1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
38 #include "gdb_string.h"
40 /* Flag indicating HP compilers were used; needed to correctly handle some
41 value operations with HP aCC code/runtime. */
42 extern int hp_som_som_object_present;
44 extern int overload_debug;
45 /* Local functions. */
47 static int typecmp (int staticp, struct type *t1[], struct value *t2[]);
49 static CORE_ADDR find_function_addr (struct value *, struct type **);
50 static struct value *value_arg_coerce (struct value *, struct type *, int);
53 static CORE_ADDR value_push (CORE_ADDR, struct value *);
55 static struct value *search_struct_field (char *, struct value *, int,
58 static struct value *search_struct_method (char *, struct value **,
60 int, int *, struct type *);
62 static int check_field_in (struct type *, const char *);
64 static CORE_ADDR allocate_space_in_inferior (int);
66 static struct value *cast_into_complex (struct type *, struct value *);
68 static struct fn_field *find_method_list (struct value ** argp, char *method,
69 int offset, int *static_memfuncp,
70 struct type *type, int *num_fns,
71 struct type **basetype,
74 void _initialize_valops (void);
76 /* Flag for whether we want to abandon failed expression evals by default. */
79 static int auto_abandon = 0;
82 int overload_resolution = 0;
84 /* This boolean tells what gdb should do if a signal is received while in
85 a function called from gdb (call dummy). If set, gdb unwinds the stack
86 and restore the context to what as it was before the call.
87 The default is to stop in the frame where the signal was received. */
89 int unwind_on_signal_p = 0;
93 /* Find the address of function name NAME in the inferior. */
96 find_function_in_inferior (char *name)
98 register struct symbol *sym;
99 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
102 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
104 error ("\"%s\" exists in this program but is not a function.",
107 return value_of_variable (sym, NULL);
111 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
116 type = lookup_pointer_type (builtin_type_char);
117 type = lookup_function_type (type);
118 type = lookup_pointer_type (type);
119 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
120 return value_from_pointer (type, maddr);
124 if (!target_has_execution)
125 error ("evaluation of this expression requires the target program to be active");
127 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
132 /* Allocate NBYTES of space in the inferior using the inferior's malloc
133 and return a value that is a pointer to the allocated space. */
136 value_allocate_space_in_inferior (int len)
138 struct value *blocklen;
139 struct value *val = find_function_in_inferior ("malloc");
141 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
142 val = call_function_by_hand (val, 1, &blocklen);
143 if (value_logical_not (val))
145 if (!target_has_execution)
146 error ("No memory available to program now: you need to start the target first");
148 error ("No memory available to program: call to malloc failed");
154 allocate_space_in_inferior (int len)
156 return value_as_long (value_allocate_space_in_inferior (len));
159 /* Cast value ARG2 to type TYPE and return as a value.
160 More general than a C cast: accepts any two types of the same length,
161 and if ARG2 is an lvalue it can be cast into anything at all. */
162 /* In C++, casts may change pointer or object representations. */
165 value_cast (struct type *type, struct value *arg2)
167 register enum type_code code1;
168 register enum type_code code2;
172 int convert_to_boolean = 0;
174 if (VALUE_TYPE (arg2) == type)
177 CHECK_TYPEDEF (type);
178 code1 = TYPE_CODE (type);
180 type2 = check_typedef (VALUE_TYPE (arg2));
182 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
183 is treated like a cast to (TYPE [N])OBJECT,
184 where N is sizeof(OBJECT)/sizeof(TYPE). */
185 if (code1 == TYPE_CODE_ARRAY)
187 struct type *element_type = TYPE_TARGET_TYPE (type);
188 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
189 if (element_length > 0
190 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
192 struct type *range_type = TYPE_INDEX_TYPE (type);
193 int val_length = TYPE_LENGTH (type2);
194 LONGEST low_bound, high_bound, new_length;
195 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
196 low_bound = 0, high_bound = 0;
197 new_length = val_length / element_length;
198 if (val_length % element_length != 0)
199 warning ("array element type size does not divide object size in cast");
200 /* FIXME-type-allocation: need a way to free this type when we are
202 range_type = create_range_type ((struct type *) NULL,
203 TYPE_TARGET_TYPE (range_type),
205 new_length + low_bound - 1);
206 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
207 element_type, range_type);
212 if (current_language->c_style_arrays
213 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
214 arg2 = value_coerce_array (arg2);
216 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
217 arg2 = value_coerce_function (arg2);
219 type2 = check_typedef (VALUE_TYPE (arg2));
220 COERCE_VARYING_ARRAY (arg2, type2);
221 code2 = TYPE_CODE (type2);
223 if (code1 == TYPE_CODE_COMPLEX)
224 return cast_into_complex (type, arg2);
225 if (code1 == TYPE_CODE_BOOL)
227 code1 = TYPE_CODE_INT;
228 convert_to_boolean = 1;
230 if (code1 == TYPE_CODE_CHAR)
231 code1 = TYPE_CODE_INT;
232 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
233 code2 = TYPE_CODE_INT;
235 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
236 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
238 if (code1 == TYPE_CODE_STRUCT
239 && code2 == TYPE_CODE_STRUCT
240 && TYPE_NAME (type) != 0)
242 /* Look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the object in addition to changing its type. */
245 struct value *v = search_struct_field (type_name_no_tag (type),
249 VALUE_TYPE (v) = type;
253 if (code1 == TYPE_CODE_FLT && scalar)
254 return value_from_double (type, value_as_double (arg2));
255 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
256 || code1 == TYPE_CODE_RANGE)
257 && (scalar || code2 == TYPE_CODE_PTR))
261 if (hp_som_som_object_present && /* if target compiled by HP aCC */
262 (code2 == TYPE_CODE_PTR))
265 struct value *retvalp;
267 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
269 /* With HP aCC, pointers to data members have a bias */
270 case TYPE_CODE_MEMBER:
271 retvalp = value_from_longest (type, value_as_long (arg2));
272 /* force evaluation */
273 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
274 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
277 /* While pointers to methods don't really point to a function */
278 case TYPE_CODE_METHOD:
279 error ("Pointers to methods not supported with HP aCC");
282 break; /* fall out and go to normal handling */
286 /* When we cast pointers to integers, we mustn't use
287 POINTER_TO_ADDRESS to find the address the pointer
288 represents, as value_as_long would. GDB should evaluate
289 expressions just as the compiler would --- and the compiler
290 sees a cast as a simple reinterpretation of the pointer's
292 if (code2 == TYPE_CODE_PTR)
293 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
294 TYPE_LENGTH (type2));
296 longest = value_as_long (arg2);
297 return value_from_longest (type, convert_to_boolean ?
298 (LONGEST) (longest ? 1 : 0) : longest);
300 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
301 code2 == TYPE_CODE_ENUM ||
302 code2 == TYPE_CODE_RANGE))
304 /* TYPE_LENGTH (type) is the length of a pointer, but we really
305 want the length of an address! -- we are really dealing with
306 addresses (i.e., gdb representations) not pointers (i.e.,
307 target representations) here.
309 This allows things like "print *(int *)0x01000234" to work
310 without printing a misleading message -- which would
311 otherwise occur when dealing with a target having two byte
312 pointers and four byte addresses. */
314 int addr_bit = TARGET_ADDR_BIT;
316 LONGEST longest = value_as_long (arg2);
317 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
319 if (longest >= ((LONGEST) 1 << addr_bit)
320 || longest <= -((LONGEST) 1 << addr_bit))
321 warning ("value truncated");
323 return value_from_longest (type, longest);
325 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
327 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
329 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
330 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
331 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
332 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
333 && !value_logical_not (arg2))
337 /* Look in the type of the source to see if it contains the
338 type of the target as a superclass. If so, we'll need to
339 offset the pointer rather than just change its type. */
340 if (TYPE_NAME (t1) != NULL)
342 v = search_struct_field (type_name_no_tag (t1),
343 value_ind (arg2), 0, t2, 1);
347 VALUE_TYPE (v) = type;
352 /* Look in the type of the target to see if it contains the
353 type of the source as a superclass. If so, we'll need to
354 offset the pointer rather than just change its type.
355 FIXME: This fails silently with virtual inheritance. */
356 if (TYPE_NAME (t2) != NULL)
358 v = search_struct_field (type_name_no_tag (t2),
359 value_zero (t1, not_lval), 0, t1, 1);
362 struct value *v2 = value_ind (arg2);
363 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
366 /* JYG: adjust the new pointer value and
368 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
369 VALUE_EMBEDDED_OFFSET (v2) = 0;
371 v2 = value_addr (v2);
372 VALUE_TYPE (v2) = type;
377 /* No superclass found, just fall through to change ptr type. */
379 VALUE_TYPE (arg2) = type;
380 arg2 = value_change_enclosing_type (arg2, type);
381 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
384 else if (chill_varying_type (type))
386 struct type *range1, *range2, *eltype1, *eltype2;
389 LONGEST low_bound, high_bound;
390 char *valaddr, *valaddr_data;
391 /* For lint warning about eltype2 possibly uninitialized: */
393 if (code2 == TYPE_CODE_BITSTRING)
394 error ("not implemented: converting bitstring to varying type");
395 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
396 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
397 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
398 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
399 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
400 error ("Invalid conversion to varying type");
401 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
402 range2 = TYPE_FIELD_TYPE (type2, 0);
403 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
406 count1 = high_bound - low_bound + 1;
407 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
408 count1 = -1, count2 = 0; /* To force error before */
410 count2 = high_bound - low_bound + 1;
412 error ("target varying type is too small");
413 val = allocate_value (type);
414 valaddr = VALUE_CONTENTS_RAW (val);
415 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
416 /* Set val's __var_length field to count2. */
417 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
419 /* Set the __var_data field to count2 elements copied from arg2. */
420 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
421 count2 * TYPE_LENGTH (eltype2));
422 /* Zero the rest of the __var_data field of val. */
423 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
424 (count1 - count2) * TYPE_LENGTH (eltype2));
427 else if (VALUE_LVAL (arg2) == lval_memory)
429 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
430 VALUE_BFD_SECTION (arg2));
432 else if (code1 == TYPE_CODE_VOID)
434 return value_zero (builtin_type_void, not_lval);
438 error ("Invalid cast.");
443 /* Create a value of type TYPE that is zero, and return it. */
446 value_zero (struct type *type, enum lval_type lv)
448 struct value *val = allocate_value (type);
450 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
451 VALUE_LVAL (val) = lv;
456 /* Return a value with type TYPE located at ADDR.
458 Call value_at only if the data needs to be fetched immediately;
459 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
460 value_at_lazy instead. value_at_lazy simply records the address of
461 the data and sets the lazy-evaluation-required flag. The lazy flag
462 is tested in the VALUE_CONTENTS macro, which is used if and when
463 the contents are actually required.
465 Note: value_at does *NOT* handle embedded offsets; perform such
466 adjustments before or after calling it. */
469 value_at (struct type *type, CORE_ADDR addr, asection *sect)
473 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
474 error ("Attempt to dereference a generic pointer.");
476 val = allocate_value (type);
478 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
480 VALUE_LVAL (val) = lval_memory;
481 VALUE_ADDRESS (val) = addr;
482 VALUE_BFD_SECTION (val) = sect;
487 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
490 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
494 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
495 error ("Attempt to dereference a generic pointer.");
497 val = allocate_value (type);
499 VALUE_LVAL (val) = lval_memory;
500 VALUE_ADDRESS (val) = addr;
501 VALUE_LAZY (val) = 1;
502 VALUE_BFD_SECTION (val) = sect;
507 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
508 if the current data for a variable needs to be loaded into
509 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
510 clears the lazy flag to indicate that the data in the buffer is valid.
512 If the value is zero-length, we avoid calling read_memory, which would
513 abort. We mark the value as fetched anyway -- all 0 bytes of it.
515 This function returns a value because it is used in the VALUE_CONTENTS
516 macro as part of an expression, where a void would not work. The
520 value_fetch_lazy (struct value *val)
522 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
523 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
525 struct type *type = VALUE_TYPE (val);
527 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
529 VALUE_LAZY (val) = 0;
534 /* Store the contents of FROMVAL into the location of TOVAL.
535 Return a new value with the location of TOVAL and contents of FROMVAL. */
538 value_assign (struct value *toval, struct value *fromval)
540 register struct type *type;
542 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
545 if (!toval->modifiable)
546 error ("Left operand of assignment is not a modifiable lvalue.");
550 type = VALUE_TYPE (toval);
551 if (VALUE_LVAL (toval) != lval_internalvar)
552 fromval = value_cast (type, fromval);
554 COERCE_ARRAY (fromval);
555 CHECK_TYPEDEF (type);
557 /* If TOVAL is a special machine register requiring conversion
558 of program values to a special raw format,
559 convert FROMVAL's contents now, with result in `raw_buffer',
560 and set USE_BUFFER to the number of bytes to write. */
562 if (VALUE_REGNO (toval) >= 0)
564 int regno = VALUE_REGNO (toval);
565 if (REGISTER_CONVERTIBLE (regno))
567 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
568 REGISTER_CONVERT_TO_RAW (fromtype, regno,
569 VALUE_CONTENTS (fromval), raw_buffer);
570 use_buffer = REGISTER_RAW_SIZE (regno);
574 switch (VALUE_LVAL (toval))
576 case lval_internalvar:
577 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
578 val = value_copy (VALUE_INTERNALVAR (toval)->value);
579 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
580 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
581 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
584 case lval_internalvar_component:
585 set_internalvar_component (VALUE_INTERNALVAR (toval),
586 VALUE_OFFSET (toval),
587 VALUE_BITPOS (toval),
588 VALUE_BITSIZE (toval),
595 CORE_ADDR changed_addr;
598 if (VALUE_BITSIZE (toval))
600 char buffer[sizeof (LONGEST)];
601 /* We assume that the argument to read_memory is in units of
602 host chars. FIXME: Is that correct? */
603 changed_len = (VALUE_BITPOS (toval)
604 + VALUE_BITSIZE (toval)
608 if (changed_len > (int) sizeof (LONGEST))
609 error ("Can't handle bitfields which don't fit in a %d bit word.",
610 sizeof (LONGEST) * HOST_CHAR_BIT);
612 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
613 buffer, changed_len);
614 modify_field (buffer, value_as_long (fromval),
615 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
616 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
617 dest_buffer = buffer;
621 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
622 changed_len = use_buffer;
623 dest_buffer = raw_buffer;
627 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
628 changed_len = TYPE_LENGTH (type);
629 dest_buffer = VALUE_CONTENTS (fromval);
632 write_memory (changed_addr, dest_buffer, changed_len);
633 if (memory_changed_hook)
634 memory_changed_hook (changed_addr, changed_len);
639 if (VALUE_BITSIZE (toval))
641 char buffer[sizeof (LONGEST)];
643 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
645 if (len > (int) sizeof (LONGEST))
646 error ("Can't handle bitfields in registers larger than %d bits.",
647 sizeof (LONGEST) * HOST_CHAR_BIT);
649 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
650 > len * HOST_CHAR_BIT)
651 /* Getting this right would involve being very careful about
653 error ("Can't assign to bitfields that cross register "
656 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
658 modify_field (buffer, value_as_long (fromval),
659 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
660 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
664 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
665 raw_buffer, use_buffer);
668 /* Do any conversion necessary when storing this type to more
669 than one register. */
670 #ifdef REGISTER_CONVERT_FROM_TYPE
671 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
672 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
673 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
674 raw_buffer, TYPE_LENGTH (type));
676 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
680 /* Assigning to the stack pointer, frame pointer, and other
681 (architecture and calling convention specific) registers may
682 cause the frame cache to be out of date. We just do this
683 on all assignments to registers for simplicity; I doubt the slowdown
685 reinit_frame_cache ();
688 case lval_reg_frame_relative:
690 /* value is stored in a series of registers in the frame
691 specified by the structure. Copy that value out, modify
692 it, and copy it back in. */
693 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
694 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
695 int byte_offset = VALUE_OFFSET (toval) % reg_size;
696 int reg_offset = VALUE_OFFSET (toval) / reg_size;
699 /* Make the buffer large enough in all cases. */
700 /* FIXME (alloca): Not safe for very large data types. */
701 char *buffer = (char *) alloca (amount_to_copy
703 + MAX_REGISTER_RAW_SIZE);
706 struct frame_info *frame;
708 /* Figure out which frame this is in currently. */
709 for (frame = get_current_frame ();
710 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
711 frame = get_prev_frame (frame))
715 error ("Value being assigned to is no longer active.");
717 amount_to_copy += (reg_size - amount_to_copy % reg_size);
720 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
722 amount_copied < amount_to_copy;
723 amount_copied += reg_size, regno++)
725 get_saved_register (buffer + amount_copied,
726 (int *) NULL, (CORE_ADDR *) NULL,
727 frame, regno, (enum lval_type *) NULL);
730 /* Modify what needs to be modified. */
731 if (VALUE_BITSIZE (toval))
732 modify_field (buffer + byte_offset,
733 value_as_long (fromval),
734 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
736 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
738 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
742 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
744 amount_copied < amount_to_copy;
745 amount_copied += reg_size, regno++)
751 /* Just find out where to put it. */
752 get_saved_register ((char *) NULL,
753 &optim, &addr, frame, regno, &lval);
756 error ("Attempt to assign to a value that was optimized out.");
757 if (lval == lval_memory)
758 write_memory (addr, buffer + amount_copied, reg_size);
759 else if (lval == lval_register)
760 write_register_bytes (addr, buffer + amount_copied, reg_size);
762 error ("Attempt to assign to an unmodifiable value.");
765 if (register_changed_hook)
766 register_changed_hook (-1);
772 error ("Left operand of assignment is not an lvalue.");
775 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
776 If the field is signed, and is negative, then sign extend. */
777 if ((VALUE_BITSIZE (toval) > 0)
778 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
780 LONGEST fieldval = value_as_long (fromval);
781 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
784 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
785 fieldval |= ~valmask;
787 fromval = value_from_longest (type, fieldval);
790 val = value_copy (toval);
791 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
793 VALUE_TYPE (val) = type;
794 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
795 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
796 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
801 /* Extend a value VAL to COUNT repetitions of its type. */
804 value_repeat (struct value *arg1, int count)
808 if (VALUE_LVAL (arg1) != lval_memory)
809 error ("Only values in memory can be extended with '@'.");
811 error ("Invalid number %d of repetitions.", count);
813 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
815 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
816 VALUE_CONTENTS_ALL_RAW (val),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
818 VALUE_LVAL (val) = lval_memory;
819 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
825 value_of_variable (struct symbol *var, struct block *b)
828 struct frame_info *frame = NULL;
831 frame = NULL; /* Use selected frame. */
832 else if (symbol_read_needs_frame (var))
834 frame = block_innermost_frame (b);
837 if (BLOCK_FUNCTION (b)
838 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
839 error ("No frame is currently executing in block %s.",
840 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
842 error ("No frame is currently executing in specified block");
846 val = read_var_value (var, frame);
848 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
853 /* Given a value which is an array, return a value which is a pointer to its
854 first element, regardless of whether or not the array has a nonzero lower
857 FIXME: A previous comment here indicated that this routine should be
858 substracting the array's lower bound. It's not clear to me that this
859 is correct. Given an array subscripting operation, it would certainly
860 work to do the adjustment here, essentially computing:
862 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
864 However I believe a more appropriate and logical place to account for
865 the lower bound is to do so in value_subscript, essentially computing:
867 (&array[0] + ((index - lowerbound) * sizeof array[0]))
869 As further evidence consider what would happen with operations other
870 than array subscripting, where the caller would get back a value that
871 had an address somewhere before the actual first element of the array,
872 and the information about the lower bound would be lost because of
873 the coercion to pointer type.
877 value_coerce_array (struct value *arg1)
879 register struct type *type = check_typedef (VALUE_TYPE (arg1));
881 if (VALUE_LVAL (arg1) != lval_memory)
882 error ("Attempt to take address of value not located in memory.");
884 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
885 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
888 /* Given a value which is a function, return a value which is a pointer
892 value_coerce_function (struct value *arg1)
894 struct value *retval;
896 if (VALUE_LVAL (arg1) != lval_memory)
897 error ("Attempt to take address of value not located in memory.");
899 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
900 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
901 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
905 /* Return a pointer value for the object for which ARG1 is the contents. */
908 value_addr (struct value *arg1)
912 struct type *type = check_typedef (VALUE_TYPE (arg1));
913 if (TYPE_CODE (type) == TYPE_CODE_REF)
915 /* Copy the value, but change the type from (T&) to (T*).
916 We keep the same location information, which is efficient,
917 and allows &(&X) to get the location containing the reference. */
918 arg2 = value_copy (arg1);
919 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
922 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
923 return value_coerce_function (arg1);
925 if (VALUE_LVAL (arg1) != lval_memory)
926 error ("Attempt to take address of value not located in memory.");
928 /* Get target memory address */
929 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
930 (VALUE_ADDRESS (arg1)
931 + VALUE_OFFSET (arg1)
932 + VALUE_EMBEDDED_OFFSET (arg1)));
934 /* This may be a pointer to a base subobject; so remember the
935 full derived object's type ... */
936 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
937 /* ... and also the relative position of the subobject in the full object */
938 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
939 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
943 /* Given a value of a pointer type, apply the C unary * operator to it. */
946 value_ind (struct value *arg1)
948 struct type *base_type;
953 base_type = check_typedef (VALUE_TYPE (arg1));
955 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
956 error ("not implemented: member types in value_ind");
958 /* Allow * on an integer so we can cast it to whatever we want.
959 This returns an int, which seems like the most C-like thing
960 to do. "long long" variables are rare enough that
961 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
962 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
963 return value_at (builtin_type_int,
964 (CORE_ADDR) value_as_long (arg1),
965 VALUE_BFD_SECTION (arg1));
966 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
968 struct type *enc_type;
969 /* We may be pointing to something embedded in a larger object */
970 /* Get the real type of the enclosing object */
971 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
972 enc_type = TYPE_TARGET_TYPE (enc_type);
973 /* Retrieve the enclosing object pointed to */
974 arg2 = value_at_lazy (enc_type,
975 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
976 VALUE_BFD_SECTION (arg1));
978 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
979 /* Add embedding info */
980 arg2 = value_change_enclosing_type (arg2, enc_type);
981 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
983 /* We may be pointing to an object of some derived type */
984 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
988 error ("Attempt to take contents of a non-pointer value.");
989 return 0; /* For lint -- never reached */
992 /* Pushing small parts of stack frames. */
994 /* Push one word (the size of object that a register holds). */
997 push_word (CORE_ADDR sp, ULONGEST word)
999 register int len = REGISTER_SIZE;
1000 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1002 store_unsigned_integer (buffer, len, word);
1003 if (INNER_THAN (1, 2))
1005 /* stack grows downward */
1007 write_memory (sp, buffer, len);
1011 /* stack grows upward */
1012 write_memory (sp, buffer, len);
1019 /* Push LEN bytes with data at BUFFER. */
1022 push_bytes (CORE_ADDR sp, char *buffer, int len)
1024 if (INNER_THAN (1, 2))
1026 /* stack grows downward */
1028 write_memory (sp, buffer, len);
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1040 #ifndef PARM_BOUNDARY
1041 #define PARM_BOUNDARY (0)
1044 /* Push onto the stack the specified value VALUE. Pad it correctly for
1045 it to be an argument to a function. */
1048 value_push (register CORE_ADDR sp, struct value *arg)
1050 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1051 register int container_len = len;
1052 register int offset;
1054 /* How big is the container we're going to put this value in? */
1056 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1057 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1059 /* Are we going to put it at the high or low end of the container? */
1060 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1061 offset = container_len - len;
1065 if (INNER_THAN (1, 2))
1067 /* stack grows downward */
1068 sp -= container_len;
1069 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1073 /* stack grows upward */
1074 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1075 sp += container_len;
1081 #ifndef PUSH_ARGUMENTS
1082 #define PUSH_ARGUMENTS default_push_arguments
1086 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1087 int struct_return, CORE_ADDR struct_addr)
1089 /* ASSERT ( !struct_return); */
1091 for (i = nargs - 1; i >= 0; i--)
1092 sp = value_push (sp, args[i]);
1097 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1099 How you should pass arguments to a function depends on whether it
1100 was defined in K&R style or prototype style. If you define a
1101 function using the K&R syntax that takes a `float' argument, then
1102 callers must pass that argument as a `double'. If you define the
1103 function using the prototype syntax, then you must pass the
1104 argument as a `float', with no promotion.
1106 Unfortunately, on certain older platforms, the debug info doesn't
1107 indicate reliably how each function was defined. A function type's
1108 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1109 defined in prototype style. When calling a function whose
1110 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1111 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1113 For modern targets, it is proper to assume that, if the prototype
1114 flag is clear, that can be trusted: `float' arguments should be
1115 promoted to `double'. You should register the function
1116 `standard_coerce_float_to_double' to get this behavior.
1118 For some older targets, if the prototype flag is clear, that
1119 doesn't tell us anything. So we guess that, if we don't have a
1120 type for the formal parameter (i.e., the first argument to
1121 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1122 otherwise, we should leave it alone. The function
1123 `default_coerce_float_to_double' provides this behavior; it is the
1124 default value, for compatibility with older configurations. */
1126 default_coerce_float_to_double (struct type *formal, struct type *actual)
1128 return formal == NULL;
1133 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1139 /* Perform the standard coercions that are specified
1140 for arguments to be passed to C functions.
1142 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1143 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1145 static struct value *
1146 value_arg_coerce (struct value *arg, struct type *param_type,
1149 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1150 register struct type *type
1151 = param_type ? check_typedef (param_type) : arg_type;
1153 switch (TYPE_CODE (type))
1156 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1158 arg = value_addr (arg);
1159 VALUE_TYPE (arg) = param_type;
1164 case TYPE_CODE_CHAR:
1165 case TYPE_CODE_BOOL:
1166 case TYPE_CODE_ENUM:
1167 /* If we don't have a prototype, coerce to integer type if necessary. */
1170 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1171 type = builtin_type_int;
1173 /* Currently all target ABIs require at least the width of an integer
1174 type for an argument. We may have to conditionalize the following
1175 type coercion for future targets. */
1176 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1177 type = builtin_type_int;
1180 /* FIXME: We should always convert floats to doubles in the
1181 non-prototyped case. As many debugging formats include
1182 no information about prototyping, we have to live with
1183 COERCE_FLOAT_TO_DOUBLE for now. */
1184 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1186 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1187 type = builtin_type_double;
1188 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1189 type = builtin_type_long_double;
1192 case TYPE_CODE_FUNC:
1193 type = lookup_pointer_type (type);
1195 case TYPE_CODE_ARRAY:
1196 if (current_language->c_style_arrays)
1197 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1199 case TYPE_CODE_UNDEF:
1201 case TYPE_CODE_STRUCT:
1202 case TYPE_CODE_UNION:
1203 case TYPE_CODE_VOID:
1205 case TYPE_CODE_RANGE:
1206 case TYPE_CODE_STRING:
1207 case TYPE_CODE_BITSTRING:
1208 case TYPE_CODE_ERROR:
1209 case TYPE_CODE_MEMBER:
1210 case TYPE_CODE_METHOD:
1211 case TYPE_CODE_COMPLEX:
1216 return value_cast (type, arg);
1219 /* Determine a function's address and its return type from its value.
1220 Calls error() if the function is not valid for calling. */
1223 find_function_addr (struct value *function, struct type **retval_type)
1225 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1226 register enum type_code code = TYPE_CODE (ftype);
1227 struct type *value_type;
1230 /* If it's a member function, just look at the function
1233 /* Determine address to call. */
1234 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1236 funaddr = VALUE_ADDRESS (function);
1237 value_type = TYPE_TARGET_TYPE (ftype);
1239 else if (code == TYPE_CODE_PTR)
1241 funaddr = value_as_address (function);
1242 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1243 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1244 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1246 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1247 value_type = TYPE_TARGET_TYPE (ftype);
1250 value_type = builtin_type_int;
1252 else if (code == TYPE_CODE_INT)
1254 /* Handle the case of functions lacking debugging info.
1255 Their values are characters since their addresses are char */
1256 if (TYPE_LENGTH (ftype) == 1)
1257 funaddr = value_as_address (value_addr (function));
1259 /* Handle integer used as address of a function. */
1260 funaddr = (CORE_ADDR) value_as_long (function);
1262 value_type = builtin_type_int;
1265 error ("Invalid data type for function to be called.");
1267 *retval_type = value_type;
1271 /* All this stuff with a dummy frame may seem unnecessarily complicated
1272 (why not just save registers in GDB?). The purpose of pushing a dummy
1273 frame which looks just like a real frame is so that if you call a
1274 function and then hit a breakpoint (get a signal, etc), "backtrace"
1275 will look right. Whether the backtrace needs to actually show the
1276 stack at the time the inferior function was called is debatable, but
1277 it certainly needs to not display garbage. So if you are contemplating
1278 making dummy frames be different from normal frames, consider that. */
1280 /* Perform a function call in the inferior.
1281 ARGS is a vector of values of arguments (NARGS of them).
1282 FUNCTION is a value, the function to be called.
1283 Returns a value representing what the function returned.
1284 May fail to return, if a breakpoint or signal is hit
1285 during the execution of the function.
1287 ARGS is modified to contain coerced values. */
1289 static struct value *
1290 hand_function_call (struct value *function, int nargs, struct value **args)
1292 register CORE_ADDR sp;
1296 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1297 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1298 and remove any extra bytes which might exist because ULONGEST is
1299 bigger than REGISTER_SIZE.
1301 NOTE: This is pretty wierd, as the call dummy is actually a
1302 sequence of instructions. But CISC machines will have
1303 to pack the instructions into REGISTER_SIZE units (and
1304 so will RISC machines for which INSTRUCTION_SIZE is not
1307 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1308 target byte order. */
1310 static ULONGEST *dummy;
1314 struct type *value_type;
1315 unsigned char struct_return;
1316 CORE_ADDR struct_addr = 0;
1317 struct inferior_status *inf_status;
1318 struct cleanup *old_chain;
1320 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1322 struct type *param_type = NULL;
1323 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1324 int n_method_args = 0;
1326 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1327 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1328 dummy1 = alloca (sizeof_dummy1);
1329 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1331 if (!target_has_execution)
1334 inf_status = save_inferior_status (1);
1335 old_chain = make_cleanup_restore_inferior_status (inf_status);
1337 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1338 (and POP_FRAME for restoring them). (At least on most machines)
1339 they are saved on the stack in the inferior. */
1342 old_sp = sp = read_sp ();
1344 if (INNER_THAN (1, 2))
1346 /* Stack grows down */
1347 sp -= sizeof_dummy1;
1352 /* Stack grows up */
1354 sp += sizeof_dummy1;
1357 funaddr = find_function_addr (function, &value_type);
1358 CHECK_TYPEDEF (value_type);
1361 struct block *b = block_for_pc (funaddr);
1362 /* If compiled without -g, assume GCC 2. */
1363 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1366 /* Are we returning a value using a structure return or a normal
1369 struct_return = using_struct_return (function, funaddr, value_type,
1372 /* Create a call sequence customized for this function
1373 and the number of arguments for it. */
1374 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1375 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1377 (ULONGEST) dummy[i]);
1379 #ifdef GDB_TARGET_IS_HPPA
1380 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1381 value_type, using_gcc);
1383 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1384 value_type, using_gcc);
1388 if (CALL_DUMMY_LOCATION == ON_STACK)
1390 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1393 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1395 /* Convex Unix prohibits executing in the stack segment. */
1396 /* Hope there is empty room at the top of the text segment. */
1397 extern CORE_ADDR text_end;
1398 static int checked = 0;
1400 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1401 if (read_memory_integer (start_sp, 1) != 0)
1402 error ("text segment full -- no place to put call");
1405 real_pc = text_end - sizeof_dummy1;
1406 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1409 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1411 extern CORE_ADDR text_end;
1415 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1417 error ("Cannot write text segment -- call_function failed");
1420 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1426 sp = old_sp; /* It really is used, for some ifdef's... */
1429 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1432 while (TYPE_CODE (TYPE_ARG_TYPES (ftype)[i]) != TYPE_CODE_VOID)
1436 error ("too few arguments in method call");
1438 else if (nargs < TYPE_NFIELDS (ftype))
1439 error ("too few arguments in function call");
1441 for (i = nargs - 1; i >= 0; i--)
1443 /* Assume that methods are always prototyped, unless they are off the
1444 end (which we should only be allowing if there is a ``...'').
1446 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1448 if (i < n_method_args)
1449 args[i] = value_arg_coerce (args[i], TYPE_ARG_TYPES (ftype)[i], 1);
1451 args[i] = value_arg_coerce (args[i], NULL, 0);
1454 /* If we're off the end of the known arguments, do the standard
1455 promotions. FIXME: if we had a prototype, this should only
1456 be allowed if ... were present. */
1457 if (i >= TYPE_NFIELDS (ftype))
1458 args[i] = value_arg_coerce (args[i], NULL, 0);
1462 param_type = TYPE_FIELD_TYPE (ftype, i);
1463 args[i] = value_arg_coerce (args[i], param_type, TYPE_PROTOTYPED (ftype));
1466 /*elz: this code is to handle the case in which the function to be called
1467 has a pointer to function as parameter and the corresponding actual argument
1468 is the address of a function and not a pointer to function variable.
1469 In aCC compiled code, the calls through pointers to functions (in the body
1470 of the function called by hand) are made via $$dyncall_external which
1471 requires some registers setting, this is taken care of if we call
1472 via a function pointer variable, but not via a function address.
1473 In cc this is not a problem. */
1477 /* if this parameter is a pointer to function */
1478 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1479 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1480 /* elz: FIXME here should go the test about the compiler used
1481 to compile the target. We want to issue the error
1482 message only if the compiler used was HP's aCC.
1483 If we used HP's cc, then there is no problem and no need
1484 to return at this point */
1485 if (using_gcc == 0) /* && compiler == aCC */
1486 /* go see if the actual parameter is a variable of type
1487 pointer to function or just a function */
1488 if (args[i]->lval == not_lval)
1491 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1493 You cannot use function <%s> as argument. \n\
1494 You must use a pointer to function type variable. Command ignored.", arg_name);
1498 if (REG_STRUCT_HAS_ADDR_P ())
1500 /* This is a machine like the sparc, where we may need to pass a
1501 pointer to the structure, not the structure itself. */
1502 for (i = nargs - 1; i >= 0; i--)
1504 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1505 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1506 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1507 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1508 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1509 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1510 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1511 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1512 && TYPE_LENGTH (arg_type) > 8)
1514 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1517 int len; /* = TYPE_LENGTH (arg_type); */
1519 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1520 len = TYPE_LENGTH (arg_type);
1522 if (STACK_ALIGN_P ())
1523 /* MVS 11/22/96: I think at least some of this
1524 stack_align code is really broken. Better to let
1525 PUSH_ARGUMENTS adjust the stack in a target-defined
1527 aligned_len = STACK_ALIGN (len);
1530 if (INNER_THAN (1, 2))
1532 /* stack grows downward */
1534 /* ... so the address of the thing we push is the
1535 stack pointer after we push it. */
1540 /* The stack grows up, so the address of the thing
1541 we push is the stack pointer before we push it. */
1545 /* Push the structure. */
1546 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1547 /* The value we're going to pass is the address of the
1548 thing we just pushed. */
1549 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1551 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1558 /* Reserve space for the return structure to be written on the
1559 stack, if necessary */
1563 int len = TYPE_LENGTH (value_type);
1564 if (STACK_ALIGN_P ())
1565 /* MVS 11/22/96: I think at least some of this stack_align
1566 code is really broken. Better to let PUSH_ARGUMENTS adjust
1567 the stack in a target-defined manner. */
1568 len = STACK_ALIGN (len);
1569 if (INNER_THAN (1, 2))
1571 /* stack grows downward */
1577 /* stack grows upward */
1583 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1584 on other architectures. This is because all the alignment is
1585 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1586 in hppa_push_arguments */
1587 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1589 /* MVS 11/22/96: I think at least some of this stack_align code
1590 is really broken. Better to let PUSH_ARGUMENTS adjust the
1591 stack in a target-defined manner. */
1592 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1594 /* If stack grows down, we must leave a hole at the top. */
1597 for (i = nargs - 1; i >= 0; i--)
1598 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1599 if (CALL_DUMMY_STACK_ADJUST_P)
1600 len += CALL_DUMMY_STACK_ADJUST;
1601 sp -= STACK_ALIGN (len) - len;
1605 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1607 if (PUSH_RETURN_ADDRESS_P ())
1608 /* for targets that use no CALL_DUMMY */
1609 /* There are a number of targets now which actually don't write
1610 any CALL_DUMMY instructions into the target, but instead just
1611 save the machine state, push the arguments, and jump directly
1612 to the callee function. Since this doesn't actually involve
1613 executing a JSR/BSR instruction, the return address must be set
1614 up by hand, either by pushing onto the stack or copying into a
1615 return-address register as appropriate. Formerly this has been
1616 done in PUSH_ARGUMENTS, but that's overloading its
1617 functionality a bit, so I'm making it explicit to do it here. */
1618 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1620 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1622 /* If stack grows up, we must leave a hole at the bottom, note
1623 that sp already has been advanced for the arguments! */
1624 if (CALL_DUMMY_STACK_ADJUST_P)
1625 sp += CALL_DUMMY_STACK_ADJUST;
1626 sp = STACK_ALIGN (sp);
1629 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1631 /* MVS 11/22/96: I think at least some of this stack_align code is
1632 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1633 a target-defined manner. */
1634 if (CALL_DUMMY_STACK_ADJUST_P)
1635 if (INNER_THAN (1, 2))
1637 /* stack grows downward */
1638 sp -= CALL_DUMMY_STACK_ADJUST;
1641 /* Store the address at which the structure is supposed to be
1642 written. Note that this (and the code which reserved the space
1643 above) assumes that gcc was used to compile this function. Since
1644 it doesn't cost us anything but space and if the function is pcc
1645 it will ignore this value, we will make that assumption.
1647 Also note that on some machines (like the sparc) pcc uses a
1648 convention like gcc's. */
1651 STORE_STRUCT_RETURN (struct_addr, sp);
1653 /* Write the stack pointer. This is here because the statements above
1654 might fool with it. On SPARC, this write also stores the register
1655 window into the right place in the new stack frame, which otherwise
1656 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1659 if (SAVE_DUMMY_FRAME_TOS_P ())
1660 SAVE_DUMMY_FRAME_TOS (sp);
1663 char *retbuf = (char*) alloca (REGISTER_BYTES);
1665 struct symbol *symbol;
1668 symbol = find_pc_function (funaddr);
1671 name = SYMBOL_SOURCE_NAME (symbol);
1675 /* Try the minimal symbols. */
1676 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1680 name = SYMBOL_SOURCE_NAME (msymbol);
1686 sprintf (format, "at %s", local_hex_format ());
1688 /* FIXME-32x64: assumes funaddr fits in a long. */
1689 sprintf (name, format, (unsigned long) funaddr);
1692 /* Execute the stack dummy routine, calling FUNCTION.
1693 When it is done, discard the empty frame
1694 after storing the contents of all regs into retbuf. */
1695 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1699 /* We stopped inside the FUNCTION because of a random signal.
1700 Further execution of the FUNCTION is not allowed. */
1702 if (unwind_on_signal_p)
1704 /* The user wants the context restored. */
1706 /* We must get back to the frame we were before the dummy call. */
1709 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1710 a C++ name with arguments and stuff. */
1712 The program being debugged was signaled while in a function called from GDB.\n\
1713 GDB has restored the context to what it was before the call.\n\
1714 To change this behavior use \"set unwindonsignal off\"\n\
1715 Evaluation of the expression containing the function (%s) will be abandoned.",
1720 /* The user wants to stay in the frame where we stopped (default).*/
1722 /* If we did the cleanups, we would print a spurious error
1723 message (Unable to restore previously selected frame),
1724 would write the registers from the inf_status (which is
1725 wrong), and would do other wrong things. */
1726 discard_cleanups (old_chain);
1727 discard_inferior_status (inf_status);
1729 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1730 a C++ name with arguments and stuff. */
1732 The program being debugged was signaled while in a function called from GDB.\n\
1733 GDB remains in the frame where the signal was received.\n\
1734 To change this behavior use \"set unwindonsignal on\"\n\
1735 Evaluation of the expression containing the function (%s) will be abandoned.",
1742 /* We hit a breakpoint inside the FUNCTION. */
1744 /* If we did the cleanups, we would print a spurious error
1745 message (Unable to restore previously selected frame),
1746 would write the registers from the inf_status (which is
1747 wrong), and would do other wrong things. */
1748 discard_cleanups (old_chain);
1749 discard_inferior_status (inf_status);
1751 /* The following error message used to say "The expression
1752 which contained the function call has been discarded." It
1753 is a hard concept to explain in a few words. Ideally, GDB
1754 would be able to resume evaluation of the expression when
1755 the function finally is done executing. Perhaps someday
1756 this will be implemented (it would not be easy). */
1758 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1759 a C++ name with arguments and stuff. */
1761 The program being debugged stopped while in a function called from GDB.\n\
1762 When the function (%s) is done executing, GDB will silently\n\
1763 stop (instead of continuing to evaluate the expression containing\n\
1764 the function call).", name);
1767 /* If we get here the called FUNCTION run to completion. */
1768 do_cleanups (old_chain);
1770 /* Figure out the value returned by the function. */
1771 /* elz: I defined this new macro for the hppa architecture only.
1772 this gives us a way to get the value returned by the function from the stack,
1773 at the same address we told the function to put it.
1774 We cannot assume on the pa that r28 still contains the address of the returned
1775 structure. Usually this will be overwritten by the callee.
1776 I don't know about other architectures, so I defined this macro
1779 #ifdef VALUE_RETURNED_FROM_STACK
1781 return (struct value *) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1784 return value_being_returned (value_type, retbuf, struct_return);
1789 call_function_by_hand (struct value *function, int nargs, struct value **args)
1793 return hand_function_call (function, nargs, args);
1797 error ("Cannot invoke functions on this machine.");
1803 /* Create a value for an array by allocating space in the inferior, copying
1804 the data into that space, and then setting up an array value.
1806 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1807 populated from the values passed in ELEMVEC.
1809 The element type of the array is inherited from the type of the
1810 first element, and all elements must have the same size (though we
1811 don't currently enforce any restriction on their types). */
1814 value_array (int lowbound, int highbound, struct value **elemvec)
1818 unsigned int typelength;
1820 struct type *rangetype;
1821 struct type *arraytype;
1824 /* Validate that the bounds are reasonable and that each of the elements
1825 have the same size. */
1827 nelem = highbound - lowbound + 1;
1830 error ("bad array bounds (%d, %d)", lowbound, highbound);
1832 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1833 for (idx = 1; idx < nelem; idx++)
1835 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1837 error ("array elements must all be the same size");
1841 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1842 lowbound, highbound);
1843 arraytype = create_array_type ((struct type *) NULL,
1844 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1846 if (!current_language->c_style_arrays)
1848 val = allocate_value (arraytype);
1849 for (idx = 0; idx < nelem; idx++)
1851 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1852 VALUE_CONTENTS_ALL (elemvec[idx]),
1855 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1859 /* Allocate space to store the array in the inferior, and then initialize
1860 it by copying in each element. FIXME: Is it worth it to create a
1861 local buffer in which to collect each value and then write all the
1862 bytes in one operation? */
1864 addr = allocate_space_in_inferior (nelem * typelength);
1865 for (idx = 0; idx < nelem; idx++)
1867 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1871 /* Create the array type and set up an array value to be evaluated lazily. */
1873 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1877 /* Create a value for a string constant by allocating space in the inferior,
1878 copying the data into that space, and returning the address with type
1879 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1881 Note that string types are like array of char types with a lower bound of
1882 zero and an upper bound of LEN - 1. Also note that the string may contain
1883 embedded null bytes. */
1886 value_string (char *ptr, int len)
1889 int lowbound = current_language->string_lower_bound;
1890 struct type *rangetype = create_range_type ((struct type *) NULL,
1892 lowbound, len + lowbound - 1);
1893 struct type *stringtype
1894 = create_string_type ((struct type *) NULL, rangetype);
1897 if (current_language->c_style_arrays == 0)
1899 val = allocate_value (stringtype);
1900 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1905 /* Allocate space to store the string in the inferior, and then
1906 copy LEN bytes from PTR in gdb to that address in the inferior. */
1908 addr = allocate_space_in_inferior (len);
1909 write_memory (addr, ptr, len);
1911 val = value_at_lazy (stringtype, addr, NULL);
1916 value_bitstring (char *ptr, int len)
1919 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1921 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1922 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1923 val = allocate_value (type);
1924 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1928 /* See if we can pass arguments in T2 to a function which takes arguments
1929 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1930 arguments need coercion of some sort, then the coerced values are written
1931 into T2. Return value is 0 if the arguments could be matched, or the
1932 position at which they differ if not.
1934 STATICP is nonzero if the T1 argument list came from a
1935 static member function.
1937 For non-static member functions, we ignore the first argument,
1938 which is the type of the instance variable. This is because we want
1939 to handle calls with objects from derived classes. This is not
1940 entirely correct: we should actually check to make sure that a
1941 requested operation is type secure, shouldn't we? FIXME. */
1944 typecmp (int staticp, struct type *t1[], struct value *t2[])
1950 if (staticp && t1 == 0)
1954 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1956 if (t1[!staticp] == 0)
1958 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1960 struct type *tt1, *tt2;
1963 tt1 = check_typedef (t1[i]);
1964 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1965 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1966 /* We should be doing hairy argument matching, as below. */
1967 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1969 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1970 t2[i] = value_coerce_array (t2[i]);
1972 t2[i] = value_addr (t2[i]);
1976 /* djb - 20000715 - Until the new type structure is in the
1977 place, and we can attempt things like implicit conversions,
1978 we need to do this so you can take something like a map<const
1979 char *>, and properly access map["hello"], because the
1980 argument to [] will be a reference to a pointer to a char,
1981 and the argument will be a pointer to a char. */
1982 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1983 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1985 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1987 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1988 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1989 TYPE_CODE(tt2) == TYPE_CODE_REF)
1991 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1993 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1995 /* Array to pointer is a `trivial conversion' according to the ARM. */
1997 /* We should be doing much hairier argument matching (see section 13.2
1998 of the ARM), but as a quick kludge, just check for the same type
2000 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2005 return t2[i] ? i + 1 : 0;
2008 /* Helper function used by value_struct_elt to recurse through baseclasses.
2009 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2010 and search in it assuming it has (class) type TYPE.
2011 If found, return value, else return NULL.
2013 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2014 look for a baseclass named NAME. */
2016 static struct value *
2017 search_struct_field (char *name, struct value *arg1, int offset,
2018 register struct type *type, int looking_for_baseclass)
2021 int nbases = TYPE_N_BASECLASSES (type);
2023 CHECK_TYPEDEF (type);
2025 if (!looking_for_baseclass)
2026 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2028 char *t_field_name = TYPE_FIELD_NAME (type, i);
2030 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2033 if (TYPE_FIELD_STATIC (type, i))
2034 v = value_static_field (type, i);
2036 v = value_primitive_field (arg1, offset, i, type);
2038 error ("there is no field named %s", name);
2043 && (t_field_name[0] == '\0'
2044 || (TYPE_CODE (type) == TYPE_CODE_UNION
2045 && (strcmp_iw (t_field_name, "else") == 0))))
2047 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2048 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2049 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2051 /* Look for a match through the fields of an anonymous union,
2052 or anonymous struct. C++ provides anonymous unions.
2054 In the GNU Chill implementation of variant record types,
2055 each <alternative field> has an (anonymous) union type,
2056 each member of the union represents a <variant alternative>.
2057 Each <variant alternative> is represented as a struct,
2058 with a member for each <variant field>. */
2061 int new_offset = offset;
2063 /* This is pretty gross. In G++, the offset in an anonymous
2064 union is relative to the beginning of the enclosing struct.
2065 In the GNU Chill implementation of variant records,
2066 the bitpos is zero in an anonymous union field, so we
2067 have to add the offset of the union here. */
2068 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2069 || (TYPE_NFIELDS (field_type) > 0
2070 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2071 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2073 v = search_struct_field (name, arg1, new_offset, field_type,
2074 looking_for_baseclass);
2081 for (i = 0; i < nbases; i++)
2084 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2085 /* If we are looking for baseclasses, this is what we get when we
2086 hit them. But it could happen that the base part's member name
2087 is not yet filled in. */
2088 int found_baseclass = (looking_for_baseclass
2089 && TYPE_BASECLASS_NAME (type, i) != NULL
2090 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2092 if (BASETYPE_VIA_VIRTUAL (type, i))
2095 struct value *v2 = allocate_value (basetype);
2097 boffset = baseclass_offset (type, i,
2098 VALUE_CONTENTS (arg1) + offset,
2099 VALUE_ADDRESS (arg1)
2100 + VALUE_OFFSET (arg1) + offset);
2102 error ("virtual baseclass botch");
2104 /* The virtual base class pointer might have been clobbered by the
2105 user program. Make sure that it still points to a valid memory
2109 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2111 CORE_ADDR base_addr;
2113 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2114 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2115 TYPE_LENGTH (basetype)) != 0)
2116 error ("virtual baseclass botch");
2117 VALUE_LVAL (v2) = lval_memory;
2118 VALUE_ADDRESS (v2) = base_addr;
2122 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2123 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2124 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2125 if (VALUE_LAZY (arg1))
2126 VALUE_LAZY (v2) = 1;
2128 memcpy (VALUE_CONTENTS_RAW (v2),
2129 VALUE_CONTENTS_RAW (arg1) + boffset,
2130 TYPE_LENGTH (basetype));
2133 if (found_baseclass)
2135 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2136 looking_for_baseclass);
2138 else if (found_baseclass)
2139 v = value_primitive_field (arg1, offset, i, type);
2141 v = search_struct_field (name, arg1,
2142 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2143 basetype, looking_for_baseclass);
2151 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2152 * in an object pointed to by VALADDR (on the host), assumed to be of
2153 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2154 * looking (in case VALADDR is the contents of an enclosing object).
2156 * This routine recurses on the primary base of the derived class because
2157 * the virtual base entries of the primary base appear before the other
2158 * virtual base entries.
2160 * If the virtual base is not found, a negative integer is returned.
2161 * The magnitude of the negative integer is the number of entries in
2162 * the virtual table to skip over (entries corresponding to various
2163 * ancestral classes in the chain of primary bases).
2165 * Important: This assumes the HP / Taligent C++ runtime
2166 * conventions. Use baseclass_offset() instead to deal with g++
2170 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2171 int offset, int *boffset_p, int *skip_p)
2173 int boffset; /* offset of virtual base */
2174 int index; /* displacement to use in virtual table */
2178 CORE_ADDR vtbl; /* the virtual table pointer */
2179 struct type *pbc; /* the primary base class */
2181 /* Look for the virtual base recursively in the primary base, first.
2182 * This is because the derived class object and its primary base
2183 * subobject share the primary virtual table. */
2186 pbc = TYPE_PRIMARY_BASE (type);
2189 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2192 *boffset_p = boffset;
2201 /* Find the index of the virtual base according to HP/Taligent
2202 runtime spec. (Depth-first, left-to-right.) */
2203 index = virtual_base_index_skip_primaries (basetype, type);
2207 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2212 /* pai: FIXME -- 32x64 possible problem */
2213 /* First word (4 bytes) in object layout is the vtable pointer */
2214 vtbl = *(CORE_ADDR *) (valaddr + offset);
2216 /* Before the constructor is invoked, things are usually zero'd out. */
2218 error ("Couldn't find virtual table -- object may not be constructed yet.");
2221 /* Find virtual base's offset -- jump over entries for primary base
2222 * ancestors, then use the index computed above. But also adjust by
2223 * HP_ACC_VBASE_START for the vtable slots before the start of the
2224 * virtual base entries. Offset is negative -- virtual base entries
2225 * appear _before_ the address point of the virtual table. */
2227 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2230 /* epstein : FIXME -- added param for overlay section. May not be correct */
2231 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2232 boffset = value_as_long (vp);
2234 *boffset_p = boffset;
2239 /* Helper function used by value_struct_elt to recurse through baseclasses.
2240 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2241 and search in it assuming it has (class) type TYPE.
2242 If found, return value, else if name matched and args not return (value)-1,
2243 else return NULL. */
2245 static struct value *
2246 search_struct_method (char *name, struct value **arg1p,
2247 struct value **args, int offset,
2248 int *static_memfuncp, register struct type *type)
2252 int name_matched = 0;
2253 char dem_opname[64];
2255 CHECK_TYPEDEF (type);
2256 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2258 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2259 /* FIXME! May need to check for ARM demangling here */
2260 if (strncmp (t_field_name, "__", 2) == 0 ||
2261 strncmp (t_field_name, "op", 2) == 0 ||
2262 strncmp (t_field_name, "type", 4) == 0)
2264 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2265 t_field_name = dem_opname;
2266 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2267 t_field_name = dem_opname;
2269 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2271 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2272 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2275 if (j > 0 && args == 0)
2276 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2279 if (TYPE_FN_FIELD_STUB (f, j))
2280 check_stub_method (type, i, j);
2281 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2282 TYPE_FN_FIELD_ARGS (f, j), args))
2284 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2285 return value_virtual_fn_field (arg1p, f, j, type, offset);
2286 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2287 *static_memfuncp = 1;
2288 v = value_fn_field (arg1p, f, j, type, offset);
2297 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2301 if (BASETYPE_VIA_VIRTUAL (type, i))
2303 if (TYPE_HAS_VTABLE (type))
2305 /* HP aCC compiled type, search for virtual base offset
2306 according to HP/Taligent runtime spec. */
2308 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2309 VALUE_CONTENTS_ALL (*arg1p),
2310 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2311 &base_offset, &skip);
2313 error ("Virtual base class offset not found in vtable");
2317 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2320 /* The virtual base class pointer might have been clobbered by the
2321 user program. Make sure that it still points to a valid memory
2324 if (offset < 0 || offset >= TYPE_LENGTH (type))
2326 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2327 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2328 + VALUE_OFFSET (*arg1p) + offset,
2330 TYPE_LENGTH (baseclass)) != 0)
2331 error ("virtual baseclass botch");
2334 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2337 baseclass_offset (type, i, base_valaddr,
2338 VALUE_ADDRESS (*arg1p)
2339 + VALUE_OFFSET (*arg1p) + offset);
2340 if (base_offset == -1)
2341 error ("virtual baseclass botch");
2346 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2348 v = search_struct_method (name, arg1p, args, base_offset + offset,
2349 static_memfuncp, TYPE_BASECLASS (type, i));
2350 if (v == (struct value *) - 1)
2356 /* FIXME-bothner: Why is this commented out? Why is it here? */
2357 /* *arg1p = arg1_tmp; */
2362 return (struct value *) - 1;
2367 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2368 extract the component named NAME from the ultimate target structure/union
2369 and return it as a value with its appropriate type.
2370 ERR is used in the error message if *ARGP's type is wrong.
2372 C++: ARGS is a list of argument types to aid in the selection of
2373 an appropriate method. Also, handle derived types.
2375 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2376 where the truthvalue of whether the function that was resolved was
2377 a static member function or not is stored.
2379 ERR is an error message to be printed in case the field is not found. */
2382 value_struct_elt (struct value **argp, struct value **args,
2383 char *name, int *static_memfuncp, char *err)
2385 register struct type *t;
2388 COERCE_ARRAY (*argp);
2390 t = check_typedef (VALUE_TYPE (*argp));
2392 /* Follow pointers until we get to a non-pointer. */
2394 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2396 *argp = value_ind (*argp);
2397 /* Don't coerce fn pointer to fn and then back again! */
2398 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2399 COERCE_ARRAY (*argp);
2400 t = check_typedef (VALUE_TYPE (*argp));
2403 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2404 error ("not implemented: member type in value_struct_elt");
2406 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2407 && TYPE_CODE (t) != TYPE_CODE_UNION)
2408 error ("Attempt to extract a component of a value that is not a %s.", err);
2410 /* Assume it's not, unless we see that it is. */
2411 if (static_memfuncp)
2412 *static_memfuncp = 0;
2416 /* if there are no arguments ...do this... */
2418 /* Try as a field first, because if we succeed, there
2419 is less work to be done. */
2420 v = search_struct_field (name, *argp, 0, t, 0);
2424 /* C++: If it was not found as a data field, then try to
2425 return it as a pointer to a method. */
2427 if (destructor_name_p (name, t))
2428 error ("Cannot get value of destructor");
2430 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2432 if (v == (struct value *) - 1)
2433 error ("Cannot take address of a method");
2436 if (TYPE_NFN_FIELDS (t))
2437 error ("There is no member or method named %s.", name);
2439 error ("There is no member named %s.", name);
2444 if (destructor_name_p (name, t))
2448 /* Destructors are a special case. */
2449 int m_index, f_index;
2452 if (get_destructor_fn_field (t, &m_index, &f_index))
2454 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2458 error ("could not find destructor function named %s.", name);
2464 error ("destructor should not have any argument");
2468 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2470 if (v == (struct value *) - 1)
2472 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2476 /* See if user tried to invoke data as function. If so,
2477 hand it back. If it's not callable (i.e., a pointer to function),
2478 gdb should give an error. */
2479 v = search_struct_field (name, *argp, 0, t, 0);
2483 error ("Structure has no component named %s.", name);
2487 /* Search through the methods of an object (and its bases)
2488 * to find a specified method. Return the pointer to the
2489 * fn_field list of overloaded instances.
2490 * Helper function for value_find_oload_list.
2491 * ARGP is a pointer to a pointer to a value (the object)
2492 * METHOD is a string containing the method name
2493 * OFFSET is the offset within the value
2494 * STATIC_MEMFUNCP is set if the method is static
2495 * TYPE is the assumed type of the object
2496 * NUM_FNS is the number of overloaded instances
2497 * BASETYPE is set to the actual type of the subobject where the method is found
2498 * BOFFSET is the offset of the base subobject where the method is found */
2500 static struct fn_field *
2501 find_method_list (struct value **argp, char *method, int offset,
2502 int *static_memfuncp, struct type *type, int *num_fns,
2503 struct type **basetype, int *boffset)
2507 CHECK_TYPEDEF (type);
2511 /* First check in object itself */
2512 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2514 /* pai: FIXME What about operators and type conversions? */
2515 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2516 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2518 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2521 return TYPE_FN_FIELDLIST1 (type, i);
2525 /* Not found in object, check in base subobjects */
2526 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2529 if (BASETYPE_VIA_VIRTUAL (type, i))
2531 if (TYPE_HAS_VTABLE (type))
2533 /* HP aCC compiled type, search for virtual base offset
2534 * according to HP/Taligent runtime spec. */
2536 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2537 VALUE_CONTENTS_ALL (*argp),
2538 offset + VALUE_EMBEDDED_OFFSET (*argp),
2539 &base_offset, &skip);
2541 error ("Virtual base class offset not found in vtable");
2545 /* probably g++ runtime model */
2546 base_offset = VALUE_OFFSET (*argp) + offset;
2548 baseclass_offset (type, i,
2549 VALUE_CONTENTS (*argp) + base_offset,
2550 VALUE_ADDRESS (*argp) + base_offset);
2551 if (base_offset == -1)
2552 error ("virtual baseclass botch");
2556 /* non-virtual base, simply use bit position from debug info */
2558 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2560 f = find_method_list (argp, method, base_offset + offset,
2561 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2568 /* Return the list of overloaded methods of a specified name.
2569 * ARGP is a pointer to a pointer to a value (the object)
2570 * METHOD is the method name
2571 * OFFSET is the offset within the value contents
2572 * STATIC_MEMFUNCP is set if the method is static
2573 * NUM_FNS is the number of overloaded instances
2574 * BASETYPE is set to the type of the base subobject that defines the method
2575 * BOFFSET is the offset of the base subobject which defines the method */
2578 value_find_oload_method_list (struct value **argp, char *method, int offset,
2579 int *static_memfuncp, int *num_fns,
2580 struct type **basetype, int *boffset)
2584 t = check_typedef (VALUE_TYPE (*argp));
2586 /* code snarfed from value_struct_elt */
2587 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2589 *argp = value_ind (*argp);
2590 /* Don't coerce fn pointer to fn and then back again! */
2591 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2592 COERCE_ARRAY (*argp);
2593 t = check_typedef (VALUE_TYPE (*argp));
2596 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2597 error ("Not implemented: member type in value_find_oload_lis");
2599 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2600 && TYPE_CODE (t) != TYPE_CODE_UNION)
2601 error ("Attempt to extract a component of a value that is not a struct or union");
2603 /* Assume it's not static, unless we see that it is. */
2604 if (static_memfuncp)
2605 *static_memfuncp = 0;
2607 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2611 /* Given an array of argument types (ARGTYPES) (which includes an
2612 entry for "this" in the case of C++ methods), the number of
2613 arguments NARGS, the NAME of a function whether it's a method or
2614 not (METHOD), and the degree of laxness (LAX) in conforming to
2615 overload resolution rules in ANSI C++, find the best function that
2616 matches on the argument types according to the overload resolution
2619 In the case of class methods, the parameter OBJ is an object value
2620 in which to search for overloaded methods.
2622 In the case of non-method functions, the parameter FSYM is a symbol
2623 corresponding to one of the overloaded functions.
2625 Return value is an integer: 0 -> good match, 10 -> debugger applied
2626 non-standard coercions, 100 -> incompatible.
2628 If a method is being searched for, VALP will hold the value.
2629 If a non-method is being searched for, SYMP will hold the symbol for it.
2631 If a method is being searched for, and it is a static method,
2632 then STATICP will point to a non-zero value.
2634 Note: This function does *not* check the value of
2635 overload_resolution. Caller must check it to see whether overload
2636 resolution is permitted.
2640 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2641 int lax, struct value **objp, struct symbol *fsym,
2642 struct value **valp, struct symbol **symp, int *staticp)
2645 struct type **parm_types;
2646 int champ_nparms = 0;
2647 struct value *obj = (objp ? *objp : NULL);
2649 short oload_champ = -1; /* Index of best overloaded function */
2650 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2651 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2652 short oload_ambig_champ = -1; /* 2nd contender for best match */
2653 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2654 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2656 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2657 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2659 struct value *temp = obj;
2660 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2661 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2662 int num_fns = 0; /* Number of overloaded instances being considered */
2663 struct type *basetype = NULL;
2668 char *obj_type_name = NULL;
2669 char *func_name = NULL;
2671 /* Get the list of overloaded methods or functions */
2676 struct type *domain;
2677 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2678 /* Hack: evaluate_subexp_standard often passes in a pointer
2679 value rather than the object itself, so try again */
2680 if ((!obj_type_name || !*obj_type_name) &&
2681 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2682 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2684 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2687 &basetype, &boffset);
2688 if (!fns_ptr || !num_fns)
2689 error ("Couldn't find method %s%s%s",
2691 (obj_type_name && *obj_type_name) ? "::" : "",
2693 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2694 len = TYPE_NFN_FIELDS (domain);
2695 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2696 give us the info we need directly in the types. We have to
2697 use the method stub conversion to get it. Be aware that this
2698 is by no means perfect, and if you use STABS, please move to
2699 DWARF-2, or something like it, because trying to improve
2700 overloading using STABS is really a waste of time. */
2701 for (i = 0; i < len; i++)
2704 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2705 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2707 for (j = 0; j < len2; j++)
2709 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2710 check_stub_method (domain, i, j);
2717 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2719 /* If the name is NULL this must be a C-style function.
2720 Just return the same symbol. */
2727 oload_syms = make_symbol_overload_list (fsym);
2728 while (oload_syms[++i])
2731 error ("Couldn't find function %s", func_name);
2734 oload_champ_bv = NULL;
2736 /* Consider each candidate in turn */
2737 for (ix = 0; ix < num_fns; ix++)
2741 /* For static member functions, we won't have a this pointer, but nothing
2742 else seems to handle them right now, so we just pretend ourselves */
2745 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2747 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2753 /* If it's not a method, this is the proper place */
2754 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2757 /* Prepare array of parameter types */
2758 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2759 for (jj = 0; jj < nparms; jj++)
2760 parm_types[jj] = (method
2761 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2762 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2764 /* Compare parameter types to supplied argument types */
2765 bv = rank_function (parm_types, nparms, arg_types, nargs);
2767 if (!oload_champ_bv)
2769 oload_champ_bv = bv;
2771 champ_nparms = nparms;
2774 /* See whether current candidate is better or worse than previous best */
2775 switch (compare_badness (bv, oload_champ_bv))
2778 oload_ambiguous = 1; /* top two contenders are equally good */
2779 oload_ambig_champ = ix;
2782 oload_ambiguous = 2; /* incomparable top contenders */
2783 oload_ambig_champ = ix;
2786 oload_champ_bv = bv; /* new champion, record details */
2787 oload_ambiguous = 0;
2789 oload_ambig_champ = -1;
2790 champ_nparms = nparms;
2800 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2802 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2803 for (jj = 0; jj < nargs; jj++)
2804 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2805 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2807 } /* end loop over all candidates */
2808 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2809 if they have the exact same goodness. This is because there is no
2810 way to differentiate based on return type, which we need to in
2811 cases like overloads of .begin() <It's both const and non-const> */
2813 if (oload_ambiguous)
2816 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2818 (obj_type_name && *obj_type_name) ? "::" : "",
2821 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2826 /* Check how bad the best match is */
2827 for (ix = 1; ix <= nargs; ix++)
2829 if (oload_champ_bv->rank[ix] >= 100)
2830 oload_incompatible = 1; /* truly mismatched types */
2832 else if (oload_champ_bv->rank[ix] >= 10)
2833 oload_non_standard = 1; /* non-standard type conversions needed */
2835 if (oload_incompatible)
2838 error ("Cannot resolve method %s%s%s to any overloaded instance",
2840 (obj_type_name && *obj_type_name) ? "::" : "",
2843 error ("Cannot resolve function %s to any overloaded instance",
2846 else if (oload_non_standard)
2849 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2851 (obj_type_name && *obj_type_name) ? "::" : "",
2854 warning ("Using non-standard conversion to match function %s to supplied arguments",
2860 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2861 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2863 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2867 *symp = oload_syms[oload_champ];
2873 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2874 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2876 temp = value_addr (temp);
2880 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2883 /* C++: return 1 is NAME is a legitimate name for the destructor
2884 of type TYPE. If TYPE does not have a destructor, or
2885 if NAME is inappropriate for TYPE, an error is signaled. */
2887 destructor_name_p (const char *name, const struct type *type)
2889 /* destructors are a special case. */
2893 char *dname = type_name_no_tag (type);
2894 char *cp = strchr (dname, '<');
2897 /* Do not compare the template part for template classes. */
2899 len = strlen (dname);
2902 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2903 error ("name of destructor must equal name of class");
2910 /* Helper function for check_field: Given TYPE, a structure/union,
2911 return 1 if the component named NAME from the ultimate
2912 target structure/union is defined, otherwise, return 0. */
2915 check_field_in (register struct type *type, const char *name)
2919 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2921 char *t_field_name = TYPE_FIELD_NAME (type, i);
2922 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2926 /* C++: If it was not found as a data field, then try to
2927 return it as a pointer to a method. */
2929 /* Destructors are a special case. */
2930 if (destructor_name_p (name, type))
2932 int m_index, f_index;
2934 return get_destructor_fn_field (type, &m_index, &f_index);
2937 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2939 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2943 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2944 if (check_field_in (TYPE_BASECLASS (type, i), name))
2951 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2952 return 1 if the component named NAME from the ultimate
2953 target structure/union is defined, otherwise, return 0. */
2956 check_field (struct value *arg1, const char *name)
2958 register struct type *t;
2960 COERCE_ARRAY (arg1);
2962 t = VALUE_TYPE (arg1);
2964 /* Follow pointers until we get to a non-pointer. */
2969 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2971 t = TYPE_TARGET_TYPE (t);
2974 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2975 error ("not implemented: member type in check_field");
2977 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2978 && TYPE_CODE (t) != TYPE_CODE_UNION)
2979 error ("Internal error: `this' is not an aggregate");
2981 return check_field_in (t, name);
2984 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2985 return the address of this member as a "pointer to member"
2986 type. If INTYPE is non-null, then it will be the type
2987 of the member we are looking for. This will help us resolve
2988 "pointers to member functions". This function is used
2989 to resolve user expressions of the form "DOMAIN::NAME". */
2992 value_struct_elt_for_reference (struct type *domain, int offset,
2993 struct type *curtype, char *name,
2994 struct type *intype)
2996 register struct type *t = curtype;
3000 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3001 && TYPE_CODE (t) != TYPE_CODE_UNION)
3002 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3004 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3006 char *t_field_name = TYPE_FIELD_NAME (t, i);
3008 if (t_field_name && STREQ (t_field_name, name))
3010 if (TYPE_FIELD_STATIC (t, i))
3012 v = value_static_field (t, i);
3014 error ("Internal error: could not find static variable %s",
3018 if (TYPE_FIELD_PACKED (t, i))
3019 error ("pointers to bitfield members not allowed");
3021 return value_from_longest
3022 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3024 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3028 /* C++: If it was not found as a data field, then try to
3029 return it as a pointer to a method. */
3031 /* Destructors are a special case. */
3032 if (destructor_name_p (name, t))
3034 error ("member pointers to destructors not implemented yet");
3037 /* Perform all necessary dereferencing. */
3038 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3039 intype = TYPE_TARGET_TYPE (intype);
3041 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3043 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3044 char dem_opname[64];
3046 if (strncmp (t_field_name, "__", 2) == 0 ||
3047 strncmp (t_field_name, "op", 2) == 0 ||
3048 strncmp (t_field_name, "type", 4) == 0)
3050 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3051 t_field_name = dem_opname;
3052 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3053 t_field_name = dem_opname;
3055 if (t_field_name && STREQ (t_field_name, name))
3057 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3058 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3060 if (intype == 0 && j > 1)
3061 error ("non-unique member `%s' requires type instantiation", name);
3065 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3068 error ("no member function matches that type instantiation");
3073 if (TYPE_FN_FIELD_STUB (f, j))
3074 check_stub_method (t, i, j);
3075 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3077 return value_from_longest
3078 (lookup_reference_type
3079 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3081 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3085 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3086 0, VAR_NAMESPACE, 0, NULL);
3093 v = read_var_value (s, 0);
3095 VALUE_TYPE (v) = lookup_reference_type
3096 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3104 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3109 if (BASETYPE_VIA_VIRTUAL (t, i))
3112 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3113 v = value_struct_elt_for_reference (domain,
3114 offset + base_offset,
3115 TYPE_BASECLASS (t, i),
3125 /* Given a pointer value V, find the real (RTTI) type
3126 of the object it points to.
3127 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3128 and refer to the values computed for the object pointed to. */
3131 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3133 struct value *target;
3135 target = value_ind (v);
3137 return value_rtti_type (target, full, top, using_enc);
3140 /* Given a value pointed to by ARGP, check its real run-time type, and
3141 if that is different from the enclosing type, create a new value
3142 using the real run-time type as the enclosing type (and of the same
3143 type as ARGP) and return it, with the embedded offset adjusted to
3144 be the correct offset to the enclosed object
3145 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3146 parameters, computed by value_rtti_type(). If these are available,
3147 they can be supplied and a second call to value_rtti_type() is avoided.
3148 (Pass RTYPE == NULL if they're not available */
3151 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3154 struct type *real_type;
3158 struct value *new_val;
3165 using_enc = xusing_enc;
3168 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3170 /* If no RTTI data, or if object is already complete, do nothing */
3171 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3174 /* If we have the full object, but for some reason the enclosing
3175 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3178 argp = value_change_enclosing_type (argp, real_type);
3182 /* Check if object is in memory */
3183 if (VALUE_LVAL (argp) != lval_memory)
3185 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3190 /* All other cases -- retrieve the complete object */
3191 /* Go back by the computed top_offset from the beginning of the object,
3192 adjusting for the embedded offset of argp if that's what value_rtti_type
3193 used for its computation. */
3194 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3195 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3196 VALUE_BFD_SECTION (argp));
3197 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3198 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3205 /* C++: return the value of the class instance variable, if one exists.
3206 Flag COMPLAIN signals an error if the request is made in an
3207 inappropriate context. */
3210 value_of_this (int complain)
3212 struct symbol *func, *sym;
3215 static const char funny_this[] = "this";
3218 if (selected_frame == 0)
3221 error ("no frame selected");
3226 func = get_frame_function (selected_frame);
3230 error ("no `this' in nameless context");
3235 b = SYMBOL_BLOCK_VALUE (func);
3236 i = BLOCK_NSYMS (b);
3240 error ("no args, no `this'");
3245 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3246 symbol instead of the LOC_ARG one (if both exist). */
3247 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3251 error ("current stack frame not in method");
3256 this = read_var_value (sym, selected_frame);
3257 if (this == 0 && complain)
3258 error ("`this' argument at unknown address");
3262 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3263 long, starting at LOWBOUND. The result has the same lower bound as
3264 the original ARRAY. */
3267 value_slice (struct value *array, int lowbound, int length)
3269 struct type *slice_range_type, *slice_type, *range_type;
3270 LONGEST lowerbound, upperbound, offset;
3271 struct value *slice;
3272 struct type *array_type;
3273 array_type = check_typedef (VALUE_TYPE (array));
3274 COERCE_VARYING_ARRAY (array, array_type);
3275 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3276 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3277 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3278 error ("cannot take slice of non-array");
3279 range_type = TYPE_INDEX_TYPE (array_type);
3280 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3281 error ("slice from bad array or bitstring");
3282 if (lowbound < lowerbound || length < 0
3283 || lowbound + length - 1 > upperbound
3284 /* Chill allows zero-length strings but not arrays. */
3285 || (current_language->la_language == language_chill
3286 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3287 error ("slice out of range");
3288 /* FIXME-type-allocation: need a way to free this type when we are
3290 slice_range_type = create_range_type ((struct type *) NULL,
3291 TYPE_TARGET_TYPE (range_type),
3292 lowbound, lowbound + length - 1);
3293 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3296 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3297 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3298 slice = value_zero (slice_type, not_lval);
3299 for (i = 0; i < length; i++)
3301 int element = value_bit_index (array_type,
3302 VALUE_CONTENTS (array),
3305 error ("internal error accessing bitstring");
3306 else if (element > 0)
3308 int j = i % TARGET_CHAR_BIT;
3309 if (BITS_BIG_ENDIAN)
3310 j = TARGET_CHAR_BIT - 1 - j;
3311 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3314 /* We should set the address, bitssize, and bitspos, so the clice
3315 can be used on the LHS, but that may require extensions to
3316 value_assign. For now, just leave as a non_lval. FIXME. */
3320 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3322 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3323 slice_type = create_array_type ((struct type *) NULL, element_type,
3325 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3326 slice = allocate_value (slice_type);
3327 if (VALUE_LAZY (array))
3328 VALUE_LAZY (slice) = 1;
3330 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3331 TYPE_LENGTH (slice_type));
3332 if (VALUE_LVAL (array) == lval_internalvar)
3333 VALUE_LVAL (slice) = lval_internalvar_component;
3335 VALUE_LVAL (slice) = VALUE_LVAL (array);
3336 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3337 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3342 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3343 value as a fixed-length array. */
3346 varying_to_slice (struct value *varray)
3348 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3349 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3350 VALUE_CONTENTS (varray)
3351 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3352 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3355 /* Create a value for a FORTRAN complex number. Currently most of
3356 the time values are coerced to COMPLEX*16 (i.e. a complex number
3357 composed of 2 doubles. This really should be a smarter routine
3358 that figures out precision inteligently as opposed to assuming
3359 doubles. FIXME: fmb */
3362 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3365 struct type *real_type = TYPE_TARGET_TYPE (type);
3367 val = allocate_value (type);
3368 arg1 = value_cast (real_type, arg1);
3369 arg2 = value_cast (real_type, arg2);
3371 memcpy (VALUE_CONTENTS_RAW (val),
3372 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3373 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3374 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3378 /* Cast a value into the appropriate complex data type. */
3380 static struct value *
3381 cast_into_complex (struct type *type, struct value *val)
3383 struct type *real_type = TYPE_TARGET_TYPE (type);
3384 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3386 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3387 struct value *re_val = allocate_value (val_real_type);
3388 struct value *im_val = allocate_value (val_real_type);
3390 memcpy (VALUE_CONTENTS_RAW (re_val),
3391 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3392 memcpy (VALUE_CONTENTS_RAW (im_val),
3393 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3394 TYPE_LENGTH (val_real_type));
3396 return value_literal_complex (re_val, im_val, type);
3398 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3399 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3400 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3402 error ("cannot cast non-number to complex");
3406 _initialize_valops (void)
3410 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3411 "Set automatic abandonment of expressions upon failure.",
3417 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3418 "Set overload resolution in evaluating C++ functions.",
3421 overload_resolution = 1;
3424 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3425 (char *) &unwind_on_signal_p,
3426 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3427 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3428 is received while in a function called from gdb (call dummy). If set, gdb\n\
3429 unwinds the stack and restore the context to what as it was before the call.\n\
3430 The default is to stop in the frame where the signal was received.", &setlist),