1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
35 #include "breakpoint.h"
37 #include "complaints.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
52 #include "parser-defs.h"
59 #include "cli/cli-utils.h"
61 #include <sys/types.h>
63 #include "gdb_string.h"
71 int (*deprecated_ui_load_progress_hook) (const char *section,
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
81 static void clear_symtab_users_cleanup (void *ignore);
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
86 /* Functions this file defines. */
88 static void load_command (char *, int);
90 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
92 static void add_symbol_file_command (char *, int);
94 static const struct sym_fns *find_sym_fns (bfd *);
96 static void decrement_reading_symtab (void *);
98 static void overlay_invalidate_all (void);
100 static void overlay_auto_command (char *, int);
102 static void overlay_manual_command (char *, int);
104 static void overlay_off_command (char *, int);
106 static void overlay_load_command (char *, int);
108 static void overlay_command (char *, int);
110 static void simple_free_overlay_table (void);
112 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
115 static int simple_read_overlay_table (void);
117 static int simple_overlay_update_1 (struct obj_section *);
119 static void add_filename_language (char *ext, enum language lang);
121 static void info_ext_lang_command (char *args, int from_tty);
123 static void init_filename_language_table (void);
125 static void symfile_find_segment_sections (struct objfile *objfile);
127 void _initialize_symfile (void);
129 /* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
133 typedef const struct sym_fns *sym_fns_ptr;
134 DEF_VEC_P (sym_fns_ptr);
136 static VEC (sym_fns_ptr) *symtab_fns = NULL;
138 /* If non-zero, shared library symbols will be added automatically
139 when the inferior is created, new libraries are loaded, or when
140 attaching to the inferior. This is almost always what users will
141 want to have happen; but for very large programs, the startup time
142 will be excessive, and so if this is a problem, the user can clear
143 this flag and then add the shared library symbols as needed. Note
144 that there is a potential for confusion, since if the shared
145 library symbols are not loaded, commands like "info fun" will *not*
146 report all the functions that are actually present. */
148 int auto_solib_add = 1;
151 /* True if we are reading a symbol table. */
153 int currently_reading_symtab = 0;
156 decrement_reading_symtab (void *dummy)
158 currently_reading_symtab--;
159 gdb_assert (currently_reading_symtab >= 0);
162 /* Increment currently_reading_symtab and return a cleanup that can be
163 used to decrement it. */
166 increment_reading_symtab (void)
168 ++currently_reading_symtab;
169 gdb_assert (currently_reading_symtab > 0);
170 return make_cleanup (decrement_reading_symtab, NULL);
173 /* Remember the lowest-addressed loadable section we've seen.
174 This function is called via bfd_map_over_sections.
176 In case of equal vmas, the section with the largest size becomes the
177 lowest-addressed loadable section.
179 If the vmas and sizes are equal, the last section is considered the
180 lowest-addressed loadable section. */
183 find_lowest_section (bfd *abfd, asection *sect, void *obj)
185 asection **lowest = (asection **) obj;
187 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
190 *lowest = sect; /* First loadable section */
191 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
192 *lowest = sect; /* A lower loadable section */
193 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
194 && (bfd_section_size (abfd, (*lowest))
195 <= bfd_section_size (abfd, sect)))
199 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
200 new object's 'num_sections' field is set to 0; it must be updated
203 struct section_addr_info *
204 alloc_section_addr_info (size_t num_sections)
206 struct section_addr_info *sap;
209 size = (sizeof (struct section_addr_info)
210 + sizeof (struct other_sections) * (num_sections - 1));
211 sap = (struct section_addr_info *) xmalloc (size);
212 memset (sap, 0, size);
217 /* Build (allocate and populate) a section_addr_info struct from
218 an existing section table. */
220 extern struct section_addr_info *
221 build_section_addr_info_from_section_table (const struct target_section *start,
222 const struct target_section *end)
224 struct section_addr_info *sap;
225 const struct target_section *stp;
228 sap = alloc_section_addr_info (end - start);
230 for (stp = start, oidx = 0; stp != end; stp++)
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
236 && oidx < end - start)
238 sap->other[oidx].addr = stp->addr;
239 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
240 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
245 sap->num_sections = oidx;
250 /* Create a section_addr_info from section offsets in ABFD. */
252 static struct section_addr_info *
253 build_section_addr_info_from_bfd (bfd *abfd)
255 struct section_addr_info *sap;
257 struct bfd_section *sec;
259 sap = alloc_section_addr_info (bfd_count_sections (abfd));
260 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
261 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
263 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
264 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
265 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
269 sap->num_sections = i;
274 /* Create a section_addr_info from section offsets in OBJFILE. */
276 struct section_addr_info *
277 build_section_addr_info_from_objfile (const struct objfile *objfile)
279 struct section_addr_info *sap;
282 /* Before reread_symbols gets rewritten it is not safe to call:
283 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
285 sap = build_section_addr_info_from_bfd (objfile->obfd);
286 for (i = 0; i < sap->num_sections; i++)
288 int sectindex = sap->other[i].sectindex;
290 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
295 /* Free all memory allocated by build_section_addr_info_from_section_table. */
298 free_section_addr_info (struct section_addr_info *sap)
302 for (idx = 0; idx < sap->num_sections; idx++)
303 xfree (sap->other[idx].name);
307 /* Initialize OBJFILE's sect_index_* members. */
310 init_objfile_sect_indices (struct objfile *objfile)
315 sect = bfd_get_section_by_name (objfile->obfd, ".text");
317 objfile->sect_index_text = sect->index;
319 sect = bfd_get_section_by_name (objfile->obfd, ".data");
321 objfile->sect_index_data = sect->index;
323 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
325 objfile->sect_index_bss = sect->index;
327 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
329 objfile->sect_index_rodata = sect->index;
331 /* This is where things get really weird... We MUST have valid
332 indices for the various sect_index_* members or gdb will abort.
333 So if for example, there is no ".text" section, we have to
334 accomodate that. First, check for a file with the standard
335 one or two segments. */
337 symfile_find_segment_sections (objfile);
339 /* Except when explicitly adding symbol files at some address,
340 section_offsets contains nothing but zeros, so it doesn't matter
341 which slot in section_offsets the individual sect_index_* members
342 index into. So if they are all zero, it is safe to just point
343 all the currently uninitialized indices to the first slot. But
344 beware: if this is the main executable, it may be relocated
345 later, e.g. by the remote qOffsets packet, and then this will
346 be wrong! That's why we try segments first. */
348 for (i = 0; i < objfile->num_sections; i++)
350 if (ANOFFSET (objfile->section_offsets, i) != 0)
355 if (i == objfile->num_sections)
357 if (objfile->sect_index_text == -1)
358 objfile->sect_index_text = 0;
359 if (objfile->sect_index_data == -1)
360 objfile->sect_index_data = 0;
361 if (objfile->sect_index_bss == -1)
362 objfile->sect_index_bss = 0;
363 if (objfile->sect_index_rodata == -1)
364 objfile->sect_index_rodata = 0;
368 /* The arguments to place_section. */
370 struct place_section_arg
372 struct section_offsets *offsets;
376 /* Find a unique offset to use for loadable section SECT if
377 the user did not provide an offset. */
380 place_section (bfd *abfd, asection *sect, void *obj)
382 struct place_section_arg *arg = obj;
383 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
385 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
387 /* We are only interested in allocated sections. */
388 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
391 /* If the user specified an offset, honor it. */
392 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
395 /* Otherwise, let's try to find a place for the section. */
396 start_addr = (arg->lowest + align - 1) & -align;
403 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
405 int indx = cur_sec->index;
407 /* We don't need to compare against ourself. */
411 /* We can only conflict with allocated sections. */
412 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
415 /* If the section offset is 0, either the section has not been placed
416 yet, or it was the lowest section placed (in which case LOWEST
417 will be past its end). */
418 if (offsets[indx] == 0)
421 /* If this section would overlap us, then we must move up. */
422 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
423 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
425 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
426 start_addr = (start_addr + align - 1) & -align;
431 /* Otherwise, we appear to be OK. So far. */
436 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
437 arg->lowest = start_addr + bfd_get_section_size (sect);
440 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
441 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
445 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
447 const struct section_addr_info *addrs)
451 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
453 /* Now calculate offsets for section that were specified by the caller. */
454 for (i = 0; i < addrs->num_sections; i++)
456 const struct other_sections *osp;
458 osp = &addrs->other[i];
459 if (osp->sectindex == -1)
462 /* Record all sections in offsets. */
463 /* The section_offsets in the objfile are here filled in using
465 section_offsets->offsets[osp->sectindex] = osp->addr;
469 /* Transform section name S for a name comparison. prelink can split section
470 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
471 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
472 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
473 (`.sbss') section has invalid (increased) virtual address. */
476 addr_section_name (const char *s)
478 if (strcmp (s, ".dynbss") == 0)
480 if (strcmp (s, ".sdynbss") == 0)
486 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
487 their (name, sectindex) pair. sectindex makes the sort by name stable. */
490 addrs_section_compar (const void *ap, const void *bp)
492 const struct other_sections *a = *((struct other_sections **) ap);
493 const struct other_sections *b = *((struct other_sections **) bp);
496 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
500 return a->sectindex - b->sectindex;
503 /* Provide sorted array of pointers to sections of ADDRS. The array is
504 terminated by NULL. Caller is responsible to call xfree for it. */
506 static struct other_sections **
507 addrs_section_sort (struct section_addr_info *addrs)
509 struct other_sections **array;
512 /* `+ 1' for the NULL terminator. */
513 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
514 for (i = 0; i < addrs->num_sections; i++)
515 array[i] = &addrs->other[i];
518 qsort (array, i, sizeof (*array), addrs_section_compar);
523 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
524 also SECTINDEXes specific to ABFD there. This function can be used to
525 rebase ADDRS to start referencing different BFD than before. */
528 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
530 asection *lower_sect;
531 CORE_ADDR lower_offset;
533 struct cleanup *my_cleanup;
534 struct section_addr_info *abfd_addrs;
535 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
536 struct other_sections **addrs_to_abfd_addrs;
538 /* Find lowest loadable section to be used as starting point for
539 continguous sections. */
541 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
542 if (lower_sect == NULL)
544 warning (_("no loadable sections found in added symbol-file %s"),
545 bfd_get_filename (abfd));
549 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
551 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
552 in ABFD. Section names are not unique - there can be multiple sections of
553 the same name. Also the sections of the same name do not have to be
554 adjacent to each other. Some sections may be present only in one of the
555 files. Even sections present in both files do not have to be in the same
558 Use stable sort by name for the sections in both files. Then linearly
559 scan both lists matching as most of the entries as possible. */
561 addrs_sorted = addrs_section_sort (addrs);
562 my_cleanup = make_cleanup (xfree, addrs_sorted);
564 abfd_addrs = build_section_addr_info_from_bfd (abfd);
565 make_cleanup_free_section_addr_info (abfd_addrs);
566 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
567 make_cleanup (xfree, abfd_addrs_sorted);
569 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
570 ABFD_ADDRS_SORTED. */
572 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
573 * addrs->num_sections);
574 make_cleanup (xfree, addrs_to_abfd_addrs);
576 while (*addrs_sorted)
578 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
580 while (*abfd_addrs_sorted
581 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
585 if (*abfd_addrs_sorted
586 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
591 /* Make the found item directly addressable from ADDRS. */
592 index_in_addrs = *addrs_sorted - addrs->other;
593 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
594 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
596 /* Never use the same ABFD entry twice. */
603 /* Calculate offsets for the loadable sections.
604 FIXME! Sections must be in order of increasing loadable section
605 so that contiguous sections can use the lower-offset!!!
607 Adjust offsets if the segments are not contiguous.
608 If the section is contiguous, its offset should be set to
609 the offset of the highest loadable section lower than it
610 (the loadable section directly below it in memory).
611 this_offset = lower_offset = lower_addr - lower_orig_addr */
613 for (i = 0; i < addrs->num_sections; i++)
615 struct other_sections *sect = addrs_to_abfd_addrs[i];
619 /* This is the index used by BFD. */
620 addrs->other[i].sectindex = sect->sectindex;
622 if (addrs->other[i].addr != 0)
624 addrs->other[i].addr -= sect->addr;
625 lower_offset = addrs->other[i].addr;
628 addrs->other[i].addr = lower_offset;
632 /* addr_section_name transformation is not used for SECT_NAME. */
633 const char *sect_name = addrs->other[i].name;
635 /* This section does not exist in ABFD, which is normally
636 unexpected and we want to issue a warning.
638 However, the ELF prelinker does create a few sections which are
639 marked in the main executable as loadable (they are loaded in
640 memory from the DYNAMIC segment) and yet are not present in
641 separate debug info files. This is fine, and should not cause
642 a warning. Shared libraries contain just the section
643 ".gnu.liblist" but it is not marked as loadable there. There is
644 no other way to identify them than by their name as the sections
645 created by prelink have no special flags.
647 For the sections `.bss' and `.sbss' see addr_section_name. */
649 if (!(strcmp (sect_name, ".gnu.liblist") == 0
650 || strcmp (sect_name, ".gnu.conflict") == 0
651 || (strcmp (sect_name, ".bss") == 0
653 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
654 && addrs_to_abfd_addrs[i - 1] != NULL)
655 || (strcmp (sect_name, ".sbss") == 0
657 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
658 && addrs_to_abfd_addrs[i - 1] != NULL)))
659 warning (_("section %s not found in %s"), sect_name,
660 bfd_get_filename (abfd));
662 addrs->other[i].addr = 0;
663 addrs->other[i].sectindex = -1;
667 do_cleanups (my_cleanup);
670 /* Parse the user's idea of an offset for dynamic linking, into our idea
671 of how to represent it for fast symbol reading. This is the default
672 version of the sym_fns.sym_offsets function for symbol readers that
673 don't need to do anything special. It allocates a section_offsets table
674 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
677 default_symfile_offsets (struct objfile *objfile,
678 const struct section_addr_info *addrs)
680 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
681 objfile->section_offsets = (struct section_offsets *)
682 obstack_alloc (&objfile->objfile_obstack,
683 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
684 relative_addr_info_to_section_offsets (objfile->section_offsets,
685 objfile->num_sections, addrs);
687 /* For relocatable files, all loadable sections will start at zero.
688 The zero is meaningless, so try to pick arbitrary addresses such
689 that no loadable sections overlap. This algorithm is quadratic,
690 but the number of sections in a single object file is generally
692 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
694 struct place_section_arg arg;
695 bfd *abfd = objfile->obfd;
698 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
699 /* We do not expect this to happen; just skip this step if the
700 relocatable file has a section with an assigned VMA. */
701 if (bfd_section_vma (abfd, cur_sec) != 0)
706 CORE_ADDR *offsets = objfile->section_offsets->offsets;
708 /* Pick non-overlapping offsets for sections the user did not
710 arg.offsets = objfile->section_offsets;
712 bfd_map_over_sections (objfile->obfd, place_section, &arg);
714 /* Correctly filling in the section offsets is not quite
715 enough. Relocatable files have two properties that
716 (most) shared objects do not:
718 - Their debug information will contain relocations. Some
719 shared libraries do also, but many do not, so this can not
722 - If there are multiple code sections they will be loaded
723 at different relative addresses in memory than they are
724 in the objfile, since all sections in the file will start
727 Because GDB has very limited ability to map from an
728 address in debug info to the correct code section,
729 it relies on adding SECT_OFF_TEXT to things which might be
730 code. If we clear all the section offsets, and set the
731 section VMAs instead, then symfile_relocate_debug_section
732 will return meaningful debug information pointing at the
735 GDB has too many different data structures for section
736 addresses - a bfd, objfile, and so_list all have section
737 tables, as does exec_ops. Some of these could probably
740 for (cur_sec = abfd->sections; cur_sec != NULL;
741 cur_sec = cur_sec->next)
743 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
746 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
747 exec_set_section_address (bfd_get_filename (abfd),
749 offsets[cur_sec->index]);
750 offsets[cur_sec->index] = 0;
755 /* Remember the bfd indexes for the .text, .data, .bss and
757 init_objfile_sect_indices (objfile);
760 /* Divide the file into segments, which are individual relocatable units.
761 This is the default version of the sym_fns.sym_segments function for
762 symbol readers that do not have an explicit representation of segments.
763 It assumes that object files do not have segments, and fully linked
764 files have a single segment. */
766 struct symfile_segment_data *
767 default_symfile_segments (bfd *abfd)
771 struct symfile_segment_data *data;
774 /* Relocatable files contain enough information to position each
775 loadable section independently; they should not be relocated
777 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
780 /* Make sure there is at least one loadable section in the file. */
781 for (sect = abfd->sections; sect != NULL; sect = sect->next)
783 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
791 low = bfd_get_section_vma (abfd, sect);
792 high = low + bfd_get_section_size (sect);
794 data = XZALLOC (struct symfile_segment_data);
795 data->num_segments = 1;
796 data->segment_bases = XCALLOC (1, CORE_ADDR);
797 data->segment_sizes = XCALLOC (1, CORE_ADDR);
799 num_sections = bfd_count_sections (abfd);
800 data->segment_info = XCALLOC (num_sections, int);
802 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
806 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
809 vma = bfd_get_section_vma (abfd, sect);
812 if (vma + bfd_get_section_size (sect) > high)
813 high = vma + bfd_get_section_size (sect);
815 data->segment_info[i] = 1;
818 data->segment_bases[0] = low;
819 data->segment_sizes[0] = high - low;
824 /* This is a convenience function to call sym_read for OBJFILE and
825 possibly force the partial symbols to be read. */
828 read_symbols (struct objfile *objfile, int add_flags)
830 (*objfile->sf->sym_read) (objfile, add_flags);
832 /* find_separate_debug_file_in_section should be called only if there is
833 single binary with no existing separate debug info file. */
834 if (!objfile_has_partial_symbols (objfile)
835 && objfile->separate_debug_objfile == NULL
836 && objfile->separate_debug_objfile_backlink == NULL)
838 bfd *abfd = find_separate_debug_file_in_section (objfile);
839 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
843 /* find_separate_debug_file_in_section uses the same filename for the
844 virtual section-as-bfd like the bfd filename containing the
845 section. Therefore use also non-canonical name form for the same
846 file containing the section. */
847 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
851 do_cleanups (cleanup);
853 if ((add_flags & SYMFILE_NO_READ) == 0)
854 require_partial_symbols (objfile, 0);
857 /* Initialize entry point information for this objfile. */
860 init_entry_point_info (struct objfile *objfile)
862 /* Save startup file's range of PC addresses to help blockframe.c
863 decide where the bottom of the stack is. */
865 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
867 /* Executable file -- record its entry point so we'll recognize
868 the startup file because it contains the entry point. */
869 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
870 objfile->ei.entry_point_p = 1;
872 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
873 && bfd_get_start_address (objfile->obfd) != 0)
875 /* Some shared libraries may have entry points set and be
876 runnable. There's no clear way to indicate this, so just check
877 for values other than zero. */
878 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
879 objfile->ei.entry_point_p = 1;
883 /* Examination of non-executable.o files. Short-circuit this stuff. */
884 objfile->ei.entry_point_p = 0;
887 if (objfile->ei.entry_point_p)
889 CORE_ADDR entry_point = objfile->ei.entry_point;
891 /* Make certain that the address points at real code, and not a
892 function descriptor. */
894 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
898 /* Remove any ISA markers, so that this matches entries in the
900 objfile->ei.entry_point
901 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
905 /* Process a symbol file, as either the main file or as a dynamically
908 This function does not set the OBJFILE's entry-point info.
910 OBJFILE is where the symbols are to be read from.
912 ADDRS is the list of section load addresses. If the user has given
913 an 'add-symbol-file' command, then this is the list of offsets and
914 addresses he or she provided as arguments to the command; or, if
915 we're handling a shared library, these are the actual addresses the
916 sections are loaded at, according to the inferior's dynamic linker
917 (as gleaned by GDB's shared library code). We convert each address
918 into an offset from the section VMA's as it appears in the object
919 file, and then call the file's sym_offsets function to convert this
920 into a format-specific offset table --- a `struct section_offsets'.
922 ADD_FLAGS encodes verbosity level, whether this is main symbol or
923 an extra symbol file such as dynamically loaded code, and wether
924 breakpoint reset should be deferred. */
927 syms_from_objfile_1 (struct objfile *objfile,
928 struct section_addr_info *addrs,
931 struct section_addr_info *local_addr = NULL;
932 struct cleanup *old_chain;
933 const int mainline = add_flags & SYMFILE_MAINLINE;
935 objfile->sf = find_sym_fns (objfile->obfd);
937 if (objfile->sf == NULL)
939 /* No symbols to load, but we still need to make sure
940 that the section_offsets table is allocated. */
941 int num_sections = gdb_bfd_count_sections (objfile->obfd);
942 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
944 objfile->num_sections = num_sections;
945 objfile->section_offsets
946 = obstack_alloc (&objfile->objfile_obstack, size);
947 memset (objfile->section_offsets, 0, size);
951 /* Make sure that partially constructed symbol tables will be cleaned up
952 if an error occurs during symbol reading. */
953 old_chain = make_cleanup_free_objfile (objfile);
955 /* If ADDRS is NULL, put together a dummy address list.
956 We now establish the convention that an addr of zero means
957 no load address was specified. */
960 local_addr = alloc_section_addr_info (1);
961 make_cleanup (xfree, local_addr);
967 /* We will modify the main symbol table, make sure that all its users
968 will be cleaned up if an error occurs during symbol reading. */
969 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
971 /* Since no error yet, throw away the old symbol table. */
973 if (symfile_objfile != NULL)
975 free_objfile (symfile_objfile);
976 gdb_assert (symfile_objfile == NULL);
979 /* Currently we keep symbols from the add-symbol-file command.
980 If the user wants to get rid of them, they should do "symbol-file"
981 without arguments first. Not sure this is the best behavior
984 (*objfile->sf->sym_new_init) (objfile);
987 /* Convert addr into an offset rather than an absolute address.
988 We find the lowest address of a loaded segment in the objfile,
989 and assume that <addr> is where that got loaded.
991 We no longer warn if the lowest section is not a text segment (as
992 happens for the PA64 port. */
993 if (addrs->num_sections > 0)
994 addr_info_make_relative (addrs, objfile->obfd);
996 /* Initialize symbol reading routines for this objfile, allow complaints to
997 appear for this new file, and record how verbose to be, then do the
998 initial symbol reading for this file. */
1000 (*objfile->sf->sym_init) (objfile);
1001 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1003 (*objfile->sf->sym_offsets) (objfile, addrs);
1005 read_symbols (objfile, add_flags);
1007 /* Discard cleanups as symbol reading was successful. */
1009 discard_cleanups (old_chain);
1013 /* Same as syms_from_objfile_1, but also initializes the objfile
1014 entry-point info. */
1017 syms_from_objfile (struct objfile *objfile,
1018 struct section_addr_info *addrs,
1021 syms_from_objfile_1 (objfile, addrs, add_flags);
1022 init_entry_point_info (objfile);
1025 /* Perform required actions after either reading in the initial
1026 symbols for a new objfile, or mapping in the symbols from a reusable
1027 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1030 new_symfile_objfile (struct objfile *objfile, int add_flags)
1032 /* If this is the main symbol file we have to clean up all users of the
1033 old main symbol file. Otherwise it is sufficient to fixup all the
1034 breakpoints that may have been redefined by this symbol file. */
1035 if (add_flags & SYMFILE_MAINLINE)
1037 /* OK, make it the "real" symbol file. */
1038 symfile_objfile = objfile;
1040 clear_symtab_users (add_flags);
1042 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1044 breakpoint_re_set ();
1047 /* We're done reading the symbol file; finish off complaints. */
1048 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1051 /* Process a symbol file, as either the main file or as a dynamically
1054 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1055 A new reference is acquired by this function.
1057 For NAME description see allocate_objfile's definition.
1059 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1060 extra, such as dynamically loaded code, and what to do with breakpoins.
1062 ADDRS is as described for syms_from_objfile_1, above.
1063 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1065 PARENT is the original objfile if ABFD is a separate debug info file.
1066 Otherwise PARENT is NULL.
1068 Upon success, returns a pointer to the objfile that was added.
1069 Upon failure, jumps back to command level (never returns). */
1071 static struct objfile *
1072 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1073 struct section_addr_info *addrs,
1074 int flags, struct objfile *parent)
1076 struct objfile *objfile;
1077 const int from_tty = add_flags & SYMFILE_VERBOSE;
1078 const int mainline = add_flags & SYMFILE_MAINLINE;
1079 const int should_print = ((from_tty || info_verbose)
1080 && (readnow_symbol_files
1081 || (add_flags & SYMFILE_NO_READ) == 0));
1083 if (readnow_symbol_files)
1085 flags |= OBJF_READNOW;
1086 add_flags &= ~SYMFILE_NO_READ;
1089 /* Give user a chance to burp if we'd be
1090 interactively wiping out any existing symbols. */
1092 if ((have_full_symbols () || have_partial_symbols ())
1095 && !query (_("Load new symbol table from \"%s\"? "), name))
1096 error (_("Not confirmed."));
1098 objfile = allocate_objfile (abfd, name,
1099 flags | (mainline ? OBJF_MAINLINE : 0));
1102 add_separate_debug_objfile (objfile, parent);
1104 /* We either created a new mapped symbol table, mapped an existing
1105 symbol table file which has not had initial symbol reading
1106 performed, or need to read an unmapped symbol table. */
1109 if (deprecated_pre_add_symbol_hook)
1110 deprecated_pre_add_symbol_hook (name);
1113 printf_unfiltered (_("Reading symbols from %s..."), name);
1115 gdb_flush (gdb_stdout);
1118 syms_from_objfile (objfile, addrs, add_flags);
1120 /* We now have at least a partial symbol table. Check to see if the
1121 user requested that all symbols be read on initial access via either
1122 the gdb startup command line or on a per symbol file basis. Expand
1123 all partial symbol tables for this objfile if so. */
1125 if ((flags & OBJF_READNOW))
1129 printf_unfiltered (_("expanding to full symbols..."));
1131 gdb_flush (gdb_stdout);
1135 objfile->sf->qf->expand_all_symtabs (objfile);
1138 if (should_print && !objfile_has_symbols (objfile))
1141 printf_unfiltered (_("(no debugging symbols found)..."));
1147 if (deprecated_post_add_symbol_hook)
1148 deprecated_post_add_symbol_hook ();
1150 printf_unfiltered (_("done.\n"));
1153 /* We print some messages regardless of whether 'from_tty ||
1154 info_verbose' is true, so make sure they go out at the right
1156 gdb_flush (gdb_stdout);
1158 if (objfile->sf == NULL)
1160 observer_notify_new_objfile (objfile);
1161 return objfile; /* No symbols. */
1164 new_symfile_objfile (objfile, add_flags);
1166 observer_notify_new_objfile (objfile);
1168 bfd_cache_close_all ();
1172 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1173 see allocate_objfile's definition. */
1176 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1177 struct objfile *objfile)
1179 struct objfile *new_objfile;
1180 struct section_addr_info *sap;
1181 struct cleanup *my_cleanup;
1183 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1184 because sections of BFD may not match sections of OBJFILE and because
1185 vma may have been modified by tools such as prelink. */
1186 sap = build_section_addr_info_from_objfile (objfile);
1187 my_cleanup = make_cleanup_free_section_addr_info (sap);
1189 new_objfile = symbol_file_add_with_addrs
1190 (bfd, name, symfile_flags, sap,
1191 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1195 do_cleanups (my_cleanup);
1198 /* Process the symbol file ABFD, as either the main file or as a
1199 dynamically loaded file.
1200 See symbol_file_add_with_addrs's comments for details. */
1203 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1204 struct section_addr_info *addrs,
1205 int flags, struct objfile *parent)
1207 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1211 /* Process a symbol file, as either the main file or as a dynamically
1212 loaded file. See symbol_file_add_with_addrs's comments for details. */
1215 symbol_file_add (const char *name, int add_flags,
1216 struct section_addr_info *addrs, int flags)
1218 bfd *bfd = symfile_bfd_open (name);
1219 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1220 struct objfile *objf;
1222 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1223 do_cleanups (cleanup);
1227 /* Call symbol_file_add() with default values and update whatever is
1228 affected by the loading of a new main().
1229 Used when the file is supplied in the gdb command line
1230 and by some targets with special loading requirements.
1231 The auxiliary function, symbol_file_add_main_1(), has the flags
1232 argument for the switches that can only be specified in the symbol_file
1236 symbol_file_add_main (const char *args, int from_tty)
1238 symbol_file_add_main_1 (args, from_tty, 0);
1242 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1244 const int add_flags = (current_inferior ()->symfile_flags
1245 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1247 symbol_file_add (args, add_flags, NULL, flags);
1249 /* Getting new symbols may change our opinion about
1250 what is frameless. */
1251 reinit_frame_cache ();
1253 if ((flags & SYMFILE_NO_READ) == 0)
1254 set_initial_language ();
1258 symbol_file_clear (int from_tty)
1260 if ((have_full_symbols () || have_partial_symbols ())
1263 ? !query (_("Discard symbol table from `%s'? "),
1264 objfile_name (symfile_objfile))
1265 : !query (_("Discard symbol table? "))))
1266 error (_("Not confirmed."));
1268 /* solib descriptors may have handles to objfiles. Wipe them before their
1269 objfiles get stale by free_all_objfiles. */
1270 no_shared_libraries (NULL, from_tty);
1272 free_all_objfiles ();
1274 gdb_assert (symfile_objfile == NULL);
1276 printf_unfiltered (_("No symbol file now.\n"));
1280 separate_debug_file_exists (const char *name, unsigned long crc,
1281 struct objfile *parent_objfile)
1283 unsigned long file_crc;
1286 struct stat parent_stat, abfd_stat;
1287 int verified_as_different;
1289 /* Find a separate debug info file as if symbols would be present in
1290 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1291 section can contain just the basename of PARENT_OBJFILE without any
1292 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1293 the separate debug infos with the same basename can exist. */
1295 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1298 abfd = gdb_bfd_open_maybe_remote (name);
1303 /* Verify symlinks were not the cause of filename_cmp name difference above.
1305 Some operating systems, e.g. Windows, do not provide a meaningful
1306 st_ino; they always set it to zero. (Windows does provide a
1307 meaningful st_dev.) Do not indicate a duplicate library in that
1308 case. While there is no guarantee that a system that provides
1309 meaningful inode numbers will never set st_ino to zero, this is
1310 merely an optimization, so we do not need to worry about false
1313 if (bfd_stat (abfd, &abfd_stat) == 0
1314 && abfd_stat.st_ino != 0
1315 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1317 if (abfd_stat.st_dev == parent_stat.st_dev
1318 && abfd_stat.st_ino == parent_stat.st_ino)
1320 gdb_bfd_unref (abfd);
1323 verified_as_different = 1;
1326 verified_as_different = 0;
1328 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1330 gdb_bfd_unref (abfd);
1335 if (crc != file_crc)
1337 unsigned long parent_crc;
1339 /* If one (or both) the files are accessed for example the via "remote:"
1340 gdbserver way it does not support the bfd_stat operation. Verify
1341 whether those two files are not the same manually. */
1343 if (!verified_as_different)
1345 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1349 if (verified_as_different || parent_crc != file_crc)
1350 warning (_("the debug information found in \"%s\""
1351 " does not match \"%s\" (CRC mismatch).\n"),
1352 name, objfile_name (parent_objfile));
1360 char *debug_file_directory = NULL;
1362 show_debug_file_directory (struct ui_file *file, int from_tty,
1363 struct cmd_list_element *c, const char *value)
1365 fprintf_filtered (file,
1366 _("The directory where separate debug "
1367 "symbols are searched for is \"%s\".\n"),
1371 #if ! defined (DEBUG_SUBDIRECTORY)
1372 #define DEBUG_SUBDIRECTORY ".debug"
1375 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1376 where the original file resides (may not be the same as
1377 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1378 looking for. CANON_DIR is the "realpath" form of DIR.
1379 DIR must contain a trailing '/'.
1380 Returns the path of the file with separate debug info, of NULL. */
1383 find_separate_debug_file (const char *dir,
1384 const char *canon_dir,
1385 const char *debuglink,
1386 unsigned long crc32, struct objfile *objfile)
1391 VEC (char_ptr) *debugdir_vec;
1392 struct cleanup *back_to;
1395 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1397 if (canon_dir != NULL && strlen (canon_dir) > i)
1398 i = strlen (canon_dir);
1400 debugfile = xmalloc (strlen (debug_file_directory) + 1
1402 + strlen (DEBUG_SUBDIRECTORY)
1404 + strlen (debuglink)
1407 /* First try in the same directory as the original file. */
1408 strcpy (debugfile, dir);
1409 strcat (debugfile, debuglink);
1411 if (separate_debug_file_exists (debugfile, crc32, objfile))
1414 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1415 strcpy (debugfile, dir);
1416 strcat (debugfile, DEBUG_SUBDIRECTORY);
1417 strcat (debugfile, "/");
1418 strcat (debugfile, debuglink);
1420 if (separate_debug_file_exists (debugfile, crc32, objfile))
1423 /* Then try in the global debugfile directories.
1425 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1426 cause "/..." lookups. */
1428 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1429 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1431 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1433 strcpy (debugfile, debugdir);
1434 strcat (debugfile, "/");
1435 strcat (debugfile, dir);
1436 strcat (debugfile, debuglink);
1438 if (separate_debug_file_exists (debugfile, crc32, objfile))
1440 do_cleanups (back_to);
1444 /* If the file is in the sysroot, try using its base path in the
1445 global debugfile directory. */
1446 if (canon_dir != NULL
1447 && filename_ncmp (canon_dir, gdb_sysroot,
1448 strlen (gdb_sysroot)) == 0
1449 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1451 strcpy (debugfile, debugdir);
1452 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1453 strcat (debugfile, "/");
1454 strcat (debugfile, debuglink);
1456 if (separate_debug_file_exists (debugfile, crc32, objfile))
1458 do_cleanups (back_to);
1464 do_cleanups (back_to);
1469 /* Modify PATH to contain only "[/]directory/" part of PATH.
1470 If there were no directory separators in PATH, PATH will be empty
1471 string on return. */
1474 terminate_after_last_dir_separator (char *path)
1478 /* Strip off the final filename part, leaving the directory name,
1479 followed by a slash. The directory can be relative or absolute. */
1480 for (i = strlen(path) - 1; i >= 0; i--)
1481 if (IS_DIR_SEPARATOR (path[i]))
1484 /* If I is -1 then no directory is present there and DIR will be "". */
1488 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1489 Returns pathname, or NULL. */
1492 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1495 char *dir, *canon_dir;
1497 unsigned long crc32;
1498 struct cleanup *cleanups;
1500 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1502 if (debuglink == NULL)
1504 /* There's no separate debug info, hence there's no way we could
1505 load it => no warning. */
1509 cleanups = make_cleanup (xfree, debuglink);
1510 dir = xstrdup (objfile_name (objfile));
1511 make_cleanup (xfree, dir);
1512 terminate_after_last_dir_separator (dir);
1513 canon_dir = lrealpath (dir);
1515 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1519 if (debugfile == NULL)
1522 /* For PR gdb/9538, try again with realpath (if different from the
1527 if (lstat (objfile_name (objfile), &st_buf) == 0
1528 && S_ISLNK (st_buf.st_mode))
1532 symlink_dir = lrealpath (objfile_name (objfile));
1533 if (symlink_dir != NULL)
1535 make_cleanup (xfree, symlink_dir);
1536 terminate_after_last_dir_separator (symlink_dir);
1537 if (strcmp (dir, symlink_dir) != 0)
1539 /* Different directory, so try using it. */
1540 debugfile = find_separate_debug_file (symlink_dir,
1548 #endif /* HAVE_LSTAT */
1551 do_cleanups (cleanups);
1555 /* This is the symbol-file command. Read the file, analyze its
1556 symbols, and add a struct symtab to a symtab list. The syntax of
1557 the command is rather bizarre:
1559 1. The function buildargv implements various quoting conventions
1560 which are undocumented and have little or nothing in common with
1561 the way things are quoted (or not quoted) elsewhere in GDB.
1563 2. Options are used, which are not generally used in GDB (perhaps
1564 "set mapped on", "set readnow on" would be better)
1566 3. The order of options matters, which is contrary to GNU
1567 conventions (because it is confusing and inconvenient). */
1570 symbol_file_command (char *args, int from_tty)
1576 symbol_file_clear (from_tty);
1580 char **argv = gdb_buildargv (args);
1581 int flags = OBJF_USERLOADED;
1582 struct cleanup *cleanups;
1585 cleanups = make_cleanup_freeargv (argv);
1586 while (*argv != NULL)
1588 if (strcmp (*argv, "-readnow") == 0)
1589 flags |= OBJF_READNOW;
1590 else if (**argv == '-')
1591 error (_("unknown option `%s'"), *argv);
1594 symbol_file_add_main_1 (*argv, from_tty, flags);
1602 error (_("no symbol file name was specified"));
1604 do_cleanups (cleanups);
1608 /* Set the initial language.
1610 FIXME: A better solution would be to record the language in the
1611 psymtab when reading partial symbols, and then use it (if known) to
1612 set the language. This would be a win for formats that encode the
1613 language in an easily discoverable place, such as DWARF. For
1614 stabs, we can jump through hoops looking for specially named
1615 symbols or try to intuit the language from the specific type of
1616 stabs we find, but we can't do that until later when we read in
1620 set_initial_language (void)
1622 enum language lang = language_unknown;
1624 if (language_of_main != language_unknown)
1625 lang = language_of_main;
1628 char *name = main_name ();
1629 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1632 lang = SYMBOL_LANGUAGE (sym);
1635 if (lang == language_unknown)
1637 /* Make C the default language */
1641 set_language (lang);
1642 expected_language = current_language; /* Don't warn the user. */
1645 /* If NAME is a remote name open the file using remote protocol, otherwise
1646 open it normally. Returns a new reference to the BFD. On error,
1647 returns NULL with the BFD error set. */
1650 gdb_bfd_open_maybe_remote (const char *name)
1654 if (remote_filename_p (name))
1655 result = remote_bfd_open (name, gnutarget);
1657 result = gdb_bfd_open (name, gnutarget, -1);
1662 /* Open the file specified by NAME and hand it off to BFD for
1663 preliminary analysis. Return a newly initialized bfd *, which
1664 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1665 absolute). In case of trouble, error() is called. */
1668 symfile_bfd_open (const char *cname)
1672 char *name, *absolute_name;
1673 struct cleanup *back_to;
1675 if (remote_filename_p (cname))
1677 sym_bfd = remote_bfd_open (cname, gnutarget);
1679 error (_("`%s': can't open to read symbols: %s."), cname,
1680 bfd_errmsg (bfd_get_error ()));
1682 if (!bfd_check_format (sym_bfd, bfd_object))
1684 make_cleanup_bfd_unref (sym_bfd);
1685 error (_("`%s': can't read symbols: %s."), cname,
1686 bfd_errmsg (bfd_get_error ()));
1692 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
1694 /* Look down path for it, allocate 2nd new malloc'd copy. */
1695 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1696 O_RDONLY | O_BINARY, &absolute_name);
1697 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1700 char *exename = alloca (strlen (name) + 5);
1702 strcat (strcpy (exename, name), ".exe");
1703 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1704 exename, O_RDONLY | O_BINARY, &absolute_name);
1709 make_cleanup (xfree, name);
1710 perror_with_name (name);
1714 name = absolute_name;
1715 back_to = make_cleanup (xfree, name);
1717 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1719 error (_("`%s': can't open to read symbols: %s."), name,
1720 bfd_errmsg (bfd_get_error ()));
1721 bfd_set_cacheable (sym_bfd, 1);
1723 if (!bfd_check_format (sym_bfd, bfd_object))
1725 make_cleanup_bfd_unref (sym_bfd);
1726 error (_("`%s': can't read symbols: %s."), name,
1727 bfd_errmsg (bfd_get_error ()));
1730 do_cleanups (back_to);
1735 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1736 the section was not found. */
1739 get_section_index (struct objfile *objfile, char *section_name)
1741 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1749 /* Link SF into the global symtab_fns list. Called on startup by the
1750 _initialize routine in each object file format reader, to register
1751 information about each format the reader is prepared to handle. */
1754 add_symtab_fns (const struct sym_fns *sf)
1756 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1759 /* Initialize OBJFILE to read symbols from its associated BFD. It
1760 either returns or calls error(). The result is an initialized
1761 struct sym_fns in the objfile structure, that contains cached
1762 information about the symbol file. */
1764 static const struct sym_fns *
1765 find_sym_fns (bfd *abfd)
1767 const struct sym_fns *sf;
1768 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1771 if (our_flavour == bfd_target_srec_flavour
1772 || our_flavour == bfd_target_ihex_flavour
1773 || our_flavour == bfd_target_tekhex_flavour)
1774 return NULL; /* No symbols. */
1776 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1777 if (our_flavour == sf->sym_flavour)
1780 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1781 bfd_get_target (abfd));
1785 /* This function runs the load command of our current target. */
1788 load_command (char *arg, int from_tty)
1790 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1794 /* The user might be reloading because the binary has changed. Take
1795 this opportunity to check. */
1796 reopen_exec_file ();
1804 parg = arg = get_exec_file (1);
1806 /* Count how many \ " ' tab space there are in the name. */
1807 while ((parg = strpbrk (parg, "\\\"'\t ")))
1815 /* We need to quote this string so buildargv can pull it apart. */
1816 char *temp = xmalloc (strlen (arg) + count + 1 );
1820 make_cleanup (xfree, temp);
1823 while ((parg = strpbrk (parg, "\\\"'\t ")))
1825 strncpy (ptemp, prev, parg - prev);
1826 ptemp += parg - prev;
1830 strcpy (ptemp, prev);
1836 target_load (arg, from_tty);
1838 /* After re-loading the executable, we don't really know which
1839 overlays are mapped any more. */
1840 overlay_cache_invalid = 1;
1842 do_cleanups (cleanup);
1845 /* This version of "load" should be usable for any target. Currently
1846 it is just used for remote targets, not inftarg.c or core files,
1847 on the theory that only in that case is it useful.
1849 Avoiding xmodem and the like seems like a win (a) because we don't have
1850 to worry about finding it, and (b) On VMS, fork() is very slow and so
1851 we don't want to run a subprocess. On the other hand, I'm not sure how
1852 performance compares. */
1854 static int validate_download = 0;
1856 /* Callback service function for generic_load (bfd_map_over_sections). */
1859 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1861 bfd_size_type *sum = data;
1863 *sum += bfd_get_section_size (asec);
1866 /* Opaque data for load_section_callback. */
1867 struct load_section_data {
1868 CORE_ADDR load_offset;
1869 struct load_progress_data *progress_data;
1870 VEC(memory_write_request_s) *requests;
1873 /* Opaque data for load_progress. */
1874 struct load_progress_data {
1875 /* Cumulative data. */
1876 unsigned long write_count;
1877 unsigned long data_count;
1878 bfd_size_type total_size;
1881 /* Opaque data for load_progress for a single section. */
1882 struct load_progress_section_data {
1883 struct load_progress_data *cumulative;
1885 /* Per-section data. */
1886 const char *section_name;
1887 ULONGEST section_sent;
1888 ULONGEST section_size;
1893 /* Target write callback routine for progress reporting. */
1896 load_progress (ULONGEST bytes, void *untyped_arg)
1898 struct load_progress_section_data *args = untyped_arg;
1899 struct load_progress_data *totals;
1902 /* Writing padding data. No easy way to get at the cumulative
1903 stats, so just ignore this. */
1906 totals = args->cumulative;
1908 if (bytes == 0 && args->section_sent == 0)
1910 /* The write is just starting. Let the user know we've started
1912 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1913 args->section_name, hex_string (args->section_size),
1914 paddress (target_gdbarch (), args->lma));
1918 if (validate_download)
1920 /* Broken memories and broken monitors manifest themselves here
1921 when bring new computers to life. This doubles already slow
1923 /* NOTE: cagney/1999-10-18: A more efficient implementation
1924 might add a verify_memory() method to the target vector and
1925 then use that. remote.c could implement that method using
1926 the ``qCRC'' packet. */
1927 gdb_byte *check = xmalloc (bytes);
1928 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1930 if (target_read_memory (args->lma, check, bytes) != 0)
1931 error (_("Download verify read failed at %s"),
1932 paddress (target_gdbarch (), args->lma));
1933 if (memcmp (args->buffer, check, bytes) != 0)
1934 error (_("Download verify compare failed at %s"),
1935 paddress (target_gdbarch (), args->lma));
1936 do_cleanups (verify_cleanups);
1938 totals->data_count += bytes;
1940 args->buffer += bytes;
1941 totals->write_count += 1;
1942 args->section_sent += bytes;
1943 if (check_quit_flag ()
1944 || (deprecated_ui_load_progress_hook != NULL
1945 && deprecated_ui_load_progress_hook (args->section_name,
1946 args->section_sent)))
1947 error (_("Canceled the download"));
1949 if (deprecated_show_load_progress != NULL)
1950 deprecated_show_load_progress (args->section_name,
1954 totals->total_size);
1957 /* Callback service function for generic_load (bfd_map_over_sections). */
1960 load_section_callback (bfd *abfd, asection *asec, void *data)
1962 struct memory_write_request *new_request;
1963 struct load_section_data *args = data;
1964 struct load_progress_section_data *section_data;
1965 bfd_size_type size = bfd_get_section_size (asec);
1967 const char *sect_name = bfd_get_section_name (abfd, asec);
1969 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1975 new_request = VEC_safe_push (memory_write_request_s,
1976 args->requests, NULL);
1977 memset (new_request, 0, sizeof (struct memory_write_request));
1978 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1979 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1980 new_request->end = new_request->begin + size; /* FIXME Should size
1982 new_request->data = xmalloc (size);
1983 new_request->baton = section_data;
1985 buffer = new_request->data;
1987 section_data->cumulative = args->progress_data;
1988 section_data->section_name = sect_name;
1989 section_data->section_size = size;
1990 section_data->lma = new_request->begin;
1991 section_data->buffer = buffer;
1993 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1996 /* Clean up an entire memory request vector, including load
1997 data and progress records. */
2000 clear_memory_write_data (void *arg)
2002 VEC(memory_write_request_s) **vec_p = arg;
2003 VEC(memory_write_request_s) *vec = *vec_p;
2005 struct memory_write_request *mr;
2007 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2012 VEC_free (memory_write_request_s, vec);
2016 generic_load (char *args, int from_tty)
2019 struct timeval start_time, end_time;
2021 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2022 struct load_section_data cbdata;
2023 struct load_progress_data total_progress;
2024 struct ui_out *uiout = current_uiout;
2029 memset (&cbdata, 0, sizeof (cbdata));
2030 memset (&total_progress, 0, sizeof (total_progress));
2031 cbdata.progress_data = &total_progress;
2033 make_cleanup (clear_memory_write_data, &cbdata.requests);
2036 error_no_arg (_("file to load"));
2038 argv = gdb_buildargv (args);
2039 make_cleanup_freeargv (argv);
2041 filename = tilde_expand (argv[0]);
2042 make_cleanup (xfree, filename);
2044 if (argv[1] != NULL)
2048 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2050 /* If the last word was not a valid number then
2051 treat it as a file name with spaces in. */
2052 if (argv[1] == endptr)
2053 error (_("Invalid download offset:%s."), argv[1]);
2055 if (argv[2] != NULL)
2056 error (_("Too many parameters."));
2059 /* Open the file for loading. */
2060 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2061 if (loadfile_bfd == NULL)
2063 perror_with_name (filename);
2067 make_cleanup_bfd_unref (loadfile_bfd);
2069 if (!bfd_check_format (loadfile_bfd, bfd_object))
2071 error (_("\"%s\" is not an object file: %s"), filename,
2072 bfd_errmsg (bfd_get_error ()));
2075 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2076 (void *) &total_progress.total_size);
2078 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2080 gettimeofday (&start_time, NULL);
2082 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2083 load_progress) != 0)
2084 error (_("Load failed"));
2086 gettimeofday (&end_time, NULL);
2088 entry = bfd_get_start_address (loadfile_bfd);
2089 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2090 ui_out_text (uiout, "Start address ");
2091 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2092 ui_out_text (uiout, ", load size ");
2093 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2094 ui_out_text (uiout, "\n");
2095 /* We were doing this in remote-mips.c, I suspect it is right
2096 for other targets too. */
2097 regcache_write_pc (get_current_regcache (), entry);
2099 /* Reset breakpoints, now that we have changed the load image. For
2100 instance, breakpoints may have been set (or reset, by
2101 post_create_inferior) while connected to the target but before we
2102 loaded the program. In that case, the prologue analyzer could
2103 have read instructions from the target to find the right
2104 breakpoint locations. Loading has changed the contents of that
2107 breakpoint_re_set ();
2109 /* FIXME: are we supposed to call symbol_file_add or not? According
2110 to a comment from remote-mips.c (where a call to symbol_file_add
2111 was commented out), making the call confuses GDB if more than one
2112 file is loaded in. Some targets do (e.g., remote-vx.c) but
2113 others don't (or didn't - perhaps they have all been deleted). */
2115 print_transfer_performance (gdb_stdout, total_progress.data_count,
2116 total_progress.write_count,
2117 &start_time, &end_time);
2119 do_cleanups (old_cleanups);
2122 /* Report how fast the transfer went. */
2125 print_transfer_performance (struct ui_file *stream,
2126 unsigned long data_count,
2127 unsigned long write_count,
2128 const struct timeval *start_time,
2129 const struct timeval *end_time)
2131 ULONGEST time_count;
2132 struct ui_out *uiout = current_uiout;
2134 /* Compute the elapsed time in milliseconds, as a tradeoff between
2135 accuracy and overflow. */
2136 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2137 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2139 ui_out_text (uiout, "Transfer rate: ");
2142 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2144 if (ui_out_is_mi_like_p (uiout))
2146 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2147 ui_out_text (uiout, " bits/sec");
2149 else if (rate < 1024)
2151 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2152 ui_out_text (uiout, " bytes/sec");
2156 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2157 ui_out_text (uiout, " KB/sec");
2162 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2163 ui_out_text (uiout, " bits in <1 sec");
2165 if (write_count > 0)
2167 ui_out_text (uiout, ", ");
2168 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2169 ui_out_text (uiout, " bytes/write");
2171 ui_out_text (uiout, ".\n");
2174 /* This function allows the addition of incrementally linked object files.
2175 It does not modify any state in the target, only in the debugger. */
2176 /* Note: ezannoni 2000-04-13 This function/command used to have a
2177 special case syntax for the rombug target (Rombug is the boot
2178 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2179 rombug case, the user doesn't need to supply a text address,
2180 instead a call to target_link() (in target.c) would supply the
2181 value to use. We are now discontinuing this type of ad hoc syntax. */
2184 add_symbol_file_command (char *args, int from_tty)
2186 struct gdbarch *gdbarch = get_current_arch ();
2187 char *filename = NULL;
2188 int flags = OBJF_USERLOADED;
2190 int section_index = 0;
2194 int expecting_sec_name = 0;
2195 int expecting_sec_addr = 0;
2204 struct section_addr_info *section_addrs;
2205 struct sect_opt *sect_opts = NULL;
2206 size_t num_sect_opts = 0;
2207 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2210 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2211 * sizeof (struct sect_opt));
2216 error (_("add-symbol-file takes a file name and an address"));
2218 argv = gdb_buildargv (args);
2219 make_cleanup_freeargv (argv);
2221 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2223 /* Process the argument. */
2226 /* The first argument is the file name. */
2227 filename = tilde_expand (arg);
2228 make_cleanup (xfree, filename);
2230 else if (argcnt == 1)
2232 /* The second argument is always the text address at which
2233 to load the program. */
2234 sect_opts[section_index].name = ".text";
2235 sect_opts[section_index].value = arg;
2236 if (++section_index >= num_sect_opts)
2239 sect_opts = ((struct sect_opt *)
2240 xrealloc (sect_opts,
2242 * sizeof (struct sect_opt)));
2247 /* It's an option (starting with '-') or it's an argument
2249 if (expecting_sec_name)
2251 sect_opts[section_index].name = arg;
2252 expecting_sec_name = 0;
2254 else if (expecting_sec_addr)
2256 sect_opts[section_index].value = arg;
2257 expecting_sec_addr = 0;
2258 if (++section_index >= num_sect_opts)
2261 sect_opts = ((struct sect_opt *)
2262 xrealloc (sect_opts,
2264 * sizeof (struct sect_opt)));
2267 else if (strcmp (arg, "-readnow") == 0)
2268 flags |= OBJF_READNOW;
2269 else if (strcmp (arg, "-s") == 0)
2271 expecting_sec_name = 1;
2272 expecting_sec_addr = 1;
2275 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2276 " [-readnow] [-s <secname> <addr>]*"));
2280 /* This command takes at least two arguments. The first one is a
2281 filename, and the second is the address where this file has been
2282 loaded. Abort now if this address hasn't been provided by the
2284 if (section_index < 1)
2285 error (_("The address where %s has been loaded is missing"), filename);
2287 /* Print the prompt for the query below. And save the arguments into
2288 a sect_addr_info structure to be passed around to other
2289 functions. We have to split this up into separate print
2290 statements because hex_string returns a local static
2293 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2294 section_addrs = alloc_section_addr_info (section_index);
2295 make_cleanup (xfree, section_addrs);
2296 for (i = 0; i < section_index; i++)
2299 char *val = sect_opts[i].value;
2300 char *sec = sect_opts[i].name;
2302 addr = parse_and_eval_address (val);
2304 /* Here we store the section offsets in the order they were
2305 entered on the command line. */
2306 section_addrs->other[sec_num].name = sec;
2307 section_addrs->other[sec_num].addr = addr;
2308 printf_unfiltered ("\t%s_addr = %s\n", sec,
2309 paddress (gdbarch, addr));
2312 /* The object's sections are initialized when a
2313 call is made to build_objfile_section_table (objfile).
2314 This happens in reread_symbols.
2315 At this point, we don't know what file type this is,
2316 so we can't determine what section names are valid. */
2318 section_addrs->num_sections = sec_num;
2320 if (from_tty && (!query ("%s", "")))
2321 error (_("Not confirmed."));
2323 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2324 section_addrs, flags);
2326 /* Getting new symbols may change our opinion about what is
2328 reinit_frame_cache ();
2329 do_cleanups (my_cleanups);
2333 typedef struct objfile *objfilep;
2335 DEF_VEC_P (objfilep);
2337 /* Re-read symbols if a symbol-file has changed. */
2340 reread_symbols (void)
2342 struct objfile *objfile;
2344 struct stat new_statbuf;
2346 VEC (objfilep) *new_objfiles = NULL;
2347 struct cleanup *all_cleanups;
2349 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2351 /* With the addition of shared libraries, this should be modified,
2352 the load time should be saved in the partial symbol tables, since
2353 different tables may come from different source files. FIXME.
2354 This routine should then walk down each partial symbol table
2355 and see if the symbol table that it originates from has been changed. */
2357 for (objfile = object_files; objfile; objfile = objfile->next)
2359 if (objfile->obfd == NULL)
2362 /* Separate debug objfiles are handled in the main objfile. */
2363 if (objfile->separate_debug_objfile_backlink)
2366 /* If this object is from an archive (what you usually create with
2367 `ar', often called a `static library' on most systems, though
2368 a `shared library' on AIX is also an archive), then you should
2369 stat on the archive name, not member name. */
2370 if (objfile->obfd->my_archive)
2371 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2373 res = stat (objfile_name (objfile), &new_statbuf);
2376 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2377 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2378 objfile_name (objfile));
2381 new_modtime = new_statbuf.st_mtime;
2382 if (new_modtime != objfile->mtime)
2384 struct cleanup *old_cleanups;
2385 struct section_offsets *offsets;
2387 char *original_name;
2389 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2390 objfile_name (objfile));
2392 /* There are various functions like symbol_file_add,
2393 symfile_bfd_open, syms_from_objfile, etc., which might
2394 appear to do what we want. But they have various other
2395 effects which we *don't* want. So we just do stuff
2396 ourselves. We don't worry about mapped files (for one thing,
2397 any mapped file will be out of date). */
2399 /* If we get an error, blow away this objfile (not sure if
2400 that is the correct response for things like shared
2402 old_cleanups = make_cleanup_free_objfile (objfile);
2403 /* We need to do this whenever any symbols go away. */
2404 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2406 if (exec_bfd != NULL
2407 && filename_cmp (bfd_get_filename (objfile->obfd),
2408 bfd_get_filename (exec_bfd)) == 0)
2410 /* Reload EXEC_BFD without asking anything. */
2412 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2415 /* Keep the calls order approx. the same as in free_objfile. */
2417 /* Free the separate debug objfiles. It will be
2418 automatically recreated by sym_read. */
2419 free_objfile_separate_debug (objfile);
2421 /* Remove any references to this objfile in the global
2423 preserve_values (objfile);
2425 /* Nuke all the state that we will re-read. Much of the following
2426 code which sets things to NULL really is necessary to tell
2427 other parts of GDB that there is nothing currently there.
2429 Try to keep the freeing order compatible with free_objfile. */
2431 if (objfile->sf != NULL)
2433 (*objfile->sf->sym_finish) (objfile);
2436 clear_objfile_data (objfile);
2438 /* Clean up any state BFD has sitting around. */
2440 struct bfd *obfd = objfile->obfd;
2441 char *obfd_filename;
2443 obfd_filename = bfd_get_filename (objfile->obfd);
2444 /* Open the new BFD before freeing the old one, so that
2445 the filename remains live. */
2446 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2447 if (objfile->obfd == NULL)
2449 /* We have to make a cleanup and error here, rather
2450 than erroring later, because once we unref OBFD,
2451 OBFD_FILENAME will be freed. */
2452 make_cleanup_bfd_unref (obfd);
2453 error (_("Can't open %s to read symbols."), obfd_filename);
2455 gdb_bfd_unref (obfd);
2458 original_name = xstrdup (objfile->original_name);
2459 make_cleanup (xfree, original_name);
2461 /* bfd_openr sets cacheable to true, which is what we want. */
2462 if (!bfd_check_format (objfile->obfd, bfd_object))
2463 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2464 bfd_errmsg (bfd_get_error ()));
2466 /* Save the offsets, we will nuke them with the rest of the
2468 num_offsets = objfile->num_sections;
2469 offsets = ((struct section_offsets *)
2470 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2471 memcpy (offsets, objfile->section_offsets,
2472 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2474 /* FIXME: Do we have to free a whole linked list, or is this
2476 if (objfile->global_psymbols.list)
2477 xfree (objfile->global_psymbols.list);
2478 memset (&objfile->global_psymbols, 0,
2479 sizeof (objfile->global_psymbols));
2480 if (objfile->static_psymbols.list)
2481 xfree (objfile->static_psymbols.list);
2482 memset (&objfile->static_psymbols, 0,
2483 sizeof (objfile->static_psymbols));
2485 /* Free the obstacks for non-reusable objfiles. */
2486 psymbol_bcache_free (objfile->psymbol_cache);
2487 objfile->psymbol_cache = psymbol_bcache_init ();
2488 if (objfile->demangled_names_hash != NULL)
2490 htab_delete (objfile->demangled_names_hash);
2491 objfile->demangled_names_hash = NULL;
2493 obstack_free (&objfile->objfile_obstack, 0);
2494 objfile->sections = NULL;
2495 objfile->symtabs = NULL;
2496 objfile->psymtabs = NULL;
2497 objfile->psymtabs_addrmap = NULL;
2498 objfile->free_psymtabs = NULL;
2499 objfile->template_symbols = NULL;
2500 objfile->msymbols = NULL;
2501 objfile->minimal_symbol_count = 0;
2502 memset (&objfile->msymbol_hash, 0,
2503 sizeof (objfile->msymbol_hash));
2504 memset (&objfile->msymbol_demangled_hash, 0,
2505 sizeof (objfile->msymbol_demangled_hash));
2507 set_objfile_per_bfd (objfile);
2509 /* obstack_init also initializes the obstack so it is
2510 empty. We could use obstack_specify_allocation but
2511 gdb_obstack.h specifies the alloc/dealloc functions. */
2512 obstack_init (&objfile->objfile_obstack);
2514 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2516 strlen (original_name));
2518 /* Reset the sym_fns pointer. The ELF reader can change it
2519 based on whether .gdb_index is present, and we need it to
2520 start over. PR symtab/15885 */
2521 objfile->sf = find_sym_fns (objfile->obfd);
2523 build_objfile_section_table (objfile);
2524 terminate_minimal_symbol_table (objfile);
2526 /* We use the same section offsets as from last time. I'm not
2527 sure whether that is always correct for shared libraries. */
2528 objfile->section_offsets = (struct section_offsets *)
2529 obstack_alloc (&objfile->objfile_obstack,
2530 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2531 memcpy (objfile->section_offsets, offsets,
2532 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2533 objfile->num_sections = num_offsets;
2535 /* What the hell is sym_new_init for, anyway? The concept of
2536 distinguishing between the main file and additional files
2537 in this way seems rather dubious. */
2538 if (objfile == symfile_objfile)
2540 (*objfile->sf->sym_new_init) (objfile);
2543 (*objfile->sf->sym_init) (objfile);
2544 clear_complaints (&symfile_complaints, 1, 1);
2546 objfile->flags &= ~OBJF_PSYMTABS_READ;
2547 read_symbols (objfile, 0);
2549 if (!objfile_has_symbols (objfile))
2552 printf_unfiltered (_("(no debugging symbols found)\n"));
2556 /* We're done reading the symbol file; finish off complaints. */
2557 clear_complaints (&symfile_complaints, 0, 1);
2559 /* Getting new symbols may change our opinion about what is
2562 reinit_frame_cache ();
2564 /* Discard cleanups as symbol reading was successful. */
2565 discard_cleanups (old_cleanups);
2567 /* If the mtime has changed between the time we set new_modtime
2568 and now, we *want* this to be out of date, so don't call stat
2570 objfile->mtime = new_modtime;
2571 init_entry_point_info (objfile);
2573 VEC_safe_push (objfilep, new_objfiles, objfile);
2581 /* Notify objfiles that we've modified objfile sections. */
2582 objfiles_changed ();
2584 clear_symtab_users (0);
2586 /* clear_objfile_data for each objfile was called before freeing it and
2587 observer_notify_new_objfile (NULL) has been called by
2588 clear_symtab_users above. Notify the new files now. */
2589 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2590 observer_notify_new_objfile (objfile);
2592 /* At least one objfile has changed, so we can consider that
2593 the executable we're debugging has changed too. */
2594 observer_notify_executable_changed ();
2597 do_cleanups (all_cleanups);
2608 static filename_language *filename_language_table;
2609 static int fl_table_size, fl_table_next;
2612 add_filename_language (char *ext, enum language lang)
2614 if (fl_table_next >= fl_table_size)
2616 fl_table_size += 10;
2617 filename_language_table =
2618 xrealloc (filename_language_table,
2619 fl_table_size * sizeof (*filename_language_table));
2622 filename_language_table[fl_table_next].ext = xstrdup (ext);
2623 filename_language_table[fl_table_next].lang = lang;
2627 static char *ext_args;
2629 show_ext_args (struct ui_file *file, int from_tty,
2630 struct cmd_list_element *c, const char *value)
2632 fprintf_filtered (file,
2633 _("Mapping between filename extension "
2634 "and source language is \"%s\".\n"),
2639 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2642 char *cp = ext_args;
2645 /* First arg is filename extension, starting with '.' */
2647 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2649 /* Find end of first arg. */
2650 while (*cp && !isspace (*cp))
2654 error (_("'%s': two arguments required -- "
2655 "filename extension and language"),
2658 /* Null-terminate first arg. */
2661 /* Find beginning of second arg, which should be a source language. */
2662 cp = skip_spaces (cp);
2665 error (_("'%s': two arguments required -- "
2666 "filename extension and language"),
2669 /* Lookup the language from among those we know. */
2670 lang = language_enum (cp);
2672 /* Now lookup the filename extension: do we already know it? */
2673 for (i = 0; i < fl_table_next; i++)
2674 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2677 if (i >= fl_table_next)
2679 /* New file extension. */
2680 add_filename_language (ext_args, lang);
2684 /* Redefining a previously known filename extension. */
2687 /* query ("Really make files of type %s '%s'?", */
2688 /* ext_args, language_str (lang)); */
2690 xfree (filename_language_table[i].ext);
2691 filename_language_table[i].ext = xstrdup (ext_args);
2692 filename_language_table[i].lang = lang;
2697 info_ext_lang_command (char *args, int from_tty)
2701 printf_filtered (_("Filename extensions and the languages they represent:"));
2702 printf_filtered ("\n\n");
2703 for (i = 0; i < fl_table_next; i++)
2704 printf_filtered ("\t%s\t- %s\n",
2705 filename_language_table[i].ext,
2706 language_str (filename_language_table[i].lang));
2710 init_filename_language_table (void)
2712 if (fl_table_size == 0) /* Protect against repetition. */
2716 filename_language_table =
2717 xmalloc (fl_table_size * sizeof (*filename_language_table));
2718 add_filename_language (".c", language_c);
2719 add_filename_language (".d", language_d);
2720 add_filename_language (".C", language_cplus);
2721 add_filename_language (".cc", language_cplus);
2722 add_filename_language (".cp", language_cplus);
2723 add_filename_language (".cpp", language_cplus);
2724 add_filename_language (".cxx", language_cplus);
2725 add_filename_language (".c++", language_cplus);
2726 add_filename_language (".java", language_java);
2727 add_filename_language (".class", language_java);
2728 add_filename_language (".m", language_objc);
2729 add_filename_language (".f", language_fortran);
2730 add_filename_language (".F", language_fortran);
2731 add_filename_language (".for", language_fortran);
2732 add_filename_language (".FOR", language_fortran);
2733 add_filename_language (".ftn", language_fortran);
2734 add_filename_language (".FTN", language_fortran);
2735 add_filename_language (".fpp", language_fortran);
2736 add_filename_language (".FPP", language_fortran);
2737 add_filename_language (".f90", language_fortran);
2738 add_filename_language (".F90", language_fortran);
2739 add_filename_language (".f95", language_fortran);
2740 add_filename_language (".F95", language_fortran);
2741 add_filename_language (".f03", language_fortran);
2742 add_filename_language (".F03", language_fortran);
2743 add_filename_language (".f08", language_fortran);
2744 add_filename_language (".F08", language_fortran);
2745 add_filename_language (".s", language_asm);
2746 add_filename_language (".sx", language_asm);
2747 add_filename_language (".S", language_asm);
2748 add_filename_language (".pas", language_pascal);
2749 add_filename_language (".p", language_pascal);
2750 add_filename_language (".pp", language_pascal);
2751 add_filename_language (".adb", language_ada);
2752 add_filename_language (".ads", language_ada);
2753 add_filename_language (".a", language_ada);
2754 add_filename_language (".ada", language_ada);
2755 add_filename_language (".dg", language_ada);
2760 deduce_language_from_filename (const char *filename)
2765 if (filename != NULL)
2766 if ((cp = strrchr (filename, '.')) != NULL)
2767 for (i = 0; i < fl_table_next; i++)
2768 if (strcmp (cp, filename_language_table[i].ext) == 0)
2769 return filename_language_table[i].lang;
2771 return language_unknown;
2776 Allocate and partly initialize a new symbol table. Return a pointer
2777 to it. error() if no space.
2779 Caller must set these fields:
2788 allocate_symtab (const char *filename, struct objfile *objfile)
2790 struct symtab *symtab;
2792 symtab = (struct symtab *)
2793 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2794 memset (symtab, 0, sizeof (*symtab));
2795 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2796 objfile->per_bfd->filename_cache);
2797 symtab->fullname = NULL;
2798 symtab->language = deduce_language_from_filename (filename);
2799 symtab->debugformat = "unknown";
2801 /* Hook it to the objfile it comes from. */
2803 symtab->objfile = objfile;
2804 symtab->next = objfile->symtabs;
2805 objfile->symtabs = symtab;
2807 if (symtab_create_debug)
2809 /* Be a bit clever with debugging messages, and don't print objfile
2810 every time, only when it changes. */
2811 static char *last_objfile_name = NULL;
2813 if (last_objfile_name == NULL
2814 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2816 xfree (last_objfile_name);
2817 last_objfile_name = xstrdup (objfile_name (objfile));
2818 fprintf_unfiltered (gdb_stdlog,
2819 "Creating one or more symtabs for objfile %s ...\n",
2822 fprintf_unfiltered (gdb_stdlog,
2823 "Created symtab %s for module %s.\n",
2824 host_address_to_string (symtab), filename);
2831 /* Reset all data structures in gdb which may contain references to symbol
2832 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2835 clear_symtab_users (int add_flags)
2837 /* Someday, we should do better than this, by only blowing away
2838 the things that really need to be blown. */
2840 /* Clear the "current" symtab first, because it is no longer valid.
2841 breakpoint_re_set may try to access the current symtab. */
2842 clear_current_source_symtab_and_line ();
2845 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2846 breakpoint_re_set ();
2847 clear_last_displayed_sal ();
2848 clear_pc_function_cache ();
2849 observer_notify_new_objfile (NULL);
2851 /* Clear globals which might have pointed into a removed objfile.
2852 FIXME: It's not clear which of these are supposed to persist
2853 between expressions and which ought to be reset each time. */
2854 expression_context_block = NULL;
2855 innermost_block = NULL;
2857 /* Varobj may refer to old symbols, perform a cleanup. */
2858 varobj_invalidate ();
2863 clear_symtab_users_cleanup (void *ignore)
2865 clear_symtab_users (0);
2869 The following code implements an abstraction for debugging overlay sections.
2871 The target model is as follows:
2872 1) The gnu linker will permit multiple sections to be mapped into the
2873 same VMA, each with its own unique LMA (or load address).
2874 2) It is assumed that some runtime mechanism exists for mapping the
2875 sections, one by one, from the load address into the VMA address.
2876 3) This code provides a mechanism for gdb to keep track of which
2877 sections should be considered to be mapped from the VMA to the LMA.
2878 This information is used for symbol lookup, and memory read/write.
2879 For instance, if a section has been mapped then its contents
2880 should be read from the VMA, otherwise from the LMA.
2882 Two levels of debugger support for overlays are available. One is
2883 "manual", in which the debugger relies on the user to tell it which
2884 overlays are currently mapped. This level of support is
2885 implemented entirely in the core debugger, and the information about
2886 whether a section is mapped is kept in the objfile->obj_section table.
2888 The second level of support is "automatic", and is only available if
2889 the target-specific code provides functionality to read the target's
2890 overlay mapping table, and translate its contents for the debugger
2891 (by updating the mapped state information in the obj_section tables).
2893 The interface is as follows:
2895 overlay map <name> -- tell gdb to consider this section mapped
2896 overlay unmap <name> -- tell gdb to consider this section unmapped
2897 overlay list -- list the sections that GDB thinks are mapped
2898 overlay read-target -- get the target's state of what's mapped
2899 overlay off/manual/auto -- set overlay debugging state
2900 Functional interface:
2901 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2902 section, return that section.
2903 find_pc_overlay(pc): find any overlay section that contains
2904 the pc, either in its VMA or its LMA
2905 section_is_mapped(sect): true if overlay is marked as mapped
2906 section_is_overlay(sect): true if section's VMA != LMA
2907 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2908 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2909 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2910 overlay_mapped_address(...): map an address from section's LMA to VMA
2911 overlay_unmapped_address(...): map an address from section's VMA to LMA
2912 symbol_overlayed_address(...): Return a "current" address for symbol:
2913 either in VMA or LMA depending on whether
2914 the symbol's section is currently mapped. */
2916 /* Overlay debugging state: */
2918 enum overlay_debugging_state overlay_debugging = ovly_off;
2919 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2921 /* Function: section_is_overlay (SECTION)
2922 Returns true if SECTION has VMA not equal to LMA, ie.
2923 SECTION is loaded at an address different from where it will "run". */
2926 section_is_overlay (struct obj_section *section)
2928 if (overlay_debugging && section)
2930 bfd *abfd = section->objfile->obfd;
2931 asection *bfd_section = section->the_bfd_section;
2933 if (bfd_section_lma (abfd, bfd_section) != 0
2934 && bfd_section_lma (abfd, bfd_section)
2935 != bfd_section_vma (abfd, bfd_section))
2942 /* Function: overlay_invalidate_all (void)
2943 Invalidate the mapped state of all overlay sections (mark it as stale). */
2946 overlay_invalidate_all (void)
2948 struct objfile *objfile;
2949 struct obj_section *sect;
2951 ALL_OBJSECTIONS (objfile, sect)
2952 if (section_is_overlay (sect))
2953 sect->ovly_mapped = -1;
2956 /* Function: section_is_mapped (SECTION)
2957 Returns true if section is an overlay, and is currently mapped.
2959 Access to the ovly_mapped flag is restricted to this function, so
2960 that we can do automatic update. If the global flag
2961 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2962 overlay_invalidate_all. If the mapped state of the particular
2963 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2966 section_is_mapped (struct obj_section *osect)
2968 struct gdbarch *gdbarch;
2970 if (osect == 0 || !section_is_overlay (osect))
2973 switch (overlay_debugging)
2977 return 0; /* overlay debugging off */
2978 case ovly_auto: /* overlay debugging automatic */
2979 /* Unles there is a gdbarch_overlay_update function,
2980 there's really nothing useful to do here (can't really go auto). */
2981 gdbarch = get_objfile_arch (osect->objfile);
2982 if (gdbarch_overlay_update_p (gdbarch))
2984 if (overlay_cache_invalid)
2986 overlay_invalidate_all ();
2987 overlay_cache_invalid = 0;
2989 if (osect->ovly_mapped == -1)
2990 gdbarch_overlay_update (gdbarch, osect);
2992 /* fall thru to manual case */
2993 case ovly_on: /* overlay debugging manual */
2994 return osect->ovly_mapped == 1;
2998 /* Function: pc_in_unmapped_range
2999 If PC falls into the lma range of SECTION, return true, else false. */
3002 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3004 if (section_is_overlay (section))
3006 bfd *abfd = section->objfile->obfd;
3007 asection *bfd_section = section->the_bfd_section;
3009 /* We assume the LMA is relocated by the same offset as the VMA. */
3010 bfd_vma size = bfd_get_section_size (bfd_section);
3011 CORE_ADDR offset = obj_section_offset (section);
3013 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3014 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3021 /* Function: pc_in_mapped_range
3022 If PC falls into the vma range of SECTION, return true, else false. */
3025 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3027 if (section_is_overlay (section))
3029 if (obj_section_addr (section) <= pc
3030 && pc < obj_section_endaddr (section))
3037 /* Return true if the mapped ranges of sections A and B overlap, false
3041 sections_overlap (struct obj_section *a, struct obj_section *b)
3043 CORE_ADDR a_start = obj_section_addr (a);
3044 CORE_ADDR a_end = obj_section_endaddr (a);
3045 CORE_ADDR b_start = obj_section_addr (b);
3046 CORE_ADDR b_end = obj_section_endaddr (b);
3048 return (a_start < b_end && b_start < a_end);
3051 /* Function: overlay_unmapped_address (PC, SECTION)
3052 Returns the address corresponding to PC in the unmapped (load) range.
3053 May be the same as PC. */
3056 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3058 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3060 bfd *abfd = section->objfile->obfd;
3061 asection *bfd_section = section->the_bfd_section;
3063 return pc + bfd_section_lma (abfd, bfd_section)
3064 - bfd_section_vma (abfd, bfd_section);
3070 /* Function: overlay_mapped_address (PC, SECTION)
3071 Returns the address corresponding to PC in the mapped (runtime) range.
3072 May be the same as PC. */
3075 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3077 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3079 bfd *abfd = section->objfile->obfd;
3080 asection *bfd_section = section->the_bfd_section;
3082 return pc + bfd_section_vma (abfd, bfd_section)
3083 - bfd_section_lma (abfd, bfd_section);
3089 /* Function: symbol_overlayed_address
3090 Return one of two addresses (relative to the VMA or to the LMA),
3091 depending on whether the section is mapped or not. */
3094 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3096 if (overlay_debugging)
3098 /* If the symbol has no section, just return its regular address. */
3101 /* If the symbol's section is not an overlay, just return its
3103 if (!section_is_overlay (section))
3105 /* If the symbol's section is mapped, just return its address. */
3106 if (section_is_mapped (section))
3109 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3110 * then return its LOADED address rather than its vma address!!
3112 return overlay_unmapped_address (address, section);
3117 /* Function: find_pc_overlay (PC)
3118 Return the best-match overlay section for PC:
3119 If PC matches a mapped overlay section's VMA, return that section.
3120 Else if PC matches an unmapped section's VMA, return that section.
3121 Else if PC matches an unmapped section's LMA, return that section. */
3123 struct obj_section *
3124 find_pc_overlay (CORE_ADDR pc)
3126 struct objfile *objfile;
3127 struct obj_section *osect, *best_match = NULL;
3129 if (overlay_debugging)
3130 ALL_OBJSECTIONS (objfile, osect)
3131 if (section_is_overlay (osect))
3133 if (pc_in_mapped_range (pc, osect))
3135 if (section_is_mapped (osect))
3140 else if (pc_in_unmapped_range (pc, osect))
3146 /* Function: find_pc_mapped_section (PC)
3147 If PC falls into the VMA address range of an overlay section that is
3148 currently marked as MAPPED, return that section. Else return NULL. */
3150 struct obj_section *
3151 find_pc_mapped_section (CORE_ADDR pc)
3153 struct objfile *objfile;
3154 struct obj_section *osect;
3156 if (overlay_debugging)
3157 ALL_OBJSECTIONS (objfile, osect)
3158 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3164 /* Function: list_overlays_command
3165 Print a list of mapped sections and their PC ranges. */
3168 list_overlays_command (char *args, int from_tty)
3171 struct objfile *objfile;
3172 struct obj_section *osect;
3174 if (overlay_debugging)
3175 ALL_OBJSECTIONS (objfile, osect)
3176 if (section_is_mapped (osect))
3178 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3183 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3184 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3185 size = bfd_get_section_size (osect->the_bfd_section);
3186 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3188 printf_filtered ("Section %s, loaded at ", name);
3189 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3190 puts_filtered (" - ");
3191 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3192 printf_filtered (", mapped at ");
3193 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3194 puts_filtered (" - ");
3195 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3196 puts_filtered ("\n");
3201 printf_filtered (_("No sections are mapped.\n"));
3204 /* Function: map_overlay_command
3205 Mark the named section as mapped (ie. residing at its VMA address). */
3208 map_overlay_command (char *args, int from_tty)
3210 struct objfile *objfile, *objfile2;
3211 struct obj_section *sec, *sec2;
3213 if (!overlay_debugging)
3214 error (_("Overlay debugging not enabled. Use "
3215 "either the 'overlay auto' or\n"
3216 "the 'overlay manual' command."));
3218 if (args == 0 || *args == 0)
3219 error (_("Argument required: name of an overlay section"));
3221 /* First, find a section matching the user supplied argument. */
3222 ALL_OBJSECTIONS (objfile, sec)
3223 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3225 /* Now, check to see if the section is an overlay. */
3226 if (!section_is_overlay (sec))
3227 continue; /* not an overlay section */
3229 /* Mark the overlay as "mapped". */
3230 sec->ovly_mapped = 1;
3232 /* Next, make a pass and unmap any sections that are
3233 overlapped by this new section: */
3234 ALL_OBJSECTIONS (objfile2, sec2)
3235 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3238 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3239 bfd_section_name (objfile->obfd,
3240 sec2->the_bfd_section));
3241 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3245 error (_("No overlay section called %s"), args);
3248 /* Function: unmap_overlay_command
3249 Mark the overlay section as unmapped
3250 (ie. resident in its LMA address range, rather than the VMA range). */
3253 unmap_overlay_command (char *args, int from_tty)
3255 struct objfile *objfile;
3256 struct obj_section *sec;
3258 if (!overlay_debugging)
3259 error (_("Overlay debugging not enabled. "
3260 "Use either the 'overlay auto' or\n"
3261 "the 'overlay manual' command."));
3263 if (args == 0 || *args == 0)
3264 error (_("Argument required: name of an overlay section"));
3266 /* First, find a section matching the user supplied argument. */
3267 ALL_OBJSECTIONS (objfile, sec)
3268 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3270 if (!sec->ovly_mapped)
3271 error (_("Section %s is not mapped"), args);
3272 sec->ovly_mapped = 0;
3275 error (_("No overlay section called %s"), args);
3278 /* Function: overlay_auto_command
3279 A utility command to turn on overlay debugging.
3280 Possibly this should be done via a set/show command. */
3283 overlay_auto_command (char *args, int from_tty)
3285 overlay_debugging = ovly_auto;
3286 enable_overlay_breakpoints ();
3288 printf_unfiltered (_("Automatic overlay debugging enabled."));
3291 /* Function: overlay_manual_command
3292 A utility command to turn on overlay debugging.
3293 Possibly this should be done via a set/show command. */
3296 overlay_manual_command (char *args, int from_tty)
3298 overlay_debugging = ovly_on;
3299 disable_overlay_breakpoints ();
3301 printf_unfiltered (_("Overlay debugging enabled."));
3304 /* Function: overlay_off_command
3305 A utility command to turn on overlay debugging.
3306 Possibly this should be done via a set/show command. */
3309 overlay_off_command (char *args, int from_tty)
3311 overlay_debugging = ovly_off;
3312 disable_overlay_breakpoints ();
3314 printf_unfiltered (_("Overlay debugging disabled."));
3318 overlay_load_command (char *args, int from_tty)
3320 struct gdbarch *gdbarch = get_current_arch ();
3322 if (gdbarch_overlay_update_p (gdbarch))
3323 gdbarch_overlay_update (gdbarch, NULL);
3325 error (_("This target does not know how to read its overlay state."));
3328 /* Function: overlay_command
3329 A place-holder for a mis-typed command. */
3331 /* Command list chain containing all defined "overlay" subcommands. */
3332 static struct cmd_list_element *overlaylist;
3335 overlay_command (char *args, int from_tty)
3338 ("\"overlay\" must be followed by the name of an overlay command.\n");
3339 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3342 /* Target Overlays for the "Simplest" overlay manager:
3344 This is GDB's default target overlay layer. It works with the
3345 minimal overlay manager supplied as an example by Cygnus. The
3346 entry point is via a function pointer "gdbarch_overlay_update",
3347 so targets that use a different runtime overlay manager can
3348 substitute their own overlay_update function and take over the
3351 The overlay_update function pokes around in the target's data structures
3352 to see what overlays are mapped, and updates GDB's overlay mapping with
3355 In this simple implementation, the target data structures are as follows:
3356 unsigned _novlys; /# number of overlay sections #/
3357 unsigned _ovly_table[_novlys][4] = {
3358 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3359 {..., ..., ..., ...},
3361 unsigned _novly_regions; /# number of overlay regions #/
3362 unsigned _ovly_region_table[_novly_regions][3] = {
3363 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3366 These functions will attempt to update GDB's mappedness state in the
3367 symbol section table, based on the target's mappedness state.
3369 To do this, we keep a cached copy of the target's _ovly_table, and
3370 attempt to detect when the cached copy is invalidated. The main
3371 entry point is "simple_overlay_update(SECT), which looks up SECT in
3372 the cached table and re-reads only the entry for that section from
3373 the target (whenever possible). */
3375 /* Cached, dynamically allocated copies of the target data structures: */
3376 static unsigned (*cache_ovly_table)[4] = 0;
3377 static unsigned cache_novlys = 0;
3378 static CORE_ADDR cache_ovly_table_base = 0;
3381 VMA, SIZE, LMA, MAPPED
3384 /* Throw away the cached copy of _ovly_table. */
3387 simple_free_overlay_table (void)
3389 if (cache_ovly_table)
3390 xfree (cache_ovly_table);
3392 cache_ovly_table = NULL;
3393 cache_ovly_table_base = 0;
3396 /* Read an array of ints of size SIZE from the target into a local buffer.
3397 Convert to host order. int LEN is number of ints. */
3400 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3401 int len, int size, enum bfd_endian byte_order)
3403 /* FIXME (alloca): Not safe if array is very large. */
3404 gdb_byte *buf = alloca (len * size);
3407 read_memory (memaddr, buf, len * size);
3408 for (i = 0; i < len; i++)
3409 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3412 /* Find and grab a copy of the target _ovly_table
3413 (and _novlys, which is needed for the table's size). */
3416 simple_read_overlay_table (void)
3418 struct minimal_symbol *novlys_msym;
3419 struct bound_minimal_symbol ovly_table_msym;
3420 struct gdbarch *gdbarch;
3422 enum bfd_endian byte_order;
3424 simple_free_overlay_table ();
3425 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3428 error (_("Error reading inferior's overlay table: "
3429 "couldn't find `_novlys' variable\n"
3430 "in inferior. Use `overlay manual' mode."));
3434 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3435 if (! ovly_table_msym.minsym)
3437 error (_("Error reading inferior's overlay table: couldn't find "
3438 "`_ovly_table' array\n"
3439 "in inferior. Use `overlay manual' mode."));
3443 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3444 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3445 byte_order = gdbarch_byte_order (gdbarch);
3447 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3450 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3451 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym.minsym);
3452 read_target_long_array (cache_ovly_table_base,
3453 (unsigned int *) cache_ovly_table,
3454 cache_novlys * 4, word_size, byte_order);
3456 return 1; /* SUCCESS */
3459 /* Function: simple_overlay_update_1
3460 A helper function for simple_overlay_update. Assuming a cached copy
3461 of _ovly_table exists, look through it to find an entry whose vma,
3462 lma and size match those of OSECT. Re-read the entry and make sure
3463 it still matches OSECT (else the table may no longer be valid).
3464 Set OSECT's mapped state to match the entry. Return: 1 for
3465 success, 0 for failure. */
3468 simple_overlay_update_1 (struct obj_section *osect)
3471 bfd *obfd = osect->objfile->obfd;
3472 asection *bsect = osect->the_bfd_section;
3473 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3474 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3477 size = bfd_get_section_size (osect->the_bfd_section);
3478 for (i = 0; i < cache_novlys; i++)
3479 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3480 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3481 /* && cache_ovly_table[i][SIZE] == size */ )
3483 read_target_long_array (cache_ovly_table_base + i * word_size,
3484 (unsigned int *) cache_ovly_table[i],
3485 4, word_size, byte_order);
3486 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3487 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3488 /* && cache_ovly_table[i][SIZE] == size */ )
3490 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3493 else /* Warning! Warning! Target's ovly table has changed! */
3499 /* Function: simple_overlay_update
3500 If OSECT is NULL, then update all sections' mapped state
3501 (after re-reading the entire target _ovly_table).
3502 If OSECT is non-NULL, then try to find a matching entry in the
3503 cached ovly_table and update only OSECT's mapped state.
3504 If a cached entry can't be found or the cache isn't valid, then
3505 re-read the entire cache, and go ahead and update all sections. */
3508 simple_overlay_update (struct obj_section *osect)
3510 struct objfile *objfile;
3512 /* Were we given an osect to look up? NULL means do all of them. */
3514 /* Have we got a cached copy of the target's overlay table? */
3515 if (cache_ovly_table != NULL)
3517 /* Does its cached location match what's currently in the
3519 struct minimal_symbol *minsym
3520 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3523 error (_("Error reading inferior's overlay table: couldn't "
3524 "find `_ovly_table' array\n"
3525 "in inferior. Use `overlay manual' mode."));
3527 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3528 /* Then go ahead and try to look up this single section in
3530 if (simple_overlay_update_1 (osect))
3531 /* Found it! We're done. */
3535 /* Cached table no good: need to read the entire table anew.
3536 Or else we want all the sections, in which case it's actually
3537 more efficient to read the whole table in one block anyway. */
3539 if (! simple_read_overlay_table ())
3542 /* Now may as well update all sections, even if only one was requested. */
3543 ALL_OBJSECTIONS (objfile, osect)
3544 if (section_is_overlay (osect))
3547 bfd *obfd = osect->objfile->obfd;
3548 asection *bsect = osect->the_bfd_section;
3550 size = bfd_get_section_size (bsect);
3551 for (i = 0; i < cache_novlys; i++)
3552 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3553 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3554 /* && cache_ovly_table[i][SIZE] == size */ )
3555 { /* obj_section matches i'th entry in ovly_table. */
3556 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3557 break; /* finished with inner for loop: break out. */
3562 /* Set the output sections and output offsets for section SECTP in
3563 ABFD. The relocation code in BFD will read these offsets, so we
3564 need to be sure they're initialized. We map each section to itself,
3565 with no offset; this means that SECTP->vma will be honored. */
3568 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3570 sectp->output_section = sectp;
3571 sectp->output_offset = 0;
3574 /* Default implementation for sym_relocate. */
3577 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3580 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3582 bfd *abfd = sectp->owner;
3584 /* We're only interested in sections with relocation
3586 if ((sectp->flags & SEC_RELOC) == 0)
3589 /* We will handle section offsets properly elsewhere, so relocate as if
3590 all sections begin at 0. */
3591 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3593 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3596 /* Relocate the contents of a debug section SECTP in ABFD. The
3597 contents are stored in BUF if it is non-NULL, or returned in a
3598 malloc'd buffer otherwise.
3600 For some platforms and debug info formats, shared libraries contain
3601 relocations against the debug sections (particularly for DWARF-2;
3602 one affected platform is PowerPC GNU/Linux, although it depends on
3603 the version of the linker in use). Also, ELF object files naturally
3604 have unresolved relocations for their debug sections. We need to apply
3605 the relocations in order to get the locations of symbols correct.
3606 Another example that may require relocation processing, is the
3607 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3611 symfile_relocate_debug_section (struct objfile *objfile,
3612 asection *sectp, bfd_byte *buf)
3614 gdb_assert (objfile->sf->sym_relocate);
3616 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3619 struct symfile_segment_data *
3620 get_symfile_segment_data (bfd *abfd)
3622 const struct sym_fns *sf = find_sym_fns (abfd);
3627 return sf->sym_segments (abfd);
3631 free_symfile_segment_data (struct symfile_segment_data *data)
3633 xfree (data->segment_bases);
3634 xfree (data->segment_sizes);
3635 xfree (data->segment_info);
3640 - DATA, containing segment addresses from the object file ABFD, and
3641 the mapping from ABFD's sections onto the segments that own them,
3643 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3644 segment addresses reported by the target,
3645 store the appropriate offsets for each section in OFFSETS.
3647 If there are fewer entries in SEGMENT_BASES than there are segments
3648 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3650 If there are more entries, then ignore the extra. The target may
3651 not be able to distinguish between an empty data segment and a
3652 missing data segment; a missing text segment is less plausible. */
3655 symfile_map_offsets_to_segments (bfd *abfd,
3656 const struct symfile_segment_data *data,
3657 struct section_offsets *offsets,
3658 int num_segment_bases,
3659 const CORE_ADDR *segment_bases)
3664 /* It doesn't make sense to call this function unless you have some
3665 segment base addresses. */
3666 gdb_assert (num_segment_bases > 0);
3668 /* If we do not have segment mappings for the object file, we
3669 can not relocate it by segments. */
3670 gdb_assert (data != NULL);
3671 gdb_assert (data->num_segments > 0);
3673 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3675 int which = data->segment_info[i];
3677 gdb_assert (0 <= which && which <= data->num_segments);
3679 /* Don't bother computing offsets for sections that aren't
3680 loaded as part of any segment. */
3684 /* Use the last SEGMENT_BASES entry as the address of any extra
3685 segments mentioned in DATA->segment_info. */
3686 if (which > num_segment_bases)
3687 which = num_segment_bases;
3689 offsets->offsets[i] = (segment_bases[which - 1]
3690 - data->segment_bases[which - 1]);
3697 symfile_find_segment_sections (struct objfile *objfile)
3699 bfd *abfd = objfile->obfd;
3702 struct symfile_segment_data *data;
3704 data = get_symfile_segment_data (objfile->obfd);
3708 if (data->num_segments != 1 && data->num_segments != 2)
3710 free_symfile_segment_data (data);
3714 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3716 int which = data->segment_info[i];
3720 if (objfile->sect_index_text == -1)
3721 objfile->sect_index_text = sect->index;
3723 if (objfile->sect_index_rodata == -1)
3724 objfile->sect_index_rodata = sect->index;
3726 else if (which == 2)
3728 if (objfile->sect_index_data == -1)
3729 objfile->sect_index_data = sect->index;
3731 if (objfile->sect_index_bss == -1)
3732 objfile->sect_index_bss = sect->index;
3736 free_symfile_segment_data (data);
3740 _initialize_symfile (void)
3742 struct cmd_list_element *c;
3744 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3745 Load symbol table from executable file FILE.\n\
3746 The `file' command can also load symbol tables, as well as setting the file\n\
3747 to execute."), &cmdlist);
3748 set_cmd_completer (c, filename_completer);
3750 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3751 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3752 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3753 ...]\nADDR is the starting address of the file's text.\n\
3754 The optional arguments are section-name section-address pairs and\n\
3755 should be specified if the data and bss segments are not contiguous\n\
3756 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3758 set_cmd_completer (c, filename_completer);
3760 c = add_cmd ("load", class_files, load_command, _("\
3761 Dynamically load FILE into the running program, and record its symbols\n\
3762 for access from GDB.\n\
3763 A load OFFSET may also be given."), &cmdlist);
3764 set_cmd_completer (c, filename_completer);
3766 add_prefix_cmd ("overlay", class_support, overlay_command,
3767 _("Commands for debugging overlays."), &overlaylist,
3768 "overlay ", 0, &cmdlist);
3770 add_com_alias ("ovly", "overlay", class_alias, 1);
3771 add_com_alias ("ov", "overlay", class_alias, 1);
3773 add_cmd ("map-overlay", class_support, map_overlay_command,
3774 _("Assert that an overlay section is mapped."), &overlaylist);
3776 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3777 _("Assert that an overlay section is unmapped."), &overlaylist);
3779 add_cmd ("list-overlays", class_support, list_overlays_command,
3780 _("List mappings of overlay sections."), &overlaylist);
3782 add_cmd ("manual", class_support, overlay_manual_command,
3783 _("Enable overlay debugging."), &overlaylist);
3784 add_cmd ("off", class_support, overlay_off_command,
3785 _("Disable overlay debugging."), &overlaylist);
3786 add_cmd ("auto", class_support, overlay_auto_command,
3787 _("Enable automatic overlay debugging."), &overlaylist);
3788 add_cmd ("load-target", class_support, overlay_load_command,
3789 _("Read the overlay mapping state from the target."), &overlaylist);
3791 /* Filename extension to source language lookup table: */
3792 init_filename_language_table ();
3793 add_setshow_string_noescape_cmd ("extension-language", class_files,
3795 Set mapping between filename extension and source language."), _("\
3796 Show mapping between filename extension and source language."), _("\
3797 Usage: set extension-language .foo bar"),
3798 set_ext_lang_command,
3800 &setlist, &showlist);
3802 add_info ("extensions", info_ext_lang_command,
3803 _("All filename extensions associated with a source language."));
3805 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3806 &debug_file_directory, _("\
3807 Set the directories where separate debug symbols are searched for."), _("\
3808 Show the directories where separate debug symbols are searched for."), _("\
3809 Separate debug symbols are first searched for in the same\n\
3810 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3811 and lastly at the path of the directory of the binary with\n\
3812 each global debug-file-directory component prepended."),
3814 show_debug_file_directory,
3815 &setlist, &showlist);