNTHETIC bit is set: it says this is
1605 * a 0-byte op-code followed by 2 or more bytes of operand address.
1607 * If the op-code has VIT_OPCODE_SPECIAL set, then we have a more unusual
1610 * For JBSB & JBR the treatment is the similar, except (1) we have a 'bw'
1611 * option before (2) we can directly JSB/JMP because there is no condition.
1612 * These operands have 'b-' as their access/data type.
1614 * That leaves a bunch of random opcodes: JACBx, JxOBxxx. In these
1615 * cases, we do the same idea. JACBxxx are all marked with a 'b!'
1616 * JAOBxxx & JSOBxxx are marked with a 'b:'.
1619 #if (VIT_OPCODE_SYNTHETIC != 0x80000000)
1620 You have just broken the encoding below, which assumes the sign bit
1621 means 'I am an imaginary instruction'.
1624 #if (VIT_OPCODE_SPECIAL != 0x40000000)
1625 You have just broken the encoding below, which assumes the 0x40 M bit means
1626 'I am not to be "optimised" the way normal branches are'.
1629 static const struct vot
1630 synthetic_votstrs[] =
1632 {"jbsb", {"b-", 0xC0000010}}, /* BSD 4.2 */
1633 /* jsb used already */
1634 {"jbr", {"b-", 0xC0000011}}, /* BSD 4.2 */
1635 {"jr", {"b-", 0xC0000011}}, /* consistent */
1636 {"jneq", {"b?", 0x80000012}},
1637 {"jnequ", {"b?", 0x80000012}},
1638 {"jeql", {"b?", 0x80000013}},
1639 {"jeqlu", {"b?", 0x80000013}},
1640 {"jgtr", {"b?", 0x80000014}},
1641 {"jleq", {"b?", 0x80000015}},
1642 /* un-used opcodes here */
1643 {"jgeq", {"b?", 0x80000018}},
1644 {"jlss", {"b?", 0x80000019}},
1645 {"jgtru", {"b?", 0x8000001a}},
1646 {"jlequ", {"b?", 0x8000001b}},
1647 {"jvc", {"b?", 0x8000001c}},
1648 {"jvs", {"b?", 0x8000001d}},
1649 {"jgequ", {"b?", 0x8000001e}},
1650 {"jcc", {"b?", 0x8000001e}},
1651 {"jlssu", {"b?", 0x8000001f}},
1652 {"jcs", {"b?", 0x8000001f}},
1654 {"jacbw", {"rwrwmwb!", 0xC000003d}},
1655 {"jacbf", {"rfrfmfb!", 0xC000004f}},
1656 {"jacbd", {"rdrdmdb!", 0xC000006f}},
1657 {"jacbb", {"rbrbmbb!", 0xC000009d}},
1658 {"jacbl", {"rlrlmlb!", 0xC00000f1}},
1659 {"jacbg", {"rgrgmgb!", 0xC0004ffd}},
1660 {"jacbh", {"rhrhmhb!", 0xC0006ffd}},
1662 {"jbs", {"rlvbb?", 0x800000e0}},
1663 {"jbc", {"rlvbb?", 0x800000e1}},
1664 {"jbss", {"rlvbb?", 0x800000e2}},
1665 {"jbcs", {"rlvbb?", 0x800000e3}},
1666 {"jbsc", {"rlvbb?", 0x800000e4}},
1667 {"jbcc", {"rlvbb?", 0x800000e5}},
1668 {"jbssi", {"rlvbb?", 0x800000e6}},
1669 {"jbcci", {"rlvbb?", 0x800000e7}},
1670 {"jlbs", {"rlb?", 0x800000e8}},
1671 {"jlbc", {"rlb?", 0x800000e9}},
1673 {"jaoblss", {"rlmlb:", 0xC00000f2}},
1674 {"jaobleq", {"rlmlb:", 0xC00000f3}},
1675 {"jsobgeq", {"mlb:", 0xC00000f4}},
1676 {"jsobgtr", {"mlb:", 0xC00000f5}},
1678 /* CASEx has no branch addresses in our conception of it. */
1679 /* You should use ".word ..." statements after the "case ...". */
1681 {"", {"", 0}} /* empty is end sentinel */
1683 }; /* synthetic_votstrs */
1686 * v i p _ b e g i n ( )
1688 * Call me once before you decode any lines.
1689 * I decode votstrs into a hash table at op_hash (which I create).
1690 * I return an error text or null.
1691 * If you want, I will include the 'synthetic' jXXX instructions in the
1692 * instruction table.
1693 * You must nominate metacharacters for eg DEC's "#", "@", "^".
1697 vip_begin (synthetic_too, immediate, indirect, displen)
1698 int synthetic_too; /* 1 means include jXXX op-codes. */
1699 const char *immediate, *indirect, *displen;
1701 const struct vot *vP; /* scan votstrs */
1702 const char *retval = 0; /* error text */
1704 op_hash = hash_new ();
1706 for (vP = votstrs; *vP->vot_name && !retval; vP++)
1707 retval = hash_insert (op_hash, vP->vot_name, (PTR) &vP->vot_detail);
1710 for (vP = synthetic_votstrs; *vP->vot_name && !retval; vP++)
1711 retval = hash_insert (op_hash, vP->vot_name, (PTR) &vP->vot_detail);
1714 vip_op_defaults (immediate, indirect, displen);
1724 * This converts a string into a vax instruction.
1725 * The string must be a bare single instruction in dec-vax (with BSD4 frobs)
1727 * It provides some error messages: at most one fatal error message (which
1728 * stops the scan) and at most one warning message for each operand.
1729 * The vax instruction is returned in exploded form, since we have no
1730 * knowledge of how you parse (or evaluate) your expressions.
1731 * We do however strip off and decode addressing modes and operation
1734 * The exploded instruction is returned to a struct vit of your choice.
1735 * #include "vax-inst.h" to know what a struct vit is.
1737 * This function's value is a string. If it is not "" then an internal
1738 * logic error was found: read this code to assign meaning to the string.
1739 * No argument string should generate such an error string:
1740 * it means a bug in our code, not in the user's text.
1742 * You MUST have called vip_begin() once before using this function.
1746 vip (vitP, instring)
1747 struct vit *vitP; /* We build an exploded instruction here. */
1748 char *instring; /* Text of a vax instruction: we modify. */
1750 /* How to bit-encode this opcode. */
1751 struct vot_wot *vwP;
1752 /* 1/skip whitespace.2/scan vot_how */
1755 /* counts number of operands seen */
1756 unsigned char count;
1757 /* scan operands in struct vit */
1758 struct vop *operandp;
1759 /* error over all operands */
1760 const char *alloperr;
1761 /* Remember char, (we clobber it with '\0' temporarily). */
1763 /* Op-code of this instruction. */
1766 if (*instring == ' ')
1767 ++instring; /* Skip leading whitespace. */
1768 for (p = instring; *p && *p != ' '; p++);; /* MUST end in end-of-string or exactly 1 space. */
1769 /* Scanned up to end of operation-code. */
1770 /* Operation-code is ended with whitespace. */
1771 if (p - instring == 0)
1773 vitP->vit_error = _("No operator");
1775 memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode));
1782 * Here with instring pointing to what better be an op-name, and p
1783 * pointing to character just past that.
1784 * We trust instring points to an op-name, with no whitespace.
1786 vwP = (struct vot_wot *) hash_find (op_hash, instring);
1787 *p = c; /* Restore char after op-code. */
1790 vitP->vit_error = _("Unknown operator");
1792 memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode));
1797 * We found a match! So lets pick up as many operands as the
1798 * instruction wants, and even gripe if there are too many.
1799 * We expect comma to seperate each operand.
1800 * We let instring track the text, while p tracks a part of the
1805 * The lines below know about 2-byte opcodes starting FD,FE or FF.
1806 * They also understand synthetic opcodes. Note:
1807 * we return 32 bits of opcode, including bucky bits, BUT
1808 * an opcode length is either 8 or 16 bits for vit_opcode_nbytes.
1810 oc = vwP->vot_code; /* The op-code. */
1811 vitP->vit_opcode_nbytes = (oc & 0xFF) >= 0xFD ? 2 : 1;
1812 md_number_to_chars (vitP->vit_opcode, oc, 4);
1813 count = 0; /* no operands seen yet */
1814 instring = p; /* point just past operation code */
1816 for (howp = vwP->vot_how, operandp = vitP->vit_operand;
1817 !(alloperr && *alloperr) && *howp;
1818 operandp++, howp += 2)
1821 * Here to parse one operand. Leave instring pointing just
1822 * past any one ',' that marks the end of this operand.
1825 as_fatal (_("odd number of bytes in operand description"));
1828 for (q = instring; (c = *q) && c != ','; q++)
1831 * Q points to ',' or '\0' that ends argument. C is that
1835 operandp->vop_width = howp[1];
1836 operandp->vop_nbytes = vax_operand_width_size[(unsigned) howp[1]];
1837 operandp->vop_access = howp[0];
1838 vip_op (instring, operandp);
1839 *q = c; /* Restore input text. */
1840 if (operandp->vop_error)
1841 alloperr = _("Bad operand");
1842 instring = q + (c ? 1 : 0); /* next operand (if any) */
1843 count++; /* won another argument, may have an operr */
1846 alloperr = _("Not enough operands");
1850 if (*instring == ' ')
1851 instring++; /* Skip whitespace. */
1853 alloperr = _("Too many operands");
1855 vitP->vit_error = alloperr;
1858 vitP->vit_operands = count;
1864 * Test program for above.
1867 struct vit myvit; /* build an exploded vax instruction here */
1868 char answer[100]; /* human types a line of vax assembler here */
1869 char *mybug; /* "" or an internal logic diagnostic */
1870 int mycount; /* number of operands */
1871 struct vop *myvop; /* scan operands from myvit */
1872 int mysynth; /* 1 means want synthetic opcodes. */
1873 char my_immediate[200];
1874 char my_indirect[200];
1875 char my_displen[200];
1881 printf ("0 means no synthetic instructions. ");
1882 printf ("Value for vip_begin? ");
1884 sscanf (answer, "%d", &mysynth);
1885 printf ("Synthetic opcodes %s be included.\n", mysynth ? "will" : "will not");
1886 printf ("enter immediate symbols eg enter # ");
1887 gets (my_immediate);
1888 printf ("enter indirect symbols eg enter @ ");
1890 printf ("enter displen symbols eg enter ^ ");
1892 if (p = vip_begin (mysynth, my_immediate, my_indirect, my_displen))
1894 error ("vip_begin=%s", p);
1896 printf ("An empty input line will quit you from the vax instruction parser\n");
1899 printf ("vax instruction: ");
1904 break; /* out of for each input text loop */
1906 vip (&myvit, answer);
1907 if (*myvit.vit_error)
1909 printf ("ERR:\"%s\"\n", myvit.vit_error);
1912 for (mycount = myvit.vit_opcode_nbytes, p = myvit.vit_opcode;
1917 printf ("%02x ", *p & 0xFF);
1919 printf (" operand count=%d.\n", mycount = myvit.vit_operands);
1920 for (myvop = myvit.vit_operand; mycount; mycount--, myvop++)
1922 printf ("mode=%xx reg=%xx ndx=%xx len='%c'=%c%c%d. expr=\"",
1923 myvop->vop_mode, myvop->vop_reg, myvop->vop_ndx,
1924 myvop->vop_short, myvop->vop_access, myvop->vop_width,
1926 for (p = myvop->vop_expr_begin; p <= myvop->vop_expr_end; p++)
1931 if (myvop->vop_error)
1933 printf (" err:\"%s\"\n", myvop->vop_error);
1935 if (myvop->vop_warn)
1937 printf (" wrn:\"%s\"\n", myvop->vop_warn);
1942 exit (EXIT_SUCCESS);
1945 #endif /* #ifdef test */
1947 /* end of vax_ins_parse.c */
1949 /* vax_reg_parse.c - convert a VAX register name to a number */
1951 /* Copyright (C) 1987 Free Software Foundation, Inc. A part of GNU. */
1954 * v a x _ r e g _ p a r s e ( )
1956 * Take 3 char.s, the last of which may be `\0` (non-existent)
1957 * and return the VAX register number that they represent.
1959 * Return -1 if they don't form a register name. Good names return
1960 * a number from 0:15 inclusive.
1962 * Case is not important in a name.
1964 * Register names understood are:
1991 int /* return -1 or 0:15 */
1992 vax_reg_parse (c1, c2, c3) /* 3 chars of register name */
1993 char c1, c2, c3; /* c3 == 0 if 2-character reg name */
1995 int retval; /* return -1:15 */
2003 if (isdigit (c2) && c1 == 'r')
2008 retval = retval * 10 + c3 - '0';
2009 retval = (retval > 15) ? -1 : retval;
2010 /* clamp the register value to 1 hex digit */
2013 retval = -1; /* c3 must be '\0' or a digit */
2015 else if (c3) /* There are no three letter regs */
2034 else if (c1 == 'p' && c2 == 'c')
2044 * Parse a vax operand in DEC assembler notation.
2045 * For speed, expect a string of whitespace to be reduced to a single ' '.
2046 * This is the case for GNU AS, and is easy for other DEC-compatible
2049 * Knowledge about DEC VAX assembler operand notation lives here.
2050 * This doesn't even know what a register name is, except it believes
2051 * all register names are 2 or 3 characters, and lets vax_reg_parse() say
2052 * what number each name represents.
2053 * It does, however, know that PC, SP etc are special registers so it can
2054 * detect addressing modes that are silly for those registers.
2056 * Where possible, it delivers 1 fatal or 1 warning message if the operand
2057 * is suspect. Exactly what we test for is still evolving.
2065 * There were a number of 'mismatched argument type' bugs to vip_op.
2066 * The most general solution is to typedef each (of many) arguments.
2067 * We used instead a typedef'd argument block. This is less modular
2068 * than using seperate return pointers for each result, but runs faster
2069 * on most engines, and seems to keep programmers happy. It will have
2070 * to be done properly if we ever want to use vip_op as a general-purpose
2071 * module (it was designed to be).
2075 * Doesn't support DEC "G^" format operands. These always take 5 bytes
2076 * to express, and code as modes 8F or 9F. Reason: "G^" deprives you of
2077 * optimising to (say) a "B^" if you are lucky in the way you link.
2078 * When someone builds a linker smart enough to convert "G^" to "B^", "W^"
2079 * whenever possible, then we should implement it.
2080 * If there is some other use for "G^", feel free to code it in!
2085 * If I nested if()s more, I could avoid testing (*err) which would save
2086 * time, space and page faults. I didn't nest all those if()s for clarity
2087 * and because I think the mode testing can be re-arranged 1st to test the
2088 * commoner constructs 1st. Does anybody have statistics on this?
2094 * In future, we should be able to 'compose' error messages in a scratch area
2095 * and give the user MUCH more informative error messages. Although this takes
2096 * a little more code at run-time, it will make this module much more self-
2097 * documenting. As an example of what sucks now: most error messages have
2098 * hardwired into them the DEC VAX metacharacters "#^@" which are nothing like
2099 * the Un*x characters "$`*", that most users will expect from this AS.
2103 * The input is a string, ending with '\0'.
2105 * We also require a 'hint' of what kind of operand is expected: so
2106 * we can remind caller not to write into literals for instance.
2108 * The output is a skeletal instruction.
2110 * The algorithm has two parts.
2111 * 1. extract the syntactic features (parse off all the @^#-()+[] mode crud);
2112 * 2. express the @^#-()+[] as some parameters suited to further analysis.
2114 * 2nd step is where we detect the googles of possible invalid combinations
2115 * a human (or compiler) might write. Note that if we do a half-way
2116 * decent assembler, we don't know how long to make (eg) displacement
2117 * fields when we first meet them (because they may not have defined values).
2118 * So we must wait until we know how many bits are needed for each address,
2119 * then we can know both length and opcodes of instructions.
2120 * For reason(s) above, we will pass to our caller a 'broken' instruction
2121 * of these major components, from which our caller can generate instructions:
2122 * - displacement length I^ S^ L^ B^ W^ unspecified
2124 * - register R0-R15 or absent
2125 * - index register R0-R15 or absent
2126 * - expression text what we don't parse
2127 * - error text(s) why we couldn't understand the operand
2131 * To decode output of this, test errtxt. If errtxt[0] == '\0', then
2132 * we had no errors that prevented parsing. Also, if we ever report
2133 * an internal bug, errtxt[0] is set non-zero. So one test tells you
2134 * if the other outputs are to be taken seriously.
2139 * Because this module is useful for both VMS and UN*X style assemblers
2140 * and because of the variety of UN*X assemblers we must recognise
2141 * the different conventions for assembler operand notation. For example
2142 * VMS says "#42" for immediate mode, while most UN*X say "$42".
2143 * We permit arbitrary sets of (single) characters to represent the
2144 * 3 concepts that DEC writes '#', '@', '^'.
2147 /* character tests */
2148 #define VIP_IMMEDIATE 01 /* Character is like DEC # */
2149 #define VIP_INDIRECT 02 /* Char is like DEC @ */
2150 #define VIP_DISPLEN 04 /* Char is like DEC ^ */
2152 #define IMMEDIATEP(c) (vip_metacharacters [(c)&0xff]&VIP_IMMEDIATE)
2153 #define INDIRECTP(c) (vip_metacharacters [(c)&0xff]&VIP_INDIRECT)
2154 #define DISPLENP(c) (vip_metacharacters [(c)&0xff]&VIP_DISPLEN)
2156 /* We assume 8 bits per byte. Use vip_op_defaults() to set these up BEFORE we
2160 #if defined(CONST_TABLE)
2162 #define I VIP_IMMEDIATE,
2163 #define S VIP_INDIRECT,
2164 #define D VIP_DISPLEN,
2166 vip_metacharacters[256] =
2168 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^@ ^A ^B ^C ^D ^E ^F ^G ^H ^I ^J ^K ^L ^M ^N ^O*/
2169 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ^[ ^\ ^] ^^ ^_ */
2170 _ _ _ _ I _ _ _ _ _ S _ _ _ _ _ /* sp ! " # $ % & ' ( ) * + , - . / */
2171 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*0 1 2 3 4 5 6 7 8 9 : ; < = > ?*/
2172 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*@ A B C D E F G H I J K L M N O*/
2173 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*P Q R S T U V W X Y Z [ \ ] ^ _*/
2174 D _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*` a b c d e f g h i j k l m n o*/
2175 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*p q r s t u v w x y z { | } ~ ^?*/
2177 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2178 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2179 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2180 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2181 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2182 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2183 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2184 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2191 static char vip_metacharacters[256];
2194 vip_op_1 (bit, syms)
2200 while ((t = *syms++) != 0)
2201 vip_metacharacters[t] |= bit;
2204 /* Can be called any time. More arguments may appear in future. */
2206 vip_op_defaults (immediate, indirect, displen)
2207 const char *immediate;
2208 const char *indirect;
2209 const char *displen;
2211 vip_op_1 (VIP_IMMEDIATE, immediate);
2212 vip_op_1 (VIP_INDIRECT, indirect);
2213 vip_op_1 (VIP_DISPLEN, displen);
2220 * Dec defines the semantics of address modes (and values)
2221 * by a two-letter code, explained here.
2223 * letter 1: access type
2225 * a address calculation - no data access, registers forbidden
2226 * b branch displacement
2227 * m read - let go of bus - write back "modify"
2229 * v bit field address: like 'a' but registers are OK
2231 * space no operator (eg ".long foo") [our convention]
2233 * letter 2: data type (i.e. width, alignment)
2236 * d double precision floating point (D format)
2237 * f single precision floating point (F format)
2238 * g G format floating
2239 * h H format floating
2244 * ? simple synthetic branch operand
2245 * - unconditional synthetic JSB/JSR operand
2246 * ! complex synthetic branch operand
2248 * The '-?!' letter 2's are not for external consumption. They are used
2249 * for various assemblers. Generally, all unknown widths are assumed 0.
2250 * We don't limit your choice of width character.
2252 * DEC operands are hard work to parse. For example, '@' as the first
2253 * character means indirect (deferred) mode but elswhere it is a shift
2255 * The long-winded explanation of how this is supposed to work is
2256 * cancelled. Read a DEC vax manual.
2257 * We try hard not to parse anything that MIGHT be part of the expression
2258 * buried in that syntax. For example if we see @...(Rn) we don't check
2259 * for '-' before the '(' because mode @-(Rn) does not exist.
2261 * After parsing we have:
2263 * at 1 if leading '@' (or Un*x '*')
2264 * len takes one value from " bilsw". eg B^ -> 'b'.
2265 * hash 1 if leading '#' (or Un*x '$')
2266 * expr_begin, expr_end the expression we did not parse
2267 * even though we don't interpret it, we make use
2268 * of its presence or absence.
2269 * sign -1: -(Rn) 0: absent +1: (Rn)+
2270 * paren 1 if () are around register
2271 * reg major register number 0:15 -1 means absent
2272 * ndx index register number 0:15 -1 means absent
2274 * Again, I dare not explain it: just trace ALL the code!
2278 vip_op (optext, vopP)
2279 /* user's input string e.g.: "@B^foo@bar(AP)[FP]:" */
2281 /* Input fields: vop_access, vop_width.
2282 Output fields: _ndx, _reg, _mode, _short, _warn,
2283 _error _expr_begin, _expr_end, _nbytes.
2284 vop_nbytes : number of bytes in a datum. */
2287 /* track operand text forward */
2289 /* track operand text backward */
2291 /* 1 if leading '@' ('*') seen */
2293 /* one of " bilsw" */
2295 /* 1 if leading '#' ('$') seen */
2299 /* 1 if () surround register */
2301 /* register number, -1:absent */
2303 /* index register number -1:absent */
2305 /* report illegal operand, ""==OK */
2306 /* " " is a FAKE error: means we won */
2307 /* ANY err that begins with ' ' is a fake. */
2308 /* " " is converted to "" before return */
2310 /* warn about weird modes pf address */
2312 /* preserve q in case we backup */
2314 /* build up 4-bit operand mode here */
2315 /* note: index mode is in ndx, this is */
2316 /* the major mode of operand address */
2319 * Notice how we move wrong-arg-type bugs INSIDE this module: if we
2320 * get the types wrong below, we lose at compile time rather than at
2323 char access_mode; /* vop_access. */
2324 char width; /* vop_width. */
2326 access_mode = vopP->vop_access;
2327 width = vopP->vop_width;
2328 /* None of our code bugs (yet), no user text errors, no warnings
2334 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2335 p++; /* skip over whitespace */
2337 if ((at = INDIRECTP (*p)) != 0)
2338 { /* 1 if *p=='@'(or '*' for Un*x) */
2339 p++; /* at is determined */
2340 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2341 p++; /* skip over whitespace */
2345 * This code is subtle. It tries to detect all legal (letter)'^'
2346 * but it doesn't waste time explicitly testing for premature '\0' because
2347 * this case is rejected as a mismatch against either (letter) or '^'.
2355 if (DISPLENP (p[1]) && strchr ("bilws", len = c))
2356 p += 2; /* skip (letter) '^' */
2357 else /* no (letter) '^' seen */
2358 len = ' '; /* len is determined */
2361 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2362 p++; /* skip over whitespace */
2364 if ((hash = IMMEDIATEP (*p)) != 0) /* 1 if *p=='#' ('$' for Un*x) */
2365 p++; /* hash is determined */
2368 * p points to what may be the beginning of an expression.
2369 * We have peeled off the front all that is peelable.
2370 * We know at, len, hash.
2372 * Lets point q at the end of the text and parse that (backwards).
2375 for (q = p; *q; q++)
2377 q--; /* now q points at last char of text */
2379 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2381 /* reverse over whitespace, but don't */
2382 /* run back over *p */
2385 * As a matter of policy here, we look for [Rn], although both Rn and S^#
2386 * forbid [Rn]. This is because it is easy, and because only a sick
2387 * cyborg would have [...] trailing an expression in a VAX-like assembler.
2388 * A meticulous parser would first check for Rn followed by '(' or '['
2389 * and not parse a trailing ']' if it found another. We just ban expressions
2394 while (q >= p && *q != '[')
2396 /* either q<p or we got matching '[' */
2398 err = _("no '[' to match ']'");
2402 * Confusers like "[]" will eventually lose with a bad register
2403 * name error. So again we don't need to check for early '\0'.
2406 ndx = vax_reg_parse (q[1], q[2], 0);
2407 else if (q[4] == ']')
2408 ndx = vax_reg_parse (q[1], q[2], q[3]);
2412 * Since we saw a ']' we will demand a register name in the [].
2413 * If luser hasn't given us one: be rude.
2416 err = _("bad register in []");
2418 err = _("[PC] index banned");
2420 q--; /* point q just before "[...]" */
2424 ndx = -1; /* no ']', so no iNDeX register */
2427 * If err = "..." then we lost: run away.
2428 * Otherwise ndx == -1 if there was no "[...]".
2429 * Otherwise, ndx is index register number, and q points before "[...]".
2432 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2434 /* reverse over whitespace, but don't */
2435 /* run back over *p */
2438 sign = 0; /* no ()+ or -() seen yet */
2440 if (q > p + 3 && *q == '+' && q[-1] == ')')
2442 sign = 1; /* we saw a ")+" */
2443 q--; /* q points to ')' */
2446 if (*q == ')' && q > p + 2)
2448 paren = 1; /* assume we have "(...)" */
2449 while (q >= p && *q != '(')
2451 /* either q<p or we got matching '(' */
2453 err = _("no '(' to match ')'");
2457 * Confusers like "()" will eventually lose with a bad register
2458 * name error. So again we don't need to check for early '\0'.
2461 reg = vax_reg_parse (q[1], q[2], 0);
2462 else if (q[4] == ')')
2463 reg = vax_reg_parse (q[1], q[2], q[3]);
2467 * Since we saw a ')' we will demand a register name in the ')'.
2468 * This is nasty: why can't our hypothetical assembler permit
2469 * parenthesised expressions? BECAUSE I AM LAZY! That is why.
2470 * Abuse luser if we didn't spy a register name.
2474 /* JF allow parenthasized expressions. I hope this works */
2478 /* err = "unknown register in ()"; */
2481 q--; /* point just before '(' of "(...)" */
2483 * If err == "..." then we lost. Run away.
2484 * Otherwise if reg >= 0 then we saw (Rn).
2488 * If err == "..." then we lost.
2489 * Otherwise paren==1 and reg = register in "()".
2495 * If err == "..." then we lost.
2496 * Otherwise, q points just before "(Rn)", if any.
2497 * If there was a "(...)" then paren==1, and reg is the register.
2501 * We should only seek '-' of "-(...)" if:
2502 * we saw "(...)" paren == 1
2503 * we have no errors so far ! *err
2504 * we did not see '+' of "(...)+" sign < 1
2505 * We don't check len. We want a specific error message later if
2506 * user tries "x^...-(Rn)". This is a feature not a bug.
2510 if (paren && sign < 1)/* !sign is adequate test */
2519 * We have back-tracked over most
2520 * of the crud at the end of an operand.
2521 * Unless err, we know: sign, paren. If paren, we know reg.
2522 * The last case is of an expression "Rn".
2523 * This is worth hunting for if !err, !paren.
2524 * We wouldn't be here if err.
2525 * We remember to save q, in case we didn't want "Rn" anyway.
2529 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2531 /* reverse over whitespace, but don't */
2532 /* run back over *p */
2533 if (q > p && q < p + 3) /* room for Rn or Rnn exactly? */
2534 reg = vax_reg_parse (p[0], p[1], q < p + 2 ? 0 : p[2]);
2536 reg = -1; /* always comes here if no register at all */
2538 * Here with a definitive reg value.
2549 * have reg. -1:absent; else 0:15
2553 * We have: err, at, len, hash, ndx, sign, paren, reg.
2554 * Also, any remaining expression is from *p through *q inclusive.
2555 * Should there be no expression, q==p-1. So expression length = q-p+1.
2556 * This completes the first part: parsing the operand text.
2560 * We now want to boil the data down, checking consistency on the way.
2561 * We want: len, mode, reg, ndx, err, p, q, wrn, bug.
2562 * We will deliver a 4-bit reg, and a 4-bit mode.
2566 * Case of branch operand. Different. No L^B^W^I^S^ allowed for instance.
2580 * p:q whatever was input
2582 * err " " or error message, and other outputs trashed
2584 /* branch operands have restricted forms */
2585 if ((!err || !*err) && access_mode == 'b')
2587 if (at || hash || sign || paren || ndx >= 0 || reg >= 0 || len != ' ')
2588 err = _("invalid branch operand");
2593 /* Since nobody seems to use it: comment this 'feature'(?) out for now. */
2596 * Case of stand-alone operand. e.g. ".long foo"
2610 * p:q whatever was input
2612 * err " " or error message, and other outputs trashed
2614 if ((!err || !*err) && access_mode == ' ')
2617 err = _("address prohibits @");
2619 err = _("address prohibits #");
2623 err = _("address prohibits -()");
2625 err = _("address prohibits ()+");
2628 err = _("address prohibits ()");
2630 err = _("address prohibits []");
2632 err = _("address prohibits register");
2633 else if (len != ' ')
2634 err = _("address prohibits displacement length specifier");
2637 err = " "; /* succeed */
2641 #endif /*#Ifdef NEVER*/
2647 * len 's' definition
2649 * p:q demand not empty
2650 * sign 0 by paren==0
2651 * paren 0 by "()" scan logic because "S^" seen
2652 * reg -1 or nn by mistake
2661 if ((!err || !*err) && len == 's')
2663 if (!hash || paren || at || ndx >= 0)
2664 err = _("invalid operand of S^#");
2670 * SHIT! we saw S^#Rnn ! put the Rnn back in
2671 * expression. KLUDGE! Use oldq so we don't
2672 * need to know exact length of reg name.
2678 * We have all the expression we will ever get.
2681 err = _("S^# needs expression");
2682 else if (access_mode == 'r')
2684 err = " "; /* WIN! */
2688 err = _("S^# may only read-access");
2693 * Case of -(Rn), which is weird case.
2699 * sign -1 by definition
2700 * paren 1 by definition
2701 * reg present by definition
2707 * exp "" enforce empty expression
2708 * ndx optional warn if same as reg
2710 if ((!err || !*err) && sign < 0)
2712 if (len != ' ' || hash || at || p <= q)
2713 err = _("invalid operand of -()");
2716 err = " "; /* win */
2719 wrn = _("-(PC) unpredictable");
2720 else if (reg == ndx)
2721 wrn = _("[]index same as -()register: unpredictable");
2726 * We convert "(Rn)" to "@Rn" for our convenience.
2727 * (I hope this is convenient: has someone got a better way to parse this?)
2728 * A side-effect of this is that "@Rn" is a valid operand.
2730 if (paren && !sign && !hash && !at && len == ' ' && p > q)
2737 * Case of (Rn)+, which is slightly different.
2743 * sign +1 by definition
2744 * paren 1 by definition
2745 * reg present by definition
2751 * exp "" enforce empty expression
2752 * ndx optional warn if same as reg
2754 if ((!err || !*err) && sign > 0)
2756 if (len != ' ' || hash || p <= q)
2757 err = _("invalid operand of ()+");
2760 err = " "; /* win */
2761 mode = 8 + (at ? 1 : 0);
2763 wrn = _("(PC)+ unpredictable");
2764 else if (reg == ndx)
2765 wrn = _("[]index same as ()+register: unpredictable");
2770 * Case of #, without S^.
2774 * hash 1 by definition
2787 if ((!err || !*err) && hash)
2789 if (len != 'i' && len != ' ')
2790 err = _("# conflicts length");
2792 err = _("# bars register");
2798 * SHIT! we saw #Rnn! Put the Rnn back into the expression.
2799 * By using oldq, we don't need to know how long Rnn was.
2803 reg = -1; /* no register any more */
2805 err = " "; /* win */
2807 /* JF a bugfix, I think! */
2808 if (at && access_mode == 'a')
2809 vopP->vop_nbytes = 4;
2811 mode = (at ? 9 : 8);
2813 if ((access_mode == 'm' || access_mode == 'w') && !at)
2814 wrn = _("writing or modifying # is unpredictable");
2818 * If !*err, then sign == 0
2823 * Case of Rn. We seperate this one because it has a few special
2824 * errors the remaining modes lack.
2828 * hash 0 by program logic
2830 * sign 0 by program logic
2831 * paren 0 by definition
2832 * reg present by definition
2837 * len ' ' enforce no length
2838 * exp "" enforce empty expression
2839 * ndx optional warn if same as reg
2841 if ((!err || !*err) && !paren && reg >= 0)
2844 err = _("length not needed");
2847 err = " "; /* win */
2851 err = _("can't []index a register, because it has no address");
2852 else if (access_mode == 'a')
2853 err = _("a register has no address");
2857 * Idea here is to detect from length of datum
2858 * and from register number if we will touch PC.
2860 * vop_nbytes is number of bytes in operand.
2861 * Compute highest byte affected, compare to PC0.
2863 if ((vopP->vop_nbytes + reg * 4) > 60)
2864 wrn = _("PC part of operand unpredictable");
2865 err = " "; /* win */
2870 * If !*err, sign == 0
2872 * paren == 1 OR reg==-1
2876 * Rest of cases fit into one bunch.
2879 * len ' ' or 'b' or 'w' or 'l'
2880 * hash 0 by program logic
2881 * p:q expected (empty is not an error)
2882 * sign 0 by program logic
2887 * out: mode 10 + @ + len
2889 * len ' ' or 'b' or 'w' or 'l'
2891 * ndx optional warn if same as reg
2895 err = " "; /* win (always) */
2896 mode = 10 + (at ? 1 : 0);
2903 case ' ': /* assumed B^ until our caller changes it */
2910 * here with completely specified mode
2918 err = 0; /* " " is no longer an error */
2920 vopP->vop_mode = mode;
2921 vopP->vop_reg = reg;
2922 vopP->vop_short = len;
2923 vopP->vop_expr_begin = p;
2924 vopP->vop_expr_end = q;
2925 vopP->vop_ndx = ndx;
2926 vopP->vop_error = err;
2927 vopP->vop_warn = wrn;
2932 Summary of vip_op outputs.
2936 {@}Rn 5+@ n ' ' optional
2937 branch operand 0 -1 ' ' -1
2939 -(Rn) 7 n ' ' optional
2940 {@}(Rn)+ 8+@ n ' ' optional
2941 {@}#foo, no S^ 8+@ PC " i" optional
2942 {@}{q^}{(Rn)} 10+@+q option " bwl" optional
2946 #ifdef TEST /* #Define to use this testbed. */
2949 * Follows a test program for this function.
2950 * We declare arrays non-local in case some of our tiny-minded machines
2951 * default to small stacks. Also, helps with some debuggers.
2956 char answer[100]; /* human types into here */
2969 int my_operand_length;
2970 char my_immediate[200];
2971 char my_indirect[200];
2972 char my_displen[200];
2976 printf ("enter immediate symbols eg enter # ");
2977 gets (my_immediate);
2978 printf ("enter indirect symbols eg enter @ ");
2980 printf ("enter displen symbols eg enter ^ ");
2982 vip_op_defaults (my_immediate, my_indirect, my_displen);
2985 printf ("access,width (eg 'ab' or 'wh') [empty line to quit] : ");
2989 exit (EXIT_SUCCESS);
2990 myaccess = answer[0];
2991 mywidth = answer[1];
2995 my_operand_length = 1;
2998 my_operand_length = 8;
3001 my_operand_length = 4;
3004 my_operand_length = 16;
3007 my_operand_length = 32;
3010 my_operand_length = 4;
3013 my_operand_length = 16;
3016 my_operand_length = 8;
3019 my_operand_length = 2;
3024 my_operand_length = 0;
3028 my_operand_length = 2;
3029 printf ("I dn't understand access width %c\n", mywidth);
3032 printf ("VAX assembler instruction operand: ");
3035 mybug = vip_op (answer, myaccess, mywidth, my_operand_length,
3036 &mymode, &myreg, &mylen, &myleft, &myright, &myndx,
3040 printf ("error: \"%s\"\n", myerr);
3042 printf (" bug: \"%s\"\n", mybug);
3047 printf ("warning: \"%s\"\n", mywrn);
3048 mumble ("mode", mymode);
3049 mumble ("register", myreg);
3050 mumble ("index", myndx);
3051 printf ("width:'%c' ", mylen);
3052 printf ("expression: \"");
3053 while (myleft <= myright)
3054 putchar (*myleft++);
3060 mumble (text, value)
3064 printf ("%s:", text);
3066 printf ("%xx", value);
3072 #endif /* ifdef TEST */
3076 const int md_short_jump_size = 3;
3077 const int md_long_jump_size = 6;
3078 const int md_reloc_size = 8; /* Size of relocation record */
3081 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
3083 addressT from_addr, to_addr;
3089 /* This former calculation was off by two:
3090 offset = to_addr - (from_addr + 1);
3091 We need to account for the one byte instruction and also its
3092 two byte operand. */
3093 offset = to_addr - (from_addr + 1 + 2);
3094 *ptr++ = VAX_BRW; /* branch with word (16 bit) offset */
3095 md_number_to_chars (ptr, offset, 2);
3099 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
3101 addressT from_addr, to_addr;
3107 offset = to_addr - S_GET_VALUE (to_symbol);
3108 *ptr++ = VAX_JMP; /* arbitrary jump */
3109 *ptr++ = VAX_ABSOLUTE_MODE;
3110 md_number_to_chars (ptr, offset, 4);
3111 fix_new (frag, ptr - frag->fr_literal, 4, to_symbol, (long) 0, 0, NO_RELOC);
3115 CONST char *md_shortopts = "d:STt:V+1h:Hv::";
3117 CONST char *md_shortopts = "d:STt:V";
3119 struct option md_longopts[] = {
3120 {NULL, no_argument, NULL, 0}
3122 size_t md_longopts_size = sizeof(md_longopts);
3125 md_parse_option (c, arg)
3132 as_warn (_("SYMBOL TABLE not implemented"));
3136 as_warn (_("TOKEN TRACE not implemented"));
3140 as_warn (_("Displacement length %s ignored!"), arg);
3144 as_warn (_("I don't need or use temp. file \"%s\"."), arg);
3148 as_warn (_("I don't use an interpass file! -V ignored"));
3152 case '+': /* For g++. Hash any name > 31 chars long. */
3153 flag_hash_long_names = 1;
3156 case '1': /* For backward compatibility */
3160 case 'H': /* Show new symbol after hash truncation */
3161 flag_show_after_trunc = 1;
3164 case 'h': /* No hashing of mixed-case names */
3166 extern char vms_name_mapping;
3167 vms_name_mapping = atoi (arg);
3168 flag_no_hash_mixed_case = 1;
3174 extern char *compiler_version_string;
3175 if (!arg || !*arg || access (arg, 0) == 0)
3176 return 0; /* have caller show the assembler version */
3177 compiler_version_string = arg;
3190 md_show_usage (stream)
3193 fprintf(stream, _("\
3195 -d LENGTH ignored\n\
3202 fprintf (stream, _("\
3204 -+ hash encode names longer than 31 characters\n\
3205 -1 `const' handling compatible with gcc 1.x\n\
3206 -H show new symbol after hash truncation\n\
3207 -h NUM don't hash mixed-case names, and adjust case:\n\
3208 0 = upper, 2 = lower, 3 = preserve case\n\
3209 -v\"VERSION\" code being assembled was produced by compiler \"VERSION\"\n"));
3213 /* We have no need to default values of symbols. */
3217 md_undefined_symbol (name)
3223 /* Round up a section size to the appropriate boundary. */
3225 md_section_align (segment, size)
3229 return size; /* Byte alignment is fine */
3232 /* Exactly what point is a PC-relative offset relative TO?
3233 On the vax, they're relative to the address of the offset, plus
3234 its size. (??? Is this right? FIXME-SOON) */
3236 md_pcrel_from (fixP)
3239 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
3242 /* end of tc-vax.c */