1 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
9 @chapter 80386 Dependent Features
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
17 @cindex i80386 support
18 @cindex x86-64 support
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
48 @cindex options for i386
49 @cindex options for x86-64
51 @cindex x86-64 options
53 The i386 version of @code{@value{AS}} has a few machine
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
81 @cindex @samp{--divide} option, i386
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
133 In addition to the basic instruction set, the assembler can be told to
134 accept various extension mnemonics. For example,
135 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136 @var{vmx}. The following extensions are currently supported:
201 @code{avx512_4fmaps},
202 @code{avx512_4vnniw},
203 @code{avx512_vpopcntdq},
206 @code{avx512_bitalg},
217 @code{noavx512_4fmaps},
218 @code{noavx512_4vnniw},
219 @code{noavx512_vpopcntdq},
220 @code{noavx512_vbmi2},
221 @code{noavx512_vnni},
222 @code{noavx512_bitalg},
223 @code{noavx512_vp2intersect},
224 @code{noavx512_bf16},
271 Note that rather than extending a basic instruction set, the extension
272 mnemonics starting with @code{no} revoke the respective functionality.
274 When the @code{.arch} directive is used with @option{-march}, the
275 @code{.arch} directive will take precedent.
277 @cindex @samp{-mtune=} option, i386
278 @cindex @samp{-mtune=} option, x86-64
279 @item -mtune=@var{CPU}
280 This option specifies a processor to optimize for. When used in
281 conjunction with the @option{-march} option, only instructions
282 of the processor specified by the @option{-march} option will be
285 Valid @var{CPU} values are identical to the processor list of
286 @option{-march=@var{CPU}}.
288 @cindex @samp{-msse2avx} option, i386
289 @cindex @samp{-msse2avx} option, x86-64
291 This option specifies that the assembler should encode SSE instructions
294 @cindex @samp{-msse-check=} option, i386
295 @cindex @samp{-msse-check=} option, x86-64
296 @item -msse-check=@var{none}
297 @itemx -msse-check=@var{warning}
298 @itemx -msse-check=@var{error}
299 These options control if the assembler should check SSE instructions.
300 @option{-msse-check=@var{none}} will make the assembler not to check SSE
301 instructions, which is the default. @option{-msse-check=@var{warning}}
302 will make the assembler issue a warning for any SSE instruction.
303 @option{-msse-check=@var{error}} will make the assembler issue an error
304 for any SSE instruction.
306 @cindex @samp{-mavxscalar=} option, i386
307 @cindex @samp{-mavxscalar=} option, x86-64
308 @item -mavxscalar=@var{128}
309 @itemx -mavxscalar=@var{256}
310 These options control how the assembler should encode scalar AVX
311 instructions. @option{-mavxscalar=@var{128}} will encode scalar
312 AVX instructions with 128bit vector length, which is the default.
313 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
314 with 256bit vector length.
316 WARNING: Don't use this for production code - due to CPU errata the
317 resulting code may not work on certain models.
319 @cindex @samp{-mvexwig=} option, i386
320 @cindex @samp{-mvexwig=} option, x86-64
321 @item -mvexwig=@var{0}
322 @itemx -mvexwig=@var{1}
323 These options control how the assembler should encode VEX.W-ignored (WIG)
324 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
325 instructions with vex.w = 0, which is the default.
326 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
329 WARNING: Don't use this for production code - due to CPU errata the
330 resulting code may not work on certain models.
332 @cindex @samp{-mevexlig=} option, i386
333 @cindex @samp{-mevexlig=} option, x86-64
334 @item -mevexlig=@var{128}
335 @itemx -mevexlig=@var{256}
336 @itemx -mevexlig=@var{512}
337 These options control how the assembler should encode length-ignored
338 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
339 EVEX instructions with 128bit vector length, which is the default.
340 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
341 encode LIG EVEX instructions with 256bit and 512bit vector length,
344 @cindex @samp{-mevexwig=} option, i386
345 @cindex @samp{-mevexwig=} option, x86-64
346 @item -mevexwig=@var{0}
347 @itemx -mevexwig=@var{1}
348 These options control how the assembler should encode w-ignored (WIG)
349 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
350 EVEX instructions with evex.w = 0, which is the default.
351 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
354 @cindex @samp{-mmnemonic=} option, i386
355 @cindex @samp{-mmnemonic=} option, x86-64
356 @item -mmnemonic=@var{att}
357 @itemx -mmnemonic=@var{intel}
358 This option specifies instruction mnemonic for matching instructions.
359 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
362 @cindex @samp{-msyntax=} option, i386
363 @cindex @samp{-msyntax=} option, x86-64
364 @item -msyntax=@var{att}
365 @itemx -msyntax=@var{intel}
366 This option specifies instruction syntax when processing instructions.
367 The @code{.att_syntax} and @code{.intel_syntax} directives will
370 @cindex @samp{-mnaked-reg} option, i386
371 @cindex @samp{-mnaked-reg} option, x86-64
373 This option specifies that registers don't require a @samp{%} prefix.
374 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
376 @cindex @samp{-madd-bnd-prefix} option, i386
377 @cindex @samp{-madd-bnd-prefix} option, x86-64
378 @item -madd-bnd-prefix
379 This option forces the assembler to add BND prefix to all branches, even
380 if such prefix was not explicitly specified in the source code.
382 @cindex @samp{-mshared} option, i386
383 @cindex @samp{-mshared} option, x86-64
385 On ELF target, the assembler normally optimizes out non-PLT relocations
386 against defined non-weak global branch targets with default visibility.
387 The @samp{-mshared} option tells the assembler to generate code which
388 may go into a shared library where all non-weak global branch targets
389 with default visibility can be preempted. The resulting code is
390 slightly bigger. This option only affects the handling of branch
393 @cindex @samp{-mbig-obj} option, i386
394 @cindex @samp{-mbig-obj} option, x86-64
396 On PE/COFF target this option forces the use of big object file
397 format, which allows more than 32768 sections.
399 @cindex @samp{-momit-lock-prefix=} option, i386
400 @cindex @samp{-momit-lock-prefix=} option, x86-64
401 @item -momit-lock-prefix=@var{no}
402 @itemx -momit-lock-prefix=@var{yes}
403 These options control how the assembler should encode lock prefix.
404 This option is intended as a workaround for processors, that fail on
405 lock prefix. This option can only be safely used with single-core,
406 single-thread computers
407 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
408 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
409 which is the default.
411 @cindex @samp{-mfence-as-lock-add=} option, i386
412 @cindex @samp{-mfence-as-lock-add=} option, x86-64
413 @item -mfence-as-lock-add=@var{no}
414 @itemx -mfence-as-lock-add=@var{yes}
415 These options control how the assembler should encode lfence, mfence and
417 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
418 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
419 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
420 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
421 sfence as usual, which is the default.
423 @cindex @samp{-mrelax-relocations=} option, i386
424 @cindex @samp{-mrelax-relocations=} option, x86-64
425 @item -mrelax-relocations=@var{no}
426 @itemx -mrelax-relocations=@var{yes}
427 These options control whether the assembler should generate relax
428 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
429 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
430 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
431 @option{-mrelax-relocations=@var{no}} will not generate relax
432 relocations. The default can be controlled by a configure option
433 @option{--enable-x86-relax-relocations}.
435 @cindex @samp{-malign-branch-boundary=} option, i386
436 @cindex @samp{-malign-branch-boundary=} option, x86-64
437 @item -malign-branch-boundary=@var{NUM}
438 This option controls how the assembler should align branches with segment
439 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
440 no less than 16. Branches will be aligned within @var{NUM} byte
441 boundary. @option{-malign-branch-boundary=0}, which is the default,
442 doesn't align branches.
444 @cindex @samp{-malign-branch=} option, i386
445 @cindex @samp{-malign-branch=} option, x86-64
446 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
447 This option specifies types of branches to align. @var{TYPE} is
448 combination of @samp{jcc}, which aligns conditional jumps,
449 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
450 which aligns unconditional jumps, @samp{call} which aligns calls,
451 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
452 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
454 @cindex @samp{-malign-branch-prefix-size=} option, i386
455 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
456 @item -malign-branch-prefix-size=@var{NUM}
457 This option specifies the maximum number of prefixes on an instruction
458 to align branches. @var{NUM} should be between 0 and 5. The default
461 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
462 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
463 @item -mbranches-within-32B-boundaries
464 This option aligns conditional jumps, fused conditional jumps and
465 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
466 on an instruction. It is equivalent to
467 @option{-malign-branch-boundary=32}
468 @option{-malign-branch=jcc+fused+jmp}
469 @option{-malign-branch-prefix-size=5}.
470 The default doesn't align branches.
472 @cindex @samp{-mlfence-after-load=} option, i386
473 @cindex @samp{-mlfence-after-load=} option, x86-64
474 @item -mlfence-after-load=@var{no}
475 @itemx -mlfence-after-load=@var{yes}
476 These options control whether the assembler should generate lfence
477 after load instructions. @option{-mlfence-after-load=@var{yes}} will
478 generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
479 lfence, which is the default.
481 @cindex @samp{-mlfence-before-indirect-branch=} option, i386
482 @cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
483 @item -mlfence-before-indirect-branch=@var{none}
484 @item -mlfence-before-indirect-branch=@var{all}
485 @item -mlfence-before-indirect-branch=@var{register}
486 @itemx -mlfence-before-indirect-branch=@var{memory}
487 These options control whether the assembler should generate lfence
488 before indirect near branch instructions.
489 @option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
490 before indirect near branch via register and issue a warning before
491 indirect near branch via memory.
492 It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
493 there's no explict @option{-mlfence-before-ret=}.
494 @option{-mlfence-before-indirect-branch=@var{register}} will generate
495 lfence before indirect near branch via register.
496 @option{-mlfence-before-indirect-branch=@var{memory}} will issue a
497 warning before indirect near branch via memory.
498 @option{-mlfence-before-indirect-branch=@var{none}} will not generate
499 lfence nor issue warning, which is the default. Note that lfence won't
500 be generated before indirect near branch via register with
501 @option{-mlfence-after-load=@var{yes}} since lfence will be generated
502 after loading branch target register.
504 @cindex @samp{-mlfence-before-ret=} option, i386
505 @cindex @samp{-mlfence-before-ret=} option, x86-64
506 @item -mlfence-before-ret=@var{none}
507 @item -mlfence-before-ret=@var{shl}
508 @item -mlfence-before-ret=@var{or}
509 @item -mlfence-before-ret=@var{yes}
510 @itemx -mlfence-before-ret=@var{not}
511 These options control whether the assembler should generate lfence
512 before ret. @option{-mlfence-before-ret=@var{or}} will generate
513 generate or instruction with lfence.
514 @option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
515 with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
516 instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
517 generate lfence, which is the default.
519 @cindex @samp{-mx86-used-note=} option, i386
520 @cindex @samp{-mx86-used-note=} option, x86-64
521 @item -mx86-used-note=@var{no}
522 @itemx -mx86-used-note=@var{yes}
523 These options control whether the assembler should generate
524 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
525 GNU property notes. The default can be controlled by the
526 @option{--enable-x86-used-note} configure option.
528 @cindex @samp{-mevexrcig=} option, i386
529 @cindex @samp{-mevexrcig=} option, x86-64
530 @item -mevexrcig=@var{rne}
531 @itemx -mevexrcig=@var{rd}
532 @itemx -mevexrcig=@var{ru}
533 @itemx -mevexrcig=@var{rz}
534 These options control how the assembler should encode SAE-only
535 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
536 of EVEX instruction with 00, which is the default.
537 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
538 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
539 with 01, 10 and 11 RC bits, respectively.
541 @cindex @samp{-mamd64} option, x86-64
542 @cindex @samp{-mintel64} option, x86-64
545 This option specifies that the assembler should accept only AMD64 or
546 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
549 @cindex @samp{-O0} option, i386
550 @cindex @samp{-O0} option, x86-64
551 @cindex @samp{-O} option, i386
552 @cindex @samp{-O} option, x86-64
553 @cindex @samp{-O1} option, i386
554 @cindex @samp{-O1} option, x86-64
555 @cindex @samp{-O2} option, i386
556 @cindex @samp{-O2} option, x86-64
557 @cindex @samp{-Os} option, i386
558 @cindex @samp{-Os} option, x86-64
559 @item -O0 | -O | -O1 | -O2 | -Os
560 Optimize instruction encoding with smaller instruction size. @samp{-O}
561 and @samp{-O1} encode 64-bit register load instructions with 64-bit
562 immediate as 32-bit register load instructions with 31-bit or 32-bits
563 immediates, encode 64-bit register clearing instructions with 32-bit
564 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
565 register clearing instructions with 128-bit VEX vector register
566 clearing instructions, encode 128-bit/256-bit EVEX vector
567 register load/store instructions with VEX vector register load/store
568 instructions, and encode 128-bit/256-bit EVEX packed integer logical
569 instructions with 128-bit/256-bit VEX packed integer logical.
571 @samp{-O2} includes @samp{-O1} optimization plus encodes
572 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
573 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
574 instructions with commutative source operands will also have their
575 source operands swapped if this allows using the 2-byte VEX prefix form
576 instead of the 3-byte one. Certain forms of AND as well as OR with the
577 same (register) operand specified twice will also be changed to TEST.
579 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
580 and 64-bit register tests with immediate as 8-bit register test with
581 immediate. @samp{-O0} turns off this optimization.
586 @node i386-Directives
587 @section x86 specific Directives
589 @cindex machine directives, x86
590 @cindex x86 machine directives
593 @cindex @code{lcomm} directive, COFF
594 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
595 Reserve @var{length} (an absolute expression) bytes for a local common
596 denoted by @var{symbol}. The section and value of @var{symbol} are
597 those of the new local common. The addresses are allocated in the bss
598 section, so that at run-time the bytes start off zeroed. Since
599 @var{symbol} is not declared global, it is normally not visible to
600 @code{@value{LD}}. The optional third parameter, @var{alignment},
601 specifies the desired alignment of the symbol in the bss section.
603 This directive is only available for COFF based x86 targets.
605 @cindex @code{largecomm} directive, ELF
606 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
607 This directive behaves in the same way as the @code{comm} directive
608 except that the data is placed into the @var{.lbss} section instead of
609 the @var{.bss} section @ref{Comm}.
611 The directive is intended to be used for data which requires a large
612 amount of space, and it is only available for ELF based x86_64
615 @cindex @code{value} directive
616 @item .value @var{expression} [, @var{expression}]
617 This directive behaves in the same way as the @code{.short} directive,
618 taking a series of comma separated expressions and storing them as
619 two-byte wide values into the current section.
621 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
626 @section i386 Syntactical Considerations
628 * i386-Variations:: AT&T Syntax versus Intel Syntax
629 * i386-Chars:: Special Characters
632 @node i386-Variations
633 @subsection AT&T Syntax versus Intel Syntax
635 @cindex i386 intel_syntax pseudo op
636 @cindex intel_syntax pseudo op, i386
637 @cindex i386 att_syntax pseudo op
638 @cindex att_syntax pseudo op, i386
639 @cindex i386 syntax compatibility
640 @cindex syntax compatibility, i386
641 @cindex x86-64 intel_syntax pseudo op
642 @cindex intel_syntax pseudo op, x86-64
643 @cindex x86-64 att_syntax pseudo op
644 @cindex att_syntax pseudo op, x86-64
645 @cindex x86-64 syntax compatibility
646 @cindex syntax compatibility, x86-64
648 @code{@value{AS}} now supports assembly using Intel assembler syntax.
649 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
650 back to the usual AT&T mode for compatibility with the output of
651 @code{@value{GCC}}. Either of these directives may have an optional
652 argument, @code{prefix}, or @code{noprefix} specifying whether registers
653 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
654 different from Intel syntax. We mention these differences because
655 almost all 80386 documents use Intel syntax. Notable differences
656 between the two syntaxes are:
658 @cindex immediate operands, i386
659 @cindex i386 immediate operands
660 @cindex register operands, i386
661 @cindex i386 register operands
662 @cindex jump/call operands, i386
663 @cindex i386 jump/call operands
664 @cindex operand delimiters, i386
666 @cindex immediate operands, x86-64
667 @cindex x86-64 immediate operands
668 @cindex register operands, x86-64
669 @cindex x86-64 register operands
670 @cindex jump/call operands, x86-64
671 @cindex x86-64 jump/call operands
672 @cindex operand delimiters, x86-64
675 AT&T immediate operands are preceded by @samp{$}; Intel immediate
676 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
677 AT&T register operands are preceded by @samp{%}; Intel register operands
678 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
679 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
681 @cindex i386 source, destination operands
682 @cindex source, destination operands; i386
683 @cindex x86-64 source, destination operands
684 @cindex source, destination operands; x86-64
686 AT&T and Intel syntax use the opposite order for source and destination
687 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
688 @samp{source, dest} convention is maintained for compatibility with
689 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
690 instructions with 2 immediate operands, such as the @samp{enter}
691 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
693 @cindex mnemonic suffixes, i386
694 @cindex sizes operands, i386
695 @cindex i386 size suffixes
696 @cindex mnemonic suffixes, x86-64
697 @cindex sizes operands, x86-64
698 @cindex x86-64 size suffixes
700 In AT&T syntax the size of memory operands is determined from the last
701 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
702 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
703 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
704 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
705 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
706 no other way to disambiguate an instruction. Intel syntax accomplishes this by
707 prefixing memory operands (@emph{not} the instruction mnemonics) with
708 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
709 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
710 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
711 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
712 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
714 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
715 instruction with the 64-bit displacement or immediate operand.
717 @cindex return instructions, i386
718 @cindex i386 jump, call, return
719 @cindex return instructions, x86-64
720 @cindex x86-64 jump, call, return
722 Immediate form long jumps and calls are
723 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
725 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
727 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
728 @samp{ret far @var{stack-adjust}}.
730 @cindex sections, i386
731 @cindex i386 sections
732 @cindex sections, x86-64
733 @cindex x86-64 sections
735 The AT&T assembler does not provide support for multiple section
736 programs. Unix style systems expect all programs to be single sections.
740 @subsection Special Characters
742 @cindex line comment character, i386
743 @cindex i386 line comment character
744 The presence of a @samp{#} appearing anywhere on a line indicates the
745 start of a comment that extends to the end of that line.
747 If a @samp{#} appears as the first character of a line then the whole
748 line is treated as a comment, but in this case the line can also be a
749 logical line number directive (@pxref{Comments}) or a preprocessor
750 control command (@pxref{Preprocessing}).
752 If the @option{--divide} command-line option has not been specified
753 then the @samp{/} character appearing anywhere on a line also
754 introduces a line comment.
756 @cindex line separator, i386
757 @cindex statement separator, i386
758 @cindex i386 line separator
759 The @samp{;} character can be used to separate statements on the same
763 @section i386-Mnemonics
764 @subsection Instruction Naming
766 @cindex i386 instruction naming
767 @cindex instruction naming, i386
768 @cindex x86-64 instruction naming
769 @cindex instruction naming, x86-64
771 Instruction mnemonics are suffixed with one character modifiers which
772 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
773 and @samp{q} specify byte, word, long and quadruple word operands. If
774 no suffix is specified by an instruction then @code{@value{AS}} tries to
775 fill in the missing suffix based on the destination register operand
776 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
777 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
778 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
779 assembler which assumes that a missing mnemonic suffix implies long
780 operand size. (This incompatibility does not affect compiler output
781 since compilers always explicitly specify the mnemonic suffix.)
783 When there is no sizing suffix and no (suitable) register operands to
784 deduce the size of memory operands, with a few exceptions and where long
785 operand size is possible in the first place, operand size will default
786 to long in 32- and 64-bit modes. Similarly it will default to short in
787 16-bit mode. Noteworthy exceptions are
791 Instructions with an implicit on-stack operand as well as branches,
792 which default to quad in 64-bit mode.
795 Sign- and zero-extending moves, which default to byte size source
799 Floating point insns with integer operands, which default to short (for
800 perhaps historical reasons).
803 CRC32 with a 64-bit destination, which defaults to a quad source
808 @cindex encoding options, i386
809 @cindex encoding options, x86-64
811 Different encoding options can be specified via pseudo prefixes:
815 @samp{@{disp8@}} -- prefer 8-bit displacement.
818 @samp{@{disp32@}} -- prefer 32-bit displacement.
821 @samp{@{load@}} -- prefer load-form instruction.
824 @samp{@{store@}} -- prefer store-form instruction.
827 @samp{@{vex@}} -- encode with VEX prefix.
830 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
833 @samp{@{evex@}} -- encode with EVEX prefix.
836 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
837 instructions (x86-64 only). Note that this differs from the @samp{rex}
838 prefix which generates REX prefix unconditionally.
841 @samp{@{nooptimize@}} -- disable instruction size optimization.
844 @cindex conversion instructions, i386
845 @cindex i386 conversion instructions
846 @cindex conversion instructions, x86-64
847 @cindex x86-64 conversion instructions
848 The Intel-syntax conversion instructions
852 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
855 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
858 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
861 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
864 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
868 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
869 @samp{%rdx:%rax} (x86-64 only),
873 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
874 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
877 @cindex extension instructions, i386
878 @cindex i386 extension instructions
879 @cindex extension instructions, x86-64
880 @cindex x86-64 extension instructions
881 The Intel-syntax extension instructions
885 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
888 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
891 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
895 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
898 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
902 @samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
906 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
909 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
912 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
916 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
919 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
924 are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
925 @samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
926 @samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
927 @samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
928 @samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
930 @cindex jump instructions, i386
931 @cindex call instructions, i386
932 @cindex jump instructions, x86-64
933 @cindex call instructions, x86-64
934 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
935 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
938 @subsection AT&T Mnemonic versus Intel Mnemonic
940 @cindex i386 mnemonic compatibility
941 @cindex mnemonic compatibility, i386
943 @code{@value{AS}} supports assembly using Intel mnemonic.
944 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
945 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
946 syntax for compatibility with the output of @code{@value{GCC}}.
947 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
948 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
949 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
950 assembler with different mnemonics from those in Intel IA32 specification.
951 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
954 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
955 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
956 destination register with both AT&T and Intel mnemonics.
960 @section Register Naming
962 @cindex i386 registers
963 @cindex registers, i386
964 @cindex x86-64 registers
965 @cindex registers, x86-64
966 Register operands are always prefixed with @samp{%}. The 80386 registers
971 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
972 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
973 frame pointer), and @samp{%esp} (the stack pointer).
976 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
977 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
980 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
981 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
982 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
983 @samp{%cx}, and @samp{%dx})
986 the 6 section registers @samp{%cs} (code section), @samp{%ds}
987 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
991 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
992 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
995 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
996 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
999 the 2 test registers @samp{%tr6} and @samp{%tr7}.
1002 the 8 floating point register stack @samp{%st} or equivalently
1003 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1004 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
1005 These registers are overloaded by 8 MMX registers @samp{%mm0},
1006 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1007 @samp{%mm6} and @samp{%mm7}.
1010 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
1011 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1014 The AMD x86-64 architecture extends the register set by:
1018 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1019 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1020 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1024 the 8 extended registers @samp{%r8}--@samp{%r15}.
1027 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
1030 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
1033 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
1036 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1039 the 8 debug registers: @samp{%db8}--@samp{%db15}.
1042 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1045 With the AVX extensions more registers were made available:
1050 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1051 available in 32-bit mode). The bottom 128 bits are overlaid with the
1052 @samp{xmm0}--@samp{xmm15} registers.
1056 The AVX2 extensions made in 64-bit mode more registers available:
1061 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1062 registers @samp{%ymm16}--@samp{%ymm31}.
1066 The AVX512 extensions added the following registers:
1071 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1072 available in 32-bit mode). The bottom 128 bits are overlaid with the
1073 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1074 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1077 the 8 mask registers @samp{%k0}--@samp{%k7}.
1082 @section Instruction Prefixes
1084 @cindex i386 instruction prefixes
1085 @cindex instruction prefixes, i386
1086 @cindex prefixes, i386
1087 Instruction prefixes are used to modify the following instruction. They
1088 are used to repeat string instructions, to provide section overrides, to
1089 perform bus lock operations, and to change operand and address sizes.
1090 (Most instructions that normally operate on 32-bit operands will use
1091 16-bit operands if the instruction has an ``operand size'' prefix.)
1092 Instruction prefixes are best written on the same line as the instruction
1093 they act upon. For example, the @samp{scas} (scan string) instruction is
1097 repne scas %es:(%edi),%al
1100 You may also place prefixes on the lines immediately preceding the
1101 instruction, but this circumvents checks that @code{@value{AS}} does
1102 with prefixes, and will not work with all prefixes.
1104 Here is a list of instruction prefixes:
1106 @cindex section override prefixes, i386
1109 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1110 @samp{fs}, @samp{gs}. These are automatically added by specifying
1111 using the @var{section}:@var{memory-operand} form for memory references.
1113 @cindex size prefixes, i386
1115 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1116 change 32-bit operands/addresses into 16-bit operands/addresses,
1117 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1118 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1119 @emph{must} appear on the same line of code as the instruction they
1120 modify. For example, in a 16-bit @code{.code16} section, you might
1127 @cindex bus lock prefixes, i386
1128 @cindex inhibiting interrupts, i386
1130 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1131 the instruction it precedes. (This is only valid with certain
1132 instructions; see a 80386 manual for details).
1134 @cindex coprocessor wait, i386
1136 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1137 complete the current instruction. This should never be needed for the
1138 80386/80387 combination.
1140 @cindex repeat prefixes, i386
1142 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1143 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1144 times if the current address size is 16-bits).
1145 @cindex REX prefixes, i386
1147 The @samp{rex} family of prefixes is used by x86-64 to encode
1148 extensions to i386 instruction set. The @samp{rex} prefix has four
1149 bits --- an operand size overwrite (@code{64}) used to change operand size
1150 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1153 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1154 instruction emits @samp{rex} prefix with all the bits set. By omitting
1155 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1156 prefixes as well. Normally, there is no need to write the prefixes
1157 explicitly, since gas will automatically generate them based on the
1158 instruction operands.
1162 @section Memory References
1164 @cindex i386 memory references
1165 @cindex memory references, i386
1166 @cindex x86-64 memory references
1167 @cindex memory references, x86-64
1168 An Intel syntax indirect memory reference of the form
1171 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1175 is translated into the AT&T syntax
1178 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1182 where @var{base} and @var{index} are the optional 32-bit base and
1183 index registers, @var{disp} is the optional displacement, and
1184 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1185 to calculate the address of the operand. If no @var{scale} is
1186 specified, @var{scale} is taken to be 1. @var{section} specifies the
1187 optional section register for the memory operand, and may override the
1188 default section register (see a 80386 manual for section register
1189 defaults). Note that section overrides in AT&T syntax @emph{must}
1190 be preceded by a @samp{%}. If you specify a section override which
1191 coincides with the default section register, @code{@value{AS}} does @emph{not}
1192 output any section register override prefixes to assemble the given
1193 instruction. Thus, section overrides can be specified to emphasize which
1194 section register is used for a given memory operand.
1196 Here are some examples of Intel and AT&T style memory references:
1199 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1200 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1201 missing, and the default section is used (@samp{%ss} for addressing with
1202 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1204 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1205 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1206 @samp{foo}. All other fields are missing. The section register here
1207 defaults to @samp{%ds}.
1209 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1210 This uses the value pointed to by @samp{foo} as a memory operand.
1211 Note that @var{base} and @var{index} are both missing, but there is only
1212 @emph{one} @samp{,}. This is a syntactic exception.
1214 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1215 This selects the contents of the variable @samp{foo} with section
1216 register @var{section} being @samp{%gs}.
1219 Absolute (as opposed to PC relative) call and jump operands must be
1220 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1221 always chooses PC relative addressing for jump/call labels.
1223 Any instruction that has a memory operand, but no register operand,
1224 @emph{must} specify its size (byte, word, long, or quadruple) with an
1225 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1228 The x86-64 architecture adds an RIP (instruction pointer relative)
1229 addressing. This addressing mode is specified by using @samp{rip} as a
1230 base register. Only constant offsets are valid. For example:
1233 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1234 Points to the address 1234 bytes past the end of the current
1237 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1238 Points to the @code{symbol} in RIP relative way, this is shorter than
1239 the default absolute addressing.
1242 Other addressing modes remain unchanged in x86-64 architecture, except
1243 registers used are 64-bit instead of 32-bit.
1246 @section Handling of Jump Instructions
1248 @cindex jump optimization, i386
1249 @cindex i386 jump optimization
1250 @cindex jump optimization, x86-64
1251 @cindex x86-64 jump optimization
1252 Jump instructions are always optimized to use the smallest possible
1253 displacements. This is accomplished by using byte (8-bit) displacement
1254 jumps whenever the target is sufficiently close. If a byte displacement
1255 is insufficient a long displacement is used. We do not support
1256 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1257 instruction with the @samp{data16} instruction prefix), since the 80386
1258 insists upon masking @samp{%eip} to 16 bits after the word displacement
1259 is added. (See also @pxref{i386-Arch})
1261 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1262 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1263 displacements, so that if you use these instructions (@code{@value{GCC}} does
1264 not use them) you may get an error message (and incorrect code). The AT&T
1265 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1276 @section Floating Point
1278 @cindex i386 floating point
1279 @cindex floating point, i386
1280 @cindex x86-64 floating point
1281 @cindex floating point, x86-64
1282 All 80387 floating point types except packed BCD are supported.
1283 (BCD support may be added without much difficulty). These data
1284 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1285 double (64-bit), and extended (80-bit) precision floating point.
1286 Each supported type has an instruction mnemonic suffix and a constructor
1287 associated with it. Instruction mnemonic suffixes specify the operand's
1288 data type. Constructors build these data types into memory.
1290 @cindex @code{float} directive, i386
1291 @cindex @code{single} directive, i386
1292 @cindex @code{double} directive, i386
1293 @cindex @code{tfloat} directive, i386
1294 @cindex @code{float} directive, x86-64
1295 @cindex @code{single} directive, x86-64
1296 @cindex @code{double} directive, x86-64
1297 @cindex @code{tfloat} directive, x86-64
1300 Floating point constructors are @samp{.float} or @samp{.single},
1301 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1302 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1303 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1304 only supports this format via the @samp{fldt} (load 80-bit real to stack
1305 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1307 @cindex @code{word} directive, i386
1308 @cindex @code{long} directive, i386
1309 @cindex @code{int} directive, i386
1310 @cindex @code{quad} directive, i386
1311 @cindex @code{word} directive, x86-64
1312 @cindex @code{long} directive, x86-64
1313 @cindex @code{int} directive, x86-64
1314 @cindex @code{quad} directive, x86-64
1316 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1317 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1318 corresponding instruction mnemonic suffixes are @samp{s} (single),
1319 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1320 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1321 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1322 stack) instructions.
1325 Register to register operations should not use instruction mnemonic suffixes.
1326 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1327 wrote @samp{fst %st, %st(1)}, since all register to register operations
1328 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1329 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1330 then stores the result in the 4 byte location @samp{mem})
1333 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1336 @cindex 3DNow!, i386
1339 @cindex 3DNow!, x86-64
1340 @cindex SIMD, x86-64
1342 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1343 instructions for integer data), available on Intel's Pentium MMX
1344 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1345 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1346 instruction set (SIMD instructions for 32-bit floating point data)
1347 available on AMD's K6-2 processor and possibly others in the future.
1349 Currently, @code{@value{AS}} does not support Intel's floating point
1352 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1353 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1354 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1355 floating point values. The MMX registers cannot be used at the same time
1356 as the floating point stack.
1358 See Intel and AMD documentation, keeping in mind that the operand order in
1359 instructions is reversed from the Intel syntax.
1362 @section AMD's Lightweight Profiling Instructions
1367 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1368 instruction set, available on AMD's Family 15h (Orochi) processors.
1370 LWP enables applications to collect and manage performance data, and
1371 react to performance events. The collection of performance data
1372 requires no context switches. LWP runs in the context of a thread and
1373 so several counters can be used independently across multiple threads.
1374 LWP can be used in both 64-bit and legacy 32-bit modes.
1376 For detailed information on the LWP instruction set, see the
1377 @cite{AMD Lightweight Profiling Specification} available at
1378 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1381 @section Bit Manipulation Instructions
1386 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1388 BMI instructions provide several instructions implementing individual
1389 bit manipulation operations such as isolation, masking, setting, or
1392 @c Need to add a specification citation here when available.
1395 @section AMD's Trailing Bit Manipulation Instructions
1400 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1401 instruction set, available on AMD's BDVER2 processors (Trinity and
1404 TBM instructions provide instructions implementing individual bit
1405 manipulation operations such as isolating, masking, setting, resetting,
1406 complementing, and operations on trailing zeros and ones.
1408 @c Need to add a specification citation here when available.
1411 @section Writing 16-bit Code
1413 @cindex i386 16-bit code
1414 @cindex 16-bit code, i386
1415 @cindex real-mode code, i386
1416 @cindex @code{code16gcc} directive, i386
1417 @cindex @code{code16} directive, i386
1418 @cindex @code{code32} directive, i386
1419 @cindex @code{code64} directive, i386
1420 @cindex @code{code64} directive, x86-64
1421 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1422 or 64-bit x86-64 code depending on the default configuration,
1423 it also supports writing code to run in real mode or in 16-bit protected
1424 mode code segments. To do this, put a @samp{.code16} or
1425 @samp{.code16gcc} directive before the assembly language instructions to
1426 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1427 32-bit code with the @samp{.code32} directive or 64-bit code with the
1428 @samp{.code64} directive.
1430 @samp{.code16gcc} provides experimental support for generating 16-bit
1431 code from gcc, and differs from @samp{.code16} in that @samp{call},
1432 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1433 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1434 default to 32-bit size. This is so that the stack pointer is
1435 manipulated in the same way over function calls, allowing access to
1436 function parameters at the same stack offsets as in 32-bit mode.
1437 @samp{.code16gcc} also automatically adds address size prefixes where
1438 necessary to use the 32-bit addressing modes that gcc generates.
1440 The code which @code{@value{AS}} generates in 16-bit mode will not
1441 necessarily run on a 16-bit pre-80386 processor. To write code that
1442 runs on such a processor, you must refrain from using @emph{any} 32-bit
1443 constructs which require @code{@value{AS}} to output address or operand
1446 Note that writing 16-bit code instructions by explicitly specifying a
1447 prefix or an instruction mnemonic suffix within a 32-bit code section
1448 generates different machine instructions than those generated for a
1449 16-bit code segment. In a 32-bit code section, the following code
1450 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1451 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1457 The same code in a 16-bit code section would generate the machine
1458 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1459 is correct since the processor default operand size is assumed to be 16
1460 bits in a 16-bit code section.
1463 @section Specifying CPU Architecture
1465 @cindex arch directive, i386
1466 @cindex i386 arch directive
1467 @cindex arch directive, x86-64
1468 @cindex x86-64 arch directive
1470 @code{@value{AS}} may be told to assemble for a particular CPU
1471 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1472 directive enables a warning when gas detects an instruction that is not
1473 supported on the CPU specified. The choices for @var{cpu_type} are:
1475 @multitable @columnfractions .20 .20 .20 .20
1476 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1477 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1478 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1479 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1480 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1481 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1482 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1483 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1484 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1485 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1486 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
1487 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1488 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1489 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1490 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1491 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1492 @item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1494 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1495 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1496 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1497 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1498 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1499 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1500 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1501 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1502 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1503 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1504 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1505 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1506 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1507 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1508 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1509 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1510 @item @samp{.mcommit} @tab @samp{.sev_es}
1513 Apart from the warning, there are only two other effects on
1514 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1515 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1516 will automatically use a two byte opcode sequence. The larger three
1517 byte opcode sequence is used on the 486 (and when no architecture is
1518 specified) because it executes faster on the 486. Note that you can
1519 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1520 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1521 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1522 conditional jumps will be promoted when necessary to a two instruction
1523 sequence consisting of a conditional jump of the opposite sense around
1524 an unconditional jump to the target.
1526 Following the CPU architecture (but not a sub-architecture, which are those
1527 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1528 control automatic promotion of conditional jumps. @samp{jumps} is the
1529 default, and enables jump promotion; All external jumps will be of the long
1530 variety, and file-local jumps will be promoted as necessary.
1531 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1532 byte offset jumps, and warns about file-local conditional jumps that
1533 @code{@value{AS}} promotes.
1534 Unconditional jumps are treated as for @samp{jumps}.
1543 @section AMD64 ISA vs. Intel64 ISA
1545 There are some discrepancies between AMD64 and Intel64 ISAs.
1548 @item For @samp{movsxd} with 16-bit destination register, AMD64
1549 supports 32-bit source operand and Intel64 supports 16-bit source
1552 @item For far branches (with explicit memory operand), both ISAs support
1553 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1554 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1555 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1558 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1559 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1560 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1566 @section AT&T Syntax bugs
1568 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1569 assemblers, generate floating point instructions with reversed source
1570 and destination registers in certain cases. Unfortunately, gcc and
1571 possibly many other programs use this reversed syntax, so we're stuck
1580 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1581 than the expected @samp{%st(3) - %st}. This happens with all the
1582 non-commutative arithmetic floating point operations with two register
1583 operands where the source register is @samp{%st} and the destination
1584 register is @samp{%st(i)}.
1589 @cindex i386 @code{mul}, @code{imul} instructions
1590 @cindex @code{mul} instruction, i386
1591 @cindex @code{imul} instruction, i386
1592 @cindex @code{mul} instruction, x86-64
1593 @cindex @code{imul} instruction, x86-64
1594 There is some trickery concerning the @samp{mul} and @samp{imul}
1595 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1596 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1597 for @samp{imul}) can be output only in the one operand form. Thus,
1598 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1599 the expanding multiply would clobber the @samp{%edx} register, and this
1600 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1601 64-bit product in @samp{%edx:%eax}.
1603 We have added a two operand form of @samp{imul} when the first operand
1604 is an immediate mode expression and the second operand is a register.
1605 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1606 example, can be done with @samp{imul $69, %eax} rather than @samp{imul