1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "gdb_string.h"
36 /* Prototypes for exported functions. */
38 void _initialize_values PARAMS ((void));
40 /* Prototypes for local functions. */
42 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
45 static void show_values PARAMS ((char *, int));
47 static void show_convenience PARAMS ((char *, int));
49 static int vb_match PARAMS ((struct type *, int, struct type *));
51 /* The value-history records all the values printed
52 by print commands during this session. Each chunk
53 records 60 consecutive values. The first chunk on
54 the chain records the most recent values.
55 The total number of values is in value_history_count. */
57 #define VALUE_HISTORY_CHUNK 60
59 struct value_history_chunk
61 struct value_history_chunk *next;
62 value_ptr values[VALUE_HISTORY_CHUNK];
65 /* Chain of chunks now in use. */
67 static struct value_history_chunk *value_history_chain;
69 static int value_history_count; /* Abs number of last entry stored */
71 /* List of all value objects currently allocated
72 (except for those released by calls to release_value)
73 This is so they can be freed after each command. */
75 static value_ptr all_values;
77 /* Allocate a value that has the correct length for type TYPE. */
83 register value_ptr val;
84 struct type *atype = check_typedef (type);
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 VALUE_NEXT (val) = all_values;
89 VALUE_TYPE (val) = type;
90 VALUE_ENCLOSING_TYPE (val) = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME (val) = 0;
94 VALUE_OFFSET (val) = 0;
95 VALUE_BITPOS (val) = 0;
96 VALUE_BITSIZE (val) = 0;
97 VALUE_REGNO (val) = -1;
99 VALUE_OPTIMIZED_OUT (val) = 0;
100 VALUE_BFD_SECTION (val) = NULL;
101 VALUE_EMBEDDED_OFFSET (val) = 0;
102 VALUE_POINTED_TO_OFFSET (val) = 0;
107 /* Allocate a value that has the correct length
108 for COUNT repetitions type TYPE. */
111 allocate_repeat_value (type, count)
115 int low_bound = current_language->string_lower_bound; /* ??? */
116 /* FIXME-type-allocation: need a way to free this type when we are
118 struct type *range_type
119 = create_range_type ((struct type *) NULL, builtin_type_int,
120 low_bound, count + low_bound - 1);
121 /* FIXME-type-allocation: need a way to free this type when we are
123 return allocate_value (create_array_type ((struct type *) NULL,
127 /* Return a mark in the value chain. All values allocated after the
128 mark is obtained (except for those released) are subject to being freed
129 if a subsequent value_free_to_mark is passed the mark. */
136 /* Free all values allocated since MARK was obtained by value_mark
137 (except for those released). */
139 value_free_to_mark (mark)
144 for (val = all_values; val && val != mark; val = next)
146 next = VALUE_NEXT (val);
152 /* Free all the values that have been allocated (except for those released).
153 Called after each command, successful or not. */
158 register value_ptr val, next;
160 for (val = all_values; val; val = next)
162 next = VALUE_NEXT (val);
169 /* Remove VAL from the chain all_values
170 so it will not be freed automatically. */
174 register value_ptr val;
176 register value_ptr v;
178 if (all_values == val)
180 all_values = val->next;
184 for (v = all_values; v; v = v->next)
194 /* Release all values up to mark */
196 value_release_to_mark (mark)
201 for (val = next = all_values; next; next = VALUE_NEXT (next))
202 if (VALUE_NEXT (next) == mark)
204 all_values = VALUE_NEXT (next);
205 VALUE_NEXT (next) = 0;
212 /* Return a copy of the value ARG.
213 It contains the same contents, for same memory address,
214 but it's a different block of storage. */
220 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
221 register value_ptr val = allocate_value (encl_type);
222 VALUE_TYPE (val) = VALUE_TYPE (arg);
223 VALUE_LVAL (val) = VALUE_LVAL (arg);
224 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
225 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
226 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
227 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
228 VALUE_FRAME (val) = VALUE_FRAME (arg);
229 VALUE_REGNO (val) = VALUE_REGNO (arg);
230 VALUE_LAZY (val) = VALUE_LAZY (arg);
231 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
232 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
233 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
234 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
235 val->modifiable = arg->modifiable;
236 if (!VALUE_LAZY (val))
238 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
239 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
245 /* Access to the value history. */
247 /* Record a new value in the value history.
248 Returns the absolute history index of the entry.
249 Result of -1 indicates the value was not saved; otherwise it is the
250 value history index of this new item. */
253 record_latest_value (val)
258 /* We don't want this value to have anything to do with the inferior anymore.
259 In particular, "set $1 = 50" should not affect the variable from which
260 the value was taken, and fast watchpoints should be able to assume that
261 a value on the value history never changes. */
262 if (VALUE_LAZY (val))
263 value_fetch_lazy (val);
264 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
265 from. This is a bit dubious, because then *&$1 does not just return $1
266 but the current contents of that location. c'est la vie... */
270 /* Here we treat value_history_count as origin-zero
271 and applying to the value being stored now. */
273 i = value_history_count % VALUE_HISTORY_CHUNK;
276 register struct value_history_chunk *new
277 = (struct value_history_chunk *)
278 xmalloc (sizeof (struct value_history_chunk));
279 memset (new->values, 0, sizeof new->values);
280 new->next = value_history_chain;
281 value_history_chain = new;
284 value_history_chain->values[i] = val;
286 /* Now we regard value_history_count as origin-one
287 and applying to the value just stored. */
289 return ++value_history_count;
292 /* Return a copy of the value in the history with sequence number NUM. */
295 access_value_history (num)
298 register struct value_history_chunk *chunk;
300 register int absnum = num;
303 absnum += value_history_count;
308 error ("The history is empty.");
310 error ("There is only one value in the history.");
312 error ("History does not go back to $$%d.", -num);
314 if (absnum > value_history_count)
315 error ("History has not yet reached $%d.", absnum);
319 /* Now absnum is always absolute and origin zero. */
321 chunk = value_history_chain;
322 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
326 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
329 /* Clear the value history entirely.
330 Must be done when new symbol tables are loaded,
331 because the type pointers become invalid. */
334 clear_value_history ()
336 register struct value_history_chunk *next;
338 register value_ptr val;
340 while (value_history_chain)
342 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
343 if ((val = value_history_chain->values[i]) != NULL)
345 next = value_history_chain->next;
346 free ((PTR) value_history_chain);
347 value_history_chain = next;
349 value_history_count = 0;
353 show_values (num_exp, from_tty)
358 register value_ptr val;
363 /* "info history +" should print from the stored position.
364 "info history <exp>" should print around value number <exp>. */
365 if (num_exp[0] != '+' || num_exp[1] != '\0')
366 num = parse_and_eval_address (num_exp) - 5;
370 /* "info history" means print the last 10 values. */
371 num = value_history_count - 9;
377 for (i = num; i < num + 10 && i <= value_history_count; i++)
379 val = access_value_history (i);
380 printf_filtered ("$%d = ", i);
381 value_print (val, gdb_stdout, 0, Val_pretty_default);
382 printf_filtered ("\n");
385 /* The next "info history +" should start after what we just printed. */
388 /* Hitting just return after this command should do the same thing as
389 "info history +". If num_exp is null, this is unnecessary, since
390 "info history +" is not useful after "info history". */
391 if (from_tty && num_exp)
398 /* Internal variables. These are variables within the debugger
399 that hold values assigned by debugger commands.
400 The user refers to them with a '$' prefix
401 that does not appear in the variable names stored internally. */
403 static struct internalvar *internalvars;
405 /* Look up an internal variable with name NAME. NAME should not
406 normally include a dollar sign.
408 If the specified internal variable does not exist,
409 one is created, with a void value. */
412 lookup_internalvar (name)
415 register struct internalvar *var;
417 for (var = internalvars; var; var = var->next)
418 if (STREQ (var->name, name))
421 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
422 var->name = concat (name, NULL);
423 var->value = allocate_value (builtin_type_void);
424 release_value (var->value);
425 var->next = internalvars;
431 value_of_internalvar (var)
432 struct internalvar *var;
434 register value_ptr val;
436 #ifdef IS_TRAPPED_INTERNALVAR
437 if (IS_TRAPPED_INTERNALVAR (var->name))
438 return VALUE_OF_TRAPPED_INTERNALVAR (var);
441 val = value_copy (var->value);
442 if (VALUE_LAZY (val))
443 value_fetch_lazy (val);
444 VALUE_LVAL (val) = lval_internalvar;
445 VALUE_INTERNALVAR (val) = var;
450 set_internalvar_component (var, offset, bitpos, bitsize, newval)
451 struct internalvar *var;
452 int offset, bitpos, bitsize;
455 register char *addr = VALUE_CONTENTS (var->value) + offset;
457 #ifdef IS_TRAPPED_INTERNALVAR
458 if (IS_TRAPPED_INTERNALVAR (var->name))
459 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
463 modify_field (addr, value_as_long (newval),
466 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
470 set_internalvar (var, val)
471 struct internalvar *var;
476 #ifdef IS_TRAPPED_INTERNALVAR
477 if (IS_TRAPPED_INTERNALVAR (var->name))
478 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
481 newval = value_copy (val);
482 newval->modifiable = 1;
484 /* Force the value to be fetched from the target now, to avoid problems
485 later when this internalvar is referenced and the target is gone or
487 if (VALUE_LAZY (newval))
488 value_fetch_lazy (newval);
490 /* Begin code which must not call error(). If var->value points to
491 something free'd, an error() obviously leaves a dangling pointer.
492 But we also get a danling pointer if var->value points to
493 something in the value chain (i.e., before release_value is
494 called), because after the error free_all_values will get called before
496 free ((PTR) var->value);
498 release_value (newval);
499 /* End code which must not call error(). */
503 internalvar_name (var)
504 struct internalvar *var;
509 /* Free all internalvars. Done when new symtabs are loaded,
510 because that makes the values invalid. */
513 clear_internalvars ()
515 register struct internalvar *var;
520 internalvars = var->next;
521 free ((PTR) var->name);
522 free ((PTR) var->value);
528 show_convenience (ignore, from_tty)
532 register struct internalvar *var;
535 for (var = internalvars; var; var = var->next)
537 #ifdef IS_TRAPPED_INTERNALVAR
538 if (IS_TRAPPED_INTERNALVAR (var->name))
545 printf_filtered ("$%s = ", var->name);
546 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
547 printf_filtered ("\n");
550 printf_unfiltered ("No debugger convenience variables now defined.\n\
551 Convenience variables have names starting with \"$\";\n\
552 use \"set\" as in \"set $foo = 5\" to define them.\n");
555 /* Extract a value as a C number (either long or double).
556 Knows how to convert fixed values to double, or
557 floating values to long.
558 Does not deallocate the value. */
562 register value_ptr val;
564 /* This coerces arrays and functions, which is necessary (e.g.
565 in disassemble_command). It also dereferences references, which
566 I suspect is the most logical thing to do. */
568 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
572 value_as_double (val)
573 register value_ptr val;
578 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
580 error ("Invalid floating value found in program.");
583 /* Extract a value as a C pointer.
584 Does not deallocate the value. */
586 value_as_pointer (val)
589 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
590 whether we want this to be true eventually. */
592 /* ADDR_BITS_REMOVE is wrong if we are being called for a
593 non-address (e.g. argument to "signal", "info break", etc.), or
594 for pointers to char, in which the low bits *are* significant. */
595 return ADDR_BITS_REMOVE (value_as_long (val));
597 return value_as_long (val);
601 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
602 as a long, or as a double, assuming the raw data is described
603 by type TYPE. Knows how to convert different sizes of values
604 and can convert between fixed and floating point. We don't assume
605 any alignment for the raw data. Return value is in host byte order.
607 If you want functions and arrays to be coerced to pointers, and
608 references to be dereferenced, call value_as_long() instead.
610 C++: It is assumed that the front-end has taken care of
611 all matters concerning pointers to members. A pointer
612 to member which reaches here is considered to be equivalent
613 to an INT (or some size). After all, it is only an offset. */
616 unpack_long (type, valaddr)
620 register enum type_code code = TYPE_CODE (type);
621 register int len = TYPE_LENGTH (type);
622 register int nosign = TYPE_UNSIGNED (type);
624 if (current_language->la_language == language_scm
625 && is_scmvalue_type (type))
626 return scm_unpack (type, valaddr, TYPE_CODE_INT);
630 case TYPE_CODE_TYPEDEF:
631 return unpack_long (check_typedef (type), valaddr);
636 case TYPE_CODE_RANGE:
638 return extract_unsigned_integer (valaddr, len);
640 return extract_signed_integer (valaddr, len);
643 return extract_floating (valaddr, len);
647 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
648 whether we want this to be true eventually. */
649 if (GDB_TARGET_IS_D10V
651 return D10V_MAKE_DADDR (extract_address (valaddr, len));
652 return extract_address (valaddr, len);
654 case TYPE_CODE_MEMBER:
655 error ("not implemented: member types in unpack_long");
658 error ("Value can't be converted to integer.");
660 return 0; /* Placate lint. */
663 /* Return a double value from the specified type and address.
664 INVP points to an int which is set to 0 for valid value,
665 1 for invalid value (bad float format). In either case,
666 the returned double is OK to use. Argument is in target
667 format, result is in host format. */
670 unpack_double (type, valaddr, invp)
679 *invp = 0; /* Assume valid. */
680 CHECK_TYPEDEF (type);
681 code = TYPE_CODE (type);
682 len = TYPE_LENGTH (type);
683 nosign = TYPE_UNSIGNED (type);
684 if (code == TYPE_CODE_FLT)
687 if (INVALID_FLOAT (valaddr, len))
690 return 1.234567891011121314;
693 return extract_floating (valaddr, len);
697 /* Unsigned -- be sure we compensate for signed LONGEST. */
698 #if !defined (_MSC_VER) || (_MSC_VER > 900)
699 return (ULONGEST) unpack_long (type, valaddr);
701 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
702 return (LONGEST) unpack_long (type, valaddr);
703 #endif /* _MSC_VER */
707 /* Signed -- we are OK with unpack_long. */
708 return unpack_long (type, valaddr);
712 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
713 as a CORE_ADDR, assuming the raw data is described by type TYPE.
714 We don't assume any alignment for the raw data. Return value is in
717 If you want functions and arrays to be coerced to pointers, and
718 references to be dereferenced, call value_as_pointer() instead.
720 C++: It is assumed that the front-end has taken care of
721 all matters concerning pointers to members. A pointer
722 to member which reaches here is considered to be equivalent
723 to an INT (or some size). After all, it is only an offset. */
726 unpack_pointer (type, valaddr)
730 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
731 whether we want this to be true eventually. */
732 return unpack_long (type, valaddr);
735 /* Get the value of the FIELDN'th field (which must be static) of TYPE. */
738 value_static_field (type, fieldno)
744 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
746 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
751 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
752 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
755 /* With some compilers, e.g. HP aCC, static data members are reported
756 as non-debuggable symbols */
757 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
762 addr = SYMBOL_VALUE_ADDRESS (msym);
763 sect = SYMBOL_BFD_SECTION (msym);
768 addr = SYMBOL_VALUE_ADDRESS (sym);
769 sect = SYMBOL_BFD_SECTION (sym);
771 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
773 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
776 /* Given a value ARG1 (offset by OFFSET bytes)
777 of a struct or union type ARG_TYPE,
778 extract and return the value of one of its (non-static) fields.
779 FIELDNO says which field. */
782 value_primitive_field (arg1, offset, fieldno, arg_type)
783 register value_ptr arg1;
785 register int fieldno;
786 register struct type *arg_type;
788 register value_ptr v;
789 register struct type *type;
791 CHECK_TYPEDEF (arg_type);
792 type = TYPE_FIELD_TYPE (arg_type, fieldno);
794 /* Handle packed fields */
796 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
798 v = value_from_longest (type,
799 unpack_field_as_long (arg_type,
800 VALUE_CONTENTS (arg1)
803 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
804 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
806 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
808 /* This field is actually a base subobject, so preserve the
809 entire object's contents for later references to virtual
811 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
812 VALUE_TYPE (v) = arg_type;
813 if (VALUE_LAZY (arg1))
816 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
818 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
819 VALUE_EMBEDDED_OFFSET (v)
821 VALUE_EMBEDDED_OFFSET (arg1) +
822 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
826 /* Plain old data member */
827 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
828 v = allocate_value (type);
829 if (VALUE_LAZY (arg1))
832 memcpy (VALUE_CONTENTS_RAW (v),
833 VALUE_CONTENTS_RAW (arg1) + offset,
835 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
837 VALUE_LVAL (v) = VALUE_LVAL (arg1);
838 if (VALUE_LVAL (arg1) == lval_internalvar)
839 VALUE_LVAL (v) = lval_internalvar_component;
840 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
841 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
842 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
846 /* Given a value ARG1 of a struct or union type,
847 extract and return the value of one of its (non-static) fields.
848 FIELDNO says which field. */
851 value_field (arg1, fieldno)
852 register value_ptr arg1;
853 register int fieldno;
855 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
858 /* Return a non-virtual function as a value.
859 F is the list of member functions which contains the desired method.
860 J is an index into F which provides the desired method. */
863 value_fn_field (arg1p, f, j, type, offset)
870 register value_ptr v;
871 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
874 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
875 0, VAR_NAMESPACE, 0, NULL);
879 error ("Internal error: could not find physical method named %s",
880 TYPE_FN_FIELD_PHYSNAME (f, j));
883 v = allocate_value (ftype);
884 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
885 VALUE_TYPE (v) = ftype;
889 if (type != VALUE_TYPE (*arg1p))
890 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
891 value_addr (*arg1p)));
893 /* Move the `this' pointer according to the offset.
894 VALUE_OFFSET (*arg1p) += offset;
901 /* Return a virtual function as a value.
902 ARG1 is the object which provides the virtual function
903 table pointer. *ARG1P is side-effected in calling this function.
904 F is the list of member functions which contains the desired virtual
906 J is an index into F which provides the desired virtual function.
908 TYPE is the type in which F is located. */
910 value_virtual_fn_field (arg1p, f, j, type, offset)
917 value_ptr arg1 = *arg1p;
918 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
920 if (TYPE_HAS_VTABLE (type))
922 /* Deal with HP/Taligent runtime model for virtual functions */
924 value_ptr argp; /* arg1 cast to base */
925 CORE_ADDR coreptr; /* pointer to target address */
926 int class_index; /* which class segment pointer to use */
927 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
929 argp = value_cast (type, *arg1p);
931 if (VALUE_ADDRESS (argp) == 0)
932 error ("Address of object is null; object may not have been created.");
934 /* pai: FIXME -- 32x64 possible problem? */
935 /* First word (4 bytes) in object layout is the vtable pointer */
936 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
937 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
940 error ("Virtual table pointer is null for object; object may not have been created.");
943 * FIXME: The code here currently handles only
944 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
945 * is introduced, the condition for the "if" below will have to
946 * be changed to be a test for the RRBC case. */
950 /* Non-RRBC case; the virtual function pointers are stored at fixed
951 * offsets in the virtual table. */
953 /* Retrieve the offset in the virtual table from the debug
954 * info. The offset of the vfunc's entry is in words from
955 * the beginning of the vtable; but first we have to adjust
956 * by HP_ACC_VFUNC_START to account for other entries */
958 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
959 * which case the multiplier should be 8 and values should be long */
960 vp = value_at (builtin_type_int,
961 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
963 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
964 /* coreptr now contains the address of the virtual function */
965 /* (Actually, it contains the pointer to the plabel for the function. */
969 /* RRBC case; the virtual function pointers are found by double
970 * indirection through the class segment tables. */
972 /* Choose class segment depending on type we were passed */
973 class_index = class_index_in_primary_list (type);
975 /* Find class segment pointer. These are in the vtable slots after
976 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
977 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
978 * the multiplier below has to be 8 and value should be long. */
979 vp = value_at (builtin_type_int,
980 coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
981 /* Indirect once more, offset by function index */
982 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
983 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
984 vp = value_at (builtin_type_int, coreptr, NULL);
985 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
987 /* coreptr now contains the address of the virtual function */
988 /* (Actually, it contains the pointer to the plabel for the function.) */
993 error ("Address of virtual function is null; error in virtual table?");
995 /* Wrap this addr in a value and return pointer */
996 vp = allocate_value (ftype);
997 VALUE_TYPE (vp) = ftype;
998 VALUE_ADDRESS (vp) = coreptr;
1000 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
1004 { /* Not using HP/Taligent runtime conventions; so try to
1005 * use g++ conventions for virtual table */
1007 struct type *entry_type;
1008 /* First, get the virtual function table pointer. That comes
1009 with a strange type, so cast it to type `pointer to long' (which
1010 should serve just fine as a function type). Then, index into
1011 the table, and convert final value to appropriate function type. */
1012 value_ptr entry, vfn, vtbl;
1013 value_ptr vi = value_from_longest (builtin_type_int,
1014 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
1015 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
1016 struct type *context;
1017 if (fcontext == NULL)
1018 /* We don't have an fcontext (e.g. the program was compiled with
1019 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1020 This won't work right for multiple inheritance, but at least we
1021 should do as well as GDB 3.x did. */
1022 fcontext = TYPE_VPTR_BASETYPE (type);
1023 context = lookup_pointer_type (fcontext);
1024 /* Now context is a pointer to the basetype containing the vtbl. */
1025 if (TYPE_TARGET_TYPE (context) != type1)
1027 value_ptr tmp = value_cast (context, value_addr (arg1));
1028 VALUE_POINTED_TO_OFFSET (tmp) = 0;
1029 arg1 = value_ind (tmp);
1030 type1 = check_typedef (VALUE_TYPE (arg1));
1034 /* Now context is the basetype containing the vtbl. */
1036 /* This type may have been defined before its virtual function table
1037 was. If so, fill in the virtual function table entry for the
1039 if (TYPE_VPTR_FIELDNO (context) < 0)
1040 fill_in_vptr_fieldno (context);
1042 /* The virtual function table is now an array of structures
1043 which have the form { int16 offset, delta; void *pfn; }. */
1044 vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
1045 TYPE_VPTR_BASETYPE (context));
1047 /* With older versions of g++, the vtbl field pointed to an array
1048 of structures. Nowadays it points directly to the structure. */
1049 if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
1050 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
1052 /* Handle the case where the vtbl field points to an
1053 array of structures. */
1054 vtbl = value_ind (vtbl);
1056 /* Index into the virtual function table. This is hard-coded because
1057 looking up a field is not cheap, and it may be important to save
1058 time, e.g. if the user has set a conditional breakpoint calling
1059 a virtual function. */
1060 entry = value_subscript (vtbl, vi);
1064 /* Handle the case where the vtbl field points directly to a structure. */
1065 vtbl = value_add (vtbl, vi);
1066 entry = value_ind (vtbl);
1069 entry_type = check_typedef (VALUE_TYPE (entry));
1071 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
1073 /* Move the `this' pointer according to the virtual function table. */
1074 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
1076 if (!VALUE_LAZY (arg1))
1078 VALUE_LAZY (arg1) = 1;
1079 value_fetch_lazy (arg1);
1082 vfn = value_field (entry, 2);
1084 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
1087 error ("I'm confused: virtual function table has bad type");
1088 /* Reinstantiate the function pointer with the correct type. */
1089 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1096 /* ARG is a pointer to an object we know to be at least
1097 a DTYPE. BTYPE is the most derived basetype that has
1098 already been searched (and need not be searched again).
1099 After looking at the vtables between BTYPE and DTYPE,
1100 return the most derived type we find. The caller must
1101 be satisfied when the return value == DTYPE.
1103 FIXME-tiemann: should work with dossier entries as well. */
1106 value_headof (in_arg, btype, dtype)
1108 struct type *btype, *dtype;
1110 /* First collect the vtables we must look at for this object. */
1111 /* FIXME-tiemann: right now, just look at top-most vtable. */
1112 value_ptr arg, vtbl, entry, best_entry = 0;
1114 int offset, best_offset = 0;
1116 CORE_ADDR pc_for_sym;
1117 char *demangled_name;
1118 struct minimal_symbol *msymbol;
1120 btype = TYPE_VPTR_BASETYPE (dtype);
1121 CHECK_TYPEDEF (btype);
1124 arg = value_cast (lookup_pointer_type (btype), arg);
1125 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
1127 /* Check that VTBL looks like it points to a virtual function table. */
1128 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
1130 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
1131 || !VTBL_PREFIX_P (demangled_name))
1133 /* If we expected to find a vtable, but did not, let the user
1134 know that we aren't happy, but don't throw an error.
1135 FIXME: there has to be a better way to do this. */
1136 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
1137 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1138 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1139 VALUE_TYPE (in_arg) = error_type;
1143 /* Now search through the virtual function table. */
1144 entry = value_ind (vtbl);
1145 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
1146 for (i = 1; i <= nelems; i++)
1148 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1150 /* This won't work if we're using thunks. */
1151 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
1153 offset = longest_to_int (value_as_long (value_field (entry, 0)));
1154 /* If we use '<=' we can handle single inheritance
1155 * where all offsets are zero - just use the first entry found. */
1156 if (offset <= best_offset)
1158 best_offset = offset;
1162 /* Move the pointer according to BEST_ENTRY's offset, and figure
1163 out what type we should return as the new pointer. */
1164 if (best_entry == 0)
1166 /* An alternative method (which should no longer be necessary).
1167 * But we leave it in for future use, when we will hopefully
1168 * have optimizes the vtable to use thunks instead of offsets. */
1169 /* Use the name of vtable itself to extract a base type. */
1170 demangled_name += 4; /* Skip _vt$ prefix. */
1174 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1175 sym = find_pc_function (pc_for_sym);
1176 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
1177 *(strchr (demangled_name, ':')) = '\0';
1179 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1181 error ("could not find type declaration for `%s'", demangled_name);
1184 free (demangled_name);
1185 arg = value_add (value_cast (builtin_type_int, arg),
1186 value_field (best_entry, 0));
1190 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1194 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1195 function tables, probe ARG's tables (including the vtables
1196 of its baseclasses) to figure out the most derived type that ARG
1197 could actually be a pointer to. */
1200 value_from_vtable_info (arg, type)
1204 /* Take care of preliminaries. */
1205 if (TYPE_VPTR_FIELDNO (type) < 0)
1206 fill_in_vptr_fieldno (type);
1207 if (TYPE_VPTR_FIELDNO (type) < 0)
1210 return value_headof (arg, 0, type);
1213 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1214 pointer which is for the base class whose type is BASECLASS. */
1217 vb_match (type, index, basetype)
1220 struct type *basetype;
1222 struct type *fieldtype;
1223 char *name = TYPE_FIELD_NAME (type, index);
1224 char *field_class_name = NULL;
1228 /* gcc 2.4 uses _vb$. */
1229 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1230 field_class_name = name + 4;
1231 /* gcc 2.5 will use __vb_. */
1232 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1233 field_class_name = name + 5;
1235 if (field_class_name == NULL)
1236 /* This field is not a virtual base class pointer. */
1239 /* It's a virtual baseclass pointer, now we just need to find out whether
1240 it is for this baseclass. */
1241 fieldtype = TYPE_FIELD_TYPE (type, index);
1242 if (fieldtype == NULL
1243 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1244 /* "Can't happen". */
1247 /* What we check for is that either the types are equal (needed for
1248 nameless types) or have the same name. This is ugly, and a more
1249 elegant solution should be devised (which would probably just push
1250 the ugliness into symbol reading unless we change the stabs format). */
1251 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1254 if (TYPE_NAME (basetype) != NULL
1255 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1256 && STREQ (TYPE_NAME (basetype),
1257 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1262 /* Compute the offset of the baseclass which is
1263 the INDEXth baseclass of class TYPE,
1264 for value at VALADDR (in host) at ADDRESS (in target).
1265 The result is the offset of the baseclass value relative
1266 to (the address of)(ARG) + OFFSET.
1268 -1 is returned on error. */
1271 baseclass_offset (type, index, valaddr, address)
1277 struct type *basetype = TYPE_BASECLASS (type, index);
1279 if (BASETYPE_VIA_VIRTUAL (type, index))
1281 /* Must hunt for the pointer to this virtual baseclass. */
1282 register int i, len = TYPE_NFIELDS (type);
1283 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1285 /* First look for the virtual baseclass pointer
1287 for (i = n_baseclasses; i < len; i++)
1289 if (vb_match (type, i, basetype))
1292 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1293 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1295 return addr - (LONGEST) address;
1298 /* Not in the fields, so try looking through the baseclasses. */
1299 for (i = index + 1; i < n_baseclasses; i++)
1302 baseclass_offset (type, i, valaddr, address);
1310 /* Baseclass is easily computed. */
1311 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1314 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1317 Extracting bits depends on endianness of the machine. Compute the
1318 number of least significant bits to discard. For big endian machines,
1319 we compute the total number of bits in the anonymous object, subtract
1320 off the bit count from the MSB of the object to the MSB of the
1321 bitfield, then the size of the bitfield, which leaves the LSB discard
1322 count. For little endian machines, the discard count is simply the
1323 number of bits from the LSB of the anonymous object to the LSB of the
1326 If the field is signed, we also do sign extension. */
1329 unpack_field_as_long (type, valaddr, fieldno)
1336 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1337 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1339 struct type *field_type;
1341 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1342 field_type = TYPE_FIELD_TYPE (type, fieldno);
1343 CHECK_TYPEDEF (field_type);
1345 /* Extract bits. See comment above. */
1347 if (BITS_BIG_ENDIAN)
1348 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1350 lsbcount = (bitpos % 8);
1353 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1354 If the field is signed, and is negative, then sign extend. */
1356 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1358 valmask = (((ULONGEST) 1) << bitsize) - 1;
1360 if (!TYPE_UNSIGNED (field_type))
1362 if (val & (valmask ^ (valmask >> 1)))
1371 /* Modify the value of a bitfield. ADDR points to a block of memory in
1372 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1373 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1374 indicate which bits (in target bit order) comprise the bitfield. */
1377 modify_field (addr, fieldval, bitpos, bitsize)
1380 int bitpos, bitsize;
1384 /* If a negative fieldval fits in the field in question, chop
1385 off the sign extension bits. */
1386 if (bitsize < (8 * (int) sizeof (fieldval))
1387 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1388 fieldval = fieldval & ((1 << bitsize) - 1);
1390 /* Warn if value is too big to fit in the field in question. */
1391 if (bitsize < (8 * (int) sizeof (fieldval))
1392 && 0 != (fieldval & ~((1 << bitsize) - 1)))
1394 /* FIXME: would like to include fieldval in the message, but
1395 we don't have a sprintf_longest. */
1396 warning ("Value does not fit in %d bits.", bitsize);
1398 /* Truncate it, otherwise adjoining fields may be corrupted. */
1399 fieldval = fieldval & ((1 << bitsize) - 1);
1402 oword = extract_signed_integer (addr, sizeof oword);
1404 /* Shifting for bit field depends on endianness of the target machine. */
1405 if (BITS_BIG_ENDIAN)
1406 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1408 /* Mask out old value, while avoiding shifts >= size of oword */
1409 if (bitsize < 8 * (int) sizeof (oword))
1410 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
1412 oword &= ~((~(ULONGEST) 0) << bitpos);
1413 oword |= fieldval << bitpos;
1415 store_signed_integer (addr, sizeof oword, oword);
1418 /* Convert C numbers into newly allocated values */
1421 value_from_longest (type, num)
1423 register LONGEST num;
1425 register value_ptr val = allocate_value (type);
1426 register enum type_code code;
1429 code = TYPE_CODE (type);
1430 len = TYPE_LENGTH (type);
1434 case TYPE_CODE_TYPEDEF:
1435 type = check_typedef (type);
1438 case TYPE_CODE_CHAR:
1439 case TYPE_CODE_ENUM:
1440 case TYPE_CODE_BOOL:
1441 case TYPE_CODE_RANGE:
1442 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1447 /* This assumes that all pointers of a given length
1448 have the same form. */
1449 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1453 error ("Unexpected type (%d) encountered for integer constant.", code);
1458 /* Create a value for a string constant to be stored locally
1459 (not in the inferior's memory space, but in GDB memory).
1460 This is analogous to value_from_longest, which also does not
1461 use inferior memory. String shall NOT contain embedded nulls. */
1464 value_from_string (ptr)
1468 int len = strlen (ptr);
1469 int lowbound = current_language->string_lower_bound;
1470 struct type *rangetype =
1471 create_range_type ((struct type *) NULL,
1473 lowbound, len + lowbound - 1);
1474 struct type *stringtype =
1475 create_array_type ((struct type *) NULL,
1476 *current_language->string_char_type,
1479 val = allocate_value (stringtype);
1480 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1485 value_from_double (type, num)
1489 register value_ptr val = allocate_value (type);
1490 struct type *base_type = check_typedef (type);
1491 register enum type_code code = TYPE_CODE (base_type);
1492 register int len = TYPE_LENGTH (base_type);
1494 if (code == TYPE_CODE_FLT)
1496 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1499 error ("Unexpected type encountered for floating constant.");
1504 /* Deal with the value that is "about to be returned". */
1506 /* Return the value that a function returning now
1507 would be returning to its caller, assuming its type is VALTYPE.
1508 RETBUF is where we look for what ought to be the contents
1509 of the registers (in raw form). This is because it is often
1510 desirable to restore old values to those registers
1511 after saving the contents of interest, and then call
1512 this function using the saved values.
1513 struct_return is non-zero when the function in question is
1514 using the structure return conventions on the machine in question;
1515 0 when it is using the value returning conventions (this often
1516 means returning pointer to where structure is vs. returning value). */
1519 value_being_returned (valtype, retbuf, struct_return)
1520 register struct type *valtype;
1525 register value_ptr val;
1528 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1529 if (EXTRACT_STRUCT_VALUE_ADDRESS_P)
1532 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1534 error ("Function return value unknown");
1535 return value_at (valtype, addr, NULL);
1538 val = allocate_value (valtype);
1539 CHECK_TYPEDEF (valtype);
1540 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1545 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1546 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1547 and TYPE is the type (which is known to be struct, union or array).
1549 On most machines, the struct convention is used unless we are
1550 using gcc and the type is of a special size. */
1551 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1552 native compiler. GCC 2.3.3 was the last release that did it the
1553 old way. Since gcc2_compiled was not changed, we have no
1554 way to correctly win in all cases, so we just do the right thing
1555 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1556 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1557 would cause more chaos than dealing with some struct returns being
1561 generic_use_struct_convention (gcc_p, value_type)
1563 struct type *value_type;
1565 return !((gcc_p == 1)
1566 && (TYPE_LENGTH (value_type) == 1
1567 || TYPE_LENGTH (value_type) == 2
1568 || TYPE_LENGTH (value_type) == 4
1569 || TYPE_LENGTH (value_type) == 8));
1572 #ifndef USE_STRUCT_CONVENTION
1573 #define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1576 /* Some fundamental types (such as long double) are returned on the stack for
1577 certain architectures. This macro should return true for any type besides
1578 struct, union or array that gets returned on the stack. */
1580 #ifndef RETURN_VALUE_ON_STACK
1581 #define RETURN_VALUE_ON_STACK(TYPE) 0
1584 /* Return true if the function specified is using the structure returning
1585 convention on this machine to return arguments, or 0 if it is using
1586 the value returning convention. FUNCTION is the value representing
1587 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1588 is the type returned by the function. GCC_P is nonzero if compiled
1592 using_struct_return (function, funcaddr, value_type, gcc_p)
1595 struct type *value_type;
1599 register enum type_code code = TYPE_CODE (value_type);
1601 if (code == TYPE_CODE_ERROR)
1602 error ("Function return type unknown.");
1604 if (code == TYPE_CODE_STRUCT
1605 || code == TYPE_CODE_UNION
1606 || code == TYPE_CODE_ARRAY
1607 || RETURN_VALUE_ON_STACK (value_type))
1608 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1613 /* Store VAL so it will be returned if a function returns now.
1614 Does not verify that VAL's type matches what the current
1615 function wants to return. */
1618 set_return_value (val)
1621 struct type *type = check_typedef (VALUE_TYPE (val));
1622 register enum type_code code = TYPE_CODE (type);
1624 if (code == TYPE_CODE_ERROR)
1625 error ("Function return type unknown.");
1627 if (code == TYPE_CODE_STRUCT
1628 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1629 error ("GDB does not support specifying a struct or union return value.");
1631 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1635 _initialize_values ()
1637 add_cmd ("convenience", no_class, show_convenience,
1638 "Debugger convenience (\"$foo\") variables.\n\
1639 These variables are created when you assign them values;\n\
1640 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1641 A few convenience variables are given values automatically:\n\
1642 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1643 \"$__\" holds the contents of the last address examined with \"x\".",
1646 add_cmd ("values", no_class, show_values,
1647 "Elements of value history around item number IDX (or last ten).",