1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
25 #include "elf/external.h"
26 #include "elf/common.h"
38 #include "solib-svr4.h"
40 #ifndef SVR4_FETCH_LINK_MAP_OFFSETS
41 #define SVR4_FETCH_LINK_MAP_OFFSETS() svr4_fetch_link_map_offsets ()
44 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
45 static struct link_map_offsets *legacy_fetch_link_map_offsets (void);
47 /* fetch_link_map_offsets_gdbarch_data is a handle used to obtain the
48 architecture specific link map offsets fetching function. */
50 static struct gdbarch_data *fetch_link_map_offsets_gdbarch_data;
52 /* legacy_svr4_fetch_link_map_offsets_hook is a pointer to a function
53 which is used to fetch link map offsets. It will only be set
54 by solib-legacy.c, if at all. */
56 struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook)(void) = 0;
58 /* Link map info to include in an allocated so_list entry */
62 /* Pointer to copy of link map from inferior. The type is char *
63 rather than void *, so that we may use byte offsets to find the
64 various fields without the need for a cast. */
68 /* On SVR4 systems, a list of symbols in the dynamic linker where
69 GDB can try to place a breakpoint to monitor shared library
72 If none of these symbols are found, or other errors occur, then
73 SVR4 systems will fall back to using a symbol as the "startup
74 mapping complete" breakpoint address. */
76 static char *solib_break_names[] =
86 #define BKPT_AT_SYMBOL 1
88 #if defined (BKPT_AT_SYMBOL)
89 static char *bkpt_names[] =
91 #ifdef SOLIB_BKPT_NAME
92 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
101 static char *main_name_list[] =
107 /* Macro to extract an address from a solib structure.
108 When GDB is configured for some 32-bit targets (e.g. Solaris 2.7
109 sparc), BFD is configured to handle 64-bit targets, so CORE_ADDR is
110 64 bits. We have to extract only the significant bits of addresses
111 to get the right address when accessing the core file BFD. */
113 #define SOLIB_EXTRACT_ADDRESS(MEMBER) \
114 extract_address (&(MEMBER), sizeof (MEMBER))
116 /* local data declarations */
118 /* link map access functions */
121 LM_ADDR (struct so_list *so)
123 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
125 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lmo->l_addr_offset,
130 LM_NEXT (struct so_list *so)
132 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
134 return extract_address (so->lm_info->lm + lmo->l_next_offset, lmo->l_next_size);
138 LM_NAME (struct so_list *so)
140 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
142 return extract_address (so->lm_info->lm + lmo->l_name_offset, lmo->l_name_size);
146 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
148 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
150 return extract_address (so->lm_info->lm + lmo->l_prev_offset,
151 lmo->l_prev_size) == 0;
154 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
155 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
157 /* Local function prototypes */
159 static int match_main (char *);
161 static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
167 bfd_lookup_symbol -- lookup the value for a specific symbol
171 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
175 An expensive way to lookup the value of a single symbol for
176 bfd's that are only temporary anyway. This is used by the
177 shared library support to find the address of the debugger
178 interface structures in the shared library.
180 Note that 0 is specifically allowed as an error return (no
185 bfd_lookup_symbol (bfd *abfd, char *symname)
189 asymbol **symbol_table;
190 unsigned int number_of_symbols;
192 struct cleanup *back_to;
193 CORE_ADDR symaddr = 0;
195 storage_needed = bfd_get_symtab_upper_bound (abfd);
197 if (storage_needed > 0)
199 symbol_table = (asymbol **) xmalloc (storage_needed);
200 back_to = make_cleanup (xfree, (PTR) symbol_table);
201 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
203 for (i = 0; i < number_of_symbols; i++)
205 sym = *symbol_table++;
206 if (STREQ (sym->name, symname))
208 /* Bfd symbols are section relative. */
209 symaddr = sym->value + sym->section->vma;
213 do_cleanups (back_to);
219 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
220 have to check the dynamic string table too. */
222 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
224 if (storage_needed > 0)
226 symbol_table = (asymbol **) xmalloc (storage_needed);
227 back_to = make_cleanup (xfree, (PTR) symbol_table);
228 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
230 for (i = 0; i < number_of_symbols; i++)
232 sym = *symbol_table++;
233 if (STREQ (sym->name, symname))
235 /* Bfd symbols are section relative. */
236 symaddr = sym->value + sym->section->vma;
240 do_cleanups (back_to);
246 #ifdef HANDLE_SVR4_EXEC_EMULATORS
249 Solaris BCP (the part of Solaris which allows it to run SunOS4
250 a.out files) throws in another wrinkle. Solaris does not fill
251 in the usual a.out link map structures when running BCP programs,
252 the only way to get at them is via groping around in the dynamic
254 The dynamic linker and it's structures are located in the shared
255 C library, which gets run as the executable's "interpreter" by
258 Note that we can assume nothing about the process state at the time
259 we need to find these structures. We may be stopped on the first
260 instruction of the interpreter (C shared library), the first
261 instruction of the executable itself, or somewhere else entirely
262 (if we attached to the process for example).
265 static char *debug_base_symbols[] =
267 "r_debug", /* Solaris 2.3 */
268 "_r_debug", /* Solaris 2.1, 2.2 */
272 static int look_for_base (int, CORE_ADDR);
278 look_for_base -- examine file for each mapped address segment
282 static int look_for_base (int fd, CORE_ADDR baseaddr)
286 This function is passed to proc_iterate_over_mappings, which
287 causes it to get called once for each mapped address space, with
288 an open file descriptor for the file mapped to that space, and the
289 base address of that mapped space.
291 Our job is to find the debug base symbol in the file that this
292 fd is open on, if it exists, and if so, initialize the dynamic
293 linker structure base address debug_base.
295 Note that this is a computationally expensive proposition, since
296 we basically have to open a bfd on every call, so we specifically
297 avoid opening the exec file.
301 look_for_base (int fd, CORE_ADDR baseaddr)
304 CORE_ADDR address = 0;
307 /* If the fd is -1, then there is no file that corresponds to this
308 mapped memory segment, so skip it. Also, if the fd corresponds
309 to the exec file, skip it as well. */
313 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
318 /* Try to open whatever random file this fd corresponds to. Note that
319 we have no way currently to find the filename. Don't gripe about
320 any problems we might have, just fail. */
322 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
326 if (!bfd_check_format (interp_bfd, bfd_object))
328 /* FIXME-leak: on failure, might not free all memory associated with
330 bfd_close (interp_bfd);
334 /* Now try to find our debug base symbol in this file, which we at
335 least know to be a valid ELF executable or shared library. */
337 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
339 address = bfd_lookup_symbol (interp_bfd, *symbolp);
347 /* FIXME-leak: on failure, might not free all memory associated with
349 bfd_close (interp_bfd);
353 /* Eureka! We found the symbol. But now we may need to relocate it
354 by the base address. If the symbol's value is less than the base
355 address of the shared library, then it hasn't yet been relocated
356 by the dynamic linker, and we have to do it ourself. FIXME: Note
357 that we make the assumption that the first segment that corresponds
358 to the shared library has the base address to which the library
361 if (address < baseaddr)
365 debug_base = address;
366 /* FIXME-leak: on failure, might not free all memory associated with
368 bfd_close (interp_bfd);
371 #endif /* HANDLE_SVR4_EXEC_EMULATORS */
377 elf_locate_base -- locate the base address of dynamic linker structs
378 for SVR4 elf targets.
382 CORE_ADDR elf_locate_base (void)
386 For SVR4 elf targets the address of the dynamic linker's runtime
387 structure is contained within the dynamic info section in the
388 executable file. The dynamic section is also mapped into the
389 inferior address space. Because the runtime loader fills in the
390 real address before starting the inferior, we have to read in the
391 dynamic info section from the inferior address space.
392 If there are any errors while trying to find the address, we
393 silently return 0, otherwise the found address is returned.
398 elf_locate_base (void)
400 sec_ptr dyninfo_sect;
401 int dyninfo_sect_size;
402 CORE_ADDR dyninfo_addr;
407 /* Find the start address of the .dynamic section. */
408 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
409 if (dyninfo_sect == NULL)
411 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
413 /* Read in .dynamic section, silently ignore errors. */
414 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
415 buf = alloca (dyninfo_sect_size);
416 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
419 /* Find the DT_DEBUG entry in the the .dynamic section.
420 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
421 no DT_DEBUG entries. */
423 arch_size = bfd_get_arch_size (exec_bfd);
424 if (arch_size == -1) /* failure */
429 for (bufend = buf + dyninfo_sect_size;
431 buf += sizeof (Elf32_External_Dyn))
433 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
437 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
438 if (dyn_tag == DT_NULL)
440 else if (dyn_tag == DT_DEBUG)
442 dyn_ptr = bfd_h_get_32 (exec_bfd,
443 (bfd_byte *) x_dynp->d_un.d_ptr);
446 else if (dyn_tag == DT_MIPS_RLD_MAP)
450 pbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT);
451 /* DT_MIPS_RLD_MAP contains a pointer to the address
452 of the dynamic link structure. */
453 dyn_ptr = bfd_h_get_32 (exec_bfd,
454 (bfd_byte *) x_dynp->d_un.d_ptr);
455 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
457 return extract_unsigned_integer (pbuf, sizeof (pbuf));
461 else /* 64-bit elf */
463 for (bufend = buf + dyninfo_sect_size;
465 buf += sizeof (Elf64_External_Dyn))
467 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
471 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
472 if (dyn_tag == DT_NULL)
474 else if (dyn_tag == DT_DEBUG)
476 dyn_ptr = bfd_h_get_64 (exec_bfd,
477 (bfd_byte *) x_dynp->d_un.d_ptr);
483 /* DT_DEBUG entry not found. */
491 locate_base -- locate the base address of dynamic linker structs
495 CORE_ADDR locate_base (void)
499 For both the SunOS and SVR4 shared library implementations, if the
500 inferior executable has been linked dynamically, there is a single
501 address somewhere in the inferior's data space which is the key to
502 locating all of the dynamic linker's runtime structures. This
503 address is the value of the debug base symbol. The job of this
504 function is to find and return that address, or to return 0 if there
505 is no such address (the executable is statically linked for example).
507 For SunOS, the job is almost trivial, since the dynamic linker and
508 all of it's structures are statically linked to the executable at
509 link time. Thus the symbol for the address we are looking for has
510 already been added to the minimal symbol table for the executable's
511 objfile at the time the symbol file's symbols were read, and all we
512 have to do is look it up there. Note that we explicitly do NOT want
513 to find the copies in the shared library.
515 The SVR4 version is a bit more complicated because the address
516 is contained somewhere in the dynamic info section. We have to go
517 to a lot more work to discover the address of the debug base symbol.
518 Because of this complexity, we cache the value we find and return that
519 value on subsequent invocations. Note there is no copy in the
520 executable symbol tables.
527 /* Check to see if we have a currently valid address, and if so, avoid
528 doing all this work again and just return the cached address. If
529 we have no cached address, try to locate it in the dynamic info
530 section for ELF executables. */
535 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
536 debug_base = elf_locate_base ();
537 #ifdef HANDLE_SVR4_EXEC_EMULATORS
538 /* Try it the hard way for emulated executables. */
539 else if (!ptid_equal (inferior_ptid, null_ptid) && target_has_execution)
540 proc_iterate_over_mappings (look_for_base);
550 first_link_map_member -- locate first member in dynamic linker's map
554 static CORE_ADDR first_link_map_member (void)
558 Find the first element in the inferior's dynamic link map, and
559 return its address in the inferior. This function doesn't copy the
560 link map entry itself into our address space; current_sos actually
564 first_link_map_member (void)
567 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
568 char *r_map_buf = xmalloc (lmo->r_map_size);
569 struct cleanup *cleanups = make_cleanup (xfree, r_map_buf);
571 read_memory (debug_base + lmo->r_map_offset, r_map_buf, lmo->r_map_size);
573 lm = extract_address (r_map_buf, lmo->r_map_size);
575 /* FIXME: Perhaps we should validate the info somehow, perhaps by
576 checking r_version for a known version number, or r_state for
579 do_cleanups (cleanups);
588 open_symbol_file_object
592 void open_symbol_file_object (void *from_tty)
596 If no open symbol file, attempt to locate and open the main symbol
597 file. On SVR4 systems, this is the first link map entry. If its
598 name is here, we can open it. Useful when attaching to a process
599 without first loading its symbol file.
601 If FROM_TTYP dereferences to a non-zero integer, allow messages to
602 be printed. This parameter is a pointer rather than an int because
603 open_symbol_file_object() is called via catch_errors() and
604 catch_errors() requires a pointer argument. */
607 open_symbol_file_object (void *from_ttyp)
609 CORE_ADDR lm, l_name;
612 int from_tty = *(int *)from_ttyp;
613 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
614 char *l_name_buf = xmalloc (lmo->l_name_size);
615 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
618 if (!query ("Attempt to reload symbols from process? "))
621 if ((debug_base = locate_base ()) == 0)
622 return 0; /* failed somehow... */
624 /* First link map member should be the executable. */
625 if ((lm = first_link_map_member ()) == 0)
626 return 0; /* failed somehow... */
628 /* Read address of name from target memory to GDB. */
629 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
631 /* Convert the address to host format. */
632 l_name = extract_address (l_name_buf, lmo->l_name_size);
634 /* Free l_name_buf. */
635 do_cleanups (cleanups);
638 return 0; /* No filename. */
640 /* Now fetch the filename from target memory. */
641 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
645 warning ("failed to read exec filename from attached file: %s",
646 safe_strerror (errcode));
650 make_cleanup (xfree, filename);
651 /* Have a pathname: read the symbol file. */
652 symbol_file_add_main (filename, from_tty);
659 current_sos -- build a list of currently loaded shared objects
663 struct so_list *current_sos ()
667 Build a list of `struct so_list' objects describing the shared
668 objects currently loaded in the inferior. This list does not
669 include an entry for the main executable file.
671 Note that we only gather information directly available from the
672 inferior --- we don't examine any of the shared library files
673 themselves. The declaration of `struct so_list' says which fields
674 we provide values for. */
676 static struct so_list *
677 svr4_current_sos (void)
680 struct so_list *head = 0;
681 struct so_list **link_ptr = &head;
683 /* Make sure we've looked up the inferior's dynamic linker's base
687 debug_base = locate_base ();
689 /* If we can't find the dynamic linker's base structure, this
690 must not be a dynamically linked executable. Hmm. */
695 /* Walk the inferior's link map list, and build our list of
696 `struct so_list' nodes. */
697 lm = first_link_map_member ();
700 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
702 = (struct so_list *) xmalloc (sizeof (struct so_list));
703 struct cleanup *old_chain = make_cleanup (xfree, new);
705 memset (new, 0, sizeof (*new));
707 new->lm_info = xmalloc (sizeof (struct lm_info));
708 make_cleanup (xfree, new->lm_info);
710 new->lm_info->lm = xmalloc (lmo->link_map_size);
711 make_cleanup (xfree, new->lm_info->lm);
712 memset (new->lm_info->lm, 0, lmo->link_map_size);
714 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
718 /* For SVR4 versions, the first entry in the link map is for the
719 inferior executable, so we must ignore it. For some versions of
720 SVR4, it has no name. For others (Solaris 2.3 for example), it
721 does have a name, so we can no longer use a missing name to
722 decide when to ignore it. */
723 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
730 /* Extract this shared object's name. */
731 target_read_string (LM_NAME (new), &buffer,
732 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
735 warning ("current_sos: Can't read pathname for load map: %s\n",
736 safe_strerror (errcode));
740 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
741 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
743 strcpy (new->so_original_name, new->so_name);
746 /* If this entry has no name, or its name matches the name
747 for the main executable, don't include it in the list. */
748 if (! new->so_name[0]
749 || match_main (new->so_name))
755 link_ptr = &new->next;
759 discard_cleanups (old_chain);
766 /* On some systems, the only way to recognize the link map entry for
767 the main executable file is by looking at its name. Return
768 non-zero iff SONAME matches one of the known main executable names. */
771 match_main (char *soname)
775 for (mainp = main_name_list; *mainp != NULL; mainp++)
777 if (strcmp (soname, *mainp) == 0)
784 /* Return 1 if PC lies in the dynamic symbol resolution code of the
785 SVR4 run time loader. */
786 static CORE_ADDR interp_text_sect_low;
787 static CORE_ADDR interp_text_sect_high;
788 static CORE_ADDR interp_plt_sect_low;
789 static CORE_ADDR interp_plt_sect_high;
792 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
794 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
795 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
796 || in_plt_section (pc, NULL));
804 enable_break -- arrange for dynamic linker to hit breakpoint
808 int enable_break (void)
812 Both the SunOS and the SVR4 dynamic linkers have, as part of their
813 debugger interface, support for arranging for the inferior to hit
814 a breakpoint after mapping in the shared libraries. This function
815 enables that breakpoint.
817 For SunOS, there is a special flag location (in_debugger) which we
818 set to 1. When the dynamic linker sees this flag set, it will set
819 a breakpoint at a location known only to itself, after saving the
820 original contents of that place and the breakpoint address itself,
821 in it's own internal structures. When we resume the inferior, it
822 will eventually take a SIGTRAP when it runs into the breakpoint.
823 We handle this (in a different place) by restoring the contents of
824 the breakpointed location (which is only known after it stops),
825 chasing around to locate the shared libraries that have been
826 loaded, then resuming.
828 For SVR4, the debugger interface structure contains a member (r_brk)
829 which is statically initialized at the time the shared library is
830 built, to the offset of a function (_r_debug_state) which is guaran-
831 teed to be called once before mapping in a library, and again when
832 the mapping is complete. At the time we are examining this member,
833 it contains only the unrelocated offset of the function, so we have
834 to do our own relocation. Later, when the dynamic linker actually
835 runs, it relocates r_brk to be the actual address of _r_debug_state().
837 The debugger interface structure also contains an enumeration which
838 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
839 depending upon whether or not the library is being mapped or unmapped,
840 and then set to RT_CONSISTENT after the library is mapped/unmapped.
848 #ifdef BKPT_AT_SYMBOL
850 struct minimal_symbol *msymbol;
852 asection *interp_sect;
854 /* First, remove all the solib event breakpoints. Their addresses
855 may have changed since the last time we ran the program. */
856 remove_solib_event_breakpoints ();
858 interp_text_sect_low = interp_text_sect_high = 0;
859 interp_plt_sect_low = interp_plt_sect_high = 0;
861 /* Find the .interp section; if not found, warn the user and drop
862 into the old breakpoint at symbol code. */
863 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
866 unsigned int interp_sect_size;
868 CORE_ADDR load_addr = 0;
869 int load_addr_found = 0;
870 struct so_list *inferior_sos;
873 char *tmp_pathname = NULL;
874 CORE_ADDR sym_addr = 0;
876 /* Read the contents of the .interp section into a local buffer;
877 the contents specify the dynamic linker this program uses. */
878 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
879 buf = alloca (interp_sect_size);
880 bfd_get_section_contents (exec_bfd, interp_sect,
881 buf, 0, interp_sect_size);
883 /* Now we need to figure out where the dynamic linker was
884 loaded so that we can load its symbols and place a breakpoint
885 in the dynamic linker itself.
887 This address is stored on the stack. However, I've been unable
888 to find any magic formula to find it for Solaris (appears to
889 be trivial on GNU/Linux). Therefore, we have to try an alternate
890 mechanism to find the dynamic linker's base address. */
892 tmp_fd = solib_open (buf, &tmp_pathname);
894 tmp_bfd = bfd_fdopenr (tmp_pathname, gnutarget, tmp_fd);
899 /* Make sure the dynamic linker's really a useful object. */
900 if (!bfd_check_format (tmp_bfd, bfd_object))
902 warning ("Unable to grok dynamic linker %s as an object file", buf);
907 /* If the entry in _DYNAMIC for the dynamic linker has already
908 been filled in, we can read its base address from there. */
909 inferior_sos = svr4_current_sos ();
912 /* Connected to a running target. Update our shared library table. */
913 solib_add (NULL, 0, NULL, auto_solib_add);
917 if (strcmp (buf, inferior_sos->so_original_name) == 0)
920 load_addr = LM_ADDR (inferior_sos);
923 inferior_sos = inferior_sos->next;
926 /* Otherwise we find the dynamic linker's base address by examining
927 the current pc (which should point at the entry point for the
928 dynamic linker) and subtracting the offset of the entry point. */
929 if (!load_addr_found)
930 load_addr = read_pc () - tmp_bfd->start_address;
932 /* Record the relocated start and end address of the dynamic linker
933 text and plt section for svr4_in_dynsym_resolve_code. */
934 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
937 interp_text_sect_low =
938 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
939 interp_text_sect_high =
940 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
942 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
945 interp_plt_sect_low =
946 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
947 interp_plt_sect_high =
948 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
951 /* Now try to set a breakpoint in the dynamic linker. */
952 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
954 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
959 /* We're done with the temporary bfd. */
964 create_solib_event_breakpoint (load_addr + sym_addr);
968 /* For whatever reason we couldn't set a breakpoint in the dynamic
969 linker. Warn and drop into the old code. */
971 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
974 /* Scan through the list of symbols, trying to look up the symbol and
975 set a breakpoint there. Terminate loop when we/if we succeed. */
978 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
980 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
981 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
983 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
988 /* Nothing good happened. */
991 #endif /* BKPT_AT_SYMBOL */
1000 special_symbol_handling -- additional shared library symbol handling
1004 void special_symbol_handling ()
1008 Once the symbols from a shared object have been loaded in the usual
1009 way, we are called to do any system specific symbol handling that
1012 For SunOS4, this consisted of grunging around in the dynamic
1013 linkers structures to find symbol definitions for "common" symbols
1014 and adding them to the minimal symbol table for the runtime common
1017 However, for SVR4, there's nothing to do.
1022 svr4_special_symbol_handling (void)
1026 /* Relocate the main executable. This function should be called upon
1027 stopping the inferior process at the entry point to the program.
1028 The entry point from BFD is compared to the PC and if they are
1029 different, the main executable is relocated by the proper amount.
1031 As written it will only attempt to relocate executables which
1032 lack interpreter sections. It seems likely that only dynamic
1033 linker executables will get relocated, though it should work
1034 properly for a position-independent static executable as well. */
1037 svr4_relocate_main_executable (void)
1039 asection *interp_sect;
1040 CORE_ADDR pc = read_pc ();
1042 /* Decide if the objfile needs to be relocated. As indicated above,
1043 we will only be here when execution is stopped at the beginning
1044 of the program. Relocation is necessary if the address at which
1045 we are presently stopped differs from the start address stored in
1046 the executable AND there's no interpreter section. The condition
1047 regarding the interpreter section is very important because if
1048 there *is* an interpreter section, execution will begin there
1049 instead. When there is an interpreter section, the start address
1050 is (presumably) used by the interpreter at some point to start
1051 execution of the program.
1053 If there is an interpreter, it is normal for it to be set to an
1054 arbitrary address at the outset. The job of finding it is
1055 handled in enable_break().
1057 So, to summarize, relocations are necessary when there is no
1058 interpreter section and the start address obtained from the
1059 executable is different from the address at which GDB is
1062 [ The astute reader will note that we also test to make sure that
1063 the executable in question has the DYNAMIC flag set. It is my
1064 opinion that this test is unnecessary (undesirable even). It
1065 was added to avoid inadvertent relocation of an executable
1066 whose e_type member in the ELF header is not ET_DYN. There may
1067 be a time in the future when it is desirable to do relocations
1068 on other types of files as well in which case this condition
1069 should either be removed or modified to accomodate the new file
1070 type. (E.g, an ET_EXEC executable which has been built to be
1071 position-independent could safely be relocated by the OS if
1072 desired. It is true that this violates the ABI, but the ABI
1073 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1076 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1077 if (interp_sect == NULL
1078 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1079 && bfd_get_start_address (exec_bfd) != pc)
1081 struct cleanup *old_chain;
1082 struct section_offsets *new_offsets;
1084 CORE_ADDR displacement;
1086 /* It is necessary to relocate the objfile. The amount to
1087 relocate by is simply the address at which we are stopped
1088 minus the starting address from the executable.
1090 We relocate all of the sections by the same amount. This
1091 behavior is mandated by recent editions of the System V ABI.
1092 According to the System V Application Binary Interface,
1093 Edition 4.1, page 5-5:
1095 ... Though the system chooses virtual addresses for
1096 individual processes, it maintains the segments' relative
1097 positions. Because position-independent code uses relative
1098 addressesing between segments, the difference between
1099 virtual addresses in memory must match the difference
1100 between virtual addresses in the file. The difference
1101 between the virtual address of any segment in memory and
1102 the corresponding virtual address in the file is thus a
1103 single constant value for any one executable or shared
1104 object in a given process. This difference is the base
1105 address. One use of the base address is to relocate the
1106 memory image of the program during dynamic linking.
1108 The same language also appears in Edition 4.0 of the System V
1109 ABI and is left unspecified in some of the earlier editions. */
1111 displacement = pc - bfd_get_start_address (exec_bfd);
1114 new_offsets = xcalloc (symfile_objfile->num_sections,
1115 sizeof (struct section_offsets));
1116 old_chain = make_cleanup (xfree, new_offsets);
1118 for (i = 0; i < symfile_objfile->num_sections; i++)
1120 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1122 new_offsets->offsets[i] = displacement;
1126 objfile_relocate (symfile_objfile, new_offsets);
1128 do_cleanups (old_chain);
1136 svr4_solib_create_inferior_hook -- shared library startup support
1140 void svr4_solib_create_inferior_hook()
1144 When gdb starts up the inferior, it nurses it along (through the
1145 shell) until it is ready to execute it's first instruction. At this
1146 point, this function gets called via expansion of the macro
1147 SOLIB_CREATE_INFERIOR_HOOK.
1149 For SunOS executables, this first instruction is typically the
1150 one at "_start", or a similar text label, regardless of whether
1151 the executable is statically or dynamically linked. The runtime
1152 startup code takes care of dynamically linking in any shared
1153 libraries, once gdb allows the inferior to continue.
1155 For SVR4 executables, this first instruction is either the first
1156 instruction in the dynamic linker (for dynamically linked
1157 executables) or the instruction at "start" for statically linked
1158 executables. For dynamically linked executables, the system
1159 first exec's /lib/libc.so.N, which contains the dynamic linker,
1160 and starts it running. The dynamic linker maps in any needed
1161 shared libraries, maps in the actual user executable, and then
1162 jumps to "start" in the user executable.
1164 For both SunOS shared libraries, and SVR4 shared libraries, we
1165 can arrange to cooperate with the dynamic linker to discover the
1166 names of shared libraries that are dynamically linked, and the
1167 base addresses to which they are linked.
1169 This function is responsible for discovering those names and
1170 addresses, and saving sufficient information about them to allow
1171 their symbols to be read at a later time.
1175 Between enable_break() and disable_break(), this code does not
1176 properly handle hitting breakpoints which the user might have
1177 set in the startup code or in the dynamic linker itself. Proper
1178 handling will probably have to wait until the implementation is
1179 changed to use the "breakpoint handler function" method.
1181 Also, what if child has exit()ed? Must exit loop somehow.
1185 svr4_solib_create_inferior_hook (void)
1187 /* Relocate the main executable if necessary. */
1188 svr4_relocate_main_executable ();
1190 if (!enable_break ())
1192 warning ("shared library handler failed to enable breakpoint");
1196 #if defined(_SCO_DS)
1197 /* SCO needs the loop below, other systems should be using the
1198 special shared library breakpoints and the shared library breakpoint
1201 Now run the target. It will eventually hit the breakpoint, at
1202 which point all of the libraries will have been mapped in and we
1203 can go groveling around in the dynamic linker structures to find
1204 out what we need to know about them. */
1206 clear_proceed_status ();
1207 stop_soon_quietly = 1;
1208 stop_signal = TARGET_SIGNAL_0;
1211 target_resume (pid_to_ptid (-1), 0, stop_signal);
1212 wait_for_inferior ();
1214 while (stop_signal != TARGET_SIGNAL_TRAP);
1215 stop_soon_quietly = 0;
1216 #endif /* defined(_SCO_DS) */
1220 svr4_clear_solib (void)
1226 svr4_free_so (struct so_list *so)
1228 xfree (so->lm_info->lm);
1229 xfree (so->lm_info);
1233 /* Clear any bits of ADDR that wouldn't fit in a target-format
1234 data pointer. "Data pointer" here refers to whatever sort of
1235 address the dynamic linker uses to manage its sections. At the
1236 moment, we don't support shared libraries on any processors where
1237 code and data pointers are different sizes.
1239 This isn't really the right solution. What we really need here is
1240 a way to do arithmetic on CORE_ADDR values that respects the
1241 natural pointer/address correspondence. (For example, on the MIPS,
1242 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1243 sign-extend the value. There, simply truncating the bits above
1244 TARGET_PTR_BIT, as we do below, is no good.) This should probably
1245 be a new gdbarch method or something. */
1247 svr4_truncate_ptr (CORE_ADDR addr)
1249 if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8)
1250 /* We don't need to truncate anything, and the bit twiddling below
1251 will fail due to overflow problems. */
1254 return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1);
1259 svr4_relocate_section_addresses (struct so_list *so,
1260 struct section_table *sec)
1262 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR (so));
1263 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR (so));
1267 /* Fetch a link_map_offsets structure for native targets using struct
1268 definitions from link.h. See solib-legacy.c for the function
1269 which does the actual work.
1271 Note: For non-native targets (i.e. cross-debugging situations),
1272 a target specific fetch_link_map_offsets() function should be
1273 defined and registered via set_solib_svr4_fetch_link_map_offsets(). */
1275 static struct link_map_offsets *
1276 legacy_fetch_link_map_offsets (void)
1278 if (legacy_svr4_fetch_link_map_offsets_hook)
1279 return legacy_svr4_fetch_link_map_offsets_hook ();
1282 internal_error (__FILE__, __LINE__,
1283 "legacy_fetch_link_map_offsets called without legacy "
1284 "link_map support enabled.");
1289 /* Fetch a link_map_offsets structure using the method registered in the
1290 architecture vector. */
1292 static struct link_map_offsets *
1293 svr4_fetch_link_map_offsets (void)
1295 struct link_map_offsets *(*flmo)(void) =
1296 gdbarch_data (current_gdbarch, fetch_link_map_offsets_gdbarch_data);
1300 internal_error (__FILE__, __LINE__,
1301 "svr4_fetch_link_map_offsets: fetch_link_map_offsets "
1302 "method not defined for this architecture.");
1309 /* set_solib_svr4_fetch_link_map_offsets() is intended to be called by
1310 a <arch>_gdbarch_init() function. It is used to establish an
1311 architecture specific link_map_offsets fetcher for the architecture
1315 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1316 struct link_map_offsets *(*flmo) (void))
1318 set_gdbarch_data (gdbarch, fetch_link_map_offsets_gdbarch_data, flmo);
1321 /* Initialize the architecture-specific link_map_offsets fetcher.
1322 This is called after <arch>_gdbarch_init() has set up its `struct
1323 gdbarch' for the new architecture, and is only called if the
1324 link_map_offsets fetcher isn't already initialized (which is
1325 usually done by calling set_solib_svr4_fetch_link_map_offsets()
1326 above in <arch>_gdbarch_init()). Therefore we attempt to provide a
1327 reasonable alternative (for native targets anyway) if the
1328 <arch>_gdbarch_init() fails to call
1329 set_solib_svr4_fetch_link_map_offsets(). */
1332 init_fetch_link_map_offsets (struct gdbarch *gdbarch)
1334 return legacy_fetch_link_map_offsets;
1337 static struct target_so_ops svr4_so_ops;
1340 _initialize_svr4_solib (void)
1342 fetch_link_map_offsets_gdbarch_data =
1343 register_gdbarch_data (init_fetch_link_map_offsets, 0);
1345 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1346 svr4_so_ops.free_so = svr4_free_so;
1347 svr4_so_ops.clear_solib = svr4_clear_solib;
1348 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1349 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1350 svr4_so_ops.current_sos = svr4_current_sos;
1351 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1352 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
1354 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1355 current_target_so_ops = &svr4_so_ops;