1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 /* This module provides subroutines used for creating and adding to
22 the symbol table. These routines are called from various symbol-
23 file-reading routines.
25 Routines to support specific debugging information formats (stabs,
26 DWARF, etc) belong somewhere else. */
30 #include "gdb_obstack.h"
35 #include "gdb_assert.h"
36 #include "complaints.h"
37 #include "gdb_string.h"
38 #include "expression.h" /* For "enum exp_opcode" used by... */
40 #include "filenames.h" /* For DOSish file names */
42 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
44 #include "cp-support.h"
45 #include "dictionary.h"
48 /* Ask buildsym.h to define the vars it normally declares `extern'. */
51 #include "buildsym.h" /* Our own declarations */
54 /* For cleanup_undefined_types and finish_global_stabs (somewhat
55 questionable--see comment where we call them). */
57 #include "stabsread.h"
59 /* List of subfiles. */
61 static struct subfile *subfiles;
63 /* List of free `struct pending' structures for reuse. */
65 static struct pending *free_pendings;
67 /* Non-zero if symtab has line number info. This prevents an
68 otherwise empty symtab from being tossed. */
70 static int have_line_numbers;
72 /* The mutable address map for the compilation unit whose symbols
73 we're currently reading. The symtabs' shared blockvector will
74 point to a fixed copy of this. */
75 static struct addrmap *pending_addrmap;
77 /* The obstack on which we allocate pending_addrmap.
78 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
79 initialized (and holds pending_addrmap). */
80 static struct obstack pending_addrmap_obstack;
82 /* Non-zero if we recorded any ranges in the addrmap that are
83 different from those in the blockvector already. We set this to
84 zero when we start processing a symfile, and if it's still zero at
85 the end, then we just toss the addrmap. */
86 static int pending_addrmap_interesting;
89 static int compare_line_numbers (const void *ln1p, const void *ln2p);
92 /* Initial sizes of data structures. These are realloc'd larger if
93 needed, and realloc'd down to the size actually used, when
96 #define INITIAL_CONTEXT_STACK_SIZE 10
97 #define INITIAL_LINE_VECTOR_LENGTH 1000
100 /* maintain the lists of symbols and blocks */
102 /* Add a pending list to free_pendings. */
104 add_free_pendings (struct pending *list)
106 struct pending *link = list;
110 while (link->next) link = link->next;
111 link->next = free_pendings;
112 free_pendings = list;
116 /* Add a symbol to one of the lists of symbols. While we're at it, if
117 we're in the C++ case and don't have full namespace debugging info,
118 check to see if it references an anonymous namespace; if so, add an
119 appropriate using directive. */
122 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
124 struct pending *link;
126 /* If this is an alias for another symbol, don't add it. */
127 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
130 /* We keep PENDINGSIZE symbols in each link of the list. If we
131 don't have a link with room in it, add a new link. */
132 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
136 link = free_pendings;
137 free_pendings = link->next;
141 link = (struct pending *) xmalloc (sizeof (struct pending));
144 link->next = *listhead;
149 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
152 /* Find a symbol named NAME on a LIST. NAME need not be
153 '\0'-terminated; LENGTH is the length of the name. */
156 find_symbol_in_list (struct pending *list, char *name, int length)
163 for (j = list->nsyms; --j >= 0;)
165 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
166 if (*pp == *name && strncmp (pp, name, length) == 0
167 && pp[length] == '\0')
169 return (list->symbol[j]);
177 /* At end of reading syms, or in case of quit, really free as many
178 `struct pending's as we can easily find. */
181 really_free_pendings (void *dummy)
183 struct pending *next, *next1;
185 for (next = free_pendings; next; next = next1)
188 xfree ((void *) next);
190 free_pendings = NULL;
192 free_pending_blocks ();
194 for (next = file_symbols; next != NULL; next = next1)
197 xfree ((void *) next);
201 for (next = global_symbols; next != NULL; next = next1)
204 xfree ((void *) next);
206 global_symbols = NULL;
209 free_macro_table (pending_macros);
213 obstack_free (&pending_addrmap_obstack, NULL);
214 pending_addrmap = NULL;
218 /* This function is called to discard any pending blocks. */
221 free_pending_blocks (void)
223 /* The links are made in the objfile_obstack, so we only need to
224 reset PENDING_BLOCKS. */
225 pending_blocks = NULL;
228 /* Take one of the lists of symbols and make a block from it. Keep
229 the order the symbols have in the list (reversed from the input
230 file). Put the block on the list of pending blocks. */
233 finish_block (struct symbol *symbol, struct pending **listhead,
234 struct pending_block *old_blocks,
235 CORE_ADDR start, CORE_ADDR end,
236 struct objfile *objfile)
238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
239 struct pending *next, *next1;
241 struct pending_block *pblock;
242 struct pending_block *opblock;
244 block = allocate_block (&objfile->objfile_obstack);
248 BLOCK_DICT (block) = dict_create_linear (&objfile->objfile_obstack,
253 BLOCK_DICT (block) = dict_create_hashed (&objfile->objfile_obstack,
257 BLOCK_START (block) = start;
258 BLOCK_END (block) = end;
259 /* Superblock filled in when containing block is made */
260 BLOCK_SUPERBLOCK (block) = NULL;
261 BLOCK_NAMESPACE (block) = NULL;
263 /* Put the block in as the value of the symbol that names it. */
267 struct type *ftype = SYMBOL_TYPE (symbol);
268 struct dict_iterator iter;
269 SYMBOL_BLOCK_VALUE (symbol) = block;
270 BLOCK_FUNCTION (block) = symbol;
272 if (TYPE_NFIELDS (ftype) <= 0)
274 /* No parameter type information is recorded with the
275 function's type. Set that from the type of the
276 parameter symbols. */
277 int nparams = 0, iparams;
279 ALL_BLOCK_SYMBOLS (block, iter, sym)
281 if (SYMBOL_IS_ARGUMENT (sym))
286 TYPE_NFIELDS (ftype) = nparams;
287 TYPE_FIELDS (ftype) = (struct field *)
288 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
291 ALL_BLOCK_SYMBOLS (block, iter, sym)
293 if (iparams == nparams)
296 if (SYMBOL_IS_ARGUMENT (sym))
298 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
299 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
308 BLOCK_FUNCTION (block) = NULL;
311 /* Now "free" the links of the list, and empty the list. */
313 for (next = *listhead; next; next = next1)
316 next->next = free_pendings;
317 free_pendings = next;
321 /* Check to be sure that the blocks have an end address that is
322 greater than starting address */
324 if (BLOCK_END (block) < BLOCK_START (block))
328 complaint (&symfile_complaints,
329 _("block end address less than block start address in %s (patched it)"),
330 SYMBOL_PRINT_NAME (symbol));
334 complaint (&symfile_complaints,
335 _("block end address %s less than block start address %s (patched it)"),
336 paddress (gdbarch, BLOCK_END (block)),
337 paddress (gdbarch, BLOCK_START (block)));
339 /* Better than nothing */
340 BLOCK_END (block) = BLOCK_START (block);
343 /* Install this block as the superblock of all blocks made since the
344 start of this scope that don't have superblocks yet. */
347 for (pblock = pending_blocks;
348 pblock && pblock != old_blocks;
349 pblock = pblock->next)
351 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
353 /* Check to be sure the blocks are nested as we receive
354 them. If the compiler/assembler/linker work, this just
355 burns a small amount of time.
357 Skip blocks which correspond to a function; they're not
358 physically nested inside this other blocks, only
360 if (BLOCK_FUNCTION (pblock->block) == NULL
361 && (BLOCK_START (pblock->block) < BLOCK_START (block)
362 || BLOCK_END (pblock->block) > BLOCK_END (block)))
366 complaint (&symfile_complaints,
367 _("inner block not inside outer block in %s"),
368 SYMBOL_PRINT_NAME (symbol));
372 complaint (&symfile_complaints,
373 _("inner block (%s-%s) not inside outer block (%s-%s)"),
374 paddress (gdbarch, BLOCK_START (pblock->block)),
375 paddress (gdbarch, BLOCK_END (pblock->block)),
376 paddress (gdbarch, BLOCK_START (block)),
377 paddress (gdbarch, BLOCK_END (block)));
379 if (BLOCK_START (pblock->block) < BLOCK_START (block))
380 BLOCK_START (pblock->block) = BLOCK_START (block);
381 if (BLOCK_END (pblock->block) > BLOCK_END (block))
382 BLOCK_END (pblock->block) = BLOCK_END (block);
384 BLOCK_SUPERBLOCK (pblock->block) = block;
389 block_set_using (block, using_directives, &objfile->objfile_obstack);
391 record_pending_block (objfile, block, opblock);
397 /* Record BLOCK on the list of all blocks in the file. Put it after
398 OPBLOCK, or at the beginning if opblock is NULL. This puts the
399 block in the list after all its subblocks.
401 Allocate the pending block struct in the objfile_obstack to save
402 time. This wastes a little space. FIXME: Is it worth it? */
405 record_pending_block (struct objfile *objfile, struct block *block,
406 struct pending_block *opblock)
408 struct pending_block *pblock;
410 pblock = (struct pending_block *)
411 obstack_alloc (&objfile->objfile_obstack, sizeof (struct pending_block));
412 pblock->block = block;
415 pblock->next = opblock->next;
416 opblock->next = pblock;
420 pblock->next = pending_blocks;
421 pending_blocks = pblock;
426 /* Record that the range of addresses from START to END_INCLUSIVE
427 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
428 addresses must be set already. You must apply this function to all
429 BLOCK's children before applying it to BLOCK.
431 If a call to this function complicates the picture beyond that
432 already provided by BLOCK_START and BLOCK_END, then we create an
433 address map for the block. */
435 record_block_range (struct block *block,
436 CORE_ADDR start, CORE_ADDR end_inclusive)
438 /* If this is any different from the range recorded in the block's
439 own BLOCK_START and BLOCK_END, then note that the address map has
440 become interesting. Note that even if this block doesn't have
441 any "interesting" ranges, some later block might, so we still
442 need to record this block in the addrmap. */
443 if (start != BLOCK_START (block)
444 || end_inclusive + 1 != BLOCK_END (block))
445 pending_addrmap_interesting = 1;
447 if (! pending_addrmap)
449 obstack_init (&pending_addrmap_obstack);
450 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
453 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
457 static struct blockvector *
458 make_blockvector (struct objfile *objfile)
460 struct pending_block *next;
461 struct blockvector *blockvector;
464 /* Count the length of the list of blocks. */
466 for (next = pending_blocks, i = 0; next; next = next->next, i++)
470 blockvector = (struct blockvector *)
471 obstack_alloc (&objfile->objfile_obstack,
472 (sizeof (struct blockvector)
473 + (i - 1) * sizeof (struct block *)));
475 /* Copy the blocks into the blockvector. This is done in reverse
476 order, which happens to put the blocks into the proper order
477 (ascending starting address). finish_block has hair to insert
478 each block into the list after its subblocks in order to make
479 sure this is true. */
481 BLOCKVECTOR_NBLOCKS (blockvector) = i;
482 for (next = pending_blocks; next; next = next->next)
484 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
487 free_pending_blocks ();
489 /* If we needed an address map for this symtab, record it in the
491 if (pending_addrmap && pending_addrmap_interesting)
492 BLOCKVECTOR_MAP (blockvector)
493 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
495 BLOCKVECTOR_MAP (blockvector) = 0;
497 /* Some compilers output blocks in the wrong order, but we depend on
498 their being in the right order so we can binary search. Check the
499 order and moan about it. */
500 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
502 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
504 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
505 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
508 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
510 complaint (&symfile_complaints, _("block at %s out of order"),
511 hex_string ((LONGEST) start));
516 return (blockvector);
519 /* Start recording information about source code that came from an
520 included (or otherwise merged-in) source file with a different
521 name. NAME is the name of the file (cannot be NULL), DIRNAME is
522 the directory in which the file was compiled (or NULL if not known). */
525 start_subfile (char *name, char *dirname)
527 struct subfile *subfile;
529 /* See if this subfile is already known as a subfile of the current
532 for (subfile = subfiles; subfile; subfile = subfile->next)
536 /* If NAME is an absolute path, and this subfile is not, then
537 attempt to create an absolute path to compare. */
538 if (IS_ABSOLUTE_PATH (name)
539 && !IS_ABSOLUTE_PATH (subfile->name)
540 && subfile->dirname != NULL)
541 subfile_name = concat (subfile->dirname, SLASH_STRING,
542 subfile->name, (char *) NULL);
544 subfile_name = subfile->name;
546 if (FILENAME_CMP (subfile_name, name) == 0)
548 current_subfile = subfile;
549 if (subfile_name != subfile->name)
550 xfree (subfile_name);
553 if (subfile_name != subfile->name)
554 xfree (subfile_name);
557 /* This subfile is not known. Add an entry for it. Make an entry
558 for this subfile in the list of all subfiles of the current main
561 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
562 memset ((char *) subfile, 0, sizeof (struct subfile));
563 subfile->next = subfiles;
565 current_subfile = subfile;
567 /* Save its name and compilation directory name */
568 subfile->name = (name == NULL) ? NULL : xstrdup (name);
569 subfile->dirname = (dirname == NULL) ? NULL : xstrdup (dirname);
571 /* Initialize line-number recording for this subfile. */
572 subfile->line_vector = NULL;
574 /* Default the source language to whatever can be deduced from the
575 filename. If nothing can be deduced (such as for a C/C++ include
576 file with a ".h" extension), then inherit whatever language the
577 previous subfile had. This kludgery is necessary because there
578 is no standard way in some object formats to record the source
579 language. Also, when symtabs are allocated we try to deduce a
580 language then as well, but it is too late for us to use that
581 information while reading symbols, since symtabs aren't allocated
582 until after all the symbols have been processed for a given
585 subfile->language = deduce_language_from_filename (subfile->name);
586 if (subfile->language == language_unknown
587 && subfile->next != NULL)
589 subfile->language = subfile->next->language;
592 /* Initialize the debug format string to NULL. We may supply it
593 later via a call to record_debugformat. */
594 subfile->debugformat = NULL;
596 /* Similarly for the producer. */
597 subfile->producer = NULL;
599 /* If the filename of this subfile ends in .C, then change the
600 language of any pending subfiles from C to C++. We also accept
601 any other C++ suffixes accepted by deduce_language_from_filename. */
602 /* Likewise for f2c. */
607 enum language sublang = deduce_language_from_filename (subfile->name);
609 if (sublang == language_cplus || sublang == language_fortran)
610 for (s = subfiles; s != NULL; s = s->next)
611 if (s->language == language_c)
612 s->language = sublang;
615 /* And patch up this file if necessary. */
616 if (subfile->language == language_c
617 && subfile->next != NULL
618 && (subfile->next->language == language_cplus
619 || subfile->next->language == language_fortran))
621 subfile->language = subfile->next->language;
625 /* For stabs readers, the first N_SO symbol is assumed to be the
626 source file name, and the subfile struct is initialized using that
627 assumption. If another N_SO symbol is later seen, immediately
628 following the first one, then the first one is assumed to be the
629 directory name and the second one is really the source file name.
631 So we have to patch up the subfile struct by moving the old name
632 value to dirname and remembering the new name. Some sanity
633 checking is performed to ensure that the state of the subfile
634 struct is reasonable and that the old name we are assuming to be a
635 directory name actually is (by checking for a trailing '/'). */
638 patch_subfile_names (struct subfile *subfile, char *name)
640 if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL
641 && subfile->name[strlen (subfile->name) - 1] == '/')
643 subfile->dirname = subfile->name;
644 subfile->name = xstrdup (name);
645 last_source_file = name;
647 /* Default the source language to whatever can be deduced from
648 the filename. If nothing can be deduced (such as for a C/C++
649 include file with a ".h" extension), then inherit whatever
650 language the previous subfile had. This kludgery is
651 necessary because there is no standard way in some object
652 formats to record the source language. Also, when symtabs
653 are allocated we try to deduce a language then as well, but
654 it is too late for us to use that information while reading
655 symbols, since symtabs aren't allocated until after all the
656 symbols have been processed for a given source file. */
658 subfile->language = deduce_language_from_filename (subfile->name);
659 if (subfile->language == language_unknown
660 && subfile->next != NULL)
662 subfile->language = subfile->next->language;
667 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
668 switching source files (different subfiles, as we call them) within
669 one object file, but using a stack rather than in an arbitrary
675 struct subfile_stack *tem
676 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
678 tem->next = subfile_stack;
680 if (current_subfile == NULL || current_subfile->name == NULL)
682 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
684 tem->name = current_subfile->name;
691 struct subfile_stack *link = subfile_stack;
695 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
698 subfile_stack = link->next;
699 xfree ((void *) link);
703 /* Add a linetable entry for line number LINE and address PC to the
704 line vector for SUBFILE. */
707 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
709 struct linetable_entry *e;
710 /* Ignore the dummy line number in libg.o */
717 /* Make sure line vector exists and is big enough. */
718 if (!subfile->line_vector)
720 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
721 subfile->line_vector = (struct linetable *)
722 xmalloc (sizeof (struct linetable)
723 + subfile->line_vector_length * sizeof (struct linetable_entry));
724 subfile->line_vector->nitems = 0;
725 have_line_numbers = 1;
728 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
730 subfile->line_vector_length *= 2;
731 subfile->line_vector = (struct linetable *)
732 xrealloc ((char *) subfile->line_vector,
733 (sizeof (struct linetable)
734 + (subfile->line_vector_length
735 * sizeof (struct linetable_entry))));
738 /* Normally, we treat lines as unsorted. But the end of sequence
739 marker is special. We sort line markers at the same PC by line
740 number, so end of sequence markers (which have line == 0) appear
741 first. This is right if the marker ends the previous function,
742 and there is no padding before the next function. But it is
743 wrong if the previous line was empty and we are now marking a
744 switch to a different subfile. We must leave the end of sequence
745 marker at the end of this group of lines, not sort the empty line
746 to after the marker. The easiest way to accomplish this is to
747 delete any empty lines from our table, if they are followed by
748 end of sequence markers. All we lose is the ability to set
749 breakpoints at some lines which contain no instructions
751 if (line == 0 && subfile->line_vector->nitems > 0)
753 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
754 while (subfile->line_vector->nitems > 0 && e->pc == pc)
757 subfile->line_vector->nitems--;
761 e = subfile->line_vector->item + subfile->line_vector->nitems++;
766 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
769 compare_line_numbers (const void *ln1p, const void *ln2p)
771 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
772 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
774 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
775 Please keep it that way. */
776 if (ln1->pc < ln2->pc)
779 if (ln1->pc > ln2->pc)
782 /* If pc equal, sort by line. I'm not sure whether this is optimum
783 behavior (see comment at struct linetable in symtab.h). */
784 return ln1->line - ln2->line;
787 /* Start a new symtab for a new source file. Called, for example,
788 when a stabs symbol of type N_SO is seen, or when a DWARF
789 TAG_compile_unit DIE is seen. It indicates the start of data for
790 one original source file.
792 NAME is the name of the file (cannot be NULL). DIRNAME is the directory in
793 which the file was compiled (or NULL if not known). START_ADDR is the
794 lowest address of objects in the file (or 0 if not known). */
797 start_symtab (char *name, char *dirname, CORE_ADDR start_addr)
799 last_source_file = name;
800 last_source_start_addr = start_addr;
802 global_symbols = NULL;
804 have_line_numbers = 0;
806 /* Context stack is initially empty. Allocate first one with room
807 for 10 levels; reuse it forever afterward. */
808 if (context_stack == NULL)
810 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
811 context_stack = (struct context_stack *)
812 xmalloc (context_stack_size * sizeof (struct context_stack));
814 context_stack_depth = 0;
816 /* We shouldn't have any address map at this point. */
817 gdb_assert (! pending_addrmap);
819 /* Initialize the list of sub source files with one entry for this
820 file (the top-level source file). */
823 current_subfile = NULL;
824 start_subfile (name, dirname);
827 /* Subroutine of end_symtab to simplify it.
828 Look for a subfile that matches the main source file's basename.
829 If there is only one, and if the main source file doesn't have any
830 symbol or line number information, then copy this file's symtab and
831 line_vector to the main source file's subfile and discard the other subfile.
832 This can happen because of a compiler bug or from the user playing games
833 with #line or from things like a distributed build system that manipulates
837 watch_main_source_file_lossage (void)
839 struct subfile *mainsub, *subfile;
841 /* Find the main source file.
842 This loop could be eliminated if start_symtab saved it for us. */
844 for (subfile = subfiles; subfile; subfile = subfile->next)
846 /* The main subfile is guaranteed to be the last one. */
847 if (subfile->next == NULL)
851 /* If the main source file doesn't have any line number or symbol info,
852 look for an alias in another subfile.
853 We have to watch for mainsub == NULL here. It's a quirk of end_symtab,
854 it can return NULL so there may not be a main subfile. */
857 && mainsub->line_vector == NULL
858 && mainsub->symtab == NULL)
860 const char *mainbase = lbasename (mainsub->name);
862 struct subfile *prevsub;
863 struct subfile *mainsub_alias = NULL;
864 struct subfile *prev_mainsub_alias = NULL;
867 for (subfile = subfiles;
868 /* Stop before we get to the last one. */
870 subfile = subfile->next)
872 if (strcmp (lbasename (subfile->name), mainbase) == 0)
875 mainsub_alias = subfile;
876 prev_mainsub_alias = prevsub;
883 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
885 /* Found a match for the main source file.
886 Copy its line_vector and symtab to the main subfile
887 and then discard it. */
889 mainsub->line_vector = mainsub_alias->line_vector;
890 mainsub->line_vector_length = mainsub_alias->line_vector_length;
891 mainsub->symtab = mainsub_alias->symtab;
893 if (prev_mainsub_alias == NULL)
894 subfiles = mainsub_alias->next;
896 prev_mainsub_alias->next = mainsub_alias->next;
897 xfree (mainsub_alias);
902 /* Helper function for qsort. Parametes are `struct block *' pointers,
903 function sorts them in descending order by their BLOCK_START. */
906 block_compar (const void *ap, const void *bp)
908 const struct block *a = *(const struct block **) ap;
909 const struct block *b = *(const struct block **) bp;
911 return ((BLOCK_START (b) > BLOCK_START (a))
912 - (BLOCK_START (b) < BLOCK_START (a)));
915 /* Finish the symbol definitions for one main source file, close off
916 all the lexical contexts for that file (creating struct block's for
917 them), then make the struct symtab for that file and put it in the
920 END_ADDR is the address of the end of the file's text. SECTION is
921 the section number (in objfile->section_offsets) of the blockvector
924 Note that it is possible for end_symtab() to return NULL. In
925 particular, for the DWARF case at least, it will return NULL when
926 it finds a compilation unit that has exactly one DIE, a
927 TAG_compile_unit DIE. This can happen when we link in an object
928 file that was compiled from an empty source file. Returning NULL
929 is probably not the correct thing to do, because then gdb will
930 never know about this empty file (FIXME). */
933 end_symtab (CORE_ADDR end_addr, struct objfile *objfile, int section)
935 struct symtab *symtab = NULL;
936 struct blockvector *blockvector;
937 struct subfile *subfile;
938 struct context_stack *cstk;
939 struct subfile *nextsub;
941 /* Finish the lexical context of the last function in the file; pop
942 the context stack. */
944 if (context_stack_depth > 0)
946 cstk = pop_context ();
947 /* Make a block for the local symbols within. */
948 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
949 cstk->start_addr, end_addr, objfile);
951 if (context_stack_depth > 0)
953 /* This is said to happen with SCO. The old coffread.c
954 code simply emptied the context stack, so we do the
955 same. FIXME: Find out why it is happening. This is not
956 believed to happen in most cases (even for coffread.c);
957 it used to be an abort(). */
958 complaint (&symfile_complaints,
959 _("Context stack not empty in end_symtab"));
960 context_stack_depth = 0;
964 /* Reordered executables may have out of order pending blocks; if
965 OBJF_REORDERED is true, then sort the pending blocks. */
966 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
969 struct pending_block *pb;
970 struct block **barray, **bp;
971 struct cleanup *back_to;
973 for (pb = pending_blocks; pb != NULL; pb = pb->next)
976 barray = xmalloc (sizeof (*barray) * count);
977 back_to = make_cleanup (xfree, barray);
980 for (pb = pending_blocks; pb != NULL; pb = pb->next)
983 qsort (barray, count, sizeof (*barray), block_compar);
986 for (pb = pending_blocks; pb != NULL; pb = pb->next)
989 do_cleanups (back_to);
992 /* Cleanup any undefined types that have been left hanging around
993 (this needs to be done before the finish_blocks so that
994 file_symbols is still good).
996 Both cleanup_undefined_types and finish_global_stabs are stabs
997 specific, but harmless for other symbol readers, since on gdb
998 startup or when finished reading stabs, the state is set so these
999 are no-ops. FIXME: Is this handled right in case of QUIT? Can
1000 we make this cleaner? */
1002 cleanup_undefined_types (objfile);
1003 finish_global_stabs (objfile);
1005 if (pending_blocks == NULL
1006 && file_symbols == NULL
1007 && global_symbols == NULL
1008 && have_line_numbers == 0
1009 && pending_macros == NULL)
1011 /* Ignore symtabs that have no functions with real debugging
1017 /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the
1019 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr,
1021 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr,
1023 blockvector = make_blockvector (objfile);
1026 /* Read the line table if it has to be read separately. */
1027 if (objfile->sf->sym_read_linetable != NULL)
1028 objfile->sf->sym_read_linetable ();
1030 /* Handle the case where the debug info specifies a different path
1031 for the main source file. It can cause us to lose track of its
1032 line number information. */
1033 watch_main_source_file_lossage ();
1035 /* Now create the symtab objects proper, one for each subfile. */
1036 /* (The main file is the last one on the chain.) */
1038 for (subfile = subfiles; subfile; subfile = nextsub)
1040 int linetablesize = 0;
1043 /* If we have blocks of symbols, make a symtab. Otherwise, just
1044 ignore this file and any line number info in it. */
1047 if (subfile->line_vector)
1049 linetablesize = sizeof (struct linetable) +
1050 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1052 /* Like the pending blocks, the line table may be
1053 scrambled in reordered executables. Sort it if
1054 OBJF_REORDERED is true. */
1055 if (objfile->flags & OBJF_REORDERED)
1056 qsort (subfile->line_vector->item,
1057 subfile->line_vector->nitems,
1058 sizeof (struct linetable_entry), compare_line_numbers);
1061 /* Now, allocate a symbol table. */
1062 if (subfile->symtab == NULL)
1063 symtab = allocate_symtab (subfile->name, objfile);
1065 symtab = subfile->symtab;
1067 /* Fill in its components. */
1068 symtab->blockvector = blockvector;
1069 symtab->macro_table = pending_macros;
1070 if (subfile->line_vector)
1072 /* Reallocate the line table on the symbol obstack */
1073 symtab->linetable = (struct linetable *)
1074 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1075 memcpy (symtab->linetable, subfile->line_vector, linetablesize);
1079 symtab->linetable = NULL;
1081 symtab->block_line_section = section;
1082 if (subfile->dirname)
1084 /* Reallocate the dirname on the symbol obstack */
1085 symtab->dirname = (char *)
1086 obstack_alloc (&objfile->objfile_obstack,
1087 strlen (subfile->dirname) + 1);
1088 strcpy (symtab->dirname, subfile->dirname);
1092 symtab->dirname = NULL;
1094 symtab->free_code = free_linetable;
1095 symtab->free_func = NULL;
1097 /* Use whatever language we have been using for this
1098 subfile, not the one that was deduced in allocate_symtab
1099 from the filename. We already did our own deducing when
1100 we created the subfile, and we may have altered our
1101 opinion of what language it is from things we found in
1103 symtab->language = subfile->language;
1105 /* Save the debug format string (if any) in the symtab */
1106 if (subfile->debugformat != NULL)
1108 symtab->debugformat = obsavestring (subfile->debugformat,
1109 strlen (subfile->debugformat),
1110 &objfile->objfile_obstack);
1113 /* Similarly for the producer. */
1114 if (subfile->producer != NULL)
1115 symtab->producer = obsavestring (subfile->producer,
1116 strlen (subfile->producer),
1117 &objfile->objfile_obstack);
1119 /* All symtabs for the main file and the subfiles share a
1120 blockvector, so we need to clear primary for everything
1121 but the main file. */
1123 symtab->primary = 0;
1127 if (subfile->symtab)
1129 /* Since we are ignoring that subfile, we also need
1130 to unlink the associated empty symtab that we created.
1131 Otherwise, we can into trouble because various parts
1132 such as the block-vector are uninitialized whereas
1133 the rest of the code assumes that they are.
1135 We can only unlink the symtab because it was allocated
1136 on the objfile obstack. */
1139 if (objfile->symtabs == subfile->symtab)
1140 objfile->symtabs = objfile->symtabs->next;
1142 ALL_OBJFILE_SYMTABS (objfile, s)
1143 if (s->next == subfile->symtab)
1145 s->next = s->next->next;
1148 subfile->symtab = NULL;
1151 if (subfile->name != NULL)
1153 xfree ((void *) subfile->name);
1155 if (subfile->dirname != NULL)
1157 xfree ((void *) subfile->dirname);
1159 if (subfile->line_vector != NULL)
1161 xfree ((void *) subfile->line_vector);
1163 if (subfile->debugformat != NULL)
1165 xfree ((void *) subfile->debugformat);
1167 if (subfile->producer != NULL)
1168 xfree (subfile->producer);
1170 nextsub = subfile->next;
1171 xfree ((void *) subfile);
1174 /* Set this for the main source file. */
1177 symtab->primary = 1;
1180 /* Default any symbols without a specified symtab to the primary
1186 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1188 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1190 struct dict_iterator iter;
1192 /* Inlined functions may have symbols not in the global or static
1194 if (BLOCK_FUNCTION (block) != NULL)
1195 if (SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) == NULL)
1196 SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) = symtab;
1198 for (sym = dict_iterator_first (BLOCK_DICT (block), &iter);
1200 sym = dict_iterator_next (&iter))
1201 if (SYMBOL_SYMTAB (sym) == NULL)
1202 SYMBOL_SYMTAB (sym) = symtab;
1206 last_source_file = NULL;
1207 current_subfile = NULL;
1208 pending_macros = NULL;
1209 if (pending_addrmap)
1211 obstack_free (&pending_addrmap_obstack, NULL);
1212 pending_addrmap = NULL;
1218 /* Push a context block. Args are an identifying nesting level
1219 (checkable when you pop it), and the starting PC address of this
1222 struct context_stack *
1223 push_context (int desc, CORE_ADDR valu)
1225 struct context_stack *new;
1227 if (context_stack_depth == context_stack_size)
1229 context_stack_size *= 2;
1230 context_stack = (struct context_stack *)
1231 xrealloc ((char *) context_stack,
1232 (context_stack_size * sizeof (struct context_stack)));
1235 new = &context_stack[context_stack_depth++];
1237 new->locals = local_symbols;
1238 new->params = param_symbols;
1239 new->old_blocks = pending_blocks;
1240 new->start_addr = valu;
1241 new->using_directives = using_directives;
1244 local_symbols = NULL;
1245 param_symbols = NULL;
1246 using_directives = NULL;
1251 /* Pop a context block. Returns the address of the context block just
1254 struct context_stack *
1257 gdb_assert (context_stack_depth > 0);
1258 return (&context_stack[--context_stack_depth]);
1263 /* Compute a small integer hash code for the given name. */
1266 hashname (char *name)
1268 return (hash(name,strlen(name)) % HASHSIZE);
1273 record_debugformat (char *format)
1275 current_subfile->debugformat = xstrdup (format);
1279 record_producer (const char *producer)
1281 /* The producer is not always provided in the debugging info.
1282 Do nothing if PRODUCER is NULL. */
1283 if (producer == NULL)
1286 current_subfile->producer = xstrdup (producer);
1289 /* Merge the first symbol list SRCLIST into the second symbol list
1290 TARGETLIST by repeated calls to add_symbol_to_list(). This
1291 procedure "frees" each link of SRCLIST by adding it to the
1292 free_pendings list. Caller must set SRCLIST to a null list after
1293 calling this function.
1298 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1302 if (!srclist || !*srclist)
1305 /* Merge in elements from current link. */
1306 for (i = 0; i < (*srclist)->nsyms; i++)
1307 add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1309 /* Recurse on next. */
1310 merge_symbol_lists (&(*srclist)->next, targetlist);
1312 /* "Free" the current link. */
1313 (*srclist)->next = free_pendings;
1314 free_pendings = (*srclist);
1317 /* Initialize anything that needs initializing when starting to read a
1318 fresh piece of a symbol file, e.g. reading in the stuff
1319 corresponding to a psymtab. */
1322 buildsym_init (void)
1324 free_pendings = NULL;
1325 file_symbols = NULL;
1326 global_symbols = NULL;
1327 pending_blocks = NULL;
1328 pending_macros = NULL;
1330 /* We shouldn't have any address map at this point. */
1331 gdb_assert (! pending_addrmap);
1332 pending_addrmap_interesting = 0;
1335 /* Initialize anything that needs initializing when a completely new
1336 symbol file is specified (not just adding some symbols from another
1337 file, e.g. a shared library). */
1340 buildsym_new_init (void)