1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
59 #ifndef ADA_RETAIN_DOTS
60 #define ADA_RETAIN_DOTS 0
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static void extract_string (CORE_ADDR addr, char *buf);
74 static void modify_general_field (char *, LONGEST, int, int);
76 static struct type *desc_base_type (struct type *);
78 static struct type *desc_bounds_type (struct type *);
80 static struct value *desc_bounds (struct value *);
82 static int fat_pntr_bounds_bitpos (struct type *);
84 static int fat_pntr_bounds_bitsize (struct type *);
86 static struct type *desc_data_type (struct type *);
88 static struct value *desc_data (struct value *);
90 static int fat_pntr_data_bitpos (struct type *);
92 static int fat_pntr_data_bitsize (struct type *);
94 static struct value *desc_one_bound (struct value *, int, int);
96 static int desc_bound_bitpos (struct type *, int, int);
98 static int desc_bound_bitsize (struct type *, int, int);
100 static struct type *desc_index_type (struct type *, int);
102 static int desc_arity (struct type *);
104 static int ada_type_match (struct type *, struct type *, int);
106 static int ada_args_match (struct symbol *, struct value **, int);
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
110 static struct value *convert_actual (struct value *, struct type *,
113 static struct value *make_array_descriptor (struct type *, struct value *,
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
121 static int is_nonfunction (struct ada_symbol_info *, int);
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
126 static int num_defns_collected (struct obstack *);
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
134 static struct symtab *symtab_for_sym (struct symbol *);
136 static struct value *resolve_subexp (struct expression **, int *, int,
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
144 static char *ada_op_name (enum exp_opcode);
146 static const char *ada_decoded_op_name (enum exp_opcode);
148 static int numeric_type_p (struct type *);
150 static int integer_type_p (struct type *);
152 static int scalar_type_p (struct type *);
154 static int discrete_type_p (struct type *);
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
161 static struct symbol *find_old_style_renaming_symbol (const char *,
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
167 static struct value *evaluate_subexp (struct type *, struct expression *,
170 static struct value *evaluate_subexp_type (struct expression *, int *);
172 static int is_dynamic_field (struct type *, int);
174 static struct type *to_fixed_variant_branch_type (struct type *,
176 CORE_ADDR, struct value *);
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
180 static struct type *to_fixed_range_type (char *, struct value *,
183 static struct type *to_static_fixed_type (struct type *);
185 static struct value *unwrap_value (struct value *);
187 static struct type *packed_array_type (struct type *, long *);
189 static struct type *decode_packed_array_type (struct type *);
191 static struct value *decode_packed_array (struct value *);
193 static struct value *value_subscript_packed (struct value *, int,
196 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198 static struct value *coerce_unspec_val_to_type (struct value *,
201 static struct value *get_var_value (char *, char *);
203 static int lesseq_defined_than (struct symbol *, struct symbol *);
205 static int equiv_types (struct type *, struct type *);
207 static int is_name_suffix (const char *);
209 static int wild_match (const char *, int, const char *);
211 static struct value *ada_coerce_ref (struct value *);
213 static LONGEST pos_atr (struct value *);
215 static struct value *value_pos_atr (struct value *);
217 static struct value *value_val_atr (struct type *, struct value *);
219 static struct symbol *standard_lookup (const char *, const struct block *,
222 static struct value *ada_search_struct_field (char *, struct value *, int,
225 static struct value *ada_value_primitive_field (struct value *, int, int,
228 static int find_struct_field (char *, struct type *, int,
229 struct type **, int *, int *, int *, int *);
231 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
234 static struct value *ada_to_fixed_value (struct value *);
236 static int ada_resolve_function (struct ada_symbol_info *, int,
237 struct value **, int, const char *,
240 static struct value *ada_coerce_to_simple_array (struct value *);
242 static int ada_is_direct_array_type (struct type *);
244 static void ada_language_arch_info (struct gdbarch *,
245 struct language_arch_info *);
247 static void check_size (const struct type *);
249 static struct value *ada_index_struct_field (int, struct value *, int,
252 static struct value *assign_aggregate (struct value *, struct value *,
253 struct expression *, int *, enum noside);
255 static void aggregate_assign_from_choices (struct value *, struct value *,
257 int *, LONGEST *, int *,
258 int, LONGEST, LONGEST);
260 static void aggregate_assign_positional (struct value *, struct value *,
262 int *, LONGEST *, int *, int,
266 static void aggregate_assign_others (struct value *, struct value *,
268 int *, LONGEST *, int, LONGEST, LONGEST);
271 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
274 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
277 static void ada_forward_operator_length (struct expression *, int, int *,
282 /* Maximum-sized dynamic type. */
283 static unsigned int varsize_limit;
285 /* FIXME: brobecker/2003-09-17: No longer a const because it is
286 returned by a function that does not return a const char *. */
287 static char *ada_completer_word_break_characters =
289 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
294 /* The name of the symbol to use to get the name of the main subprogram. */
295 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
296 = "__gnat_ada_main_program_name";
298 /* Limit on the number of warnings to raise per expression evaluation. */
299 static int warning_limit = 2;
301 /* Number of warning messages issued; reset to 0 by cleanups after
302 expression evaluation. */
303 static int warnings_issued = 0;
305 static const char *known_runtime_file_name_patterns[] = {
306 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
309 static const char *known_auxiliary_function_name_patterns[] = {
310 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
313 /* Space for allocating results of ada_lookup_symbol_list. */
314 static struct obstack symbol_list_obstack;
320 ada_get_gdb_completer_word_break_characters (void)
322 return ada_completer_word_break_characters;
325 /* Print an array element index using the Ada syntax. */
328 ada_print_array_index (struct value *index_value, struct ui_file *stream,
329 int format, enum val_prettyprint pretty)
331 LA_VALUE_PRINT (index_value, stream, format, pretty);
332 fprintf_filtered (stream, " => ");
335 /* Read the string located at ADDR from the inferior and store the
339 extract_string (CORE_ADDR addr, char *buf)
343 /* Loop, reading one byte at a time, until we reach the '\000'
344 end-of-string marker. */
347 target_read_memory (addr + char_index * sizeof (char),
348 buf + char_index * sizeof (char), sizeof (char));
351 while (buf[char_index - 1] != '\000');
354 /* Assuming VECT points to an array of *SIZE objects of size
355 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
356 updating *SIZE as necessary and returning the (new) array. */
359 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
361 if (*size < min_size)
364 if (*size < min_size)
366 vect = xrealloc (vect, *size * element_size);
371 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
372 suffix of FIELD_NAME beginning "___". */
375 field_name_match (const char *field_name, const char *target)
377 int len = strlen (target);
379 (strncmp (field_name, target, len) == 0
380 && (field_name[len] == '\0'
381 || (strncmp (field_name + len, "___", 3) == 0
382 && strcmp (field_name + strlen (field_name) - 6,
387 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
388 FIELD_NAME, and return its index. This function also handles fields
389 whose name have ___ suffixes because the compiler sometimes alters
390 their name by adding such a suffix to represent fields with certain
391 constraints. If the field could not be found, return a negative
392 number if MAYBE_MISSING is set. Otherwise raise an error. */
395 ada_get_field_index (const struct type *type, const char *field_name,
399 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
400 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
404 error (_("Unable to find field %s in struct %s. Aborting"),
405 field_name, TYPE_NAME (type));
410 /* The length of the prefix of NAME prior to any "___" suffix. */
413 ada_name_prefix_len (const char *name)
419 const char *p = strstr (name, "___");
421 return strlen (name);
427 /* Return non-zero if SUFFIX is a suffix of STR.
428 Return zero if STR is null. */
431 is_suffix (const char *str, const char *suffix)
437 len2 = strlen (suffix);
438 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
441 /* Create a value of type TYPE whose contents come from VALADDR, if it
442 is non-null, and whose memory address (in the inferior) is
446 value_from_contents_and_address (struct type *type,
447 const gdb_byte *valaddr,
450 struct value *v = allocate_value (type);
452 set_value_lazy (v, 1);
454 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
455 VALUE_ADDRESS (v) = address;
457 VALUE_LVAL (v) = lval_memory;
461 /* The contents of value VAL, treated as a value of type TYPE. The
462 result is an lval in memory if VAL is. */
464 static struct value *
465 coerce_unspec_val_to_type (struct value *val, struct type *type)
467 type = ada_check_typedef (type);
468 if (value_type (val) == type)
472 struct value *result;
474 /* Make sure that the object size is not unreasonable before
475 trying to allocate some memory for it. */
478 result = allocate_value (type);
479 VALUE_LVAL (result) = VALUE_LVAL (val);
480 set_value_bitsize (result, value_bitsize (val));
481 set_value_bitpos (result, value_bitpos (val));
482 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
484 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
485 set_value_lazy (result, 1);
487 memcpy (value_contents_raw (result), value_contents (val),
493 static const gdb_byte *
494 cond_offset_host (const gdb_byte *valaddr, long offset)
499 return valaddr + offset;
503 cond_offset_target (CORE_ADDR address, long offset)
508 return address + offset;
511 /* Issue a warning (as for the definition of warning in utils.c, but
512 with exactly one argument rather than ...), unless the limit on the
513 number of warnings has passed during the evaluation of the current
516 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
517 provided by "complaint". */
518 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
521 lim_warning (const char *format, ...)
524 va_start (args, format);
526 warnings_issued += 1;
527 if (warnings_issued <= warning_limit)
528 vwarning (format, args);
533 /* Issue an error if the size of an object of type T is unreasonable,
534 i.e. if it would be a bad idea to allocate a value of this type in
538 check_size (const struct type *type)
540 if (TYPE_LENGTH (type) > varsize_limit)
541 error (_("object size is larger than varsize-limit"));
545 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
546 gdbtypes.h, but some of the necessary definitions in that file
547 seem to have gone missing. */
549 /* Maximum value of a SIZE-byte signed integer type. */
551 max_of_size (int size)
553 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
554 return top_bit | (top_bit - 1);
557 /* Minimum value of a SIZE-byte signed integer type. */
559 min_of_size (int size)
561 return -max_of_size (size) - 1;
564 /* Maximum value of a SIZE-byte unsigned integer type. */
566 umax_of_size (int size)
568 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
569 return top_bit | (top_bit - 1);
572 /* Maximum value of integral type T, as a signed quantity. */
574 max_of_type (struct type *t)
576 if (TYPE_UNSIGNED (t))
577 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
579 return max_of_size (TYPE_LENGTH (t));
582 /* Minimum value of integral type T, as a signed quantity. */
584 min_of_type (struct type *t)
586 if (TYPE_UNSIGNED (t))
589 return min_of_size (TYPE_LENGTH (t));
592 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
593 static struct value *
594 discrete_type_high_bound (struct type *type)
596 switch (TYPE_CODE (type))
598 case TYPE_CODE_RANGE:
599 return value_from_longest (TYPE_TARGET_TYPE (type),
600 TYPE_HIGH_BOUND (type));
603 value_from_longest (type,
604 TYPE_FIELD_BITPOS (type,
605 TYPE_NFIELDS (type) - 1));
607 return value_from_longest (type, max_of_type (type));
609 error (_("Unexpected type in discrete_type_high_bound."));
613 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
614 static struct value *
615 discrete_type_low_bound (struct type *type)
617 switch (TYPE_CODE (type))
619 case TYPE_CODE_RANGE:
620 return value_from_longest (TYPE_TARGET_TYPE (type),
621 TYPE_LOW_BOUND (type));
623 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
625 return value_from_longest (type, min_of_type (type));
627 error (_("Unexpected type in discrete_type_low_bound."));
631 /* The identity on non-range types. For range types, the underlying
632 non-range scalar type. */
635 base_type (struct type *type)
637 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
639 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
641 type = TYPE_TARGET_TYPE (type);
647 /* Language Selection */
649 /* If the main program is in Ada, return language_ada, otherwise return LANG
650 (the main program is in Ada iif the adainit symbol is found).
652 MAIN_PST is not used. */
655 ada_update_initial_language (enum language lang,
656 struct partial_symtab *main_pst)
658 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
659 (struct objfile *) NULL) != NULL)
665 /* If the main procedure is written in Ada, then return its name.
666 The result is good until the next call. Return NULL if the main
667 procedure doesn't appear to be in Ada. */
672 struct minimal_symbol *msym;
673 CORE_ADDR main_program_name_addr;
674 static char main_program_name[1024];
676 /* For Ada, the name of the main procedure is stored in a specific
677 string constant, generated by the binder. Look for that symbol,
678 extract its address, and then read that string. If we didn't find
679 that string, then most probably the main procedure is not written
681 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
685 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
686 if (main_program_name_addr == 0)
687 error (_("Invalid address for Ada main program name."));
689 extract_string (main_program_name_addr, main_program_name);
690 return main_program_name;
693 /* The main procedure doesn't seem to be in Ada. */
699 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
702 const struct ada_opname_map ada_opname_table[] = {
703 {"Oadd", "\"+\"", BINOP_ADD},
704 {"Osubtract", "\"-\"", BINOP_SUB},
705 {"Omultiply", "\"*\"", BINOP_MUL},
706 {"Odivide", "\"/\"", BINOP_DIV},
707 {"Omod", "\"mod\"", BINOP_MOD},
708 {"Orem", "\"rem\"", BINOP_REM},
709 {"Oexpon", "\"**\"", BINOP_EXP},
710 {"Olt", "\"<\"", BINOP_LESS},
711 {"Ole", "\"<=\"", BINOP_LEQ},
712 {"Ogt", "\">\"", BINOP_GTR},
713 {"Oge", "\">=\"", BINOP_GEQ},
714 {"Oeq", "\"=\"", BINOP_EQUAL},
715 {"One", "\"/=\"", BINOP_NOTEQUAL},
716 {"Oand", "\"and\"", BINOP_BITWISE_AND},
717 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
718 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
719 {"Oconcat", "\"&\"", BINOP_CONCAT},
720 {"Oabs", "\"abs\"", UNOP_ABS},
721 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
722 {"Oadd", "\"+\"", UNOP_PLUS},
723 {"Osubtract", "\"-\"", UNOP_NEG},
727 /* Return non-zero if STR should be suppressed in info listings. */
730 is_suppressed_name (const char *str)
732 if (strncmp (str, "_ada_", 5) == 0)
734 if (str[0] == '_' || str[0] == '\000')
739 const char *suffix = strstr (str, "___");
740 if (suffix != NULL && suffix[3] != 'X')
743 suffix = str + strlen (str);
744 for (p = suffix - 1; p != str; p -= 1)
748 if (p[0] == 'X' && p[-1] != '_')
752 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
753 if (strncmp (ada_opname_table[i].encoded, p,
754 strlen (ada_opname_table[i].encoded)) == 0)
763 /* The "encoded" form of DECODED, according to GNAT conventions.
764 The result is valid until the next call to ada_encode. */
767 ada_encode (const char *decoded)
769 static char *encoding_buffer = NULL;
770 static size_t encoding_buffer_size = 0;
777 GROW_VECT (encoding_buffer, encoding_buffer_size,
778 2 * strlen (decoded) + 10);
781 for (p = decoded; *p != '\0'; p += 1)
783 if (!ADA_RETAIN_DOTS && *p == '.')
785 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
790 const struct ada_opname_map *mapping;
792 for (mapping = ada_opname_table;
793 mapping->encoded != NULL
794 && strncmp (mapping->decoded, p,
795 strlen (mapping->decoded)) != 0; mapping += 1)
797 if (mapping->encoded == NULL)
798 error (_("invalid Ada operator name: %s"), p);
799 strcpy (encoding_buffer + k, mapping->encoded);
800 k += strlen (mapping->encoded);
805 encoding_buffer[k] = *p;
810 encoding_buffer[k] = '\0';
811 return encoding_buffer;
814 /* Return NAME folded to lower case, or, if surrounded by single
815 quotes, unfolded, but with the quotes stripped away. Result good
819 ada_fold_name (const char *name)
821 static char *fold_buffer = NULL;
822 static size_t fold_buffer_size = 0;
824 int len = strlen (name);
825 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
829 strncpy (fold_buffer, name + 1, len - 2);
830 fold_buffer[len - 2] = '\000';
835 for (i = 0; i <= len; i += 1)
836 fold_buffer[i] = tolower (name[i]);
842 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
845 is_lower_alphanum (const char c)
847 return (isdigit (c) || (isalpha (c) && islower (c)));
850 /* Remove either of these suffixes:
855 These are suffixes introduced by the compiler for entities such as
856 nested subprogram for instance, in order to avoid name clashes.
857 They do not serve any purpose for the debugger. */
860 ada_remove_trailing_digits (const char *encoded, int *len)
862 if (*len > 1 && isdigit (encoded[*len - 1]))
865 while (i > 0 && isdigit (encoded[i]))
867 if (i >= 0 && encoded[i] == '.')
869 else if (i >= 0 && encoded[i] == '$')
871 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
873 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
878 /* Remove the suffix introduced by the compiler for protected object
882 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
884 /* Remove trailing N. */
886 /* Protected entry subprograms are broken into two
887 separate subprograms: The first one is unprotected, and has
888 a 'N' suffix; the second is the protected version, and has
889 the 'P' suffix. The second calls the first one after handling
890 the protection. Since the P subprograms are internally generated,
891 we leave these names undecoded, giving the user a clue that this
892 entity is internal. */
895 && encoded[*len - 1] == 'N'
896 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
900 /* If ENCODED follows the GNAT entity encoding conventions, then return
901 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
904 The resulting string is valid until the next call of ada_decode.
905 If the string is unchanged by decoding, the original string pointer
909 ada_decode (const char *encoded)
916 static char *decoding_buffer = NULL;
917 static size_t decoding_buffer_size = 0;
919 /* The name of the Ada main procedure starts with "_ada_".
920 This prefix is not part of the decoded name, so skip this part
921 if we see this prefix. */
922 if (strncmp (encoded, "_ada_", 5) == 0)
925 /* If the name starts with '_', then it is not a properly encoded
926 name, so do not attempt to decode it. Similarly, if the name
927 starts with '<', the name should not be decoded. */
928 if (encoded[0] == '_' || encoded[0] == '<')
931 len0 = strlen (encoded);
933 ada_remove_trailing_digits (encoded, &len0);
934 ada_remove_po_subprogram_suffix (encoded, &len0);
936 /* Remove the ___X.* suffix if present. Do not forget to verify that
937 the suffix is located before the current "end" of ENCODED. We want
938 to avoid re-matching parts of ENCODED that have previously been
939 marked as discarded (by decrementing LEN0). */
940 p = strstr (encoded, "___");
941 if (p != NULL && p - encoded < len0 - 3)
949 /* Remove any trailing TKB suffix. It tells us that this symbol
950 is for the body of a task, but that information does not actually
951 appear in the decoded name. */
953 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
956 /* Remove trailing "B" suffixes. */
957 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
959 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
962 /* Make decoded big enough for possible expansion by operator name. */
964 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
965 decoded = decoding_buffer;
967 /* Remove trailing __{digit}+ or trailing ${digit}+. */
969 if (len0 > 1 && isdigit (encoded[len0 - 1]))
972 while ((i >= 0 && isdigit (encoded[i]))
973 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
975 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
977 else if (encoded[i] == '$')
981 /* The first few characters that are not alphabetic are not part
982 of any encoding we use, so we can copy them over verbatim. */
984 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
985 decoded[j] = encoded[i];
990 /* Is this a symbol function? */
991 if (at_start_name && encoded[i] == 'O')
994 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
996 int op_len = strlen (ada_opname_table[k].encoded);
997 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
999 && !isalnum (encoded[i + op_len]))
1001 strcpy (decoded + j, ada_opname_table[k].decoded);
1004 j += strlen (ada_opname_table[k].decoded);
1008 if (ada_opname_table[k].encoded != NULL)
1013 /* Replace "TK__" with "__", which will eventually be translated
1014 into "." (just below). */
1016 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1019 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1020 be translated into "." (just below). These are internal names
1021 generated for anonymous blocks inside which our symbol is nested. */
1023 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1024 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1025 && isdigit (encoded [i+4]))
1029 while (k < len0 && isdigit (encoded[k]))
1030 k++; /* Skip any extra digit. */
1032 /* Double-check that the "__B_{DIGITS}+" sequence we found
1033 is indeed followed by "__". */
1034 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1038 /* Remove _E{DIGITS}+[sb] */
1040 /* Just as for protected object subprograms, there are 2 categories
1041 of subprograms created by the compiler for each entry. The first
1042 one implements the actual entry code, and has a suffix following
1043 the convention above; the second one implements the barrier and
1044 uses the same convention as above, except that the 'E' is replaced
1047 Just as above, we do not decode the name of barrier functions
1048 to give the user a clue that the code he is debugging has been
1049 internally generated. */
1051 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1052 && isdigit (encoded[i+2]))
1056 while (k < len0 && isdigit (encoded[k]))
1060 && (encoded[k] == 'b' || encoded[k] == 's'))
1063 /* Just as an extra precaution, make sure that if this
1064 suffix is followed by anything else, it is a '_'.
1065 Otherwise, we matched this sequence by accident. */
1067 || (k < len0 && encoded[k] == '_'))
1072 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1073 the GNAT front-end in protected object subprograms. */
1076 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1078 /* Backtrack a bit up until we reach either the begining of
1079 the encoded name, or "__". Make sure that we only find
1080 digits or lowercase characters. */
1081 const char *ptr = encoded + i - 1;
1083 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1086 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1090 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1092 /* This is a X[bn]* sequence not separated from the previous
1093 part of the name with a non-alpha-numeric character (in other
1094 words, immediately following an alpha-numeric character), then
1095 verify that it is placed at the end of the encoded name. If
1096 not, then the encoding is not valid and we should abort the
1097 decoding. Otherwise, just skip it, it is used in body-nested
1101 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1105 else if (!ADA_RETAIN_DOTS
1106 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1108 /* Replace '__' by '.'. */
1116 /* It's a character part of the decoded name, so just copy it
1118 decoded[j] = encoded[i];
1123 decoded[j] = '\000';
1125 /* Decoded names should never contain any uppercase character.
1126 Double-check this, and abort the decoding if we find one. */
1128 for (i = 0; decoded[i] != '\0'; i += 1)
1129 if (isupper (decoded[i]) || decoded[i] == ' ')
1132 if (strcmp (decoded, encoded) == 0)
1138 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1139 decoded = decoding_buffer;
1140 if (encoded[0] == '<')
1141 strcpy (decoded, encoded);
1143 sprintf (decoded, "<%s>", encoded);
1148 /* Table for keeping permanent unique copies of decoded names. Once
1149 allocated, names in this table are never released. While this is a
1150 storage leak, it should not be significant unless there are massive
1151 changes in the set of decoded names in successive versions of a
1152 symbol table loaded during a single session. */
1153 static struct htab *decoded_names_store;
1155 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1156 in the language-specific part of GSYMBOL, if it has not been
1157 previously computed. Tries to save the decoded name in the same
1158 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1159 in any case, the decoded symbol has a lifetime at least that of
1161 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1162 const, but nevertheless modified to a semantically equivalent form
1163 when a decoded name is cached in it.
1167 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1170 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1171 if (*resultp == NULL)
1173 const char *decoded = ada_decode (gsymbol->name);
1174 if (gsymbol->bfd_section != NULL)
1176 bfd *obfd = gsymbol->bfd_section->owner;
1179 struct objfile *objf;
1182 if (obfd == objf->obfd)
1184 *resultp = obsavestring (decoded, strlen (decoded),
1185 &objf->objfile_obstack);
1191 /* Sometimes, we can't find a corresponding objfile, in which
1192 case, we put the result on the heap. Since we only decode
1193 when needed, we hope this usually does not cause a
1194 significant memory leak (FIXME). */
1195 if (*resultp == NULL)
1197 char **slot = (char **) htab_find_slot (decoded_names_store,
1200 *slot = xstrdup (decoded);
1209 ada_la_decode (const char *encoded, int options)
1211 return xstrdup (ada_decode (encoded));
1214 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1215 suffixes that encode debugging information or leading _ada_ on
1216 SYM_NAME (see is_name_suffix commentary for the debugging
1217 information that is ignored). If WILD, then NAME need only match a
1218 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1219 either argument is NULL. */
1222 ada_match_name (const char *sym_name, const char *name, int wild)
1224 if (sym_name == NULL || name == NULL)
1227 return wild_match (name, strlen (name), sym_name);
1230 int len_name = strlen (name);
1231 return (strncmp (sym_name, name, len_name) == 0
1232 && is_name_suffix (sym_name + len_name))
1233 || (strncmp (sym_name, "_ada_", 5) == 0
1234 && strncmp (sym_name + 5, name, len_name) == 0
1235 && is_name_suffix (sym_name + len_name + 5));
1239 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1240 suppressed in info listings. */
1243 ada_suppress_symbol_printing (struct symbol *sym)
1245 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1248 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1254 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1256 static char *bound_name[] = {
1257 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1258 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1261 /* Maximum number of array dimensions we are prepared to handle. */
1263 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1265 /* Like modify_field, but allows bitpos > wordlength. */
1268 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1270 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1274 /* The desc_* routines return primitive portions of array descriptors
1277 /* The descriptor or array type, if any, indicated by TYPE; removes
1278 level of indirection, if needed. */
1280 static struct type *
1281 desc_base_type (struct type *type)
1285 type = ada_check_typedef (type);
1287 && (TYPE_CODE (type) == TYPE_CODE_PTR
1288 || TYPE_CODE (type) == TYPE_CODE_REF))
1289 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1294 /* True iff TYPE indicates a "thin" array pointer type. */
1297 is_thin_pntr (struct type *type)
1300 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1301 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1304 /* The descriptor type for thin pointer type TYPE. */
1306 static struct type *
1307 thin_descriptor_type (struct type *type)
1309 struct type *base_type = desc_base_type (type);
1310 if (base_type == NULL)
1312 if (is_suffix (ada_type_name (base_type), "___XVE"))
1316 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1317 if (alt_type == NULL)
1324 /* A pointer to the array data for thin-pointer value VAL. */
1326 static struct value *
1327 thin_data_pntr (struct value *val)
1329 struct type *type = value_type (val);
1330 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1331 return value_cast (desc_data_type (thin_descriptor_type (type)),
1334 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1335 VALUE_ADDRESS (val) + value_offset (val));
1338 /* True iff TYPE indicates a "thick" array pointer type. */
1341 is_thick_pntr (struct type *type)
1343 type = desc_base_type (type);
1344 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1345 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1348 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1349 pointer to one, the type of its bounds data; otherwise, NULL. */
1351 static struct type *
1352 desc_bounds_type (struct type *type)
1356 type = desc_base_type (type);
1360 else if (is_thin_pntr (type))
1362 type = thin_descriptor_type (type);
1365 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1367 return ada_check_typedef (r);
1369 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1371 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1373 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1378 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1379 one, a pointer to its bounds data. Otherwise NULL. */
1381 static struct value *
1382 desc_bounds (struct value *arr)
1384 struct type *type = ada_check_typedef (value_type (arr));
1385 if (is_thin_pntr (type))
1387 struct type *bounds_type =
1388 desc_bounds_type (thin_descriptor_type (type));
1391 if (bounds_type == NULL)
1392 error (_("Bad GNAT array descriptor"));
1394 /* NOTE: The following calculation is not really kosher, but
1395 since desc_type is an XVE-encoded type (and shouldn't be),
1396 the correct calculation is a real pain. FIXME (and fix GCC). */
1397 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1398 addr = value_as_long (arr);
1400 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1403 value_from_longest (lookup_pointer_type (bounds_type),
1404 addr - TYPE_LENGTH (bounds_type));
1407 else if (is_thick_pntr (type))
1408 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1409 _("Bad GNAT array descriptor"));
1414 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1415 position of the field containing the address of the bounds data. */
1418 fat_pntr_bounds_bitpos (struct type *type)
1420 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1423 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1424 size of the field containing the address of the bounds data. */
1427 fat_pntr_bounds_bitsize (struct type *type)
1429 type = desc_base_type (type);
1431 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1432 return TYPE_FIELD_BITSIZE (type, 1);
1434 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1437 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1438 pointer to one, the type of its array data (a
1439 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1440 ada_type_of_array to get an array type with bounds data. */
1442 static struct type *
1443 desc_data_type (struct type *type)
1445 type = desc_base_type (type);
1447 /* NOTE: The following is bogus; see comment in desc_bounds. */
1448 if (is_thin_pntr (type))
1449 return lookup_pointer_type
1450 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1451 else if (is_thick_pntr (type))
1452 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1457 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1460 static struct value *
1461 desc_data (struct value *arr)
1463 struct type *type = value_type (arr);
1464 if (is_thin_pntr (type))
1465 return thin_data_pntr (arr);
1466 else if (is_thick_pntr (type))
1467 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1468 _("Bad GNAT array descriptor"));
1474 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1475 position of the field containing the address of the data. */
1478 fat_pntr_data_bitpos (struct type *type)
1480 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1483 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1484 size of the field containing the address of the data. */
1487 fat_pntr_data_bitsize (struct type *type)
1489 type = desc_base_type (type);
1491 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1492 return TYPE_FIELD_BITSIZE (type, 0);
1494 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1497 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1498 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1499 bound, if WHICH is 1. The first bound is I=1. */
1501 static struct value *
1502 desc_one_bound (struct value *bounds, int i, int which)
1504 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1505 _("Bad GNAT array descriptor bounds"));
1508 /* If BOUNDS is an array-bounds structure type, return the bit position
1509 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1510 bound, if WHICH is 1. The first bound is I=1. */
1513 desc_bound_bitpos (struct type *type, int i, int which)
1515 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1518 /* If BOUNDS is an array-bounds structure type, return the bit field size
1519 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1520 bound, if WHICH is 1. The first bound is I=1. */
1523 desc_bound_bitsize (struct type *type, int i, int which)
1525 type = desc_base_type (type);
1527 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1528 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1530 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1533 /* If TYPE is the type of an array-bounds structure, the type of its
1534 Ith bound (numbering from 1). Otherwise, NULL. */
1536 static struct type *
1537 desc_index_type (struct type *type, int i)
1539 type = desc_base_type (type);
1541 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1542 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1547 /* The number of index positions in the array-bounds type TYPE.
1548 Return 0 if TYPE is NULL. */
1551 desc_arity (struct type *type)
1553 type = desc_base_type (type);
1556 return TYPE_NFIELDS (type) / 2;
1560 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1561 an array descriptor type (representing an unconstrained array
1565 ada_is_direct_array_type (struct type *type)
1569 type = ada_check_typedef (type);
1570 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1571 || ada_is_array_descriptor_type (type));
1574 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1578 ada_is_array_type (struct type *type)
1581 && (TYPE_CODE (type) == TYPE_CODE_PTR
1582 || TYPE_CODE (type) == TYPE_CODE_REF))
1583 type = TYPE_TARGET_TYPE (type);
1584 return ada_is_direct_array_type (type);
1587 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1590 ada_is_simple_array_type (struct type *type)
1594 type = ada_check_typedef (type);
1595 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1596 || (TYPE_CODE (type) == TYPE_CODE_PTR
1597 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1600 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1603 ada_is_array_descriptor_type (struct type *type)
1605 struct type *data_type = desc_data_type (type);
1609 type = ada_check_typedef (type);
1612 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1613 && TYPE_TARGET_TYPE (data_type) != NULL
1614 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1615 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1616 && desc_arity (desc_bounds_type (type)) > 0;
1619 /* Non-zero iff type is a partially mal-formed GNAT array
1620 descriptor. FIXME: This is to compensate for some problems with
1621 debugging output from GNAT. Re-examine periodically to see if it
1625 ada_is_bogus_array_descriptor (struct type *type)
1629 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1630 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1631 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1632 && !ada_is_array_descriptor_type (type);
1636 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1637 (fat pointer) returns the type of the array data described---specifically,
1638 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1639 in from the descriptor; otherwise, they are left unspecified. If
1640 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1641 returns NULL. The result is simply the type of ARR if ARR is not
1644 ada_type_of_array (struct value *arr, int bounds)
1646 if (ada_is_packed_array_type (value_type (arr)))
1647 return decode_packed_array_type (value_type (arr));
1649 if (!ada_is_array_descriptor_type (value_type (arr)))
1650 return value_type (arr);
1654 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1657 struct type *elt_type;
1659 struct value *descriptor;
1660 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1662 elt_type = ada_array_element_type (value_type (arr), -1);
1663 arity = ada_array_arity (value_type (arr));
1665 if (elt_type == NULL || arity == 0)
1666 return ada_check_typedef (value_type (arr));
1668 descriptor = desc_bounds (arr);
1669 if (value_as_long (descriptor) == 0)
1673 struct type *range_type = alloc_type (objf);
1674 struct type *array_type = alloc_type (objf);
1675 struct value *low = desc_one_bound (descriptor, arity, 0);
1676 struct value *high = desc_one_bound (descriptor, arity, 1);
1679 create_range_type (range_type, value_type (low),
1680 longest_to_int (value_as_long (low)),
1681 longest_to_int (value_as_long (high)));
1682 elt_type = create_array_type (array_type, elt_type, range_type);
1685 return lookup_pointer_type (elt_type);
1689 /* If ARR does not represent an array, returns ARR unchanged.
1690 Otherwise, returns either a standard GDB array with bounds set
1691 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1692 GDB array. Returns NULL if ARR is a null fat pointer. */
1695 ada_coerce_to_simple_array_ptr (struct value *arr)
1697 if (ada_is_array_descriptor_type (value_type (arr)))
1699 struct type *arrType = ada_type_of_array (arr, 1);
1700 if (arrType == NULL)
1702 return value_cast (arrType, value_copy (desc_data (arr)));
1704 else if (ada_is_packed_array_type (value_type (arr)))
1705 return decode_packed_array (arr);
1710 /* If ARR does not represent an array, returns ARR unchanged.
1711 Otherwise, returns a standard GDB array describing ARR (which may
1712 be ARR itself if it already is in the proper form). */
1714 static struct value *
1715 ada_coerce_to_simple_array (struct value *arr)
1717 if (ada_is_array_descriptor_type (value_type (arr)))
1719 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1721 error (_("Bounds unavailable for null array pointer."));
1722 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1723 return value_ind (arrVal);
1725 else if (ada_is_packed_array_type (value_type (arr)))
1726 return decode_packed_array (arr);
1731 /* If TYPE represents a GNAT array type, return it translated to an
1732 ordinary GDB array type (possibly with BITSIZE fields indicating
1733 packing). For other types, is the identity. */
1736 ada_coerce_to_simple_array_type (struct type *type)
1738 struct value *mark = value_mark ();
1739 struct value *dummy = value_from_longest (builtin_type_long, 0);
1740 struct type *result;
1741 deprecated_set_value_type (dummy, type);
1742 result = ada_type_of_array (dummy, 0);
1743 value_free_to_mark (mark);
1747 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1750 ada_is_packed_array_type (struct type *type)
1754 type = desc_base_type (type);
1755 type = ada_check_typedef (type);
1757 ada_type_name (type) != NULL
1758 && strstr (ada_type_name (type), "___XP") != NULL;
1761 /* Given that TYPE is a standard GDB array type with all bounds filled
1762 in, and that the element size of its ultimate scalar constituents
1763 (that is, either its elements, or, if it is an array of arrays, its
1764 elements' elements, etc.) is *ELT_BITS, return an identical type,
1765 but with the bit sizes of its elements (and those of any
1766 constituent arrays) recorded in the BITSIZE components of its
1767 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1770 static struct type *
1771 packed_array_type (struct type *type, long *elt_bits)
1773 struct type *new_elt_type;
1774 struct type *new_type;
1775 LONGEST low_bound, high_bound;
1777 type = ada_check_typedef (type);
1778 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1781 new_type = alloc_type (TYPE_OBJFILE (type));
1782 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1784 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1785 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1786 TYPE_NAME (new_type) = ada_type_name (type);
1788 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1789 &low_bound, &high_bound) < 0)
1790 low_bound = high_bound = 0;
1791 if (high_bound < low_bound)
1792 *elt_bits = TYPE_LENGTH (new_type) = 0;
1795 *elt_bits *= (high_bound - low_bound + 1);
1796 TYPE_LENGTH (new_type) =
1797 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1800 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1804 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1806 static struct type *
1807 decode_packed_array_type (struct type *type)
1810 struct block **blocks;
1811 const char *raw_name = ada_type_name (ada_check_typedef (type));
1812 char *name = (char *) alloca (strlen (raw_name) + 1);
1813 char *tail = strstr (raw_name, "___XP");
1814 struct type *shadow_type;
1818 type = desc_base_type (type);
1820 memcpy (name, raw_name, tail - raw_name);
1821 name[tail - raw_name] = '\000';
1823 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1824 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1826 lim_warning (_("could not find bounds information on packed array"));
1829 shadow_type = SYMBOL_TYPE (sym);
1831 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1833 lim_warning (_("could not understand bounds information on packed array"));
1837 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1840 (_("could not understand bit size information on packed array"));
1844 return packed_array_type (shadow_type, &bits);
1847 /* Given that ARR is a struct value *indicating a GNAT packed array,
1848 returns a simple array that denotes that array. Its type is a
1849 standard GDB array type except that the BITSIZEs of the array
1850 target types are set to the number of bits in each element, and the
1851 type length is set appropriately. */
1853 static struct value *
1854 decode_packed_array (struct value *arr)
1858 arr = ada_coerce_ref (arr);
1859 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1860 arr = ada_value_ind (arr);
1862 type = decode_packed_array_type (value_type (arr));
1865 error (_("can't unpack array"));
1869 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1871 /* This is a (right-justified) modular type representing a packed
1872 array with no wrapper. In order to interpret the value through
1873 the (left-justified) packed array type we just built, we must
1874 first left-justify it. */
1875 int bit_size, bit_pos;
1878 mod = ada_modulus (value_type (arr)) - 1;
1885 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1886 arr = ada_value_primitive_packed_val (arr, NULL,
1887 bit_pos / HOST_CHAR_BIT,
1888 bit_pos % HOST_CHAR_BIT,
1893 return coerce_unspec_val_to_type (arr, type);
1897 /* The value of the element of packed array ARR at the ARITY indices
1898 given in IND. ARR must be a simple array. */
1900 static struct value *
1901 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1904 int bits, elt_off, bit_off;
1905 long elt_total_bit_offset;
1906 struct type *elt_type;
1910 elt_total_bit_offset = 0;
1911 elt_type = ada_check_typedef (value_type (arr));
1912 for (i = 0; i < arity; i += 1)
1914 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1915 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1917 (_("attempt to do packed indexing of something other than a packed array"));
1920 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1921 LONGEST lowerbound, upperbound;
1924 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1926 lim_warning (_("don't know bounds of array"));
1927 lowerbound = upperbound = 0;
1930 idx = value_as_long (value_pos_atr (ind[i]));
1931 if (idx < lowerbound || idx > upperbound)
1932 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1933 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1934 elt_total_bit_offset += (idx - lowerbound) * bits;
1935 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1938 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1939 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1941 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1946 /* Non-zero iff TYPE includes negative integer values. */
1949 has_negatives (struct type *type)
1951 switch (TYPE_CODE (type))
1956 return !TYPE_UNSIGNED (type);
1957 case TYPE_CODE_RANGE:
1958 return TYPE_LOW_BOUND (type) < 0;
1963 /* Create a new value of type TYPE from the contents of OBJ starting
1964 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1965 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1966 assigning through the result will set the field fetched from.
1967 VALADDR is ignored unless OBJ is NULL, in which case,
1968 VALADDR+OFFSET must address the start of storage containing the
1969 packed value. The value returned in this case is never an lval.
1970 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1973 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1974 long offset, int bit_offset, int bit_size,
1978 int src, /* Index into the source area */
1979 targ, /* Index into the target area */
1980 srcBitsLeft, /* Number of source bits left to move */
1981 nsrc, ntarg, /* Number of source and target bytes */
1982 unusedLS, /* Number of bits in next significant
1983 byte of source that are unused */
1984 accumSize; /* Number of meaningful bits in accum */
1985 unsigned char *bytes; /* First byte containing data to unpack */
1986 unsigned char *unpacked;
1987 unsigned long accum; /* Staging area for bits being transferred */
1989 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1990 /* Transmit bytes from least to most significant; delta is the direction
1991 the indices move. */
1992 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1994 type = ada_check_typedef (type);
1998 v = allocate_value (type);
1999 bytes = (unsigned char *) (valaddr + offset);
2001 else if (value_lazy (obj))
2004 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2005 bytes = (unsigned char *) alloca (len);
2006 read_memory (VALUE_ADDRESS (v), bytes, len);
2010 v = allocate_value (type);
2011 bytes = (unsigned char *) value_contents (obj) + offset;
2016 VALUE_LVAL (v) = VALUE_LVAL (obj);
2017 if (VALUE_LVAL (obj) == lval_internalvar)
2018 VALUE_LVAL (v) = lval_internalvar_component;
2019 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2020 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2021 set_value_bitsize (v, bit_size);
2022 if (value_bitpos (v) >= HOST_CHAR_BIT)
2024 VALUE_ADDRESS (v) += 1;
2025 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2029 set_value_bitsize (v, bit_size);
2030 unpacked = (unsigned char *) value_contents (v);
2032 srcBitsLeft = bit_size;
2034 ntarg = TYPE_LENGTH (type);
2038 memset (unpacked, 0, TYPE_LENGTH (type));
2041 else if (BITS_BIG_ENDIAN)
2044 if (has_negatives (type)
2045 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2049 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2052 switch (TYPE_CODE (type))
2054 case TYPE_CODE_ARRAY:
2055 case TYPE_CODE_UNION:
2056 case TYPE_CODE_STRUCT:
2057 /* Non-scalar values must be aligned at a byte boundary... */
2059 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2060 /* ... And are placed at the beginning (most-significant) bytes
2062 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2066 targ = TYPE_LENGTH (type) - 1;
2072 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2075 unusedLS = bit_offset;
2078 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2085 /* Mask for removing bits of the next source byte that are not
2086 part of the value. */
2087 unsigned int unusedMSMask =
2088 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2090 /* Sign-extend bits for this byte. */
2091 unsigned int signMask = sign & ~unusedMSMask;
2093 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2094 accumSize += HOST_CHAR_BIT - unusedLS;
2095 if (accumSize >= HOST_CHAR_BIT)
2097 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2098 accumSize -= HOST_CHAR_BIT;
2099 accum >>= HOST_CHAR_BIT;
2103 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2110 accum |= sign << accumSize;
2111 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2112 accumSize -= HOST_CHAR_BIT;
2113 accum >>= HOST_CHAR_BIT;
2121 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2122 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2125 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2126 int src_offset, int n)
2128 unsigned int accum, mask;
2129 int accum_bits, chunk_size;
2131 target += targ_offset / HOST_CHAR_BIT;
2132 targ_offset %= HOST_CHAR_BIT;
2133 source += src_offset / HOST_CHAR_BIT;
2134 src_offset %= HOST_CHAR_BIT;
2135 if (BITS_BIG_ENDIAN)
2137 accum = (unsigned char) *source;
2139 accum_bits = HOST_CHAR_BIT - src_offset;
2144 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2145 accum_bits += HOST_CHAR_BIT;
2147 chunk_size = HOST_CHAR_BIT - targ_offset;
2150 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2151 mask = ((1 << chunk_size) - 1) << unused_right;
2154 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2156 accum_bits -= chunk_size;
2163 accum = (unsigned char) *source >> src_offset;
2165 accum_bits = HOST_CHAR_BIT - src_offset;
2169 accum = accum + ((unsigned char) *source << accum_bits);
2170 accum_bits += HOST_CHAR_BIT;
2172 chunk_size = HOST_CHAR_BIT - targ_offset;
2175 mask = ((1 << chunk_size) - 1) << targ_offset;
2176 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2178 accum_bits -= chunk_size;
2179 accum >>= chunk_size;
2186 /* Store the contents of FROMVAL into the location of TOVAL.
2187 Return a new value with the location of TOVAL and contents of
2188 FROMVAL. Handles assignment into packed fields that have
2189 floating-point or non-scalar types. */
2191 static struct value *
2192 ada_value_assign (struct value *toval, struct value *fromval)
2194 struct type *type = value_type (toval);
2195 int bits = value_bitsize (toval);
2197 toval = ada_coerce_ref (toval);
2198 fromval = ada_coerce_ref (fromval);
2200 if (ada_is_direct_array_type (value_type (toval)))
2201 toval = ada_coerce_to_simple_array (toval);
2202 if (ada_is_direct_array_type (value_type (fromval)))
2203 fromval = ada_coerce_to_simple_array (fromval);
2205 if (!deprecated_value_modifiable (toval))
2206 error (_("Left operand of assignment is not a modifiable lvalue."));
2208 if (VALUE_LVAL (toval) == lval_memory
2210 && (TYPE_CODE (type) == TYPE_CODE_FLT
2211 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2213 int len = (value_bitpos (toval)
2214 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2215 char *buffer = (char *) alloca (len);
2217 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2219 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2220 fromval = value_cast (type, fromval);
2222 read_memory (to_addr, buffer, len);
2223 if (BITS_BIG_ENDIAN)
2224 move_bits (buffer, value_bitpos (toval),
2225 value_contents (fromval),
2226 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2229 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2231 write_memory (to_addr, buffer, len);
2232 if (deprecated_memory_changed_hook)
2233 deprecated_memory_changed_hook (to_addr, len);
2235 val = value_copy (toval);
2236 memcpy (value_contents_raw (val), value_contents (fromval),
2237 TYPE_LENGTH (type));
2238 deprecated_set_value_type (val, type);
2243 return value_assign (toval, fromval);
2247 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2248 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2249 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2250 * COMPONENT, and not the inferior's memory. The current contents
2251 * of COMPONENT are ignored. */
2253 value_assign_to_component (struct value *container, struct value *component,
2256 LONGEST offset_in_container =
2257 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2258 - VALUE_ADDRESS (container) - value_offset (container));
2259 int bit_offset_in_container =
2260 value_bitpos (component) - value_bitpos (container);
2263 val = value_cast (value_type (component), val);
2265 if (value_bitsize (component) == 0)
2266 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2268 bits = value_bitsize (component);
2270 if (BITS_BIG_ENDIAN)
2271 move_bits (value_contents_writeable (container) + offset_in_container,
2272 value_bitpos (container) + bit_offset_in_container,
2273 value_contents (val),
2274 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2277 move_bits (value_contents_writeable (container) + offset_in_container,
2278 value_bitpos (container) + bit_offset_in_container,
2279 value_contents (val), 0, bits);
2282 /* The value of the element of array ARR at the ARITY indices given in IND.
2283 ARR may be either a simple array, GNAT array descriptor, or pointer
2287 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2291 struct type *elt_type;
2293 elt = ada_coerce_to_simple_array (arr);
2295 elt_type = ada_check_typedef (value_type (elt));
2296 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2297 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2298 return value_subscript_packed (elt, arity, ind);
2300 for (k = 0; k < arity; k += 1)
2302 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2303 error (_("too many subscripts (%d expected)"), k);
2304 elt = value_subscript (elt, value_pos_atr (ind[k]));
2309 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2310 value of the element of *ARR at the ARITY indices given in
2311 IND. Does not read the entire array into memory. */
2314 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2319 for (k = 0; k < arity; k += 1)
2324 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2325 error (_("too many subscripts (%d expected)"), k);
2326 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2328 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2329 idx = value_pos_atr (ind[k]);
2331 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2332 arr = value_add (arr, idx);
2333 type = TYPE_TARGET_TYPE (type);
2336 return value_ind (arr);
2339 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2340 actual type of ARRAY_PTR is ignored), returns a reference to
2341 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2342 bound of this array is LOW, as per Ada rules. */
2343 static struct value *
2344 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2347 CORE_ADDR base = value_as_address (array_ptr)
2348 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2349 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2350 struct type *index_type =
2351 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2353 struct type *slice_type =
2354 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2355 return value_from_pointer (lookup_reference_type (slice_type), base);
2359 static struct value *
2360 ada_value_slice (struct value *array, int low, int high)
2362 struct type *type = value_type (array);
2363 struct type *index_type =
2364 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2365 struct type *slice_type =
2366 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2367 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2370 /* If type is a record type in the form of a standard GNAT array
2371 descriptor, returns the number of dimensions for type. If arr is a
2372 simple array, returns the number of "array of"s that prefix its
2373 type designation. Otherwise, returns 0. */
2376 ada_array_arity (struct type *type)
2383 type = desc_base_type (type);
2386 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2387 return desc_arity (desc_bounds_type (type));
2389 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2392 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2398 /* If TYPE is a record type in the form of a standard GNAT array
2399 descriptor or a simple array type, returns the element type for
2400 TYPE after indexing by NINDICES indices, or by all indices if
2401 NINDICES is -1. Otherwise, returns NULL. */
2404 ada_array_element_type (struct type *type, int nindices)
2406 type = desc_base_type (type);
2408 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2411 struct type *p_array_type;
2413 p_array_type = desc_data_type (type);
2415 k = ada_array_arity (type);
2419 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2420 if (nindices >= 0 && k > nindices)
2422 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2423 while (k > 0 && p_array_type != NULL)
2425 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2428 return p_array_type;
2430 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2432 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2434 type = TYPE_TARGET_TYPE (type);
2443 /* The type of nth index in arrays of given type (n numbering from 1).
2444 Does not examine memory. */
2447 ada_index_type (struct type *type, int n)
2449 struct type *result_type;
2451 type = desc_base_type (type);
2453 if (n > ada_array_arity (type))
2456 if (ada_is_simple_array_type (type))
2460 for (i = 1; i < n; i += 1)
2461 type = TYPE_TARGET_TYPE (type);
2462 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2463 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2464 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2465 perhaps stabsread.c would make more sense. */
2466 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2467 result_type = builtin_type_int;
2472 return desc_index_type (desc_bounds_type (type), n);
2475 /* Given that arr is an array type, returns the lower bound of the
2476 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2477 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2478 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2479 bounds type. It works for other arrays with bounds supplied by
2480 run-time quantities other than discriminants. */
2483 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2484 struct type ** typep)
2487 struct type *index_type_desc;
2489 if (ada_is_packed_array_type (arr_type))
2490 arr_type = decode_packed_array_type (arr_type);
2492 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2495 *typep = builtin_type_int;
2496 return (LONGEST) - which;
2499 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2500 type = TYPE_TARGET_TYPE (arr_type);
2504 index_type_desc = ada_find_parallel_type (type, "___XA");
2505 if (index_type_desc == NULL)
2507 struct type *range_type;
2508 struct type *index_type;
2512 type = TYPE_TARGET_TYPE (type);
2516 range_type = TYPE_INDEX_TYPE (type);
2517 index_type = TYPE_TARGET_TYPE (range_type);
2518 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2519 index_type = builtin_type_long;
2521 *typep = index_type;
2523 (LONGEST) (which == 0
2524 ? TYPE_LOW_BOUND (range_type)
2525 : TYPE_HIGH_BOUND (range_type));
2529 struct type *index_type =
2530 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2531 NULL, TYPE_OBJFILE (arr_type));
2533 *typep = TYPE_TARGET_TYPE (index_type);
2535 (LONGEST) (which == 0
2536 ? TYPE_LOW_BOUND (index_type)
2537 : TYPE_HIGH_BOUND (index_type));
2541 /* Given that arr is an array value, returns the lower bound of the
2542 nth index (numbering from 1) if which is 0, and the upper bound if
2543 which is 1. This routine will also work for arrays with bounds
2544 supplied by run-time quantities other than discriminants. */
2547 ada_array_bound (struct value *arr, int n, int which)
2549 struct type *arr_type = value_type (arr);
2551 if (ada_is_packed_array_type (arr_type))
2552 return ada_array_bound (decode_packed_array (arr), n, which);
2553 else if (ada_is_simple_array_type (arr_type))
2556 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2557 return value_from_longest (type, v);
2560 return desc_one_bound (desc_bounds (arr), n, which);
2563 /* Given that arr is an array value, returns the length of the
2564 nth index. This routine will also work for arrays with bounds
2565 supplied by run-time quantities other than discriminants.
2566 Does not work for arrays indexed by enumeration types with representation
2567 clauses at the moment. */
2570 ada_array_length (struct value *arr, int n)
2572 struct type *arr_type = ada_check_typedef (value_type (arr));
2574 if (ada_is_packed_array_type (arr_type))
2575 return ada_array_length (decode_packed_array (arr), n);
2577 if (ada_is_simple_array_type (arr_type))
2581 ada_array_bound_from_type (arr_type, n, 1, &type) -
2582 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2583 return value_from_longest (type, v);
2587 value_from_longest (builtin_type_int,
2588 value_as_long (desc_one_bound (desc_bounds (arr),
2590 - value_as_long (desc_one_bound (desc_bounds (arr),
2594 /* An empty array whose type is that of ARR_TYPE (an array type),
2595 with bounds LOW to LOW-1. */
2597 static struct value *
2598 empty_array (struct type *arr_type, int low)
2600 struct type *index_type =
2601 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2603 struct type *elt_type = ada_array_element_type (arr_type, 1);
2604 return allocate_value (create_array_type (NULL, elt_type, index_type));
2608 /* Name resolution */
2610 /* The "decoded" name for the user-definable Ada operator corresponding
2614 ada_decoded_op_name (enum exp_opcode op)
2618 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2620 if (ada_opname_table[i].op == op)
2621 return ada_opname_table[i].decoded;
2623 error (_("Could not find operator name for opcode"));
2627 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2628 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2629 undefined namespace) and converts operators that are
2630 user-defined into appropriate function calls. If CONTEXT_TYPE is
2631 non-null, it provides a preferred result type [at the moment, only
2632 type void has any effect---causing procedures to be preferred over
2633 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2634 return type is preferred. May change (expand) *EXP. */
2637 resolve (struct expression **expp, int void_context_p)
2641 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2644 /* Resolve the operator of the subexpression beginning at
2645 position *POS of *EXPP. "Resolving" consists of replacing
2646 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2647 with their resolutions, replacing built-in operators with
2648 function calls to user-defined operators, where appropriate, and,
2649 when DEPROCEDURE_P is non-zero, converting function-valued variables
2650 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2651 are as in ada_resolve, above. */
2653 static struct value *
2654 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2655 struct type *context_type)
2659 struct expression *exp; /* Convenience: == *expp. */
2660 enum exp_opcode op = (*expp)->elts[pc].opcode;
2661 struct value **argvec; /* Vector of operand types (alloca'ed). */
2662 int nargs; /* Number of operands. */
2669 /* Pass one: resolve operands, saving their types and updating *pos,
2674 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2675 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2680 resolve_subexp (expp, pos, 0, NULL);
2682 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2687 resolve_subexp (expp, pos, 0, NULL);
2692 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2695 case OP_ATR_MODULUS:
2705 case TERNOP_IN_RANGE:
2706 case BINOP_IN_BOUNDS:
2712 case OP_DISCRETE_RANGE:
2714 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2723 arg1 = resolve_subexp (expp, pos, 0, NULL);
2725 resolve_subexp (expp, pos, 1, NULL);
2727 resolve_subexp (expp, pos, 1, value_type (arg1));
2744 case BINOP_LOGICAL_AND:
2745 case BINOP_LOGICAL_OR:
2746 case BINOP_BITWISE_AND:
2747 case BINOP_BITWISE_IOR:
2748 case BINOP_BITWISE_XOR:
2751 case BINOP_NOTEQUAL:
2758 case BINOP_SUBSCRIPT:
2766 case UNOP_LOGICAL_NOT:
2782 case OP_INTERNALVAR:
2792 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2795 case STRUCTOP_STRUCT:
2796 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2809 error (_("Unexpected operator during name resolution"));
2812 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2813 for (i = 0; i < nargs; i += 1)
2814 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2818 /* Pass two: perform any resolution on principal operator. */
2825 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2827 struct ada_symbol_info *candidates;
2831 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2832 (exp->elts[pc + 2].symbol),
2833 exp->elts[pc + 1].block, VAR_DOMAIN,
2836 if (n_candidates > 1)
2838 /* Types tend to get re-introduced locally, so if there
2839 are any local symbols that are not types, first filter
2842 for (j = 0; j < n_candidates; j += 1)
2843 switch (SYMBOL_CLASS (candidates[j].sym))
2849 case LOC_REGPARM_ADDR:
2853 case LOC_BASEREG_ARG:
2855 case LOC_COMPUTED_ARG:
2861 if (j < n_candidates)
2864 while (j < n_candidates)
2866 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2868 candidates[j] = candidates[n_candidates - 1];
2877 if (n_candidates == 0)
2878 error (_("No definition found for %s"),
2879 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2880 else if (n_candidates == 1)
2882 else if (deprocedure_p
2883 && !is_nonfunction (candidates, n_candidates))
2885 i = ada_resolve_function
2886 (candidates, n_candidates, NULL, 0,
2887 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2890 error (_("Could not find a match for %s"),
2891 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2895 printf_filtered (_("Multiple matches for %s\n"),
2896 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2897 user_select_syms (candidates, n_candidates, 1);
2901 exp->elts[pc + 1].block = candidates[i].block;
2902 exp->elts[pc + 2].symbol = candidates[i].sym;
2903 if (innermost_block == NULL
2904 || contained_in (candidates[i].block, innermost_block))
2905 innermost_block = candidates[i].block;
2909 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2912 replace_operator_with_call (expp, pc, 0, 0,
2913 exp->elts[pc + 2].symbol,
2914 exp->elts[pc + 1].block);
2921 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2922 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2924 struct ada_symbol_info *candidates;
2928 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2929 (exp->elts[pc + 5].symbol),
2930 exp->elts[pc + 4].block, VAR_DOMAIN,
2932 if (n_candidates == 1)
2936 i = ada_resolve_function
2937 (candidates, n_candidates,
2939 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2942 error (_("Could not find a match for %s"),
2943 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2946 exp->elts[pc + 4].block = candidates[i].block;
2947 exp->elts[pc + 5].symbol = candidates[i].sym;
2948 if (innermost_block == NULL
2949 || contained_in (candidates[i].block, innermost_block))
2950 innermost_block = candidates[i].block;
2961 case BINOP_BITWISE_AND:
2962 case BINOP_BITWISE_IOR:
2963 case BINOP_BITWISE_XOR:
2965 case BINOP_NOTEQUAL:
2973 case UNOP_LOGICAL_NOT:
2975 if (possible_user_operator_p (op, argvec))
2977 struct ada_symbol_info *candidates;
2981 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2982 (struct block *) NULL, VAR_DOMAIN,
2984 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2985 ada_decoded_op_name (op), NULL);
2989 replace_operator_with_call (expp, pc, nargs, 1,
2990 candidates[i].sym, candidates[i].block);
3000 return evaluate_subexp_type (exp, pos);
3003 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3004 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3005 a non-pointer. A type of 'void' (which is never a valid expression type)
3006 by convention matches anything. */
3007 /* The term "match" here is rather loose. The match is heuristic and
3008 liberal. FIXME: TOO liberal, in fact. */
3011 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3013 ftype = ada_check_typedef (ftype);
3014 atype = ada_check_typedef (atype);
3016 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3017 ftype = TYPE_TARGET_TYPE (ftype);
3018 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3019 atype = TYPE_TARGET_TYPE (atype);
3021 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3022 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3025 switch (TYPE_CODE (ftype))
3030 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3031 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3032 TYPE_TARGET_TYPE (atype), 0);
3035 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3037 case TYPE_CODE_ENUM:
3038 case TYPE_CODE_RANGE:
3039 switch (TYPE_CODE (atype))
3042 case TYPE_CODE_ENUM:
3043 case TYPE_CODE_RANGE:
3049 case TYPE_CODE_ARRAY:
3050 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3051 || ada_is_array_descriptor_type (atype));
3053 case TYPE_CODE_STRUCT:
3054 if (ada_is_array_descriptor_type (ftype))
3055 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3056 || ada_is_array_descriptor_type (atype));
3058 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3059 && !ada_is_array_descriptor_type (atype));
3061 case TYPE_CODE_UNION:
3063 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3067 /* Return non-zero if the formals of FUNC "sufficiently match" the
3068 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3069 may also be an enumeral, in which case it is treated as a 0-
3070 argument function. */
3073 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3076 struct type *func_type = SYMBOL_TYPE (func);
3078 if (SYMBOL_CLASS (func) == LOC_CONST
3079 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3080 return (n_actuals == 0);
3081 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3084 if (TYPE_NFIELDS (func_type) != n_actuals)
3087 for (i = 0; i < n_actuals; i += 1)
3089 if (actuals[i] == NULL)
3093 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3094 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3096 if (!ada_type_match (ftype, atype, 1))
3103 /* False iff function type FUNC_TYPE definitely does not produce a value
3104 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3105 FUNC_TYPE is not a valid function type with a non-null return type
3106 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3109 return_match (struct type *func_type, struct type *context_type)
3111 struct type *return_type;
3113 if (func_type == NULL)
3116 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3117 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3119 return_type = base_type (func_type);
3120 if (return_type == NULL)
3123 context_type = base_type (context_type);
3125 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3126 return context_type == NULL || return_type == context_type;
3127 else if (context_type == NULL)
3128 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3130 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3134 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3135 function (if any) that matches the types of the NARGS arguments in
3136 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3137 that returns that type, then eliminate matches that don't. If
3138 CONTEXT_TYPE is void and there is at least one match that does not
3139 return void, eliminate all matches that do.
3141 Asks the user if there is more than one match remaining. Returns -1
3142 if there is no such symbol or none is selected. NAME is used
3143 solely for messages. May re-arrange and modify SYMS in
3144 the process; the index returned is for the modified vector. */
3147 ada_resolve_function (struct ada_symbol_info syms[],
3148 int nsyms, struct value **args, int nargs,
3149 const char *name, struct type *context_type)
3152 int m; /* Number of hits */
3153 struct type *fallback;
3154 struct type *return_type;
3156 return_type = context_type;
3157 if (context_type == NULL)
3158 fallback = builtin_type_void;
3165 for (k = 0; k < nsyms; k += 1)
3167 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3169 if (ada_args_match (syms[k].sym, args, nargs)
3170 && return_match (type, return_type))
3176 if (m > 0 || return_type == fallback)
3179 return_type = fallback;
3186 printf_filtered (_("Multiple matches for %s\n"), name);
3187 user_select_syms (syms, m, 1);
3193 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3194 in a listing of choices during disambiguation (see sort_choices, below).
3195 The idea is that overloadings of a subprogram name from the
3196 same package should sort in their source order. We settle for ordering
3197 such symbols by their trailing number (__N or $N). */
3200 encoded_ordered_before (char *N0, char *N1)
3204 else if (N0 == NULL)
3209 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3211 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3213 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3214 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3218 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3221 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3223 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3224 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3226 return (strcmp (N0, N1) < 0);
3230 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3234 sort_choices (struct ada_symbol_info syms[], int nsyms)
3237 for (i = 1; i < nsyms; i += 1)
3239 struct ada_symbol_info sym = syms[i];
3242 for (j = i - 1; j >= 0; j -= 1)
3244 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3245 SYMBOL_LINKAGE_NAME (sym.sym)))
3247 syms[j + 1] = syms[j];
3253 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3254 by asking the user (if necessary), returning the number selected,
3255 and setting the first elements of SYMS items. Error if no symbols
3258 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3259 to be re-integrated one of these days. */
3262 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3265 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3267 int first_choice = (max_results == 1) ? 1 : 2;
3269 if (max_results < 1)
3270 error (_("Request to select 0 symbols!"));
3274 printf_unfiltered (_("[0] cancel\n"));
3275 if (max_results > 1)
3276 printf_unfiltered (_("[1] all\n"));
3278 sort_choices (syms, nsyms);
3280 for (i = 0; i < nsyms; i += 1)
3282 if (syms[i].sym == NULL)
3285 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3287 struct symtab_and_line sal =
3288 find_function_start_sal (syms[i].sym, 1);
3289 if (sal.symtab == NULL)
3290 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3292 SYMBOL_PRINT_NAME (syms[i].sym),
3295 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3296 SYMBOL_PRINT_NAME (syms[i].sym),
3297 sal.symtab->filename, sal.line);
3303 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3304 && SYMBOL_TYPE (syms[i].sym) != NULL
3305 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3306 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3308 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3309 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3311 SYMBOL_PRINT_NAME (syms[i].sym),
3312 symtab->filename, SYMBOL_LINE (syms[i].sym));
3313 else if (is_enumeral
3314 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3316 printf_unfiltered (("[%d] "), i + first_choice);
3317 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3319 printf_unfiltered (_("'(%s) (enumeral)\n"),
3320 SYMBOL_PRINT_NAME (syms[i].sym));
3322 else if (symtab != NULL)
3323 printf_unfiltered (is_enumeral
3324 ? _("[%d] %s in %s (enumeral)\n")
3325 : _("[%d] %s at %s:?\n"),
3327 SYMBOL_PRINT_NAME (syms[i].sym),
3330 printf_unfiltered (is_enumeral
3331 ? _("[%d] %s (enumeral)\n")
3332 : _("[%d] %s at ?\n"),
3334 SYMBOL_PRINT_NAME (syms[i].sym));
3338 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3341 for (i = 0; i < n_chosen; i += 1)
3342 syms[i] = syms[chosen[i]];
3347 /* Read and validate a set of numeric choices from the user in the
3348 range 0 .. N_CHOICES-1. Place the results in increasing
3349 order in CHOICES[0 .. N-1], and return N.
3351 The user types choices as a sequence of numbers on one line
3352 separated by blanks, encoding them as follows:
3354 + A choice of 0 means to cancel the selection, throwing an error.
3355 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3356 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3358 The user is not allowed to choose more than MAX_RESULTS values.
3360 ANNOTATION_SUFFIX, if present, is used to annotate the input
3361 prompts (for use with the -f switch). */
3364 get_selections (int *choices, int n_choices, int max_results,
3365 int is_all_choice, char *annotation_suffix)
3370 int first_choice = is_all_choice ? 2 : 1;
3372 prompt = getenv ("PS2");
3376 printf_unfiltered (("%s "), prompt);
3377 gdb_flush (gdb_stdout);
3379 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3382 error_no_arg (_("one or more choice numbers"));
3386 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3387 order, as given in args. Choices are validated. */
3393 while (isspace (*args))
3395 if (*args == '\0' && n_chosen == 0)
3396 error_no_arg (_("one or more choice numbers"));
3397 else if (*args == '\0')
3400 choice = strtol (args, &args2, 10);
3401 if (args == args2 || choice < 0
3402 || choice > n_choices + first_choice - 1)
3403 error (_("Argument must be choice number"));
3407 error (_("cancelled"));
3409 if (choice < first_choice)
3411 n_chosen = n_choices;
3412 for (j = 0; j < n_choices; j += 1)
3416 choice -= first_choice;
3418 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3422 if (j < 0 || choice != choices[j])
3425 for (k = n_chosen - 1; k > j; k -= 1)
3426 choices[k + 1] = choices[k];
3427 choices[j + 1] = choice;
3432 if (n_chosen > max_results)
3433 error (_("Select no more than %d of the above"), max_results);
3438 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3439 on the function identified by SYM and BLOCK, and taking NARGS
3440 arguments. Update *EXPP as needed to hold more space. */
3443 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3444 int oplen, struct symbol *sym,
3445 struct block *block)
3447 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3448 symbol, -oplen for operator being replaced). */
3449 struct expression *newexp = (struct expression *)
3450 xmalloc (sizeof (struct expression)
3451 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3452 struct expression *exp = *expp;
3454 newexp->nelts = exp->nelts + 7 - oplen;
3455 newexp->language_defn = exp->language_defn;
3456 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3457 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3458 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3460 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3461 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3463 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3464 newexp->elts[pc + 4].block = block;
3465 newexp->elts[pc + 5].symbol = sym;
3471 /* Type-class predicates */
3473 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3477 numeric_type_p (struct type *type)
3483 switch (TYPE_CODE (type))
3488 case TYPE_CODE_RANGE:
3489 return (type == TYPE_TARGET_TYPE (type)
3490 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3497 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3500 integer_type_p (struct type *type)
3506 switch (TYPE_CODE (type))
3510 case TYPE_CODE_RANGE:
3511 return (type == TYPE_TARGET_TYPE (type)
3512 || integer_type_p (TYPE_TARGET_TYPE (type)));
3519 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3522 scalar_type_p (struct type *type)
3528 switch (TYPE_CODE (type))
3531 case TYPE_CODE_RANGE:
3532 case TYPE_CODE_ENUM:
3541 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3544 discrete_type_p (struct type *type)
3550 switch (TYPE_CODE (type))
3553 case TYPE_CODE_RANGE:
3554 case TYPE_CODE_ENUM:
3562 /* Returns non-zero if OP with operands in the vector ARGS could be
3563 a user-defined function. Errs on the side of pre-defined operators
3564 (i.e., result 0). */
3567 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3569 struct type *type0 =
3570 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3571 struct type *type1 =
3572 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3586 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3590 case BINOP_BITWISE_AND:
3591 case BINOP_BITWISE_IOR:
3592 case BINOP_BITWISE_XOR:
3593 return (!(integer_type_p (type0) && integer_type_p (type1)));
3596 case BINOP_NOTEQUAL:
3601 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3604 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3607 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3611 case UNOP_LOGICAL_NOT:
3613 return (!numeric_type_p (type0));
3622 1. In the following, we assume that a renaming type's name may
3623 have an ___XD suffix. It would be nice if this went away at some
3625 2. We handle both the (old) purely type-based representation of
3626 renamings and the (new) variable-based encoding. At some point,
3627 it is devoutly to be hoped that the former goes away
3628 (FIXME: hilfinger-2007-07-09).
3629 3. Subprogram renamings are not implemented, although the XRS
3630 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3632 /* If SYM encodes a renaming,
3634 <renaming> renames <renamed entity>,
3636 sets *LEN to the length of the renamed entity's name,
3637 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3638 the string describing the subcomponent selected from the renamed
3639 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3640 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3641 are undefined). Otherwise, returns a value indicating the category
3642 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3643 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3644 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3645 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3646 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3647 may be NULL, in which case they are not assigned.
3649 [Currently, however, GCC does not generate subprogram renamings.] */
3651 enum ada_renaming_category
3652 ada_parse_renaming (struct symbol *sym,
3653 const char **renamed_entity, int *len,
3654 const char **renaming_expr)
3656 enum ada_renaming_category kind;
3661 return ADA_NOT_RENAMING;
3662 switch (SYMBOL_CLASS (sym))
3665 return ADA_NOT_RENAMING;
3667 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3668 renamed_entity, len, renaming_expr);
3672 case LOC_OPTIMIZED_OUT:
3673 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3675 return ADA_NOT_RENAMING;
3679 kind = ADA_OBJECT_RENAMING;
3683 kind = ADA_EXCEPTION_RENAMING;
3687 kind = ADA_PACKAGE_RENAMING;
3691 kind = ADA_SUBPROGRAM_RENAMING;
3695 return ADA_NOT_RENAMING;
3699 if (renamed_entity != NULL)
3700 *renamed_entity = info;
3701 suffix = strstr (info, "___XE");
3702 if (suffix == NULL || suffix == info)
3703 return ADA_NOT_RENAMING;
3705 *len = strlen (info) - strlen (suffix);
3707 if (renaming_expr != NULL)
3708 *renaming_expr = suffix;
3712 /* Assuming TYPE encodes a renaming according to the old encoding in
3713 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3714 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3715 ADA_NOT_RENAMING otherwise. */
3716 static enum ada_renaming_category
3717 parse_old_style_renaming (struct type *type,
3718 const char **renamed_entity, int *len,
3719 const char **renaming_expr)
3721 enum ada_renaming_category kind;
3726 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3727 || TYPE_NFIELDS (type) != 1)
3728 return ADA_NOT_RENAMING;
3730 name = type_name_no_tag (type);
3732 return ADA_NOT_RENAMING;
3734 name = strstr (name, "___XR");
3736 return ADA_NOT_RENAMING;
3741 kind = ADA_OBJECT_RENAMING;
3744 kind = ADA_EXCEPTION_RENAMING;
3747 kind = ADA_PACKAGE_RENAMING;
3750 kind = ADA_SUBPROGRAM_RENAMING;
3753 return ADA_NOT_RENAMING;
3756 info = TYPE_FIELD_NAME (type, 0);
3758 return ADA_NOT_RENAMING;
3759 if (renamed_entity != NULL)
3760 *renamed_entity = info;
3761 suffix = strstr (info, "___XE");
3762 if (renaming_expr != NULL)
3763 *renaming_expr = suffix + 5;
3764 if (suffix == NULL || suffix == info)
3765 return ADA_NOT_RENAMING;
3767 *len = suffix - info;
3773 /* Evaluation: Function Calls */
3775 /* Return an lvalue containing the value VAL. This is the identity on
3776 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3777 on the stack, using and updating *SP as the stack pointer, and
3778 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3780 static struct value *
3781 ensure_lval (struct value *val, CORE_ADDR *sp)
3783 if (! VALUE_LVAL (val))
3785 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3787 /* The following is taken from the structure-return code in
3788 call_function_by_hand. FIXME: Therefore, some refactoring seems
3790 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3792 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3793 reserving sufficient space. */
3795 if (gdbarch_frame_align_p (current_gdbarch))
3796 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3797 VALUE_ADDRESS (val) = *sp;
3801 /* Stack grows upward. Align the frame, allocate space, and
3802 then again, re-align the frame. */
3803 if (gdbarch_frame_align_p (current_gdbarch))
3804 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3805 VALUE_ADDRESS (val) = *sp;
3807 if (gdbarch_frame_align_p (current_gdbarch))
3808 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3811 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3817 /* Return the value ACTUAL, converted to be an appropriate value for a
3818 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3819 allocating any necessary descriptors (fat pointers), or copies of
3820 values not residing in memory, updating it as needed. */
3822 static struct value *
3823 convert_actual (struct value *actual, struct type *formal_type0,
3826 struct type *actual_type = ada_check_typedef (value_type (actual));
3827 struct type *formal_type = ada_check_typedef (formal_type0);
3828 struct type *formal_target =
3829 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3830 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3831 struct type *actual_target =
3832 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3833 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3835 if (ada_is_array_descriptor_type (formal_target)
3836 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3837 return make_array_descriptor (formal_type, actual, sp);
3838 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3840 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3841 && ada_is_array_descriptor_type (actual_target))
3842 return desc_data (actual);
3843 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3845 if (VALUE_LVAL (actual) != lval_memory)
3848 actual_type = ada_check_typedef (value_type (actual));
3849 val = allocate_value (actual_type);
3850 memcpy ((char *) value_contents_raw (val),
3851 (char *) value_contents (actual),
3852 TYPE_LENGTH (actual_type));
3853 actual = ensure_lval (val, sp);
3855 return value_addr (actual);
3858 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3859 return ada_value_ind (actual);
3865 /* Push a descriptor of type TYPE for array value ARR on the stack at
3866 *SP, updating *SP to reflect the new descriptor. Return either
3867 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3868 to-descriptor type rather than a descriptor type), a struct value *
3869 representing a pointer to this descriptor. */
3871 static struct value *
3872 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3874 struct type *bounds_type = desc_bounds_type (type);
3875 struct type *desc_type = desc_base_type (type);
3876 struct value *descriptor = allocate_value (desc_type);
3877 struct value *bounds = allocate_value (bounds_type);
3880 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3882 modify_general_field (value_contents_writeable (bounds),
3883 value_as_long (ada_array_bound (arr, i, 0)),
3884 desc_bound_bitpos (bounds_type, i, 0),
3885 desc_bound_bitsize (bounds_type, i, 0));
3886 modify_general_field (value_contents_writeable (bounds),
3887 value_as_long (ada_array_bound (arr, i, 1)),
3888 desc_bound_bitpos (bounds_type, i, 1),
3889 desc_bound_bitsize (bounds_type, i, 1));
3892 bounds = ensure_lval (bounds, sp);
3894 modify_general_field (value_contents_writeable (descriptor),
3895 VALUE_ADDRESS (ensure_lval (arr, sp)),
3896 fat_pntr_data_bitpos (desc_type),
3897 fat_pntr_data_bitsize (desc_type));
3899 modify_general_field (value_contents_writeable (descriptor),
3900 VALUE_ADDRESS (bounds),
3901 fat_pntr_bounds_bitpos (desc_type),
3902 fat_pntr_bounds_bitsize (desc_type));
3904 descriptor = ensure_lval (descriptor, sp);
3906 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3907 return value_addr (descriptor);
3913 /* Assuming a dummy frame has been established on the target, perform any
3914 conversions needed for calling function FUNC on the NARGS actual
3915 parameters in ARGS, other than standard C conversions. Does
3916 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3917 does not match the number of arguments expected. Use *SP as a
3918 stack pointer for additional data that must be pushed, updating its
3922 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3927 if (TYPE_NFIELDS (value_type (func)) == 0
3928 || nargs != TYPE_NFIELDS (value_type (func)))
3931 for (i = 0; i < nargs; i += 1)
3933 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3936 /* Dummy definitions for an experimental caching module that is not
3937 * used in the public sources. */
3940 lookup_cached_symbol (const char *name, domain_enum namespace,
3941 struct symbol **sym, struct block **block,
3942 struct symtab **symtab)
3948 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3949 struct block *block, struct symtab *symtab)
3955 /* Return the result of a standard (literal, C-like) lookup of NAME in
3956 given DOMAIN, visible from lexical block BLOCK. */
3958 static struct symbol *
3959 standard_lookup (const char *name, const struct block *block,
3963 struct symtab *symtab;
3965 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3968 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3969 cache_symbol (name, domain, sym, block_found, symtab);
3974 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3975 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3976 since they contend in overloading in the same way. */
3978 is_nonfunction (struct ada_symbol_info syms[], int n)
3982 for (i = 0; i < n; i += 1)
3983 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3984 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3985 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3991 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3992 struct types. Otherwise, they may not. */
3995 equiv_types (struct type *type0, struct type *type1)
3999 if (type0 == NULL || type1 == NULL
4000 || TYPE_CODE (type0) != TYPE_CODE (type1))
4002 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4003 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4004 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4005 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4011 /* True iff SYM0 represents the same entity as SYM1, or one that is
4012 no more defined than that of SYM1. */
4015 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4019 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4020 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4023 switch (SYMBOL_CLASS (sym0))
4029 struct type *type0 = SYMBOL_TYPE (sym0);
4030 struct type *type1 = SYMBOL_TYPE (sym1);
4031 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4032 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4033 int len0 = strlen (name0);
4035 TYPE_CODE (type0) == TYPE_CODE (type1)
4036 && (equiv_types (type0, type1)
4037 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4038 && strncmp (name1 + len0, "___XV", 5) == 0));
4041 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4042 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4048 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4049 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4052 add_defn_to_vec (struct obstack *obstackp,
4054 struct block *block, struct symtab *symtab)
4058 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4060 /* Do not try to complete stub types, as the debugger is probably
4061 already scanning all symbols matching a certain name at the
4062 time when this function is called. Trying to replace the stub
4063 type by its associated full type will cause us to restart a scan
4064 which may lead to an infinite recursion. Instead, the client
4065 collecting the matching symbols will end up collecting several
4066 matches, with at least one of them complete. It can then filter
4067 out the stub ones if needed. */
4069 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4071 if (lesseq_defined_than (sym, prevDefns[i].sym))
4073 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4075 prevDefns[i].sym = sym;
4076 prevDefns[i].block = block;
4077 prevDefns[i].symtab = symtab;
4083 struct ada_symbol_info info;
4087 info.symtab = symtab;
4088 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4092 /* Number of ada_symbol_info structures currently collected in
4093 current vector in *OBSTACKP. */
4096 num_defns_collected (struct obstack *obstackp)
4098 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4101 /* Vector of ada_symbol_info structures currently collected in current
4102 vector in *OBSTACKP. If FINISH, close off the vector and return
4103 its final address. */
4105 static struct ada_symbol_info *
4106 defns_collected (struct obstack *obstackp, int finish)
4109 return obstack_finish (obstackp);
4111 return (struct ada_symbol_info *) obstack_base (obstackp);
4114 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4115 Check the global symbols if GLOBAL, the static symbols if not.
4116 Do wild-card match if WILD. */
4118 static struct partial_symbol *
4119 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4120 int global, domain_enum namespace, int wild)
4122 struct partial_symbol **start;
4123 int name_len = strlen (name);
4124 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4133 pst->objfile->global_psymbols.list + pst->globals_offset :
4134 pst->objfile->static_psymbols.list + pst->statics_offset);
4138 for (i = 0; i < length; i += 1)
4140 struct partial_symbol *psym = start[i];
4142 if (SYMBOL_DOMAIN (psym) == namespace
4143 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4157 int M = (U + i) >> 1;
4158 struct partial_symbol *psym = start[M];
4159 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4161 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4163 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4174 struct partial_symbol *psym = start[i];
4176 if (SYMBOL_DOMAIN (psym) == namespace)
4178 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4186 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4200 int M = (U + i) >> 1;
4201 struct partial_symbol *psym = start[M];
4202 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4204 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4206 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4217 struct partial_symbol *psym = start[i];
4219 if (SYMBOL_DOMAIN (psym) == namespace)
4223 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4226 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4228 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4238 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4248 /* Find a symbol table containing symbol SYM or NULL if none. */
4250 static struct symtab *
4251 symtab_for_sym (struct symbol *sym)
4254 struct objfile *objfile;
4256 struct symbol *tmp_sym;
4257 struct dict_iterator iter;
4260 ALL_PRIMARY_SYMTABS (objfile, s)
4262 switch (SYMBOL_CLASS (sym))
4270 case LOC_CONST_BYTES:
4271 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4272 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4274 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4275 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4281 switch (SYMBOL_CLASS (sym))
4287 case LOC_REGPARM_ADDR:
4292 case LOC_BASEREG_ARG:
4294 case LOC_COMPUTED_ARG:
4295 for (j = FIRST_LOCAL_BLOCK;
4296 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4298 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4299 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4310 /* Return a minimal symbol matching NAME according to Ada decoding
4311 rules. Returns NULL if there is no such minimal symbol. Names
4312 prefixed with "standard__" are handled specially: "standard__" is
4313 first stripped off, and only static and global symbols are searched. */
4315 struct minimal_symbol *
4316 ada_lookup_simple_minsym (const char *name)
4318 struct objfile *objfile;
4319 struct minimal_symbol *msymbol;
4322 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4324 name += sizeof ("standard__") - 1;
4328 wild_match = (strstr (name, "__") == NULL);
4330 ALL_MSYMBOLS (objfile, msymbol)
4332 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4333 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4340 /* For all subprograms that statically enclose the subprogram of the
4341 selected frame, add symbols matching identifier NAME in DOMAIN
4342 and their blocks to the list of data in OBSTACKP, as for
4343 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4347 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4348 const char *name, domain_enum namespace,
4353 /* True if TYPE is definitely an artificial type supplied to a symbol
4354 for which no debugging information was given in the symbol file. */
4357 is_nondebugging_type (struct type *type)
4359 char *name = ada_type_name (type);
4360 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4363 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4364 duplicate other symbols in the list (The only case I know of where
4365 this happens is when object files containing stabs-in-ecoff are
4366 linked with files containing ordinary ecoff debugging symbols (or no
4367 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4368 Returns the number of items in the modified list. */
4371 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4378 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4379 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4380 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4382 for (j = 0; j < nsyms; j += 1)
4385 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4386 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4387 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4388 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4389 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4390 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4393 for (k = i + 1; k < nsyms; k += 1)
4394 syms[k - 1] = syms[k];
4407 /* Given a type that corresponds to a renaming entity, use the type name
4408 to extract the scope (package name or function name, fully qualified,
4409 and following the GNAT encoding convention) where this renaming has been
4410 defined. The string returned needs to be deallocated after use. */
4413 xget_renaming_scope (struct type *renaming_type)
4415 /* The renaming types adhere to the following convention:
4416 <scope>__<rename>___<XR extension>.
4417 So, to extract the scope, we search for the "___XR" extension,
4418 and then backtrack until we find the first "__". */
4420 const char *name = type_name_no_tag (renaming_type);
4421 char *suffix = strstr (name, "___XR");
4426 /* Now, backtrack a bit until we find the first "__". Start looking
4427 at suffix - 3, as the <rename> part is at least one character long. */
4429 for (last = suffix - 3; last > name; last--)
4430 if (last[0] == '_' && last[1] == '_')
4433 /* Make a copy of scope and return it. */
4435 scope_len = last - name;
4436 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4438 strncpy (scope, name, scope_len);
4439 scope[scope_len] = '\0';
4444 /* Return nonzero if NAME corresponds to a package name. */
4447 is_package_name (const char *name)
4449 /* Here, We take advantage of the fact that no symbols are generated
4450 for packages, while symbols are generated for each function.
4451 So the condition for NAME represent a package becomes equivalent
4452 to NAME not existing in our list of symbols. There is only one
4453 small complication with library-level functions (see below). */
4457 /* If it is a function that has not been defined at library level,
4458 then we should be able to look it up in the symbols. */
4459 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4462 /* Library-level function names start with "_ada_". See if function
4463 "_ada_" followed by NAME can be found. */
4465 /* Do a quick check that NAME does not contain "__", since library-level
4466 functions names cannot contain "__" in them. */
4467 if (strstr (name, "__") != NULL)
4470 fun_name = xstrprintf ("_ada_%s", name);
4472 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4475 /* Return nonzero if SYM corresponds to a renaming entity that is
4476 not visible from FUNCTION_NAME. */
4479 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4483 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4486 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4488 make_cleanup (xfree, scope);
4490 /* If the rename has been defined in a package, then it is visible. */
4491 if (is_package_name (scope))
4494 /* Check that the rename is in the current function scope by checking
4495 that its name starts with SCOPE. */
4497 /* If the function name starts with "_ada_", it means that it is
4498 a library-level function. Strip this prefix before doing the
4499 comparison, as the encoding for the renaming does not contain
4501 if (strncmp (function_name, "_ada_", 5) == 0)
4504 return (strncmp (function_name, scope, strlen (scope)) != 0);
4507 /* Remove entries from SYMS that corresponds to a renaming entity that
4508 is not visible from the function associated with CURRENT_BLOCK or
4509 that is superfluous due to the presence of more specific renaming
4510 information. Places surviving symbols in the initial entries of
4511 SYMS and returns the number of surviving symbols.
4514 First, in cases where an object renaming is implemented as a
4515 reference variable, GNAT may produce both the actual reference
4516 variable and the renaming encoding. In this case, we discard the
4519 Second, GNAT emits a type following a specified encoding for each renaming
4520 entity. Unfortunately, STABS currently does not support the definition
4521 of types that are local to a given lexical block, so all renamings types
4522 are emitted at library level. As a consequence, if an application
4523 contains two renaming entities using the same name, and a user tries to
4524 print the value of one of these entities, the result of the ada symbol
4525 lookup will also contain the wrong renaming type.
4527 This function partially covers for this limitation by attempting to
4528 remove from the SYMS list renaming symbols that should be visible
4529 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4530 method with the current information available. The implementation
4531 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4533 - When the user tries to print a rename in a function while there
4534 is another rename entity defined in a package: Normally, the
4535 rename in the function has precedence over the rename in the
4536 package, so the latter should be removed from the list. This is
4537 currently not the case.
4539 - This function will incorrectly remove valid renames if
4540 the CURRENT_BLOCK corresponds to a function which symbol name
4541 has been changed by an "Export" pragma. As a consequence,
4542 the user will be unable to print such rename entities. */
4545 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4546 int nsyms, const struct block *current_block)
4548 struct symbol *current_function;
4549 char *current_function_name;
4551 int is_new_style_renaming;
4553 /* If there is both a renaming foo___XR... encoded as a variable and
4554 a simple variable foo in the same block, discard the latter.
4555 First, zero out such symbols, then compress. */
4556 is_new_style_renaming = 0;
4557 for (i = 0; i < nsyms; i += 1)
4559 struct symbol *sym = syms[i].sym;
4560 struct block *block = syms[i].block;
4564 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4566 name = SYMBOL_LINKAGE_NAME (sym);
4567 suffix = strstr (name, "___XR");
4571 int name_len = suffix - name;
4573 is_new_style_renaming = 1;
4574 for (j = 0; j < nsyms; j += 1)
4575 if (i != j && syms[j].sym != NULL
4576 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4578 && block == syms[j].block)
4582 if (is_new_style_renaming)
4586 for (j = k = 0; j < nsyms; j += 1)
4587 if (syms[j].sym != NULL)
4595 /* Extract the function name associated to CURRENT_BLOCK.
4596 Abort if unable to do so. */
4598 if (current_block == NULL)
4601 current_function = block_function (current_block);
4602 if (current_function == NULL)
4605 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4606 if (current_function_name == NULL)
4609 /* Check each of the symbols, and remove it from the list if it is
4610 a type corresponding to a renaming that is out of the scope of
4611 the current block. */
4616 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4617 == ADA_OBJECT_RENAMING
4618 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4621 for (j = i + 1; j < nsyms; j += 1)
4622 syms[j - 1] = syms[j];
4632 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4633 scope and in global scopes, returning the number of matches. Sets
4634 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4635 indicating the symbols found and the blocks and symbol tables (if
4636 any) in which they were found. This vector are transient---good only to
4637 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4638 symbol match within the nest of blocks whose innermost member is BLOCK0,
4639 is the one match returned (no other matches in that or
4640 enclosing blocks is returned). If there are any matches in or
4641 surrounding BLOCK0, then these alone are returned. Otherwise, the
4642 search extends to global and file-scope (static) symbol tables.
4643 Names prefixed with "standard__" are handled specially: "standard__"
4644 is first stripped off, and only static and global symbols are searched. */
4647 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4648 domain_enum namespace,
4649 struct ada_symbol_info **results)
4653 struct partial_symtab *ps;
4654 struct blockvector *bv;
4655 struct objfile *objfile;
4656 struct block *block;
4658 struct minimal_symbol *msymbol;
4664 obstack_free (&symbol_list_obstack, NULL);
4665 obstack_init (&symbol_list_obstack);
4669 /* Search specified block and its superiors. */
4671 wild_match = (strstr (name0, "__") == NULL);
4673 block = (struct block *) block0; /* FIXME: No cast ought to be
4674 needed, but adding const will
4675 have a cascade effect. */
4676 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4680 name = name0 + sizeof ("standard__") - 1;
4684 while (block != NULL)
4687 ada_add_block_symbols (&symbol_list_obstack, block, name,
4688 namespace, NULL, NULL, wild_match);
4690 /* If we found a non-function match, assume that's the one. */
4691 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4692 num_defns_collected (&symbol_list_obstack)))
4695 block = BLOCK_SUPERBLOCK (block);
4698 /* If no luck so far, try to find NAME as a local symbol in some lexically
4699 enclosing subprogram. */
4700 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4701 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4702 name, namespace, wild_match);
4704 /* If we found ANY matches among non-global symbols, we're done. */
4706 if (num_defns_collected (&symbol_list_obstack) > 0)
4710 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4713 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4717 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4718 tables, and psymtab's. */
4720 ALL_PRIMARY_SYMTABS (objfile, s)
4723 bv = BLOCKVECTOR (s);
4724 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4725 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4726 objfile, s, wild_match);
4729 if (namespace == VAR_DOMAIN)
4731 ALL_MSYMBOLS (objfile, msymbol)
4733 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4735 switch (MSYMBOL_TYPE (msymbol))
4737 case mst_solib_trampoline:
4740 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4743 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4745 bv = BLOCKVECTOR (s);
4746 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4747 ada_add_block_symbols (&symbol_list_obstack, block,
4748 SYMBOL_LINKAGE_NAME (msymbol),
4749 namespace, objfile, s, wild_match);
4751 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4753 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4754 ada_add_block_symbols (&symbol_list_obstack, block,
4755 SYMBOL_LINKAGE_NAME (msymbol),
4756 namespace, objfile, s,
4765 ALL_PSYMTABS (objfile, ps)
4769 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4771 s = PSYMTAB_TO_SYMTAB (ps);
4774 bv = BLOCKVECTOR (s);
4775 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4776 ada_add_block_symbols (&symbol_list_obstack, block, name,
4777 namespace, objfile, s, wild_match);
4781 /* Now add symbols from all per-file blocks if we've gotten no hits
4782 (Not strictly correct, but perhaps better than an error).
4783 Do the symtabs first, then check the psymtabs. */
4785 if (num_defns_collected (&symbol_list_obstack) == 0)
4788 ALL_PRIMARY_SYMTABS (objfile, s)
4791 bv = BLOCKVECTOR (s);
4792 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4793 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4794 objfile, s, wild_match);
4797 ALL_PSYMTABS (objfile, ps)
4801 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4803 s = PSYMTAB_TO_SYMTAB (ps);
4804 bv = BLOCKVECTOR (s);
4807 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4808 ada_add_block_symbols (&symbol_list_obstack, block, name,
4809 namespace, objfile, s, wild_match);
4815 ndefns = num_defns_collected (&symbol_list_obstack);
4816 *results = defns_collected (&symbol_list_obstack, 1);
4818 ndefns = remove_extra_symbols (*results, ndefns);
4821 cache_symbol (name0, namespace, NULL, NULL, NULL);
4823 if (ndefns == 1 && cacheIfUnique)
4824 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4825 (*results)[0].symtab);
4827 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4833 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4834 domain_enum namespace,
4835 struct block **block_found, struct symtab **symtab)
4837 struct ada_symbol_info *candidates;
4840 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4842 if (n_candidates == 0)
4845 if (block_found != NULL)
4846 *block_found = candidates[0].block;
4850 *symtab = candidates[0].symtab;
4851 if (*symtab == NULL && candidates[0].block != NULL)
4853 struct objfile *objfile;
4856 struct blockvector *bv;
4858 /* Search the list of symtabs for one which contains the
4859 address of the start of this block. */
4860 ALL_PRIMARY_SYMTABS (objfile, s)
4862 bv = BLOCKVECTOR (s);
4863 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4864 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4865 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4868 return fixup_symbol_section (candidates[0].sym, objfile);
4871 /* FIXME: brobecker/2004-11-12: I think that we should never
4872 reach this point. I don't see a reason why we would not
4873 find a symtab for a given block, so I suggest raising an
4874 internal_error exception here. Otherwise, we end up
4875 returning a symbol but no symtab, which certain parts of
4876 the code that rely (indirectly) on this function do not
4877 expect, eventually causing a SEGV. */
4878 return fixup_symbol_section (candidates[0].sym, NULL);
4881 return candidates[0].sym;
4884 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4885 scope and in global scopes, or NULL if none. NAME is folded and
4886 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4887 choosing the first symbol if there are multiple choices.
4888 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4889 table in which the symbol was found (in both cases, these
4890 assignments occur only if the pointers are non-null). */
4892 ada_lookup_symbol (const char *name, const struct block *block0,
4893 domain_enum namespace, int *is_a_field_of_this,
4894 struct symtab **symtab)
4896 if (is_a_field_of_this != NULL)
4897 *is_a_field_of_this = 0;
4900 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4901 block0, namespace, NULL, symtab);
4904 static struct symbol *
4905 ada_lookup_symbol_nonlocal (const char *name,
4906 const char *linkage_name,
4907 const struct block *block,
4908 const domain_enum domain, struct symtab **symtab)
4910 if (linkage_name == NULL)
4911 linkage_name = name;
4912 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4917 /* True iff STR is a possible encoded suffix of a normal Ada name
4918 that is to be ignored for matching purposes. Suffixes of parallel
4919 names (e.g., XVE) are not included here. Currently, the possible suffixes
4920 are given by either of the regular expression:
4922 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4924 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4925 _E[0-9]+[bs]$ [protected object entry suffixes]
4926 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4930 is_name_suffix (const char *str)
4933 const char *matching;
4934 const int len = strlen (str);
4936 /* (__[0-9]+)?\.[0-9]+ */
4938 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4941 while (isdigit (matching[0]))
4943 if (matching[0] == '\0')
4947 if (matching[0] == '.' || matching[0] == '$')
4950 while (isdigit (matching[0]))
4952 if (matching[0] == '\0')
4957 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4960 while (isdigit (matching[0]))
4962 if (matching[0] == '\0')
4967 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4968 with a N at the end. Unfortunately, the compiler uses the same
4969 convention for other internal types it creates. So treating
4970 all entity names that end with an "N" as a name suffix causes
4971 some regressions. For instance, consider the case of an enumerated
4972 type. To support the 'Image attribute, it creates an array whose
4974 Having a single character like this as a suffix carrying some
4975 information is a bit risky. Perhaps we should change the encoding
4976 to be something like "_N" instead. In the meantime, do not do
4977 the following check. */
4978 /* Protected Object Subprograms */
4979 if (len == 1 && str [0] == 'N')
4984 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4987 while (isdigit (matching[0]))
4989 if ((matching[0] == 'b' || matching[0] == 's')
4990 && matching [1] == '\0')
4994 /* ??? We should not modify STR directly, as we are doing below. This
4995 is fine in this case, but may become problematic later if we find
4996 that this alternative did not work, and want to try matching
4997 another one from the begining of STR. Since we modified it, we
4998 won't be able to find the begining of the string anymore! */
5002 while (str[0] != '_' && str[0] != '\0')
5004 if (str[0] != 'n' && str[0] != 'b')
5009 if (str[0] == '\000')
5013 if (str[1] != '_' || str[2] == '\000')
5017 if (strcmp (str + 3, "JM") == 0)
5019 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5020 the LJM suffix in favor of the JM one. But we will
5021 still accept LJM as a valid suffix for a reasonable
5022 amount of time, just to allow ourselves to debug programs
5023 compiled using an older version of GNAT. */
5024 if (strcmp (str + 3, "LJM") == 0)
5028 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5029 || str[4] == 'U' || str[4] == 'P')
5031 if (str[4] == 'R' && str[5] != 'T')
5035 if (!isdigit (str[2]))
5037 for (k = 3; str[k] != '\0'; k += 1)
5038 if (!isdigit (str[k]) && str[k] != '_')
5042 if (str[0] == '$' && isdigit (str[1]))
5044 for (k = 2; str[k] != '\0'; k += 1)
5045 if (!isdigit (str[k]) && str[k] != '_')
5052 /* Return nonzero if the given string starts with a dot ('.')
5053 followed by zero or more digits.
5055 Note: brobecker/2003-11-10: A forward declaration has not been
5056 added at the begining of this file yet, because this function
5057 is only used to work around a problem found during wild matching
5058 when trying to match minimal symbol names against symbol names
5059 obtained from dwarf-2 data. This function is therefore currently
5060 only used in wild_match() and is likely to be deleted when the
5061 problem in dwarf-2 is fixed. */
5064 is_dot_digits_suffix (const char *str)
5070 while (isdigit (str[0]))
5072 return (str[0] == '\0');
5075 /* Return non-zero if the string starting at NAME and ending before
5076 NAME_END contains no capital letters. */
5079 is_valid_name_for_wild_match (const char *name0)
5081 const char *decoded_name = ada_decode (name0);
5084 for (i=0; decoded_name[i] != '\0'; i++)
5085 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5091 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5092 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5093 informational suffixes of NAME (i.e., for which is_name_suffix is
5097 wild_match (const char *patn0, int patn_len, const char *name0)
5104 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5105 stored in the symbol table for nested function names is sometimes
5106 different from the name of the associated entity stored in
5107 the dwarf-2 data: This is the case for nested subprograms, where
5108 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5109 while the symbol name from the dwarf-2 data does not.
5111 Although the DWARF-2 standard documents that entity names stored
5112 in the dwarf-2 data should be identical to the name as seen in
5113 the source code, GNAT takes a different approach as we already use
5114 a special encoding mechanism to convey the information so that
5115 a C debugger can still use the information generated to debug
5116 Ada programs. A corollary is that the symbol names in the dwarf-2
5117 data should match the names found in the symbol table. I therefore
5118 consider this issue as a compiler defect.
5120 Until the compiler is properly fixed, we work-around the problem
5121 by ignoring such suffixes during the match. We do so by making
5122 a copy of PATN0 and NAME0, and then by stripping such a suffix
5123 if present. We then perform the match on the resulting strings. */
5126 name_len = strlen (name0);
5128 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5129 strcpy (name, name0);
5130 dot = strrchr (name, '.');
5131 if (dot != NULL && is_dot_digits_suffix (dot))
5134 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5135 strncpy (patn, patn0, patn_len);
5136 patn[patn_len] = '\0';
5137 dot = strrchr (patn, '.');
5138 if (dot != NULL && is_dot_digits_suffix (dot))
5141 patn_len = dot - patn;
5145 /* Now perform the wild match. */
5147 name_len = strlen (name);
5148 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5149 && strncmp (patn, name + 5, patn_len) == 0
5150 && is_name_suffix (name + patn_len + 5))
5153 while (name_len >= patn_len)
5155 if (strncmp (patn, name, patn_len) == 0
5156 && is_name_suffix (name + patn_len))
5157 return (name == name_start || is_valid_name_for_wild_match (name0));
5164 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5169 if (!islower (name[2]))
5176 if (!islower (name[1]))
5187 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5188 vector *defn_symbols, updating the list of symbols in OBSTACKP
5189 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5190 OBJFILE is the section containing BLOCK.
5191 SYMTAB is recorded with each symbol added. */
5194 ada_add_block_symbols (struct obstack *obstackp,
5195 struct block *block, const char *name,
5196 domain_enum domain, struct objfile *objfile,
5197 struct symtab *symtab, int wild)
5199 struct dict_iterator iter;
5200 int name_len = strlen (name);
5201 /* A matching argument symbol, if any. */
5202 struct symbol *arg_sym;
5203 /* Set true when we find a matching non-argument symbol. */
5212 ALL_BLOCK_SYMBOLS (block, iter, sym)
5214 if (SYMBOL_DOMAIN (sym) == domain
5215 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5217 switch (SYMBOL_CLASS (sym))
5223 case LOC_REGPARM_ADDR:
5224 case LOC_BASEREG_ARG:
5225 case LOC_COMPUTED_ARG:
5228 case LOC_UNRESOLVED:
5232 add_defn_to_vec (obstackp,
5233 fixup_symbol_section (sym, objfile),
5242 ALL_BLOCK_SYMBOLS (block, iter, sym)
5244 if (SYMBOL_DOMAIN (sym) == domain)
5246 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5248 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5250 switch (SYMBOL_CLASS (sym))
5256 case LOC_REGPARM_ADDR:
5257 case LOC_BASEREG_ARG:
5258 case LOC_COMPUTED_ARG:
5261 case LOC_UNRESOLVED:
5265 add_defn_to_vec (obstackp,
5266 fixup_symbol_section (sym, objfile),
5275 if (!found_sym && arg_sym != NULL)
5277 add_defn_to_vec (obstackp,
5278 fixup_symbol_section (arg_sym, objfile),
5287 ALL_BLOCK_SYMBOLS (block, iter, sym)
5289 if (SYMBOL_DOMAIN (sym) == domain)
5293 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5296 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5298 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5303 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5305 switch (SYMBOL_CLASS (sym))
5311 case LOC_REGPARM_ADDR:
5312 case LOC_BASEREG_ARG:
5313 case LOC_COMPUTED_ARG:
5316 case LOC_UNRESOLVED:
5320 add_defn_to_vec (obstackp,
5321 fixup_symbol_section (sym, objfile),
5329 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5330 They aren't parameters, right? */
5331 if (!found_sym && arg_sym != NULL)
5333 add_defn_to_vec (obstackp,
5334 fixup_symbol_section (arg_sym, objfile),
5342 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5343 for tagged types. */
5346 ada_is_dispatch_table_ptr_type (struct type *type)
5350 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5353 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5357 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5360 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5361 to be invisible to users. */
5364 ada_is_ignored_field (struct type *type, int field_num)
5366 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5369 /* Check the name of that field. */
5371 const char *name = TYPE_FIELD_NAME (type, field_num);
5373 /* Anonymous field names should not be printed.
5374 brobecker/2007-02-20: I don't think this can actually happen
5375 but we don't want to print the value of annonymous fields anyway. */
5379 /* A field named "_parent" is internally generated by GNAT for
5380 tagged types, and should not be printed either. */
5381 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5385 /* If this is the dispatch table of a tagged type, then ignore. */
5386 if (ada_is_tagged_type (type, 1)
5387 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5390 /* Not a special field, so it should not be ignored. */
5394 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5395 pointer or reference type whose ultimate target has a tag field. */
5398 ada_is_tagged_type (struct type *type, int refok)
5400 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5403 /* True iff TYPE represents the type of X'Tag */
5406 ada_is_tag_type (struct type *type)
5408 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5412 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5413 return (name != NULL
5414 && strcmp (name, "ada__tags__dispatch_table") == 0);
5418 /* The type of the tag on VAL. */
5421 ada_tag_type (struct value *val)
5423 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5426 /* The value of the tag on VAL. */
5429 ada_value_tag (struct value *val)
5431 return ada_value_struct_elt (val, "_tag", 0);
5434 /* The value of the tag on the object of type TYPE whose contents are
5435 saved at VALADDR, if it is non-null, or is at memory address
5438 static struct value *
5439 value_tag_from_contents_and_address (struct type *type,
5440 const gdb_byte *valaddr,
5443 int tag_byte_offset, dummy1, dummy2;
5444 struct type *tag_type;
5445 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5448 const gdb_byte *valaddr1 = ((valaddr == NULL)
5450 : valaddr + tag_byte_offset);
5451 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5453 return value_from_contents_and_address (tag_type, valaddr1, address1);
5458 static struct type *
5459 type_from_tag (struct value *tag)
5461 const char *type_name = ada_tag_name (tag);
5462 if (type_name != NULL)
5463 return ada_find_any_type (ada_encode (type_name));
5474 static int ada_tag_name_1 (void *);
5475 static int ada_tag_name_2 (struct tag_args *);
5477 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5478 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5479 The value stored in ARGS->name is valid until the next call to
5483 ada_tag_name_1 (void *args0)
5485 struct tag_args *args = (struct tag_args *) args0;
5486 static char name[1024];
5490 val = ada_value_struct_elt (args->tag, "tsd", 1);
5492 return ada_tag_name_2 (args);
5493 val = ada_value_struct_elt (val, "expanded_name", 1);
5496 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5497 for (p = name; *p != '\0'; p += 1)
5504 /* Utility function for ada_tag_name_1 that tries the second
5505 representation for the dispatch table (in which there is no
5506 explicit 'tsd' field in the referent of the tag pointer, and instead
5507 the tsd pointer is stored just before the dispatch table. */
5510 ada_tag_name_2 (struct tag_args *args)
5512 struct type *info_type;
5513 static char name[1024];
5515 struct value *val, *valp;
5518 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5519 if (info_type == NULL)
5521 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5522 valp = value_cast (info_type, args->tag);
5525 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5528 val = ada_value_struct_elt (val, "expanded_name", 1);
5531 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5532 for (p = name; *p != '\0'; p += 1)
5539 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5543 ada_tag_name (struct value *tag)
5545 struct tag_args args;
5546 if (!ada_is_tag_type (value_type (tag)))
5550 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5554 /* The parent type of TYPE, or NULL if none. */
5557 ada_parent_type (struct type *type)
5561 type = ada_check_typedef (type);
5563 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5566 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5567 if (ada_is_parent_field (type, i))
5568 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5573 /* True iff field number FIELD_NUM of structure type TYPE contains the
5574 parent-type (inherited) fields of a derived type. Assumes TYPE is
5575 a structure type with at least FIELD_NUM+1 fields. */
5578 ada_is_parent_field (struct type *type, int field_num)
5580 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5581 return (name != NULL
5582 && (strncmp (name, "PARENT", 6) == 0
5583 || strncmp (name, "_parent", 7) == 0));
5586 /* True iff field number FIELD_NUM of structure type TYPE is a
5587 transparent wrapper field (which should be silently traversed when doing
5588 field selection and flattened when printing). Assumes TYPE is a
5589 structure type with at least FIELD_NUM+1 fields. Such fields are always
5593 ada_is_wrapper_field (struct type *type, int field_num)
5595 const char *name = TYPE_FIELD_NAME (type, field_num);
5596 return (name != NULL
5597 && (strncmp (name, "PARENT", 6) == 0
5598 || strcmp (name, "REP") == 0
5599 || strncmp (name, "_parent", 7) == 0
5600 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5603 /* True iff field number FIELD_NUM of structure or union type TYPE
5604 is a variant wrapper. Assumes TYPE is a structure type with at least
5605 FIELD_NUM+1 fields. */
5608 ada_is_variant_part (struct type *type, int field_num)
5610 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5611 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5612 || (is_dynamic_field (type, field_num)
5613 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5614 == TYPE_CODE_UNION)));
5617 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5618 whose discriminants are contained in the record type OUTER_TYPE,
5619 returns the type of the controlling discriminant for the variant. */
5622 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5624 char *name = ada_variant_discrim_name (var_type);
5626 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5628 return builtin_type_int;
5633 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5634 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5635 represents a 'when others' clause; otherwise 0. */
5638 ada_is_others_clause (struct type *type, int field_num)
5640 const char *name = TYPE_FIELD_NAME (type, field_num);
5641 return (name != NULL && name[0] == 'O');
5644 /* Assuming that TYPE0 is the type of the variant part of a record,
5645 returns the name of the discriminant controlling the variant.
5646 The value is valid until the next call to ada_variant_discrim_name. */
5649 ada_variant_discrim_name (struct type *type0)
5651 static char *result = NULL;
5652 static size_t result_len = 0;
5655 const char *discrim_end;
5656 const char *discrim_start;
5658 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5659 type = TYPE_TARGET_TYPE (type0);
5663 name = ada_type_name (type);
5665 if (name == NULL || name[0] == '\000')
5668 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5671 if (strncmp (discrim_end, "___XVN", 6) == 0)
5674 if (discrim_end == name)
5677 for (discrim_start = discrim_end; discrim_start != name + 3;
5680 if (discrim_start == name + 1)
5682 if ((discrim_start > name + 3
5683 && strncmp (discrim_start - 3, "___", 3) == 0)
5684 || discrim_start[-1] == '.')
5688 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5689 strncpy (result, discrim_start, discrim_end - discrim_start);
5690 result[discrim_end - discrim_start] = '\0';
5694 /* Scan STR for a subtype-encoded number, beginning at position K.
5695 Put the position of the character just past the number scanned in
5696 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5697 Return 1 if there was a valid number at the given position, and 0
5698 otherwise. A "subtype-encoded" number consists of the absolute value
5699 in decimal, followed by the letter 'm' to indicate a negative number.
5700 Assumes 0m does not occur. */
5703 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5707 if (!isdigit (str[k]))
5710 /* Do it the hard way so as not to make any assumption about
5711 the relationship of unsigned long (%lu scan format code) and
5714 while (isdigit (str[k]))
5716 RU = RU * 10 + (str[k] - '0');
5723 *R = (-(LONGEST) (RU - 1)) - 1;
5729 /* NOTE on the above: Technically, C does not say what the results of
5730 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5731 number representable as a LONGEST (although either would probably work
5732 in most implementations). When RU>0, the locution in the then branch
5733 above is always equivalent to the negative of RU. */
5740 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5741 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5742 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5745 ada_in_variant (LONGEST val, struct type *type, int field_num)
5747 const char *name = TYPE_FIELD_NAME (type, field_num);
5760 if (!ada_scan_number (name, p + 1, &W, &p))
5769 if (!ada_scan_number (name, p + 1, &L, &p)
5770 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5772 if (val >= L && val <= U)
5784 /* FIXME: Lots of redundancy below. Try to consolidate. */
5786 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5787 ARG_TYPE, extract and return the value of one of its (non-static)
5788 fields. FIELDNO says which field. Differs from value_primitive_field
5789 only in that it can handle packed values of arbitrary type. */
5791 static struct value *
5792 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5793 struct type *arg_type)
5797 arg_type = ada_check_typedef (arg_type);
5798 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5800 /* Handle packed fields. */
5802 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5804 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5805 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5807 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5808 offset + bit_pos / 8,
5809 bit_pos % 8, bit_size, type);
5812 return value_primitive_field (arg1, offset, fieldno, arg_type);
5815 /* Find field with name NAME in object of type TYPE. If found,
5816 set the following for each argument that is non-null:
5817 - *FIELD_TYPE_P to the field's type;
5818 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5819 an object of that type;
5820 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5821 - *BIT_SIZE_P to its size in bits if the field is packed, and
5823 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5824 fields up to but not including the desired field, or by the total
5825 number of fields if not found. A NULL value of NAME never
5826 matches; the function just counts visible fields in this case.
5828 Returns 1 if found, 0 otherwise. */
5831 find_struct_field (char *name, struct type *type, int offset,
5832 struct type **field_type_p,
5833 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5838 type = ada_check_typedef (type);
5840 if (field_type_p != NULL)
5841 *field_type_p = NULL;
5842 if (byte_offset_p != NULL)
5844 if (bit_offset_p != NULL)
5846 if (bit_size_p != NULL)
5849 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5851 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5852 int fld_offset = offset + bit_pos / 8;
5853 char *t_field_name = TYPE_FIELD_NAME (type, i);
5855 if (t_field_name == NULL)
5858 else if (name != NULL && field_name_match (t_field_name, name))
5860 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5861 if (field_type_p != NULL)
5862 *field_type_p = TYPE_FIELD_TYPE (type, i);
5863 if (byte_offset_p != NULL)
5864 *byte_offset_p = fld_offset;
5865 if (bit_offset_p != NULL)
5866 *bit_offset_p = bit_pos % 8;
5867 if (bit_size_p != NULL)
5868 *bit_size_p = bit_size;
5871 else if (ada_is_wrapper_field (type, i))
5873 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5874 field_type_p, byte_offset_p, bit_offset_p,
5875 bit_size_p, index_p))
5878 else if (ada_is_variant_part (type, i))
5880 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5883 struct type *field_type
5884 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5886 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5888 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5890 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5891 field_type_p, byte_offset_p,
5892 bit_offset_p, bit_size_p, index_p))
5896 else if (index_p != NULL)
5902 /* Number of user-visible fields in record type TYPE. */
5905 num_visible_fields (struct type *type)
5909 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5913 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5914 and search in it assuming it has (class) type TYPE.
5915 If found, return value, else return NULL.
5917 Searches recursively through wrapper fields (e.g., '_parent'). */
5919 static struct value *
5920 ada_search_struct_field (char *name, struct value *arg, int offset,
5924 type = ada_check_typedef (type);
5926 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5928 char *t_field_name = TYPE_FIELD_NAME (type, i);
5930 if (t_field_name == NULL)
5933 else if (field_name_match (t_field_name, name))
5934 return ada_value_primitive_field (arg, offset, i, type);
5936 else if (ada_is_wrapper_field (type, i))
5938 struct value *v = /* Do not let indent join lines here. */
5939 ada_search_struct_field (name, arg,
5940 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5941 TYPE_FIELD_TYPE (type, i));
5946 else if (ada_is_variant_part (type, i))
5948 /* PNH: Do we ever get here? See find_struct_field. */
5950 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5951 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5953 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5955 struct value *v = ada_search_struct_field /* Force line break. */
5957 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5958 TYPE_FIELD_TYPE (field_type, j));
5967 static struct value *ada_index_struct_field_1 (int *, struct value *,
5968 int, struct type *);
5971 /* Return field #INDEX in ARG, where the index is that returned by
5972 * find_struct_field through its INDEX_P argument. Adjust the address
5973 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5974 * If found, return value, else return NULL. */
5976 static struct value *
5977 ada_index_struct_field (int index, struct value *arg, int offset,
5980 return ada_index_struct_field_1 (&index, arg, offset, type);
5984 /* Auxiliary function for ada_index_struct_field. Like
5985 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5988 static struct value *
5989 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5993 type = ada_check_typedef (type);
5995 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5997 if (TYPE_FIELD_NAME (type, i) == NULL)
5999 else if (ada_is_wrapper_field (type, i))
6001 struct value *v = /* Do not let indent join lines here. */
6002 ada_index_struct_field_1 (index_p, arg,
6003 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6004 TYPE_FIELD_TYPE (type, i));
6009 else if (ada_is_variant_part (type, i))
6011 /* PNH: Do we ever get here? See ada_search_struct_field,
6012 find_struct_field. */
6013 error (_("Cannot assign this kind of variant record"));
6015 else if (*index_p == 0)
6016 return ada_value_primitive_field (arg, offset, i, type);
6023 /* Given ARG, a value of type (pointer or reference to a)*
6024 structure/union, extract the component named NAME from the ultimate
6025 target structure/union and return it as a value with its
6026 appropriate type. If ARG is a pointer or reference and the field
6027 is not packed, returns a reference to the field, otherwise the
6028 value of the field (an lvalue if ARG is an lvalue).
6030 The routine searches for NAME among all members of the structure itself
6031 and (recursively) among all members of any wrapper members
6034 If NO_ERR, then simply return NULL in case of error, rather than
6038 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6040 struct type *t, *t1;
6044 t1 = t = ada_check_typedef (value_type (arg));
6045 if (TYPE_CODE (t) == TYPE_CODE_REF)
6047 t1 = TYPE_TARGET_TYPE (t);
6050 t1 = ada_check_typedef (t1);
6051 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6053 arg = coerce_ref (arg);
6058 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6060 t1 = TYPE_TARGET_TYPE (t);
6063 t1 = ada_check_typedef (t1);
6064 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6066 arg = value_ind (arg);
6073 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6077 v = ada_search_struct_field (name, arg, 0, t);
6080 int bit_offset, bit_size, byte_offset;
6081 struct type *field_type;
6084 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6085 address = value_as_address (arg);
6087 address = unpack_pointer (t, value_contents (arg));
6089 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6090 if (find_struct_field (name, t1, 0,
6091 &field_type, &byte_offset, &bit_offset,
6096 if (TYPE_CODE (t) == TYPE_CODE_REF)
6097 arg = ada_coerce_ref (arg);
6099 arg = ada_value_ind (arg);
6100 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6101 bit_offset, bit_size,
6105 v = value_from_pointer (lookup_reference_type (field_type),
6106 address + byte_offset);
6110 if (v != NULL || no_err)
6113 error (_("There is no member named %s."), name);
6119 error (_("Attempt to extract a component of a value that is not a record."));
6122 /* Given a type TYPE, look up the type of the component of type named NAME.
6123 If DISPP is non-null, add its byte displacement from the beginning of a
6124 structure (pointed to by a value) of type TYPE to *DISPP (does not
6125 work for packed fields).
6127 Matches any field whose name has NAME as a prefix, possibly
6130 TYPE can be either a struct or union. If REFOK, TYPE may also
6131 be a (pointer or reference)+ to a struct or union, and the
6132 ultimate target type will be searched.
6134 Looks recursively into variant clauses and parent types.
6136 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6137 TYPE is not a type of the right kind. */
6139 static struct type *
6140 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6141 int noerr, int *dispp)
6148 if (refok && type != NULL)
6151 type = ada_check_typedef (type);
6152 if (TYPE_CODE (type) != TYPE_CODE_PTR
6153 && TYPE_CODE (type) != TYPE_CODE_REF)
6155 type = TYPE_TARGET_TYPE (type);
6159 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6160 && TYPE_CODE (type) != TYPE_CODE_UNION))
6166 target_terminal_ours ();
6167 gdb_flush (gdb_stdout);
6169 error (_("Type (null) is not a structure or union type"));
6172 /* XXX: type_sprint */
6173 fprintf_unfiltered (gdb_stderr, _("Type "));
6174 type_print (type, "", gdb_stderr, -1);
6175 error (_(" is not a structure or union type"));
6180 type = to_static_fixed_type (type);
6182 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6184 char *t_field_name = TYPE_FIELD_NAME (type, i);
6188 if (t_field_name == NULL)
6191 else if (field_name_match (t_field_name, name))
6194 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6195 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6198 else if (ada_is_wrapper_field (type, i))
6201 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6206 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6211 else if (ada_is_variant_part (type, i))
6214 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6216 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6219 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6224 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6235 target_terminal_ours ();
6236 gdb_flush (gdb_stdout);
6239 /* XXX: type_sprint */
6240 fprintf_unfiltered (gdb_stderr, _("Type "));
6241 type_print (type, "", gdb_stderr, -1);
6242 error (_(" has no component named <null>"));
6246 /* XXX: type_sprint */
6247 fprintf_unfiltered (gdb_stderr, _("Type "));
6248 type_print (type, "", gdb_stderr, -1);
6249 error (_(" has no component named %s"), name);
6256 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6257 within a value of type OUTER_TYPE that is stored in GDB at
6258 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6259 numbering from 0) is applicable. Returns -1 if none are. */
6262 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6263 const gdb_byte *outer_valaddr)
6268 struct type *discrim_type;
6269 char *discrim_name = ada_variant_discrim_name (var_type);
6270 LONGEST discrim_val;
6274 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6275 if (discrim_type == NULL)
6277 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6280 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6282 if (ada_is_others_clause (var_type, i))
6284 else if (ada_in_variant (discrim_val, var_type, i))
6288 return others_clause;
6293 /* Dynamic-Sized Records */
6295 /* Strategy: The type ostensibly attached to a value with dynamic size
6296 (i.e., a size that is not statically recorded in the debugging
6297 data) does not accurately reflect the size or layout of the value.
6298 Our strategy is to convert these values to values with accurate,
6299 conventional types that are constructed on the fly. */
6301 /* There is a subtle and tricky problem here. In general, we cannot
6302 determine the size of dynamic records without its data. However,
6303 the 'struct value' data structure, which GDB uses to represent
6304 quantities in the inferior process (the target), requires the size
6305 of the type at the time of its allocation in order to reserve space
6306 for GDB's internal copy of the data. That's why the
6307 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6308 rather than struct value*s.
6310 However, GDB's internal history variables ($1, $2, etc.) are
6311 struct value*s containing internal copies of the data that are not, in
6312 general, the same as the data at their corresponding addresses in
6313 the target. Fortunately, the types we give to these values are all
6314 conventional, fixed-size types (as per the strategy described
6315 above), so that we don't usually have to perform the
6316 'to_fixed_xxx_type' conversions to look at their values.
6317 Unfortunately, there is one exception: if one of the internal
6318 history variables is an array whose elements are unconstrained
6319 records, then we will need to create distinct fixed types for each
6320 element selected. */
6322 /* The upshot of all of this is that many routines take a (type, host
6323 address, target address) triple as arguments to represent a value.
6324 The host address, if non-null, is supposed to contain an internal
6325 copy of the relevant data; otherwise, the program is to consult the
6326 target at the target address. */
6328 /* Assuming that VAL0 represents a pointer value, the result of
6329 dereferencing it. Differs from value_ind in its treatment of
6330 dynamic-sized types. */
6333 ada_value_ind (struct value *val0)
6335 struct value *val = unwrap_value (value_ind (val0));
6336 return ada_to_fixed_value (val);
6339 /* The value resulting from dereferencing any "reference to"
6340 qualifiers on VAL0. */
6342 static struct value *
6343 ada_coerce_ref (struct value *val0)
6345 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6347 struct value *val = val0;
6348 val = coerce_ref (val);
6349 val = unwrap_value (val);
6350 return ada_to_fixed_value (val);
6356 /* Return OFF rounded upward if necessary to a multiple of
6357 ALIGNMENT (a power of 2). */
6360 align_value (unsigned int off, unsigned int alignment)
6362 return (off + alignment - 1) & ~(alignment - 1);
6365 /* Return the bit alignment required for field #F of template type TYPE. */
6368 field_alignment (struct type *type, int f)
6370 const char *name = TYPE_FIELD_NAME (type, f);
6374 /* The field name should never be null, unless the debugging information
6375 is somehow malformed. In this case, we assume the field does not
6376 require any alignment. */
6380 len = strlen (name);
6382 if (!isdigit (name[len - 1]))
6385 if (isdigit (name[len - 2]))
6386 align_offset = len - 2;
6388 align_offset = len - 1;
6390 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6391 return TARGET_CHAR_BIT;
6393 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6396 /* Find a symbol named NAME. Ignores ambiguity. */
6399 ada_find_any_symbol (const char *name)
6403 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6404 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6407 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6411 /* Find a type named NAME. Ignores ambiguity. */
6414 ada_find_any_type (const char *name)
6416 struct symbol *sym = ada_find_any_symbol (name);
6419 return SYMBOL_TYPE (sym);
6424 /* Given NAME and an associated BLOCK, search all symbols for
6425 NAME suffixed with "___XR", which is the ``renaming'' symbol
6426 associated to NAME. Return this symbol if found, return
6430 ada_find_renaming_symbol (const char *name, struct block *block)
6434 sym = find_old_style_renaming_symbol (name, block);
6439 /* Not right yet. FIXME pnh 7/20/2007. */
6440 sym = ada_find_any_symbol (name);
6441 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6447 static struct symbol *
6448 find_old_style_renaming_symbol (const char *name, struct block *block)
6450 const struct symbol *function_sym = block_function (block);
6453 if (function_sym != NULL)
6455 /* If the symbol is defined inside a function, NAME is not fully
6456 qualified. This means we need to prepend the function name
6457 as well as adding the ``___XR'' suffix to build the name of
6458 the associated renaming symbol. */
6459 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6460 /* Function names sometimes contain suffixes used
6461 for instance to qualify nested subprograms. When building
6462 the XR type name, we need to make sure that this suffix is
6463 not included. So do not include any suffix in the function
6464 name length below. */
6465 const int function_name_len = ada_name_prefix_len (function_name);
6466 const int rename_len = function_name_len + 2 /* "__" */
6467 + strlen (name) + 6 /* "___XR\0" */ ;
6469 /* Strip the suffix if necessary. */
6470 function_name[function_name_len] = '\0';
6472 /* Library-level functions are a special case, as GNAT adds
6473 a ``_ada_'' prefix to the function name to avoid namespace
6474 pollution. However, the renaming symbols themselves do not
6475 have this prefix, so we need to skip this prefix if present. */
6476 if (function_name_len > 5 /* "_ada_" */
6477 && strstr (function_name, "_ada_") == function_name)
6478 function_name = function_name + 5;
6480 rename = (char *) alloca (rename_len * sizeof (char));
6481 sprintf (rename, "%s__%s___XR", function_name, name);
6485 const int rename_len = strlen (name) + 6;
6486 rename = (char *) alloca (rename_len * sizeof (char));
6487 sprintf (rename, "%s___XR", name);
6490 return ada_find_any_symbol (rename);
6493 /* Because of GNAT encoding conventions, several GDB symbols may match a
6494 given type name. If the type denoted by TYPE0 is to be preferred to
6495 that of TYPE1 for purposes of type printing, return non-zero;
6496 otherwise return 0. */
6499 ada_prefer_type (struct type *type0, struct type *type1)
6503 else if (type0 == NULL)
6505 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6507 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6509 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6511 else if (ada_is_packed_array_type (type0))
6513 else if (ada_is_array_descriptor_type (type0)
6514 && !ada_is_array_descriptor_type (type1))
6518 const char *type0_name = type_name_no_tag (type0);
6519 const char *type1_name = type_name_no_tag (type1);
6521 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6522 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6528 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6529 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6532 ada_type_name (struct type *type)
6536 else if (TYPE_NAME (type) != NULL)
6537 return TYPE_NAME (type);
6539 return TYPE_TAG_NAME (type);
6542 /* Find a parallel type to TYPE whose name is formed by appending
6543 SUFFIX to the name of TYPE. */
6546 ada_find_parallel_type (struct type *type, const char *suffix)
6549 static size_t name_len = 0;
6551 char *typename = ada_type_name (type);
6553 if (typename == NULL)
6556 len = strlen (typename);
6558 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6560 strcpy (name, typename);
6561 strcpy (name + len, suffix);
6563 return ada_find_any_type (name);
6567 /* If TYPE is a variable-size record type, return the corresponding template
6568 type describing its fields. Otherwise, return NULL. */
6570 static struct type *
6571 dynamic_template_type (struct type *type)
6573 type = ada_check_typedef (type);
6575 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6576 || ada_type_name (type) == NULL)
6580 int len = strlen (ada_type_name (type));
6581 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6584 return ada_find_parallel_type (type, "___XVE");
6588 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6589 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6592 is_dynamic_field (struct type *templ_type, int field_num)
6594 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6596 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6597 && strstr (name, "___XVL") != NULL;
6600 /* The index of the variant field of TYPE, or -1 if TYPE does not
6601 represent a variant record type. */
6604 variant_field_index (struct type *type)
6608 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6611 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6613 if (ada_is_variant_part (type, f))
6619 /* A record type with no fields. */
6621 static struct type *
6622 empty_record (struct objfile *objfile)
6624 struct type *type = alloc_type (objfile);
6625 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6626 TYPE_NFIELDS (type) = 0;
6627 TYPE_FIELDS (type) = NULL;
6628 TYPE_NAME (type) = "<empty>";
6629 TYPE_TAG_NAME (type) = NULL;
6630 TYPE_FLAGS (type) = 0;
6631 TYPE_LENGTH (type) = 0;
6635 /* An ordinary record type (with fixed-length fields) that describes
6636 the value of type TYPE at VALADDR or ADDRESS (see comments at
6637 the beginning of this section) VAL according to GNAT conventions.
6638 DVAL0 should describe the (portion of a) record that contains any
6639 necessary discriminants. It should be NULL if value_type (VAL) is
6640 an outer-level type (i.e., as opposed to a branch of a variant.) A
6641 variant field (unless unchecked) is replaced by a particular branch
6644 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6645 length are not statically known are discarded. As a consequence,
6646 VALADDR, ADDRESS and DVAL0 are ignored.
6648 NOTE: Limitations: For now, we assume that dynamic fields and
6649 variants occupy whole numbers of bytes. However, they need not be
6653 ada_template_to_fixed_record_type_1 (struct type *type,
6654 const gdb_byte *valaddr,
6655 CORE_ADDR address, struct value *dval0,
6656 int keep_dynamic_fields)
6658 struct value *mark = value_mark ();
6661 int nfields, bit_len;
6664 int fld_bit_len, bit_incr;
6667 /* Compute the number of fields in this record type that are going
6668 to be processed: unless keep_dynamic_fields, this includes only
6669 fields whose position and length are static will be processed. */
6670 if (keep_dynamic_fields)
6671 nfields = TYPE_NFIELDS (type);
6675 while (nfields < TYPE_NFIELDS (type)
6676 && !ada_is_variant_part (type, nfields)
6677 && !is_dynamic_field (type, nfields))
6681 rtype = alloc_type (TYPE_OBJFILE (type));
6682 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6683 INIT_CPLUS_SPECIFIC (rtype);
6684 TYPE_NFIELDS (rtype) = nfields;
6685 TYPE_FIELDS (rtype) = (struct field *)
6686 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6687 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6688 TYPE_NAME (rtype) = ada_type_name (type);
6689 TYPE_TAG_NAME (rtype) = NULL;
6690 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6696 for (f = 0; f < nfields; f += 1)
6698 off = align_value (off, field_alignment (type, f))
6699 + TYPE_FIELD_BITPOS (type, f);
6700 TYPE_FIELD_BITPOS (rtype, f) = off;
6701 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6703 if (ada_is_variant_part (type, f))
6706 fld_bit_len = bit_incr = 0;
6708 else if (is_dynamic_field (type, f))
6711 dval = value_from_contents_and_address (rtype, valaddr, address);
6715 /* Get the fixed type of the field. Note that, in this case, we
6716 do not want to get the real type out of the tag: if the current
6717 field is the parent part of a tagged record, we will get the
6718 tag of the object. Clearly wrong: the real type of the parent
6719 is not the real type of the child. We would end up in an infinite
6721 TYPE_FIELD_TYPE (rtype, f) =
6724 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6725 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6726 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6727 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6728 bit_incr = fld_bit_len =
6729 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6733 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6734 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6735 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6736 bit_incr = fld_bit_len =
6737 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6739 bit_incr = fld_bit_len =
6740 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6742 if (off + fld_bit_len > bit_len)
6743 bit_len = off + fld_bit_len;
6745 TYPE_LENGTH (rtype) =
6746 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6749 /* We handle the variant part, if any, at the end because of certain
6750 odd cases in which it is re-ordered so as NOT the last field of
6751 the record. This can happen in the presence of representation
6753 if (variant_field >= 0)
6755 struct type *branch_type;
6757 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6760 dval = value_from_contents_and_address (rtype, valaddr, address);
6765 to_fixed_variant_branch_type
6766 (TYPE_FIELD_TYPE (type, variant_field),
6767 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6768 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6769 if (branch_type == NULL)
6771 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6772 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6773 TYPE_NFIELDS (rtype) -= 1;
6777 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6778 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6780 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6782 if (off + fld_bit_len > bit_len)
6783 bit_len = off + fld_bit_len;
6784 TYPE_LENGTH (rtype) =
6785 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6789 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6790 should contain the alignment of that record, which should be a strictly
6791 positive value. If null or negative, then something is wrong, most
6792 probably in the debug info. In that case, we don't round up the size
6793 of the resulting type. If this record is not part of another structure,
6794 the current RTYPE length might be good enough for our purposes. */
6795 if (TYPE_LENGTH (type) <= 0)
6797 if (TYPE_NAME (rtype))
6798 warning (_("Invalid type size for `%s' detected: %d."),
6799 TYPE_NAME (rtype), TYPE_LENGTH (type));
6801 warning (_("Invalid type size for <unnamed> detected: %d."),
6802 TYPE_LENGTH (type));
6806 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6807 TYPE_LENGTH (type));
6810 value_free_to_mark (mark);
6811 if (TYPE_LENGTH (rtype) > varsize_limit)
6812 error (_("record type with dynamic size is larger than varsize-limit"));
6816 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6819 static struct type *
6820 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6821 CORE_ADDR address, struct value *dval0)
6823 return ada_template_to_fixed_record_type_1 (type, valaddr,
6827 /* An ordinary record type in which ___XVL-convention fields and
6828 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6829 static approximations, containing all possible fields. Uses
6830 no runtime values. Useless for use in values, but that's OK,
6831 since the results are used only for type determinations. Works on both
6832 structs and unions. Representation note: to save space, we memorize
6833 the result of this function in the TYPE_TARGET_TYPE of the
6836 static struct type *
6837 template_to_static_fixed_type (struct type *type0)
6843 if (TYPE_TARGET_TYPE (type0) != NULL)
6844 return TYPE_TARGET_TYPE (type0);
6846 nfields = TYPE_NFIELDS (type0);
6849 for (f = 0; f < nfields; f += 1)
6851 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6852 struct type *new_type;
6854 if (is_dynamic_field (type0, f))
6855 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6857 new_type = to_static_fixed_type (field_type);
6858 if (type == type0 && new_type != field_type)
6860 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6861 TYPE_CODE (type) = TYPE_CODE (type0);
6862 INIT_CPLUS_SPECIFIC (type);
6863 TYPE_NFIELDS (type) = nfields;
6864 TYPE_FIELDS (type) = (struct field *)
6865 TYPE_ALLOC (type, nfields * sizeof (struct field));
6866 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6867 sizeof (struct field) * nfields);
6868 TYPE_NAME (type) = ada_type_name (type0);
6869 TYPE_TAG_NAME (type) = NULL;
6870 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6871 TYPE_LENGTH (type) = 0;
6873 TYPE_FIELD_TYPE (type, f) = new_type;
6874 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6879 /* Given an object of type TYPE whose contents are at VALADDR and
6880 whose address in memory is ADDRESS, returns a revision of TYPE --
6881 a non-dynamic-sized record with a variant part -- in which
6882 the variant part is replaced with the appropriate branch. Looks
6883 for discriminant values in DVAL0, which can be NULL if the record
6884 contains the necessary discriminant values. */
6886 static struct type *
6887 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6888 CORE_ADDR address, struct value *dval0)
6890 struct value *mark = value_mark ();
6893 struct type *branch_type;
6894 int nfields = TYPE_NFIELDS (type);
6895 int variant_field = variant_field_index (type);
6897 if (variant_field == -1)
6901 dval = value_from_contents_and_address (type, valaddr, address);
6905 rtype = alloc_type (TYPE_OBJFILE (type));
6906 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6907 INIT_CPLUS_SPECIFIC (rtype);
6908 TYPE_NFIELDS (rtype) = nfields;
6909 TYPE_FIELDS (rtype) =
6910 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6911 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6912 sizeof (struct field) * nfields);
6913 TYPE_NAME (rtype) = ada_type_name (type);
6914 TYPE_TAG_NAME (rtype) = NULL;
6915 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6916 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6918 branch_type = to_fixed_variant_branch_type
6919 (TYPE_FIELD_TYPE (type, variant_field),
6920 cond_offset_host (valaddr,
6921 TYPE_FIELD_BITPOS (type, variant_field)
6923 cond_offset_target (address,
6924 TYPE_FIELD_BITPOS (type, variant_field)
6925 / TARGET_CHAR_BIT), dval);
6926 if (branch_type == NULL)
6929 for (f = variant_field + 1; f < nfields; f += 1)
6930 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6931 TYPE_NFIELDS (rtype) -= 1;
6935 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6936 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6937 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6938 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6940 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6942 value_free_to_mark (mark);
6946 /* An ordinary record type (with fixed-length fields) that describes
6947 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6948 beginning of this section]. Any necessary discriminants' values
6949 should be in DVAL, a record value; it may be NULL if the object
6950 at ADDR itself contains any necessary discriminant values.
6951 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6952 values from the record are needed. Except in the case that DVAL,
6953 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6954 unchecked) is replaced by a particular branch of the variant.
6956 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6957 is questionable and may be removed. It can arise during the
6958 processing of an unconstrained-array-of-record type where all the
6959 variant branches have exactly the same size. This is because in
6960 such cases, the compiler does not bother to use the XVS convention
6961 when encoding the record. I am currently dubious of this
6962 shortcut and suspect the compiler should be altered. FIXME. */
6964 static struct type *
6965 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6966 CORE_ADDR address, struct value *dval)
6968 struct type *templ_type;
6970 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6973 templ_type = dynamic_template_type (type0);
6975 if (templ_type != NULL)
6976 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6977 else if (variant_field_index (type0) >= 0)
6979 if (dval == NULL && valaddr == NULL && address == 0)
6981 return to_record_with_fixed_variant_part (type0, valaddr, address,
6986 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6992 /* An ordinary record type (with fixed-length fields) that describes
6993 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6994 union type. Any necessary discriminants' values should be in DVAL,
6995 a record value. That is, this routine selects the appropriate
6996 branch of the union at ADDR according to the discriminant value
6997 indicated in the union's type name. */
6999 static struct type *
7000 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7001 CORE_ADDR address, struct value *dval)
7004 struct type *templ_type;
7005 struct type *var_type;
7007 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7008 var_type = TYPE_TARGET_TYPE (var_type0);
7010 var_type = var_type0;
7012 templ_type = ada_find_parallel_type (var_type, "___XVU");
7014 if (templ_type != NULL)
7015 var_type = templ_type;
7018 ada_which_variant_applies (var_type,
7019 value_type (dval), value_contents (dval));
7022 return empty_record (TYPE_OBJFILE (var_type));
7023 else if (is_dynamic_field (var_type, which))
7024 return to_fixed_record_type
7025 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7026 valaddr, address, dval);
7027 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7029 to_fixed_record_type
7030 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7032 return TYPE_FIELD_TYPE (var_type, which);
7035 /* Assuming that TYPE0 is an array type describing the type of a value
7036 at ADDR, and that DVAL describes a record containing any
7037 discriminants used in TYPE0, returns a type for the value that
7038 contains no dynamic components (that is, no components whose sizes
7039 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7040 true, gives an error message if the resulting type's size is over
7043 static struct type *
7044 to_fixed_array_type (struct type *type0, struct value *dval,
7047 struct type *index_type_desc;
7048 struct type *result;
7050 if (ada_is_packed_array_type (type0) /* revisit? */
7051 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7054 index_type_desc = ada_find_parallel_type (type0, "___XA");
7055 if (index_type_desc == NULL)
7057 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7058 /* NOTE: elt_type---the fixed version of elt_type0---should never
7059 depend on the contents of the array in properly constructed
7061 /* Create a fixed version of the array element type.
7062 We're not providing the address of an element here,
7063 and thus the actual object value cannot be inspected to do
7064 the conversion. This should not be a problem, since arrays of
7065 unconstrained objects are not allowed. In particular, all
7066 the elements of an array of a tagged type should all be of
7067 the same type specified in the debugging info. No need to
7068 consult the object tag. */
7069 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7071 if (elt_type0 == elt_type)
7074 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7075 elt_type, TYPE_INDEX_TYPE (type0));
7080 struct type *elt_type0;
7083 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7084 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7086 /* NOTE: result---the fixed version of elt_type0---should never
7087 depend on the contents of the array in properly constructed
7089 /* Create a fixed version of the array element type.
7090 We're not providing the address of an element here,
7091 and thus the actual object value cannot be inspected to do
7092 the conversion. This should not be a problem, since arrays of
7093 unconstrained objects are not allowed. In particular, all
7094 the elements of an array of a tagged type should all be of
7095 the same type specified in the debugging info. No need to
7096 consult the object tag. */
7098 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7099 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7101 struct type *range_type =
7102 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7103 dval, TYPE_OBJFILE (type0));
7104 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7105 result, range_type);
7107 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7108 error (_("array type with dynamic size is larger than varsize-limit"));
7111 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7116 /* A standard type (containing no dynamically sized components)
7117 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7118 DVAL describes a record containing any discriminants used in TYPE0,
7119 and may be NULL if there are none, or if the object of type TYPE at
7120 ADDRESS or in VALADDR contains these discriminants.
7122 If CHECK_TAG is not null, in the case of tagged types, this function
7123 attempts to locate the object's tag and use it to compute the actual
7124 type. However, when ADDRESS is null, we cannot use it to determine the
7125 location of the tag, and therefore compute the tagged type's actual type.
7126 So we return the tagged type without consulting the tag. */
7129 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7130 CORE_ADDR address, struct value *dval, int check_tag)
7132 type = ada_check_typedef (type);
7133 switch (TYPE_CODE (type))
7137 case TYPE_CODE_STRUCT:
7139 struct type *static_type = to_static_fixed_type (type);
7140 struct type *fixed_record_type =
7141 to_fixed_record_type (type, valaddr, address, NULL);
7142 /* If STATIC_TYPE is a tagged type and we know the object's address,
7143 then we can determine its tag, and compute the object's actual
7144 type from there. Note that we have to use the fixed record
7145 type (the parent part of the record may have dynamic fields
7146 and the way the location of _tag is expressed may depend on
7149 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7151 struct type *real_type =
7152 type_from_tag (value_tag_from_contents_and_address
7156 if (real_type != NULL)
7157 return to_fixed_record_type (real_type, valaddr, address, NULL);
7159 return fixed_record_type;
7161 case TYPE_CODE_ARRAY:
7162 return to_fixed_array_type (type, dval, 1);
7163 case TYPE_CODE_UNION:
7167 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7171 /* A standard (static-sized) type corresponding as well as possible to
7172 TYPE0, but based on no runtime data. */
7174 static struct type *
7175 to_static_fixed_type (struct type *type0)
7182 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7185 type0 = ada_check_typedef (type0);
7187 switch (TYPE_CODE (type0))
7191 case TYPE_CODE_STRUCT:
7192 type = dynamic_template_type (type0);
7194 return template_to_static_fixed_type (type);
7196 return template_to_static_fixed_type (type0);
7197 case TYPE_CODE_UNION:
7198 type = ada_find_parallel_type (type0, "___XVU");
7200 return template_to_static_fixed_type (type);
7202 return template_to_static_fixed_type (type0);
7206 /* A static approximation of TYPE with all type wrappers removed. */
7208 static struct type *
7209 static_unwrap_type (struct type *type)
7211 if (ada_is_aligner_type (type))
7213 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7214 if (ada_type_name (type1) == NULL)
7215 TYPE_NAME (type1) = ada_type_name (type);
7217 return static_unwrap_type (type1);
7221 struct type *raw_real_type = ada_get_base_type (type);
7222 if (raw_real_type == type)
7225 return to_static_fixed_type (raw_real_type);
7229 /* In some cases, incomplete and private types require
7230 cross-references that are not resolved as records (for example,
7232 type FooP is access Foo;
7234 type Foo is array ...;
7235 ). In these cases, since there is no mechanism for producing
7236 cross-references to such types, we instead substitute for FooP a
7237 stub enumeration type that is nowhere resolved, and whose tag is
7238 the name of the actual type. Call these types "non-record stubs". */
7240 /* A type equivalent to TYPE that is not a non-record stub, if one
7241 exists, otherwise TYPE. */
7244 ada_check_typedef (struct type *type)
7246 CHECK_TYPEDEF (type);
7247 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7248 || !TYPE_STUB (type)
7249 || TYPE_TAG_NAME (type) == NULL)
7253 char *name = TYPE_TAG_NAME (type);
7254 struct type *type1 = ada_find_any_type (name);
7255 return (type1 == NULL) ? type : type1;
7259 /* A value representing the data at VALADDR/ADDRESS as described by
7260 type TYPE0, but with a standard (static-sized) type that correctly
7261 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7262 type, then return VAL0 [this feature is simply to avoid redundant
7263 creation of struct values]. */
7265 static struct value *
7266 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7269 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7270 if (type == type0 && val0 != NULL)
7273 return value_from_contents_and_address (type, 0, address);
7276 /* A value representing VAL, but with a standard (static-sized) type
7277 that correctly describes it. Does not necessarily create a new
7280 static struct value *
7281 ada_to_fixed_value (struct value *val)
7283 return ada_to_fixed_value_create (value_type (val),
7284 VALUE_ADDRESS (val) + value_offset (val),
7288 /* A value representing VAL, but with a standard (static-sized) type
7289 chosen to approximate the real type of VAL as well as possible, but
7290 without consulting any runtime values. For Ada dynamic-sized
7291 types, therefore, the type of the result is likely to be inaccurate. */
7294 ada_to_static_fixed_value (struct value *val)
7297 to_static_fixed_type (static_unwrap_type (value_type (val)));
7298 if (type == value_type (val))
7301 return coerce_unspec_val_to_type (val, type);
7307 /* Table mapping attribute numbers to names.
7308 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7310 static const char *attribute_names[] = {
7328 ada_attribute_name (enum exp_opcode n)
7330 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7331 return attribute_names[n - OP_ATR_FIRST + 1];
7333 return attribute_names[0];
7336 /* Evaluate the 'POS attribute applied to ARG. */
7339 pos_atr (struct value *arg)
7341 struct type *type = value_type (arg);
7343 if (!discrete_type_p (type))
7344 error (_("'POS only defined on discrete types"));
7346 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7349 LONGEST v = value_as_long (arg);
7351 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7353 if (v == TYPE_FIELD_BITPOS (type, i))
7356 error (_("enumeration value is invalid: can't find 'POS"));
7359 return value_as_long (arg);
7362 static struct value *
7363 value_pos_atr (struct value *arg)
7365 return value_from_longest (builtin_type_int, pos_atr (arg));
7368 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7370 static struct value *
7371 value_val_atr (struct type *type, struct value *arg)
7373 if (!discrete_type_p (type))
7374 error (_("'VAL only defined on discrete types"));
7375 if (!integer_type_p (value_type (arg)))
7376 error (_("'VAL requires integral argument"));
7378 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7380 long pos = value_as_long (arg);
7381 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7382 error (_("argument to 'VAL out of range"));
7383 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7386 return value_from_longest (type, value_as_long (arg));
7392 /* True if TYPE appears to be an Ada character type.
7393 [At the moment, this is true only for Character and Wide_Character;
7394 It is a heuristic test that could stand improvement]. */
7397 ada_is_character_type (struct type *type)
7401 /* If the type code says it's a character, then assume it really is,
7402 and don't check any further. */
7403 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7406 /* Otherwise, assume it's a character type iff it is a discrete type
7407 with a known character type name. */
7408 name = ada_type_name (type);
7409 return (name != NULL
7410 && (TYPE_CODE (type) == TYPE_CODE_INT
7411 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7412 && (strcmp (name, "character") == 0
7413 || strcmp (name, "wide_character") == 0
7414 || strcmp (name, "wide_wide_character") == 0
7415 || strcmp (name, "unsigned char") == 0));
7418 /* True if TYPE appears to be an Ada string type. */
7421 ada_is_string_type (struct type *type)
7423 type = ada_check_typedef (type);
7425 && TYPE_CODE (type) != TYPE_CODE_PTR
7426 && (ada_is_simple_array_type (type)
7427 || ada_is_array_descriptor_type (type))
7428 && ada_array_arity (type) == 1)
7430 struct type *elttype = ada_array_element_type (type, 1);
7432 return ada_is_character_type (elttype);
7439 /* True if TYPE is a struct type introduced by the compiler to force the
7440 alignment of a value. Such types have a single field with a
7441 distinctive name. */
7444 ada_is_aligner_type (struct type *type)
7446 type = ada_check_typedef (type);
7448 /* If we can find a parallel XVS type, then the XVS type should
7449 be used instead of this type. And hence, this is not an aligner
7451 if (ada_find_parallel_type (type, "___XVS") != NULL)
7454 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7455 && TYPE_NFIELDS (type) == 1
7456 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7459 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7460 the parallel type. */
7463 ada_get_base_type (struct type *raw_type)
7465 struct type *real_type_namer;
7466 struct type *raw_real_type;
7468 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7471 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7472 if (real_type_namer == NULL
7473 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7474 || TYPE_NFIELDS (real_type_namer) != 1)
7477 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7478 if (raw_real_type == NULL)
7481 return raw_real_type;
7484 /* The type of value designated by TYPE, with all aligners removed. */
7487 ada_aligned_type (struct type *type)
7489 if (ada_is_aligner_type (type))
7490 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7492 return ada_get_base_type (type);
7496 /* The address of the aligned value in an object at address VALADDR
7497 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7500 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7502 if (ada_is_aligner_type (type))
7503 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7505 TYPE_FIELD_BITPOS (type,
7506 0) / TARGET_CHAR_BIT);
7513 /* The printed representation of an enumeration literal with encoded
7514 name NAME. The value is good to the next call of ada_enum_name. */
7516 ada_enum_name (const char *name)
7518 static char *result;
7519 static size_t result_len = 0;
7522 /* First, unqualify the enumeration name:
7523 1. Search for the last '.' character. If we find one, then skip
7524 all the preceeding characters, the unqualified name starts
7525 right after that dot.
7526 2. Otherwise, we may be debugging on a target where the compiler
7527 translates dots into "__". Search forward for double underscores,
7528 but stop searching when we hit an overloading suffix, which is
7529 of the form "__" followed by digits. */
7531 tmp = strrchr (name, '.');
7536 while ((tmp = strstr (name, "__")) != NULL)
7538 if (isdigit (tmp[2]))
7548 if (name[1] == 'U' || name[1] == 'W')
7550 if (sscanf (name + 2, "%x", &v) != 1)
7556 GROW_VECT (result, result_len, 16);
7557 if (isascii (v) && isprint (v))
7558 sprintf (result, "'%c'", v);
7559 else if (name[1] == 'U')
7560 sprintf (result, "[\"%02x\"]", v);
7562 sprintf (result, "[\"%04x\"]", v);
7568 tmp = strstr (name, "__");
7570 tmp = strstr (name, "$");
7573 GROW_VECT (result, result_len, tmp - name + 1);
7574 strncpy (result, name, tmp - name);
7575 result[tmp - name] = '\0';
7583 static struct value *
7584 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7587 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7588 (expect_type, exp, pos, noside);
7591 /* Evaluate the subexpression of EXP starting at *POS as for
7592 evaluate_type, updating *POS to point just past the evaluated
7595 static struct value *
7596 evaluate_subexp_type (struct expression *exp, int *pos)
7598 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7599 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7602 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7605 static struct value *
7606 unwrap_value (struct value *val)
7608 struct type *type = ada_check_typedef (value_type (val));
7609 if (ada_is_aligner_type (type))
7611 struct value *v = value_struct_elt (&val, NULL, "F",
7612 NULL, "internal structure");
7613 struct type *val_type = ada_check_typedef (value_type (v));
7614 if (ada_type_name (val_type) == NULL)
7615 TYPE_NAME (val_type) = ada_type_name (type);
7617 return unwrap_value (v);
7621 struct type *raw_real_type =
7622 ada_check_typedef (ada_get_base_type (type));
7624 if (type == raw_real_type)
7628 coerce_unspec_val_to_type
7629 (val, ada_to_fixed_type (raw_real_type, 0,
7630 VALUE_ADDRESS (val) + value_offset (val),
7635 static struct value *
7636 cast_to_fixed (struct type *type, struct value *arg)
7640 if (type == value_type (arg))
7642 else if (ada_is_fixed_point_type (value_type (arg)))
7643 val = ada_float_to_fixed (type,
7644 ada_fixed_to_float (value_type (arg),
7645 value_as_long (arg)));
7649 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7650 val = ada_float_to_fixed (type, argd);
7653 return value_from_longest (type, val);
7656 static struct value *
7657 cast_from_fixed_to_double (struct value *arg)
7659 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7660 value_as_long (arg));
7661 return value_from_double (builtin_type_double, val);
7664 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7665 return the converted value. */
7667 static struct value *
7668 coerce_for_assign (struct type *type, struct value *val)
7670 struct type *type2 = value_type (val);
7674 type2 = ada_check_typedef (type2);
7675 type = ada_check_typedef (type);
7677 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7678 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7680 val = ada_value_ind (val);
7681 type2 = value_type (val);
7684 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7685 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7687 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7688 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7689 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7690 error (_("Incompatible types in assignment"));
7691 deprecated_set_value_type (val, type);
7696 static struct value *
7697 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7700 struct type *type1, *type2;
7703 arg1 = coerce_ref (arg1);
7704 arg2 = coerce_ref (arg2);
7705 type1 = base_type (ada_check_typedef (value_type (arg1)));
7706 type2 = base_type (ada_check_typedef (value_type (arg2)));
7708 if (TYPE_CODE (type1) != TYPE_CODE_INT
7709 || TYPE_CODE (type2) != TYPE_CODE_INT)
7710 return value_binop (arg1, arg2, op);
7719 return value_binop (arg1, arg2, op);
7722 v2 = value_as_long (arg2);
7724 error (_("second operand of %s must not be zero."), op_string (op));
7726 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7727 return value_binop (arg1, arg2, op);
7729 v1 = value_as_long (arg1);
7734 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7735 v += v > 0 ? -1 : 1;
7743 /* Should not reach this point. */
7747 val = allocate_value (type1);
7748 store_unsigned_integer (value_contents_raw (val),
7749 TYPE_LENGTH (value_type (val)), v);
7754 ada_value_equal (struct value *arg1, struct value *arg2)
7756 if (ada_is_direct_array_type (value_type (arg1))
7757 || ada_is_direct_array_type (value_type (arg2)))
7759 /* Automatically dereference any array reference before
7760 we attempt to perform the comparison. */
7761 arg1 = ada_coerce_ref (arg1);
7762 arg2 = ada_coerce_ref (arg2);
7764 arg1 = ada_coerce_to_simple_array (arg1);
7765 arg2 = ada_coerce_to_simple_array (arg2);
7766 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7767 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7768 error (_("Attempt to compare array with non-array"));
7769 /* FIXME: The following works only for types whose
7770 representations use all bits (no padding or undefined bits)
7771 and do not have user-defined equality. */
7773 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7774 && memcmp (value_contents (arg1), value_contents (arg2),
7775 TYPE_LENGTH (value_type (arg1))) == 0;
7777 return value_equal (arg1, arg2);
7780 /* Total number of component associations in the aggregate starting at
7781 index PC in EXP. Assumes that index PC is the start of an
7785 num_component_specs (struct expression *exp, int pc)
7788 m = exp->elts[pc + 1].longconst;
7791 for (i = 0; i < m; i += 1)
7793 switch (exp->elts[pc].opcode)
7799 n += exp->elts[pc + 1].longconst;
7802 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7807 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7808 component of LHS (a simple array or a record), updating *POS past
7809 the expression, assuming that LHS is contained in CONTAINER. Does
7810 not modify the inferior's memory, nor does it modify LHS (unless
7811 LHS == CONTAINER). */
7814 assign_component (struct value *container, struct value *lhs, LONGEST index,
7815 struct expression *exp, int *pos)
7817 struct value *mark = value_mark ();
7819 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7821 struct value *index_val = value_from_longest (builtin_type_int, index);
7822 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7826 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7827 elt = ada_to_fixed_value (unwrap_value (elt));
7830 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7831 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7833 value_assign_to_component (container, elt,
7834 ada_evaluate_subexp (NULL, exp, pos,
7837 value_free_to_mark (mark);
7840 /* Assuming that LHS represents an lvalue having a record or array
7841 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7842 of that aggregate's value to LHS, advancing *POS past the
7843 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7844 lvalue containing LHS (possibly LHS itself). Does not modify
7845 the inferior's memory, nor does it modify the contents of
7846 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7848 static struct value *
7849 assign_aggregate (struct value *container,
7850 struct value *lhs, struct expression *exp,
7851 int *pos, enum noside noside)
7853 struct type *lhs_type;
7854 int n = exp->elts[*pos+1].longconst;
7855 LONGEST low_index, high_index;
7858 int max_indices, num_indices;
7859 int is_array_aggregate;
7861 struct value *mark = value_mark ();
7864 if (noside != EVAL_NORMAL)
7867 for (i = 0; i < n; i += 1)
7868 ada_evaluate_subexp (NULL, exp, pos, noside);
7872 container = ada_coerce_ref (container);
7873 if (ada_is_direct_array_type (value_type (container)))
7874 container = ada_coerce_to_simple_array (container);
7875 lhs = ada_coerce_ref (lhs);
7876 if (!deprecated_value_modifiable (lhs))
7877 error (_("Left operand of assignment is not a modifiable lvalue."));
7879 lhs_type = value_type (lhs);
7880 if (ada_is_direct_array_type (lhs_type))
7882 lhs = ada_coerce_to_simple_array (lhs);
7883 lhs_type = value_type (lhs);
7884 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7885 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7886 is_array_aggregate = 1;
7888 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7891 high_index = num_visible_fields (lhs_type) - 1;
7892 is_array_aggregate = 0;
7895 error (_("Left-hand side must be array or record."));
7897 num_specs = num_component_specs (exp, *pos - 3);
7898 max_indices = 4 * num_specs + 4;
7899 indices = alloca (max_indices * sizeof (indices[0]));
7900 indices[0] = indices[1] = low_index - 1;
7901 indices[2] = indices[3] = high_index + 1;
7904 for (i = 0; i < n; i += 1)
7906 switch (exp->elts[*pos].opcode)
7909 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7910 &num_indices, max_indices,
7911 low_index, high_index);
7914 aggregate_assign_positional (container, lhs, exp, pos, indices,
7915 &num_indices, max_indices,
7916 low_index, high_index);
7920 error (_("Misplaced 'others' clause"));
7921 aggregate_assign_others (container, lhs, exp, pos, indices,
7922 num_indices, low_index, high_index);
7925 error (_("Internal error: bad aggregate clause"));
7932 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7933 construct at *POS, updating *POS past the construct, given that
7934 the positions are relative to lower bound LOW, where HIGH is the
7935 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7936 updating *NUM_INDICES as needed. CONTAINER is as for
7937 assign_aggregate. */
7939 aggregate_assign_positional (struct value *container,
7940 struct value *lhs, struct expression *exp,
7941 int *pos, LONGEST *indices, int *num_indices,
7942 int max_indices, LONGEST low, LONGEST high)
7944 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7946 if (ind - 1 == high)
7947 warning (_("Extra components in aggregate ignored."));
7950 add_component_interval (ind, ind, indices, num_indices, max_indices);
7952 assign_component (container, lhs, ind, exp, pos);
7955 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7958 /* Assign into the components of LHS indexed by the OP_CHOICES
7959 construct at *POS, updating *POS past the construct, given that
7960 the allowable indices are LOW..HIGH. Record the indices assigned
7961 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7962 needed. CONTAINER is as for assign_aggregate. */
7964 aggregate_assign_from_choices (struct value *container,
7965 struct value *lhs, struct expression *exp,
7966 int *pos, LONGEST *indices, int *num_indices,
7967 int max_indices, LONGEST low, LONGEST high)
7970 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7971 int choice_pos, expr_pc;
7972 int is_array = ada_is_direct_array_type (value_type (lhs));
7974 choice_pos = *pos += 3;
7976 for (j = 0; j < n_choices; j += 1)
7977 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7979 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7981 for (j = 0; j < n_choices; j += 1)
7983 LONGEST lower, upper;
7984 enum exp_opcode op = exp->elts[choice_pos].opcode;
7985 if (op == OP_DISCRETE_RANGE)
7988 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7990 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7995 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8006 name = &exp->elts[choice_pos + 2].string;
8009 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8012 error (_("Invalid record component association."));
8014 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8016 if (! find_struct_field (name, value_type (lhs), 0,
8017 NULL, NULL, NULL, NULL, &ind))
8018 error (_("Unknown component name: %s."), name);
8019 lower = upper = ind;
8022 if (lower <= upper && (lower < low || upper > high))
8023 error (_("Index in component association out of bounds."));
8025 add_component_interval (lower, upper, indices, num_indices,
8027 while (lower <= upper)
8031 assign_component (container, lhs, lower, exp, &pos1);
8037 /* Assign the value of the expression in the OP_OTHERS construct in
8038 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8039 have not been previously assigned. The index intervals already assigned
8040 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8041 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8043 aggregate_assign_others (struct value *container,
8044 struct value *lhs, struct expression *exp,
8045 int *pos, LONGEST *indices, int num_indices,
8046 LONGEST low, LONGEST high)
8049 int expr_pc = *pos+1;
8051 for (i = 0; i < num_indices - 2; i += 2)
8054 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8058 assign_component (container, lhs, ind, exp, &pos);
8061 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8064 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8065 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8066 modifying *SIZE as needed. It is an error if *SIZE exceeds
8067 MAX_SIZE. The resulting intervals do not overlap. */
8069 add_component_interval (LONGEST low, LONGEST high,
8070 LONGEST* indices, int *size, int max_size)
8073 for (i = 0; i < *size; i += 2) {
8074 if (high >= indices[i] && low <= indices[i + 1])
8077 for (kh = i + 2; kh < *size; kh += 2)
8078 if (high < indices[kh])
8080 if (low < indices[i])
8082 indices[i + 1] = indices[kh - 1];
8083 if (high > indices[i + 1])
8084 indices[i + 1] = high;
8085 memcpy (indices + i + 2, indices + kh, *size - kh);
8086 *size -= kh - i - 2;
8089 else if (high < indices[i])
8093 if (*size == max_size)
8094 error (_("Internal error: miscounted aggregate components."));
8096 for (j = *size-1; j >= i+2; j -= 1)
8097 indices[j] = indices[j - 2];
8099 indices[i + 1] = high;
8102 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8105 static struct value *
8106 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8108 if (type == ada_check_typedef (value_type (arg2)))
8111 if (ada_is_fixed_point_type (type))
8112 return (cast_to_fixed (type, arg2));
8114 if (ada_is_fixed_point_type (value_type (arg2)))
8115 return value_cast (type, cast_from_fixed_to_double (arg2));
8117 return value_cast (type, arg2);
8120 static struct value *
8121 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8122 int *pos, enum noside noside)
8125 int tem, tem2, tem3;
8127 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8130 struct value **argvec;
8134 op = exp->elts[pc].opcode;
8140 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8141 arg1 = unwrap_value (arg1);
8143 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8144 then we need to perform the conversion manually, because
8145 evaluate_subexp_standard doesn't do it. This conversion is
8146 necessary in Ada because the different kinds of float/fixed
8147 types in Ada have different representations.
8149 Similarly, we need to perform the conversion from OP_LONG
8151 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8152 arg1 = ada_value_cast (expect_type, arg1, noside);
8158 struct value *result;
8160 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8161 /* The result type will have code OP_STRING, bashed there from
8162 OP_ARRAY. Bash it back. */
8163 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8164 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8170 type = exp->elts[pc + 1].type;
8171 arg1 = evaluate_subexp (type, exp, pos, noside);
8172 if (noside == EVAL_SKIP)
8174 arg1 = ada_value_cast (type, arg1, noside);
8179 type = exp->elts[pc + 1].type;
8180 return ada_evaluate_subexp (type, exp, pos, noside);
8183 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8184 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8186 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8187 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8189 return ada_value_assign (arg1, arg1);
8191 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8192 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8194 if (ada_is_fixed_point_type (value_type (arg1)))
8195 arg2 = cast_to_fixed (value_type (arg1), arg2);
8196 else if (ada_is_fixed_point_type (value_type (arg2)))
8198 (_("Fixed-point values must be assigned to fixed-point variables"));
8200 arg2 = coerce_for_assign (value_type (arg1), arg2);
8201 return ada_value_assign (arg1, arg2);
8204 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8205 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8206 if (noside == EVAL_SKIP)
8208 if ((ada_is_fixed_point_type (value_type (arg1))
8209 || ada_is_fixed_point_type (value_type (arg2)))
8210 && value_type (arg1) != value_type (arg2))
8211 error (_("Operands of fixed-point addition must have the same type"));
8212 /* Do the addition, and cast the result to the type of the first
8213 argument. We cannot cast the result to a reference type, so if
8214 ARG1 is a reference type, find its underlying type. */
8215 type = value_type (arg1);
8216 while (TYPE_CODE (type) == TYPE_CODE_REF)
8217 type = TYPE_TARGET_TYPE (type);
8218 return value_cast (type, value_add (arg1, arg2));
8221 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8222 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8223 if (noside == EVAL_SKIP)
8225 if ((ada_is_fixed_point_type (value_type (arg1))
8226 || ada_is_fixed_point_type (value_type (arg2)))
8227 && value_type (arg1) != value_type (arg2))
8228 error (_("Operands of fixed-point subtraction must have the same type"));
8229 /* Do the substraction, and cast the result to the type of the first
8230 argument. We cannot cast the result to a reference type, so if
8231 ARG1 is a reference type, find its underlying type. */
8232 type = value_type (arg1);
8233 while (TYPE_CODE (type) == TYPE_CODE_REF)
8234 type = TYPE_TARGET_TYPE (type);
8235 return value_cast (type, value_sub (arg1, arg2));
8239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8240 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8241 if (noside == EVAL_SKIP)
8243 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8244 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8245 return value_zero (value_type (arg1), not_lval);
8248 if (ada_is_fixed_point_type (value_type (arg1)))
8249 arg1 = cast_from_fixed_to_double (arg1);
8250 if (ada_is_fixed_point_type (value_type (arg2)))
8251 arg2 = cast_from_fixed_to_double (arg2);
8252 return ada_value_binop (arg1, arg2, op);
8257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8258 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8259 if (noside == EVAL_SKIP)
8261 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8262 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8263 return value_zero (value_type (arg1), not_lval);
8265 return ada_value_binop (arg1, arg2, op);
8268 case BINOP_NOTEQUAL:
8269 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8270 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8271 if (noside == EVAL_SKIP)
8273 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8276 tem = ada_value_equal (arg1, arg2);
8277 if (op == BINOP_NOTEQUAL)
8279 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8283 if (noside == EVAL_SKIP)
8285 else if (ada_is_fixed_point_type (value_type (arg1)))
8286 return value_cast (value_type (arg1), value_neg (arg1));
8288 return value_neg (arg1);
8290 case BINOP_LOGICAL_AND:
8291 case BINOP_LOGICAL_OR:
8292 case UNOP_LOGICAL_NOT:
8297 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8298 return value_cast (LA_BOOL_TYPE, val);
8301 case BINOP_BITWISE_AND:
8302 case BINOP_BITWISE_IOR:
8303 case BINOP_BITWISE_XOR:
8307 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8309 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8311 return value_cast (value_type (arg1), val);
8316 if (noside == EVAL_SKIP)
8321 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8322 /* Only encountered when an unresolved symbol occurs in a
8323 context other than a function call, in which case, it is
8325 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8326 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8327 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8331 (to_static_fixed_type
8332 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8338 unwrap_value (evaluate_subexp_standard
8339 (expect_type, exp, pos, noside));
8340 return ada_to_fixed_value (arg1);
8346 /* Allocate arg vector, including space for the function to be
8347 called in argvec[0] and a terminating NULL. */
8348 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8350 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8352 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8353 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8354 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8355 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8358 for (tem = 0; tem <= nargs; tem += 1)
8359 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8362 if (noside == EVAL_SKIP)
8366 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8367 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8368 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8369 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8370 && VALUE_LVAL (argvec[0]) == lval_memory))
8371 argvec[0] = value_addr (argvec[0]);
8373 type = ada_check_typedef (value_type (argvec[0]));
8374 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8376 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8378 case TYPE_CODE_FUNC:
8379 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8381 case TYPE_CODE_ARRAY:
8383 case TYPE_CODE_STRUCT:
8384 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8385 argvec[0] = ada_value_ind (argvec[0]);
8386 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8389 error (_("cannot subscript or call something of type `%s'"),
8390 ada_type_name (value_type (argvec[0])));
8395 switch (TYPE_CODE (type))
8397 case TYPE_CODE_FUNC:
8398 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8399 return allocate_value (TYPE_TARGET_TYPE (type));
8400 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8401 case TYPE_CODE_STRUCT:
8405 arity = ada_array_arity (type);
8406 type = ada_array_element_type (type, nargs);
8408 error (_("cannot subscript or call a record"));
8410 error (_("wrong number of subscripts; expecting %d"), arity);
8411 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8412 return value_zero (ada_aligned_type (type), lval_memory);
8414 unwrap_value (ada_value_subscript
8415 (argvec[0], nargs, argvec + 1));
8417 case TYPE_CODE_ARRAY:
8418 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8420 type = ada_array_element_type (type, nargs);
8422 error (_("element type of array unknown"));
8424 return value_zero (ada_aligned_type (type), lval_memory);
8427 unwrap_value (ada_value_subscript
8428 (ada_coerce_to_simple_array (argvec[0]),
8429 nargs, argvec + 1));
8430 case TYPE_CODE_PTR: /* Pointer to array */
8431 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8432 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8434 type = ada_array_element_type (type, nargs);
8436 error (_("element type of array unknown"));
8438 return value_zero (ada_aligned_type (type), lval_memory);
8441 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8442 nargs, argvec + 1));
8445 error (_("Attempt to index or call something other than an "
8446 "array or function"));
8451 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8452 struct value *low_bound_val =
8453 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8454 struct value *high_bound_val =
8455 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8458 low_bound_val = coerce_ref (low_bound_val);
8459 high_bound_val = coerce_ref (high_bound_val);
8460 low_bound = pos_atr (low_bound_val);
8461 high_bound = pos_atr (high_bound_val);
8463 if (noside == EVAL_SKIP)
8466 /* If this is a reference to an aligner type, then remove all
8468 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8469 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8470 TYPE_TARGET_TYPE (value_type (array)) =
8471 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8473 if (ada_is_packed_array_type (value_type (array)))
8474 error (_("cannot slice a packed array"));
8476 /* If this is a reference to an array or an array lvalue,
8477 convert to a pointer. */
8478 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8479 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8480 && VALUE_LVAL (array) == lval_memory))
8481 array = value_addr (array);
8483 if (noside == EVAL_AVOID_SIDE_EFFECTS
8484 && ada_is_array_descriptor_type (ada_check_typedef
8485 (value_type (array))))
8486 return empty_array (ada_type_of_array (array, 0), low_bound);
8488 array = ada_coerce_to_simple_array_ptr (array);
8490 /* If we have more than one level of pointer indirection,
8491 dereference the value until we get only one level. */
8492 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8493 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8495 array = value_ind (array);
8497 /* Make sure we really do have an array type before going further,
8498 to avoid a SEGV when trying to get the index type or the target
8499 type later down the road if the debug info generated by
8500 the compiler is incorrect or incomplete. */
8501 if (!ada_is_simple_array_type (value_type (array)))
8502 error (_("cannot take slice of non-array"));
8504 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8506 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8507 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8511 struct type *arr_type0 =
8512 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8514 return ada_value_slice_ptr (array, arr_type0,
8515 longest_to_int (low_bound),
8516 longest_to_int (high_bound));
8519 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8521 else if (high_bound < low_bound)
8522 return empty_array (value_type (array), low_bound);
8524 return ada_value_slice (array, longest_to_int (low_bound),
8525 longest_to_int (high_bound));
8530 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8531 type = exp->elts[pc + 1].type;
8533 if (noside == EVAL_SKIP)
8536 switch (TYPE_CODE (type))
8539 lim_warning (_("Membership test incompletely implemented; "
8540 "always returns true"));
8541 return value_from_longest (builtin_type_int, (LONGEST) 1);
8543 case TYPE_CODE_RANGE:
8544 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8545 arg3 = value_from_longest (builtin_type_int,
8546 TYPE_HIGH_BOUND (type));
8548 value_from_longest (builtin_type_int,
8549 (value_less (arg1, arg3)
8550 || value_equal (arg1, arg3))
8551 && (value_less (arg2, arg1)
8552 || value_equal (arg2, arg1)));
8555 case BINOP_IN_BOUNDS:
8557 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8558 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8560 if (noside == EVAL_SKIP)
8563 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8564 return value_zero (builtin_type_int, not_lval);
8566 tem = longest_to_int (exp->elts[pc + 1].longconst);
8568 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8569 error (_("invalid dimension number to 'range"));
8571 arg3 = ada_array_bound (arg2, tem, 1);
8572 arg2 = ada_array_bound (arg2, tem, 0);
8575 value_from_longest (builtin_type_int,
8576 (value_less (arg1, arg3)
8577 || value_equal (arg1, arg3))
8578 && (value_less (arg2, arg1)
8579 || value_equal (arg2, arg1)));
8581 case TERNOP_IN_RANGE:
8582 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8583 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8584 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8586 if (noside == EVAL_SKIP)
8590 value_from_longest (builtin_type_int,
8591 (value_less (arg1, arg3)
8592 || value_equal (arg1, arg3))
8593 && (value_less (arg2, arg1)
8594 || value_equal (arg2, arg1)));
8600 struct type *type_arg;
8601 if (exp->elts[*pos].opcode == OP_TYPE)
8603 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8605 type_arg = exp->elts[pc + 2].type;
8609 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8613 if (exp->elts[*pos].opcode != OP_LONG)
8614 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8615 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8618 if (noside == EVAL_SKIP)
8621 if (type_arg == NULL)
8623 arg1 = ada_coerce_ref (arg1);
8625 if (ada_is_packed_array_type (value_type (arg1)))
8626 arg1 = ada_coerce_to_simple_array (arg1);
8628 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8629 error (_("invalid dimension number to '%s"),
8630 ada_attribute_name (op));
8632 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8634 type = ada_index_type (value_type (arg1), tem);
8637 (_("attempt to take bound of something that is not an array"));
8638 return allocate_value (type);
8643 default: /* Should never happen. */
8644 error (_("unexpected attribute encountered"));
8646 return ada_array_bound (arg1, tem, 0);
8648 return ada_array_bound (arg1, tem, 1);
8650 return ada_array_length (arg1, tem);
8653 else if (discrete_type_p (type_arg))
8655 struct type *range_type;
8656 char *name = ada_type_name (type_arg);
8658 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8660 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8661 if (range_type == NULL)
8662 range_type = type_arg;
8666 error (_("unexpected attribute encountered"));
8668 return discrete_type_low_bound (range_type);
8670 return discrete_type_high_bound (range_type);
8672 error (_("the 'length attribute applies only to array types"));
8675 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8676 error (_("unimplemented type attribute"));
8681 if (ada_is_packed_array_type (type_arg))
8682 type_arg = decode_packed_array_type (type_arg);
8684 if (tem < 1 || tem > ada_array_arity (type_arg))
8685 error (_("invalid dimension number to '%s"),
8686 ada_attribute_name (op));
8688 type = ada_index_type (type_arg, tem);
8691 (_("attempt to take bound of something that is not an array"));
8692 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8693 return allocate_value (type);
8698 error (_("unexpected attribute encountered"));
8700 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8701 return value_from_longest (type, low);
8703 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8704 return value_from_longest (type, high);
8706 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8707 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8708 return value_from_longest (type, high - low + 1);
8714 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8715 if (noside == EVAL_SKIP)
8718 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8719 return value_zero (ada_tag_type (arg1), not_lval);
8721 return ada_value_tag (arg1);
8725 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8726 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8727 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8728 if (noside == EVAL_SKIP)
8730 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8731 return value_zero (value_type (arg1), not_lval);
8733 return value_binop (arg1, arg2,
8734 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8736 case OP_ATR_MODULUS:
8738 struct type *type_arg = exp->elts[pc + 2].type;
8739 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8741 if (noside == EVAL_SKIP)
8744 if (!ada_is_modular_type (type_arg))
8745 error (_("'modulus must be applied to modular type"));
8747 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8748 ada_modulus (type_arg));
8753 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8754 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8755 if (noside == EVAL_SKIP)
8757 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8758 return value_zero (builtin_type_int, not_lval);
8760 return value_pos_atr (arg1);
8763 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8764 if (noside == EVAL_SKIP)
8766 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8767 return value_zero (builtin_type_int, not_lval);
8769 return value_from_longest (builtin_type_int,
8771 * TYPE_LENGTH (value_type (arg1)));
8774 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8775 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8776 type = exp->elts[pc + 2].type;
8777 if (noside == EVAL_SKIP)
8779 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8780 return value_zero (type, not_lval);
8782 return value_val_atr (type, arg1);
8785 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8786 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8787 if (noside == EVAL_SKIP)
8789 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8790 return value_zero (value_type (arg1), not_lval);
8792 return value_binop (arg1, arg2, op);
8795 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8796 if (noside == EVAL_SKIP)
8802 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8803 if (noside == EVAL_SKIP)
8805 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8806 return value_neg (arg1);
8811 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8812 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8813 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8814 if (noside == EVAL_SKIP)
8816 type = ada_check_typedef (value_type (arg1));
8817 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8819 if (ada_is_array_descriptor_type (type))
8820 /* GDB allows dereferencing GNAT array descriptors. */
8822 struct type *arrType = ada_type_of_array (arg1, 0);
8823 if (arrType == NULL)
8824 error (_("Attempt to dereference null array pointer."));
8825 return value_at_lazy (arrType, 0);
8827 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8828 || TYPE_CODE (type) == TYPE_CODE_REF
8829 /* In C you can dereference an array to get the 1st elt. */
8830 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8832 type = to_static_fixed_type
8834 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8836 return value_zero (type, lval_memory);
8838 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8839 /* GDB allows dereferencing an int. */
8840 return value_zero (builtin_type_int, lval_memory);
8842 error (_("Attempt to take contents of a non-pointer value."));
8844 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8845 type = ada_check_typedef (value_type (arg1));
8847 if (ada_is_array_descriptor_type (type))
8848 /* GDB allows dereferencing GNAT array descriptors. */
8849 return ada_coerce_to_simple_array (arg1);
8851 return ada_value_ind (arg1);
8853 case STRUCTOP_STRUCT:
8854 tem = longest_to_int (exp->elts[pc + 1].longconst);
8855 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8857 if (noside == EVAL_SKIP)
8859 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8861 struct type *type1 = value_type (arg1);
8862 if (ada_is_tagged_type (type1, 1))
8864 type = ada_lookup_struct_elt_type (type1,
8865 &exp->elts[pc + 2].string,
8868 /* In this case, we assume that the field COULD exist
8869 in some extension of the type. Return an object of
8870 "type" void, which will match any formal
8871 (see ada_type_match). */
8872 return value_zero (builtin_type_void, lval_memory);
8876 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8879 return value_zero (ada_aligned_type (type), lval_memory);
8883 ada_to_fixed_value (unwrap_value
8884 (ada_value_struct_elt
8885 (arg1, &exp->elts[pc + 2].string, 0)));
8887 /* The value is not supposed to be used. This is here to make it
8888 easier to accommodate expressions that contain types. */
8890 if (noside == EVAL_SKIP)
8892 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8893 return allocate_value (exp->elts[pc + 1].type);
8895 error (_("Attempt to use a type name as an expression"));
8900 case OP_DISCRETE_RANGE:
8903 if (noside == EVAL_NORMAL)
8907 error (_("Undefined name, ambiguous name, or renaming used in "
8908 "component association: %s."), &exp->elts[pc+2].string);
8910 error (_("Aggregates only allowed on the right of an assignment"));
8912 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8915 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8917 for (tem = 0; tem < nargs; tem += 1)
8918 ada_evaluate_subexp (NULL, exp, pos, noside);
8923 return value_from_longest (builtin_type_long, (LONGEST) 1);
8929 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8930 type name that encodes the 'small and 'delta information.
8931 Otherwise, return NULL. */
8934 fixed_type_info (struct type *type)
8936 const char *name = ada_type_name (type);
8937 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8939 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8941 const char *tail = strstr (name, "___XF_");
8947 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8948 return fixed_type_info (TYPE_TARGET_TYPE (type));
8953 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8956 ada_is_fixed_point_type (struct type *type)
8958 return fixed_type_info (type) != NULL;
8961 /* Return non-zero iff TYPE represents a System.Address type. */
8964 ada_is_system_address_type (struct type *type)
8966 return (TYPE_NAME (type)
8967 && strcmp (TYPE_NAME (type), "system__address") == 0);
8970 /* Assuming that TYPE is the representation of an Ada fixed-point
8971 type, return its delta, or -1 if the type is malformed and the
8972 delta cannot be determined. */
8975 ada_delta (struct type *type)
8977 const char *encoding = fixed_type_info (type);
8980 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8983 return (DOUBLEST) num / (DOUBLEST) den;
8986 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8987 factor ('SMALL value) associated with the type. */
8990 scaling_factor (struct type *type)
8992 const char *encoding = fixed_type_info (type);
8993 unsigned long num0, den0, num1, den1;
8996 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9001 return (DOUBLEST) num1 / (DOUBLEST) den1;
9003 return (DOUBLEST) num0 / (DOUBLEST) den0;
9007 /* Assuming that X is the representation of a value of fixed-point
9008 type TYPE, return its floating-point equivalent. */
9011 ada_fixed_to_float (struct type *type, LONGEST x)
9013 return (DOUBLEST) x *scaling_factor (type);
9016 /* The representation of a fixed-point value of type TYPE
9017 corresponding to the value X. */
9020 ada_float_to_fixed (struct type *type, DOUBLEST x)
9022 return (LONGEST) (x / scaling_factor (type) + 0.5);
9026 /* VAX floating formats */
9028 /* Non-zero iff TYPE represents one of the special VAX floating-point
9032 ada_is_vax_floating_type (struct type *type)
9035 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9038 && (TYPE_CODE (type) == TYPE_CODE_INT
9039 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9040 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9043 /* The type of special VAX floating-point type this is, assuming
9044 ada_is_vax_floating_point. */
9047 ada_vax_float_type_suffix (struct type *type)
9049 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9052 /* A value representing the special debugging function that outputs
9053 VAX floating-point values of the type represented by TYPE. Assumes
9054 ada_is_vax_floating_type (TYPE). */
9057 ada_vax_float_print_function (struct type *type)
9059 switch (ada_vax_float_type_suffix (type))
9062 return get_var_value ("DEBUG_STRING_F", 0);
9064 return get_var_value ("DEBUG_STRING_D", 0);
9066 return get_var_value ("DEBUG_STRING_G", 0);
9068 error (_("invalid VAX floating-point type"));
9075 /* Scan STR beginning at position K for a discriminant name, and
9076 return the value of that discriminant field of DVAL in *PX. If
9077 PNEW_K is not null, put the position of the character beyond the
9078 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9079 not alter *PX and *PNEW_K if unsuccessful. */
9082 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9085 static char *bound_buffer = NULL;
9086 static size_t bound_buffer_len = 0;
9089 struct value *bound_val;
9091 if (dval == NULL || str == NULL || str[k] == '\0')
9094 pend = strstr (str + k, "__");
9098 k += strlen (bound);
9102 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9103 bound = bound_buffer;
9104 strncpy (bound_buffer, str + k, pend - (str + k));
9105 bound[pend - (str + k)] = '\0';
9109 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9110 if (bound_val == NULL)
9113 *px = value_as_long (bound_val);
9119 /* Value of variable named NAME in the current environment. If
9120 no such variable found, then if ERR_MSG is null, returns 0, and
9121 otherwise causes an error with message ERR_MSG. */
9123 static struct value *
9124 get_var_value (char *name, char *err_msg)
9126 struct ada_symbol_info *syms;
9129 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9134 if (err_msg == NULL)
9137 error (("%s"), err_msg);
9140 return value_of_variable (syms[0].sym, syms[0].block);
9143 /* Value of integer variable named NAME in the current environment. If
9144 no such variable found, returns 0, and sets *FLAG to 0. If
9145 successful, sets *FLAG to 1. */
9148 get_int_var_value (char *name, int *flag)
9150 struct value *var_val = get_var_value (name, 0);
9162 return value_as_long (var_val);
9167 /* Return a range type whose base type is that of the range type named
9168 NAME in the current environment, and whose bounds are calculated
9169 from NAME according to the GNAT range encoding conventions.
9170 Extract discriminant values, if needed, from DVAL. If a new type
9171 must be created, allocate in OBJFILE's space. The bounds
9172 information, in general, is encoded in NAME, the base type given in
9173 the named range type. */
9175 static struct type *
9176 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9178 struct type *raw_type = ada_find_any_type (name);
9179 struct type *base_type;
9182 if (raw_type == NULL)
9183 base_type = builtin_type_int;
9184 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9185 base_type = TYPE_TARGET_TYPE (raw_type);
9187 base_type = raw_type;
9189 subtype_info = strstr (name, "___XD");
9190 if (subtype_info == NULL)
9194 static char *name_buf = NULL;
9195 static size_t name_len = 0;
9196 int prefix_len = subtype_info - name;
9202 GROW_VECT (name_buf, name_len, prefix_len + 5);
9203 strncpy (name_buf, name, prefix_len);
9204 name_buf[prefix_len] = '\0';
9207 bounds_str = strchr (subtype_info, '_');
9210 if (*subtype_info == 'L')
9212 if (!ada_scan_number (bounds_str, n, &L, &n)
9213 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9215 if (bounds_str[n] == '_')
9217 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9224 strcpy (name_buf + prefix_len, "___L");
9225 L = get_int_var_value (name_buf, &ok);
9228 lim_warning (_("Unknown lower bound, using 1."));
9233 if (*subtype_info == 'U')
9235 if (!ada_scan_number (bounds_str, n, &U, &n)
9236 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9242 strcpy (name_buf + prefix_len, "___U");
9243 U = get_int_var_value (name_buf, &ok);
9246 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9251 if (objfile == NULL)
9252 objfile = TYPE_OBJFILE (base_type);
9253 type = create_range_type (alloc_type (objfile), base_type, L, U);
9254 TYPE_NAME (type) = name;
9259 /* True iff NAME is the name of a range type. */
9262 ada_is_range_type_name (const char *name)
9264 return (name != NULL && strstr (name, "___XD"));
9270 /* True iff TYPE is an Ada modular type. */
9273 ada_is_modular_type (struct type *type)
9275 struct type *subranged_type = base_type (type);
9277 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9278 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9279 && TYPE_UNSIGNED (subranged_type));
9282 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9285 ada_modulus (struct type * type)
9287 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9291 /* Ada exception catchpoint support:
9292 ---------------------------------
9294 We support 3 kinds of exception catchpoints:
9295 . catchpoints on Ada exceptions
9296 . catchpoints on unhandled Ada exceptions
9297 . catchpoints on failed assertions
9299 Exceptions raised during failed assertions, or unhandled exceptions
9300 could perfectly be caught with the general catchpoint on Ada exceptions.
9301 However, we can easily differentiate these two special cases, and having
9302 the option to distinguish these two cases from the rest can be useful
9303 to zero-in on certain situations.
9305 Exception catchpoints are a specialized form of breakpoint,
9306 since they rely on inserting breakpoints inside known routines
9307 of the GNAT runtime. The implementation therefore uses a standard
9308 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9311 Support in the runtime for exception catchpoints have been changed
9312 a few times already, and these changes affect the implementation
9313 of these catchpoints. In order to be able to support several
9314 variants of the runtime, we use a sniffer that will determine
9315 the runtime variant used by the program being debugged.
9317 At this time, we do not support the use of conditions on Ada exception
9318 catchpoints. The COND and COND_STRING fields are therefore set
9319 to NULL (most of the time, see below).
9321 Conditions where EXP_STRING, COND, and COND_STRING are used:
9323 When a user specifies the name of a specific exception in the case
9324 of catchpoints on Ada exceptions, we store the name of that exception
9325 in the EXP_STRING. We then translate this request into an actual
9326 condition stored in COND_STRING, and then parse it into an expression
9329 /* The different types of catchpoints that we introduced for catching
9332 enum exception_catchpoint_kind
9335 ex_catch_exception_unhandled,
9339 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9341 /* A structure that describes how to support exception catchpoints
9342 for a given executable. */
9344 struct exception_support_info
9346 /* The name of the symbol to break on in order to insert
9347 a catchpoint on exceptions. */
9348 const char *catch_exception_sym;
9350 /* The name of the symbol to break on in order to insert
9351 a catchpoint on unhandled exceptions. */
9352 const char *catch_exception_unhandled_sym;
9354 /* The name of the symbol to break on in order to insert
9355 a catchpoint on failed assertions. */
9356 const char *catch_assert_sym;
9358 /* Assuming that the inferior just triggered an unhandled exception
9359 catchpoint, this function is responsible for returning the address
9360 in inferior memory where the name of that exception is stored.
9361 Return zero if the address could not be computed. */
9362 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9365 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9366 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9368 /* The following exception support info structure describes how to
9369 implement exception catchpoints with the latest version of the
9370 Ada runtime (as of 2007-03-06). */
9372 static const struct exception_support_info default_exception_support_info =
9374 "__gnat_debug_raise_exception", /* catch_exception_sym */
9375 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9376 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9377 ada_unhandled_exception_name_addr
9380 /* The following exception support info structure describes how to
9381 implement exception catchpoints with a slightly older version
9382 of the Ada runtime. */
9384 static const struct exception_support_info exception_support_info_fallback =
9386 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9387 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9388 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9389 ada_unhandled_exception_name_addr_from_raise
9392 /* For each executable, we sniff which exception info structure to use
9393 and cache it in the following global variable. */
9395 static const struct exception_support_info *exception_info = NULL;
9397 /* Inspect the Ada runtime and determine which exception info structure
9398 should be used to provide support for exception catchpoints.
9400 This function will always set exception_info, or raise an error. */
9403 ada_exception_support_info_sniffer (void)
9407 /* If the exception info is already known, then no need to recompute it. */
9408 if (exception_info != NULL)
9411 /* Check the latest (default) exception support info. */
9412 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9416 exception_info = &default_exception_support_info;
9420 /* Try our fallback exception suport info. */
9421 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9425 exception_info = &exception_support_info_fallback;
9429 /* Sometimes, it is normal for us to not be able to find the routine
9430 we are looking for. This happens when the program is linked with
9431 the shared version of the GNAT runtime, and the program has not been
9432 started yet. Inform the user of these two possible causes if
9435 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9436 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9438 /* If the symbol does not exist, then check that the program is
9439 already started, to make sure that shared libraries have been
9440 loaded. If it is not started, this may mean that the symbol is
9441 in a shared library. */
9443 if (ptid_get_pid (inferior_ptid) == 0)
9444 error (_("Unable to insert catchpoint. Try to start the program first."));
9446 /* At this point, we know that we are debugging an Ada program and
9447 that the inferior has been started, but we still are not able to
9448 find the run-time symbols. That can mean that we are in
9449 configurable run time mode, or that a-except as been optimized
9450 out by the linker... In any case, at this point it is not worth
9451 supporting this feature. */
9453 error (_("Cannot insert catchpoints in this configuration."));
9456 /* An observer of "executable_changed" events.
9457 Its role is to clear certain cached values that need to be recomputed
9458 each time a new executable is loaded by GDB. */
9461 ada_executable_changed_observer (void *unused)
9463 /* If the executable changed, then it is possible that the Ada runtime
9464 is different. So we need to invalidate the exception support info
9466 exception_info = NULL;
9469 /* Return the name of the function at PC, NULL if could not find it.
9470 This function only checks the debugging information, not the symbol
9474 function_name_from_pc (CORE_ADDR pc)
9478 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9484 /* True iff FRAME is very likely to be that of a function that is
9485 part of the runtime system. This is all very heuristic, but is
9486 intended to be used as advice as to what frames are uninteresting
9490 is_known_support_routine (struct frame_info *frame)
9492 struct symtab_and_line sal;
9496 /* If this code does not have any debugging information (no symtab),
9497 This cannot be any user code. */
9499 find_frame_sal (frame, &sal);
9500 if (sal.symtab == NULL)
9503 /* If there is a symtab, but the associated source file cannot be
9504 located, then assume this is not user code: Selecting a frame
9505 for which we cannot display the code would not be very helpful
9506 for the user. This should also take care of case such as VxWorks
9507 where the kernel has some debugging info provided for a few units. */
9509 if (symtab_to_fullname (sal.symtab) == NULL)
9512 /* Check the unit filename againt the Ada runtime file naming.
9513 We also check the name of the objfile against the name of some
9514 known system libraries that sometimes come with debugging info
9517 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9519 re_comp (known_runtime_file_name_patterns[i]);
9520 if (re_exec (sal.symtab->filename))
9522 if (sal.symtab->objfile != NULL
9523 && re_exec (sal.symtab->objfile->name))
9527 /* Check whether the function is a GNAT-generated entity. */
9529 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9530 if (func_name == NULL)
9533 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9535 re_comp (known_auxiliary_function_name_patterns[i]);
9536 if (re_exec (func_name))
9543 /* Find the first frame that contains debugging information and that is not
9544 part of the Ada run-time, starting from FI and moving upward. */
9547 ada_find_printable_frame (struct frame_info *fi)
9549 for (; fi != NULL; fi = get_prev_frame (fi))
9551 if (!is_known_support_routine (fi))
9560 /* Assuming that the inferior just triggered an unhandled exception
9561 catchpoint, return the address in inferior memory where the name
9562 of the exception is stored.
9564 Return zero if the address could not be computed. */
9567 ada_unhandled_exception_name_addr (void)
9569 return parse_and_eval_address ("e.full_name");
9572 /* Same as ada_unhandled_exception_name_addr, except that this function
9573 should be used when the inferior uses an older version of the runtime,
9574 where the exception name needs to be extracted from a specific frame
9575 several frames up in the callstack. */
9578 ada_unhandled_exception_name_addr_from_raise (void)
9581 struct frame_info *fi;
9583 /* To determine the name of this exception, we need to select
9584 the frame corresponding to RAISE_SYM_NAME. This frame is
9585 at least 3 levels up, so we simply skip the first 3 frames
9586 without checking the name of their associated function. */
9587 fi = get_current_frame ();
9588 for (frame_level = 0; frame_level < 3; frame_level += 1)
9590 fi = get_prev_frame (fi);
9594 const char *func_name =
9595 function_name_from_pc (get_frame_address_in_block (fi));
9596 if (func_name != NULL
9597 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9598 break; /* We found the frame we were looking for... */
9599 fi = get_prev_frame (fi);
9606 return parse_and_eval_address ("id.full_name");
9609 /* Assuming the inferior just triggered an Ada exception catchpoint
9610 (of any type), return the address in inferior memory where the name
9611 of the exception is stored, if applicable.
9613 Return zero if the address could not be computed, or if not relevant. */
9616 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9617 struct breakpoint *b)
9621 case ex_catch_exception:
9622 return (parse_and_eval_address ("e.full_name"));
9625 case ex_catch_exception_unhandled:
9626 return exception_info->unhandled_exception_name_addr ();
9629 case ex_catch_assert:
9630 return 0; /* Exception name is not relevant in this case. */
9634 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9638 return 0; /* Should never be reached. */
9641 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9642 any error that ada_exception_name_addr_1 might cause to be thrown.
9643 When an error is intercepted, a warning with the error message is printed,
9644 and zero is returned. */
9647 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9648 struct breakpoint *b)
9650 struct gdb_exception e;
9651 CORE_ADDR result = 0;
9653 TRY_CATCH (e, RETURN_MASK_ERROR)
9655 result = ada_exception_name_addr_1 (ex, b);
9660 warning (_("failed to get exception name: %s"), e.message);
9667 /* Implement the PRINT_IT method in the breakpoint_ops structure
9668 for all exception catchpoint kinds. */
9670 static enum print_stop_action
9671 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9673 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9674 char exception_name[256];
9678 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9679 exception_name [sizeof (exception_name) - 1] = '\0';
9682 ada_find_printable_frame (get_current_frame ());
9684 annotate_catchpoint (b->number);
9687 case ex_catch_exception:
9689 printf_filtered (_("\nCatchpoint %d, %s at "),
9690 b->number, exception_name);
9692 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9694 case ex_catch_exception_unhandled:
9696 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9697 b->number, exception_name);
9699 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9702 case ex_catch_assert:
9703 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9708 return PRINT_SRC_AND_LOC;
9711 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9712 for all exception catchpoint kinds. */
9715 print_one_exception (enum exception_catchpoint_kind ex,
9716 struct breakpoint *b, CORE_ADDR *last_addr)
9721 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9725 *last_addr = b->loc->address;
9728 case ex_catch_exception:
9729 if (b->exp_string != NULL)
9731 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9733 ui_out_field_string (uiout, "what", msg);
9737 ui_out_field_string (uiout, "what", "all Ada exceptions");
9741 case ex_catch_exception_unhandled:
9742 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9745 case ex_catch_assert:
9746 ui_out_field_string (uiout, "what", "failed Ada assertions");
9750 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9755 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9756 for all exception catchpoint kinds. */
9759 print_mention_exception (enum exception_catchpoint_kind ex,
9760 struct breakpoint *b)
9764 case ex_catch_exception:
9765 if (b->exp_string != NULL)
9766 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9767 b->number, b->exp_string);
9769 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9773 case ex_catch_exception_unhandled:
9774 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9778 case ex_catch_assert:
9779 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9783 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9788 /* Virtual table for "catch exception" breakpoints. */
9790 static enum print_stop_action
9791 print_it_catch_exception (struct breakpoint *b)
9793 return print_it_exception (ex_catch_exception, b);
9797 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9799 print_one_exception (ex_catch_exception, b, last_addr);
9803 print_mention_catch_exception (struct breakpoint *b)
9805 print_mention_exception (ex_catch_exception, b);
9808 static struct breakpoint_ops catch_exception_breakpoint_ops =
9810 print_it_catch_exception,
9811 print_one_catch_exception,
9812 print_mention_catch_exception
9815 /* Virtual table for "catch exception unhandled" breakpoints. */
9817 static enum print_stop_action
9818 print_it_catch_exception_unhandled (struct breakpoint *b)
9820 return print_it_exception (ex_catch_exception_unhandled, b);
9824 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9826 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9830 print_mention_catch_exception_unhandled (struct breakpoint *b)
9832 print_mention_exception (ex_catch_exception_unhandled, b);
9835 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9836 print_it_catch_exception_unhandled,
9837 print_one_catch_exception_unhandled,
9838 print_mention_catch_exception_unhandled
9841 /* Virtual table for "catch assert" breakpoints. */
9843 static enum print_stop_action
9844 print_it_catch_assert (struct breakpoint *b)
9846 return print_it_exception (ex_catch_assert, b);
9850 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9852 print_one_exception (ex_catch_assert, b, last_addr);
9856 print_mention_catch_assert (struct breakpoint *b)
9858 print_mention_exception (ex_catch_assert, b);
9861 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9862 print_it_catch_assert,
9863 print_one_catch_assert,
9864 print_mention_catch_assert
9867 /* Return non-zero if B is an Ada exception catchpoint. */
9870 ada_exception_catchpoint_p (struct breakpoint *b)
9872 return (b->ops == &catch_exception_breakpoint_ops
9873 || b->ops == &catch_exception_unhandled_breakpoint_ops
9874 || b->ops == &catch_assert_breakpoint_ops);
9877 /* Return a newly allocated copy of the first space-separated token
9878 in ARGSP, and then adjust ARGSP to point immediately after that
9881 Return NULL if ARGPS does not contain any more tokens. */
9884 ada_get_next_arg (char **argsp)
9886 char *args = *argsp;
9890 /* Skip any leading white space. */
9892 while (isspace (*args))
9895 if (args[0] == '\0')
9896 return NULL; /* No more arguments. */
9898 /* Find the end of the current argument. */
9901 while (*end != '\0' && !isspace (*end))
9904 /* Adjust ARGSP to point to the start of the next argument. */
9908 /* Make a copy of the current argument and return it. */
9910 result = xmalloc (end - args + 1);
9911 strncpy (result, args, end - args);
9912 result[end - args] = '\0';
9917 /* Split the arguments specified in a "catch exception" command.
9918 Set EX to the appropriate catchpoint type.
9919 Set EXP_STRING to the name of the specific exception if
9920 specified by the user. */
9923 catch_ada_exception_command_split (char *args,
9924 enum exception_catchpoint_kind *ex,
9927 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9928 char *exception_name;
9930 exception_name = ada_get_next_arg (&args);
9931 make_cleanup (xfree, exception_name);
9933 /* Check that we do not have any more arguments. Anything else
9936 while (isspace (*args))
9939 if (args[0] != '\0')
9940 error (_("Junk at end of expression"));
9942 discard_cleanups (old_chain);
9944 if (exception_name == NULL)
9946 /* Catch all exceptions. */
9947 *ex = ex_catch_exception;
9950 else if (strcmp (exception_name, "unhandled") == 0)
9952 /* Catch unhandled exceptions. */
9953 *ex = ex_catch_exception_unhandled;
9958 /* Catch a specific exception. */
9959 *ex = ex_catch_exception;
9960 *exp_string = exception_name;
9964 /* Return the name of the symbol on which we should break in order to
9965 implement a catchpoint of the EX kind. */
9968 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9970 gdb_assert (exception_info != NULL);
9974 case ex_catch_exception:
9975 return (exception_info->catch_exception_sym);
9977 case ex_catch_exception_unhandled:
9978 return (exception_info->catch_exception_unhandled_sym);
9980 case ex_catch_assert:
9981 return (exception_info->catch_assert_sym);
9984 internal_error (__FILE__, __LINE__,
9985 _("unexpected catchpoint kind (%d)"), ex);
9989 /* Return the breakpoint ops "virtual table" used for catchpoints
9992 static struct breakpoint_ops *
9993 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9997 case ex_catch_exception:
9998 return (&catch_exception_breakpoint_ops);
10000 case ex_catch_exception_unhandled:
10001 return (&catch_exception_unhandled_breakpoint_ops);
10003 case ex_catch_assert:
10004 return (&catch_assert_breakpoint_ops);
10007 internal_error (__FILE__, __LINE__,
10008 _("unexpected catchpoint kind (%d)"), ex);
10012 /* Return the condition that will be used to match the current exception
10013 being raised with the exception that the user wants to catch. This
10014 assumes that this condition is used when the inferior just triggered
10015 an exception catchpoint.
10017 The string returned is a newly allocated string that needs to be
10018 deallocated later. */
10021 ada_exception_catchpoint_cond_string (const char *exp_string)
10023 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10026 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10028 static struct expression *
10029 ada_parse_catchpoint_condition (char *cond_string,
10030 struct symtab_and_line sal)
10032 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10035 /* Return the symtab_and_line that should be used to insert an exception
10036 catchpoint of the TYPE kind.
10038 EX_STRING should contain the name of a specific exception
10039 that the catchpoint should catch, or NULL otherwise.
10041 The idea behind all the remaining parameters is that their names match
10042 the name of certain fields in the breakpoint structure that are used to
10043 handle exception catchpoints. This function returns the value to which
10044 these fields should be set, depending on the type of catchpoint we need
10047 If COND and COND_STRING are both non-NULL, any value they might
10048 hold will be free'ed, and then replaced by newly allocated ones.
10049 These parameters are left untouched otherwise. */
10051 static struct symtab_and_line
10052 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10053 char **addr_string, char **cond_string,
10054 struct expression **cond, struct breakpoint_ops **ops)
10056 const char *sym_name;
10057 struct symbol *sym;
10058 struct symtab_and_line sal;
10060 /* First, find out which exception support info to use. */
10061 ada_exception_support_info_sniffer ();
10063 /* Then lookup the function on which we will break in order to catch
10064 the Ada exceptions requested by the user. */
10066 sym_name = ada_exception_sym_name (ex);
10067 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10069 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10070 that should be compiled with debugging information. As a result, we
10071 expect to find that symbol in the symtabs. If we don't find it, then
10072 the target most likely does not support Ada exceptions, or we cannot
10073 insert exception breakpoints yet, because the GNAT runtime hasn't been
10076 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10077 in such a way that no debugging information is produced for the symbol
10078 we are looking for. In this case, we could search the minimal symbols
10079 as a fall-back mechanism. This would still be operating in degraded
10080 mode, however, as we would still be missing the debugging information
10081 that is needed in order to extract the name of the exception being
10082 raised (this name is printed in the catchpoint message, and is also
10083 used when trying to catch a specific exception). We do not handle
10084 this case for now. */
10087 error (_("Unable to break on '%s' in this configuration."), sym_name);
10089 /* Make sure that the symbol we found corresponds to a function. */
10090 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10091 error (_("Symbol \"%s\" is not a function (class = %d)"),
10092 sym_name, SYMBOL_CLASS (sym));
10094 sal = find_function_start_sal (sym, 1);
10096 /* Set ADDR_STRING. */
10098 *addr_string = xstrdup (sym_name);
10100 /* Set the COND and COND_STRING (if not NULL). */
10102 if (cond_string != NULL && cond != NULL)
10104 if (*cond_string != NULL)
10106 xfree (*cond_string);
10107 *cond_string = NULL;
10114 if (exp_string != NULL)
10116 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10117 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10122 *ops = ada_exception_breakpoint_ops (ex);
10127 /* Parse the arguments (ARGS) of the "catch exception" command.
10129 Set TYPE to the appropriate exception catchpoint type.
10130 If the user asked the catchpoint to catch only a specific
10131 exception, then save the exception name in ADDR_STRING.
10133 See ada_exception_sal for a description of all the remaining
10134 function arguments of this function. */
10136 struct symtab_and_line
10137 ada_decode_exception_location (char *args, char **addr_string,
10138 char **exp_string, char **cond_string,
10139 struct expression **cond,
10140 struct breakpoint_ops **ops)
10142 enum exception_catchpoint_kind ex;
10144 catch_ada_exception_command_split (args, &ex, exp_string);
10145 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10149 struct symtab_and_line
10150 ada_decode_assert_location (char *args, char **addr_string,
10151 struct breakpoint_ops **ops)
10153 /* Check that no argument where provided at the end of the command. */
10157 while (isspace (*args))
10160 error (_("Junk at end of arguments."));
10163 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10168 /* Information about operators given special treatment in functions
10170 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10172 #define ADA_OPERATORS \
10173 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10174 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10175 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10176 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10177 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10178 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10179 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10180 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10181 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10182 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10183 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10184 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10185 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10186 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10187 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10188 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10189 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10190 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10191 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10194 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10196 switch (exp->elts[pc - 1].opcode)
10199 operator_length_standard (exp, pc, oplenp, argsp);
10202 #define OP_DEFN(op, len, args, binop) \
10203 case op: *oplenp = len; *argsp = args; break;
10209 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10214 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10220 ada_op_name (enum exp_opcode opcode)
10225 return op_name_standard (opcode);
10227 #define OP_DEFN(op, len, args, binop) case op: return #op;
10232 return "OP_AGGREGATE";
10234 return "OP_CHOICES";
10240 /* As for operator_length, but assumes PC is pointing at the first
10241 element of the operator, and gives meaningful results only for the
10242 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10245 ada_forward_operator_length (struct expression *exp, int pc,
10246 int *oplenp, int *argsp)
10248 switch (exp->elts[pc].opcode)
10251 *oplenp = *argsp = 0;
10254 #define OP_DEFN(op, len, args, binop) \
10255 case op: *oplenp = len; *argsp = args; break;
10261 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10266 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10272 int len = longest_to_int (exp->elts[pc + 1].longconst);
10273 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10281 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10283 enum exp_opcode op = exp->elts[elt].opcode;
10288 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10292 /* Ada attributes ('Foo). */
10295 case OP_ATR_LENGTH:
10299 case OP_ATR_MODULUS:
10306 case UNOP_IN_RANGE:
10308 /* XXX: gdb_sprint_host_address, type_sprint */
10309 fprintf_filtered (stream, _("Type @"));
10310 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10311 fprintf_filtered (stream, " (");
10312 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10313 fprintf_filtered (stream, ")");
10315 case BINOP_IN_BOUNDS:
10316 fprintf_filtered (stream, " (%d)",
10317 longest_to_int (exp->elts[pc + 2].longconst));
10319 case TERNOP_IN_RANGE:
10324 case OP_DISCRETE_RANGE:
10325 case OP_POSITIONAL:
10332 char *name = &exp->elts[elt + 2].string;
10333 int len = longest_to_int (exp->elts[elt + 1].longconst);
10334 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10339 return dump_subexp_body_standard (exp, stream, elt);
10343 for (i = 0; i < nargs; i += 1)
10344 elt = dump_subexp (exp, stream, elt);
10349 /* The Ada extension of print_subexp (q.v.). */
10352 ada_print_subexp (struct expression *exp, int *pos,
10353 struct ui_file *stream, enum precedence prec)
10355 int oplen, nargs, i;
10357 enum exp_opcode op = exp->elts[pc].opcode;
10359 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10366 print_subexp_standard (exp, pos, stream, prec);
10370 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10373 case BINOP_IN_BOUNDS:
10374 /* XXX: sprint_subexp */
10375 print_subexp (exp, pos, stream, PREC_SUFFIX);
10376 fputs_filtered (" in ", stream);
10377 print_subexp (exp, pos, stream, PREC_SUFFIX);
10378 fputs_filtered ("'range", stream);
10379 if (exp->elts[pc + 1].longconst > 1)
10380 fprintf_filtered (stream, "(%ld)",
10381 (long) exp->elts[pc + 1].longconst);
10384 case TERNOP_IN_RANGE:
10385 if (prec >= PREC_EQUAL)
10386 fputs_filtered ("(", stream);
10387 /* XXX: sprint_subexp */
10388 print_subexp (exp, pos, stream, PREC_SUFFIX);
10389 fputs_filtered (" in ", stream);
10390 print_subexp (exp, pos, stream, PREC_EQUAL);
10391 fputs_filtered (" .. ", stream);
10392 print_subexp (exp, pos, stream, PREC_EQUAL);
10393 if (prec >= PREC_EQUAL)
10394 fputs_filtered (")", stream);
10399 case OP_ATR_LENGTH:
10403 case OP_ATR_MODULUS:
10408 if (exp->elts[*pos].opcode == OP_TYPE)
10410 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10411 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10415 print_subexp (exp, pos, stream, PREC_SUFFIX);
10416 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10420 for (tem = 1; tem < nargs; tem += 1)
10422 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10423 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10425 fputs_filtered (")", stream);
10430 type_print (exp->elts[pc + 1].type, "", stream, 0);
10431 fputs_filtered ("'(", stream);
10432 print_subexp (exp, pos, stream, PREC_PREFIX);
10433 fputs_filtered (")", stream);
10436 case UNOP_IN_RANGE:
10437 /* XXX: sprint_subexp */
10438 print_subexp (exp, pos, stream, PREC_SUFFIX);
10439 fputs_filtered (" in ", stream);
10440 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10443 case OP_DISCRETE_RANGE:
10444 print_subexp (exp, pos, stream, PREC_SUFFIX);
10445 fputs_filtered ("..", stream);
10446 print_subexp (exp, pos, stream, PREC_SUFFIX);
10450 fputs_filtered ("others => ", stream);
10451 print_subexp (exp, pos, stream, PREC_SUFFIX);
10455 for (i = 0; i < nargs-1; i += 1)
10458 fputs_filtered ("|", stream);
10459 print_subexp (exp, pos, stream, PREC_SUFFIX);
10461 fputs_filtered (" => ", stream);
10462 print_subexp (exp, pos, stream, PREC_SUFFIX);
10465 case OP_POSITIONAL:
10466 print_subexp (exp, pos, stream, PREC_SUFFIX);
10470 fputs_filtered ("(", stream);
10471 for (i = 0; i < nargs; i += 1)
10474 fputs_filtered (", ", stream);
10475 print_subexp (exp, pos, stream, PREC_SUFFIX);
10477 fputs_filtered (")", stream);
10482 /* Table mapping opcodes into strings for printing operators
10483 and precedences of the operators. */
10485 static const struct op_print ada_op_print_tab[] = {
10486 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10487 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10488 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10489 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10490 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10491 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10492 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10493 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10494 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10495 {">=", BINOP_GEQ, PREC_ORDER, 0},
10496 {">", BINOP_GTR, PREC_ORDER, 0},
10497 {"<", BINOP_LESS, PREC_ORDER, 0},
10498 {">>", BINOP_RSH, PREC_SHIFT, 0},
10499 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10500 {"+", BINOP_ADD, PREC_ADD, 0},
10501 {"-", BINOP_SUB, PREC_ADD, 0},
10502 {"&", BINOP_CONCAT, PREC_ADD, 0},
10503 {"*", BINOP_MUL, PREC_MUL, 0},
10504 {"/", BINOP_DIV, PREC_MUL, 0},
10505 {"rem", BINOP_REM, PREC_MUL, 0},
10506 {"mod", BINOP_MOD, PREC_MUL, 0},
10507 {"**", BINOP_EXP, PREC_REPEAT, 0},
10508 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10509 {"-", UNOP_NEG, PREC_PREFIX, 0},
10510 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10511 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10512 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10513 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10514 {".all", UNOP_IND, PREC_SUFFIX, 1},
10515 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10516 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10520 enum ada_primitive_types {
10521 ada_primitive_type_int,
10522 ada_primitive_type_long,
10523 ada_primitive_type_short,
10524 ada_primitive_type_char,
10525 ada_primitive_type_float,
10526 ada_primitive_type_double,
10527 ada_primitive_type_void,
10528 ada_primitive_type_long_long,
10529 ada_primitive_type_long_double,
10530 ada_primitive_type_natural,
10531 ada_primitive_type_positive,
10532 ada_primitive_type_system_address,
10533 nr_ada_primitive_types
10537 ada_language_arch_info (struct gdbarch *gdbarch,
10538 struct language_arch_info *lai)
10540 const struct builtin_type *builtin = builtin_type (gdbarch);
10541 lai->primitive_type_vector
10542 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10544 lai->primitive_type_vector [ada_primitive_type_int] =
10545 init_type (TYPE_CODE_INT,
10546 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10547 0, "integer", (struct objfile *) NULL);
10548 lai->primitive_type_vector [ada_primitive_type_long] =
10549 init_type (TYPE_CODE_INT,
10550 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10551 0, "long_integer", (struct objfile *) NULL);
10552 lai->primitive_type_vector [ada_primitive_type_short] =
10553 init_type (TYPE_CODE_INT,
10554 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10555 0, "short_integer", (struct objfile *) NULL);
10556 lai->string_char_type =
10557 lai->primitive_type_vector [ada_primitive_type_char] =
10558 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10559 0, "character", (struct objfile *) NULL);
10560 lai->primitive_type_vector [ada_primitive_type_float] =
10561 init_type (TYPE_CODE_FLT,
10562 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10563 0, "float", (struct objfile *) NULL);
10564 lai->primitive_type_vector [ada_primitive_type_double] =
10565 init_type (TYPE_CODE_FLT,
10566 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10567 0, "long_float", (struct objfile *) NULL);
10568 lai->primitive_type_vector [ada_primitive_type_long_long] =
10569 init_type (TYPE_CODE_INT,
10570 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10571 0, "long_long_integer", (struct objfile *) NULL);
10572 lai->primitive_type_vector [ada_primitive_type_long_double] =
10573 init_type (TYPE_CODE_FLT,
10574 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10575 0, "long_long_float", (struct objfile *) NULL);
10576 lai->primitive_type_vector [ada_primitive_type_natural] =
10577 init_type (TYPE_CODE_INT,
10578 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10579 0, "natural", (struct objfile *) NULL);
10580 lai->primitive_type_vector [ada_primitive_type_positive] =
10581 init_type (TYPE_CODE_INT,
10582 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10583 0, "positive", (struct objfile *) NULL);
10584 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10586 lai->primitive_type_vector [ada_primitive_type_system_address] =
10587 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10588 (struct objfile *) NULL));
10589 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10590 = "system__address";
10593 /* Language vector */
10595 /* Not really used, but needed in the ada_language_defn. */
10598 emit_char (int c, struct ui_file *stream, int quoter)
10600 ada_emit_char (c, stream, quoter, 1);
10606 warnings_issued = 0;
10607 return ada_parse ();
10610 static const struct exp_descriptor ada_exp_descriptor = {
10612 ada_operator_length,
10614 ada_dump_subexp_body,
10615 ada_evaluate_subexp
10618 const struct language_defn ada_language_defn = {
10619 "ada", /* Language name */
10623 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10624 that's not quite what this means. */
10626 &ada_exp_descriptor,
10630 ada_printchar, /* Print a character constant */
10631 ada_printstr, /* Function to print string constant */
10632 emit_char, /* Function to print single char (not used) */
10633 ada_print_type, /* Print a type using appropriate syntax */
10634 ada_val_print, /* Print a value using appropriate syntax */
10635 ada_value_print, /* Print a top-level value */
10636 NULL, /* Language specific skip_trampoline */
10637 NULL, /* value_of_this */
10638 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10639 basic_lookup_transparent_type, /* lookup_transparent_type */
10640 ada_la_decode, /* Language specific symbol demangler */
10641 NULL, /* Language specific class_name_from_physname */
10642 ada_op_print_tab, /* expression operators for printing */
10643 0, /* c-style arrays */
10644 1, /* String lower bound */
10645 ada_get_gdb_completer_word_break_characters,
10646 ada_language_arch_info,
10647 ada_print_array_index,
10648 default_pass_by_reference,
10653 _initialize_ada_language (void)
10655 add_language (&ada_language_defn);
10657 varsize_limit = 65536;
10659 obstack_init (&symbol_list_obstack);
10661 decoded_names_store = htab_create_alloc
10662 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10663 NULL, xcalloc, xfree);
10665 observer_attach_executable_changed (ada_executable_changed_observer);