1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
40 #include "arch-utils.h"
43 #include "mips-tdep.h"
46 #include "opcode/mips.h"
51 static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
53 /* A useful bit in the CP0 status register (PS_REGNUM). */
54 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
55 #define ST0_FR (1 << 26)
57 /* The sizes of floating point registers. */
61 MIPS_FPU_SINGLE_REGSIZE = 4,
62 MIPS_FPU_DOUBLE_REGSIZE = 8
66 static const char *mips_abi_string;
68 static const char *mips_abi_strings[] = {
79 struct frame_extra_info
81 mips_extra_func_info_t proc_desc;
85 /* Various MIPS ISA options (related to stack analysis) can be
86 overridden dynamically. Establish an enum/array for managing
89 static const char size_auto[] = "auto";
90 static const char size_32[] = "32";
91 static const char size_64[] = "64";
93 static const char *size_enums[] = {
100 /* Some MIPS boards don't support floating point while others only
101 support single-precision floating-point operations. See also
102 FP_REGISTER_DOUBLE. */
106 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
107 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
108 MIPS_FPU_NONE /* No floating point. */
111 #ifndef MIPS_DEFAULT_FPU_TYPE
112 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
114 static int mips_fpu_type_auto = 1;
115 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
117 static int mips_debug = 0;
119 /* MIPS specific per-architecture information */
122 /* from the elf header */
126 enum mips_abi mips_abi;
127 enum mips_abi found_abi;
128 enum mips_fpu_type mips_fpu_type;
129 int mips_last_arg_regnum;
130 int mips_last_fp_arg_regnum;
131 int mips_default_saved_regsize;
132 int mips_fp_register_double;
133 int mips_default_stack_argsize;
134 int gdb_target_is_mips64;
135 int default_mask_address_p;
138 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
139 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
141 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
143 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
145 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
147 /* Return the currently configured (or set) saved register size. */
149 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
151 static const char *mips_saved_regsize_string = size_auto;
153 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
155 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
156 functions to test, set, or clear bit 0 of addresses. */
159 is_mips16_addr (CORE_ADDR addr)
165 make_mips16_addr (CORE_ADDR addr)
171 unmake_mips16_addr (CORE_ADDR addr)
173 return ((addr) & ~1);
176 /* Return the contents of register REGNUM as a signed integer. */
179 read_signed_register (int regnum)
181 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
182 deprecated_read_register_gen (regnum, buf);
183 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
187 read_signed_register_pid (int regnum, ptid_t ptid)
192 if (ptid_equal (ptid, inferior_ptid))
193 return read_signed_register (regnum);
195 save_ptid = inferior_ptid;
197 inferior_ptid = ptid;
199 retval = read_signed_register (regnum);
201 inferior_ptid = save_ptid;
206 /* Return the MIPS ABI associated with GDBARCH. */
208 mips_abi (struct gdbarch *gdbarch)
210 return gdbarch_tdep (gdbarch)->mips_abi;
214 mips_saved_regsize (void)
216 if (mips_saved_regsize_string == size_auto)
217 return MIPS_DEFAULT_SAVED_REGSIZE;
218 else if (mips_saved_regsize_string == size_64)
220 else /* if (mips_saved_regsize_string == size_32) */
224 /* Functions for setting and testing a bit in a minimal symbol that
225 marks it as 16-bit function. The MSB of the minimal symbol's
226 "info" field is used for this purpose. This field is already
227 being used to store the symbol size, so the assumption is
228 that the symbol size cannot exceed 2^31.
230 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
231 i.e. refers to a 16-bit function, and sets a "special" bit in a
232 minimal symbol to mark it as a 16-bit function
234 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
235 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
236 the "info" field with the "special" bit masked out */
239 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
241 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
243 MSYMBOL_INFO (msym) = (char *)
244 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
245 SYMBOL_VALUE_ADDRESS (msym) |= 1;
250 msymbol_is_special (struct minimal_symbol *msym)
252 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
256 msymbol_size (struct minimal_symbol *msym)
258 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
261 /* XFER a value from the big/little/left end of the register.
262 Depending on the size of the value it might occupy the entire
263 register or just part of it. Make an allowance for this, aligning
264 things accordingly. */
267 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
268 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
271 bfd_byte reg[MAX_REGISTER_SIZE];
273 /* Need to transfer the left or right part of the register, based on
274 the targets byte order. */
278 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
280 case BFD_ENDIAN_LITTLE:
283 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
287 internal_error (__FILE__, __LINE__, "bad switch");
290 fprintf_unfiltered (gdb_stderr,
291 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
292 reg_num, reg_offset, buf_offset, length);
293 if (mips_debug && out != NULL)
296 fprintf_unfiltered (gdb_stdlog, "out ");
297 for (i = 0; i < length; i++)
298 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
301 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
303 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
304 if (mips_debug && in != NULL)
307 fprintf_unfiltered (gdb_stdlog, "in ");
308 for (i = 0; i < length; i++)
309 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
312 fprintf_unfiltered (gdb_stdlog, "\n");
315 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
316 compatiblity mode. A return value of 1 means that we have
317 physical 64-bit registers, but should treat them as 32-bit registers. */
320 mips2_fp_compat (void)
322 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
324 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
328 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
329 in all the places we deal with FP registers. PR gdb/413. */
330 /* Otherwise check the FR bit in the status register - it controls
331 the FP compatiblity mode. If it is clear we are in compatibility
333 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
340 /* Indicate that the ABI makes use of double-precision registers
341 provided by the FPU (rather than combining pairs of registers to
342 form double-precision values). Do not use "TARGET_IS_MIPS64" to
343 determine if the ABI is using double-precision registers. See also
345 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
347 /* The amount of space reserved on the stack for registers. This is
348 different to MIPS_SAVED_REGSIZE as it determines the alignment of
349 data allocated after the registers have run out. */
351 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
353 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
355 static const char *mips_stack_argsize_string = size_auto;
358 mips_stack_argsize (void)
360 if (mips_stack_argsize_string == size_auto)
361 return MIPS_DEFAULT_STACK_ARGSIZE;
362 else if (mips_stack_argsize_string == size_64)
364 else /* if (mips_stack_argsize_string == size_32) */
368 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
370 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
372 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
374 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
376 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
377 struct frame_info *, int);
379 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
381 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
383 static int mips_set_processor_type (char *);
385 static void mips_show_processor_type_command (char *, int);
387 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
389 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
390 struct frame_info *next_frame,
393 static CORE_ADDR after_prologue (CORE_ADDR pc,
394 mips_extra_func_info_t proc_desc);
396 static struct type *mips_float_register_type (void);
397 static struct type *mips_double_register_type (void);
399 /* This value is the model of MIPS in use. It is derived from the value
400 of the PrID register. */
402 char *mips_processor_type;
404 char *tmp_mips_processor_type;
406 /* The list of available "set mips " and "show mips " commands */
408 static struct cmd_list_element *setmipscmdlist = NULL;
409 static struct cmd_list_element *showmipscmdlist = NULL;
411 /* A set of original names, to be used when restoring back to generic
412 registers from a specific set. */
413 static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
415 /* Integer registers 0 thru 31 are handled explicitly by
416 mips_register_name(). Processor specific registers 32 and above
417 are listed in the sets of register names assigned to
418 mips_processor_reg_names. */
419 static char **mips_processor_reg_names = mips_generic_reg_names;
421 /* Return the name of the register corresponding to REGNO. */
423 mips_register_name (int regno)
425 /* GPR names for all ABIs other than n32/n64. */
426 static char *mips_gpr_names[] = {
427 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
428 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
429 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
430 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
433 /* GPR names for n32 and n64 ABIs. */
434 static char *mips_n32_n64_gpr_names[] = {
435 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
436 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
437 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
438 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
441 enum mips_abi abi = mips_abi (current_gdbarch);
443 /* The MIPS integer registers are always mapped from 0 to 31. The
444 names of the registers (which reflects the conventions regarding
445 register use) vary depending on the ABI. */
446 if (0 <= regno && regno < 32)
448 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
449 return mips_n32_n64_gpr_names[regno];
451 return mips_gpr_names[regno];
453 else if (32 <= regno && regno < NUM_REGS)
454 return mips_processor_reg_names[regno - 32];
456 internal_error (__FILE__, __LINE__,
457 "mips_register_name: bad register number %d", regno);
461 /* Names of IDT R3041 registers. */
463 char *mips_r3041_reg_names[] = {
464 "sr", "lo", "hi", "bad", "cause","pc",
465 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
466 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
467 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
468 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
469 "fsr", "fir", "",/*"fp"*/ "",
470 "", "", "bus", "ccfg", "", "", "", "",
471 "", "", "port", "cmp", "", "", "epc", "prid",
474 /* Names of IDT R3051 registers. */
476 char *mips_r3051_reg_names[] = {
477 "sr", "lo", "hi", "bad", "cause","pc",
478 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
479 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
480 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
481 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
482 "fsr", "fir", ""/*"fp"*/, "",
483 "inx", "rand", "elo", "", "ctxt", "", "", "",
484 "", "", "ehi", "", "", "", "epc", "prid",
487 /* Names of IDT R3081 registers. */
489 char *mips_r3081_reg_names[] = {
490 "sr", "lo", "hi", "bad", "cause","pc",
491 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
492 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
493 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
494 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
495 "fsr", "fir", ""/*"fp"*/, "",
496 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
497 "", "", "ehi", "", "", "", "epc", "prid",
500 /* Names of LSI 33k registers. */
502 char *mips_lsi33k_reg_names[] = {
503 "epc", "hi", "lo", "sr", "cause","badvaddr",
504 "dcic", "bpc", "bda", "", "", "", "", "",
505 "", "", "", "", "", "", "", "",
506 "", "", "", "", "", "", "", "",
507 "", "", "", "", "", "", "", "",
509 "", "", "", "", "", "", "", "",
510 "", "", "", "", "", "", "", "",
516 } mips_processor_type_table[] = {
517 { "generic", mips_generic_reg_names },
518 { "r3041", mips_r3041_reg_names },
519 { "r3051", mips_r3051_reg_names },
520 { "r3071", mips_r3081_reg_names },
521 { "r3081", mips_r3081_reg_names },
522 { "lsi33k", mips_lsi33k_reg_names },
530 /* Table to translate MIPS16 register field to actual register number. */
531 static int mips16_to_32_reg[8] =
532 {16, 17, 2, 3, 4, 5, 6, 7};
534 /* Heuristic_proc_start may hunt through the text section for a long
535 time across a 2400 baud serial line. Allows the user to limit this
538 static unsigned int heuristic_fence_post = 0;
540 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
541 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
542 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
543 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
544 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
545 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
546 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
547 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
548 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
549 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
550 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
551 this will corrupt pdr.iline. Fortunately we don't use it. */
552 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
553 #define _PROC_MAGIC_ 0x0F0F0F0F
554 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
555 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
557 struct linked_proc_info
559 struct mips_extra_func_info info;
560 struct linked_proc_info *next;
562 *linked_proc_desc_table = NULL;
565 mips_print_extra_frame_info (struct frame_info *fi)
568 && get_frame_extra_info (fi)
569 && get_frame_extra_info (fi)->proc_desc
570 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
571 printf_filtered (" frame pointer is at %s+%s\n",
572 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
573 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
576 /* Number of bytes of storage in the actual machine representation for
577 register N. NOTE: This indirectly defines the register size
578 transfered by the GDB protocol. */
580 static int mips64_transfers_32bit_regs_p = 0;
583 mips_register_raw_size (int reg_nr)
585 if (mips64_transfers_32bit_regs_p)
586 return REGISTER_VIRTUAL_SIZE (reg_nr);
587 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
588 && FP_REGISTER_DOUBLE)
589 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
596 /* Convert between RAW and VIRTUAL registers. The RAW register size
597 defines the remote-gdb packet. */
600 mips_register_convertible (int reg_nr)
602 if (mips64_transfers_32bit_regs_p)
605 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
609 mips_register_convert_to_virtual (int n, struct type *virtual_type,
610 char *raw_buf, char *virt_buf)
612 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
614 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
615 TYPE_LENGTH (virtual_type));
619 TYPE_LENGTH (virtual_type));
623 mips_register_convert_to_raw (struct type *virtual_type, int n,
624 const char *virt_buf, char *raw_buf)
626 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
627 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
628 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
630 TYPE_LENGTH (virtual_type));
634 TYPE_LENGTH (virtual_type));
638 mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
640 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
641 && REGISTER_RAW_SIZE (regnum) == 4
642 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
643 && TYPE_CODE(type) == TYPE_CODE_FLT
644 && TYPE_LENGTH(type) == 8)
647 memcpy (temp, ((char *)(buffer))+4, 4);
648 memcpy (((char *)(buffer))+4, (buffer), 4);
649 memcpy (((char *)(buffer)), temp, 4);
654 mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
656 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
657 && REGISTER_RAW_SIZE (regnum) == 4
658 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
659 && TYPE_CODE(type) == TYPE_CODE_FLT
660 && TYPE_LENGTH(type) == 8)
663 memcpy (temp, ((char *)(buffer))+4, 4);
664 memcpy (((char *)(buffer))+4, (buffer), 4);
665 memcpy (((char *)(buffer)), temp, 4);
669 /* Return the GDB type object for the "standard" data type
670 of data in register REG.
672 Note: kevinb/2002-08-01: The definition below should faithfully
673 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
674 definitions found in config/mips/tm-*.h. I'm concerned about the
675 ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause though.
676 In some cases DEPRECATED_FP_REGNUM is in this range, and I doubt
677 that this code is correct for the 64-bit case. */
680 mips_register_virtual_type (int reg)
682 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
684 /* Floating point registers... */
685 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
686 return builtin_type_ieee_double_big;
688 return builtin_type_ieee_double_little;
690 else if (reg == PS_REGNUM /* CR */)
691 return builtin_type_uint32;
692 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
693 return builtin_type_uint32;
696 /* Everything else...
697 Return type appropriate for width of register. */
698 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
699 return builtin_type_uint64;
701 return builtin_type_uint32;
705 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
710 return read_signed_register (SP_REGNUM);
713 /* Should the upper word of 64-bit addresses be zeroed? */
714 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
717 mips_mask_address_p (void)
719 switch (mask_address_var)
721 case AUTO_BOOLEAN_TRUE:
723 case AUTO_BOOLEAN_FALSE:
726 case AUTO_BOOLEAN_AUTO:
727 return MIPS_DEFAULT_MASK_ADDRESS_P;
729 internal_error (__FILE__, __LINE__,
730 "mips_mask_address_p: bad switch");
736 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
738 switch (mask_address_var)
740 case AUTO_BOOLEAN_TRUE:
741 printf_filtered ("The 32 bit mips address mask is enabled\n");
743 case AUTO_BOOLEAN_FALSE:
744 printf_filtered ("The 32 bit mips address mask is disabled\n");
746 case AUTO_BOOLEAN_AUTO:
747 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
748 mips_mask_address_p () ? "enabled" : "disabled");
751 internal_error (__FILE__, __LINE__,
752 "show_mask_address: bad switch");
757 /* Should call_function allocate stack space for a struct return? */
760 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
762 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
766 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
768 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
771 /* Should call_function pass struct by reference?
772 For each architecture, structs are passed either by
773 value or by reference, depending on their size. */
776 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
778 enum type_code typecode = TYPE_CODE (check_typedef (type));
779 int len = TYPE_LENGTH (check_typedef (type));
781 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
782 return (len > MIPS_SAVED_REGSIZE);
788 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
790 return 0; /* Assumption: N32/N64 never passes struct by ref. */
794 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
796 return 0; /* Assumption: O32/O64 never passes struct by ref. */
799 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
802 pc_is_mips16 (bfd_vma memaddr)
804 struct minimal_symbol *sym;
806 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
807 if (is_mips16_addr (memaddr))
810 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
811 the high bit of the info field. Use this to decide if the function is
812 MIPS16 or normal MIPS. */
813 sym = lookup_minimal_symbol_by_pc (memaddr);
815 return msymbol_is_special (sym);
820 /* MIPS believes that the PC has a sign extended value. Perhaphs the
821 all registers should be sign extended for simplicity? */
824 mips_read_pc (ptid_t ptid)
826 return read_signed_register_pid (PC_REGNUM, ptid);
829 /* This returns the PC of the first inst after the prologue. If we can't
830 find the prologue, then return 0. */
833 after_prologue (CORE_ADDR pc,
834 mips_extra_func_info_t proc_desc)
836 struct symtab_and_line sal;
837 CORE_ADDR func_addr, func_end;
839 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
840 to read the stack pointer from the current machine state, because
841 the current machine state has nothing to do with the information
842 we need from the proc_desc; and the process may or may not exist
845 proc_desc = find_proc_desc (pc, NULL, 0);
849 /* If function is frameless, then we need to do it the hard way. I
850 strongly suspect that frameless always means prologueless... */
851 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
852 && PROC_FRAME_OFFSET (proc_desc) == 0)
856 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
857 return 0; /* Unknown */
859 sal = find_pc_line (func_addr, 0);
861 if (sal.end < func_end)
864 /* The line after the prologue is after the end of the function. In this
865 case, tell the caller to find the prologue the hard way. */
870 /* Decode a MIPS32 instruction that saves a register in the stack, and
871 set the appropriate bit in the general register mask or float register mask
872 to indicate which register is saved. This is a helper function
873 for mips_find_saved_regs. */
876 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
877 unsigned long *float_mask)
881 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
882 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
883 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
885 /* It might be possible to use the instruction to
886 find the offset, rather than the code below which
887 is based on things being in a certain order in the
888 frame, but figuring out what the instruction's offset
889 is relative to might be a little tricky. */
890 reg = (inst & 0x001f0000) >> 16;
891 *gen_mask |= (1 << reg);
893 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
894 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
895 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
898 reg = ((inst & 0x001f0000) >> 16);
899 *float_mask |= (1 << reg);
903 /* Decode a MIPS16 instruction that saves a register in the stack, and
904 set the appropriate bit in the general register or float register mask
905 to indicate which register is saved. This is a helper function
906 for mips_find_saved_regs. */
909 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
911 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
913 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
914 *gen_mask |= (1 << reg);
916 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
918 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
919 *gen_mask |= (1 << reg);
921 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
922 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
923 *gen_mask |= (1 << RA_REGNUM);
927 /* Fetch and return instruction from the specified location. If the PC
928 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
931 mips_fetch_instruction (CORE_ADDR addr)
933 char buf[MIPS_INSTLEN];
937 if (pc_is_mips16 (addr))
939 instlen = MIPS16_INSTLEN;
940 addr = unmake_mips16_addr (addr);
943 instlen = MIPS_INSTLEN;
944 status = read_memory_nobpt (addr, buf, instlen);
946 memory_error (status, addr);
947 return extract_unsigned_integer (buf, instlen);
951 /* These the fields of 32 bit mips instructions */
952 #define mips32_op(x) (x >> 26)
953 #define itype_op(x) (x >> 26)
954 #define itype_rs(x) ((x >> 21) & 0x1f)
955 #define itype_rt(x) ((x >> 16) & 0x1f)
956 #define itype_immediate(x) (x & 0xffff)
958 #define jtype_op(x) (x >> 26)
959 #define jtype_target(x) (x & 0x03ffffff)
961 #define rtype_op(x) (x >> 26)
962 #define rtype_rs(x) ((x >> 21) & 0x1f)
963 #define rtype_rt(x) ((x >> 16) & 0x1f)
964 #define rtype_rd(x) ((x >> 11) & 0x1f)
965 #define rtype_shamt(x) ((x >> 6) & 0x1f)
966 #define rtype_funct(x) (x & 0x3f)
969 mips32_relative_offset (unsigned long inst)
972 x = itype_immediate (inst);
973 if (x & 0x8000) /* sign bit set */
975 x |= 0xffff0000; /* sign extension */
981 /* Determine whate to set a single step breakpoint while considering
984 mips32_next_pc (CORE_ADDR pc)
988 inst = mips_fetch_instruction (pc);
989 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
991 if (itype_op (inst) >> 2 == 5)
992 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
994 op = (itype_op (inst) & 0x03);
1004 goto greater_branch;
1009 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1010 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1012 int tf = itype_rt (inst) & 0x01;
1013 int cnum = itype_rt (inst) >> 2;
1014 int fcrcs = read_signed_register (FCRCS_REGNUM);
1015 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1017 if (((cond >> cnum) & 0x01) == tf)
1018 pc += mips32_relative_offset (inst) + 4;
1023 pc += 4; /* Not a branch, next instruction is easy */
1026 { /* This gets way messy */
1028 /* Further subdivide into SPECIAL, REGIMM and other */
1029 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1031 case 0: /* SPECIAL */
1032 op = rtype_funct (inst);
1037 /* Set PC to that address */
1038 pc = read_signed_register (rtype_rs (inst));
1044 break; /* end SPECIAL */
1045 case 1: /* REGIMM */
1047 op = itype_rt (inst); /* branch condition */
1052 case 16: /* BLTZAL */
1053 case 18: /* BLTZALL */
1055 if (read_signed_register (itype_rs (inst)) < 0)
1056 pc += mips32_relative_offset (inst) + 4;
1058 pc += 8; /* after the delay slot */
1062 case 17: /* BGEZAL */
1063 case 19: /* BGEZALL */
1064 greater_equal_branch:
1065 if (read_signed_register (itype_rs (inst)) >= 0)
1066 pc += mips32_relative_offset (inst) + 4;
1068 pc += 8; /* after the delay slot */
1070 /* All of the other instructions in the REGIMM category */
1075 break; /* end REGIMM */
1080 reg = jtype_target (inst) << 2;
1081 /* Upper four bits get never changed... */
1082 pc = reg + ((pc + 4) & 0xf0000000);
1085 /* FIXME case JALX : */
1088 reg = jtype_target (inst) << 2;
1089 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1090 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1092 break; /* The new PC will be alternate mode */
1093 case 4: /* BEQ, BEQL */
1095 if (read_signed_register (itype_rs (inst)) ==
1096 read_signed_register (itype_rt (inst)))
1097 pc += mips32_relative_offset (inst) + 4;
1101 case 5: /* BNE, BNEL */
1103 if (read_signed_register (itype_rs (inst)) !=
1104 read_signed_register (itype_rt (inst)))
1105 pc += mips32_relative_offset (inst) + 4;
1109 case 6: /* BLEZ, BLEZL */
1111 if (read_signed_register (itype_rs (inst) <= 0))
1112 pc += mips32_relative_offset (inst) + 4;
1118 greater_branch: /* BGTZ, BGTZL */
1119 if (read_signed_register (itype_rs (inst) > 0))
1120 pc += mips32_relative_offset (inst) + 4;
1127 } /* mips32_next_pc */
1129 /* Decoding the next place to set a breakpoint is irregular for the
1130 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1131 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1132 We dont want to set a single step instruction on the extend instruction
1136 /* Lots of mips16 instruction formats */
1137 /* Predicting jumps requires itype,ritype,i8type
1138 and their extensions extItype,extritype,extI8type
1140 enum mips16_inst_fmts
1142 itype, /* 0 immediate 5,10 */
1143 ritype, /* 1 5,3,8 */
1144 rrtype, /* 2 5,3,3,5 */
1145 rritype, /* 3 5,3,3,5 */
1146 rrrtype, /* 4 5,3,3,3,2 */
1147 rriatype, /* 5 5,3,3,1,4 */
1148 shifttype, /* 6 5,3,3,3,2 */
1149 i8type, /* 7 5,3,8 */
1150 i8movtype, /* 8 5,3,3,5 */
1151 i8mov32rtype, /* 9 5,3,5,3 */
1152 i64type, /* 10 5,3,8 */
1153 ri64type, /* 11 5,3,3,5 */
1154 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1155 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1156 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1157 extRRItype, /* 15 5,5,5,5,3,3,5 */
1158 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1159 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1160 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1161 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1162 extRi64type, /* 20 5,6,5,5,3,3,5 */
1163 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1165 /* I am heaping all the fields of the formats into one structure and
1166 then, only the fields which are involved in instruction extension */
1170 unsigned int regx; /* Function in i8 type */
1175 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1176 for the bits which make up the immediatate extension. */
1179 extended_offset (unsigned int extension)
1182 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1184 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1186 value |= extension & 0x01f; /* extract 4:0 */
1190 /* Only call this function if you know that this is an extendable
1191 instruction, It wont malfunction, but why make excess remote memory references?
1192 If the immediate operands get sign extended or somthing, do it after
1193 the extension is performed.
1195 /* FIXME: Every one of these cases needs to worry about sign extension
1196 when the offset is to be used in relative addressing */
1200 fetch_mips_16 (CORE_ADDR pc)
1203 pc &= 0xfffffffe; /* clear the low order bit */
1204 target_read_memory (pc, buf, 2);
1205 return extract_unsigned_integer (buf, 2);
1209 unpack_mips16 (CORE_ADDR pc,
1210 unsigned int extension,
1212 enum mips16_inst_fmts insn_format,
1213 struct upk_mips16 *upk)
1218 switch (insn_format)
1225 value = extended_offset (extension);
1226 value = value << 11; /* rom for the original value */
1227 value |= inst & 0x7ff; /* eleven bits from instruction */
1231 value = inst & 0x7ff;
1232 /* FIXME : Consider sign extension */
1241 { /* A register identifier and an offset */
1242 /* Most of the fields are the same as I type but the
1243 immediate value is of a different length */
1247 value = extended_offset (extension);
1248 value = value << 8; /* from the original instruction */
1249 value |= inst & 0xff; /* eleven bits from instruction */
1250 regx = (extension >> 8) & 0x07; /* or i8 funct */
1251 if (value & 0x4000) /* test the sign bit , bit 26 */
1253 value &= ~0x3fff; /* remove the sign bit */
1259 value = inst & 0xff; /* 8 bits */
1260 regx = (inst >> 8) & 0x07; /* or i8 funct */
1261 /* FIXME: Do sign extension , this format needs it */
1262 if (value & 0x80) /* THIS CONFUSES ME */
1264 value &= 0xef; /* remove the sign bit */
1274 unsigned long value;
1275 unsigned int nexthalf;
1276 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1277 value = value << 16;
1278 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1286 internal_error (__FILE__, __LINE__,
1289 upk->offset = offset;
1296 add_offset_16 (CORE_ADDR pc, int offset)
1298 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1302 extended_mips16_next_pc (CORE_ADDR pc,
1303 unsigned int extension,
1306 int op = (insn >> 11);
1309 case 2: /* Branch */
1312 struct upk_mips16 upk;
1313 unpack_mips16 (pc, extension, insn, itype, &upk);
1314 offset = upk.offset;
1320 pc += (offset << 1) + 2;
1323 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1325 struct upk_mips16 upk;
1326 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1327 pc = add_offset_16 (pc, upk.offset);
1328 if ((insn >> 10) & 0x01) /* Exchange mode */
1329 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1336 struct upk_mips16 upk;
1338 unpack_mips16 (pc, extension, insn, ritype, &upk);
1339 reg = read_signed_register (upk.regx);
1341 pc += (upk.offset << 1) + 2;
1348 struct upk_mips16 upk;
1350 unpack_mips16 (pc, extension, insn, ritype, &upk);
1351 reg = read_signed_register (upk.regx);
1353 pc += (upk.offset << 1) + 2;
1358 case 12: /* I8 Formats btez btnez */
1360 struct upk_mips16 upk;
1362 unpack_mips16 (pc, extension, insn, i8type, &upk);
1363 /* upk.regx contains the opcode */
1364 reg = read_signed_register (24); /* Test register is 24 */
1365 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1366 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1367 /* pc = add_offset_16(pc,upk.offset) ; */
1368 pc += (upk.offset << 1) + 2;
1373 case 29: /* RR Formats JR, JALR, JALR-RA */
1375 struct upk_mips16 upk;
1376 /* upk.fmt = rrtype; */
1381 upk.regx = (insn >> 8) & 0x07;
1382 upk.regy = (insn >> 5) & 0x07;
1390 break; /* Function return instruction */
1396 break; /* BOGUS Guess */
1398 pc = read_signed_register (reg);
1405 /* This is an instruction extension. Fetch the real instruction
1406 (which follows the extension) and decode things based on
1410 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1423 mips16_next_pc (CORE_ADDR pc)
1425 unsigned int insn = fetch_mips_16 (pc);
1426 return extended_mips16_next_pc (pc, 0, insn);
1429 /* The mips_next_pc function supports single_step when the remote
1430 target monitor or stub is not developed enough to do a single_step.
1431 It works by decoding the current instruction and predicting where a
1432 branch will go. This isnt hard because all the data is available.
1433 The MIPS32 and MIPS16 variants are quite different */
1435 mips_next_pc (CORE_ADDR pc)
1438 return mips16_next_pc (pc);
1440 return mips32_next_pc (pc);
1443 /* Set up the 'saved_regs' array. This is a data structure containing
1444 the addresses on the stack where each register has been saved, for
1445 each stack frame. Registers that have not been saved will have
1446 zero here. The stack pointer register is special: rather than the
1447 address where the stack register has been saved,
1448 saved_regs[SP_REGNUM] will have the actual value of the previous
1449 frame's stack register. */
1452 mips_find_saved_regs (struct frame_info *fci)
1455 /* r0 bit means kernel trap */
1457 /* What registers have been saved? Bitmasks. */
1458 unsigned long gen_mask, float_mask;
1459 mips_extra_func_info_t proc_desc;
1461 CORE_ADDR *saved_regs;
1463 if (get_frame_saved_regs (fci) != NULL)
1465 saved_regs = frame_saved_regs_zalloc (fci);
1467 /* If it is the frame for sigtramp, the saved registers are located
1468 in a sigcontext structure somewhere on the stack. If the stack
1469 layout for sigtramp changes we might have to change these
1470 constants and the companion fixup_sigtramp in mdebugread.c */
1471 #ifndef SIGFRAME_BASE
1472 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1473 above the sigtramp frame. */
1474 #define SIGFRAME_BASE MIPS_REGSIZE
1475 /* FIXME! Are these correct?? */
1476 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1477 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1478 #define SIGFRAME_FPREGSAVE_OFF \
1479 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1481 #ifndef SIGFRAME_REG_SIZE
1482 /* FIXME! Is this correct?? */
1483 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1485 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1487 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1489 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1490 + ireg * SIGFRAME_REG_SIZE);
1491 set_reg_offset (saved_regs, ireg, reg_position);
1493 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1495 CORE_ADDR reg_position = (get_frame_base (fci)
1496 + SIGFRAME_FPREGSAVE_OFF
1497 + ireg * SIGFRAME_REG_SIZE);
1498 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1501 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1502 /* SP_REGNUM, contains the value and not the address. */
1503 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1507 proc_desc = get_frame_extra_info (fci)->proc_desc;
1508 if (proc_desc == NULL)
1509 /* I'm not sure how/whether this can happen. Normally when we
1510 can't find a proc_desc, we "synthesize" one using
1511 heuristic_proc_desc and set the saved_regs right away. */
1514 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1515 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1516 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1518 if (/* In any frame other than the innermost or a frame interrupted
1519 by a signal, we assume that all registers have been saved.
1520 This assumes that all register saves in a function happen
1521 before the first function call. */
1522 (get_next_frame (fci) == NULL
1523 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
1525 /* In a dummy frame we know exactly where things are saved. */
1526 && !PROC_DESC_IS_DUMMY (proc_desc)
1528 /* Don't bother unless we are inside a function prologue.
1529 Outside the prologue, we know where everything is. */
1531 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1533 /* Not sure exactly what kernel_trap means, but if it means the
1534 kernel saves the registers without a prologue doing it, we
1535 better not examine the prologue to see whether registers
1536 have been saved yet. */
1539 /* We need to figure out whether the registers that the
1540 proc_desc claims are saved have been saved yet. */
1544 /* Bitmasks; set if we have found a save for the register. */
1545 unsigned long gen_save_found = 0;
1546 unsigned long float_save_found = 0;
1549 /* If the address is odd, assume this is MIPS16 code. */
1550 addr = PROC_LOW_ADDR (proc_desc);
1551 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1553 /* Scan through this function's instructions preceding the
1554 current PC, and look for those that save registers. */
1555 while (addr < get_frame_pc (fci))
1557 inst = mips_fetch_instruction (addr);
1558 if (pc_is_mips16 (addr))
1559 mips16_decode_reg_save (inst, &gen_save_found);
1561 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1564 gen_mask = gen_save_found;
1565 float_mask = float_save_found;
1568 /* Fill in the offsets for the registers which gen_mask says were
1571 CORE_ADDR reg_position = (get_frame_base (fci)
1572 + PROC_REG_OFFSET (proc_desc));
1573 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1574 if (gen_mask & 0x80000000)
1576 set_reg_offset (saved_regs, ireg, reg_position);
1577 reg_position -= MIPS_SAVED_REGSIZE;
1581 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1582 order of that normally used by gcc. Therefore, we have to fetch
1583 the first instruction of the function, and if it's an entry
1584 instruction that saves $s0 or $s1, correct their saved addresses. */
1585 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1587 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1588 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1592 int sreg_count = (inst >> 6) & 3;
1594 /* Check if the ra register was pushed on the stack. */
1595 CORE_ADDR reg_position = (get_frame_base (fci)
1596 + PROC_REG_OFFSET (proc_desc));
1598 reg_position -= MIPS_SAVED_REGSIZE;
1600 /* Check if the s0 and s1 registers were pushed on the
1602 for (reg = 16; reg < sreg_count + 16; reg++)
1604 set_reg_offset (saved_regs, reg, reg_position);
1605 reg_position -= MIPS_SAVED_REGSIZE;
1610 /* Fill in the offsets for the registers which float_mask says were
1613 CORE_ADDR reg_position = (get_frame_base (fci)
1614 + PROC_FREG_OFFSET (proc_desc));
1616 /* Apparently, the freg_offset gives the offset to the first 64
1619 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1620 designates the first saved 64 bit register.
1622 When the ABI specifies 32 bit saved registers, the ``64 bit
1623 saved DOUBLE'' consists of two adjacent 32 bit registers, Hence
1624 FREG_OFFSET, designates the address of the lower register of
1625 the register pair. Adjust the offset so that it designates the
1626 upper register of the pair -- i.e., the address of the first
1627 saved 32 bit register. */
1629 if (MIPS_SAVED_REGSIZE == 4)
1630 reg_position += MIPS_SAVED_REGSIZE;
1632 /* Fill in the offsets for the float registers which float_mask
1634 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1635 if (float_mask & 0x80000000)
1637 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1638 reg_position -= MIPS_SAVED_REGSIZE;
1641 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1644 /* SP_REGNUM, contains the value and not the address. */
1645 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1649 read_next_frame_reg (struct frame_info *fi, int regno)
1654 enum lval_type lval;
1655 char raw_buffer[MAX_REGISTER_SIZE];
1659 regcache_cooked_read (current_regcache, regno, raw_buffer);
1663 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1665 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1666 should have a pseudo register range that correspons to the ABI's,
1667 rather than the ISA's, view of registers. These registers would
1668 then implicitly describe their size and hence could be used
1669 without the below munging. */
1670 if (lval == lval_memory)
1674 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1676 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1681 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
1684 /* mips_addr_bits_remove - remove useless address bits */
1687 mips_addr_bits_remove (CORE_ADDR addr)
1689 if (GDB_TARGET_IS_MIPS64)
1691 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1693 /* This hack is a work-around for existing boards using
1694 PMON, the simulator, and any other 64-bit targets that
1695 doesn't have true 64-bit addressing. On these targets,
1696 the upper 32 bits of addresses are ignored by the
1697 hardware. Thus, the PC or SP are likely to have been
1698 sign extended to all 1s by instruction sequences that
1699 load 32-bit addresses. For example, a typical piece of
1700 code that loads an address is this:
1701 lui $r2, <upper 16 bits>
1702 ori $r2, <lower 16 bits>
1703 But the lui sign-extends the value such that the upper 32
1704 bits may be all 1s. The workaround is simply to mask off
1705 these bits. In the future, gcc may be changed to support
1706 true 64-bit addressing, and this masking will have to be
1708 addr &= (CORE_ADDR) 0xffffffff;
1711 else if (mips_mask_address_p ())
1713 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1714 masking off bits, instead, the actual target should be asking
1715 for the address to be converted to a valid pointer. */
1716 /* Even when GDB is configured for some 32-bit targets
1717 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1718 so CORE_ADDR is 64 bits. So we still have to mask off
1719 useless bits from addresses. */
1720 addr &= (CORE_ADDR) 0xffffffff;
1725 /* mips_software_single_step() is called just before we want to resume
1726 the inferior, if we want to single-step it but there is no hardware
1727 or kernel single-step support (MIPS on GNU/Linux for example). We find
1728 the target of the coming instruction and breakpoint it.
1730 single_step is also called just after the inferior stops. If we had
1731 set up a simulated single-step, we undo our damage. */
1734 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1736 static CORE_ADDR next_pc;
1737 typedef char binsn_quantum[BREAKPOINT_MAX];
1738 static binsn_quantum break_mem;
1741 if (insert_breakpoints_p)
1743 pc = read_register (PC_REGNUM);
1744 next_pc = mips_next_pc (pc);
1746 target_insert_breakpoint (next_pc, break_mem);
1749 target_remove_breakpoint (next_pc, break_mem);
1753 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1758 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
1759 : get_next_frame (prev)
1760 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
1762 tmp = SKIP_TRAMPOLINE_CODE (pc);
1763 return tmp ? tmp : pc;
1768 mips_frame_saved_pc (struct frame_info *frame)
1771 mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
1772 /* We have to get the saved pc from the sigcontext
1773 if it is a signal handler frame. */
1774 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
1775 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1777 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1780 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1783 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1784 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1786 saved_pc = read_next_frame_reg (frame, pcreg);
1788 return ADDR_BITS_REMOVE (saved_pc);
1791 static struct mips_extra_func_info temp_proc_desc;
1793 /* This hack will go away once the get_prev_frame() code has been
1794 modified to set the frame's type first. That is BEFORE init extra
1795 frame info et.al. is called. This is because it will become
1796 possible to skip the init extra info call for sigtramp and dummy
1798 static CORE_ADDR *temp_saved_regs;
1800 /* Set a register's saved stack address in temp_saved_regs. If an
1801 address has already been set for this register, do nothing; this
1802 way we will only recognize the first save of a given register in a
1803 function prologue. */
1806 set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
1808 if (saved_regs[regno] == 0)
1809 saved_regs[regno] = offset;
1813 /* Test whether the PC points to the return instruction at the
1814 end of a function. */
1817 mips_about_to_return (CORE_ADDR pc)
1819 if (pc_is_mips16 (pc))
1820 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1821 generates a "jr $ra"; other times it generates code to load
1822 the return address from the stack to an accessible register (such
1823 as $a3), then a "jr" using that register. This second case
1824 is almost impossible to distinguish from an indirect jump
1825 used for switch statements, so we don't even try. */
1826 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1828 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1832 /* This fencepost looks highly suspicious to me. Removing it also
1833 seems suspicious as it could affect remote debugging across serial
1837 heuristic_proc_start (CORE_ADDR pc)
1844 pc = ADDR_BITS_REMOVE (pc);
1846 fence = start_pc - heuristic_fence_post;
1850 if (heuristic_fence_post == UINT_MAX
1851 || fence < VM_MIN_ADDRESS)
1852 fence = VM_MIN_ADDRESS;
1854 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1856 /* search back for previous return */
1857 for (start_pc -= instlen;; start_pc -= instlen)
1858 if (start_pc < fence)
1860 /* It's not clear to me why we reach this point when
1861 stop_soon, but with this test, at least we
1862 don't print out warnings for every child forked (eg, on
1864 if (stop_soon == NO_STOP_QUIETLY)
1866 static int blurb_printed = 0;
1868 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1873 /* This actually happens frequently in embedded
1874 development, when you first connect to a board
1875 and your stack pointer and pc are nowhere in
1876 particular. This message needs to give people
1877 in that situation enough information to
1878 determine that it's no big deal. */
1879 printf_filtered ("\n\
1880 GDB is unable to find the start of the function at 0x%s\n\
1881 and thus can't determine the size of that function's stack frame.\n\
1882 This means that GDB may be unable to access that stack frame, or\n\
1883 the frames below it.\n\
1884 This problem is most likely caused by an invalid program counter or\n\
1886 However, if you think GDB should simply search farther back\n\
1887 from 0x%s for code which looks like the beginning of a\n\
1888 function, you can increase the range of the search using the `set\n\
1889 heuristic-fence-post' command.\n",
1890 paddr_nz (pc), paddr_nz (pc));
1897 else if (pc_is_mips16 (start_pc))
1899 unsigned short inst;
1901 /* On MIPS16, any one of the following is likely to be the
1902 start of a function:
1906 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1907 inst = mips_fetch_instruction (start_pc);
1908 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1909 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1910 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1911 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1913 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1914 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1919 else if (mips_about_to_return (start_pc))
1921 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1928 /* Fetch the immediate value from a MIPS16 instruction.
1929 If the previous instruction was an EXTEND, use it to extend
1930 the upper bits of the immediate value. This is a helper function
1931 for mips16_heuristic_proc_desc. */
1934 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1935 unsigned short inst, /* current instruction */
1936 int nbits, /* number of bits in imm field */
1937 int scale, /* scale factor to be applied to imm */
1938 int is_signed) /* is the imm field signed? */
1942 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1944 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1945 if (offset & 0x8000) /* check for negative extend */
1946 offset = 0 - (0x10000 - (offset & 0xffff));
1947 return offset | (inst & 0x1f);
1951 int max_imm = 1 << nbits;
1952 int mask = max_imm - 1;
1953 int sign_bit = max_imm >> 1;
1955 offset = inst & mask;
1956 if (is_signed && (offset & sign_bit))
1957 offset = 0 - (max_imm - offset);
1958 return offset * scale;
1963 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1964 stream from start_pc to limit_pc. */
1967 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1968 struct frame_info *next_frame, CORE_ADDR sp)
1971 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1972 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1973 unsigned inst = 0; /* current instruction */
1974 unsigned entry_inst = 0; /* the entry instruction */
1977 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1978 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1980 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1982 /* Save the previous instruction. If it's an EXTEND, we'll extract
1983 the immediate offset extension from it in mips16_get_imm. */
1986 /* Fetch and decode the instruction. */
1987 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1988 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1989 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1991 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1992 if (offset < 0) /* negative stack adjustment? */
1993 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1995 /* Exit loop if a positive stack adjustment is found, which
1996 usually means that the stack cleanup code in the function
1997 epilogue is reached. */
2000 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2002 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2003 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
2004 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2005 set_reg_offset (temp_saved_regs, reg, sp + offset);
2007 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2009 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2010 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2011 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2012 set_reg_offset (temp_saved_regs, reg, sp + offset);
2014 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2016 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2017 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2018 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2020 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2022 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2023 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2024 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2026 else if (inst == 0x673d) /* move $s1, $sp */
2029 PROC_FRAME_REG (&temp_proc_desc) = 17;
2031 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2033 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2034 frame_addr = sp + offset;
2035 PROC_FRAME_REG (&temp_proc_desc) = 17;
2036 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2038 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2040 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2041 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2042 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2043 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2045 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2047 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2048 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2049 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2050 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2052 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2053 entry_inst = inst; /* save for later processing */
2054 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2055 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
2058 /* The entry instruction is typically the first instruction in a function,
2059 and it stores registers at offsets relative to the value of the old SP
2060 (before the prologue). But the value of the sp parameter to this
2061 function is the new SP (after the prologue has been executed). So we
2062 can't calculate those offsets until we've seen the entire prologue,
2063 and can calculate what the old SP must have been. */
2064 if (entry_inst != 0)
2066 int areg_count = (entry_inst >> 8) & 7;
2067 int sreg_count = (entry_inst >> 6) & 3;
2069 /* The entry instruction always subtracts 32 from the SP. */
2070 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
2072 /* Now we can calculate what the SP must have been at the
2073 start of the function prologue. */
2074 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2076 /* Check if a0-a3 were saved in the caller's argument save area. */
2077 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2079 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2080 set_reg_offset (temp_saved_regs, reg, sp + offset);
2081 offset += MIPS_SAVED_REGSIZE;
2084 /* Check if the ra register was pushed on the stack. */
2086 if (entry_inst & 0x20)
2088 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2089 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2090 offset -= MIPS_SAVED_REGSIZE;
2093 /* Check if the s0 and s1 registers were pushed on the stack. */
2094 for (reg = 16; reg < sreg_count + 16; reg++)
2096 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2097 set_reg_offset (temp_saved_regs, reg, sp + offset);
2098 offset -= MIPS_SAVED_REGSIZE;
2104 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2105 struct frame_info *next_frame, CORE_ADDR sp)
2108 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2110 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2111 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2112 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2113 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2114 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2116 unsigned long inst, high_word, low_word;
2119 /* Fetch the instruction. */
2120 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2122 /* Save some code by pre-extracting some useful fields. */
2123 high_word = (inst >> 16) & 0xffff;
2124 low_word = inst & 0xffff;
2125 reg = high_word & 0x1f;
2127 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2128 || high_word == 0x23bd /* addi $sp,$sp,-i */
2129 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2131 if (low_word & 0x8000) /* negative stack adjustment? */
2132 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2134 /* Exit loop if a positive stack adjustment is found, which
2135 usually means that the stack cleanup code in the function
2136 epilogue is reached. */
2139 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2141 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2142 set_reg_offset (temp_saved_regs, reg, sp + low_word);
2144 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2146 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2147 but the register size used is only 32 bits. Make the address
2148 for the saved register point to the lower 32 bits. */
2149 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2150 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE);
2152 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2154 /* Old gcc frame, r30 is virtual frame pointer. */
2155 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2156 frame_addr = sp + low_word;
2157 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2159 unsigned alloca_adjust;
2160 PROC_FRAME_REG (&temp_proc_desc) = 30;
2161 frame_addr = read_next_frame_reg (next_frame, 30);
2162 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2163 if (alloca_adjust > 0)
2165 /* FP > SP + frame_size. This may be because
2166 * of an alloca or somethings similar.
2167 * Fix sp to "pre-alloca" value, and try again.
2169 sp += alloca_adjust;
2174 /* move $30,$sp. With different versions of gas this will be either
2175 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2176 Accept any one of these. */
2177 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2179 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2180 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2182 unsigned alloca_adjust;
2183 PROC_FRAME_REG (&temp_proc_desc) = 30;
2184 frame_addr = read_next_frame_reg (next_frame, 30);
2185 alloca_adjust = (unsigned) (frame_addr - sp);
2186 if (alloca_adjust > 0)
2188 /* FP > SP + frame_size. This may be because
2189 * of an alloca or somethings similar.
2190 * Fix sp to "pre-alloca" value, and try again.
2192 sp += alloca_adjust;
2197 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2199 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2200 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
2205 static mips_extra_func_info_t
2206 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2207 struct frame_info *next_frame, int cur_frame)
2212 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2218 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2219 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2220 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2221 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2222 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2223 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2225 if (start_pc + 200 < limit_pc)
2226 limit_pc = start_pc + 200;
2227 if (pc_is_mips16 (start_pc))
2228 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2230 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2231 return &temp_proc_desc;
2234 struct mips_objfile_private
2240 /* Global used to communicate between non_heuristic_proc_desc and
2241 compare_pdr_entries within qsort (). */
2242 static bfd *the_bfd;
2245 compare_pdr_entries (const void *a, const void *b)
2247 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2248 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2252 else if (lhs == rhs)
2258 static mips_extra_func_info_t
2259 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2261 CORE_ADDR startaddr;
2262 mips_extra_func_info_t proc_desc;
2263 struct block *b = block_for_pc (pc);
2265 struct obj_section *sec;
2266 struct mips_objfile_private *priv;
2268 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2271 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2273 *addrptr = startaddr;
2277 sec = find_pc_section (pc);
2280 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2282 /* Search the ".pdr" section generated by GAS. This includes most of
2283 the information normally found in ECOFF PDRs. */
2285 the_bfd = sec->objfile->obfd;
2287 && (the_bfd->format == bfd_object
2288 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2289 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2291 /* Right now GAS only outputs the address as a four-byte sequence.
2292 This means that we should not bother with this method on 64-bit
2293 targets (until that is fixed). */
2295 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2296 sizeof (struct mips_objfile_private));
2298 sec->objfile->obj_private = priv;
2300 else if (priv == NULL)
2304 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2305 sizeof (struct mips_objfile_private));
2307 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2310 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2311 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2313 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2314 priv->contents, 0, priv->size);
2316 /* In general, the .pdr section is sorted. However, in the
2317 presence of multiple code sections (and other corner cases)
2318 it can become unsorted. Sort it so that we can use a faster
2320 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2325 sec->objfile->obj_private = priv;
2329 if (priv->size != 0)
2335 high = priv->size / 32;
2341 mid = (low + high) / 2;
2343 ptr = priv->contents + mid * 32;
2344 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2345 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2346 SECT_OFF_TEXT (sec->objfile));
2347 if (pdr_pc == startaddr)
2349 if (pdr_pc > startaddr)
2354 while (low != high);
2358 struct symbol *sym = find_pc_function (pc);
2360 /* Fill in what we need of the proc_desc. */
2361 proc_desc = (mips_extra_func_info_t)
2362 obstack_alloc (&sec->objfile->psymbol_obstack,
2363 sizeof (struct mips_extra_func_info));
2364 PROC_LOW_ADDR (proc_desc) = startaddr;
2366 /* Only used for dummy frames. */
2367 PROC_HIGH_ADDR (proc_desc) = 0;
2369 PROC_FRAME_OFFSET (proc_desc)
2370 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2371 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2373 PROC_FRAME_ADJUST (proc_desc) = 0;
2374 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2376 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2378 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2380 PROC_FREG_OFFSET (proc_desc)
2381 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2382 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2384 proc_desc->pdr.isym = (long) sym;
2394 if (startaddr > BLOCK_START (b))
2396 /* This is the "pathological" case referred to in a comment in
2397 print_frame_info. It might be better to move this check into
2402 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
2404 /* If we never found a PDR for this function in symbol reading, then
2405 examine prologues to find the information. */
2408 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2409 if (PROC_FRAME_REG (proc_desc) == -1)
2419 static mips_extra_func_info_t
2420 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2422 mips_extra_func_info_t proc_desc;
2423 CORE_ADDR startaddr = 0;
2425 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2429 /* IF this is the topmost frame AND
2430 * (this proc does not have debugging information OR
2431 * the PC is in the procedure prologue)
2432 * THEN create a "heuristic" proc_desc (by analyzing
2433 * the actual code) to replace the "official" proc_desc.
2435 if (next_frame == NULL)
2437 struct symtab_and_line val;
2438 struct symbol *proc_symbol =
2439 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2443 val = find_pc_line (BLOCK_START
2444 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2446 val.pc = val.end ? val.end : pc;
2448 if (!proc_symbol || pc < val.pc)
2450 mips_extra_func_info_t found_heuristic =
2451 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2452 pc, next_frame, cur_frame);
2453 if (found_heuristic)
2454 proc_desc = found_heuristic;
2460 /* Is linked_proc_desc_table really necessary? It only seems to be used
2461 by procedure call dummys. However, the procedures being called ought
2462 to have their own proc_descs, and even if they don't,
2463 heuristic_proc_desc knows how to create them! */
2465 register struct linked_proc_info *link;
2467 for (link = linked_proc_desc_table; link; link = link->next)
2468 if (PROC_LOW_ADDR (&link->info) <= pc
2469 && PROC_HIGH_ADDR (&link->info) > pc)
2473 startaddr = heuristic_proc_start (pc);
2476 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2482 get_frame_pointer (struct frame_info *frame,
2483 mips_extra_func_info_t proc_desc)
2485 return (read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
2486 + PROC_FRAME_OFFSET (proc_desc)
2487 - PROC_FRAME_ADJUST (proc_desc));
2490 static mips_extra_func_info_t cached_proc_desc;
2493 mips_frame_chain (struct frame_info *frame)
2495 mips_extra_func_info_t proc_desc;
2497 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
2499 if (saved_pc == 0 || inside_entry_file (saved_pc))
2502 /* Check if the PC is inside a call stub. If it is, fetch the
2503 PC of the caller of that stub. */
2504 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2507 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2509 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2510 is well, frame->frame the bottom of the current frame will
2511 contain that value. */
2512 return get_frame_base (frame);
2515 /* Look up the procedure descriptor for this PC. */
2516 proc_desc = find_proc_desc (saved_pc, frame, 1);
2520 cached_proc_desc = proc_desc;
2522 /* If no frame pointer and frame size is zero, we must be at end
2523 of stack (or otherwise hosed). If we don't check frame size,
2524 we loop forever if we see a zero size frame. */
2525 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2526 && PROC_FRAME_OFFSET (proc_desc) == 0
2527 /* The previous frame from a sigtramp frame might be frameless
2528 and have frame size zero. */
2529 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2530 /* For a generic dummy frame, let get_frame_pointer() unwind a
2531 register value saved as part of the dummy frame call. */
2532 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2535 return get_frame_pointer (frame, proc_desc);
2539 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2542 mips_extra_func_info_t proc_desc;
2544 if (get_frame_type (fci) == DUMMY_FRAME)
2547 /* Use proc_desc calculated in frame_chain. When there is no
2548 next frame, i.e, get_next_frame (fci) == NULL, we call
2549 find_proc_desc () to calculate it, passing an explicit
2550 NULL as the frame parameter. */
2552 get_next_frame (fci)
2554 : find_proc_desc (get_frame_pc (fci),
2555 NULL /* i.e, get_next_frame (fci) */,
2558 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2560 deprecated_set_frame_saved_regs_hack (fci, NULL);
2561 get_frame_extra_info (fci)->proc_desc =
2562 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2565 /* Fixup frame-pointer - only needed for top frame */
2566 /* This may not be quite right, if proc has a real frame register.
2567 Get the value of the frame relative sp, procedure might have been
2568 interrupted by a signal at it's very start. */
2569 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2570 && !PROC_DESC_IS_DUMMY (proc_desc))
2571 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), SP_REGNUM));
2572 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2573 /* Do not ``fix'' fci->frame. It will have the value of the
2574 generic dummy frame's top-of-stack (since the draft
2575 fci->frame is obtained by returning the unwound stack
2576 pointer) and that is what we want. That way the fci->frame
2577 value will match the top-of-stack value that was saved as
2578 part of the dummy frames data. */
2581 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
2583 if (proc_desc == &temp_proc_desc)
2587 /* Do not set the saved registers for a sigtramp frame,
2588 mips_find_saved_registers will do that for us. We can't
2589 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2591 /* FIXME: cagney/2002-11-18: This problem will go away once
2592 frame.c:get_prev_frame() is modified to set the frame's
2593 type before calling functions like this. */
2594 find_pc_partial_function (get_frame_pc (fci), &name,
2595 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2596 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2598 frame_saved_regs_zalloc (fci);
2599 /* Set value of previous frame's stack pointer.
2600 Remember that saved_regs[SP_REGNUM] is special in
2601 that it contains the value of the stack pointer
2602 register. The other saved_regs values are addresses
2603 (in the inferior) at which a given register's value
2605 set_reg_offset (temp_saved_regs, SP_REGNUM,
2606 get_frame_base (fci));
2607 set_reg_offset (temp_saved_regs, PC_REGNUM,
2608 temp_saved_regs[RA_REGNUM]);
2609 memcpy (get_frame_saved_regs (fci), temp_saved_regs,
2610 SIZEOF_FRAME_SAVED_REGS);
2614 /* hack: if argument regs are saved, guess these contain args */
2615 /* assume we can't tell how many args for now */
2616 get_frame_extra_info (fci)->num_args = -1;
2617 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2619 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2621 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
2628 /* MIPS stack frames are almost impenetrable. When execution stops,
2629 we basically have to look at symbol information for the function
2630 that we stopped in, which tells us *which* register (if any) is
2631 the base of the frame pointer, and what offset from that register
2632 the frame itself is at.
2634 This presents a problem when trying to examine a stack in memory
2635 (that isn't executing at the moment), using the "frame" command. We
2636 don't have a PC, nor do we have any registers except SP.
2638 This routine takes two arguments, SP and PC, and tries to make the
2639 cached frames look as if these two arguments defined a frame on the
2640 cache. This allows the rest of info frame to extract the important
2641 arguments without difficulty. */
2644 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2647 error ("MIPS frame specifications require two arguments: sp and pc");
2649 return create_new_frame (argv[0], argv[1]);
2652 /* According to the current ABI, should the type be passed in a
2653 floating-point register (assuming that there is space)? When there
2654 is no FPU, FP are not even considered as possibile candidates for
2655 FP registers and, consequently this returns false - forces FP
2656 arguments into integer registers. */
2659 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2661 return ((typecode == TYPE_CODE_FLT
2663 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2664 && TYPE_NFIELDS (arg_type) == 1
2665 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2666 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2669 /* On o32, argument passing in GPRs depends on the alignment of the type being
2670 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2673 mips_type_needs_double_align (struct type *type)
2675 enum type_code typecode = TYPE_CODE (type);
2677 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2679 else if (typecode == TYPE_CODE_STRUCT)
2681 if (TYPE_NFIELDS (type) < 1)
2683 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2685 else if (typecode == TYPE_CODE_UNION)
2689 n = TYPE_NFIELDS (type);
2690 for (i = 0; i < n; i++)
2691 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2698 /* Macros to round N up or down to the next A boundary;
2699 A must be a power of two. */
2701 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2702 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2704 /* Adjust the address downward (direction of stack growth) so that it
2705 is correctly aligned for a new stack frame. */
2707 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2709 return ROUND_DOWN (addr, 16);
2713 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2714 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2715 struct value **args, CORE_ADDR sp, int struct_return,
2716 CORE_ADDR struct_addr)
2722 int stack_offset = 0;
2724 /* For shared libraries, "t9" needs to point at the function
2726 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2728 /* Set the return address register to point to the entry point of
2729 the program, where a breakpoint lies in wait. */
2730 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2732 /* First ensure that the stack and structure return address (if any)
2733 are properly aligned. The stack has to be at least 64-bit
2734 aligned even on 32-bit machines, because doubles must be 64-bit
2735 aligned. For n32 and n64, stack frames need to be 128-bit
2736 aligned, so we round to this widest known alignment. */
2738 sp = ROUND_DOWN (sp, 16);
2739 struct_addr = ROUND_DOWN (struct_addr, 16);
2741 /* Now make space on the stack for the args. We allocate more
2742 than necessary for EABI, because the first few arguments are
2743 passed in registers, but that's OK. */
2744 for (argnum = 0; argnum < nargs; argnum++)
2745 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2746 MIPS_STACK_ARGSIZE);
2747 sp -= ROUND_UP (len, 16);
2750 fprintf_unfiltered (gdb_stdlog,
2751 "mips_eabi_push_dummy_call: sp=0x%s allocated %d\n",
2752 paddr_nz (sp), ROUND_UP (len, 16));
2754 /* Initialize the integer and float register pointers. */
2756 float_argreg = FPA0_REGNUM;
2758 /* The struct_return pointer occupies the first parameter-passing reg. */
2762 fprintf_unfiltered (gdb_stdlog,
2763 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2764 argreg, paddr_nz (struct_addr));
2765 write_register (argreg++, struct_addr);
2768 /* Now load as many as possible of the first arguments into
2769 registers, and push the rest onto the stack. Loop thru args
2770 from first to last. */
2771 for (argnum = 0; argnum < nargs; argnum++)
2774 char valbuf[MAX_REGISTER_SIZE];
2775 struct value *arg = args[argnum];
2776 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2777 int len = TYPE_LENGTH (arg_type);
2778 enum type_code typecode = TYPE_CODE (arg_type);
2781 fprintf_unfiltered (gdb_stdlog,
2782 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2783 argnum + 1, len, (int) typecode);
2785 /* The EABI passes structures that do not fit in a register by
2787 if (len > MIPS_SAVED_REGSIZE
2788 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2790 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2791 typecode = TYPE_CODE_PTR;
2792 len = MIPS_SAVED_REGSIZE;
2795 fprintf_unfiltered (gdb_stdlog, " push");
2798 val = (char *) VALUE_CONTENTS (arg);
2800 /* 32-bit ABIs always start floating point arguments in an
2801 even-numbered floating point register. Round the FP register
2802 up before the check to see if there are any FP registers
2803 left. Non MIPS_EABI targets also pass the FP in the integer
2804 registers so also round up normal registers. */
2805 if (!FP_REGISTER_DOUBLE
2806 && fp_register_arg_p (typecode, arg_type))
2808 if ((float_argreg & 1))
2812 /* Floating point arguments passed in registers have to be
2813 treated specially. On 32-bit architectures, doubles
2814 are passed in register pairs; the even register gets
2815 the low word, and the odd register gets the high word.
2816 On non-EABI processors, the first two floating point arguments are
2817 also copied to general registers, because MIPS16 functions
2818 don't use float registers for arguments. This duplication of
2819 arguments in general registers can't hurt non-MIPS16 functions
2820 because those registers are normally skipped. */
2821 /* MIPS_EABI squeezes a struct that contains a single floating
2822 point value into an FP register instead of pushing it onto the
2824 if (fp_register_arg_p (typecode, arg_type)
2825 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2827 if (!FP_REGISTER_DOUBLE && len == 8)
2829 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2830 unsigned long regval;
2832 /* Write the low word of the double to the even register(s). */
2833 regval = extract_unsigned_integer (val + low_offset, 4);
2835 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2836 float_argreg, phex (regval, 4));
2837 write_register (float_argreg++, regval);
2839 /* Write the high word of the double to the odd register(s). */
2840 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2842 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2843 float_argreg, phex (regval, 4));
2844 write_register (float_argreg++, regval);
2848 /* This is a floating point value that fits entirely
2849 in a single register. */
2850 /* On 32 bit ABI's the float_argreg is further adjusted
2851 above to ensure that it is even register aligned. */
2852 LONGEST regval = extract_unsigned_integer (val, len);
2854 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2855 float_argreg, phex (regval, len));
2856 write_register (float_argreg++, regval);
2861 /* Copy the argument to general registers or the stack in
2862 register-sized pieces. Large arguments are split between
2863 registers and stack. */
2864 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2865 are treated specially: Irix cc passes them in registers
2866 where gcc sometimes puts them on the stack. For maximum
2867 compatibility, we will put them in both places. */
2868 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2869 (len % MIPS_SAVED_REGSIZE != 0));
2871 /* Note: Floating-point values that didn't fit into an FP
2872 register are only written to memory. */
2875 /* Remember if the argument was written to the stack. */
2876 int stack_used_p = 0;
2878 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2881 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2884 /* Write this portion of the argument to the stack. */
2885 if (argreg > MIPS_LAST_ARG_REGNUM
2887 || fp_register_arg_p (typecode, arg_type))
2889 /* Should shorter than int integer values be
2890 promoted to int before being stored? */
2891 int longword_offset = 0;
2894 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2896 if (MIPS_STACK_ARGSIZE == 8 &&
2897 (typecode == TYPE_CODE_INT ||
2898 typecode == TYPE_CODE_PTR ||
2899 typecode == TYPE_CODE_FLT) && len <= 4)
2900 longword_offset = MIPS_STACK_ARGSIZE - len;
2901 else if ((typecode == TYPE_CODE_STRUCT ||
2902 typecode == TYPE_CODE_UNION) &&
2903 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2904 longword_offset = MIPS_STACK_ARGSIZE - len;
2909 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2910 paddr_nz (stack_offset));
2911 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2912 paddr_nz (longword_offset));
2915 addr = sp + stack_offset + longword_offset;
2920 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2922 for (i = 0; i < partial_len; i++)
2924 fprintf_unfiltered (gdb_stdlog, "%02x",
2928 write_memory (addr, val, partial_len);
2931 /* Note!!! This is NOT an else clause. Odd sized
2932 structs may go thru BOTH paths. Floating point
2933 arguments will not. */
2934 /* Write this portion of the argument to a general
2935 purpose register. */
2936 if (argreg <= MIPS_LAST_ARG_REGNUM
2937 && !fp_register_arg_p (typecode, arg_type))
2939 LONGEST regval = extract_unsigned_integer (val, partial_len);
2942 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2944 phex (regval, MIPS_SAVED_REGSIZE));
2945 write_register (argreg, regval);
2952 /* Compute the the offset into the stack at which we
2953 will copy the next parameter.
2955 In the new EABI (and the NABI32), the stack_offset
2956 only needs to be adjusted when it has been used. */
2959 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2963 fprintf_unfiltered (gdb_stdlog, "\n");
2966 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
2968 /* Return adjusted stack pointer. */
2972 /* N32/N64 version of push_dummy_call. */
2975 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2976 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2977 struct value **args, CORE_ADDR sp, int struct_return,
2978 CORE_ADDR struct_addr)
2984 int stack_offset = 0;
2986 /* For shared libraries, "t9" needs to point at the function
2988 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2990 /* Set the return address register to point to the entry point of
2991 the program, where a breakpoint lies in wait. */
2992 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2994 /* First ensure that the stack and structure return address (if any)
2995 are properly aligned. The stack has to be at least 64-bit
2996 aligned even on 32-bit machines, because doubles must be 64-bit
2997 aligned. For n32 and n64, stack frames need to be 128-bit
2998 aligned, so we round to this widest known alignment. */
3000 sp = ROUND_DOWN (sp, 16);
3001 struct_addr = ROUND_DOWN (struct_addr, 16);
3003 /* Now make space on the stack for the args. */
3004 for (argnum = 0; argnum < nargs; argnum++)
3005 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3006 MIPS_STACK_ARGSIZE);
3007 sp -= ROUND_UP (len, 16);
3010 fprintf_unfiltered (gdb_stdlog,
3011 "mips_n32n64_push_dummy_call: sp=0x%s allocated %d\n",
3012 paddr_nz (sp), ROUND_UP (len, 16));
3014 /* Initialize the integer and float register pointers. */
3016 float_argreg = FPA0_REGNUM;
3018 /* The struct_return pointer occupies the first parameter-passing reg. */
3022 fprintf_unfiltered (gdb_stdlog,
3023 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
3024 argreg, paddr_nz (struct_addr));
3025 write_register (argreg++, struct_addr);
3028 /* Now load as many as possible of the first arguments into
3029 registers, and push the rest onto the stack. Loop thru args
3030 from first to last. */
3031 for (argnum = 0; argnum < nargs; argnum++)
3034 char valbuf[MAX_REGISTER_SIZE];
3035 struct value *arg = args[argnum];
3036 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3037 int len = TYPE_LENGTH (arg_type);
3038 enum type_code typecode = TYPE_CODE (arg_type);
3041 fprintf_unfiltered (gdb_stdlog,
3042 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3043 argnum + 1, len, (int) typecode);
3045 val = (char *) VALUE_CONTENTS (arg);
3047 if (fp_register_arg_p (typecode, arg_type)
3048 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3050 /* This is a floating point value that fits entirely
3051 in a single register. */
3052 /* On 32 bit ABI's the float_argreg is further adjusted
3053 above to ensure that it is even register aligned. */
3054 LONGEST regval = extract_unsigned_integer (val, len);
3056 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3057 float_argreg, phex (regval, len));
3058 write_register (float_argreg++, regval);
3061 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3062 argreg, phex (regval, len));
3063 write_register (argreg, regval);
3068 /* Copy the argument to general registers or the stack in
3069 register-sized pieces. Large arguments are split between
3070 registers and stack. */
3071 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3072 are treated specially: Irix cc passes them in registers
3073 where gcc sometimes puts them on the stack. For maximum
3074 compatibility, we will put them in both places. */
3075 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3076 (len % MIPS_SAVED_REGSIZE != 0));
3077 /* Note: Floating-point values that didn't fit into an FP
3078 register are only written to memory. */
3081 /* Rememer if the argument was written to the stack. */
3082 int stack_used_p = 0;
3083 int partial_len = len < MIPS_SAVED_REGSIZE ?
3084 len : MIPS_SAVED_REGSIZE;
3087 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3090 /* Write this portion of the argument to the stack. */
3091 if (argreg > MIPS_LAST_ARG_REGNUM
3093 || fp_register_arg_p (typecode, arg_type))
3095 /* Should shorter than int integer values be
3096 promoted to int before being stored? */
3097 int longword_offset = 0;
3100 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3102 if (MIPS_STACK_ARGSIZE == 8 &&
3103 (typecode == TYPE_CODE_INT ||
3104 typecode == TYPE_CODE_PTR ||
3105 typecode == TYPE_CODE_FLT) && len <= 4)
3106 longword_offset = MIPS_STACK_ARGSIZE - len;
3111 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3112 paddr_nz (stack_offset));
3113 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3114 paddr_nz (longword_offset));
3117 addr = sp + stack_offset + longword_offset;
3122 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3124 for (i = 0; i < partial_len; i++)
3126 fprintf_unfiltered (gdb_stdlog, "%02x",
3130 write_memory (addr, val, partial_len);
3133 /* Note!!! This is NOT an else clause. Odd sized
3134 structs may go thru BOTH paths. Floating point
3135 arguments will not. */
3136 /* Write this portion of the argument to a general
3137 purpose register. */
3138 if (argreg <= MIPS_LAST_ARG_REGNUM
3139 && !fp_register_arg_p (typecode, arg_type))
3141 LONGEST regval = extract_unsigned_integer (val, partial_len);
3143 /* A non-floating-point argument being passed in a
3144 general register. If a struct or union, and if
3145 the remaining length is smaller than the register
3146 size, we have to adjust the register value on
3149 It does not seem to be necessary to do the
3150 same for integral types.
3152 cagney/2001-07-23: gdb/179: Also, GCC, when
3153 outputting LE O32 with sizeof (struct) <
3154 MIPS_SAVED_REGSIZE, generates a left shift as
3155 part of storing the argument in a register a
3156 register (the left shift isn't generated when
3157 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3158 is quite possible that this is GCC contradicting
3159 the LE/O32 ABI, GDB has not been adjusted to
3160 accommodate this. Either someone needs to
3161 demonstrate that the LE/O32 ABI specifies such a
3162 left shift OR this new ABI gets identified as
3163 such and GDB gets tweaked accordingly. */
3165 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3166 && partial_len < MIPS_SAVED_REGSIZE
3167 && (typecode == TYPE_CODE_STRUCT ||
3168 typecode == TYPE_CODE_UNION))
3169 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3173 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3175 phex (regval, MIPS_SAVED_REGSIZE));
3176 write_register (argreg, regval);
3183 /* Compute the the offset into the stack at which we
3184 will copy the next parameter.
3186 In N32 (N64?), the stack_offset only needs to be
3187 adjusted when it has been used. */
3190 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3194 fprintf_unfiltered (gdb_stdlog, "\n");
3197 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3199 /* Return adjusted stack pointer. */
3203 /* O32 version of push_dummy_call. */
3206 mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3207 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3208 struct value **args, CORE_ADDR sp, int struct_return,
3209 CORE_ADDR struct_addr)
3215 int stack_offset = 0;
3217 /* For shared libraries, "t9" needs to point at the function
3219 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3221 /* Set the return address register to point to the entry point of
3222 the program, where a breakpoint lies in wait. */
3223 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3225 /* First ensure that the stack and structure return address (if any)
3226 are properly aligned. The stack has to be at least 64-bit
3227 aligned even on 32-bit machines, because doubles must be 64-bit
3228 aligned. For n32 and n64, stack frames need to be 128-bit
3229 aligned, so we round to this widest known alignment. */
3231 sp = ROUND_DOWN (sp, 16);
3232 struct_addr = ROUND_DOWN (struct_addr, 16);
3234 /* Now make space on the stack for the args. */
3235 for (argnum = 0; argnum < nargs; argnum++)
3236 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3237 MIPS_STACK_ARGSIZE);
3238 sp -= ROUND_UP (len, 16);
3241 fprintf_unfiltered (gdb_stdlog,
3242 "mips_o32_push_dummy_call: sp=0x%s allocated %d\n",
3243 paddr_nz (sp), ROUND_UP (len, 16));
3245 /* Initialize the integer and float register pointers. */
3247 float_argreg = FPA0_REGNUM;
3249 /* The struct_return pointer occupies the first parameter-passing reg. */
3253 fprintf_unfiltered (gdb_stdlog,
3254 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3255 argreg, paddr_nz (struct_addr));
3256 write_register (argreg++, struct_addr);
3257 stack_offset += MIPS_STACK_ARGSIZE;
3260 /* Now load as many as possible of the first arguments into
3261 registers, and push the rest onto the stack. Loop thru args
3262 from first to last. */
3263 for (argnum = 0; argnum < nargs; argnum++)
3266 char valbuf[MAX_REGISTER_SIZE];
3267 struct value *arg = args[argnum];
3268 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3269 int len = TYPE_LENGTH (arg_type);
3270 enum type_code typecode = TYPE_CODE (arg_type);
3273 fprintf_unfiltered (gdb_stdlog,
3274 "mips_o32_push_dummy_call: %d len=%d type=%d",
3275 argnum + 1, len, (int) typecode);
3277 val = (char *) VALUE_CONTENTS (arg);
3279 /* 32-bit ABIs always start floating point arguments in an
3280 even-numbered floating point register. Round the FP register
3281 up before the check to see if there are any FP registers
3282 left. O32/O64 targets also pass the FP in the integer
3283 registers so also round up normal registers. */
3284 if (!FP_REGISTER_DOUBLE
3285 && fp_register_arg_p (typecode, arg_type))
3287 if ((float_argreg & 1))
3291 /* Floating point arguments passed in registers have to be
3292 treated specially. On 32-bit architectures, doubles
3293 are passed in register pairs; the even register gets
3294 the low word, and the odd register gets the high word.
3295 On O32/O64, the first two floating point arguments are
3296 also copied to general registers, because MIPS16 functions
3297 don't use float registers for arguments. This duplication of
3298 arguments in general registers can't hurt non-MIPS16 functions
3299 because those registers are normally skipped. */
3301 if (fp_register_arg_p (typecode, arg_type)
3302 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3304 if (!FP_REGISTER_DOUBLE && len == 8)
3306 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3307 unsigned long regval;
3309 /* Write the low word of the double to the even register(s). */
3310 regval = extract_unsigned_integer (val + low_offset, 4);
3312 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3313 float_argreg, phex (regval, 4));
3314 write_register (float_argreg++, regval);
3316 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3317 argreg, phex (regval, 4));
3318 write_register (argreg++, regval);
3320 /* Write the high word of the double to the odd register(s). */
3321 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3323 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3324 float_argreg, phex (regval, 4));
3325 write_register (float_argreg++, regval);
3328 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3329 argreg, phex (regval, 4));
3330 write_register (argreg++, regval);
3334 /* This is a floating point value that fits entirely
3335 in a single register. */
3336 /* On 32 bit ABI's the float_argreg is further adjusted
3337 above to ensure that it is even register aligned. */
3338 LONGEST regval = extract_unsigned_integer (val, len);
3340 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3341 float_argreg, phex (regval, len));
3342 write_register (float_argreg++, regval);
3343 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3344 registers for each argument. The below is (my
3345 guess) to ensure that the corresponding integer
3346 register has reserved the same space. */
3348 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3349 argreg, phex (regval, len));
3350 write_register (argreg, regval);
3351 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3353 /* Reserve space for the FP register. */
3354 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3358 /* Copy the argument to general registers or the stack in
3359 register-sized pieces. Large arguments are split between
3360 registers and stack. */
3361 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3362 are treated specially: Irix cc passes them in registers
3363 where gcc sometimes puts them on the stack. For maximum
3364 compatibility, we will put them in both places. */
3365 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3366 (len % MIPS_SAVED_REGSIZE != 0));
3367 /* Structures should be aligned to eight bytes (even arg registers)
3368 on MIPS_ABI_O32, if their first member has double precision. */
3369 if (MIPS_SAVED_REGSIZE < 8
3370 && mips_type_needs_double_align (arg_type))
3375 /* Note: Floating-point values that didn't fit into an FP
3376 register are only written to memory. */
3379 /* Remember if the argument was written to the stack. */
3380 int stack_used_p = 0;
3382 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3385 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3388 /* Write this portion of the argument to the stack. */
3389 if (argreg > MIPS_LAST_ARG_REGNUM
3391 || fp_register_arg_p (typecode, arg_type))
3393 /* Should shorter than int integer values be
3394 promoted to int before being stored? */
3395 int longword_offset = 0;
3398 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3400 if (MIPS_STACK_ARGSIZE == 8 &&
3401 (typecode == TYPE_CODE_INT ||
3402 typecode == TYPE_CODE_PTR ||
3403 typecode == TYPE_CODE_FLT) && len <= 4)
3404 longword_offset = MIPS_STACK_ARGSIZE - len;
3409 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3410 paddr_nz (stack_offset));
3411 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3412 paddr_nz (longword_offset));
3415 addr = sp + stack_offset + longword_offset;
3420 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3422 for (i = 0; i < partial_len; i++)
3424 fprintf_unfiltered (gdb_stdlog, "%02x",
3428 write_memory (addr, val, partial_len);
3431 /* Note!!! This is NOT an else clause. Odd sized
3432 structs may go thru BOTH paths. Floating point
3433 arguments will not. */
3434 /* Write this portion of the argument to a general
3435 purpose register. */
3436 if (argreg <= MIPS_LAST_ARG_REGNUM
3437 && !fp_register_arg_p (typecode, arg_type))
3439 LONGEST regval = extract_signed_integer (val, partial_len);
3440 /* Value may need to be sign extended, because
3441 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3443 /* A non-floating-point argument being passed in a
3444 general register. If a struct or union, and if
3445 the remaining length is smaller than the register
3446 size, we have to adjust the register value on
3449 It does not seem to be necessary to do the
3450 same for integral types.
3452 Also don't do this adjustment on O64 binaries.
3454 cagney/2001-07-23: gdb/179: Also, GCC, when
3455 outputting LE O32 with sizeof (struct) <
3456 MIPS_SAVED_REGSIZE, generates a left shift as
3457 part of storing the argument in a register a
3458 register (the left shift isn't generated when
3459 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3460 is quite possible that this is GCC contradicting
3461 the LE/O32 ABI, GDB has not been adjusted to
3462 accommodate this. Either someone needs to
3463 demonstrate that the LE/O32 ABI specifies such a
3464 left shift OR this new ABI gets identified as
3465 such and GDB gets tweaked accordingly. */
3467 if (MIPS_SAVED_REGSIZE < 8
3468 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3469 && partial_len < MIPS_SAVED_REGSIZE
3470 && (typecode == TYPE_CODE_STRUCT ||
3471 typecode == TYPE_CODE_UNION))
3472 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3476 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3478 phex (regval, MIPS_SAVED_REGSIZE));
3479 write_register (argreg, regval);
3482 /* Prevent subsequent floating point arguments from
3483 being passed in floating point registers. */
3484 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3490 /* Compute the the offset into the stack at which we
3491 will copy the next parameter.
3493 In older ABIs, the caller reserved space for
3494 registers that contained arguments. This was loosely
3495 refered to as their "home". Consequently, space is
3496 always allocated. */
3498 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3502 fprintf_unfiltered (gdb_stdlog, "\n");
3505 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3507 /* Return adjusted stack pointer. */
3511 /* O64 version of push_dummy_call. */
3514 mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3515 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3516 struct value **args, CORE_ADDR sp, int struct_return,
3517 CORE_ADDR struct_addr)
3523 int stack_offset = 0;
3525 /* For shared libraries, "t9" needs to point at the function
3527 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3529 /* Set the return address register to point to the entry point of
3530 the program, where a breakpoint lies in wait. */
3531 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3533 /* First ensure that the stack and structure return address (if any)
3534 are properly aligned. The stack has to be at least 64-bit
3535 aligned even on 32-bit machines, because doubles must be 64-bit
3536 aligned. For n32 and n64, stack frames need to be 128-bit
3537 aligned, so we round to this widest known alignment. */
3539 sp = ROUND_DOWN (sp, 16);
3540 struct_addr = ROUND_DOWN (struct_addr, 16);
3542 /* Now make space on the stack for the args. */
3543 for (argnum = 0; argnum < nargs; argnum++)
3544 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3545 MIPS_STACK_ARGSIZE);
3546 sp -= ROUND_UP (len, 16);
3549 fprintf_unfiltered (gdb_stdlog,
3550 "mips_o64_push_dummy_call: sp=0x%s allocated %d\n",
3551 paddr_nz (sp), ROUND_UP (len, 16));
3553 /* Initialize the integer and float register pointers. */
3555 float_argreg = FPA0_REGNUM;
3557 /* The struct_return pointer occupies the first parameter-passing reg. */
3561 fprintf_unfiltered (gdb_stdlog,
3562 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3563 argreg, paddr_nz (struct_addr));
3564 write_register (argreg++, struct_addr);
3565 stack_offset += MIPS_STACK_ARGSIZE;
3568 /* Now load as many as possible of the first arguments into
3569 registers, and push the rest onto the stack. Loop thru args
3570 from first to last. */
3571 for (argnum = 0; argnum < nargs; argnum++)
3574 char valbuf[MAX_REGISTER_SIZE];
3575 struct value *arg = args[argnum];
3576 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3577 int len = TYPE_LENGTH (arg_type);
3578 enum type_code typecode = TYPE_CODE (arg_type);
3581 fprintf_unfiltered (gdb_stdlog,
3582 "mips_o64_push_dummy_call: %d len=%d type=%d",
3583 argnum + 1, len, (int) typecode);
3585 val = (char *) VALUE_CONTENTS (arg);
3587 /* 32-bit ABIs always start floating point arguments in an
3588 even-numbered floating point register. Round the FP register
3589 up before the check to see if there are any FP registers
3590 left. O32/O64 targets also pass the FP in the integer
3591 registers so also round up normal registers. */
3592 if (!FP_REGISTER_DOUBLE
3593 && fp_register_arg_p (typecode, arg_type))
3595 if ((float_argreg & 1))
3599 /* Floating point arguments passed in registers have to be
3600 treated specially. On 32-bit architectures, doubles
3601 are passed in register pairs; the even register gets
3602 the low word, and the odd register gets the high word.
3603 On O32/O64, the first two floating point arguments are
3604 also copied to general registers, because MIPS16 functions
3605 don't use float registers for arguments. This duplication of
3606 arguments in general registers can't hurt non-MIPS16 functions
3607 because those registers are normally skipped. */
3609 if (fp_register_arg_p (typecode, arg_type)
3610 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3612 if (!FP_REGISTER_DOUBLE && len == 8)
3614 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3615 unsigned long regval;
3617 /* Write the low word of the double to the even register(s). */
3618 regval = extract_unsigned_integer (val + low_offset, 4);
3620 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3621 float_argreg, phex (regval, 4));
3622 write_register (float_argreg++, regval);
3624 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3625 argreg, phex (regval, 4));
3626 write_register (argreg++, regval);
3628 /* Write the high word of the double to the odd register(s). */
3629 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3631 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3632 float_argreg, phex (regval, 4));
3633 write_register (float_argreg++, regval);
3636 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3637 argreg, phex (regval, 4));
3638 write_register (argreg++, regval);
3642 /* This is a floating point value that fits entirely
3643 in a single register. */
3644 /* On 32 bit ABI's the float_argreg is further adjusted
3645 above to ensure that it is even register aligned. */
3646 LONGEST regval = extract_unsigned_integer (val, len);
3648 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3649 float_argreg, phex (regval, len));
3650 write_register (float_argreg++, regval);
3651 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3652 registers for each argument. The below is (my
3653 guess) to ensure that the corresponding integer
3654 register has reserved the same space. */
3656 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3657 argreg, phex (regval, len));
3658 write_register (argreg, regval);
3659 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3661 /* Reserve space for the FP register. */
3662 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3666 /* Copy the argument to general registers or the stack in
3667 register-sized pieces. Large arguments are split between
3668 registers and stack. */
3669 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3670 are treated specially: Irix cc passes them in registers
3671 where gcc sometimes puts them on the stack. For maximum
3672 compatibility, we will put them in both places. */
3673 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3674 (len % MIPS_SAVED_REGSIZE != 0));
3675 /* Structures should be aligned to eight bytes (even arg registers)
3676 on MIPS_ABI_O32, if their first member has double precision. */
3677 if (MIPS_SAVED_REGSIZE < 8
3678 && mips_type_needs_double_align (arg_type))
3683 /* Note: Floating-point values that didn't fit into an FP
3684 register are only written to memory. */
3687 /* Remember if the argument was written to the stack. */
3688 int stack_used_p = 0;
3690 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3693 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3696 /* Write this portion of the argument to the stack. */
3697 if (argreg > MIPS_LAST_ARG_REGNUM
3699 || fp_register_arg_p (typecode, arg_type))
3701 /* Should shorter than int integer values be
3702 promoted to int before being stored? */
3703 int longword_offset = 0;
3706 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3708 if (MIPS_STACK_ARGSIZE == 8 &&
3709 (typecode == TYPE_CODE_INT ||
3710 typecode == TYPE_CODE_PTR ||
3711 typecode == TYPE_CODE_FLT) && len <= 4)
3712 longword_offset = MIPS_STACK_ARGSIZE - len;
3717 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3718 paddr_nz (stack_offset));
3719 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3720 paddr_nz (longword_offset));
3723 addr = sp + stack_offset + longword_offset;
3728 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3730 for (i = 0; i < partial_len; i++)
3732 fprintf_unfiltered (gdb_stdlog, "%02x",
3736 write_memory (addr, val, partial_len);
3739 /* Note!!! This is NOT an else clause. Odd sized
3740 structs may go thru BOTH paths. Floating point
3741 arguments will not. */
3742 /* Write this portion of the argument to a general
3743 purpose register. */
3744 if (argreg <= MIPS_LAST_ARG_REGNUM
3745 && !fp_register_arg_p (typecode, arg_type))
3747 LONGEST regval = extract_signed_integer (val, partial_len);
3748 /* Value may need to be sign extended, because
3749 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3751 /* A non-floating-point argument being passed in a
3752 general register. If a struct or union, and if
3753 the remaining length is smaller than the register
3754 size, we have to adjust the register value on
3757 It does not seem to be necessary to do the
3758 same for integral types.
3760 Also don't do this adjustment on O64 binaries.
3762 cagney/2001-07-23: gdb/179: Also, GCC, when
3763 outputting LE O32 with sizeof (struct) <
3764 MIPS_SAVED_REGSIZE, generates a left shift as
3765 part of storing the argument in a register a
3766 register (the left shift isn't generated when
3767 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3768 is quite possible that this is GCC contradicting
3769 the LE/O32 ABI, GDB has not been adjusted to
3770 accommodate this. Either someone needs to
3771 demonstrate that the LE/O32 ABI specifies such a
3772 left shift OR this new ABI gets identified as
3773 such and GDB gets tweaked accordingly. */
3775 if (MIPS_SAVED_REGSIZE < 8
3776 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3777 && partial_len < MIPS_SAVED_REGSIZE
3778 && (typecode == TYPE_CODE_STRUCT ||
3779 typecode == TYPE_CODE_UNION))
3780 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3784 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3786 phex (regval, MIPS_SAVED_REGSIZE));
3787 write_register (argreg, regval);
3790 /* Prevent subsequent floating point arguments from
3791 being passed in floating point registers. */
3792 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3798 /* Compute the the offset into the stack at which we
3799 will copy the next parameter.
3801 In older ABIs, the caller reserved space for
3802 registers that contained arguments. This was loosely
3803 refered to as their "home". Consequently, space is
3804 always allocated. */
3806 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3810 fprintf_unfiltered (gdb_stdlog, "\n");
3813 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3815 /* Return adjusted stack pointer. */
3820 mips_pop_frame (void)
3822 register int regnum;
3823 struct frame_info *frame = get_current_frame ();
3824 CORE_ADDR new_sp = get_frame_base (frame);
3825 mips_extra_func_info_t proc_desc;
3827 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3829 generic_pop_dummy_frame ();
3830 flush_cached_frames ();
3834 proc_desc = get_frame_extra_info (frame)->proc_desc;
3835 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
3836 mips_find_saved_regs (frame);
3837 for (regnum = 0; regnum < NUM_REGS; regnum++)
3838 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3839 && get_frame_saved_regs (frame)[regnum])
3841 /* Floating point registers must not be sign extended,
3842 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3844 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3845 write_register (regnum,
3846 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
3847 MIPS_SAVED_REGSIZE));
3849 write_register (regnum,
3850 read_memory_integer (get_frame_saved_regs (frame)[regnum],
3851 MIPS_SAVED_REGSIZE));
3854 write_register (SP_REGNUM, new_sp);
3855 flush_cached_frames ();
3857 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3859 struct linked_proc_info *pi_ptr, *prev_ptr;
3861 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3863 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3865 if (&pi_ptr->info == proc_desc)
3870 error ("Can't locate dummy extra frame info\n");
3872 if (prev_ptr != NULL)
3873 prev_ptr->next = pi_ptr->next;
3875 linked_proc_desc_table = pi_ptr->next;
3879 write_register (HI_REGNUM,
3880 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3881 MIPS_SAVED_REGSIZE));
3882 write_register (LO_REGNUM,
3883 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3884 MIPS_SAVED_REGSIZE));
3885 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3886 write_register (FCRCS_REGNUM,
3887 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3888 MIPS_SAVED_REGSIZE));
3892 /* Floating point register management.
3894 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3895 64bit operations, these early MIPS cpus treat fp register pairs
3896 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3897 registers and offer a compatibility mode that emulates the MIPS2 fp
3898 model. When operating in MIPS2 fp compat mode, later cpu's split
3899 double precision floats into two 32-bit chunks and store them in
3900 consecutive fp regs. To display 64-bit floats stored in this
3901 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3902 Throw in user-configurable endianness and you have a real mess.
3904 The way this works is:
3905 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3906 double-precision value will be split across two logical registers.
3907 The lower-numbered logical register will hold the low-order bits,
3908 regardless of the processor's endianness.
3909 - If we are on a 64-bit processor, and we are looking for a
3910 single-precision value, it will be in the low ordered bits
3911 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3912 save slot in memory.
3913 - If we are in 64-bit mode, everything is straightforward.
3915 Note that this code only deals with "live" registers at the top of the
3916 stack. We will attempt to deal with saved registers later, when
3917 the raw/cooked register interface is in place. (We need a general
3918 interface that can deal with dynamic saved register sizes -- fp
3919 regs could be 32 bits wide in one frame and 64 on the frame above
3922 static struct type *
3923 mips_float_register_type (void)
3925 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3926 return builtin_type_ieee_single_big;
3928 return builtin_type_ieee_single_little;
3931 static struct type *
3932 mips_double_register_type (void)
3934 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3935 return builtin_type_ieee_double_big;
3937 return builtin_type_ieee_double_little;
3940 /* Copy a 32-bit single-precision value from the current frame
3941 into rare_buffer. */
3944 mips_read_fp_register_single (struct frame_info *frame, int regno,
3947 int raw_size = REGISTER_RAW_SIZE (regno);
3948 char *raw_buffer = alloca (raw_size);
3950 if (!frame_register_read (frame, regno, raw_buffer))
3951 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3954 /* We have a 64-bit value for this register. Find the low-order
3958 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3963 memcpy (rare_buffer, raw_buffer + offset, 4);
3967 memcpy (rare_buffer, raw_buffer, 4);
3971 /* Copy a 64-bit double-precision value from the current frame into
3972 rare_buffer. This may include getting half of it from the next
3976 mips_read_fp_register_double (struct frame_info *frame, int regno,
3979 int raw_size = REGISTER_RAW_SIZE (regno);
3981 if (raw_size == 8 && !mips2_fp_compat ())
3983 /* We have a 64-bit value for this register, and we should use
3985 if (!frame_register_read (frame, regno, rare_buffer))
3986 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3990 if ((regno - FP0_REGNUM) & 1)
3991 internal_error (__FILE__, __LINE__,
3992 "mips_read_fp_register_double: bad access to "
3993 "odd-numbered FP register");
3995 /* mips_read_fp_register_single will find the correct 32 bits from
3997 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3999 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4000 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4004 mips_read_fp_register_single (frame, regno, rare_buffer);
4005 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4011 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4013 { /* do values for FP (float) regs */
4015 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4016 int inv1, inv2, namelen;
4018 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4020 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4021 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4024 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4026 /* 4-byte registers: Print hex and floating. Also print even
4027 numbered registers as doubles. */
4028 mips_read_fp_register_single (frame, regnum, raw_buffer);
4029 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4031 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
4033 fprintf_filtered (file, " flt: ");
4035 fprintf_filtered (file, " <invalid float> ");
4037 fprintf_filtered (file, "%-17.9g", flt1);
4039 if (regnum % 2 == 0)
4041 mips_read_fp_register_double (frame, regnum, raw_buffer);
4042 doub = unpack_double (mips_double_register_type (), raw_buffer,
4045 fprintf_filtered (file, " dbl: ");
4047 fprintf_filtered (file, "<invalid double>");
4049 fprintf_filtered (file, "%-24.17g", doub);
4054 /* Eight byte registers: print each one as hex, float and double. */
4055 mips_read_fp_register_single (frame, regnum, raw_buffer);
4056 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4058 mips_read_fp_register_double (frame, regnum, raw_buffer);
4059 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4062 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
4064 fprintf_filtered (file, " flt: ");
4066 fprintf_filtered (file, "<invalid float>");
4068 fprintf_filtered (file, "%-17.9g", flt1);
4070 fprintf_filtered (file, " dbl: ");
4072 fprintf_filtered (file, "<invalid double>");
4074 fprintf_filtered (file, "%-24.17g", doub);
4079 mips_print_register (struct ui_file *file, struct frame_info *frame,
4080 int regnum, int all)
4082 char raw_buffer[MAX_REGISTER_SIZE];
4085 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4087 mips_print_fp_register (file, frame, regnum);
4091 /* Get the data in raw format. */
4092 if (!frame_register_read (frame, regnum, raw_buffer))
4094 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4098 fputs_filtered (REGISTER_NAME (regnum), file);
4100 /* The problem with printing numeric register names (r26, etc.) is that
4101 the user can't use them on input. Probably the best solution is to
4102 fix it so that either the numeric or the funky (a2, etc.) names
4103 are accepted on input. */
4104 if (regnum < MIPS_NUMREGS)
4105 fprintf_filtered (file, "(r%d): ", regnum);
4107 fprintf_filtered (file, ": ");
4109 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4110 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4114 print_scalar_formatted (raw_buffer + offset,
4115 REGISTER_VIRTUAL_TYPE (regnum),
4119 /* Replacement for generic do_registers_info.
4120 Print regs in pretty columns. */
4123 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4126 fprintf_filtered (file, " ");
4127 mips_print_fp_register (file, frame, regnum);
4128 fprintf_filtered (file, "\n");
4133 /* Print a row's worth of GP (int) registers, with name labels above */
4136 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4139 /* do values for GP (int) regs */
4140 char raw_buffer[MAX_REGISTER_SIZE];
4141 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4143 int start_regnum = regnum;
4144 int numregs = NUM_REGS;
4147 /* For GP registers, we print a separate row of names above the vals */
4148 fprintf_filtered (file, " ");
4149 for (col = 0; col < ncols && regnum < numregs; regnum++)
4151 if (*REGISTER_NAME (regnum) == '\0')
4152 continue; /* unused register */
4153 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4154 break; /* end the row: reached FP register */
4155 fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4156 REGISTER_NAME (regnum));
4159 fprintf_filtered (file,
4160 start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4161 start_regnum); /* print the R0 to R31 names */
4163 regnum = start_regnum; /* go back to start of row */
4164 /* now print the values in hex, 4 or 8 to the row */
4165 for (col = 0; col < ncols && regnum < numregs; regnum++)
4167 if (*REGISTER_NAME (regnum) == '\0')
4168 continue; /* unused register */
4169 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4170 break; /* end row: reached FP register */
4171 /* OK: get the data in raw format. */
4172 if (!frame_register_read (frame, regnum, raw_buffer))
4173 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4174 /* pad small registers */
4175 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4176 printf_filtered (" ");
4177 /* Now print the register value in hex, endian order. */
4178 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4179 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4180 byte < REGISTER_RAW_SIZE (regnum);
4182 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4184 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4187 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4188 fprintf_filtered (file, " ");
4191 if (col > 0) /* ie. if we actually printed anything... */
4192 fprintf_filtered (file, "\n");
4197 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4200 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4201 struct frame_info *frame, int regnum, int all)
4203 if (regnum != -1) /* do one specified register */
4205 if (*(REGISTER_NAME (regnum)) == '\0')
4206 error ("Not a valid register for the current processor type");
4208 mips_print_register (file, frame, regnum, 0);
4209 fprintf_filtered (file, "\n");
4212 /* do all (or most) registers */
4215 while (regnum < NUM_REGS)
4217 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4219 if (all) /* true for "INFO ALL-REGISTERS" command */
4220 regnum = print_fp_register_row (file, frame, regnum);
4222 regnum += MIPS_NUMREGS; /* skip floating point regs */
4225 regnum = print_gp_register_row (file, frame, regnum);
4230 /* Is this a branch with a delay slot? */
4232 static int is_delayed (unsigned long);
4235 is_delayed (unsigned long insn)
4238 for (i = 0; i < NUMOPCODES; ++i)
4239 if (mips_opcodes[i].pinfo != INSN_MACRO
4240 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4242 return (i < NUMOPCODES
4243 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4244 | INSN_COND_BRANCH_DELAY
4245 | INSN_COND_BRANCH_LIKELY)));
4249 mips_step_skips_delay (CORE_ADDR pc)
4251 char buf[MIPS_INSTLEN];
4253 /* There is no branch delay slot on MIPS16. */
4254 if (pc_is_mips16 (pc))
4257 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4258 /* If error reading memory, guess that it is not a delayed branch. */
4260 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4264 /* Skip the PC past function prologue instructions (32-bit version).
4265 This is a helper function for mips_skip_prologue. */
4268 mips32_skip_prologue (CORE_ADDR pc)
4272 int seen_sp_adjust = 0;
4273 int load_immediate_bytes = 0;
4275 /* Skip the typical prologue instructions. These are the stack adjustment
4276 instruction and the instructions that save registers on the stack
4277 or in the gcc frame. */
4278 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4280 unsigned long high_word;
4282 inst = mips_fetch_instruction (pc);
4283 high_word = (inst >> 16) & 0xffff;
4285 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4286 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4288 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4289 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4291 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4292 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4293 && (inst & 0x001F0000)) /* reg != $zero */
4296 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4298 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4300 continue; /* reg != $zero */
4302 /* move $s8,$sp. With different versions of gas this will be either
4303 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4304 Accept any one of these. */
4305 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4308 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4310 else if (high_word == 0x3c1c) /* lui $gp,n */
4312 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4314 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4315 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4317 /* The following instructions load $at or $t0 with an immediate
4318 value in preparation for a stack adjustment via
4319 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4320 a local variable, so we accept them only before a stack adjustment
4321 instruction was seen. */
4322 else if (!seen_sp_adjust)
4324 if (high_word == 0x3c01 || /* lui $at,n */
4325 high_word == 0x3c08) /* lui $t0,n */
4327 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4330 else if (high_word == 0x3421 || /* ori $at,$at,n */
4331 high_word == 0x3508 || /* ori $t0,$t0,n */
4332 high_word == 0x3401 || /* ori $at,$zero,n */
4333 high_word == 0x3408) /* ori $t0,$zero,n */
4335 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4345 /* In a frameless function, we might have incorrectly
4346 skipped some load immediate instructions. Undo the skipping
4347 if the load immediate was not followed by a stack adjustment. */
4348 if (load_immediate_bytes && !seen_sp_adjust)
4349 pc -= load_immediate_bytes;
4353 /* Skip the PC past function prologue instructions (16-bit version).
4354 This is a helper function for mips_skip_prologue. */
4357 mips16_skip_prologue (CORE_ADDR pc)
4360 int extend_bytes = 0;
4361 int prev_extend_bytes;
4363 /* Table of instructions likely to be found in a function prologue. */
4366 unsigned short inst;
4367 unsigned short mask;
4374 , /* addiu $sp,offset */
4378 , /* daddiu $sp,offset */
4382 , /* sw reg,n($sp) */
4386 , /* sd reg,n($sp) */
4390 , /* sw $ra,n($sp) */
4394 , /* sd $ra,n($sp) */
4402 , /* sw $a0-$a3,n($s1) */
4406 , /* move reg,$a0-$a3 */
4410 , /* entry pseudo-op */
4414 , /* addiu $s1,$sp,n */
4417 } /* end of table marker */
4420 /* Skip the typical prologue instructions. These are the stack adjustment
4421 instruction and the instructions that save registers on the stack
4422 or in the gcc frame. */
4423 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4425 unsigned short inst;
4428 inst = mips_fetch_instruction (pc);
4430 /* Normally we ignore an extend instruction. However, if it is
4431 not followed by a valid prologue instruction, we must adjust
4432 the pc back over the extend so that it won't be considered
4433 part of the prologue. */
4434 if ((inst & 0xf800) == 0xf000) /* extend */
4436 extend_bytes = MIPS16_INSTLEN;
4439 prev_extend_bytes = extend_bytes;
4442 /* Check for other valid prologue instructions besides extend. */
4443 for (i = 0; table[i].mask != 0; i++)
4444 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4446 if (table[i].mask != 0) /* it was in table? */
4447 continue; /* ignore it */
4451 /* Return the current pc, adjusted backwards by 2 if
4452 the previous instruction was an extend. */
4453 return pc - prev_extend_bytes;
4459 /* To skip prologues, I use this predicate. Returns either PC itself
4460 if the code at PC does not look like a function prologue; otherwise
4461 returns an address that (if we're lucky) follows the prologue. If
4462 LENIENT, then we must skip everything which is involved in setting
4463 up the frame (it's OK to skip more, just so long as we don't skip
4464 anything which might clobber the registers which are being saved.
4465 We must skip more in the case where part of the prologue is in the
4466 delay slot of a non-prologue instruction). */
4469 mips_skip_prologue (CORE_ADDR pc)
4471 /* See if we can determine the end of the prologue via the symbol table.
4472 If so, then return either PC, or the PC after the prologue, whichever
4475 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4477 if (post_prologue_pc != 0)
4478 return max (pc, post_prologue_pc);
4480 /* Can't determine prologue from the symbol table, need to examine
4483 if (pc_is_mips16 (pc))
4484 return mips16_skip_prologue (pc);
4486 return mips32_skip_prologue (pc);
4489 /* Determine how a return value is stored within the MIPS register
4490 file, given the return type `valtype'. */
4492 struct return_value_word
4501 return_value_location (struct type *valtype,
4502 struct return_value_word *hi,
4503 struct return_value_word *lo)
4505 int len = TYPE_LENGTH (valtype);
4507 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4508 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4509 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4511 if (!FP_REGISTER_DOUBLE && len == 8)
4513 /* We need to break a 64bit float in two 32 bit halves and
4514 spread them across a floating-point register pair. */
4515 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4516 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4517 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4518 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4520 hi->reg_offset = lo->reg_offset;
4521 lo->reg = FP0_REGNUM + 0;
4522 hi->reg = FP0_REGNUM + 1;
4528 /* The floating point value fits in a single floating-point
4530 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4531 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4534 lo->reg = FP0_REGNUM;
4545 /* Locate a result possibly spread across two registers. */
4547 lo->reg = regnum + 0;
4548 hi->reg = regnum + 1;
4549 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4550 && len < MIPS_SAVED_REGSIZE)
4552 /* "un-left-justify" the value in the low register */
4553 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4558 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4559 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4560 && len < MIPS_SAVED_REGSIZE * 2
4561 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4562 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4564 /* "un-left-justify" the value spread across two registers. */
4565 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4566 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4568 hi->len = len - lo->len;
4572 /* Only perform a partial copy of the second register. */
4575 if (len > MIPS_SAVED_REGSIZE)
4577 lo->len = MIPS_SAVED_REGSIZE;
4578 hi->len = len - MIPS_SAVED_REGSIZE;
4586 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4587 && REGISTER_RAW_SIZE (regnum) == 8
4588 && MIPS_SAVED_REGSIZE == 4)
4590 /* Account for the fact that only the least-signficant part
4591 of the register is being used */
4592 lo->reg_offset += 4;
4593 hi->reg_offset += 4;
4596 hi->buf_offset = lo->len;
4600 /* Given a return value in `regbuf' with a type `valtype', extract and
4601 copy its value into `valbuf'. */
4604 mips_eabi_extract_return_value (struct type *valtype,
4608 struct return_value_word lo;
4609 struct return_value_word hi;
4610 return_value_location (valtype, &hi, &lo);
4612 memcpy (valbuf + lo.buf_offset,
4613 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4617 memcpy (valbuf + hi.buf_offset,
4618 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4623 mips_o64_extract_return_value (struct type *valtype,
4627 struct return_value_word lo;
4628 struct return_value_word hi;
4629 return_value_location (valtype, &hi, &lo);
4631 memcpy (valbuf + lo.buf_offset,
4632 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4636 memcpy (valbuf + hi.buf_offset,
4637 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4641 /* Given a return value in `valbuf' with a type `valtype', write it's
4642 value into the appropriate register. */
4645 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4647 char raw_buffer[MAX_REGISTER_SIZE];
4648 struct return_value_word lo;
4649 struct return_value_word hi;
4650 return_value_location (valtype, &hi, &lo);
4652 memset (raw_buffer, 0, sizeof (raw_buffer));
4653 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4654 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4655 REGISTER_RAW_SIZE (lo.reg));
4659 memset (raw_buffer, 0, sizeof (raw_buffer));
4660 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4661 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4662 REGISTER_RAW_SIZE (hi.reg));
4667 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4669 char raw_buffer[MAX_REGISTER_SIZE];
4670 struct return_value_word lo;
4671 struct return_value_word hi;
4672 return_value_location (valtype, &hi, &lo);
4674 memset (raw_buffer, 0, sizeof (raw_buffer));
4675 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4676 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4677 REGISTER_RAW_SIZE (lo.reg));
4681 memset (raw_buffer, 0, sizeof (raw_buffer));
4682 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4683 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4684 REGISTER_RAW_SIZE (hi.reg));
4688 /* O32 ABI stuff. */
4691 mips_o32_xfer_return_value (struct type *type,
4692 struct regcache *regcache,
4693 bfd_byte *in, const bfd_byte *out)
4695 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4696 if (TYPE_CODE (type) == TYPE_CODE_FLT
4697 && TYPE_LENGTH (type) == 4
4698 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4700 /* A single-precision floating-point value. It fits in the
4701 least significant part of FP0. */
4703 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4704 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4705 TARGET_BYTE_ORDER, in, out, 0);
4707 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4708 && TYPE_LENGTH (type) == 8
4709 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4711 /* A double-precision floating-point value. It fits in the
4712 least significant part of FP0/FP1 but with byte ordering
4713 based on the target (???). */
4715 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4716 switch (TARGET_BYTE_ORDER)
4718 case BFD_ENDIAN_LITTLE:
4719 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4720 TARGET_BYTE_ORDER, in, out, 0);
4721 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4722 TARGET_BYTE_ORDER, in, out, 4);
4724 case BFD_ENDIAN_BIG:
4725 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4726 TARGET_BYTE_ORDER, in, out, 0);
4727 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4728 TARGET_BYTE_ORDER, in, out, 4);
4731 internal_error (__FILE__, __LINE__, "bad switch");
4735 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4736 && TYPE_NFIELDS (type) <= 2
4737 && TYPE_NFIELDS (type) >= 1
4738 && ((TYPE_NFIELDS (type) == 1
4739 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4741 || (TYPE_NFIELDS (type) == 2
4742 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4744 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4746 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4748 /* A struct that contains one or two floats. Each value is part
4749 in the least significant part of their floating point
4751 bfd_byte reg[MAX_REGISTER_SIZE];
4754 for (field = 0, regnum = FP0_REGNUM;
4755 field < TYPE_NFIELDS (type);
4756 field++, regnum += 2)
4758 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4761 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4762 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4763 TARGET_BYTE_ORDER, in, out, offset);
4768 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4769 || TYPE_CODE (type) == TYPE_CODE_UNION)
4771 /* A structure or union. Extract the left justified value,
4772 regardless of the byte order. I.e. DO NOT USE
4776 for (offset = 0, regnum = V0_REGNUM;
4777 offset < TYPE_LENGTH (type);
4778 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4780 int xfer = REGISTER_RAW_SIZE (regnum);
4781 if (offset + xfer > TYPE_LENGTH (type))
4782 xfer = TYPE_LENGTH (type) - offset;
4784 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4785 offset, xfer, regnum);
4786 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4793 /* A scalar extract each part but least-significant-byte
4794 justified. o32 thinks registers are 4 byte, regardless of
4795 the ISA. mips_stack_argsize controls this. */
4798 for (offset = 0, regnum = V0_REGNUM;
4799 offset < TYPE_LENGTH (type);
4800 offset += mips_stack_argsize (), regnum++)
4802 int xfer = mips_stack_argsize ();
4804 if (offset + xfer > TYPE_LENGTH (type))
4805 xfer = TYPE_LENGTH (type) - offset;
4807 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4808 offset, xfer, regnum);
4809 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4816 mips_o32_extract_return_value (struct type *type,
4817 struct regcache *regcache,
4820 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4824 mips_o32_store_return_value (struct type *type, char *valbuf)
4826 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4829 /* N32/N44 ABI stuff. */
4832 mips_n32n64_xfer_return_value (struct type *type,
4833 struct regcache *regcache,
4834 bfd_byte *in, const bfd_byte *out)
4836 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4837 if (TYPE_CODE (type) == TYPE_CODE_FLT
4838 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4840 /* A floating-point value belongs in the least significant part
4843 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4844 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4845 TARGET_BYTE_ORDER, in, out, 0);
4847 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4848 && TYPE_NFIELDS (type) <= 2
4849 && TYPE_NFIELDS (type) >= 1
4850 && ((TYPE_NFIELDS (type) == 1
4851 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4853 || (TYPE_NFIELDS (type) == 2
4854 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4856 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4858 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4860 /* A struct that contains one or two floats. Each value is part
4861 in the least significant part of their floating point
4863 bfd_byte reg[MAX_REGISTER_SIZE];
4866 for (field = 0, regnum = FP0_REGNUM;
4867 field < TYPE_NFIELDS (type);
4868 field++, regnum += 2)
4870 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4873 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4874 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4875 TARGET_BYTE_ORDER, in, out, offset);
4878 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4879 || TYPE_CODE (type) == TYPE_CODE_UNION)
4881 /* A structure or union. Extract the left justified value,
4882 regardless of the byte order. I.e. DO NOT USE
4886 for (offset = 0, regnum = V0_REGNUM;
4887 offset < TYPE_LENGTH (type);
4888 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4890 int xfer = REGISTER_RAW_SIZE (regnum);
4891 if (offset + xfer > TYPE_LENGTH (type))
4892 xfer = TYPE_LENGTH (type) - offset;
4894 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4895 offset, xfer, regnum);
4896 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4902 /* A scalar extract each part but least-significant-byte
4906 for (offset = 0, regnum = V0_REGNUM;
4907 offset < TYPE_LENGTH (type);
4908 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4910 int xfer = REGISTER_RAW_SIZE (regnum);
4912 if (offset + xfer > TYPE_LENGTH (type))
4913 xfer = TYPE_LENGTH (type) - offset;
4915 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4916 offset, xfer, regnum);
4917 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4924 mips_n32n64_extract_return_value (struct type *type,
4925 struct regcache *regcache,
4928 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4932 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4934 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4938 mips_extract_struct_value_address (struct regcache *regcache)
4940 /* FIXME: This will only work at random. The caller passes the
4941 struct_return address in V0, but it is not preserved. It may
4942 still be there, or this may be a random value. */
4945 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
4949 /* Exported procedure: Is PC in the signal trampoline code */
4952 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4954 if (sigtramp_address == 0)
4956 return (pc >= sigtramp_address && pc < sigtramp_end);
4959 /* Root of all "set mips "/"show mips " commands. This will eventually be
4960 used for all MIPS-specific commands. */
4963 show_mips_command (char *args, int from_tty)
4965 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4969 set_mips_command (char *args, int from_tty)
4971 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4972 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4975 /* Commands to show/set the MIPS FPU type. */
4978 show_mipsfpu_command (char *args, int from_tty)
4981 switch (MIPS_FPU_TYPE)
4983 case MIPS_FPU_SINGLE:
4984 fpu = "single-precision";
4986 case MIPS_FPU_DOUBLE:
4987 fpu = "double-precision";
4990 fpu = "absent (none)";
4993 internal_error (__FILE__, __LINE__, "bad switch");
4995 if (mips_fpu_type_auto)
4996 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4999 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5005 set_mipsfpu_command (char *args, int from_tty)
5007 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5008 show_mipsfpu_command (args, from_tty);
5012 set_mipsfpu_single_command (char *args, int from_tty)
5014 mips_fpu_type = MIPS_FPU_SINGLE;
5015 mips_fpu_type_auto = 0;
5016 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5020 set_mipsfpu_double_command (char *args, int from_tty)
5022 mips_fpu_type = MIPS_FPU_DOUBLE;
5023 mips_fpu_type_auto = 0;
5024 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5028 set_mipsfpu_none_command (char *args, int from_tty)
5030 mips_fpu_type = MIPS_FPU_NONE;
5031 mips_fpu_type_auto = 0;
5032 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5036 set_mipsfpu_auto_command (char *args, int from_tty)
5038 mips_fpu_type_auto = 1;
5041 /* Command to set the processor type. */
5044 mips_set_processor_type_command (char *args, int from_tty)
5048 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5050 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5051 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5052 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5054 /* Restore the value. */
5055 tmp_mips_processor_type = xstrdup (mips_processor_type);
5060 if (!mips_set_processor_type (tmp_mips_processor_type))
5062 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5063 /* Restore its value. */
5064 tmp_mips_processor_type = xstrdup (mips_processor_type);
5069 mips_show_processor_type_command (char *args, int from_tty)
5073 /* Modify the actual processor type. */
5076 mips_set_processor_type (char *str)
5083 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5085 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5087 mips_processor_type = str;
5088 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5090 /* FIXME tweak fpu flag too */
5097 /* Attempt to identify the particular processor model by reading the
5101 mips_read_processor_type (void)
5105 prid = read_register (PRID_REGNUM);
5107 if ((prid & ~0xf) == 0x700)
5108 return savestring ("r3041", strlen ("r3041"));
5113 /* Just like reinit_frame_cache, but with the right arguments to be
5114 callable as an sfunc. */
5117 reinit_frame_cache_sfunc (char *args, int from_tty,
5118 struct cmd_list_element *c)
5120 reinit_frame_cache ();
5124 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5126 mips_extra_func_info_t proc_desc;
5128 /* Search for the function containing this address. Set the low bit
5129 of the address when searching, in case we were given an even address
5130 that is the start of a 16-bit function. If we didn't do this,
5131 the search would fail because the symbol table says the function
5132 starts at an odd address, i.e. 1 byte past the given address. */
5133 memaddr = ADDR_BITS_REMOVE (memaddr);
5134 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
5136 /* Make an attempt to determine if this is a 16-bit function. If
5137 the procedure descriptor exists and the address therein is odd,
5138 it's definitely a 16-bit function. Otherwise, we have to just
5139 guess that if the address passed in is odd, it's 16-bits. */
5141 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5142 bfd_mach_mips16 : 0;
5144 info->mach = pc_is_mips16 (memaddr) ?
5145 bfd_mach_mips16 : 0;
5147 /* Round down the instruction address to the appropriate boundary. */
5148 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5150 /* Call the appropriate disassembler based on the target endian-ness. */
5151 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5152 return print_insn_big_mips (memaddr, info);
5154 return print_insn_little_mips (memaddr, info);
5157 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5158 counter value to determine whether a 16- or 32-bit breakpoint should be
5159 used. It returns a pointer to a string of bytes that encode a breakpoint
5160 instruction, stores the length of the string to *lenptr, and adjusts pc
5161 (if necessary) to point to the actual memory location where the
5162 breakpoint should be inserted. */
5164 static const unsigned char *
5165 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5167 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5169 if (pc_is_mips16 (*pcptr))
5171 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
5172 *pcptr = unmake_mips16_addr (*pcptr);
5173 *lenptr = sizeof (mips16_big_breakpoint);
5174 return mips16_big_breakpoint;
5178 /* The IDT board uses an unusual breakpoint value, and
5179 sometimes gets confused when it sees the usual MIPS
5180 breakpoint instruction. */
5181 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5182 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5183 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
5185 *lenptr = sizeof (big_breakpoint);
5187 if (strcmp (target_shortname, "mips") == 0)
5188 return idt_big_breakpoint;
5189 else if (strcmp (target_shortname, "ddb") == 0
5190 || strcmp (target_shortname, "pmon") == 0
5191 || strcmp (target_shortname, "lsi") == 0)
5192 return pmon_big_breakpoint;
5194 return big_breakpoint;
5199 if (pc_is_mips16 (*pcptr))
5201 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
5202 *pcptr = unmake_mips16_addr (*pcptr);
5203 *lenptr = sizeof (mips16_little_breakpoint);
5204 return mips16_little_breakpoint;
5208 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5209 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5210 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
5212 *lenptr = sizeof (little_breakpoint);
5214 if (strcmp (target_shortname, "mips") == 0)
5215 return idt_little_breakpoint;
5216 else if (strcmp (target_shortname, "ddb") == 0
5217 || strcmp (target_shortname, "pmon") == 0
5218 || strcmp (target_shortname, "lsi") == 0)
5219 return pmon_little_breakpoint;
5221 return little_breakpoint;
5226 /* If PC is in a mips16 call or return stub, return the address of the target
5227 PC, which is either the callee or the caller. There are several
5228 cases which must be handled:
5230 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5231 target PC is in $31 ($ra).
5232 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5233 and the target PC is in $2.
5234 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5235 before the jal instruction, this is effectively a call stub
5236 and the the target PC is in $2. Otherwise this is effectively
5237 a return stub and the target PC is in $18.
5239 See the source code for the stubs in gcc/config/mips/mips16.S for
5242 This function implements the SKIP_TRAMPOLINE_CODE macro.
5246 mips_skip_stub (CORE_ADDR pc)
5249 CORE_ADDR start_addr;
5251 /* Find the starting address and name of the function containing the PC. */
5252 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5255 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5256 target PC is in $31 ($ra). */
5257 if (strcmp (name, "__mips16_ret_sf") == 0
5258 || strcmp (name, "__mips16_ret_df") == 0)
5259 return read_signed_register (RA_REGNUM);
5261 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5263 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5264 and the target PC is in $2. */
5265 if (name[19] >= '0' && name[19] <= '9')
5266 return read_signed_register (2);
5268 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5269 before the jal instruction, this is effectively a call stub
5270 and the the target PC is in $2. Otherwise this is effectively
5271 a return stub and the target PC is in $18. */
5272 else if (name[19] == 's' || name[19] == 'd')
5274 if (pc == start_addr)
5276 /* Check if the target of the stub is a compiler-generated
5277 stub. Such a stub for a function bar might have a name
5278 like __fn_stub_bar, and might look like this:
5283 la $1,bar (becomes a lui/addiu pair)
5285 So scan down to the lui/addi and extract the target
5286 address from those two instructions. */
5288 CORE_ADDR target_pc = read_signed_register (2);
5292 /* See if the name of the target function is __fn_stub_*. */
5293 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5295 if (strncmp (name, "__fn_stub_", 10) != 0
5296 && strcmp (name, "etext") != 0
5297 && strcmp (name, "_etext") != 0)
5300 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5301 The limit on the search is arbitrarily set to 20
5302 instructions. FIXME. */
5303 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5305 inst = mips_fetch_instruction (target_pc);
5306 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5307 pc = (inst << 16) & 0xffff0000; /* high word */
5308 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5309 return pc | (inst & 0xffff); /* low word */
5312 /* Couldn't find the lui/addui pair, so return stub address. */
5316 /* This is the 'return' part of a call stub. The return
5317 address is in $r18. */
5318 return read_signed_register (18);
5321 return 0; /* not a stub */
5325 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5326 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5329 mips_in_call_stub (CORE_ADDR pc, char *name)
5331 CORE_ADDR start_addr;
5333 /* Find the starting address of the function containing the PC. If the
5334 caller didn't give us a name, look it up at the same time. */
5335 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5338 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5340 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5341 if (name[19] >= '0' && name[19] <= '9')
5343 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5344 before the jal instruction, this is effectively a call stub. */
5345 else if (name[19] == 's' || name[19] == 'd')
5346 return pc == start_addr;
5349 return 0; /* not a stub */
5353 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5354 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5357 mips_in_return_stub (CORE_ADDR pc, char *name)
5359 CORE_ADDR start_addr;
5361 /* Find the starting address of the function containing the PC. */
5362 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5365 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5366 if (strcmp (name, "__mips16_ret_sf") == 0
5367 || strcmp (name, "__mips16_ret_df") == 0)
5370 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5371 i.e. after the jal instruction, this is effectively a return stub. */
5372 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5373 && (name[19] == 's' || name[19] == 'd')
5374 && pc != start_addr)
5377 return 0; /* not a stub */
5381 /* Return non-zero if the PC is in a library helper function that should
5382 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5385 mips_ignore_helper (CORE_ADDR pc)
5389 /* Find the starting address and name of the function containing the PC. */
5390 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5393 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5394 that we want to ignore. */
5395 return (strcmp (name, "__mips16_ret_sf") == 0
5396 || strcmp (name, "__mips16_ret_df") == 0);
5400 /* Return a location where we can set a breakpoint that will be hit
5401 when an inferior function call returns. This is normally the
5402 program's entry point. Executables that don't have an entry
5403 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5404 whose address is the location where the breakpoint should be placed. */
5407 mips_call_dummy_address (void)
5409 struct minimal_symbol *sym;
5411 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5413 return SYMBOL_VALUE_ADDRESS (sym);
5415 return entry_point_address ();
5419 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5420 the register stored on the stack (32) is different to its real raw
5421 size (64). The below ensures that registers are fetched from the
5422 stack using their ABI size and then stored into the RAW_BUFFER
5423 using their raw size.
5425 The alternative to adding this function would be to add an ABI
5426 macro - REGISTER_STACK_SIZE(). */
5429 mips_get_saved_register (char *raw_buffer,
5432 struct frame_info *frame,
5434 enum lval_type *lvalp)
5437 enum lval_type lvalx;
5440 if (!target_has_registers)
5441 error ("No registers.");
5443 /* Make certain that all needed parameters are present. */
5448 if (optimizedp == NULL)
5449 optimizedp = &optimizedx;
5450 deprecated_unwind_get_saved_register (raw_buffer, optimizedp, addrp, frame,
5452 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5453 have a pseudo register range that correspons to the ABI's, rather
5454 than the ISA's, view of registers. These registers would then
5455 implicitly describe their size and hence could be used without
5456 the below munging. */
5457 if ((*lvalp) == lval_memory)
5459 if (raw_buffer != NULL)
5463 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5465 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5466 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5472 /* Immediately after a function call, return the saved pc.
5473 Can't always go through the frames for this because on some machines
5474 the new frame is not set up until the new function executes
5475 some instructions. */
5478 mips_saved_pc_after_call (struct frame_info *frame)
5480 return read_signed_register (RA_REGNUM);
5484 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5488 mips_stab_reg_to_regnum (int num)
5490 if (num >= 0 && num < 32)
5492 else if (num >= 38 && num < 70)
5493 return num + FP0_REGNUM - 38;
5500 /* This will hopefully (eventually) provoke a warning. Should
5501 we be calling complaint() here? */
5502 return NUM_REGS + NUM_PSEUDO_REGS;
5507 /* Convert a dwarf, dwarf2, or ecoff register number to a gdb REGNUM */
5510 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
5512 if (num >= 0 && num < 32)
5514 else if (num >= 32 && num < 64)
5515 return num + FP0_REGNUM - 32;
5522 /* This will hopefully (eventually) provoke a warning. Should
5523 we be calling complaint() here? */
5524 return NUM_REGS + NUM_PSEUDO_REGS;
5529 /* Convert an integer into an address. By first converting the value
5530 into a pointer and then extracting it signed, the address is
5531 guarenteed to be correctly sign extended. */
5534 mips_integer_to_address (struct type *type, void *buf)
5536 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5537 LONGEST val = unpack_long (type, buf);
5538 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5539 return extract_signed_integer (tmp,
5540 TYPE_LENGTH (builtin_type_void_data_ptr));
5544 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5546 enum mips_abi *abip = (enum mips_abi *) obj;
5547 const char *name = bfd_get_section_name (abfd, sect);
5549 if (*abip != MIPS_ABI_UNKNOWN)
5552 if (strncmp (name, ".mdebug.", 8) != 0)
5555 if (strcmp (name, ".mdebug.abi32") == 0)
5556 *abip = MIPS_ABI_O32;
5557 else if (strcmp (name, ".mdebug.abiN32") == 0)
5558 *abip = MIPS_ABI_N32;
5559 else if (strcmp (name, ".mdebug.abi64") == 0)
5560 *abip = MIPS_ABI_N64;
5561 else if (strcmp (name, ".mdebug.abiO64") == 0)
5562 *abip = MIPS_ABI_O64;
5563 else if (strcmp (name, ".mdebug.eabi32") == 0)
5564 *abip = MIPS_ABI_EABI32;
5565 else if (strcmp (name, ".mdebug.eabi64") == 0)
5566 *abip = MIPS_ABI_EABI64;
5568 warning ("unsupported ABI %s.", name + 8);
5571 static enum mips_abi
5572 global_mips_abi (void)
5576 for (i = 0; mips_abi_strings[i] != NULL; i++)
5577 if (mips_abi_strings[i] == mips_abi_string)
5578 return (enum mips_abi) i;
5580 internal_error (__FILE__, __LINE__,
5581 "unknown ABI string");
5584 static struct gdbarch *
5585 mips_gdbarch_init (struct gdbarch_info info,
5586 struct gdbarch_list *arches)
5588 struct gdbarch *gdbarch;
5589 struct gdbarch_tdep *tdep;
5591 enum mips_abi mips_abi, found_abi, wanted_abi;
5593 /* Reset the disassembly info, in case it was set to something
5595 deprecated_tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5596 deprecated_tm_print_insn_info.arch = bfd_arch_unknown;
5597 deprecated_tm_print_insn_info.mach = 0;
5603 /* First of all, extract the elf_flags, if available. */
5604 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5605 elf_flags = elf_elfheader (info.abfd)->e_flags;
5608 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5609 switch ((elf_flags & EF_MIPS_ABI))
5611 case E_MIPS_ABI_O32:
5612 mips_abi = MIPS_ABI_O32;
5614 case E_MIPS_ABI_O64:
5615 mips_abi = MIPS_ABI_O64;
5617 case E_MIPS_ABI_EABI32:
5618 mips_abi = MIPS_ABI_EABI32;
5620 case E_MIPS_ABI_EABI64:
5621 mips_abi = MIPS_ABI_EABI64;
5624 if ((elf_flags & EF_MIPS_ABI2))
5625 mips_abi = MIPS_ABI_N32;
5627 mips_abi = MIPS_ABI_UNKNOWN;
5631 /* GCC creates a pseudo-section whose name describes the ABI. */
5632 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5633 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5635 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5636 Use the ABI from the last architecture if there is one. */
5637 if (info.abfd == NULL && arches != NULL)
5638 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5640 /* Try the architecture for any hint of the correct ABI. */
5641 if (mips_abi == MIPS_ABI_UNKNOWN
5642 && info.bfd_arch_info != NULL
5643 && info.bfd_arch_info->arch == bfd_arch_mips)
5645 switch (info.bfd_arch_info->mach)
5647 case bfd_mach_mips3900:
5648 mips_abi = MIPS_ABI_EABI32;
5650 case bfd_mach_mips4100:
5651 case bfd_mach_mips5000:
5652 mips_abi = MIPS_ABI_EABI64;
5654 case bfd_mach_mips8000:
5655 case bfd_mach_mips10000:
5656 /* On Irix, ELF64 executables use the N64 ABI. The
5657 pseudo-sections which describe the ABI aren't present
5658 on IRIX. (Even for executables created by gcc.) */
5659 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5660 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5661 mips_abi = MIPS_ABI_N64;
5663 mips_abi = MIPS_ABI_N32;
5668 if (mips_abi == MIPS_ABI_UNKNOWN)
5669 mips_abi = MIPS_ABI_O32;
5671 /* Now that we have found what the ABI for this binary would be,
5672 check whether the user is overriding it. */
5673 found_abi = mips_abi;
5674 wanted_abi = global_mips_abi ();
5675 if (wanted_abi != MIPS_ABI_UNKNOWN)
5676 mips_abi = wanted_abi;
5678 /* We have to set deprecated_tm_print_insn_info before looking for a
5679 pre-existing architecture, otherwise we may return before we get
5680 a chance to set it up. */
5681 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5683 /* Set up the disassembler info, so that we get the right
5684 register names from libopcodes. */
5685 if (mips_abi == MIPS_ABI_N32)
5686 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=n32";
5688 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=64";
5689 deprecated_tm_print_insn_info.flavour = bfd_target_elf_flavour;
5690 deprecated_tm_print_insn_info.arch = bfd_arch_mips;
5691 if (info.bfd_arch_info != NULL
5692 && info.bfd_arch_info->arch == bfd_arch_mips
5693 && info.bfd_arch_info->mach)
5694 deprecated_tm_print_insn_info.mach = info.bfd_arch_info->mach;
5696 deprecated_tm_print_insn_info.mach = bfd_mach_mips8000;
5699 /* This string is not recognized explicitly by the disassembler,
5700 but it tells the disassembler to not try to guess the ABI from
5701 the bfd elf headers, such that, if the user overrides the ABI
5702 of a program linked as NewABI, the disassembly will follow the
5703 register naming conventions specified by the user. */
5704 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=32";
5708 fprintf_unfiltered (gdb_stdlog,
5709 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5711 fprintf_unfiltered (gdb_stdlog,
5712 "mips_gdbarch_init: mips_abi = %d\n",
5714 fprintf_unfiltered (gdb_stdlog,
5715 "mips_gdbarch_init: found_mips_abi = %d\n",
5719 /* try to find a pre-existing architecture */
5720 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5722 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5724 /* MIPS needs to be pedantic about which ABI the object is
5726 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5728 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5730 return arches->gdbarch;
5733 /* Need a new architecture. Fill in a target specific vector. */
5734 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5735 gdbarch = gdbarch_alloc (&info, tdep);
5736 tdep->elf_flags = elf_flags;
5738 /* Initially set everything according to the default ABI/ISA. */
5739 set_gdbarch_short_bit (gdbarch, 16);
5740 set_gdbarch_int_bit (gdbarch, 32);
5741 set_gdbarch_float_bit (gdbarch, 32);
5742 set_gdbarch_double_bit (gdbarch, 64);
5743 set_gdbarch_long_double_bit (gdbarch, 64);
5744 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
5745 tdep->found_abi = found_abi;
5746 tdep->mips_abi = mips_abi;
5748 set_gdbarch_elf_make_msymbol_special (gdbarch,
5749 mips_elf_make_msymbol_special);
5751 if (info.osabi == GDB_OSABI_IRIX)
5752 set_gdbarch_num_regs (gdbarch, 71);
5754 set_gdbarch_num_regs (gdbarch, 90);
5759 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5760 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5761 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5762 tdep->mips_default_saved_regsize = 4;
5763 tdep->mips_default_stack_argsize = 4;
5764 tdep->mips_fp_register_double = 0;
5765 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5766 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5767 tdep->gdb_target_is_mips64 = 0;
5768 tdep->default_mask_address_p = 0;
5769 set_gdbarch_long_bit (gdbarch, 32);
5770 set_gdbarch_ptr_bit (gdbarch, 32);
5771 set_gdbarch_long_long_bit (gdbarch, 64);
5772 set_gdbarch_reg_struct_has_addr (gdbarch,
5773 mips_o32_reg_struct_has_addr);
5774 set_gdbarch_use_struct_convention (gdbarch,
5775 always_use_struct_convention);
5778 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5779 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5780 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5781 tdep->mips_default_saved_regsize = 8;
5782 tdep->mips_default_stack_argsize = 8;
5783 tdep->mips_fp_register_double = 1;
5784 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5785 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5786 tdep->gdb_target_is_mips64 = 1;
5787 tdep->default_mask_address_p = 0;
5788 set_gdbarch_long_bit (gdbarch, 32);
5789 set_gdbarch_ptr_bit (gdbarch, 32);
5790 set_gdbarch_long_long_bit (gdbarch, 64);
5791 set_gdbarch_reg_struct_has_addr (gdbarch,
5792 mips_o32_reg_struct_has_addr);
5793 set_gdbarch_use_struct_convention (gdbarch,
5794 mips_o32_use_struct_convention);
5796 case MIPS_ABI_EABI32:
5797 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5798 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5799 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5800 tdep->mips_default_saved_regsize = 4;
5801 tdep->mips_default_stack_argsize = 4;
5802 tdep->mips_fp_register_double = 0;
5803 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5804 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5805 tdep->gdb_target_is_mips64 = 0;
5806 tdep->default_mask_address_p = 0;
5807 set_gdbarch_long_bit (gdbarch, 32);
5808 set_gdbarch_ptr_bit (gdbarch, 32);
5809 set_gdbarch_long_long_bit (gdbarch, 64);
5810 set_gdbarch_reg_struct_has_addr (gdbarch,
5811 mips_eabi_reg_struct_has_addr);
5812 set_gdbarch_use_struct_convention (gdbarch,
5813 mips_eabi_use_struct_convention);
5815 case MIPS_ABI_EABI64:
5816 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5817 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5818 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5819 tdep->mips_default_saved_regsize = 8;
5820 tdep->mips_default_stack_argsize = 8;
5821 tdep->mips_fp_register_double = 1;
5822 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5823 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5824 tdep->gdb_target_is_mips64 = 1;
5825 tdep->default_mask_address_p = 0;
5826 set_gdbarch_long_bit (gdbarch, 64);
5827 set_gdbarch_ptr_bit (gdbarch, 64);
5828 set_gdbarch_long_long_bit (gdbarch, 64);
5829 set_gdbarch_reg_struct_has_addr (gdbarch,
5830 mips_eabi_reg_struct_has_addr);
5831 set_gdbarch_use_struct_convention (gdbarch,
5832 mips_eabi_use_struct_convention);
5835 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5836 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5837 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5838 tdep->mips_default_saved_regsize = 8;
5839 tdep->mips_default_stack_argsize = 8;
5840 tdep->mips_fp_register_double = 1;
5841 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5842 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5843 tdep->gdb_target_is_mips64 = 1;
5844 tdep->default_mask_address_p = 0;
5845 set_gdbarch_long_bit (gdbarch, 32);
5846 set_gdbarch_ptr_bit (gdbarch, 32);
5847 set_gdbarch_long_long_bit (gdbarch, 64);
5848 set_gdbarch_use_struct_convention (gdbarch,
5849 mips_n32n64_use_struct_convention);
5850 set_gdbarch_reg_struct_has_addr (gdbarch,
5851 mips_n32n64_reg_struct_has_addr);
5854 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5855 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5856 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5857 tdep->mips_default_saved_regsize = 8;
5858 tdep->mips_default_stack_argsize = 8;
5859 tdep->mips_fp_register_double = 1;
5860 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5861 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5862 tdep->gdb_target_is_mips64 = 1;
5863 tdep->default_mask_address_p = 0;
5864 set_gdbarch_long_bit (gdbarch, 64);
5865 set_gdbarch_ptr_bit (gdbarch, 64);
5866 set_gdbarch_long_long_bit (gdbarch, 64);
5867 set_gdbarch_use_struct_convention (gdbarch,
5868 mips_n32n64_use_struct_convention);
5869 set_gdbarch_reg_struct_has_addr (gdbarch,
5870 mips_n32n64_reg_struct_has_addr);
5873 internal_error (__FILE__, __LINE__,
5874 "unknown ABI in switch");
5877 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5878 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5881 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5882 flag in object files because to do so would make it impossible to
5883 link with libraries compiled without "-gp32". This is
5884 unnecessarily restrictive.
5886 We could solve this problem by adding "-gp32" multilibs to gcc,
5887 but to set this flag before gcc is built with such multilibs will
5888 break too many systems.''
5890 But even more unhelpfully, the default linker output target for
5891 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5892 for 64-bit programs - you need to change the ABI to change this,
5893 and not all gcc targets support that currently. Therefore using
5894 this flag to detect 32-bit mode would do the wrong thing given
5895 the current gcc - it would make GDB treat these 64-bit programs
5896 as 32-bit programs by default. */
5898 /* enable/disable the MIPS FPU */
5899 if (!mips_fpu_type_auto)
5900 tdep->mips_fpu_type = mips_fpu_type;
5901 else if (info.bfd_arch_info != NULL
5902 && info.bfd_arch_info->arch == bfd_arch_mips)
5903 switch (info.bfd_arch_info->mach)
5905 case bfd_mach_mips3900:
5906 case bfd_mach_mips4100:
5907 case bfd_mach_mips4111:
5908 tdep->mips_fpu_type = MIPS_FPU_NONE;
5910 case bfd_mach_mips4650:
5911 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5914 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5918 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5920 /* MIPS version of register names. NOTE: At present the MIPS
5921 register name management is part way between the old -
5922 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5923 Further work on it is required. */
5924 /* NOTE: many targets (esp. embedded) do not go thru the
5925 gdbarch_register_name vector at all, instead bypassing it
5926 by defining REGISTER_NAMES. */
5927 set_gdbarch_register_name (gdbarch, mips_register_name);
5928 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5929 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5930 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
5931 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5933 /* Add/remove bits from an address. The MIPS needs be careful to
5934 ensure that all 32 bit addresses are sign extended to 64 bits. */
5935 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5937 /* There's a mess in stack frame creation. See comments in
5938 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5939 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5940 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
5942 /* Map debug register numbers onto internal register numbers. */
5943 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5944 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5945 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5946 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5948 /* Initialize a frame */
5949 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
5950 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5952 /* MIPS version of CALL_DUMMY */
5954 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5955 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
5956 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5957 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
5958 set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible);
5959 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual);
5960 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw);
5962 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
5963 set_gdbarch_frameless_function_invocation (gdbarch,
5964 generic_frameless_function_invocation_not);
5965 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
5966 set_gdbarch_frame_args_skip (gdbarch, 0);
5968 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
5970 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5971 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5972 set_gdbarch_decr_pc_after_break (gdbarch, 0);
5974 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5975 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
5977 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5978 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5979 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5981 set_gdbarch_function_start_offset (gdbarch, 0);
5983 /* There are MIPS targets which do not yet use this since they still
5984 define REGISTER_VIRTUAL_TYPE. */
5985 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
5987 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5988 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
5990 /* Hook in OS ABI-specific overrides, if they have been registered. */
5991 gdbarch_init_osabi (info, gdbarch);
5993 set_gdbarch_extract_struct_value_address (gdbarch,
5994 mips_extract_struct_value_address);
5996 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
5998 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
5999 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6005 mips_abi_update (char *ignore_args, int from_tty,
6006 struct cmd_list_element *c)
6008 struct gdbarch_info info;
6010 /* Force the architecture to update, and (if it's a MIPS architecture)
6011 mips_gdbarch_init will take care of the rest. */
6012 gdbarch_info_init (&info);
6013 gdbarch_update_p (info);
6016 /* Print out which MIPS ABI is in use. */
6019 show_mips_abi (char *ignore_args, int from_tty)
6021 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6023 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6026 enum mips_abi global_abi = global_mips_abi ();
6027 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6028 const char *actual_abi_str = mips_abi_strings[actual_abi];
6030 if (global_abi == MIPS_ABI_UNKNOWN)
6031 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6033 else if (global_abi == actual_abi)
6035 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6039 /* Probably shouldn't happen... */
6041 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6043 mips_abi_strings[global_abi]);
6049 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6051 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6055 int ef_mips_32bitmode;
6056 /* determine the ISA */
6057 switch (tdep->elf_flags & EF_MIPS_ARCH)
6075 /* determine the size of a pointer */
6076 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6077 fprintf_unfiltered (file,
6078 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6080 fprintf_unfiltered (file,
6081 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6083 fprintf_unfiltered (file,
6084 "mips_dump_tdep: ef_mips_arch = %d\n",
6086 fprintf_unfiltered (file,
6087 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6089 mips_abi_strings[tdep->mips_abi]);
6090 fprintf_unfiltered (file,
6091 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6092 mips_mask_address_p (),
6093 tdep->default_mask_address_p);
6095 fprintf_unfiltered (file,
6096 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6097 FP_REGISTER_DOUBLE);
6098 fprintf_unfiltered (file,
6099 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6100 MIPS_DEFAULT_FPU_TYPE,
6101 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6102 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6103 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6105 fprintf_unfiltered (file,
6106 "mips_dump_tdep: MIPS_EABI = %d\n",
6108 fprintf_unfiltered (file,
6109 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6110 MIPS_LAST_FP_ARG_REGNUM,
6111 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6112 fprintf_unfiltered (file,
6113 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6115 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6116 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6117 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6119 fprintf_unfiltered (file,
6120 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6121 MIPS_DEFAULT_SAVED_REGSIZE);
6122 fprintf_unfiltered (file,
6123 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6124 FP_REGISTER_DOUBLE);
6125 fprintf_unfiltered (file,
6126 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6127 MIPS_DEFAULT_STACK_ARGSIZE);
6128 fprintf_unfiltered (file,
6129 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6130 MIPS_STACK_ARGSIZE);
6131 fprintf_unfiltered (file,
6132 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6134 fprintf_unfiltered (file,
6135 "mips_dump_tdep: A0_REGNUM = %d\n",
6137 fprintf_unfiltered (file,
6138 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6139 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6140 fprintf_unfiltered (file,
6141 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6142 XSTRING (ATTACH_DETACH));
6143 fprintf_unfiltered (file,
6144 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6146 fprintf_unfiltered (file,
6147 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6149 fprintf_unfiltered (file,
6150 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6151 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6152 fprintf_unfiltered (file,
6153 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6154 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6155 fprintf_unfiltered (file,
6156 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6158 fprintf_unfiltered (file,
6159 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6161 fprintf_unfiltered (file,
6162 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6163 FIRST_EMBED_REGNUM);
6164 fprintf_unfiltered (file,
6165 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6167 fprintf_unfiltered (file,
6168 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6169 GDB_TARGET_IS_MIPS64);
6170 fprintf_unfiltered (file,
6171 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6172 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6173 fprintf_unfiltered (file,
6174 "mips_dump_tdep: HI_REGNUM = %d\n",
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6178 XSTRING (IGNORE_HELPER_CALL (PC)));
6179 fprintf_unfiltered (file,
6180 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6181 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6182 fprintf_unfiltered (file,
6183 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6184 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6188 fprintf_unfiltered (file,
6189 "mips_dump_tdep: LO_REGNUM = %d\n",
6191 #ifdef MACHINE_CPROC_FP_OFFSET
6192 fprintf_unfiltered (file,
6193 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6194 MACHINE_CPROC_FP_OFFSET);
6196 #ifdef MACHINE_CPROC_PC_OFFSET
6197 fprintf_unfiltered (file,
6198 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6199 MACHINE_CPROC_PC_OFFSET);
6201 #ifdef MACHINE_CPROC_SP_OFFSET
6202 fprintf_unfiltered (file,
6203 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6204 MACHINE_CPROC_SP_OFFSET);
6206 fprintf_unfiltered (file,
6207 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6209 fprintf_unfiltered (file,
6210 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6211 fprintf_unfiltered (file,
6212 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6218 MIPS_LAST_ARG_REGNUM,
6219 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6220 fprintf_unfiltered (file,
6221 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6227 MIPS_SAVED_REGSIZE);
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: OP_LDFPR = used?\n");
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: OP_LDGPR = used?\n");
6232 fprintf_unfiltered (file,
6233 "mips_dump_tdep: PRID_REGNUM = %d\n",
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6237 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6238 fprintf_unfiltered (file,
6239 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6240 fprintf_unfiltered (file,
6241 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6244 fprintf_unfiltered (file,
6245 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6246 fprintf_unfiltered (file,
6247 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6250 fprintf_unfiltered (file,
6251 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6254 fprintf_unfiltered (file,
6255 "mips_dump_tdep: PROC_PC_REG = function?\n");
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6260 fprintf_unfiltered (file,
6261 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: PS_REGNUM = %d\n",
6265 fprintf_unfiltered (file,
6266 "mips_dump_tdep: RA_REGNUM = %d\n",
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6270 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6273 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: ROUND_DOWN = function?\n");
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: ROUND_UP = function?\n");
6281 fprintf_unfiltered (file,
6282 "mips_dump_tdep: SAVED_BYTES = %d\n",
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: SAVED_FP = %d\n",
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: SAVED_PC = %d\n",
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6297 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6305 SIGFRAME_FPREGSAVE_OFF);
6306 fprintf_unfiltered (file,
6307 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6309 fprintf_unfiltered (file,
6310 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6311 SIGFRAME_REGSAVE_OFF);
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6317 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6318 fprintf_unfiltered (file,
6319 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6320 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6321 fprintf_unfiltered (file,
6322 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6323 SOFTWARE_SINGLE_STEP_P ());
6324 fprintf_unfiltered (file,
6325 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6326 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6327 #ifdef STACK_END_ADDR
6328 fprintf_unfiltered (file,
6329 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6334 XSTRING (STEP_SKIPS_DELAY (PC)));
6335 fprintf_unfiltered (file,
6336 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6337 STEP_SKIPS_DELAY_P);
6338 fprintf_unfiltered (file,
6339 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6340 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6341 fprintf_unfiltered (file,
6342 "mips_dump_tdep: T9_REGNUM = %d\n",
6344 fprintf_unfiltered (file,
6345 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6346 fprintf_unfiltered (file,
6347 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6348 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6349 fprintf_unfiltered (file,
6350 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6351 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6353 fprintf_unfiltered (file,
6354 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6355 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6358 fprintf_unfiltered (file,
6359 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6362 #ifdef TRACE_FLAVOR_SIZE
6363 fprintf_unfiltered (file,
6364 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6368 fprintf_unfiltered (file,
6369 "mips_dump_tdep: TRACE_SET # %s\n",
6370 XSTRING (TRACE_SET (X,STATE)));
6372 #ifdef UNUSED_REGNUM
6373 fprintf_unfiltered (file,
6374 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6377 fprintf_unfiltered (file,
6378 "mips_dump_tdep: V0_REGNUM = %d\n",
6380 fprintf_unfiltered (file,
6381 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6382 (long) VM_MIN_ADDRESS);
6384 fprintf_unfiltered (file,
6385 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6388 fprintf_unfiltered (file,
6389 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6391 fprintf_unfiltered (file,
6392 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6396 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6399 _initialize_mips_tdep (void)
6401 static struct cmd_list_element *mipsfpulist = NULL;
6402 struct cmd_list_element *c;
6404 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6405 if (MIPS_ABI_LAST + 1
6406 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6407 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6409 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6410 if (!deprecated_tm_print_insn) /* Someone may have already set it */
6411 deprecated_tm_print_insn = gdb_print_insn_mips;
6413 /* Add root prefix command for all "set mips"/"show mips" commands */
6414 add_prefix_cmd ("mips", no_class, set_mips_command,
6415 "Various MIPS specific commands.",
6416 &setmipscmdlist, "set mips ", 0, &setlist);
6418 add_prefix_cmd ("mips", no_class, show_mips_command,
6419 "Various MIPS specific commands.",
6420 &showmipscmdlist, "show mips ", 0, &showlist);
6422 /* Allow the user to override the saved register size. */
6423 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6426 &mips_saved_regsize_string, "\
6427 Set size of general purpose registers saved on the stack.\n\
6428 This option can be set to one of:\n\
6429 32 - Force GDB to treat saved GP registers as 32-bit\n\
6430 64 - Force GDB to treat saved GP registers as 64-bit\n\
6431 auto - Allow GDB to use the target's default setting or autodetect the\n\
6432 saved GP register size from information contained in the executable.\n\
6437 /* Allow the user to override the argument stack size. */
6438 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6441 &mips_stack_argsize_string, "\
6442 Set the amount of stack space reserved for each argument.\n\
6443 This option can be set to one of:\n\
6444 32 - Force GDB to allocate 32-bit chunks per argument\n\
6445 64 - Force GDB to allocate 64-bit chunks per argument\n\
6446 auto - Allow GDB to determine the correct setting from the current\n\
6447 target and executable (default)",
6451 /* Allow the user to override the ABI. */
6452 c = add_set_enum_cmd
6453 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6454 "Set the ABI used by this program.\n"
6455 "This option can be set to one of:\n"
6456 " auto - the default ABI associated with the current binary\n"
6464 set_cmd_sfunc (c, mips_abi_update);
6465 add_cmd ("abi", class_obscure, show_mips_abi,
6466 "Show ABI in use by MIPS target", &showmipscmdlist);
6468 /* Let the user turn off floating point and set the fence post for
6469 heuristic_proc_start. */
6471 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6472 "Set use of MIPS floating-point coprocessor.",
6473 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6474 add_cmd ("single", class_support, set_mipsfpu_single_command,
6475 "Select single-precision MIPS floating-point coprocessor.",
6477 add_cmd ("double", class_support, set_mipsfpu_double_command,
6478 "Select double-precision MIPS floating-point coprocessor.",
6480 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6481 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6482 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6483 add_cmd ("none", class_support, set_mipsfpu_none_command,
6484 "Select no MIPS floating-point coprocessor.",
6486 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6487 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6488 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6489 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6490 "Select MIPS floating-point coprocessor automatically.",
6492 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6493 "Show current use of MIPS floating-point coprocessor target.",
6496 /* We really would like to have both "0" and "unlimited" work, but
6497 command.c doesn't deal with that. So make it a var_zinteger
6498 because the user can always use "999999" or some such for unlimited. */
6499 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6500 (char *) &heuristic_fence_post,
6502 Set the distance searched for the start of a function.\n\
6503 If you are debugging a stripped executable, GDB needs to search through the\n\
6504 program for the start of a function. This command sets the distance of the\n\
6505 search. The only need to set it is when debugging a stripped executable.",
6507 /* We need to throw away the frame cache when we set this, since it
6508 might change our ability to get backtraces. */
6509 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6510 add_show_from_set (c, &showlist);
6512 /* Allow the user to control whether the upper bits of 64-bit
6513 addresses should be zeroed. */
6514 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6515 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6516 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6517 allow GDB to determine the correct value.\n", "\
6518 Show zeroing of upper 32 bits of 64-bit addresses.",
6519 NULL, show_mask_address,
6520 &setmipscmdlist, &showmipscmdlist);
6522 /* Allow the user to control the size of 32 bit registers within the
6523 raw remote packet. */
6524 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6527 (char *)&mips64_transfers_32bit_regs_p, "\
6528 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6529 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6530 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6531 64 bits for others. Use \"off\" to disable compatibility mode",
6535 /* Debug this files internals. */
6536 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6537 &mips_debug, "Set mips debugging.\n\
6538 When non-zero, mips specific debugging is enabled.", &setdebuglist),