1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
49 #include "gdb_obstack.h"
51 #include "dictionary.h"
53 #include <sys/types.h>
55 #include "gdb_string.h"
59 #include "cp-support.h"
61 #include "gdb_assert.h"
64 #include "macroscope.h"
68 /* Prototypes for local functions */
70 static void completion_list_add_name (char *, char *, int, char *, char *);
72 static void rbreak_command (char *, int);
74 static void types_info (char *, int);
76 static void functions_info (char *, int);
78 static void variables_info (char *, int);
80 static void sources_info (char *, int);
82 static void output_source_filename (const char *, int *);
84 static int find_line_common (struct linetable *, int, int *);
86 static struct symbol *lookup_symbol_aux (const char *name,
87 const struct block *block,
88 const domain_enum domain,
89 enum language language,
90 int *is_a_field_of_this);
93 struct symbol *lookup_symbol_aux_local (const char *name,
94 const struct block *block,
95 const domain_enum domain,
96 enum language language);
99 struct symbol *lookup_symbol_aux_symtabs (int block_index,
101 const domain_enum domain);
104 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
107 const domain_enum domain);
109 static void print_msymbol_info (struct minimal_symbol *);
111 void _initialize_symtab (void);
115 /* Non-zero if a file may be known by two different basenames.
116 This is the uncommon case, and significantly slows down gdb.
117 Default set to "off" to not slow down the common case. */
118 int basenames_may_differ = 0;
120 /* Allow the user to configure the debugger behavior with respect
121 to multiple-choice menus when more than one symbol matches during
124 const char multiple_symbols_ask[] = "ask";
125 const char multiple_symbols_all[] = "all";
126 const char multiple_symbols_cancel[] = "cancel";
127 static const char *multiple_symbols_modes[] =
129 multiple_symbols_ask,
130 multiple_symbols_all,
131 multiple_symbols_cancel,
134 static const char *multiple_symbols_mode = multiple_symbols_all;
136 /* Read-only accessor to AUTO_SELECT_MODE. */
139 multiple_symbols_select_mode (void)
141 return multiple_symbols_mode;
144 /* Block in which the most recently searched-for symbol was found.
145 Might be better to make this a parameter to lookup_symbol and
148 const struct block *block_found;
150 /* Check for a symtab of a specific name; first in symtabs, then in
151 psymtabs. *If* there is no '/' in the name, a match after a '/'
152 in the symtab filename will also work. */
155 lookup_symtab (const char *name)
158 struct symtab *s = NULL;
159 struct objfile *objfile;
160 char *real_path = NULL;
161 char *full_path = NULL;
162 struct cleanup *cleanup;
163 const char* base_name = lbasename (name);
165 cleanup = make_cleanup (null_cleanup, NULL);
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
179 /* First, search for an exact match. */
181 ALL_SYMTABS (objfile, s)
183 if (FILENAME_CMP (name, s->filename) == 0)
185 do_cleanups (cleanup);
189 /* Before we invoke realpath, which can get expensive when many
190 files are involved, do a quick comparison of the basenames. */
191 if (! basenames_may_differ
192 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
195 /* If the user gave us an absolute path, try to find the file in
196 this symtab and use its absolute path. */
198 if (full_path != NULL)
200 const char *fp = symtab_to_fullname (s);
202 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
204 do_cleanups (cleanup);
209 if (real_path != NULL)
211 char *fullname = symtab_to_fullname (s);
213 if (fullname != NULL)
215 char *rp = gdb_realpath (fullname);
217 make_cleanup (xfree, rp);
218 if (FILENAME_CMP (real_path, rp) == 0)
220 do_cleanups (cleanup);
227 /* Now, search for a matching tail (only if name doesn't have any dirs). */
229 if (lbasename (name) == name)
230 ALL_SYMTABS (objfile, s)
232 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
234 do_cleanups (cleanup);
239 /* Same search rules as above apply here, but now we look thru the
243 ALL_OBJFILES (objfile)
246 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
256 do_cleanups (cleanup);
261 do_cleanups (cleanup);
265 /* At this point, we have located the psymtab for this file, but
266 the conversion to a symtab has failed. This usually happens
267 when we are looking up an include file. In this case,
268 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
269 been created. So, we need to run through the symtabs again in
270 order to find the file.
271 XXX - This is a crock, and should be fixed inside of the
272 symbol parsing routines. */
276 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
277 full method name, which consist of the class name (from T), the unadorned
278 method name from METHOD_ID, and the signature for the specific overload,
279 specified by SIGNATURE_ID. Note that this function is g++ specific. */
282 gdb_mangle_name (struct type *type, int method_id, int signature_id)
284 int mangled_name_len;
286 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
287 struct fn_field *method = &f[signature_id];
288 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
289 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
290 char *newname = type_name_no_tag (type);
292 /* Does the form of physname indicate that it is the full mangled name
293 of a constructor (not just the args)? */
294 int is_full_physname_constructor;
297 int is_destructor = is_destructor_name (physname);
298 /* Need a new type prefix. */
299 char *const_prefix = method->is_const ? "C" : "";
300 char *volatile_prefix = method->is_volatile ? "V" : "";
302 int len = (newname == NULL ? 0 : strlen (newname));
304 /* Nothing to do if physname already contains a fully mangled v3 abi name
305 or an operator name. */
306 if ((physname[0] == '_' && physname[1] == 'Z')
307 || is_operator_name (field_name))
308 return xstrdup (physname);
310 is_full_physname_constructor = is_constructor_name (physname);
312 is_constructor = is_full_physname_constructor
313 || (newname && strcmp (field_name, newname) == 0);
316 is_destructor = (strncmp (physname, "__dt", 4) == 0);
318 if (is_destructor || is_full_physname_constructor)
320 mangled_name = (char *) xmalloc (strlen (physname) + 1);
321 strcpy (mangled_name, physname);
327 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
329 else if (physname[0] == 't' || physname[0] == 'Q')
331 /* The physname for template and qualified methods already includes
333 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
339 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
341 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
342 + strlen (buf) + len + strlen (physname) + 1);
344 mangled_name = (char *) xmalloc (mangled_name_len);
346 mangled_name[0] = '\0';
348 strcpy (mangled_name, field_name);
350 strcat (mangled_name, buf);
351 /* If the class doesn't have a name, i.e. newname NULL, then we just
352 mangle it using 0 for the length of the class. Thus it gets mangled
353 as something starting with `::' rather than `classname::'. */
355 strcat (mangled_name, newname);
357 strcat (mangled_name, physname);
358 return (mangled_name);
361 /* Initialize the cplus_specific structure. 'cplus_specific' should
362 only be allocated for use with cplus symbols. */
365 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
366 struct objfile *objfile)
368 /* A language_specific structure should not have been previously
370 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
371 gdb_assert (objfile != NULL);
373 gsymbol->language_specific.cplus_specific =
374 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
377 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
378 correctly allocated. For C++ symbols a cplus_specific struct is
379 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
380 OBJFILE can be NULL. */
382 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
384 struct objfile *objfile)
386 if (gsymbol->language == language_cplus)
388 if (gsymbol->language_specific.cplus_specific == NULL)
389 symbol_init_cplus_specific (gsymbol, objfile);
391 gsymbol->language_specific.cplus_specific->demangled_name = name;
394 gsymbol->language_specific.mangled_lang.demangled_name = name;
397 /* Return the demangled name of GSYMBOL. */
399 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
401 if (gsymbol->language == language_cplus)
403 if (gsymbol->language_specific.cplus_specific != NULL)
404 return gsymbol->language_specific.cplus_specific->demangled_name;
409 return gsymbol->language_specific.mangled_lang.demangled_name;
413 /* Initialize the language dependent portion of a symbol
414 depending upon the language for the symbol. */
416 symbol_set_language (struct general_symbol_info *gsymbol,
417 enum language language)
419 gsymbol->language = language;
420 if (gsymbol->language == language_d
421 || gsymbol->language == language_java
422 || gsymbol->language == language_objc
423 || gsymbol->language == language_fortran)
425 symbol_set_demangled_name (gsymbol, NULL, NULL);
427 else if (gsymbol->language == language_cplus)
428 gsymbol->language_specific.cplus_specific = NULL;
431 memset (&gsymbol->language_specific, 0,
432 sizeof (gsymbol->language_specific));
436 /* Functions to initialize a symbol's mangled name. */
438 /* Objects of this type are stored in the demangled name hash table. */
439 struct demangled_name_entry
445 /* Hash function for the demangled name hash. */
447 hash_demangled_name_entry (const void *data)
449 const struct demangled_name_entry *e = data;
451 return htab_hash_string (e->mangled);
454 /* Equality function for the demangled name hash. */
456 eq_demangled_name_entry (const void *a, const void *b)
458 const struct demangled_name_entry *da = a;
459 const struct demangled_name_entry *db = b;
461 return strcmp (da->mangled, db->mangled) == 0;
464 /* Create the hash table used for demangled names. Each hash entry is
465 a pair of strings; one for the mangled name and one for the demangled
466 name. The entry is hashed via just the mangled name. */
469 create_demangled_names_hash (struct objfile *objfile)
471 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
472 The hash table code will round this up to the next prime number.
473 Choosing a much larger table size wastes memory, and saves only about
474 1% in symbol reading. */
476 objfile->demangled_names_hash = htab_create_alloc
477 (256, hash_demangled_name_entry, eq_demangled_name_entry,
478 NULL, xcalloc, xfree);
481 /* Try to determine the demangled name for a symbol, based on the
482 language of that symbol. If the language is set to language_auto,
483 it will attempt to find any demangling algorithm that works and
484 then set the language appropriately. The returned name is allocated
485 by the demangler and should be xfree'd. */
488 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
491 char *demangled = NULL;
493 if (gsymbol->language == language_unknown)
494 gsymbol->language = language_auto;
496 if (gsymbol->language == language_objc
497 || gsymbol->language == language_auto)
500 objc_demangle (mangled, 0);
501 if (demangled != NULL)
503 gsymbol->language = language_objc;
507 if (gsymbol->language == language_cplus
508 || gsymbol->language == language_auto)
511 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
512 if (demangled != NULL)
514 gsymbol->language = language_cplus;
518 if (gsymbol->language == language_java)
521 cplus_demangle (mangled,
522 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
523 if (demangled != NULL)
525 gsymbol->language = language_java;
529 if (gsymbol->language == language_d
530 || gsymbol->language == language_auto)
532 demangled = d_demangle(mangled, 0);
533 if (demangled != NULL)
535 gsymbol->language = language_d;
539 /* We could support `gsymbol->language == language_fortran' here to provide
540 module namespaces also for inferiors with only minimal symbol table (ELF
541 symbols). Just the mangling standard is not standardized across compilers
542 and there is no DW_AT_producer available for inferiors with only the ELF
543 symbols to check the mangling kind. */
547 /* Set both the mangled and demangled (if any) names for GSYMBOL based
548 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
549 objfile's obstack; but if COPY_NAME is 0 and if NAME is
550 NUL-terminated, then this function assumes that NAME is already
551 correctly saved (either permanently or with a lifetime tied to the
552 objfile), and it will not be copied.
554 The hash table corresponding to OBJFILE is used, and the memory
555 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
556 so the pointer can be discarded after calling this function. */
558 /* We have to be careful when dealing with Java names: when we run
559 into a Java minimal symbol, we don't know it's a Java symbol, so it
560 gets demangled as a C++ name. This is unfortunate, but there's not
561 much we can do about it: but when demangling partial symbols and
562 regular symbols, we'd better not reuse the wrong demangled name.
563 (See PR gdb/1039.) We solve this by putting a distinctive prefix
564 on Java names when storing them in the hash table. */
566 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
567 don't mind the Java prefix so much: different languages have
568 different demangling requirements, so it's only natural that we
569 need to keep language data around in our demangling cache. But
570 it's not good that the minimal symbol has the wrong demangled name.
571 Unfortunately, I can't think of any easy solution to that
574 #define JAVA_PREFIX "##JAVA$$"
575 #define JAVA_PREFIX_LEN 8
578 symbol_set_names (struct general_symbol_info *gsymbol,
579 const char *linkage_name, int len, int copy_name,
580 struct objfile *objfile)
582 struct demangled_name_entry **slot;
583 /* A 0-terminated copy of the linkage name. */
584 const char *linkage_name_copy;
585 /* A copy of the linkage name that might have a special Java prefix
586 added to it, for use when looking names up in the hash table. */
587 const char *lookup_name;
588 /* The length of lookup_name. */
590 struct demangled_name_entry entry;
592 if (gsymbol->language == language_ada)
594 /* In Ada, we do the symbol lookups using the mangled name, so
595 we can save some space by not storing the demangled name.
597 As a side note, we have also observed some overlap between
598 the C++ mangling and Ada mangling, similarly to what has
599 been observed with Java. Because we don't store the demangled
600 name with the symbol, we don't need to use the same trick
603 gsymbol->name = (char *) linkage_name;
606 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
607 memcpy (gsymbol->name, linkage_name, len);
608 gsymbol->name[len] = '\0';
610 symbol_set_demangled_name (gsymbol, NULL, NULL);
615 if (objfile->demangled_names_hash == NULL)
616 create_demangled_names_hash (objfile);
618 /* The stabs reader generally provides names that are not
619 NUL-terminated; most of the other readers don't do this, so we
620 can just use the given copy, unless we're in the Java case. */
621 if (gsymbol->language == language_java)
625 lookup_len = len + JAVA_PREFIX_LEN;
626 alloc_name = alloca (lookup_len + 1);
627 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
628 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
629 alloc_name[lookup_len] = '\0';
631 lookup_name = alloc_name;
632 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
634 else if (linkage_name[len] != '\0')
639 alloc_name = alloca (lookup_len + 1);
640 memcpy (alloc_name, linkage_name, len);
641 alloc_name[lookup_len] = '\0';
643 lookup_name = alloc_name;
644 linkage_name_copy = alloc_name;
649 lookup_name = linkage_name;
650 linkage_name_copy = linkage_name;
653 entry.mangled = (char *) lookup_name;
654 slot = ((struct demangled_name_entry **)
655 htab_find_slot (objfile->demangled_names_hash,
658 /* If this name is not in the hash table, add it. */
661 char *demangled_name = symbol_find_demangled_name (gsymbol,
663 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
665 /* Suppose we have demangled_name==NULL, copy_name==0, and
666 lookup_name==linkage_name. In this case, we already have the
667 mangled name saved, and we don't have a demangled name. So,
668 you might think we could save a little space by not recording
669 this in the hash table at all.
671 It turns out that it is actually important to still save such
672 an entry in the hash table, because storing this name gives
673 us better bcache hit rates for partial symbols. */
674 if (!copy_name && lookup_name == linkage_name)
676 *slot = obstack_alloc (&objfile->objfile_obstack,
677 offsetof (struct demangled_name_entry,
679 + demangled_len + 1);
680 (*slot)->mangled = (char *) lookup_name;
684 /* If we must copy the mangled name, put it directly after
685 the demangled name so we can have a single
687 *slot = obstack_alloc (&objfile->objfile_obstack,
688 offsetof (struct demangled_name_entry,
690 + lookup_len + demangled_len + 2);
691 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
692 strcpy ((*slot)->mangled, lookup_name);
695 if (demangled_name != NULL)
697 strcpy ((*slot)->demangled, demangled_name);
698 xfree (demangled_name);
701 (*slot)->demangled[0] = '\0';
704 gsymbol->name = (*slot)->mangled + lookup_len - len;
705 if ((*slot)->demangled[0] != '\0')
706 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
708 symbol_set_demangled_name (gsymbol, NULL, objfile);
711 /* Return the source code name of a symbol. In languages where
712 demangling is necessary, this is the demangled name. */
715 symbol_natural_name (const struct general_symbol_info *gsymbol)
717 switch (gsymbol->language)
723 case language_fortran:
724 if (symbol_get_demangled_name (gsymbol) != NULL)
725 return symbol_get_demangled_name (gsymbol);
728 if (symbol_get_demangled_name (gsymbol) != NULL)
729 return symbol_get_demangled_name (gsymbol);
731 return ada_decode_symbol (gsymbol);
736 return gsymbol->name;
739 /* Return the demangled name for a symbol based on the language for
740 that symbol. If no demangled name exists, return NULL. */
742 symbol_demangled_name (const struct general_symbol_info *gsymbol)
744 switch (gsymbol->language)
750 case language_fortran:
751 if (symbol_get_demangled_name (gsymbol) != NULL)
752 return symbol_get_demangled_name (gsymbol);
755 if (symbol_get_demangled_name (gsymbol) != NULL)
756 return symbol_get_demangled_name (gsymbol);
758 return ada_decode_symbol (gsymbol);
766 /* Return the search name of a symbol---generally the demangled or
767 linkage name of the symbol, depending on how it will be searched for.
768 If there is no distinct demangled name, then returns the same value
769 (same pointer) as SYMBOL_LINKAGE_NAME. */
771 symbol_search_name (const struct general_symbol_info *gsymbol)
773 if (gsymbol->language == language_ada)
774 return gsymbol->name;
776 return symbol_natural_name (gsymbol);
779 /* Initialize the structure fields to zero values. */
781 init_sal (struct symtab_and_line *sal)
789 sal->explicit_pc = 0;
790 sal->explicit_line = 0;
794 /* Return 1 if the two sections are the same, or if they could
795 plausibly be copies of each other, one in an original object
796 file and another in a separated debug file. */
799 matching_obj_sections (struct obj_section *obj_first,
800 struct obj_section *obj_second)
802 asection *first = obj_first? obj_first->the_bfd_section : NULL;
803 asection *second = obj_second? obj_second->the_bfd_section : NULL;
806 /* If they're the same section, then they match. */
810 /* If either is NULL, give up. */
811 if (first == NULL || second == NULL)
814 /* This doesn't apply to absolute symbols. */
815 if (first->owner == NULL || second->owner == NULL)
818 /* If they're in the same object file, they must be different sections. */
819 if (first->owner == second->owner)
822 /* Check whether the two sections are potentially corresponding. They must
823 have the same size, address, and name. We can't compare section indexes,
824 which would be more reliable, because some sections may have been
826 if (bfd_get_section_size (first) != bfd_get_section_size (second))
829 /* In-memory addresses may start at a different offset, relativize them. */
830 if (bfd_get_section_vma (first->owner, first)
831 - bfd_get_start_address (first->owner)
832 != bfd_get_section_vma (second->owner, second)
833 - bfd_get_start_address (second->owner))
836 if (bfd_get_section_name (first->owner, first) == NULL
837 || bfd_get_section_name (second->owner, second) == NULL
838 || strcmp (bfd_get_section_name (first->owner, first),
839 bfd_get_section_name (second->owner, second)) != 0)
842 /* Otherwise check that they are in corresponding objfiles. */
845 if (obj->obfd == first->owner)
847 gdb_assert (obj != NULL);
849 if (obj->separate_debug_objfile != NULL
850 && obj->separate_debug_objfile->obfd == second->owner)
852 if (obj->separate_debug_objfile_backlink != NULL
853 && obj->separate_debug_objfile_backlink->obfd == second->owner)
860 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
862 struct objfile *objfile;
863 struct minimal_symbol *msymbol;
865 /* If we know that this is not a text address, return failure. This is
866 necessary because we loop based on texthigh and textlow, which do
867 not include the data ranges. */
868 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
870 && (MSYMBOL_TYPE (msymbol) == mst_data
871 || MSYMBOL_TYPE (msymbol) == mst_bss
872 || MSYMBOL_TYPE (msymbol) == mst_abs
873 || MSYMBOL_TYPE (msymbol) == mst_file_data
874 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
877 ALL_OBJFILES (objfile)
879 struct symtab *result = NULL;
882 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
891 /* Debug symbols usually don't have section information. We need to dig that
892 out of the minimal symbols and stash that in the debug symbol. */
895 fixup_section (struct general_symbol_info *ginfo,
896 CORE_ADDR addr, struct objfile *objfile)
898 struct minimal_symbol *msym;
900 /* First, check whether a minimal symbol with the same name exists
901 and points to the same address. The address check is required
902 e.g. on PowerPC64, where the minimal symbol for a function will
903 point to the function descriptor, while the debug symbol will
904 point to the actual function code. */
905 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
908 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
909 ginfo->section = SYMBOL_SECTION (msym);
913 /* Static, function-local variables do appear in the linker
914 (minimal) symbols, but are frequently given names that won't
915 be found via lookup_minimal_symbol(). E.g., it has been
916 observed in frv-uclinux (ELF) executables that a static,
917 function-local variable named "foo" might appear in the
918 linker symbols as "foo.6" or "foo.3". Thus, there is no
919 point in attempting to extend the lookup-by-name mechanism to
920 handle this case due to the fact that there can be multiple
923 So, instead, search the section table when lookup by name has
924 failed. The ``addr'' and ``endaddr'' fields may have already
925 been relocated. If so, the relocation offset (i.e. the
926 ANOFFSET value) needs to be subtracted from these values when
927 performing the comparison. We unconditionally subtract it,
928 because, when no relocation has been performed, the ANOFFSET
929 value will simply be zero.
931 The address of the symbol whose section we're fixing up HAS
932 NOT BEEN adjusted (relocated) yet. It can't have been since
933 the section isn't yet known and knowing the section is
934 necessary in order to add the correct relocation value. In
935 other words, we wouldn't even be in this function (attempting
936 to compute the section) if it were already known.
938 Note that it is possible to search the minimal symbols
939 (subtracting the relocation value if necessary) to find the
940 matching minimal symbol, but this is overkill and much less
941 efficient. It is not necessary to find the matching minimal
942 symbol, only its section.
944 Note that this technique (of doing a section table search)
945 can fail when unrelocated section addresses overlap. For
946 this reason, we still attempt a lookup by name prior to doing
947 a search of the section table. */
949 struct obj_section *s;
951 ALL_OBJFILE_OSECTIONS (objfile, s)
953 int idx = s->the_bfd_section->index;
954 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
956 if (obj_section_addr (s) - offset <= addr
957 && addr < obj_section_endaddr (s) - offset)
959 ginfo->obj_section = s;
960 ginfo->section = idx;
968 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
975 if (SYMBOL_OBJ_SECTION (sym))
978 /* We either have an OBJFILE, or we can get at it from the sym's
979 symtab. Anything else is a bug. */
980 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
983 objfile = SYMBOL_SYMTAB (sym)->objfile;
985 /* We should have an objfile by now. */
986 gdb_assert (objfile);
988 switch (SYMBOL_CLASS (sym))
992 addr = SYMBOL_VALUE_ADDRESS (sym);
995 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
999 /* Nothing else will be listed in the minsyms -- no use looking
1004 fixup_section (&sym->ginfo, addr, objfile);
1009 /* Find the definition for a specified symbol name NAME
1010 in domain DOMAIN, visible from lexical block BLOCK.
1011 Returns the struct symbol pointer, or zero if no symbol is found.
1012 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1013 NAME is a field of the current implied argument `this'. If so set
1014 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1015 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1016 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1018 /* This function has a bunch of loops in it and it would seem to be
1019 attractive to put in some QUIT's (though I'm not really sure
1020 whether it can run long enough to be really important). But there
1021 are a few calls for which it would appear to be bad news to quit
1022 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1023 that there is C++ code below which can error(), but that probably
1024 doesn't affect these calls since they are looking for a known
1025 variable and thus can probably assume it will never hit the C++
1029 lookup_symbol_in_language (const char *name, const struct block *block,
1030 const domain_enum domain, enum language lang,
1031 int *is_a_field_of_this)
1033 char *demangled_name = NULL;
1034 const char *modified_name = NULL;
1035 struct symbol *returnval;
1036 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1038 modified_name = name;
1040 /* If we are using C++, D, or Java, demangle the name before doing a
1041 lookup, so we can always binary search. */
1042 if (lang == language_cplus)
1044 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1047 modified_name = demangled_name;
1048 make_cleanup (xfree, demangled_name);
1052 /* If we were given a non-mangled name, canonicalize it
1053 according to the language (so far only for C++). */
1054 demangled_name = cp_canonicalize_string (name);
1057 modified_name = demangled_name;
1058 make_cleanup (xfree, demangled_name);
1062 else if (lang == language_java)
1064 demangled_name = cplus_demangle (name,
1065 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1068 modified_name = demangled_name;
1069 make_cleanup (xfree, demangled_name);
1072 else if (lang == language_d)
1074 demangled_name = d_demangle (name, 0);
1077 modified_name = demangled_name;
1078 make_cleanup (xfree, demangled_name);
1082 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1083 is_a_field_of_this);
1084 do_cleanups (cleanup);
1089 /* Behave like lookup_symbol_in_language, but performed with the
1090 current language. */
1093 lookup_symbol (const char *name, const struct block *block,
1094 domain_enum domain, int *is_a_field_of_this)
1096 return lookup_symbol_in_language (name, block, domain,
1097 current_language->la_language,
1098 is_a_field_of_this);
1101 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1102 found, or NULL if not found. */
1105 lookup_language_this (const struct language_defn *lang,
1106 const struct block *block)
1108 if (lang->la_name_of_this == NULL || block == NULL)
1115 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1118 if (BLOCK_FUNCTION (block))
1120 block = BLOCK_SUPERBLOCK (block);
1126 /* Behave like lookup_symbol except that NAME is the natural name
1127 of the symbol that we're looking for and, if LINKAGE_NAME is
1128 non-NULL, ensure that the symbol's linkage name matches as
1131 static struct symbol *
1132 lookup_symbol_aux (const char *name, const struct block *block,
1133 const domain_enum domain, enum language language,
1134 int *is_a_field_of_this)
1137 const struct language_defn *langdef;
1139 /* Make sure we do something sensible with is_a_field_of_this, since
1140 the callers that set this parameter to some non-null value will
1141 certainly use it later and expect it to be either 0 or 1.
1142 If we don't set it, the contents of is_a_field_of_this are
1144 if (is_a_field_of_this != NULL)
1145 *is_a_field_of_this = 0;
1147 /* Search specified block and its superiors. Don't search
1148 STATIC_BLOCK or GLOBAL_BLOCK. */
1150 sym = lookup_symbol_aux_local (name, block, domain, language);
1154 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1155 check to see if NAME is a field of `this'. */
1157 langdef = language_def (language);
1159 if (is_a_field_of_this != NULL)
1161 struct symbol *sym = lookup_language_this (langdef, block);
1165 struct type *t = sym->type;
1167 /* I'm not really sure that type of this can ever
1168 be typedefed; just be safe. */
1170 if (TYPE_CODE (t) == TYPE_CODE_PTR
1171 || TYPE_CODE (t) == TYPE_CODE_REF)
1172 t = TYPE_TARGET_TYPE (t);
1174 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1175 && TYPE_CODE (t) != TYPE_CODE_UNION)
1176 error (_("Internal error: `%s' is not an aggregate"),
1177 langdef->la_name_of_this);
1179 if (check_field (t, name))
1181 *is_a_field_of_this = 1;
1187 /* Now do whatever is appropriate for LANGUAGE to look
1188 up static and global variables. */
1190 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1194 /* Now search all static file-level symbols. Not strictly correct,
1195 but more useful than an error. */
1197 return lookup_static_symbol_aux (name, domain);
1200 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1201 first, then check the psymtabs. If a psymtab indicates the existence of the
1202 desired name as a file-level static, then do psymtab-to-symtab conversion on
1203 the fly and return the found symbol. */
1206 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1208 struct objfile *objfile;
1211 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1215 ALL_OBJFILES (objfile)
1217 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1225 /* Check to see if the symbol is defined in BLOCK or its superiors.
1226 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1228 static struct symbol *
1229 lookup_symbol_aux_local (const char *name, const struct block *block,
1230 const domain_enum domain,
1231 enum language language)
1234 const struct block *static_block = block_static_block (block);
1235 const char *scope = block_scope (block);
1237 /* Check if either no block is specified or it's a global block. */
1239 if (static_block == NULL)
1242 while (block != static_block)
1244 sym = lookup_symbol_aux_block (name, block, domain);
1248 if (language == language_cplus || language == language_fortran)
1250 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1256 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1258 block = BLOCK_SUPERBLOCK (block);
1261 /* We've reached the edge of the function without finding a result. */
1266 /* Look up OBJFILE to BLOCK. */
1269 lookup_objfile_from_block (const struct block *block)
1271 struct objfile *obj;
1277 block = block_global_block (block);
1278 /* Go through SYMTABS. */
1279 ALL_SYMTABS (obj, s)
1280 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1282 if (obj->separate_debug_objfile_backlink)
1283 obj = obj->separate_debug_objfile_backlink;
1291 /* Look up a symbol in a block; if found, fixup the symbol, and set
1292 block_found appropriately. */
1295 lookup_symbol_aux_block (const char *name, const struct block *block,
1296 const domain_enum domain)
1300 sym = lookup_block_symbol (block, name, domain);
1303 block_found = block;
1304 return fixup_symbol_section (sym, NULL);
1310 /* Check all global symbols in OBJFILE in symtabs and
1314 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1316 const domain_enum domain)
1318 const struct objfile *objfile;
1320 struct blockvector *bv;
1321 const struct block *block;
1324 for (objfile = main_objfile;
1326 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1328 /* Go through symtabs. */
1329 ALL_OBJFILE_SYMTABS (objfile, s)
1331 bv = BLOCKVECTOR (s);
1332 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1333 sym = lookup_block_symbol (block, name, domain);
1336 block_found = block;
1337 return fixup_symbol_section (sym, (struct objfile *)objfile);
1341 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1350 /* Check to see if the symbol is defined in one of the symtabs.
1351 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1352 depending on whether or not we want to search global symbols or
1355 static struct symbol *
1356 lookup_symbol_aux_symtabs (int block_index, const char *name,
1357 const domain_enum domain)
1360 struct objfile *objfile;
1361 struct blockvector *bv;
1362 const struct block *block;
1365 ALL_OBJFILES (objfile)
1368 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1372 ALL_OBJFILE_SYMTABS (objfile, s)
1375 bv = BLOCKVECTOR (s);
1376 block = BLOCKVECTOR_BLOCK (bv, block_index);
1377 sym = lookup_block_symbol (block, name, domain);
1380 block_found = block;
1381 return fixup_symbol_section (sym, objfile);
1389 /* A helper function for lookup_symbol_aux that interfaces with the
1390 "quick" symbol table functions. */
1392 static struct symbol *
1393 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1394 const char *name, const domain_enum domain)
1396 struct symtab *symtab;
1397 struct blockvector *bv;
1398 const struct block *block;
1403 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1407 bv = BLOCKVECTOR (symtab);
1408 block = BLOCKVECTOR_BLOCK (bv, kind);
1409 sym = lookup_block_symbol (block, name, domain);
1412 /* This shouldn't be necessary, but as a last resort try
1413 looking in the statics even though the psymtab claimed
1414 the symbol was global, or vice-versa. It's possible
1415 that the psymtab gets it wrong in some cases. */
1417 /* FIXME: carlton/2002-09-30: Should we really do that?
1418 If that happens, isn't it likely to be a GDB error, in
1419 which case we should fix the GDB error rather than
1420 silently dealing with it here? So I'd vote for
1421 removing the check for the symbol in the other
1423 block = BLOCKVECTOR_BLOCK (bv,
1424 kind == GLOBAL_BLOCK ?
1425 STATIC_BLOCK : GLOBAL_BLOCK);
1426 sym = lookup_block_symbol (block, name, domain);
1429 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1430 %s may be an inlined function, or may be a template function\n\
1431 (if a template, try specifying an instantiation: %s<type>)."),
1432 kind == GLOBAL_BLOCK ? "global" : "static",
1433 name, symtab->filename, name, name);
1435 return fixup_symbol_section (sym, objfile);
1438 /* A default version of lookup_symbol_nonlocal for use by languages
1439 that can't think of anything better to do. This implements the C
1443 basic_lookup_symbol_nonlocal (const char *name,
1444 const struct block *block,
1445 const domain_enum domain)
1449 /* NOTE: carlton/2003-05-19: The comments below were written when
1450 this (or what turned into this) was part of lookup_symbol_aux;
1451 I'm much less worried about these questions now, since these
1452 decisions have turned out well, but I leave these comments here
1455 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1456 not it would be appropriate to search the current global block
1457 here as well. (That's what this code used to do before the
1458 is_a_field_of_this check was moved up.) On the one hand, it's
1459 redundant with the lookup_symbol_aux_symtabs search that happens
1460 next. On the other hand, if decode_line_1 is passed an argument
1461 like filename:var, then the user presumably wants 'var' to be
1462 searched for in filename. On the third hand, there shouldn't be
1463 multiple global variables all of which are named 'var', and it's
1464 not like decode_line_1 has ever restricted its search to only
1465 global variables in a single filename. All in all, only
1466 searching the static block here seems best: it's correct and it's
1469 /* NOTE: carlton/2002-12-05: There's also a possible performance
1470 issue here: if you usually search for global symbols in the
1471 current file, then it would be slightly better to search the
1472 current global block before searching all the symtabs. But there
1473 are other factors that have a much greater effect on performance
1474 than that one, so I don't think we should worry about that for
1477 sym = lookup_symbol_static (name, block, domain);
1481 return lookup_symbol_global (name, block, domain);
1484 /* Lookup a symbol in the static block associated to BLOCK, if there
1485 is one; do nothing if BLOCK is NULL or a global block. */
1488 lookup_symbol_static (const char *name,
1489 const struct block *block,
1490 const domain_enum domain)
1492 const struct block *static_block = block_static_block (block);
1494 if (static_block != NULL)
1495 return lookup_symbol_aux_block (name, static_block, domain);
1500 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1504 lookup_symbol_global (const char *name,
1505 const struct block *block,
1506 const domain_enum domain)
1508 struct symbol *sym = NULL;
1509 struct objfile *objfile = NULL;
1511 /* Call library-specific lookup procedure. */
1512 objfile = lookup_objfile_from_block (block);
1513 if (objfile != NULL)
1514 sym = solib_global_lookup (objfile, name, domain);
1518 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1522 ALL_OBJFILES (objfile)
1524 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1533 symbol_matches_domain (enum language symbol_language,
1534 domain_enum symbol_domain,
1537 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1538 A Java class declaration also defines a typedef for the class.
1539 Similarly, any Ada type declaration implicitly defines a typedef. */
1540 if (symbol_language == language_cplus
1541 || symbol_language == language_d
1542 || symbol_language == language_java
1543 || symbol_language == language_ada)
1545 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1546 && symbol_domain == STRUCT_DOMAIN)
1549 /* For all other languages, strict match is required. */
1550 return (symbol_domain == domain);
1553 /* Look up a type named NAME in the struct_domain. The type returned
1554 must not be opaque -- i.e., must have at least one field
1558 lookup_transparent_type (const char *name)
1560 return current_language->la_lookup_transparent_type (name);
1563 /* A helper for basic_lookup_transparent_type that interfaces with the
1564 "quick" symbol table functions. */
1566 static struct type *
1567 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1570 struct symtab *symtab;
1571 struct blockvector *bv;
1572 struct block *block;
1577 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1581 bv = BLOCKVECTOR (symtab);
1582 block = BLOCKVECTOR_BLOCK (bv, kind);
1583 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1586 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1588 /* This shouldn't be necessary, but as a last resort
1589 * try looking in the 'other kind' even though the psymtab
1590 * claimed the symbol was one thing. It's possible that
1591 * the psymtab gets it wrong in some cases.
1593 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1594 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1596 /* FIXME; error is wrong in one case. */
1598 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1599 %s may be an inlined function, or may be a template function\n\
1600 (if a template, try specifying an instantiation: %s<type>)."),
1601 name, symtab->filename, name, name);
1603 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1604 return SYMBOL_TYPE (sym);
1609 /* The standard implementation of lookup_transparent_type. This code
1610 was modeled on lookup_symbol -- the parts not relevant to looking
1611 up types were just left out. In particular it's assumed here that
1612 types are available in struct_domain and only at file-static or
1616 basic_lookup_transparent_type (const char *name)
1619 struct symtab *s = NULL;
1620 struct blockvector *bv;
1621 struct objfile *objfile;
1622 struct block *block;
1625 /* Now search all the global symbols. Do the symtab's first, then
1626 check the psymtab's. If a psymtab indicates the existence
1627 of the desired name as a global, then do psymtab-to-symtab
1628 conversion on the fly and return the found symbol. */
1630 ALL_OBJFILES (objfile)
1633 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1635 name, STRUCT_DOMAIN);
1637 ALL_OBJFILE_SYMTABS (objfile, s)
1640 bv = BLOCKVECTOR (s);
1641 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1642 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1643 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1645 return SYMBOL_TYPE (sym);
1650 ALL_OBJFILES (objfile)
1652 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1657 /* Now search the static file-level symbols.
1658 Not strictly correct, but more useful than an error.
1659 Do the symtab's first, then
1660 check the psymtab's. If a psymtab indicates the existence
1661 of the desired name as a file-level static, then do psymtab-to-symtab
1662 conversion on the fly and return the found symbol. */
1664 ALL_OBJFILES (objfile)
1667 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1668 name, STRUCT_DOMAIN);
1670 ALL_OBJFILE_SYMTABS (objfile, s)
1672 bv = BLOCKVECTOR (s);
1673 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1674 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1675 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1677 return SYMBOL_TYPE (sym);
1682 ALL_OBJFILES (objfile)
1684 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1689 return (struct type *) 0;
1693 /* Find the name of the file containing main(). */
1694 /* FIXME: What about languages without main() or specially linked
1695 executables that have no main() ? */
1698 find_main_filename (void)
1700 struct objfile *objfile;
1701 char *name = main_name ();
1703 ALL_OBJFILES (objfile)
1709 result = objfile->sf->qf->find_symbol_file (objfile, name);
1716 /* Search BLOCK for symbol NAME in DOMAIN.
1718 Note that if NAME is the demangled form of a C++ symbol, we will fail
1719 to find a match during the binary search of the non-encoded names, but
1720 for now we don't worry about the slight inefficiency of looking for
1721 a match we'll never find, since it will go pretty quick. Once the
1722 binary search terminates, we drop through and do a straight linear
1723 search on the symbols. Each symbol which is marked as being a ObjC/C++
1724 symbol (language_cplus or language_objc set) has both the encoded and
1725 non-encoded names tested for a match. */
1728 lookup_block_symbol (const struct block *block, const char *name,
1729 const domain_enum domain)
1731 struct dict_iterator iter;
1734 if (!BLOCK_FUNCTION (block))
1736 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1738 sym = dict_iter_name_next (name, &iter))
1740 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1741 SYMBOL_DOMAIN (sym), domain))
1748 /* Note that parameter symbols do not always show up last in the
1749 list; this loop makes sure to take anything else other than
1750 parameter symbols first; it only uses parameter symbols as a
1751 last resort. Note that this only takes up extra computation
1754 struct symbol *sym_found = NULL;
1756 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1758 sym = dict_iter_name_next (name, &iter))
1760 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1761 SYMBOL_DOMAIN (sym), domain))
1764 if (!SYMBOL_IS_ARGUMENT (sym))
1770 return (sym_found); /* Will be NULL if not found. */
1774 /* Find the symtab associated with PC and SECTION. Look through the
1775 psymtabs and read in another symtab if necessary. */
1778 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1781 struct blockvector *bv;
1782 struct symtab *s = NULL;
1783 struct symtab *best_s = NULL;
1784 struct objfile *objfile;
1785 struct program_space *pspace;
1786 CORE_ADDR distance = 0;
1787 struct minimal_symbol *msymbol;
1789 pspace = current_program_space;
1791 /* If we know that this is not a text address, return failure. This is
1792 necessary because we loop based on the block's high and low code
1793 addresses, which do not include the data ranges, and because
1794 we call find_pc_sect_psymtab which has a similar restriction based
1795 on the partial_symtab's texthigh and textlow. */
1796 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1798 && (MSYMBOL_TYPE (msymbol) == mst_data
1799 || MSYMBOL_TYPE (msymbol) == mst_bss
1800 || MSYMBOL_TYPE (msymbol) == mst_abs
1801 || MSYMBOL_TYPE (msymbol) == mst_file_data
1802 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1805 /* Search all symtabs for the one whose file contains our address, and which
1806 is the smallest of all the ones containing the address. This is designed
1807 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1808 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1809 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1811 This happens for native ecoff format, where code from included files
1812 gets its own symtab. The symtab for the included file should have
1813 been read in already via the dependency mechanism.
1814 It might be swifter to create several symtabs with the same name
1815 like xcoff does (I'm not sure).
1817 It also happens for objfiles that have their functions reordered.
1818 For these, the symtab we are looking for is not necessarily read in. */
1820 ALL_PRIMARY_SYMTABS (objfile, s)
1822 bv = BLOCKVECTOR (s);
1823 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1825 if (BLOCK_START (b) <= pc
1826 && BLOCK_END (b) > pc
1828 || BLOCK_END (b) - BLOCK_START (b) < distance))
1830 /* For an objfile that has its functions reordered,
1831 find_pc_psymtab will find the proper partial symbol table
1832 and we simply return its corresponding symtab. */
1833 /* In order to better support objfiles that contain both
1834 stabs and coff debugging info, we continue on if a psymtab
1836 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1838 struct symtab *result;
1841 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1850 struct dict_iterator iter;
1851 struct symbol *sym = NULL;
1853 ALL_BLOCK_SYMBOLS (b, iter, sym)
1855 fixup_symbol_section (sym, objfile);
1856 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1860 continue; /* No symbol in this symtab matches
1863 distance = BLOCK_END (b) - BLOCK_START (b);
1871 ALL_OBJFILES (objfile)
1873 struct symtab *result;
1877 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1888 /* Find the symtab associated with PC. Look through the psymtabs and read
1889 in another symtab if necessary. Backward compatibility, no section. */
1892 find_pc_symtab (CORE_ADDR pc)
1894 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1898 /* Find the source file and line number for a given PC value and SECTION.
1899 Return a structure containing a symtab pointer, a line number,
1900 and a pc range for the entire source line.
1901 The value's .pc field is NOT the specified pc.
1902 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1903 use the line that ends there. Otherwise, in that case, the line
1904 that begins there is used. */
1906 /* The big complication here is that a line may start in one file, and end just
1907 before the start of another file. This usually occurs when you #include
1908 code in the middle of a subroutine. To properly find the end of a line's PC
1909 range, we must search all symtabs associated with this compilation unit, and
1910 find the one whose first PC is closer than that of the next line in this
1913 /* If it's worth the effort, we could be using a binary search. */
1915 struct symtab_and_line
1916 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1919 struct linetable *l;
1922 struct linetable_entry *item;
1923 struct symtab_and_line val;
1924 struct blockvector *bv;
1925 struct minimal_symbol *msymbol;
1926 struct minimal_symbol *mfunsym;
1927 struct objfile *objfile;
1929 /* Info on best line seen so far, and where it starts, and its file. */
1931 struct linetable_entry *best = NULL;
1932 CORE_ADDR best_end = 0;
1933 struct symtab *best_symtab = 0;
1935 /* Store here the first line number
1936 of a file which contains the line at the smallest pc after PC.
1937 If we don't find a line whose range contains PC,
1938 we will use a line one less than this,
1939 with a range from the start of that file to the first line's pc. */
1940 struct linetable_entry *alt = NULL;
1941 struct symtab *alt_symtab = 0;
1943 /* Info on best line seen in this file. */
1945 struct linetable_entry *prev;
1947 /* If this pc is not from the current frame,
1948 it is the address of the end of a call instruction.
1949 Quite likely that is the start of the following statement.
1950 But what we want is the statement containing the instruction.
1951 Fudge the pc to make sure we get that. */
1953 init_sal (&val); /* initialize to zeroes */
1955 val.pspace = current_program_space;
1957 /* It's tempting to assume that, if we can't find debugging info for
1958 any function enclosing PC, that we shouldn't search for line
1959 number info, either. However, GAS can emit line number info for
1960 assembly files --- very helpful when debugging hand-written
1961 assembly code. In such a case, we'd have no debug info for the
1962 function, but we would have line info. */
1967 /* elz: added this because this function returned the wrong
1968 information if the pc belongs to a stub (import/export)
1969 to call a shlib function. This stub would be anywhere between
1970 two functions in the target, and the line info was erroneously
1971 taken to be the one of the line before the pc. */
1973 /* RT: Further explanation:
1975 * We have stubs (trampolines) inserted between procedures.
1977 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1978 * exists in the main image.
1980 * In the minimal symbol table, we have a bunch of symbols
1981 * sorted by start address. The stubs are marked as "trampoline",
1982 * the others appear as text. E.g.:
1984 * Minimal symbol table for main image
1985 * main: code for main (text symbol)
1986 * shr1: stub (trampoline symbol)
1987 * foo: code for foo (text symbol)
1989 * Minimal symbol table for "shr1" image:
1991 * shr1: code for shr1 (text symbol)
1994 * So the code below is trying to detect if we are in the stub
1995 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1996 * and if found, do the symbolization from the real-code address
1997 * rather than the stub address.
1999 * Assumptions being made about the minimal symbol table:
2000 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2001 * if we're really in the trampoline.s If we're beyond it (say
2002 * we're in "foo" in the above example), it'll have a closer
2003 * symbol (the "foo" text symbol for example) and will not
2004 * return the trampoline.
2005 * 2. lookup_minimal_symbol_text() will find a real text symbol
2006 * corresponding to the trampoline, and whose address will
2007 * be different than the trampoline address. I put in a sanity
2008 * check for the address being the same, to avoid an
2009 * infinite recursion.
2011 msymbol = lookup_minimal_symbol_by_pc (pc);
2012 if (msymbol != NULL)
2013 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2015 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2017 if (mfunsym == NULL)
2018 /* I eliminated this warning since it is coming out
2019 * in the following situation:
2020 * gdb shmain // test program with shared libraries
2021 * (gdb) break shr1 // function in shared lib
2022 * Warning: In stub for ...
2023 * In the above situation, the shared lib is not loaded yet,
2024 * so of course we can't find the real func/line info,
2025 * but the "break" still works, and the warning is annoying.
2026 * So I commented out the warning. RT */
2027 /* warning ("In stub for %s; unable to find real function/line info",
2028 SYMBOL_LINKAGE_NAME (msymbol)); */
2031 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2032 == SYMBOL_VALUE_ADDRESS (msymbol))
2033 /* Avoid infinite recursion */
2034 /* See above comment about why warning is commented out. */
2035 /* warning ("In stub for %s; unable to find real function/line info",
2036 SYMBOL_LINKAGE_NAME (msymbol)); */
2040 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2044 s = find_pc_sect_symtab (pc, section);
2047 /* If no symbol information, return previous pc. */
2054 bv = BLOCKVECTOR (s);
2055 objfile = s->objfile;
2057 /* Look at all the symtabs that share this blockvector.
2058 They all have the same apriori range, that we found was right;
2059 but they have different line tables. */
2061 ALL_OBJFILE_SYMTABS (objfile, s)
2063 if (BLOCKVECTOR (s) != bv)
2066 /* Find the best line in this symtab. */
2073 /* I think len can be zero if the symtab lacks line numbers
2074 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2075 I'm not sure which, and maybe it depends on the symbol
2081 item = l->item; /* Get first line info. */
2083 /* Is this file's first line closer than the first lines of other files?
2084 If so, record this file, and its first line, as best alternate. */
2085 if (item->pc > pc && (!alt || item->pc < alt->pc))
2091 for (i = 0; i < len; i++, item++)
2093 /* Leave prev pointing to the linetable entry for the last line
2094 that started at or before PC. */
2101 /* At this point, prev points at the line whose start addr is <= pc, and
2102 item points at the next line. If we ran off the end of the linetable
2103 (pc >= start of the last line), then prev == item. If pc < start of
2104 the first line, prev will not be set. */
2106 /* Is this file's best line closer than the best in the other files?
2107 If so, record this file, and its best line, as best so far. Don't
2108 save prev if it represents the end of a function (i.e. line number
2109 0) instead of a real line. */
2111 if (prev && prev->line && (!best || prev->pc > best->pc))
2116 /* Discard BEST_END if it's before the PC of the current BEST. */
2117 if (best_end <= best->pc)
2121 /* If another line (denoted by ITEM) is in the linetable and its
2122 PC is after BEST's PC, but before the current BEST_END, then
2123 use ITEM's PC as the new best_end. */
2124 if (best && i < len && item->pc > best->pc
2125 && (best_end == 0 || best_end > item->pc))
2126 best_end = item->pc;
2131 /* If we didn't find any line number info, just return zeros.
2132 We used to return alt->line - 1 here, but that could be
2133 anywhere; if we don't have line number info for this PC,
2134 don't make some up. */
2137 else if (best->line == 0)
2139 /* If our best fit is in a range of PC's for which no line
2140 number info is available (line number is zero) then we didn't
2141 find any valid line information. */
2146 val.symtab = best_symtab;
2147 val.line = best->line;
2149 if (best_end && (!alt || best_end < alt->pc))
2154 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2156 val.section = section;
2160 /* Backward compatibility (no section). */
2162 struct symtab_and_line
2163 find_pc_line (CORE_ADDR pc, int notcurrent)
2165 struct obj_section *section;
2167 section = find_pc_overlay (pc);
2168 if (pc_in_unmapped_range (pc, section))
2169 pc = overlay_mapped_address (pc, section);
2170 return find_pc_sect_line (pc, section, notcurrent);
2173 /* Find line number LINE in any symtab whose name is the same as
2176 If found, return the symtab that contains the linetable in which it was
2177 found, set *INDEX to the index in the linetable of the best entry
2178 found, and set *EXACT_MATCH nonzero if the value returned is an
2181 If not found, return NULL. */
2184 find_line_symtab (struct symtab *symtab, int line,
2185 int *index, int *exact_match)
2187 int exact = 0; /* Initialized here to avoid a compiler warning. */
2189 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2193 struct linetable *best_linetable;
2194 struct symtab *best_symtab;
2196 /* First try looking it up in the given symtab. */
2197 best_linetable = LINETABLE (symtab);
2198 best_symtab = symtab;
2199 best_index = find_line_common (best_linetable, line, &exact);
2200 if (best_index < 0 || !exact)
2202 /* Didn't find an exact match. So we better keep looking for
2203 another symtab with the same name. In the case of xcoff,
2204 multiple csects for one source file (produced by IBM's FORTRAN
2205 compiler) produce multiple symtabs (this is unavoidable
2206 assuming csects can be at arbitrary places in memory and that
2207 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2209 /* BEST is the smallest linenumber > LINE so far seen,
2210 or 0 if none has been seen so far.
2211 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2214 struct objfile *objfile;
2217 if (best_index >= 0)
2218 best = best_linetable->item[best_index].line;
2222 ALL_OBJFILES (objfile)
2225 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2229 /* Get symbol full file name if possible. */
2230 symtab_to_fullname (symtab);
2232 ALL_SYMTABS (objfile, s)
2234 struct linetable *l;
2237 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2239 if (symtab->fullname != NULL
2240 && symtab_to_fullname (s) != NULL
2241 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2244 ind = find_line_common (l, line, &exact);
2254 if (best == 0 || l->item[ind].line < best)
2256 best = l->item[ind].line;
2269 *index = best_index;
2271 *exact_match = exact;
2276 /* Set the PC value for a given source file and line number and return true.
2277 Returns zero for invalid line number (and sets the PC to 0).
2278 The source file is specified with a struct symtab. */
2281 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2283 struct linetable *l;
2290 symtab = find_line_symtab (symtab, line, &ind, NULL);
2293 l = LINETABLE (symtab);
2294 *pc = l->item[ind].pc;
2301 /* Find the range of pc values in a line.
2302 Store the starting pc of the line into *STARTPTR
2303 and the ending pc (start of next line) into *ENDPTR.
2304 Returns 1 to indicate success.
2305 Returns 0 if could not find the specified line. */
2308 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2311 CORE_ADDR startaddr;
2312 struct symtab_and_line found_sal;
2315 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2318 /* This whole function is based on address. For example, if line 10 has
2319 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2320 "info line *0x123" should say the line goes from 0x100 to 0x200
2321 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2322 This also insures that we never give a range like "starts at 0x134
2323 and ends at 0x12c". */
2325 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2326 if (found_sal.line != sal.line)
2328 /* The specified line (sal) has zero bytes. */
2329 *startptr = found_sal.pc;
2330 *endptr = found_sal.pc;
2334 *startptr = found_sal.pc;
2335 *endptr = found_sal.end;
2340 /* Given a line table and a line number, return the index into the line
2341 table for the pc of the nearest line whose number is >= the specified one.
2342 Return -1 if none is found. The value is >= 0 if it is an index.
2344 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2347 find_line_common (struct linetable *l, int lineno,
2353 /* BEST is the smallest linenumber > LINENO so far seen,
2354 or 0 if none has been seen so far.
2355 BEST_INDEX identifies the item for it. */
2357 int best_index = -1;
2368 for (i = 0; i < len; i++)
2370 struct linetable_entry *item = &(l->item[i]);
2372 if (item->line == lineno)
2374 /* Return the first (lowest address) entry which matches. */
2379 if (item->line > lineno && (best == 0 || item->line < best))
2386 /* If we got here, we didn't get an exact match. */
2391 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2393 struct symtab_and_line sal;
2395 sal = find_pc_line (pc, 0);
2398 return sal.symtab != 0;
2401 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2402 address for that function that has an entry in SYMTAB's line info
2403 table. If such an entry cannot be found, return FUNC_ADDR
2406 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2408 CORE_ADDR func_start, func_end;
2409 struct linetable *l;
2412 /* Give up if this symbol has no lineinfo table. */
2413 l = LINETABLE (symtab);
2417 /* Get the range for the function's PC values, or give up if we
2418 cannot, for some reason. */
2419 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2422 /* Linetable entries are ordered by PC values, see the commentary in
2423 symtab.h where `struct linetable' is defined. Thus, the first
2424 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2425 address we are looking for. */
2426 for (i = 0; i < l->nitems; i++)
2428 struct linetable_entry *item = &(l->item[i]);
2430 /* Don't use line numbers of zero, they mark special entries in
2431 the table. See the commentary on symtab.h before the
2432 definition of struct linetable. */
2433 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2440 /* Given a function symbol SYM, find the symtab and line for the start
2442 If the argument FUNFIRSTLINE is nonzero, we want the first line
2443 of real code inside the function. */
2445 struct symtab_and_line
2446 find_function_start_sal (struct symbol *sym, int funfirstline)
2448 struct symtab_and_line sal;
2450 fixup_symbol_section (sym, NULL);
2451 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2452 SYMBOL_OBJ_SECTION (sym), 0);
2454 /* We always should have a line for the function start address.
2455 If we don't, something is odd. Create a plain SAL refering
2456 just the PC and hope that skip_prologue_sal (if requested)
2457 can find a line number for after the prologue. */
2458 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2461 sal.pspace = current_program_space;
2462 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2463 sal.section = SYMBOL_OBJ_SECTION (sym);
2467 skip_prologue_sal (&sal);
2472 /* Adjust SAL to the first instruction past the function prologue.
2473 If the PC was explicitly specified, the SAL is not changed.
2474 If the line number was explicitly specified, at most the SAL's PC
2475 is updated. If SAL is already past the prologue, then do nothing. */
2477 skip_prologue_sal (struct symtab_and_line *sal)
2480 struct symtab_and_line start_sal;
2481 struct cleanup *old_chain;
2482 CORE_ADDR pc, saved_pc;
2483 struct obj_section *section;
2485 struct objfile *objfile;
2486 struct gdbarch *gdbarch;
2487 struct block *b, *function_block;
2488 int force_skip, skip;
2490 /* Do not change the SAL is PC was specified explicitly. */
2491 if (sal->explicit_pc)
2494 old_chain = save_current_space_and_thread ();
2495 switch_to_program_space_and_thread (sal->pspace);
2497 sym = find_pc_sect_function (sal->pc, sal->section);
2500 fixup_symbol_section (sym, NULL);
2502 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2503 section = SYMBOL_OBJ_SECTION (sym);
2504 name = SYMBOL_LINKAGE_NAME (sym);
2505 objfile = SYMBOL_SYMTAB (sym)->objfile;
2509 struct minimal_symbol *msymbol
2510 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2512 if (msymbol == NULL)
2514 do_cleanups (old_chain);
2518 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2519 section = SYMBOL_OBJ_SECTION (msymbol);
2520 name = SYMBOL_LINKAGE_NAME (msymbol);
2521 objfile = msymbol_objfile (msymbol);
2524 gdbarch = get_objfile_arch (objfile);
2526 /* Process the prologue in two passes. In the first pass try to skip the
2527 prologue (SKIP is true) and verify there is a real need for it (indicated
2528 by FORCE_SKIP). If no such reason was found run a second pass where the
2529 prologue is not skipped (SKIP is false). */
2534 /* Be conservative - allow direct PC (without skipping prologue) only if we
2535 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2536 have to be set by the caller so we use SYM instead. */
2537 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2545 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2546 so that gdbarch_skip_prologue has something unique to work on. */
2547 if (section_is_overlay (section) && !section_is_mapped (section))
2548 pc = overlay_unmapped_address (pc, section);
2550 /* Skip "first line" of function (which is actually its prologue). */
2551 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2553 pc = gdbarch_skip_prologue (gdbarch, pc);
2555 /* For overlays, map pc back into its mapped VMA range. */
2556 pc = overlay_mapped_address (pc, section);
2558 /* Calculate line number. */
2559 start_sal = find_pc_sect_line (pc, section, 0);
2561 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2562 line is still part of the same function. */
2563 if (skip && start_sal.pc != pc
2564 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2565 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2566 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2567 == lookup_minimal_symbol_by_pc_section (pc, section))))
2569 /* First pc of next line */
2571 /* Recalculate the line number (might not be N+1). */
2572 start_sal = find_pc_sect_line (pc, section, 0);
2575 /* On targets with executable formats that don't have a concept of
2576 constructors (ELF with .init has, PE doesn't), gcc emits a call
2577 to `__main' in `main' between the prologue and before user
2579 if (gdbarch_skip_main_prologue_p (gdbarch)
2580 && name && strcmp (name, "main") == 0)
2582 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2583 /* Recalculate the line number (might not be N+1). */
2584 start_sal = find_pc_sect_line (pc, section, 0);
2588 while (!force_skip && skip--);
2590 /* If we still don't have a valid source line, try to find the first
2591 PC in the lineinfo table that belongs to the same function. This
2592 happens with COFF debug info, which does not seem to have an
2593 entry in lineinfo table for the code after the prologue which has
2594 no direct relation to source. For example, this was found to be
2595 the case with the DJGPP target using "gcc -gcoff" when the
2596 compiler inserted code after the prologue to make sure the stack
2598 if (!force_skip && sym && start_sal.symtab == NULL)
2600 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2601 /* Recalculate the line number. */
2602 start_sal = find_pc_sect_line (pc, section, 0);
2605 do_cleanups (old_chain);
2607 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2608 forward SAL to the end of the prologue. */
2613 sal->section = section;
2615 /* Unless the explicit_line flag was set, update the SAL line
2616 and symtab to correspond to the modified PC location. */
2617 if (sal->explicit_line)
2620 sal->symtab = start_sal.symtab;
2621 sal->line = start_sal.line;
2622 sal->end = start_sal.end;
2624 /* Check if we are now inside an inlined function. If we can,
2625 use the call site of the function instead. */
2626 b = block_for_pc_sect (sal->pc, sal->section);
2627 function_block = NULL;
2630 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2632 else if (BLOCK_FUNCTION (b) != NULL)
2634 b = BLOCK_SUPERBLOCK (b);
2636 if (function_block != NULL
2637 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2639 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2640 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2644 /* If P is of the form "operator[ \t]+..." where `...' is
2645 some legitimate operator text, return a pointer to the
2646 beginning of the substring of the operator text.
2647 Otherwise, return "". */
2649 operator_chars (char *p, char **end)
2652 if (strncmp (p, "operator", 8))
2656 /* Don't get faked out by `operator' being part of a longer
2658 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2661 /* Allow some whitespace between `operator' and the operator symbol. */
2662 while (*p == ' ' || *p == '\t')
2665 /* Recognize 'operator TYPENAME'. */
2667 if (isalpha (*p) || *p == '_' || *p == '$')
2671 while (isalnum (*q) || *q == '_' || *q == '$')
2680 case '\\': /* regexp quoting */
2683 if (p[2] == '=') /* 'operator\*=' */
2685 else /* 'operator\*' */
2689 else if (p[1] == '[')
2692 error (_("mismatched quoting on brackets, "
2693 "try 'operator\\[\\]'"));
2694 else if (p[2] == '\\' && p[3] == ']')
2696 *end = p + 4; /* 'operator\[\]' */
2700 error (_("nothing is allowed between '[' and ']'"));
2704 /* Gratuitous qoute: skip it and move on. */
2726 if (p[0] == '-' && p[1] == '>')
2728 /* Struct pointer member operator 'operator->'. */
2731 *end = p + 3; /* 'operator->*' */
2734 else if (p[2] == '\\')
2736 *end = p + 4; /* Hopefully 'operator->\*' */
2741 *end = p + 2; /* 'operator->' */
2745 if (p[1] == '=' || p[1] == p[0])
2756 error (_("`operator ()' must be specified "
2757 "without whitespace in `()'"));
2762 error (_("`operator ?:' must be specified "
2763 "without whitespace in `?:'"));
2768 error (_("`operator []' must be specified "
2769 "without whitespace in `[]'"));
2773 error (_("`operator %s' not supported"), p);
2782 /* If FILE is not already in the table of files, return zero;
2783 otherwise return non-zero. Optionally add FILE to the table if ADD
2784 is non-zero. If *FIRST is non-zero, forget the old table
2787 filename_seen (const char *file, int add, int *first)
2789 /* Table of files seen so far. */
2790 static const char **tab = NULL;
2791 /* Allocated size of tab in elements.
2792 Start with one 256-byte block (when using GNU malloc.c).
2793 24 is the malloc overhead when range checking is in effect. */
2794 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2795 /* Current size of tab in elements. */
2796 static int tab_cur_size;
2802 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2806 /* Is FILE in tab? */
2807 for (p = tab; p < tab + tab_cur_size; p++)
2808 if (filename_cmp (*p, file) == 0)
2811 /* No; maybe add it to tab. */
2814 if (tab_cur_size == tab_alloc_size)
2816 tab_alloc_size *= 2;
2817 tab = (const char **) xrealloc ((char *) tab,
2818 tab_alloc_size * sizeof (*tab));
2820 tab[tab_cur_size++] = file;
2826 /* Slave routine for sources_info. Force line breaks at ,'s.
2827 NAME is the name to print and *FIRST is nonzero if this is the first
2828 name printed. Set *FIRST to zero. */
2830 output_source_filename (const char *name, int *first)
2832 /* Since a single source file can result in several partial symbol
2833 tables, we need to avoid printing it more than once. Note: if
2834 some of the psymtabs are read in and some are not, it gets
2835 printed both under "Source files for which symbols have been
2836 read" and "Source files for which symbols will be read in on
2837 demand". I consider this a reasonable way to deal with the
2838 situation. I'm not sure whether this can also happen for
2839 symtabs; it doesn't hurt to check. */
2841 /* Was NAME already seen? */
2842 if (filename_seen (name, 1, first))
2844 /* Yes; don't print it again. */
2847 /* No; print it and reset *FIRST. */
2854 printf_filtered (", ");
2858 fputs_filtered (name, gdb_stdout);
2861 /* A callback for map_partial_symbol_filenames. */
2863 output_partial_symbol_filename (const char *filename, const char *fullname,
2866 output_source_filename (fullname ? fullname : filename, data);
2870 sources_info (char *ignore, int from_tty)
2873 struct objfile *objfile;
2876 if (!have_full_symbols () && !have_partial_symbols ())
2878 error (_("No symbol table is loaded. Use the \"file\" command."));
2881 printf_filtered ("Source files for which symbols have been read in:\n\n");
2884 ALL_SYMTABS (objfile, s)
2886 const char *fullname = symtab_to_fullname (s);
2888 output_source_filename (fullname ? fullname : s->filename, &first);
2890 printf_filtered ("\n\n");
2892 printf_filtered ("Source files for which symbols "
2893 "will be read in on demand:\n\n");
2896 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
2897 1 /*need_fullname*/);
2898 printf_filtered ("\n");
2902 file_matches (const char *file, char *files[], int nfiles)
2906 if (file != NULL && nfiles != 0)
2908 for (i = 0; i < nfiles; i++)
2910 if (filename_cmp (files[i], lbasename (file)) == 0)
2914 else if (nfiles == 0)
2919 /* Free any memory associated with a search. */
2921 free_search_symbols (struct symbol_search *symbols)
2923 struct symbol_search *p;
2924 struct symbol_search *next;
2926 for (p = symbols; p != NULL; p = next)
2934 do_free_search_symbols_cleanup (void *symbols)
2936 free_search_symbols (symbols);
2940 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2942 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2945 /* Helper function for sort_search_symbols and qsort. Can only
2946 sort symbols, not minimal symbols. */
2948 compare_search_syms (const void *sa, const void *sb)
2950 struct symbol_search **sym_a = (struct symbol_search **) sa;
2951 struct symbol_search **sym_b = (struct symbol_search **) sb;
2953 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2954 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2957 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2958 prevtail where it is, but update its next pointer to point to
2959 the first of the sorted symbols. */
2960 static struct symbol_search *
2961 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2963 struct symbol_search **symbols, *symp, *old_next;
2966 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2968 symp = prevtail->next;
2969 for (i = 0; i < nfound; i++)
2974 /* Generally NULL. */
2977 qsort (symbols, nfound, sizeof (struct symbol_search *),
2978 compare_search_syms);
2981 for (i = 0; i < nfound; i++)
2983 symp->next = symbols[i];
2986 symp->next = old_next;
2992 /* An object of this type is passed as the user_data to the
2993 expand_symtabs_matching method. */
2994 struct search_symbols_data
2999 /* It is true if PREG contains valid data, false otherwise. */
3000 unsigned preg_p : 1;
3004 /* A callback for expand_symtabs_matching. */
3006 search_symbols_file_matches (const char *filename, void *user_data)
3008 struct search_symbols_data *data = user_data;
3010 return file_matches (filename, data->files, data->nfiles);
3013 /* A callback for expand_symtabs_matching. */
3015 search_symbols_name_matches (const char *symname, void *user_data)
3017 struct search_symbols_data *data = user_data;
3019 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3022 /* Search the symbol table for matches to the regular expression REGEXP,
3023 returning the results in *MATCHES.
3025 Only symbols of KIND are searched:
3026 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3027 and constants (enums)
3028 FUNCTIONS_DOMAIN - search all functions
3029 TYPES_DOMAIN - search all type names
3030 ALL_DOMAIN - an internal error for this function
3032 free_search_symbols should be called when *MATCHES is no longer needed.
3034 The results are sorted locally; each symtab's global and static blocks are
3035 separately alphabetized. */
3038 search_symbols (char *regexp, enum search_domain kind,
3039 int nfiles, char *files[],
3040 struct symbol_search **matches)
3043 struct blockvector *bv;
3046 struct dict_iterator iter;
3048 struct objfile *objfile;
3049 struct minimal_symbol *msymbol;
3052 static const enum minimal_symbol_type types[]
3053 = {mst_data, mst_text, mst_abs};
3054 static const enum minimal_symbol_type types2[]
3055 = {mst_bss, mst_file_text, mst_abs};
3056 static const enum minimal_symbol_type types3[]
3057 = {mst_file_data, mst_solib_trampoline, mst_abs};
3058 static const enum minimal_symbol_type types4[]
3059 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3060 enum minimal_symbol_type ourtype;
3061 enum minimal_symbol_type ourtype2;
3062 enum minimal_symbol_type ourtype3;
3063 enum minimal_symbol_type ourtype4;
3064 struct symbol_search *sr;
3065 struct symbol_search *psr;
3066 struct symbol_search *tail;
3067 struct search_symbols_data datum;
3069 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3070 CLEANUP_CHAIN is freed only in the case of an error. */
3071 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3072 struct cleanup *retval_chain;
3074 gdb_assert (kind <= TYPES_DOMAIN);
3076 ourtype = types[kind];
3077 ourtype2 = types2[kind];
3078 ourtype3 = types3[kind];
3079 ourtype4 = types4[kind];
3081 sr = *matches = NULL;
3087 /* Make sure spacing is right for C++ operators.
3088 This is just a courtesy to make the matching less sensitive
3089 to how many spaces the user leaves between 'operator'
3090 and <TYPENAME> or <OPERATOR>. */
3092 char *opname = operator_chars (regexp, &opend);
3097 int fix = -1; /* -1 means ok; otherwise number of
3100 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3102 /* There should 1 space between 'operator' and 'TYPENAME'. */
3103 if (opname[-1] != ' ' || opname[-2] == ' ')
3108 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3109 if (opname[-1] == ' ')
3112 /* If wrong number of spaces, fix it. */
3115 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3117 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3122 errcode = regcomp (&datum.preg, regexp,
3123 REG_NOSUB | (case_sensitivity == case_sensitive_off
3127 char *err = get_regcomp_error (errcode, &datum.preg);
3129 make_cleanup (xfree, err);
3130 error (_("Invalid regexp (%s): %s"), err, regexp);
3133 make_regfree_cleanup (&datum.preg);
3136 /* Search through the partial symtabs *first* for all symbols
3137 matching the regexp. That way we don't have to reproduce all of
3138 the machinery below. */
3140 datum.nfiles = nfiles;
3141 datum.files = files;
3142 ALL_OBJFILES (objfile)
3145 objfile->sf->qf->expand_symtabs_matching (objfile,
3146 search_symbols_file_matches,
3147 search_symbols_name_matches,
3152 retval_chain = old_chain;
3154 /* Here, we search through the minimal symbol tables for functions
3155 and variables that match, and force their symbols to be read.
3156 This is in particular necessary for demangled variable names,
3157 which are no longer put into the partial symbol tables.
3158 The symbol will then be found during the scan of symtabs below.
3160 For functions, find_pc_symtab should succeed if we have debug info
3161 for the function, for variables we have to call lookup_symbol
3162 to determine if the variable has debug info.
3163 If the lookup fails, set found_misc so that we will rescan to print
3164 any matching symbols without debug info. */
3166 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3168 ALL_MSYMBOLS (objfile, msymbol)
3172 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3173 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3174 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3175 MSYMBOL_TYPE (msymbol) == ourtype4)
3178 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3181 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3183 /* FIXME: carlton/2003-02-04: Given that the
3184 semantics of lookup_symbol keeps on changing
3185 slightly, it would be a nice idea if we had a
3186 function lookup_symbol_minsym that found the
3187 symbol associated to a given minimal symbol (if
3189 if (kind == FUNCTIONS_DOMAIN
3190 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3191 (struct block *) NULL,
3201 ALL_PRIMARY_SYMTABS (objfile, s)
3203 bv = BLOCKVECTOR (s);
3204 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3206 struct symbol_search *prevtail = tail;
3209 b = BLOCKVECTOR_BLOCK (bv, i);
3210 ALL_BLOCK_SYMBOLS (b, iter, sym)
3212 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3216 if (file_matches (real_symtab->filename, files, nfiles)
3218 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3220 && ((kind == VARIABLES_DOMAIN
3221 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3222 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3223 && SYMBOL_CLASS (sym) != LOC_BLOCK
3224 /* LOC_CONST can be used for more than just enums,
3225 e.g., c++ static const members.
3226 We only want to skip enums here. */
3227 && !(SYMBOL_CLASS (sym) == LOC_CONST
3228 && TYPE_CODE (SYMBOL_TYPE (sym))
3230 || (kind == FUNCTIONS_DOMAIN
3231 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3232 || (kind == TYPES_DOMAIN
3233 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3236 psr = (struct symbol_search *)
3237 xmalloc (sizeof (struct symbol_search));
3239 psr->symtab = real_symtab;
3241 psr->msymbol = NULL;
3253 if (prevtail == NULL)
3255 struct symbol_search dummy;
3258 tail = sort_search_symbols (&dummy, nfound);
3261 make_cleanup_free_search_symbols (sr);
3264 tail = sort_search_symbols (prevtail, nfound);
3269 /* If there are no eyes, avoid all contact. I mean, if there are
3270 no debug symbols, then print directly from the msymbol_vector. */
3272 if (found_misc || kind != FUNCTIONS_DOMAIN)
3274 ALL_MSYMBOLS (objfile, msymbol)
3278 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3279 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3280 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3281 MSYMBOL_TYPE (msymbol) == ourtype4)
3284 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3287 /* Functions: Look up by address. */
3288 if (kind != FUNCTIONS_DOMAIN ||
3289 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3291 /* Variables/Absolutes: Look up by name. */
3292 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3293 (struct block *) NULL, VAR_DOMAIN, 0)
3297 psr = (struct symbol_search *)
3298 xmalloc (sizeof (struct symbol_search));
3300 psr->msymbol = msymbol;
3307 make_cleanup_free_search_symbols (sr);
3319 discard_cleanups (retval_chain);
3320 do_cleanups (old_chain);
3324 /* Helper function for symtab_symbol_info, this function uses
3325 the data returned from search_symbols() to print information
3326 regarding the match to gdb_stdout. */
3329 print_symbol_info (enum search_domain kind,
3330 struct symtab *s, struct symbol *sym,
3331 int block, char *last)
3333 if (last == NULL || filename_cmp (last, s->filename) != 0)
3335 fputs_filtered ("\nFile ", gdb_stdout);
3336 fputs_filtered (s->filename, gdb_stdout);
3337 fputs_filtered (":\n", gdb_stdout);
3340 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3341 printf_filtered ("static ");
3343 /* Typedef that is not a C++ class. */
3344 if (kind == TYPES_DOMAIN
3345 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3346 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3347 /* variable, func, or typedef-that-is-c++-class. */
3348 else if (kind < TYPES_DOMAIN ||
3349 (kind == TYPES_DOMAIN &&
3350 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3352 type_print (SYMBOL_TYPE (sym),
3353 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3354 ? "" : SYMBOL_PRINT_NAME (sym)),
3357 printf_filtered (";\n");
3361 /* This help function for symtab_symbol_info() prints information
3362 for non-debugging symbols to gdb_stdout. */
3365 print_msymbol_info (struct minimal_symbol *msymbol)
3367 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3370 if (gdbarch_addr_bit (gdbarch) <= 32)
3371 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3372 & (CORE_ADDR) 0xffffffff,
3375 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3377 printf_filtered ("%s %s\n",
3378 tmp, SYMBOL_PRINT_NAME (msymbol));
3381 /* This is the guts of the commands "info functions", "info types", and
3382 "info variables". It calls search_symbols to find all matches and then
3383 print_[m]symbol_info to print out some useful information about the
3387 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3389 static const char * const classnames[] =
3390 {"variable", "function", "type"};
3391 struct symbol_search *symbols;
3392 struct symbol_search *p;
3393 struct cleanup *old_chain;
3394 char *last_filename = NULL;
3397 gdb_assert (kind <= TYPES_DOMAIN);
3399 /* Must make sure that if we're interrupted, symbols gets freed. */
3400 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3401 old_chain = make_cleanup_free_search_symbols (symbols);
3403 printf_filtered (regexp
3404 ? "All %ss matching regular expression \"%s\":\n"
3405 : "All defined %ss:\n",
3406 classnames[kind], regexp);
3408 for (p = symbols; p != NULL; p = p->next)
3412 if (p->msymbol != NULL)
3416 printf_filtered ("\nNon-debugging symbols:\n");
3419 print_msymbol_info (p->msymbol);
3423 print_symbol_info (kind,
3428 last_filename = p->symtab->filename;
3432 do_cleanups (old_chain);
3436 variables_info (char *regexp, int from_tty)
3438 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3442 functions_info (char *regexp, int from_tty)
3444 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3449 types_info (char *regexp, int from_tty)
3451 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3454 /* Breakpoint all functions matching regular expression. */
3457 rbreak_command_wrapper (char *regexp, int from_tty)
3459 rbreak_command (regexp, from_tty);
3462 /* A cleanup function that calls end_rbreak_breakpoints. */
3465 do_end_rbreak_breakpoints (void *ignore)
3467 end_rbreak_breakpoints ();
3471 rbreak_command (char *regexp, int from_tty)
3473 struct symbol_search *ss;
3474 struct symbol_search *p;
3475 struct cleanup *old_chain;
3476 char *string = NULL;
3478 char **files = NULL, *file_name;
3483 char *colon = strchr (regexp, ':');
3485 if (colon && *(colon + 1) != ':')
3489 colon_index = colon - regexp;
3490 file_name = alloca (colon_index + 1);
3491 memcpy (file_name, regexp, colon_index);
3492 file_name[colon_index--] = 0;
3493 while (isspace (file_name[colon_index]))
3494 file_name[colon_index--] = 0;
3498 while (isspace (*regexp)) regexp++;
3502 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3503 old_chain = make_cleanup_free_search_symbols (ss);
3504 make_cleanup (free_current_contents, &string);
3506 start_rbreak_breakpoints ();
3507 make_cleanup (do_end_rbreak_breakpoints, NULL);
3508 for (p = ss; p != NULL; p = p->next)
3510 if (p->msymbol == NULL)
3512 int newlen = (strlen (p->symtab->filename)
3513 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3518 string = xrealloc (string, newlen);
3521 strcpy (string, p->symtab->filename);
3522 strcat (string, ":'");
3523 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3524 strcat (string, "'");
3525 break_command (string, from_tty);
3526 print_symbol_info (FUNCTIONS_DOMAIN,
3530 p->symtab->filename);
3534 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3538 string = xrealloc (string, newlen);
3541 strcpy (string, "'");
3542 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3543 strcat (string, "'");
3545 break_command (string, from_tty);
3546 printf_filtered ("<function, no debug info> %s;\n",
3547 SYMBOL_PRINT_NAME (p->msymbol));
3551 do_cleanups (old_chain);
3555 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3557 Either sym_text[sym_text_len] != '(' and then we search for any
3558 symbol starting with SYM_TEXT text.
3560 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3561 be terminated at that point. Partial symbol tables do not have parameters
3565 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3567 int (*ncmp) (const char *, const char *, size_t);
3569 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3571 if (ncmp (name, sym_text, sym_text_len) != 0)
3574 if (sym_text[sym_text_len] == '(')
3576 /* User searches for `name(someth...'. Require NAME to be terminated.
3577 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3578 present but accept even parameters presence. In this case this
3579 function is in fact strcmp_iw but whitespace skipping is not supported
3580 for tab completion. */
3582 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3589 /* Free any memory associated with a completion list. */
3592 free_completion_list (char ***list_ptr)
3595 char **list = *list_ptr;
3597 while (list[i] != NULL)
3605 /* Callback for make_cleanup. */
3608 do_free_completion_list (void *list)
3610 free_completion_list (list);
3613 /* Helper routine for make_symbol_completion_list. */
3615 static int return_val_size;
3616 static int return_val_index;
3617 static char **return_val;
3619 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3620 completion_list_add_name \
3621 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3623 /* Test to see if the symbol specified by SYMNAME (which is already
3624 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3625 characters. If so, add it to the current completion list. */
3628 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3629 char *text, char *word)
3633 /* Clip symbols that cannot match. */
3634 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3637 /* We have a match for a completion, so add SYMNAME to the current list
3638 of matches. Note that the name is moved to freshly malloc'd space. */
3643 if (word == sym_text)
3645 new = xmalloc (strlen (symname) + 5);
3646 strcpy (new, symname);
3648 else if (word > sym_text)
3650 /* Return some portion of symname. */
3651 new = xmalloc (strlen (symname) + 5);
3652 strcpy (new, symname + (word - sym_text));
3656 /* Return some of SYM_TEXT plus symname. */
3657 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3658 strncpy (new, word, sym_text - word);
3659 new[sym_text - word] = '\0';
3660 strcat (new, symname);
3663 if (return_val_index + 3 > return_val_size)
3665 newsize = (return_val_size *= 2) * sizeof (char *);
3666 return_val = (char **) xrealloc ((char *) return_val, newsize);
3668 return_val[return_val_index++] = new;
3669 return_val[return_val_index] = NULL;
3673 /* ObjC: In case we are completing on a selector, look as the msymbol
3674 again and feed all the selectors into the mill. */
3677 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3678 int sym_text_len, char *text, char *word)
3680 static char *tmp = NULL;
3681 static unsigned int tmplen = 0;
3683 char *method, *category, *selector;
3686 method = SYMBOL_NATURAL_NAME (msymbol);
3688 /* Is it a method? */
3689 if ((method[0] != '-') && (method[0] != '+'))
3692 if (sym_text[0] == '[')
3693 /* Complete on shortened method method. */
3694 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3696 while ((strlen (method) + 1) >= tmplen)
3702 tmp = xrealloc (tmp, tmplen);
3704 selector = strchr (method, ' ');
3705 if (selector != NULL)
3708 category = strchr (method, '(');
3710 if ((category != NULL) && (selector != NULL))
3712 memcpy (tmp, method, (category - method));
3713 tmp[category - method] = ' ';
3714 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3715 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3716 if (sym_text[0] == '[')
3717 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3720 if (selector != NULL)
3722 /* Complete on selector only. */
3723 strcpy (tmp, selector);
3724 tmp2 = strchr (tmp, ']');
3728 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3732 /* Break the non-quoted text based on the characters which are in
3733 symbols. FIXME: This should probably be language-specific. */
3736 language_search_unquoted_string (char *text, char *p)
3738 for (; p > text; --p)
3740 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3744 if ((current_language->la_language == language_objc))
3746 if (p[-1] == ':') /* Might be part of a method name. */
3748 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3749 p -= 2; /* Beginning of a method name. */
3750 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3751 { /* Might be part of a method name. */
3754 /* Seeing a ' ' or a '(' is not conclusive evidence
3755 that we are in the middle of a method name. However,
3756 finding "-[" or "+[" should be pretty un-ambiguous.
3757 Unfortunately we have to find it now to decide. */
3760 if (isalnum (t[-1]) || t[-1] == '_' ||
3761 t[-1] == ' ' || t[-1] == ':' ||
3762 t[-1] == '(' || t[-1] == ')')
3767 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3768 p = t - 2; /* Method name detected. */
3769 /* Else we leave with p unchanged. */
3779 completion_list_add_fields (struct symbol *sym, char *sym_text,
3780 int sym_text_len, char *text, char *word)
3782 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3784 struct type *t = SYMBOL_TYPE (sym);
3785 enum type_code c = TYPE_CODE (t);
3788 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3789 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3790 if (TYPE_FIELD_NAME (t, j))
3791 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3792 sym_text, sym_text_len, text, word);
3796 /* Type of the user_data argument passed to add_macro_name or
3797 expand_partial_symbol_name. The contents are simply whatever is
3798 needed by completion_list_add_name. */
3799 struct add_name_data
3807 /* A callback used with macro_for_each and macro_for_each_in_scope.
3808 This adds a macro's name to the current completion list. */
3810 add_macro_name (const char *name, const struct macro_definition *ignore,
3811 struct macro_source_file *ignore2, int ignore3,
3814 struct add_name_data *datum = (struct add_name_data *) user_data;
3816 completion_list_add_name ((char *) name,
3817 datum->sym_text, datum->sym_text_len,
3818 datum->text, datum->word);
3821 /* A callback for expand_partial_symbol_names. */
3823 expand_partial_symbol_name (const char *name, void *user_data)
3825 struct add_name_data *datum = (struct add_name_data *) user_data;
3827 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
3831 default_make_symbol_completion_list_break_on (char *text, char *word,
3832 const char *break_on)
3834 /* Problem: All of the symbols have to be copied because readline
3835 frees them. I'm not going to worry about this; hopefully there
3836 won't be that many. */
3840 struct minimal_symbol *msymbol;
3841 struct objfile *objfile;
3843 const struct block *surrounding_static_block, *surrounding_global_block;
3844 struct dict_iterator iter;
3845 /* The symbol we are completing on. Points in same buffer as text. */
3847 /* Length of sym_text. */
3849 struct add_name_data datum;
3850 struct cleanup *back_to;
3852 /* Now look for the symbol we are supposed to complete on. */
3856 char *quote_pos = NULL;
3858 /* First see if this is a quoted string. */
3860 for (p = text; *p != '\0'; ++p)
3862 if (quote_found != '\0')
3864 if (*p == quote_found)
3865 /* Found close quote. */
3867 else if (*p == '\\' && p[1] == quote_found)
3868 /* A backslash followed by the quote character
3869 doesn't end the string. */
3872 else if (*p == '\'' || *p == '"')
3878 if (quote_found == '\'')
3879 /* A string within single quotes can be a symbol, so complete on it. */
3880 sym_text = quote_pos + 1;
3881 else if (quote_found == '"')
3882 /* A double-quoted string is never a symbol, nor does it make sense
3883 to complete it any other way. */
3885 return_val = (char **) xmalloc (sizeof (char *));
3886 return_val[0] = NULL;
3891 /* It is not a quoted string. Break it based on the characters
3892 which are in symbols. */
3895 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3896 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3905 sym_text_len = strlen (sym_text);
3907 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
3909 if (current_language->la_language == language_cplus
3910 || current_language->la_language == language_java
3911 || current_language->la_language == language_fortran)
3913 /* These languages may have parameters entered by user but they are never
3914 present in the partial symbol tables. */
3916 const char *cs = memchr (sym_text, '(', sym_text_len);
3919 sym_text_len = cs - sym_text;
3921 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
3923 return_val_size = 100;
3924 return_val_index = 0;
3925 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3926 return_val[0] = NULL;
3927 back_to = make_cleanup (do_free_completion_list, &return_val);
3929 datum.sym_text = sym_text;
3930 datum.sym_text_len = sym_text_len;
3934 /* Look through the partial symtabs for all symbols which begin
3935 by matching SYM_TEXT. Expand all CUs that you find to the list.
3936 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
3937 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
3939 /* At this point scan through the misc symbol vectors and add each
3940 symbol you find to the list. Eventually we want to ignore
3941 anything that isn't a text symbol (everything else will be
3942 handled by the psymtab code above). */
3944 ALL_MSYMBOLS (objfile, msymbol)
3947 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3949 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3952 /* Search upwards from currently selected frame (so that we can
3953 complete on local vars). Also catch fields of types defined in
3954 this places which match our text string. Only complete on types
3955 visible from current context. */
3957 b = get_selected_block (0);
3958 surrounding_static_block = block_static_block (b);
3959 surrounding_global_block = block_global_block (b);
3960 if (surrounding_static_block != NULL)
3961 while (b != surrounding_static_block)
3965 ALL_BLOCK_SYMBOLS (b, iter, sym)
3967 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3969 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3973 /* Stop when we encounter an enclosing function. Do not stop for
3974 non-inlined functions - the locals of the enclosing function
3975 are in scope for a nested function. */
3976 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3978 b = BLOCK_SUPERBLOCK (b);
3981 /* Add fields from the file's types; symbols will be added below. */
3983 if (surrounding_static_block != NULL)
3984 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3985 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3987 if (surrounding_global_block != NULL)
3988 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3989 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3991 /* Go through the symtabs and check the externs and statics for
3992 symbols which match. */
3994 ALL_PRIMARY_SYMTABS (objfile, s)
3997 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3998 ALL_BLOCK_SYMBOLS (b, iter, sym)
4000 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4004 ALL_PRIMARY_SYMTABS (objfile, s)
4007 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4008 ALL_BLOCK_SYMBOLS (b, iter, sym)
4010 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4014 if (current_language->la_macro_expansion == macro_expansion_c)
4016 struct macro_scope *scope;
4018 /* Add any macros visible in the default scope. Note that this
4019 may yield the occasional wrong result, because an expression
4020 might be evaluated in a scope other than the default. For
4021 example, if the user types "break file:line if <TAB>", the
4022 resulting expression will be evaluated at "file:line" -- but
4023 at there does not seem to be a way to detect this at
4025 scope = default_macro_scope ();
4028 macro_for_each_in_scope (scope->file, scope->line,
4029 add_macro_name, &datum);
4033 /* User-defined macros are always visible. */
4034 macro_for_each (macro_user_macros, add_macro_name, &datum);
4037 discard_cleanups (back_to);
4038 return (return_val);
4042 default_make_symbol_completion_list (char *text, char *word)
4044 return default_make_symbol_completion_list_break_on (text, word, "");
4047 /* Return a NULL terminated array of all symbols (regardless of class)
4048 which begin by matching TEXT. If the answer is no symbols, then
4049 the return value is an array which contains only a NULL pointer. */
4052 make_symbol_completion_list (char *text, char *word)
4054 return current_language->la_make_symbol_completion_list (text, word);
4057 /* Like make_symbol_completion_list, but suitable for use as a
4058 completion function. */
4061 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4062 char *text, char *word)
4064 return make_symbol_completion_list (text, word);
4067 /* Like make_symbol_completion_list, but returns a list of symbols
4068 defined in a source file FILE. */
4071 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4076 struct dict_iterator iter;
4077 /* The symbol we are completing on. Points in same buffer as text. */
4079 /* Length of sym_text. */
4082 /* Now look for the symbol we are supposed to complete on.
4083 FIXME: This should be language-specific. */
4087 char *quote_pos = NULL;
4089 /* First see if this is a quoted string. */
4091 for (p = text; *p != '\0'; ++p)
4093 if (quote_found != '\0')
4095 if (*p == quote_found)
4096 /* Found close quote. */
4098 else if (*p == '\\' && p[1] == quote_found)
4099 /* A backslash followed by the quote character
4100 doesn't end the string. */
4103 else if (*p == '\'' || *p == '"')
4109 if (quote_found == '\'')
4110 /* A string within single quotes can be a symbol, so complete on it. */
4111 sym_text = quote_pos + 1;
4112 else if (quote_found == '"')
4113 /* A double-quoted string is never a symbol, nor does it make sense
4114 to complete it any other way. */
4116 return_val = (char **) xmalloc (sizeof (char *));
4117 return_val[0] = NULL;
4122 /* Not a quoted string. */
4123 sym_text = language_search_unquoted_string (text, p);
4127 sym_text_len = strlen (sym_text);
4129 return_val_size = 10;
4130 return_val_index = 0;
4131 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4132 return_val[0] = NULL;
4134 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4136 s = lookup_symtab (srcfile);
4139 /* Maybe they typed the file with leading directories, while the
4140 symbol tables record only its basename. */
4141 const char *tail = lbasename (srcfile);
4144 s = lookup_symtab (tail);
4147 /* If we have no symtab for that file, return an empty list. */
4149 return (return_val);
4151 /* Go through this symtab and check the externs and statics for
4152 symbols which match. */
4154 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4155 ALL_BLOCK_SYMBOLS (b, iter, sym)
4157 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4160 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4161 ALL_BLOCK_SYMBOLS (b, iter, sym)
4163 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4166 return (return_val);
4169 /* A helper function for make_source_files_completion_list. It adds
4170 another file name to a list of possible completions, growing the
4171 list as necessary. */
4174 add_filename_to_list (const char *fname, char *text, char *word,
4175 char ***list, int *list_used, int *list_alloced)
4178 size_t fnlen = strlen (fname);
4180 if (*list_used + 1 >= *list_alloced)
4183 *list = (char **) xrealloc ((char *) *list,
4184 *list_alloced * sizeof (char *));
4189 /* Return exactly fname. */
4190 new = xmalloc (fnlen + 5);
4191 strcpy (new, fname);
4193 else if (word > text)
4195 /* Return some portion of fname. */
4196 new = xmalloc (fnlen + 5);
4197 strcpy (new, fname + (word - text));
4201 /* Return some of TEXT plus fname. */
4202 new = xmalloc (fnlen + (text - word) + 5);
4203 strncpy (new, word, text - word);
4204 new[text - word] = '\0';
4205 strcat (new, fname);
4207 (*list)[*list_used] = new;
4208 (*list)[++*list_used] = NULL;
4212 not_interesting_fname (const char *fname)
4214 static const char *illegal_aliens[] = {
4215 "_globals_", /* inserted by coff_symtab_read */
4220 for (i = 0; illegal_aliens[i]; i++)
4222 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4228 /* An object of this type is passed as the user_data argument to
4229 map_partial_symbol_filenames. */
4230 struct add_partial_filename_data
4241 /* A callback for map_partial_symbol_filenames. */
4243 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4246 struct add_partial_filename_data *data = user_data;
4248 if (not_interesting_fname (filename))
4250 if (!filename_seen (filename, 1, data->first)
4251 && filename_ncmp (filename, data->text, data->text_len) == 0)
4253 /* This file matches for a completion; add it to the
4254 current list of matches. */
4255 add_filename_to_list (filename, data->text, data->word,
4256 data->list, data->list_used, data->list_alloced);
4260 const char *base_name = lbasename (filename);
4262 if (base_name != filename
4263 && !filename_seen (base_name, 1, data->first)
4264 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4265 add_filename_to_list (base_name, data->text, data->word,
4266 data->list, data->list_used, data->list_alloced);
4270 /* Return a NULL terminated array of all source files whose names
4271 begin with matching TEXT. The file names are looked up in the
4272 symbol tables of this program. If the answer is no matchess, then
4273 the return value is an array which contains only a NULL pointer. */
4276 make_source_files_completion_list (char *text, char *word)
4279 struct objfile *objfile;
4281 int list_alloced = 1;
4283 size_t text_len = strlen (text);
4284 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4285 const char *base_name;
4286 struct add_partial_filename_data datum;
4287 struct cleanup *back_to;
4291 if (!have_full_symbols () && !have_partial_symbols ())
4294 back_to = make_cleanup (do_free_completion_list, &list);
4296 ALL_SYMTABS (objfile, s)
4298 if (not_interesting_fname (s->filename))
4300 if (!filename_seen (s->filename, 1, &first)
4301 && filename_ncmp (s->filename, text, text_len) == 0)
4303 /* This file matches for a completion; add it to the current
4305 add_filename_to_list (s->filename, text, word,
4306 &list, &list_used, &list_alloced);
4310 /* NOTE: We allow the user to type a base name when the
4311 debug info records leading directories, but not the other
4312 way around. This is what subroutines of breakpoint
4313 command do when they parse file names. */
4314 base_name = lbasename (s->filename);
4315 if (base_name != s->filename
4316 && !filename_seen (base_name, 1, &first)
4317 && filename_ncmp (base_name, text, text_len) == 0)
4318 add_filename_to_list (base_name, text, word,
4319 &list, &list_used, &list_alloced);
4323 datum.first = &first;
4326 datum.text_len = text_len;
4328 datum.list_used = &list_used;
4329 datum.list_alloced = &list_alloced;
4330 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4331 0 /*need_fullname*/);
4332 discard_cleanups (back_to);
4337 /* Determine if PC is in the prologue of a function. The prologue is the area
4338 between the first instruction of a function, and the first executable line.
4339 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4341 If non-zero, func_start is where we think the prologue starts, possibly
4342 by previous examination of symbol table information. */
4345 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4347 struct symtab_and_line sal;
4348 CORE_ADDR func_addr, func_end;
4350 /* We have several sources of information we can consult to figure
4352 - Compilers usually emit line number info that marks the prologue
4353 as its own "source line". So the ending address of that "line"
4354 is the end of the prologue. If available, this is the most
4356 - The minimal symbols and partial symbols, which can usually tell
4357 us the starting and ending addresses of a function.
4358 - If we know the function's start address, we can call the
4359 architecture-defined gdbarch_skip_prologue function to analyze the
4360 instruction stream and guess where the prologue ends.
4361 - Our `func_start' argument; if non-zero, this is the caller's
4362 best guess as to the function's entry point. At the time of
4363 this writing, handle_inferior_event doesn't get this right, so
4364 it should be our last resort. */
4366 /* Consult the partial symbol table, to find which function
4368 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4370 CORE_ADDR prologue_end;
4372 /* We don't even have minsym information, so fall back to using
4373 func_start, if given. */
4375 return 1; /* We *might* be in a prologue. */
4377 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4379 return func_start <= pc && pc < prologue_end;
4382 /* If we have line number information for the function, that's
4383 usually pretty reliable. */
4384 sal = find_pc_line (func_addr, 0);
4386 /* Now sal describes the source line at the function's entry point,
4387 which (by convention) is the prologue. The end of that "line",
4388 sal.end, is the end of the prologue.
4390 Note that, for functions whose source code is all on a single
4391 line, the line number information doesn't always end up this way.
4392 So we must verify that our purported end-of-prologue address is
4393 *within* the function, not at its start or end. */
4395 || sal.end <= func_addr
4396 || func_end <= sal.end)
4398 /* We don't have any good line number info, so use the minsym
4399 information, together with the architecture-specific prologue
4401 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4403 return func_addr <= pc && pc < prologue_end;
4406 /* We have line number info, and it looks good. */
4407 return func_addr <= pc && pc < sal.end;
4410 /* Given PC at the function's start address, attempt to find the
4411 prologue end using SAL information. Return zero if the skip fails.
4413 A non-optimized prologue traditionally has one SAL for the function
4414 and a second for the function body. A single line function has
4415 them both pointing at the same line.
4417 An optimized prologue is similar but the prologue may contain
4418 instructions (SALs) from the instruction body. Need to skip those
4419 while not getting into the function body.
4421 The functions end point and an increasing SAL line are used as
4422 indicators of the prologue's endpoint.
4424 This code is based on the function refine_prologue_limit
4428 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4430 struct symtab_and_line prologue_sal;
4435 /* Get an initial range for the function. */
4436 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4437 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4439 prologue_sal = find_pc_line (start_pc, 0);
4440 if (prologue_sal.line != 0)
4442 /* For languages other than assembly, treat two consecutive line
4443 entries at the same address as a zero-instruction prologue.
4444 The GNU assembler emits separate line notes for each instruction
4445 in a multi-instruction macro, but compilers generally will not
4447 if (prologue_sal.symtab->language != language_asm)
4449 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4452 /* Skip any earlier lines, and any end-of-sequence marker
4453 from a previous function. */
4454 while (linetable->item[idx].pc != prologue_sal.pc
4455 || linetable->item[idx].line == 0)
4458 if (idx+1 < linetable->nitems
4459 && linetable->item[idx+1].line != 0
4460 && linetable->item[idx+1].pc == start_pc)
4464 /* If there is only one sal that covers the entire function,
4465 then it is probably a single line function, like
4467 if (prologue_sal.end >= end_pc)
4470 while (prologue_sal.end < end_pc)
4472 struct symtab_and_line sal;
4474 sal = find_pc_line (prologue_sal.end, 0);
4477 /* Assume that a consecutive SAL for the same (or larger)
4478 line mark the prologue -> body transition. */
4479 if (sal.line >= prologue_sal.line)
4482 /* The line number is smaller. Check that it's from the
4483 same function, not something inlined. If it's inlined,
4484 then there is no point comparing the line numbers. */
4485 bl = block_for_pc (prologue_sal.end);
4488 if (block_inlined_p (bl))
4490 if (BLOCK_FUNCTION (bl))
4495 bl = BLOCK_SUPERBLOCK (bl);
4500 /* The case in which compiler's optimizer/scheduler has
4501 moved instructions into the prologue. We look ahead in
4502 the function looking for address ranges whose
4503 corresponding line number is less the first one that we
4504 found for the function. This is more conservative then
4505 refine_prologue_limit which scans a large number of SALs
4506 looking for any in the prologue. */
4511 if (prologue_sal.end < end_pc)
4512 /* Return the end of this line, or zero if we could not find a
4514 return prologue_sal.end;
4516 /* Don't return END_PC, which is past the end of the function. */
4517 return prologue_sal.pc;
4520 struct symtabs_and_lines
4521 decode_line_spec (char *string, int funfirstline)
4523 struct symtabs_and_lines sals;
4524 struct symtab_and_line cursal;
4527 error (_("Empty line specification."));
4529 /* We use whatever is set as the current source line. We do not try
4530 and get a default or it will recursively call us! */
4531 cursal = get_current_source_symtab_and_line ();
4533 sals = decode_line_1 (&string, funfirstline,
4534 cursal.symtab, cursal.line,
4538 error (_("Junk at end of line specification: %s"), string);
4543 static char *name_of_main;
4544 enum language language_of_main = language_unknown;
4547 set_main_name (const char *name)
4549 if (name_of_main != NULL)
4551 xfree (name_of_main);
4552 name_of_main = NULL;
4553 language_of_main = language_unknown;
4557 name_of_main = xstrdup (name);
4558 language_of_main = language_unknown;
4562 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4566 find_main_name (void)
4568 const char *new_main_name;
4570 /* Try to see if the main procedure is in Ada. */
4571 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4572 be to add a new method in the language vector, and call this
4573 method for each language until one of them returns a non-empty
4574 name. This would allow us to remove this hard-coded call to
4575 an Ada function. It is not clear that this is a better approach
4576 at this point, because all methods need to be written in a way
4577 such that false positives never be returned. For instance, it is
4578 important that a method does not return a wrong name for the main
4579 procedure if the main procedure is actually written in a different
4580 language. It is easy to guaranty this with Ada, since we use a
4581 special symbol generated only when the main in Ada to find the name
4582 of the main procedure. It is difficult however to see how this can
4583 be guarantied for languages such as C, for instance. This suggests
4584 that order of call for these methods becomes important, which means
4585 a more complicated approach. */
4586 new_main_name = ada_main_name ();
4587 if (new_main_name != NULL)
4589 set_main_name (new_main_name);
4593 new_main_name = pascal_main_name ();
4594 if (new_main_name != NULL)
4596 set_main_name (new_main_name);
4600 /* The languages above didn't identify the name of the main procedure.
4601 Fallback to "main". */
4602 set_main_name ("main");
4608 if (name_of_main == NULL)
4611 return name_of_main;
4614 /* Handle ``executable_changed'' events for the symtab module. */
4617 symtab_observer_executable_changed (void)
4619 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4620 set_main_name (NULL);
4623 /* Helper to expand_line_sal below. Appends new sal to SAL,
4624 initializing it from SYMTAB, LINENO and PC. */
4626 append_expanded_sal (struct symtabs_and_lines *sal,
4627 struct program_space *pspace,
4628 struct symtab *symtab,
4629 int lineno, CORE_ADDR pc)
4631 sal->sals = xrealloc (sal->sals,
4632 sizeof (sal->sals[0])
4633 * (sal->nelts + 1));
4634 init_sal (sal->sals + sal->nelts);
4635 sal->sals[sal->nelts].pspace = pspace;
4636 sal->sals[sal->nelts].symtab = symtab;
4637 sal->sals[sal->nelts].section = NULL;
4638 sal->sals[sal->nelts].end = 0;
4639 sal->sals[sal->nelts].line = lineno;
4640 sal->sals[sal->nelts].pc = pc;
4644 /* Helper to expand_line_sal below. Search in the symtabs for any
4645 linetable entry that exactly matches FULLNAME and LINENO and append
4646 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4647 use FILENAME and LINENO instead. If there is at least one match,
4648 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4652 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4653 struct symtabs_and_lines *ret,
4654 struct linetable_entry **best_item,
4655 struct symtab **best_symtab)
4657 struct program_space *pspace;
4658 struct objfile *objfile;
4659 struct symtab *symtab;
4665 ALL_PSPACES (pspace)
4666 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4668 if (FILENAME_CMP (filename, symtab->filename) == 0)
4670 struct linetable *l;
4673 if (fullname != NULL
4674 && symtab_to_fullname (symtab) != NULL
4675 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4677 l = LINETABLE (symtab);
4682 for (j = 0; j < len; j++)
4684 struct linetable_entry *item = &(l->item[j]);
4686 if (item->line == lineno)
4689 append_expanded_sal (ret, objfile->pspace,
4690 symtab, lineno, item->pc);
4692 else if (!exact && item->line > lineno
4693 && (*best_item == NULL
4694 || item->line < (*best_item)->line))
4697 *best_symtab = symtab;
4705 /* Compute a set of all sals in all program spaces that correspond to
4706 same file and line as SAL and return those. If there are several
4707 sals that belong to the same block, only one sal for the block is
4708 included in results. */
4710 struct symtabs_and_lines
4711 expand_line_sal (struct symtab_and_line sal)
4713 struct symtabs_and_lines ret;
4715 struct objfile *objfile;
4718 struct block **blocks = NULL;
4720 struct cleanup *old_chain;
4725 /* Only expand sals that represent file.c:line. */
4726 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4728 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4735 struct program_space *pspace;
4736 struct linetable_entry *best_item = 0;
4737 struct symtab *best_symtab = 0;
4739 char *match_filename;
4742 match_filename = sal.symtab->filename;
4744 /* We need to find all symtabs for a file which name
4745 is described by sal. We cannot just directly
4746 iterate over symtabs, since a symtab might not be
4747 yet created. We also cannot iterate over psymtabs,
4748 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4749 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4750 corresponding to an included file. Therefore, we do
4751 first pass over psymtabs, reading in those with
4752 the right name. Then, we iterate over symtabs, knowing
4753 that all symtabs we're interested in are loaded. */
4755 old_chain = save_current_program_space ();
4756 ALL_PSPACES (pspace)
4758 set_current_program_space (pspace);
4759 ALL_PSPACE_OBJFILES (pspace, objfile)
4762 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4763 sal.symtab->filename);
4766 do_cleanups (old_chain);
4768 /* Now search the symtab for exact matches and append them. If
4769 none is found, append the best_item and all its exact
4771 symtab_to_fullname (sal.symtab);
4772 exact = append_exact_match_to_sals (sal.symtab->filename,
4773 sal.symtab->fullname, lineno,
4774 &ret, &best_item, &best_symtab);
4775 if (!exact && best_item)
4776 append_exact_match_to_sals (best_symtab->filename,
4777 best_symtab->fullname, best_item->line,
4778 &ret, &best_item, &best_symtab);
4781 /* For optimized code, compiler can scatter one source line accross
4782 disjoint ranges of PC values, even when no duplicate functions
4783 or inline functions are involved. For example, 'for (;;)' inside
4784 non-template non-inline non-ctor-or-dtor function can result
4785 in two PC ranges. In this case, we don't want to set breakpoint
4786 on first PC of each range. To filter such cases, we use containing
4787 blocks -- for each PC found above we see if there are other PCs
4788 that are in the same block. If yes, the other PCs are filtered out. */
4790 old_chain = save_current_program_space ();
4791 filter = alloca (ret.nelts * sizeof (int));
4792 blocks = alloca (ret.nelts * sizeof (struct block *));
4793 for (i = 0; i < ret.nelts; ++i)
4795 set_current_program_space (ret.sals[i].pspace);
4798 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4800 do_cleanups (old_chain);
4802 for (i = 0; i < ret.nelts; ++i)
4803 if (blocks[i] != NULL)
4804 for (j = i+1; j < ret.nelts; ++j)
4805 if (blocks[j] == blocks[i])
4813 struct symtab_and_line *final =
4814 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4816 for (i = 0, j = 0; i < ret.nelts; ++i)
4818 final[j++] = ret.sals[i];
4820 ret.nelts -= deleted;
4828 /* Return 1 if the supplied producer string matches the ARM RealView
4829 compiler (armcc). */
4832 producer_is_realview (const char *producer)
4834 static const char *const arm_idents[] = {
4835 "ARM C Compiler, ADS",
4836 "Thumb C Compiler, ADS",
4837 "ARM C++ Compiler, ADS",
4838 "Thumb C++ Compiler, ADS",
4839 "ARM/Thumb C/C++ Compiler, RVCT",
4840 "ARM C/C++ Compiler, RVCT"
4844 if (producer == NULL)
4847 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4848 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4855 _initialize_symtab (void)
4857 add_info ("variables", variables_info, _("\
4858 All global and static variable names, or those matching REGEXP."));
4860 add_com ("whereis", class_info, variables_info, _("\
4861 All global and static variable names, or those matching REGEXP."));
4863 add_info ("functions", functions_info,
4864 _("All function names, or those matching REGEXP."));
4866 /* FIXME: This command has at least the following problems:
4867 1. It prints builtin types (in a very strange and confusing fashion).
4868 2. It doesn't print right, e.g. with
4869 typedef struct foo *FOO
4870 type_print prints "FOO" when we want to make it (in this situation)
4871 print "struct foo *".
4872 I also think "ptype" or "whatis" is more likely to be useful (but if
4873 there is much disagreement "info types" can be fixed). */
4874 add_info ("types", types_info,
4875 _("All type names, or those matching REGEXP."));
4877 add_info ("sources", sources_info,
4878 _("Source files in the program."));
4880 add_com ("rbreak", class_breakpoint, rbreak_command,
4881 _("Set a breakpoint for all functions matching REGEXP."));
4885 add_com ("lf", class_info, sources_info,
4886 _("Source files in the program"));
4887 add_com ("lg", class_info, variables_info, _("\
4888 All global and static variable names, or those matching REGEXP."));
4891 add_setshow_enum_cmd ("multiple-symbols", no_class,
4892 multiple_symbols_modes, &multiple_symbols_mode,
4894 Set the debugger behavior when more than one symbol are possible matches\n\
4895 in an expression."), _("\
4896 Show how the debugger handles ambiguities in expressions."), _("\
4897 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4898 NULL, NULL, &setlist, &showlist);
4900 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
4901 &basenames_may_differ, _("\
4902 Set whether a source file may have multiple base names."), _("\
4903 Show whether a source file may have multiple base names."), _("\
4904 (A \"base name\" is the name of a file with the directory part removed.\n\
4905 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
4906 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
4907 before comparing them. Canonicalization is an expensive operation,\n\
4908 but it allows the same file be known by more than one base name.\n\
4909 If not set (the default), all source files are assumed to have just\n\
4910 one base name, and gdb will do file name comparisons more efficiently."),
4912 &setlist, &showlist);
4914 observer_attach_executable_changed (symtab_observer_executable_changed);