1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
34 #include "call-cmds.h"
35 #include "gdb_regex.h"
36 #include "expression.h"
42 #include "filenames.h" /* for FILENAME_CMP */
44 #include "gdb_obstack.h"
46 #include <sys/types.h>
48 #include "gdb_string.h"
53 /* Prototypes for local functions */
55 static void completion_list_add_name (char *, char *, int, char *, char *);
57 static void rbreak_command (char *, int);
59 static void types_info (char *, int);
61 static void functions_info (char *, int);
63 static void variables_info (char *, int);
65 static void sources_info (char *, int);
67 static void output_source_filename (char *, int *);
69 static int find_line_common (struct linetable *, int, int *);
71 /* This one is used by linespec.c */
73 char *operator_chars (char *p, char **end);
75 static struct partial_symbol *lookup_partial_symbol (struct partial_symtab *,
79 static struct symbol *lookup_symbol_aux (const char *name,
80 const char *mangled_name,
81 const struct block *block,
82 const namespace_enum namespace,
83 int *is_a_field_of_this,
84 struct symtab **symtab);
87 struct symbol *lookup_symbol_aux_local (const char *name,
88 const char *mangled_name,
89 const struct block *block,
90 const namespace_enum namespace,
91 struct symtab **symtab,
92 const struct block **static_block);
95 struct symbol *lookup_symbol_aux_block (const char *name,
96 const char *mangled_name,
97 const struct block *block,
98 const namespace_enum namespace,
99 struct symtab **symtab);
102 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *mangled_name,
105 const namespace_enum namespace,
106 struct symtab **symtab);
109 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
111 const char *mangled_name,
112 const namespace_enum namespace,
113 struct symtab **symtab);
116 struct symbol *lookup_symbol_aux_minsyms (const char *name,
117 const char *mangled_name,
118 const namespace_enum namespace,
119 int *is_a_field_of_this,
120 struct symtab **symtab);
122 static struct symbol *find_active_alias (struct symbol *sym, CORE_ADDR addr);
124 /* This flag is used in hppa-tdep.c, and set in hp-symtab-read.c */
125 /* Signals the presence of objects compiled by HP compilers */
126 int hp_som_som_object_present = 0;
128 static void fixup_section (struct general_symbol_info *, struct objfile *);
130 static int file_matches (char *, char **, int);
132 static void print_symbol_info (namespace_enum,
133 struct symtab *, struct symbol *, int, char *);
135 static void print_msymbol_info (struct minimal_symbol *);
137 static void symtab_symbol_info (char *, namespace_enum, int);
139 static void overload_list_add_symbol (struct symbol *sym, char *oload_name);
141 void _initialize_symtab (void);
145 /* The single non-language-specific builtin type */
146 struct type *builtin_type_error;
148 /* Block in which the most recently searched-for symbol was found.
149 Might be better to make this a parameter to lookup_symbol and
152 const struct block *block_found;
154 /* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
159 lookup_symtab (const char *name)
161 register struct symtab *s;
162 register struct partial_symtab *ps;
163 register struct objfile *objfile;
164 char *real_path = NULL;
165 char *full_path = NULL;
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
179 /* First, search for an exact match */
181 ALL_SYMTABS (objfile, s)
183 if (FILENAME_CMP (name, s->filename) == 0)
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
191 if (full_path != NULL)
193 const char *fp = symtab_to_filename (s);
194 if (FILENAME_CMP (full_path, fp) == 0)
200 if (real_path != NULL)
202 char *rp = gdb_realpath (symtab_to_filename (s));
203 make_cleanup (xfree, rp);
204 if (FILENAME_CMP (real_path, rp) == 0)
211 /* Now, search for a matching tail (only if name doesn't have any dirs) */
213 if (lbasename (name) == name)
214 ALL_SYMTABS (objfile, s)
216 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
220 /* Same search rules as above apply here, but now we look thru the
223 ps = lookup_partial_symtab (name);
228 error ("Internal: readin %s pst for `%s' found when no symtab found.",
231 s = PSYMTAB_TO_SYMTAB (ps);
236 /* At this point, we have located the psymtab for this file, but
237 the conversion to a symtab has failed. This usually happens
238 when we are looking up an include file. In this case,
239 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
240 been created. So, we need to run through the symtabs again in
241 order to find the file.
242 XXX - This is a crock, and should be fixed inside of the the
243 symbol parsing routines. */
247 /* Lookup the partial symbol table of a source file named NAME.
248 *If* there is no '/' in the name, a match after a '/'
249 in the psymtab filename will also work. */
251 struct partial_symtab *
252 lookup_partial_symtab (const char *name)
254 register struct partial_symtab *pst;
255 register struct objfile *objfile;
256 char *full_path = NULL;
257 char *real_path = NULL;
259 /* Here we are interested in canonicalizing an absolute path, not
260 absolutizing a relative path. */
261 if (IS_ABSOLUTE_PATH (name))
263 full_path = xfullpath (name);
264 make_cleanup (xfree, full_path);
265 real_path = gdb_realpath (name);
266 make_cleanup (xfree, real_path);
269 ALL_PSYMTABS (objfile, pst)
271 if (FILENAME_CMP (name, pst->filename) == 0)
276 /* If the user gave us an absolute path, try to find the file in
277 this symtab and use its absolute path. */
278 if (full_path != NULL)
280 if (pst->fullname == NULL)
281 source_full_path_of (pst->filename, &pst->fullname);
282 if (pst->fullname != NULL
283 && FILENAME_CMP (full_path, pst->fullname) == 0)
289 if (real_path != NULL)
292 if (pst->fullname == NULL)
293 source_full_path_of (pst->filename, &pst->fullname);
294 if (pst->fullname != NULL)
296 rp = gdb_realpath (pst->fullname);
297 make_cleanup (xfree, rp);
299 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
306 /* Now, search for a matching tail (only if name doesn't have any dirs) */
308 if (lbasename (name) == name)
309 ALL_PSYMTABS (objfile, pst)
311 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
318 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
319 full method name, which consist of the class name (from T), the unadorned
320 method name from METHOD_ID, and the signature for the specific overload,
321 specified by SIGNATURE_ID. Note that this function is g++ specific. */
324 gdb_mangle_name (struct type *type, int method_id, int signature_id)
326 int mangled_name_len;
328 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
329 struct fn_field *method = &f[signature_id];
330 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
331 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
332 char *newname = type_name_no_tag (type);
334 /* Does the form of physname indicate that it is the full mangled name
335 of a constructor (not just the args)? */
336 int is_full_physname_constructor;
339 int is_destructor = is_destructor_name (physname);
340 /* Need a new type prefix. */
341 char *const_prefix = method->is_const ? "C" : "";
342 char *volatile_prefix = method->is_volatile ? "V" : "";
344 int len = (newname == NULL ? 0 : strlen (newname));
346 /* Nothing to do if physname already contains a fully mangled v3 abi name
347 or an operator name. */
348 if ((physname[0] == '_' && physname[1] == 'Z')
349 || is_operator_name (field_name))
350 return xstrdup (physname);
352 is_full_physname_constructor = is_constructor_name (physname);
355 is_full_physname_constructor || (newname && STREQ (field_name, newname));
358 is_destructor = (strncmp (physname, "__dt", 4) == 0);
360 if (is_destructor || is_full_physname_constructor)
362 mangled_name = (char *) xmalloc (strlen (physname) + 1);
363 strcpy (mangled_name, physname);
369 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
371 else if (physname[0] == 't' || physname[0] == 'Q')
373 /* The physname for template and qualified methods already includes
375 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
381 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
383 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
384 + strlen (buf) + len + strlen (physname) + 1);
387 mangled_name = (char *) xmalloc (mangled_name_len);
389 mangled_name[0] = '\0';
391 strcpy (mangled_name, field_name);
393 strcat (mangled_name, buf);
394 /* If the class doesn't have a name, i.e. newname NULL, then we just
395 mangle it using 0 for the length of the class. Thus it gets mangled
396 as something starting with `::' rather than `classname::'. */
398 strcat (mangled_name, newname);
400 strcat (mangled_name, physname);
401 return (mangled_name);
405 /* Initialize the language dependent portion of a symbol
406 depending upon the language for the symbol. */
408 symbol_init_language_specific (struct general_symbol_info *gsymbol,
409 enum language language)
411 gsymbol->language = language;
412 if (gsymbol->language == language_cplus
413 || gsymbol->language == language_java)
415 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
417 else if (gsymbol->language == language_objc)
419 gsymbol->language_specific.objc_specific.demangled_name = NULL;
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
428 /* Initialize a symbol's mangled name. */
430 /* Try to initialize the demangled name for a symbol, based on the
431 language of that symbol. If the language is set to language_auto,
432 it will attempt to find any demangling algorithm that works and
433 then set the language appropriately. If no demangling of any kind
434 is found, the language is set back to language_unknown, so we can
435 avoid doing this work again the next time we encounter the symbol.
436 Any required space to store the name is obtained from the specified
440 symbol_init_demangled_name (struct general_symbol_info *gsymbol,
441 struct obstack *obstack)
443 char *mangled = gsymbol->name;
444 char *demangled = NULL;
446 if (gsymbol->language == language_unknown)
447 gsymbol->language = language_auto;
448 if (gsymbol->language == language_cplus
449 || gsymbol->language == language_auto)
452 cplus_demangle (gsymbol->name, DMGL_PARAMS | DMGL_ANSI);
453 if (demangled != NULL)
455 gsymbol->language = language_cplus;
456 gsymbol->language_specific.cplus_specific.demangled_name =
457 obsavestring (demangled, strlen (demangled), obstack);
462 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
465 if (gsymbol->language == language_java)
468 cplus_demangle (gsymbol->name,
469 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
470 if (demangled != NULL)
472 gsymbol->language = language_java;
473 gsymbol->language_specific.cplus_specific.demangled_name =
474 obsavestring (demangled, strlen (demangled), obstack);
479 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
484 /* Return the demangled name for a symbol based on the language for
485 that symbol. If no demangled name exists, return NULL. */
487 symbol_demangled_name (struct general_symbol_info *gsymbol)
489 if (gsymbol->language == language_cplus
490 || gsymbol->language == language_java)
491 return gsymbol->language_specific.cplus_specific.demangled_name;
493 else if (gsymbol->language == language_objc)
494 return gsymbol->language_specific.objc_specific.demangled_name;
500 /* Initialize the structure fields to zero values. */
502 init_sal (struct symtab_and_line *sal)
513 /* Find which partial symtab on contains PC and SECTION. Return 0 if none. */
515 struct partial_symtab *
516 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
518 register struct partial_symtab *pst;
519 register struct objfile *objfile;
520 struct minimal_symbol *msymbol;
522 /* If we know that this is not a text address, return failure. This is
523 necessary because we loop based on texthigh and textlow, which do
524 not include the data ranges. */
525 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
527 && (msymbol->type == mst_data
528 || msymbol->type == mst_bss
529 || msymbol->type == mst_abs
530 || msymbol->type == mst_file_data
531 || msymbol->type == mst_file_bss))
534 ALL_PSYMTABS (objfile, pst)
536 if (pc >= pst->textlow && pc < pst->texthigh)
538 struct partial_symtab *tpst;
540 /* An objfile that has its functions reordered might have
541 many partial symbol tables containing the PC, but
542 we want the partial symbol table that contains the
543 function containing the PC. */
544 if (!(objfile->flags & OBJF_REORDERED) &&
545 section == 0) /* can't validate section this way */
551 for (tpst = pst; tpst != NULL; tpst = tpst->next)
553 if (pc >= tpst->textlow && pc < tpst->texthigh)
555 struct partial_symbol *p;
557 p = find_pc_sect_psymbol (tpst, pc, section);
559 && SYMBOL_VALUE_ADDRESS (p)
560 == SYMBOL_VALUE_ADDRESS (msymbol))
570 /* Find which partial symtab contains PC. Return 0 if none.
571 Backward compatibility, no section */
573 struct partial_symtab *
574 find_pc_psymtab (CORE_ADDR pc)
576 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
579 /* Find which partial symbol within a psymtab matches PC and SECTION.
580 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
582 struct partial_symbol *
583 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
586 struct partial_symbol *best = NULL, *p, **pp;
590 psymtab = find_pc_sect_psymtab (pc, section);
594 /* Cope with programs that start at address 0 */
595 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
597 /* Search the global symbols as well as the static symbols, so that
598 find_pc_partial_function doesn't use a minimal symbol and thus
599 cache a bad endaddr. */
600 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
601 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
602 < psymtab->n_global_syms);
606 if (SYMBOL_NAMESPACE (p) == VAR_NAMESPACE
607 && SYMBOL_CLASS (p) == LOC_BLOCK
608 && pc >= SYMBOL_VALUE_ADDRESS (p)
609 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
610 || (psymtab->textlow == 0
611 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
613 if (section) /* match on a specific section */
615 fixup_psymbol_section (p, psymtab->objfile);
616 if (SYMBOL_BFD_SECTION (p) != section)
619 best_pc = SYMBOL_VALUE_ADDRESS (p);
624 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
625 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
626 < psymtab->n_static_syms);
630 if (SYMBOL_NAMESPACE (p) == VAR_NAMESPACE
631 && SYMBOL_CLASS (p) == LOC_BLOCK
632 && pc >= SYMBOL_VALUE_ADDRESS (p)
633 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
634 || (psymtab->textlow == 0
635 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
637 if (section) /* match on a specific section */
639 fixup_psymbol_section (p, psymtab->objfile);
640 if (SYMBOL_BFD_SECTION (p) != section)
643 best_pc = SYMBOL_VALUE_ADDRESS (p);
651 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
652 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
654 struct partial_symbol *
655 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
657 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
660 /* Debug symbols usually don't have section information. We need to dig that
661 out of the minimal symbols and stash that in the debug symbol. */
664 fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile)
666 struct minimal_symbol *msym;
667 msym = lookup_minimal_symbol (ginfo->name, NULL, objfile);
671 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
672 ginfo->section = SYMBOL_SECTION (msym);
677 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
682 if (SYMBOL_BFD_SECTION (sym))
685 fixup_section (&sym->ginfo, objfile);
690 struct partial_symbol *
691 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
696 if (SYMBOL_BFD_SECTION (psym))
699 fixup_section (&psym->ginfo, objfile);
704 /* Find the definition for a specified symbol name NAME
705 in namespace NAMESPACE, visible from lexical block BLOCK.
706 Returns the struct symbol pointer, or zero if no symbol is found.
707 If SYMTAB is non-NULL, store the symbol table in which the
708 symbol was found there, or NULL if not found.
709 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
710 NAME is a field of the current implied argument `this'. If so set
711 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
712 BLOCK_FOUND is set to the block in which NAME is found (in the case of
713 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
715 /* This function has a bunch of loops in it and it would seem to be
716 attractive to put in some QUIT's (though I'm not really sure
717 whether it can run long enough to be really important). But there
718 are a few calls for which it would appear to be bad news to quit
719 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c, and
720 nindy_frame_chain_valid in nindy-tdep.c. (Note that there is C++
721 code below which can error(), but that probably doesn't affect
722 these calls since they are looking for a known variable and thus
723 can probably assume it will never hit the C++ code). */
726 lookup_symbol (const char *name, const struct block *block,
727 const namespace_enum namespace, int *is_a_field_of_this,
728 struct symtab **symtab)
730 char *demangled_name = NULL;
731 const char *modified_name = NULL;
732 const char *mangled_name = NULL;
733 int needtofreename = 0;
734 struct symbol *returnval;
736 modified_name = name;
738 /* If we are using C++ language, demangle the name before doing a lookup, so
739 we can always binary search. */
740 if (current_language->la_language == language_cplus)
742 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
746 modified_name = demangled_name;
751 if (case_sensitivity == case_sensitive_off)
757 copy = (char *) alloca (len + 1);
758 for (i= 0; i < len; i++)
759 copy[i] = tolower (name[i]);
761 modified_name = copy;
764 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
765 namespace, is_a_field_of_this, symtab);
767 xfree (demangled_name);
772 static struct symbol *
773 lookup_symbol_aux (const char *name, const char *mangled_name,
774 const struct block *block, const namespace_enum namespace,
775 int *is_a_field_of_this, struct symtab **symtab)
778 const struct block *static_block;
780 /* Search specified block and its superiors. Don't search
781 STATIC_BLOCK or GLOBAL_BLOCK. */
783 sym = lookup_symbol_aux_local (name, mangled_name, block, namespace,
784 symtab, &static_block);
789 /* NOTE: carlton/2002-11-05: At the time that this code was
790 #ifdeffed out, the value of 'block' was always NULL at this
791 point, hence the bemused comments below. */
793 /* FIXME: this code is never executed--block is always NULL at this
794 point. What is it trying to do, anyway? We already should have
795 checked the STATIC_BLOCK above (it is the superblock of top-level
796 blocks). Why is VAR_NAMESPACE special-cased? */
797 /* Don't need to mess with the psymtabs; if we have a block,
798 that file is read in. If we don't, then we deal later with
799 all the psymtab stuff that needs checking. */
800 /* Note (RT): The following never-executed code looks unnecessary to me also.
801 * If we change the code to use the original (passed-in)
802 * value of 'block', we could cause it to execute, but then what
803 * would it do? The STATIC_BLOCK of the symtab containing the passed-in
804 * 'block' was already searched by the above code. And the STATIC_BLOCK's
805 * of *other* symtabs (those files not containing 'block' lexically)
806 * should not contain 'block' address-wise. So we wouldn't expect this
807 * code to find any 'sym''s that were not found above. I vote for
808 * deleting the following paragraph of code.
810 if (namespace == VAR_NAMESPACE && block != NULL)
813 /* Find the right symtab. */
814 ALL_SYMTABS (objfile, s)
816 bv = BLOCKVECTOR (s);
817 b = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
818 if (BLOCK_START (b) <= BLOCK_START (block)
819 && BLOCK_END (b) > BLOCK_START (block))
821 sym = lookup_block_symbol (b, name, mangled_name, VAR_NAMESPACE);
827 return fixup_symbol_section (sym, objfile);
834 /* C++: If requested to do so by the caller,
835 check to see if NAME is a field of `this'. */
836 if (is_a_field_of_this)
838 struct value *v = value_of_this (0);
840 *is_a_field_of_this = 0;
841 if (v && check_field (v, name))
843 *is_a_field_of_this = 1;
850 /* If there's a static block to search, search it next. */
852 /* NOTE: carlton/2002-12-05: There is a question as to whether or
853 not it would be appropriate to search the current global block
854 here as well. (That's what this code used to do before the
855 is_a_field_of_this check was moved up.) On the one hand, it's
856 redundant with the lookup_symbol_aux_symtabs search that happens
857 next. On the other hand, if decode_line_1 is passed an argument
858 like filename:var, then the user presumably wants 'var' to be
859 searched for in filename. On the third hand, there shouldn't be
860 multiple global variables all of which are named 'var', and it's
861 not like decode_line_1 has ever restricted its search to only
862 global variables in a single filename. All in all, only
863 searching the static block here seems best: it's correct and it's
866 /* NOTE: carlton/2002-12-05: There's also a possible performance
867 issue here: if you usually search for global symbols in the
868 current file, then it would be slightly better to search the
869 current global block before searching all the symtabs. But there
870 are other factors that have a much greater effect on performance
871 than that one, so I don't think we should worry about that for
874 if (static_block != NULL)
876 sym = lookup_symbol_aux_block (name, mangled_name, static_block,
882 /* Now search all global blocks. Do the symtab's first, then
883 check the psymtab's. If a psymtab indicates the existence
884 of the desired name as a global, then do psymtab-to-symtab
885 conversion on the fly and return the found symbol. */
887 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, mangled_name,
894 /* Check for the possibility of the symbol being a function or
895 a mangled variable that is stored in one of the minimal symbol tables.
896 Eventually, all global symbols might be resolved in this way. */
898 sym = lookup_symbol_aux_minsyms (name, mangled_name,
899 namespace, is_a_field_of_this,
907 sym = lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, mangled_name,
912 /* Now search all static file-level symbols. Not strictly correct,
913 but more useful than an error. Do the symtabs first, then check
914 the psymtabs. If a psymtab indicates the existence of the
915 desired name as a file-level static, then do psymtab-to-symtab
916 conversion on the fly and return the found symbol. */
918 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, mangled_name,
923 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, mangled_name,
930 /* Check for the possibility of the symbol being a function or
931 a global variable that is stored in one of the minimal symbol tables.
932 The "minimal symbol table" is built from linker-supplied info.
934 RT: I moved this check to last, after the complete search of
935 the global (p)symtab's and static (p)symtab's. For HP-generated
936 symbol tables, this check was causing a premature exit from
937 lookup_symbol with NULL return, and thus messing up symbol lookups
938 of things like "c::f". It seems to me a check of the minimal
939 symbol table ought to be a last resort in any case. I'm vaguely
940 worried about the comment below which talks about FORTRAN routines "foo_"
941 though... is it saying we need to do the "minsym" check before
942 the static check in this case?
946 sym = lookup_symbol_aux_minsyms (name, mangled_name,
947 namespace, is_a_field_of_this,
960 /* Check to see if the symbol is defined in BLOCK or its superiors.
961 Don't search STATIC_BLOCK or GLOBAL_BLOCK. If we don't find a
962 match, store the address of STATIC_BLOCK in static_block. */
964 static struct symbol *
965 lookup_symbol_aux_local (const char *name, const char *mangled_name,
966 const struct block *block,
967 const namespace_enum namespace,
968 struct symtab **symtab,
969 const struct block **static_block)
973 /* Check if either no block is specified or it's a global block. */
975 if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
977 *static_block = NULL;
981 while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
983 sym = lookup_symbol_aux_block (name, mangled_name, block, namespace,
987 block = BLOCK_SUPERBLOCK (block);
990 /* We've reached the static block. */
992 *static_block = block;
996 /* Look up a symbol in a block; if found, locate its symtab, fixup the
997 symbol, and set block_found appropriately. */
999 static struct symbol *
1000 lookup_symbol_aux_block (const char *name, const char *mangled_name,
1001 const struct block *block,
1002 const namespace_enum namespace,
1003 struct symtab **symtab)
1006 struct objfile *objfile = NULL;
1007 struct blockvector *bv;
1009 struct symtab *s = NULL;
1011 sym = lookup_block_symbol (block, name, mangled_name, namespace);
1014 block_found = block;
1017 /* Search the list of symtabs for one which contains the
1018 address of the start of this block. */
1019 ALL_SYMTABS (objfile, s)
1021 bv = BLOCKVECTOR (s);
1022 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1023 if (BLOCK_START (b) <= BLOCK_START (block)
1024 && BLOCK_END (b) > BLOCK_START (block))
1031 return fixup_symbol_section (sym, objfile);
1037 /* Check to see if the symbol is defined in one of the symtabs.
1038 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1039 depending on whether or not we want to search global symbols or
1042 static struct symbol *
1043 lookup_symbol_aux_symtabs (int block_index,
1044 const char *name, const char *mangled_name,
1045 const namespace_enum namespace,
1046 struct symtab **symtab)
1049 struct objfile *objfile;
1050 struct blockvector *bv;
1051 const struct block *block;
1054 ALL_SYMTABS (objfile, s)
1056 bv = BLOCKVECTOR (s);
1057 block = BLOCKVECTOR_BLOCK (bv, block_index);
1058 sym = lookup_block_symbol (block, name, mangled_name, namespace);
1061 block_found = block;
1064 return fixup_symbol_section (sym, objfile);
1071 /* Check to see if the symbol is defined in one of the partial
1072 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1073 STATIC_BLOCK, depending on whether or not we want to search global
1074 symbols or static symbols. */
1076 static struct symbol *
1077 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1078 const char *mangled_name,
1079 const namespace_enum namespace,
1080 struct symtab **symtab)
1083 struct objfile *objfile;
1084 struct blockvector *bv;
1085 const struct block *block;
1086 struct partial_symtab *ps;
1088 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1090 ALL_PSYMTABS (objfile, ps)
1093 && lookup_partial_symbol (ps, name, psymtab_index, namespace))
1095 s = PSYMTAB_TO_SYMTAB (ps);
1096 bv = BLOCKVECTOR (s);
1097 block = BLOCKVECTOR_BLOCK (bv, block_index);
1098 sym = lookup_block_symbol (block, name, mangled_name, namespace);
1101 /* This shouldn't be necessary, but as a last resort try
1102 looking in the statics even though the psymtab claimed
1103 the symbol was global, or vice-versa. It's possible
1104 that the psymtab gets it wrong in some cases. */
1106 /* FIXME: carlton/2002-09-30: Should we really do that?
1107 If that happens, isn't it likely to be a GDB error, in
1108 which case we should fix the GDB error rather than
1109 silently dealing with it here? So I'd vote for
1110 removing the check for the symbol in the other
1112 block = BLOCKVECTOR_BLOCK (bv,
1113 block_index == GLOBAL_BLOCK ?
1114 STATIC_BLOCK : GLOBAL_BLOCK);
1115 sym = lookup_block_symbol (block, name, mangled_name, namespace);
1117 error ("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>).",
1118 block_index == GLOBAL_BLOCK ? "global" : "static",
1119 name, ps->filename, name, name);
1123 return fixup_symbol_section (sym, objfile);
1130 /* Check for the possibility of the symbol being a function or a
1131 mangled variable that is stored in one of the minimal symbol
1132 tables. Eventually, all global symbols might be resolved in this
1135 /* NOTE: carlton/2002-12-05: At one point, this function was part of
1136 lookup_symbol_aux, and what are now 'return' statements within
1137 lookup_symbol_aux_minsyms returned from lookup_symbol_aux, even if
1138 sym was NULL. As far as I can tell, this was basically accidental;
1139 it didn't happen every time that msymbol was non-NULL, but only if
1140 some additional conditions held as well, and it caused problems
1141 with HP-generated symbol tables. */
1143 static struct symbol *
1144 lookup_symbol_aux_minsyms (const char *name,
1145 const char *mangled_name,
1146 const namespace_enum namespace,
1147 int *is_a_field_of_this,
1148 struct symtab **symtab)
1151 struct blockvector *bv;
1152 const struct block *block;
1153 struct minimal_symbol *msymbol;
1156 if (namespace == VAR_NAMESPACE)
1158 msymbol = lookup_minimal_symbol (name, NULL, NULL);
1160 if (msymbol != NULL)
1162 /* OK, we found a minimal symbol in spite of not finding any
1163 symbol. There are various possible explanations for
1164 this. One possibility is the symbol exists in code not
1165 compiled -g. Another possibility is that the 'psymtab'
1166 isn't doing its job. A third possibility, related to #2,
1167 is that we were confused by name-mangling. For instance,
1168 maybe the psymtab isn't doing its job because it only
1169 know about demangled names, but we were given a mangled
1172 /* We first use the address in the msymbol to try to locate
1173 the appropriate symtab. Note that find_pc_sect_symtab()
1174 has a side-effect of doing psymtab-to-symtab expansion,
1175 for the found symtab. */
1176 s = find_pc_sect_symtab (SYMBOL_VALUE_ADDRESS (msymbol),
1177 SYMBOL_BFD_SECTION (msymbol));
1180 /* This is a function which has a symtab for its address. */
1181 bv = BLOCKVECTOR (s);
1182 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1184 /* This call used to pass `SYMBOL_NAME (msymbol)' as the
1185 `name' argument to lookup_block_symbol. But the name
1186 of a minimal symbol is always mangled, so that seems
1187 to be clearly the wrong thing to pass as the
1190 lookup_block_symbol (block, name, mangled_name, namespace);
1191 /* We kept static functions in minimal symbol table as well as
1192 in static scope. We want to find them in the symbol table. */
1195 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1196 sym = lookup_block_symbol (block, name,
1197 mangled_name, namespace);
1200 /* NOTE: carlton/2002-12-04: The following comment was
1201 taken from a time when two versions of this function
1202 were part of the body of lookup_symbol_aux: this
1203 comment was taken from the version of the function
1204 that was #ifdef HPUXHPPA, and the comment was right
1205 before the 'return NULL' part of lookup_symbol_aux.
1206 (Hence the "Fall through and return 0" comment.)
1207 Elena did some digging into the situation for
1208 Fortran, and she reports:
1210 "I asked around (thanks to Jeff Knaggs), and I think
1211 the story for Fortran goes like this:
1213 "Apparently, in older Fortrans, '_' was not part of
1214 the user namespace. g77 attached a final '_' to
1215 procedure names as the exported symbols for linkage
1216 (foo_) , but the symbols went in the debug info just
1217 like 'foo'. The rationale behind this is not
1218 completely clear, and maybe it was done to other
1219 symbols as well, not just procedures." */
1221 /* If we get here with sym == 0, the symbol was
1222 found in the minimal symbol table
1223 but not in the symtab.
1224 Fall through and return 0 to use the msymbol
1225 definition of "foo_".
1226 (Note that outer code generally follows up a call
1227 to this routine with a call to lookup_minimal_symbol(),
1228 so a 0 return means we'll just flow into that other routine).
1230 This happens for Fortran "foo_" symbols,
1231 which are "foo" in the symtab.
1233 This can also happen if "asm" is used to make a
1234 regular symbol but not a debugging symbol, e.g.
1235 asm(".globl _main");
1239 if (symtab != NULL && sym != NULL)
1241 return fixup_symbol_section (sym, s->objfile);
1243 else if (MSYMBOL_TYPE (msymbol) != mst_text
1244 && MSYMBOL_TYPE (msymbol) != mst_file_text
1245 && !STREQ (name, SYMBOL_NAME (msymbol)))
1247 /* This is a mangled variable, look it up by its
1249 return lookup_symbol_aux (SYMBOL_NAME (msymbol), mangled_name,
1250 NULL, namespace, is_a_field_of_this,
1259 /* Look, in partial_symtab PST, for symbol NAME. Check the global
1260 symbols if GLOBAL, the static symbols if not */
1262 static struct partial_symbol *
1263 lookup_partial_symbol (struct partial_symtab *pst, const char *name, int global,
1264 namespace_enum namespace)
1266 struct partial_symbol *temp;
1267 struct partial_symbol **start, **psym;
1268 struct partial_symbol **top, **real_top, **bottom, **center;
1269 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1270 int do_linear_search = 1;
1277 pst->objfile->global_psymbols.list + pst->globals_offset :
1278 pst->objfile->static_psymbols.list + pst->statics_offset);
1280 if (global) /* This means we can use a binary search. */
1282 do_linear_search = 0;
1284 /* Binary search. This search is guaranteed to end with center
1285 pointing at the earliest partial symbol with the correct
1286 name. At that point *all* partial symbols with that name
1287 will be checked against the correct namespace. */
1290 top = start + length - 1;
1292 while (top > bottom)
1294 center = bottom + (top - bottom) / 2;
1295 if (!(center < top))
1296 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1297 if (!do_linear_search
1298 && (SYMBOL_LANGUAGE (*center) == language_java))
1300 do_linear_search = 1;
1302 if (strcmp (SYMBOL_SOURCE_NAME (*center), name) >= 0)
1308 bottom = center + 1;
1311 if (!(top == bottom))
1312 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1314 /* djb - 2000-06-03 - Use SYMBOL_MATCHES_NAME, not a strcmp, so
1315 we don't have to force a linear search on C++. Probably holds true
1316 for JAVA as well, no way to check.*/
1317 while (top <= real_top && SYMBOL_MATCHES_NAME (*top,name))
1319 if (SYMBOL_NAMESPACE (*top) == namespace)
1327 /* Can't use a binary search or else we found during the binary search that
1328 we should also do a linear search. */
1330 if (do_linear_search)
1332 for (psym = start; psym < start + length; psym++)
1334 if (namespace == SYMBOL_NAMESPACE (*psym))
1336 if (SYMBOL_MATCHES_NAME (*psym, name))
1347 /* Look up a type named NAME in the struct_namespace. The type returned
1348 must not be opaque -- i.e., must have at least one field defined
1350 This code was modelled on lookup_symbol -- the parts not relevant to looking
1351 up types were just left out. In particular it's assumed here that types
1352 are available in struct_namespace and only at file-static or global blocks. */
1356 lookup_transparent_type (const char *name)
1358 register struct symbol *sym;
1359 register struct symtab *s = NULL;
1360 register struct partial_symtab *ps;
1361 struct blockvector *bv;
1362 register struct objfile *objfile;
1363 register struct block *block;
1365 /* Now search all the global symbols. Do the symtab's first, then
1366 check the psymtab's. If a psymtab indicates the existence
1367 of the desired name as a global, then do psymtab-to-symtab
1368 conversion on the fly and return the found symbol. */
1370 ALL_SYMTABS (objfile, s)
1372 bv = BLOCKVECTOR (s);
1373 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1374 sym = lookup_block_symbol (block, name, NULL, STRUCT_NAMESPACE);
1375 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1377 return SYMBOL_TYPE (sym);
1381 ALL_PSYMTABS (objfile, ps)
1383 if (!ps->readin && lookup_partial_symbol (ps, name, 1, STRUCT_NAMESPACE))
1385 s = PSYMTAB_TO_SYMTAB (ps);
1386 bv = BLOCKVECTOR (s);
1387 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1388 sym = lookup_block_symbol (block, name, NULL, STRUCT_NAMESPACE);
1391 /* This shouldn't be necessary, but as a last resort
1392 * try looking in the statics even though the psymtab
1393 * claimed the symbol was global. It's possible that
1394 * the psymtab gets it wrong in some cases.
1396 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1397 sym = lookup_block_symbol (block, name, NULL, STRUCT_NAMESPACE);
1399 error ("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1400 %s may be an inlined function, or may be a template function\n\
1401 (if a template, try specifying an instantiation: %s<type>).",
1402 name, ps->filename, name, name);
1404 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1405 return SYMBOL_TYPE (sym);
1409 /* Now search the static file-level symbols.
1410 Not strictly correct, but more useful than an error.
1411 Do the symtab's first, then
1412 check the psymtab's. If a psymtab indicates the existence
1413 of the desired name as a file-level static, then do psymtab-to-symtab
1414 conversion on the fly and return the found symbol.
1417 ALL_SYMTABS (objfile, s)
1419 bv = BLOCKVECTOR (s);
1420 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1421 sym = lookup_block_symbol (block, name, NULL, STRUCT_NAMESPACE);
1422 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1424 return SYMBOL_TYPE (sym);
1428 ALL_PSYMTABS (objfile, ps)
1430 if (!ps->readin && lookup_partial_symbol (ps, name, 0, STRUCT_NAMESPACE))
1432 s = PSYMTAB_TO_SYMTAB (ps);
1433 bv = BLOCKVECTOR (s);
1434 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1435 sym = lookup_block_symbol (block, name, NULL, STRUCT_NAMESPACE);
1438 /* This shouldn't be necessary, but as a last resort
1439 * try looking in the globals even though the psymtab
1440 * claimed the symbol was static. It's possible that
1441 * the psymtab gets it wrong in some cases.
1443 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1444 sym = lookup_block_symbol (block, name, NULL, STRUCT_NAMESPACE);
1446 error ("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1447 %s may be an inlined function, or may be a template function\n\
1448 (if a template, try specifying an instantiation: %s<type>).",
1449 name, ps->filename, name, name);
1451 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1452 return SYMBOL_TYPE (sym);
1455 return (struct type *) 0;
1459 /* Find the psymtab containing main(). */
1460 /* FIXME: What about languages without main() or specially linked
1461 executables that have no main() ? */
1463 struct partial_symtab *
1464 find_main_psymtab (void)
1466 register struct partial_symtab *pst;
1467 register struct objfile *objfile;
1469 ALL_PSYMTABS (objfile, pst)
1471 if (lookup_partial_symbol (pst, main_name (), 1, VAR_NAMESPACE))
1479 /* Search BLOCK for symbol NAME in NAMESPACE.
1481 Note that if NAME is the demangled form of a C++ symbol, we will fail
1482 to find a match during the binary search of the non-encoded names, but
1483 for now we don't worry about the slight inefficiency of looking for
1484 a match we'll never find, since it will go pretty quick. Once the
1485 binary search terminates, we drop through and do a straight linear
1486 search on the symbols. Each symbol which is marked as being a C++
1487 symbol (language_cplus set) has both the encoded and non-encoded names
1490 If MANGLED_NAME is non-NULL, verify that any symbol we find has this
1491 particular mangled name.
1495 lookup_block_symbol (register const struct block *block, const char *name,
1496 const char *mangled_name,
1497 const namespace_enum namespace)
1499 register int bot, top, inc;
1500 register struct symbol *sym;
1501 register struct symbol *sym_found = NULL;
1502 register int do_linear_search = 1;
1504 if (BLOCK_HASHTABLE (block))
1506 unsigned int hash_index;
1507 hash_index = msymbol_hash_iw (name);
1508 hash_index = hash_index % BLOCK_BUCKETS (block);
1509 for (sym = BLOCK_BUCKET (block, hash_index); sym; sym = sym->hash_next)
1511 if (SYMBOL_NAMESPACE (sym) == namespace
1513 ? strcmp (SYMBOL_NAME (sym), mangled_name) == 0
1514 : SYMBOL_MATCHES_NAME (sym, name)))
1520 /* If the blocks's symbols were sorted, start with a binary search. */
1522 if (BLOCK_SHOULD_SORT (block))
1524 /* Reset the linear search flag so if the binary search fails, we
1525 won't do the linear search once unless we find some reason to
1528 do_linear_search = 0;
1529 top = BLOCK_NSYMS (block);
1532 /* Advance BOT to not far before the first symbol whose name is NAME. */
1536 inc = (top - bot + 1);
1537 /* No need to keep binary searching for the last few bits worth. */
1542 inc = (inc >> 1) + bot;
1543 sym = BLOCK_SYM (block, inc);
1544 if (!do_linear_search && (SYMBOL_LANGUAGE (sym) == language_java))
1546 do_linear_search = 1;
1548 if (SYMBOL_SOURCE_NAME (sym)[0] < name[0])
1552 else if (SYMBOL_SOURCE_NAME (sym)[0] > name[0])
1556 else if (strcmp (SYMBOL_SOURCE_NAME (sym), name) < 0)
1566 /* Now scan forward until we run out of symbols, find one whose
1567 name is greater than NAME, or find one we want. If there is
1568 more than one symbol with the right name and namespace, we
1569 return the first one; I believe it is now impossible for us
1570 to encounter two symbols with the same name and namespace
1571 here, because blocks containing argument symbols are no
1572 longer sorted. The exception is for C++, where multiple functions
1573 (cloned constructors / destructors, in particular) can have
1574 the same demangled name. So if we have a particular
1575 mangled name to match, try to do so. */
1577 top = BLOCK_NSYMS (block);
1580 sym = BLOCK_SYM (block, bot);
1581 if (SYMBOL_NAMESPACE (sym) == namespace
1583 ? strcmp (SYMBOL_NAME (sym), mangled_name) == 0
1584 : SYMBOL_MATCHES_NAME (sym, name)))
1588 if (SYMBOL_SOURCE_NAME (sym)[0] > name[0])
1596 /* Here if block isn't sorted, or we fail to find a match during the
1597 binary search above. If during the binary search above, we find a
1598 symbol which is a Java symbol, then we have re-enabled the linear
1599 search flag which was reset when starting the binary search.
1601 This loop is equivalent to the loop above, but hacked greatly for speed.
1603 Note that parameter symbols do not always show up last in the
1604 list; this loop makes sure to take anything else other than
1605 parameter symbols first; it only uses parameter symbols as a
1606 last resort. Note that this only takes up extra computation
1609 if (do_linear_search)
1611 top = BLOCK_NSYMS (block);
1615 sym = BLOCK_SYM (block, bot);
1616 if (SYMBOL_NAMESPACE (sym) == namespace
1618 ? strcmp (SYMBOL_NAME (sym), mangled_name) == 0
1619 : SYMBOL_MATCHES_NAME (sym, name)))
1621 /* If SYM has aliases, then use any alias that is active
1622 at the current PC. If no alias is active at the current
1623 PC, then use the main symbol.
1625 ?!? Is checking the current pc correct? Is this routine
1626 ever called to look up a symbol from another context?
1628 FIXME: No, it's not correct. If someone sets a
1629 conditional breakpoint at an address, then the
1630 breakpoint's `struct expression' should refer to the
1631 `struct symbol' appropriate for the breakpoint's
1632 address, which may not be the PC.
1634 Even if it were never called from another context,
1635 it's totally bizarre for lookup_symbol's behavior to
1636 depend on the value of the inferior's current PC. We
1637 should pass in the appropriate PC as well as the
1638 block. The interface to lookup_symbol should change
1639 to require the caller to provide a PC. */
1641 if (SYMBOL_ALIASES (sym))
1642 sym = find_active_alias (sym, read_pc ());
1645 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1646 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1647 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1648 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1649 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1650 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG)
1658 return (sym_found); /* Will be NULL if not found. */
1661 /* Given a main symbol SYM and ADDR, search through the alias
1662 list to determine if an alias is active at ADDR and return
1665 If no alias is active, then return SYM. */
1667 static struct symbol *
1668 find_active_alias (struct symbol *sym, CORE_ADDR addr)
1670 struct range_list *r;
1671 struct alias_list *aliases;
1673 /* If we have aliases, check them first. */
1674 aliases = SYMBOL_ALIASES (sym);
1678 if (!SYMBOL_RANGES (aliases->sym))
1679 return aliases->sym;
1680 for (r = SYMBOL_RANGES (aliases->sym); r; r = r->next)
1682 if (r->start <= addr && r->end > addr)
1683 return aliases->sym;
1685 aliases = aliases->next;
1688 /* Nothing found, return the main symbol. */
1693 /* Return the symbol for the function which contains a specified
1694 lexical block, described by a struct block BL. */
1697 block_function (struct block *bl)
1699 while (BLOCK_FUNCTION (bl) == 0 && BLOCK_SUPERBLOCK (bl) != 0)
1700 bl = BLOCK_SUPERBLOCK (bl);
1702 return BLOCK_FUNCTION (bl);
1705 /* Find the symtab associated with PC and SECTION. Look through the
1706 psymtabs and read in another symtab if necessary. */
1709 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1711 register struct block *b;
1712 struct blockvector *bv;
1713 register struct symtab *s = NULL;
1714 register struct symtab *best_s = NULL;
1715 register struct partial_symtab *ps;
1716 register struct objfile *objfile;
1717 CORE_ADDR distance = 0;
1718 struct minimal_symbol *msymbol;
1720 /* If we know that this is not a text address, return failure. This is
1721 necessary because we loop based on the block's high and low code
1722 addresses, which do not include the data ranges, and because
1723 we call find_pc_sect_psymtab which has a similar restriction based
1724 on the partial_symtab's texthigh and textlow. */
1725 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1727 && (msymbol->type == mst_data
1728 || msymbol->type == mst_bss
1729 || msymbol->type == mst_abs
1730 || msymbol->type == mst_file_data
1731 || msymbol->type == mst_file_bss))
1734 /* Search all symtabs for the one whose file contains our address, and which
1735 is the smallest of all the ones containing the address. This is designed
1736 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1737 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1738 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1740 This happens for native ecoff format, where code from included files
1741 gets its own symtab. The symtab for the included file should have
1742 been read in already via the dependency mechanism.
1743 It might be swifter to create several symtabs with the same name
1744 like xcoff does (I'm not sure).
1746 It also happens for objfiles that have their functions reordered.
1747 For these, the symtab we are looking for is not necessarily read in. */
1749 ALL_SYMTABS (objfile, s)
1751 bv = BLOCKVECTOR (s);
1752 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1754 if (BLOCK_START (b) <= pc
1755 && BLOCK_END (b) > pc
1757 || BLOCK_END (b) - BLOCK_START (b) < distance))
1759 /* For an objfile that has its functions reordered,
1760 find_pc_psymtab will find the proper partial symbol table
1761 and we simply return its corresponding symtab. */
1762 /* In order to better support objfiles that contain both
1763 stabs and coff debugging info, we continue on if a psymtab
1765 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
1767 ps = find_pc_sect_psymtab (pc, section);
1769 return PSYMTAB_TO_SYMTAB (ps);
1774 struct symbol *sym = NULL;
1776 ALL_BLOCK_SYMBOLS (b, i, sym)
1778 fixup_symbol_section (sym, objfile);
1779 if (section == SYMBOL_BFD_SECTION (sym))
1782 if ((i >= BLOCK_BUCKETS (b)) && (sym == NULL))
1783 continue; /* no symbol in this symtab matches section */
1785 distance = BLOCK_END (b) - BLOCK_START (b);
1794 ps = find_pc_sect_psymtab (pc, section);
1798 /* Might want to error() here (in case symtab is corrupt and
1799 will cause a core dump), but maybe we can successfully
1800 continue, so let's not. */
1802 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n",
1804 s = PSYMTAB_TO_SYMTAB (ps);
1809 /* Find the symtab associated with PC. Look through the psymtabs and
1810 read in another symtab if necessary. Backward compatibility, no section */
1813 find_pc_symtab (CORE_ADDR pc)
1815 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1819 /* Find the source file and line number for a given PC value and SECTION.
1820 Return a structure containing a symtab pointer, a line number,
1821 and a pc range for the entire source line.
1822 The value's .pc field is NOT the specified pc.
1823 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1824 use the line that ends there. Otherwise, in that case, the line
1825 that begins there is used. */
1827 /* The big complication here is that a line may start in one file, and end just
1828 before the start of another file. This usually occurs when you #include
1829 code in the middle of a subroutine. To properly find the end of a line's PC
1830 range, we must search all symtabs associated with this compilation unit, and
1831 find the one whose first PC is closer than that of the next line in this
1834 /* If it's worth the effort, we could be using a binary search. */
1836 struct symtab_and_line
1837 find_pc_sect_line (CORE_ADDR pc, struct sec *section, int notcurrent)
1840 register struct linetable *l;
1843 register struct linetable_entry *item;
1844 struct symtab_and_line val;
1845 struct blockvector *bv;
1846 struct minimal_symbol *msymbol;
1847 struct minimal_symbol *mfunsym;
1849 /* Info on best line seen so far, and where it starts, and its file. */
1851 struct linetable_entry *best = NULL;
1852 CORE_ADDR best_end = 0;
1853 struct symtab *best_symtab = 0;
1855 /* Store here the first line number
1856 of a file which contains the line at the smallest pc after PC.
1857 If we don't find a line whose range contains PC,
1858 we will use a line one less than this,
1859 with a range from the start of that file to the first line's pc. */
1860 struct linetable_entry *alt = NULL;
1861 struct symtab *alt_symtab = 0;
1863 /* Info on best line seen in this file. */
1865 struct linetable_entry *prev;
1867 /* If this pc is not from the current frame,
1868 it is the address of the end of a call instruction.
1869 Quite likely that is the start of the following statement.
1870 But what we want is the statement containing the instruction.
1871 Fudge the pc to make sure we get that. */
1873 init_sal (&val); /* initialize to zeroes */
1875 /* It's tempting to assume that, if we can't find debugging info for
1876 any function enclosing PC, that we shouldn't search for line
1877 number info, either. However, GAS can emit line number info for
1878 assembly files --- very helpful when debugging hand-written
1879 assembly code. In such a case, we'd have no debug info for the
1880 function, but we would have line info. */
1885 /* elz: added this because this function returned the wrong
1886 information if the pc belongs to a stub (import/export)
1887 to call a shlib function. This stub would be anywhere between
1888 two functions in the target, and the line info was erroneously
1889 taken to be the one of the line before the pc.
1891 /* RT: Further explanation:
1893 * We have stubs (trampolines) inserted between procedures.
1895 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1896 * exists in the main image.
1898 * In the minimal symbol table, we have a bunch of symbols
1899 * sorted by start address. The stubs are marked as "trampoline",
1900 * the others appear as text. E.g.:
1902 * Minimal symbol table for main image
1903 * main: code for main (text symbol)
1904 * shr1: stub (trampoline symbol)
1905 * foo: code for foo (text symbol)
1907 * Minimal symbol table for "shr1" image:
1909 * shr1: code for shr1 (text symbol)
1912 * So the code below is trying to detect if we are in the stub
1913 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1914 * and if found, do the symbolization from the real-code address
1915 * rather than the stub address.
1917 * Assumptions being made about the minimal symbol table:
1918 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1919 * if we're really in the trampoline. If we're beyond it (say
1920 * we're in "foo" in the above example), it'll have a closer
1921 * symbol (the "foo" text symbol for example) and will not
1922 * return the trampoline.
1923 * 2. lookup_minimal_symbol_text() will find a real text symbol
1924 * corresponding to the trampoline, and whose address will
1925 * be different than the trampoline address. I put in a sanity
1926 * check for the address being the same, to avoid an
1927 * infinite recursion.
1929 msymbol = lookup_minimal_symbol_by_pc (pc);
1930 if (msymbol != NULL)
1931 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1933 mfunsym = lookup_minimal_symbol_text (SYMBOL_NAME (msymbol), NULL, NULL);
1934 if (mfunsym == NULL)
1935 /* I eliminated this warning since it is coming out
1936 * in the following situation:
1937 * gdb shmain // test program with shared libraries
1938 * (gdb) break shr1 // function in shared lib
1939 * Warning: In stub for ...
1940 * In the above situation, the shared lib is not loaded yet,
1941 * so of course we can't find the real func/line info,
1942 * but the "break" still works, and the warning is annoying.
1943 * So I commented out the warning. RT */
1944 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_NAME(msymbol)) */ ;
1946 else if (SYMBOL_VALUE (mfunsym) == SYMBOL_VALUE (msymbol))
1947 /* Avoid infinite recursion */
1948 /* See above comment about why warning is commented out */
1949 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_NAME(msymbol)) */ ;
1952 return find_pc_line (SYMBOL_VALUE (mfunsym), 0);
1956 s = find_pc_sect_symtab (pc, section);
1959 /* if no symbol information, return previous pc */
1966 bv = BLOCKVECTOR (s);
1968 /* Look at all the symtabs that share this blockvector.
1969 They all have the same apriori range, that we found was right;
1970 but they have different line tables. */
1972 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1974 /* Find the best line in this symtab. */
1981 /* I think len can be zero if the symtab lacks line numbers
1982 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
1983 I'm not sure which, and maybe it depends on the symbol
1989 item = l->item; /* Get first line info */
1991 /* Is this file's first line closer than the first lines of other files?
1992 If so, record this file, and its first line, as best alternate. */
1993 if (item->pc > pc && (!alt || item->pc < alt->pc))
1999 for (i = 0; i < len; i++, item++)
2001 /* Leave prev pointing to the linetable entry for the last line
2002 that started at or before PC. */
2009 /* At this point, prev points at the line whose start addr is <= pc, and
2010 item points at the next line. If we ran off the end of the linetable
2011 (pc >= start of the last line), then prev == item. If pc < start of
2012 the first line, prev will not be set. */
2014 /* Is this file's best line closer than the best in the other files?
2015 If so, record this file, and its best line, as best so far. */
2017 if (prev && (!best || prev->pc > best->pc))
2022 /* Discard BEST_END if it's before the PC of the current BEST. */
2023 if (best_end <= best->pc)
2027 /* If another line (denoted by ITEM) is in the linetable and its
2028 PC is after BEST's PC, but before the current BEST_END, then
2029 use ITEM's PC as the new best_end. */
2030 if (best && i < len && item->pc > best->pc
2031 && (best_end == 0 || best_end > item->pc))
2032 best_end = item->pc;
2038 { /* If we didn't find any line # info, just
2044 val.symtab = alt_symtab;
2045 val.line = alt->line - 1;
2047 /* Don't return line 0, that means that we didn't find the line. */
2051 val.pc = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2055 else if (best->line == 0)
2057 /* If our best fit is in a range of PC's for which no line
2058 number info is available (line number is zero) then we didn't
2059 find any valid line information. */
2064 val.symtab = best_symtab;
2065 val.line = best->line;
2067 if (best_end && (!alt || best_end < alt->pc))
2072 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2074 val.section = section;
2078 /* Backward compatibility (no section) */
2080 struct symtab_and_line
2081 find_pc_line (CORE_ADDR pc, int notcurrent)
2085 section = find_pc_overlay (pc);
2086 if (pc_in_unmapped_range (pc, section))
2087 pc = overlay_mapped_address (pc, section);
2088 return find_pc_sect_line (pc, section, notcurrent);
2091 /* Find line number LINE in any symtab whose name is the same as
2094 If found, return the symtab that contains the linetable in which it was
2095 found, set *INDEX to the index in the linetable of the best entry
2096 found, and set *EXACT_MATCH nonzero if the value returned is an
2099 If not found, return NULL. */
2102 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2106 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2110 struct linetable *best_linetable;
2111 struct symtab *best_symtab;
2113 /* First try looking it up in the given symtab. */
2114 best_linetable = LINETABLE (symtab);
2115 best_symtab = symtab;
2116 best_index = find_line_common (best_linetable, line, &exact);
2117 if (best_index < 0 || !exact)
2119 /* Didn't find an exact match. So we better keep looking for
2120 another symtab with the same name. In the case of xcoff,
2121 multiple csects for one source file (produced by IBM's FORTRAN
2122 compiler) produce multiple symtabs (this is unavoidable
2123 assuming csects can be at arbitrary places in memory and that
2124 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2126 /* BEST is the smallest linenumber > LINE so far seen,
2127 or 0 if none has been seen so far.
2128 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2131 struct objfile *objfile;
2134 if (best_index >= 0)
2135 best = best_linetable->item[best_index].line;
2139 ALL_SYMTABS (objfile, s)
2141 struct linetable *l;
2144 if (!STREQ (symtab->filename, s->filename))
2147 ind = find_line_common (l, line, &exact);
2157 if (best == 0 || l->item[ind].line < best)
2159 best = l->item[ind].line;
2172 *index = best_index;
2174 *exact_match = exact;
2179 /* Set the PC value for a given source file and line number and return true.
2180 Returns zero for invalid line number (and sets the PC to 0).
2181 The source file is specified with a struct symtab. */
2184 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2186 struct linetable *l;
2193 symtab = find_line_symtab (symtab, line, &ind, NULL);
2196 l = LINETABLE (symtab);
2197 *pc = l->item[ind].pc;
2204 /* Find the range of pc values in a line.
2205 Store the starting pc of the line into *STARTPTR
2206 and the ending pc (start of next line) into *ENDPTR.
2207 Returns 1 to indicate success.
2208 Returns 0 if could not find the specified line. */
2211 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2214 CORE_ADDR startaddr;
2215 struct symtab_and_line found_sal;
2218 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2221 /* This whole function is based on address. For example, if line 10 has
2222 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2223 "info line *0x123" should say the line goes from 0x100 to 0x200
2224 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2225 This also insures that we never give a range like "starts at 0x134
2226 and ends at 0x12c". */
2228 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2229 if (found_sal.line != sal.line)
2231 /* The specified line (sal) has zero bytes. */
2232 *startptr = found_sal.pc;
2233 *endptr = found_sal.pc;
2237 *startptr = found_sal.pc;
2238 *endptr = found_sal.end;
2243 /* Given a line table and a line number, return the index into the line
2244 table for the pc of the nearest line whose number is >= the specified one.
2245 Return -1 if none is found. The value is >= 0 if it is an index.
2247 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2250 find_line_common (register struct linetable *l, register int lineno,
2256 /* BEST is the smallest linenumber > LINENO so far seen,
2257 or 0 if none has been seen so far.
2258 BEST_INDEX identifies the item for it. */
2260 int best_index = -1;
2269 for (i = 0; i < len; i++)
2271 register struct linetable_entry *item = &(l->item[i]);
2273 if (item->line == lineno)
2275 /* Return the first (lowest address) entry which matches. */
2280 if (item->line > lineno && (best == 0 || item->line < best))
2287 /* If we got here, we didn't get an exact match. */
2294 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2296 struct symtab_and_line sal;
2297 sal = find_pc_line (pc, 0);
2300 return sal.symtab != 0;
2303 /* Given a function symbol SYM, find the symtab and line for the start
2305 If the argument FUNFIRSTLINE is nonzero, we want the first line
2306 of real code inside the function. */
2308 struct symtab_and_line
2309 find_function_start_sal (struct symbol *sym, int funfirstline)
2312 struct symtab_and_line sal;
2314 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2315 fixup_symbol_section (sym, NULL);
2317 { /* skip "first line" of function (which is actually its prologue) */
2318 asection *section = SYMBOL_BFD_SECTION (sym);
2319 /* If function is in an unmapped overlay, use its unmapped LMA
2320 address, so that SKIP_PROLOGUE has something unique to work on */
2321 if (section_is_overlay (section) &&
2322 !section_is_mapped (section))
2323 pc = overlay_unmapped_address (pc, section);
2325 pc += FUNCTION_START_OFFSET;
2326 pc = SKIP_PROLOGUE (pc);
2328 /* For overlays, map pc back into its mapped VMA range */
2329 pc = overlay_mapped_address (pc, section);
2331 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2333 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
2334 /* Convex: no need to suppress code on first line, if any */
2337 /* Check if SKIP_PROLOGUE left us in mid-line, and the next
2338 line is still part of the same function. */
2340 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end
2341 && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2343 /* First pc of next line */
2345 /* Recalculate the line number (might not be N+1). */
2346 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2354 /* If P is of the form "operator[ \t]+..." where `...' is
2355 some legitimate operator text, return a pointer to the
2356 beginning of the substring of the operator text.
2357 Otherwise, return "". */
2359 operator_chars (char *p, char **end)
2362 if (strncmp (p, "operator", 8))
2366 /* Don't get faked out by `operator' being part of a longer
2368 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2371 /* Allow some whitespace between `operator' and the operator symbol. */
2372 while (*p == ' ' || *p == '\t')
2375 /* Recognize 'operator TYPENAME'. */
2377 if (isalpha (*p) || *p == '_' || *p == '$')
2379 register char *q = p + 1;
2380 while (isalnum (*q) || *q == '_' || *q == '$')
2389 case '\\': /* regexp quoting */
2392 if (p[2] == '=') /* 'operator\*=' */
2394 else /* 'operator\*' */
2398 else if (p[1] == '[')
2401 error ("mismatched quoting on brackets, try 'operator\\[\\]'");
2402 else if (p[2] == '\\' && p[3] == ']')
2404 *end = p + 4; /* 'operator\[\]' */
2408 error ("nothing is allowed between '[' and ']'");
2412 /* Gratuitous qoute: skip it and move on. */
2434 if (p[0] == '-' && p[1] == '>')
2436 /* Struct pointer member operator 'operator->'. */
2439 *end = p + 3; /* 'operator->*' */
2442 else if (p[2] == '\\')
2444 *end = p + 4; /* Hopefully 'operator->\*' */
2449 *end = p + 2; /* 'operator->' */
2453 if (p[1] == '=' || p[1] == p[0])
2464 error ("`operator ()' must be specified without whitespace in `()'");
2469 error ("`operator ?:' must be specified without whitespace in `?:'");
2474 error ("`operator []' must be specified without whitespace in `[]'");
2478 error ("`operator %s' not supported", p);
2487 /* If FILE is not already in the table of files, return zero;
2488 otherwise return non-zero. Optionally add FILE to the table if ADD
2489 is non-zero. If *FIRST is non-zero, forget the old table
2492 filename_seen (const char *file, int add, int *first)
2494 /* Table of files seen so far. */
2495 static const char **tab = NULL;
2496 /* Allocated size of tab in elements.
2497 Start with one 256-byte block (when using GNU malloc.c).
2498 24 is the malloc overhead when range checking is in effect. */
2499 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2500 /* Current size of tab in elements. */
2501 static int tab_cur_size;
2507 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2511 /* Is FILE in tab? */
2512 for (p = tab; p < tab + tab_cur_size; p++)
2513 if (strcmp (*p, file) == 0)
2516 /* No; maybe add it to tab. */
2519 if (tab_cur_size == tab_alloc_size)
2521 tab_alloc_size *= 2;
2522 tab = (const char **) xrealloc ((char *) tab,
2523 tab_alloc_size * sizeof (*tab));
2525 tab[tab_cur_size++] = file;
2531 /* Slave routine for sources_info. Force line breaks at ,'s.
2532 NAME is the name to print and *FIRST is nonzero if this is the first
2533 name printed. Set *FIRST to zero. */
2535 output_source_filename (char *name, int *first)
2537 /* Since a single source file can result in several partial symbol
2538 tables, we need to avoid printing it more than once. Note: if
2539 some of the psymtabs are read in and some are not, it gets
2540 printed both under "Source files for which symbols have been
2541 read" and "Source files for which symbols will be read in on
2542 demand". I consider this a reasonable way to deal with the
2543 situation. I'm not sure whether this can also happen for
2544 symtabs; it doesn't hurt to check. */
2546 /* Was NAME already seen? */
2547 if (filename_seen (name, 1, first))
2549 /* Yes; don't print it again. */
2552 /* No; print it and reset *FIRST. */
2559 printf_filtered (", ");
2563 fputs_filtered (name, gdb_stdout);
2567 sources_info (char *ignore, int from_tty)
2569 register struct symtab *s;
2570 register struct partial_symtab *ps;
2571 register struct objfile *objfile;
2574 if (!have_full_symbols () && !have_partial_symbols ())
2576 error ("No symbol table is loaded. Use the \"file\" command.");
2579 printf_filtered ("Source files for which symbols have been read in:\n\n");
2582 ALL_SYMTABS (objfile, s)
2584 output_source_filename (s->filename, &first);
2586 printf_filtered ("\n\n");
2588 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2591 ALL_PSYMTABS (objfile, ps)
2595 output_source_filename (ps->filename, &first);
2598 printf_filtered ("\n");
2602 file_matches (char *file, char *files[], int nfiles)
2606 if (file != NULL && nfiles != 0)
2608 for (i = 0; i < nfiles; i++)
2610 if (strcmp (files[i], lbasename (file)) == 0)
2614 else if (nfiles == 0)
2619 /* Free any memory associated with a search. */
2621 free_search_symbols (struct symbol_search *symbols)
2623 struct symbol_search *p;
2624 struct symbol_search *next;
2626 for (p = symbols; p != NULL; p = next)
2634 do_free_search_symbols_cleanup (void *symbols)
2636 free_search_symbols (symbols);
2640 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2642 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2645 /* Helper function for sort_search_symbols and qsort. Can only
2646 sort symbols, not minimal symbols. */
2648 compare_search_syms (const void *sa, const void *sb)
2650 struct symbol_search **sym_a = (struct symbol_search **) sa;
2651 struct symbol_search **sym_b = (struct symbol_search **) sb;
2653 return strcmp (SYMBOL_SOURCE_NAME ((*sym_a)->symbol),
2654 SYMBOL_SOURCE_NAME ((*sym_b)->symbol));
2657 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2658 prevtail where it is, but update its next pointer to point to
2659 the first of the sorted symbols. */
2660 static struct symbol_search *
2661 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2663 struct symbol_search **symbols, *symp, *old_next;
2666 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2668 symp = prevtail->next;
2669 for (i = 0; i < nfound; i++)
2674 /* Generally NULL. */
2677 qsort (symbols, nfound, sizeof (struct symbol_search *),
2678 compare_search_syms);
2681 for (i = 0; i < nfound; i++)
2683 symp->next = symbols[i];
2686 symp->next = old_next;
2692 /* Search the symbol table for matches to the regular expression REGEXP,
2693 returning the results in *MATCHES.
2695 Only symbols of KIND are searched:
2696 FUNCTIONS_NAMESPACE - search all functions
2697 TYPES_NAMESPACE - search all type names
2698 METHODS_NAMESPACE - search all methods NOT IMPLEMENTED
2699 VARIABLES_NAMESPACE - search all symbols, excluding functions, type names,
2700 and constants (enums)
2702 free_search_symbols should be called when *MATCHES is no longer needed.
2704 The results are sorted locally; each symtab's global and static blocks are
2705 separately alphabetized.
2708 search_symbols (char *regexp, namespace_enum kind, int nfiles, char *files[],
2709 struct symbol_search **matches)
2711 register struct symtab *s;
2712 register struct partial_symtab *ps;
2713 register struct blockvector *bv;
2714 struct blockvector *prev_bv = 0;
2715 register struct block *b;
2718 register struct symbol *sym;
2719 struct partial_symbol **psym;
2720 struct objfile *objfile;
2721 struct minimal_symbol *msymbol;
2724 static enum minimal_symbol_type types[]
2726 {mst_data, mst_text, mst_abs, mst_unknown};
2727 static enum minimal_symbol_type types2[]
2729 {mst_bss, mst_file_text, mst_abs, mst_unknown};
2730 static enum minimal_symbol_type types3[]
2732 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2733 static enum minimal_symbol_type types4[]
2735 {mst_file_bss, mst_text, mst_abs, mst_unknown};
2736 enum minimal_symbol_type ourtype;
2737 enum minimal_symbol_type ourtype2;
2738 enum minimal_symbol_type ourtype3;
2739 enum minimal_symbol_type ourtype4;
2740 struct symbol_search *sr;
2741 struct symbol_search *psr;
2742 struct symbol_search *tail;
2743 struct cleanup *old_chain = NULL;
2745 if (kind < VARIABLES_NAMESPACE)
2746 error ("must search on specific namespace");
2748 ourtype = types[(int) (kind - VARIABLES_NAMESPACE)];
2749 ourtype2 = types2[(int) (kind - VARIABLES_NAMESPACE)];
2750 ourtype3 = types3[(int) (kind - VARIABLES_NAMESPACE)];
2751 ourtype4 = types4[(int) (kind - VARIABLES_NAMESPACE)];
2753 sr = *matches = NULL;
2758 /* Make sure spacing is right for C++ operators.
2759 This is just a courtesy to make the matching less sensitive
2760 to how many spaces the user leaves between 'operator'
2761 and <TYPENAME> or <OPERATOR>. */
2763 char *opname = operator_chars (regexp, &opend);
2766 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2767 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2769 /* There should 1 space between 'operator' and 'TYPENAME'. */
2770 if (opname[-1] != ' ' || opname[-2] == ' ')
2775 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2776 if (opname[-1] == ' ')
2779 /* If wrong number of spaces, fix it. */
2782 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2783 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2788 if (0 != (val = re_comp (regexp)))
2789 error ("Invalid regexp (%s): %s", val, regexp);
2792 /* Search through the partial symtabs *first* for all symbols
2793 matching the regexp. That way we don't have to reproduce all of
2794 the machinery below. */
2796 ALL_PSYMTABS (objfile, ps)
2798 struct partial_symbol **bound, **gbound, **sbound;
2804 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
2805 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
2808 /* Go through all of the symbols stored in a partial
2809 symtab in one loop. */
2810 psym = objfile->global_psymbols.list + ps->globals_offset;
2815 if (bound == gbound && ps->n_static_syms != 0)
2817 psym = objfile->static_psymbols.list + ps->statics_offset;
2828 /* If it would match (logic taken from loop below)
2829 load the file and go on to the next one */
2830 if (file_matches (ps->filename, files, nfiles)
2831 && ((regexp == NULL || SYMBOL_MATCHES_REGEXP (*psym))
2832 && ((kind == VARIABLES_NAMESPACE && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
2833 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
2834 || (kind == FUNCTIONS_NAMESPACE && SYMBOL_CLASS (*psym) == LOC_BLOCK)
2835 || (kind == TYPES_NAMESPACE && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
2836 || (kind == METHODS_NAMESPACE && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
2838 PSYMTAB_TO_SYMTAB (ps);
2846 /* Here, we search through the minimal symbol tables for functions
2847 and variables that match, and force their symbols to be read.
2848 This is in particular necessary for demangled variable names,
2849 which are no longer put into the partial symbol tables.
2850 The symbol will then be found during the scan of symtabs below.
2852 For functions, find_pc_symtab should succeed if we have debug info
2853 for the function, for variables we have to call lookup_symbol
2854 to determine if the variable has debug info.
2855 If the lookup fails, set found_misc so that we will rescan to print
2856 any matching symbols without debug info.
2859 if (nfiles == 0 && (kind == VARIABLES_NAMESPACE || kind == FUNCTIONS_NAMESPACE))
2861 ALL_MSYMBOLS (objfile, msymbol)
2863 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2864 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2865 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2866 MSYMBOL_TYPE (msymbol) == ourtype4)
2868 if (regexp == NULL || SYMBOL_MATCHES_REGEXP (msymbol))
2870 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
2872 if (kind == FUNCTIONS_NAMESPACE)
2880 if (SYMBOL_DEMANGLED_NAME (msymbol) != NULL)
2882 = lookup_symbol_aux_minsyms (SYMBOL_DEMANGLED_NAME
2884 SYMBOL_NAME (msymbol),
2889 = lookup_symbol_aux_minsyms (SYMBOL_NAME (msymbol),
2903 ALL_SYMTABS (objfile, s)
2905 bv = BLOCKVECTOR (s);
2906 /* Often many files share a blockvector.
2907 Scan each blockvector only once so that
2908 we don't get every symbol many times.
2909 It happens that the first symtab in the list
2910 for any given blockvector is the main file. */
2912 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
2914 struct symbol_search *prevtail = tail;
2916 b = BLOCKVECTOR_BLOCK (bv, i);
2917 ALL_BLOCK_SYMBOLS (b, j, sym)
2920 if (file_matches (s->filename, files, nfiles)
2921 && ((regexp == NULL || SYMBOL_MATCHES_REGEXP (sym))
2922 && ((kind == VARIABLES_NAMESPACE && SYMBOL_CLASS (sym) != LOC_TYPEDEF
2923 && SYMBOL_CLASS (sym) != LOC_BLOCK
2924 && SYMBOL_CLASS (sym) != LOC_CONST)
2925 || (kind == FUNCTIONS_NAMESPACE && SYMBOL_CLASS (sym) == LOC_BLOCK)
2926 || (kind == TYPES_NAMESPACE && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
2927 || (kind == METHODS_NAMESPACE && SYMBOL_CLASS (sym) == LOC_BLOCK))))
2930 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
2934 psr->msymbol = NULL;
2946 if (prevtail == NULL)
2948 struct symbol_search dummy;
2951 tail = sort_search_symbols (&dummy, nfound);
2954 old_chain = make_cleanup_free_search_symbols (sr);
2957 tail = sort_search_symbols (prevtail, nfound);
2963 /* If there are no eyes, avoid all contact. I mean, if there are
2964 no debug symbols, then print directly from the msymbol_vector. */
2966 if (found_misc || kind != FUNCTIONS_NAMESPACE)
2968 ALL_MSYMBOLS (objfile, msymbol)
2970 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2971 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2972 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2973 MSYMBOL_TYPE (msymbol) == ourtype4)
2975 if (regexp == NULL || SYMBOL_MATCHES_REGEXP (msymbol))
2977 /* Functions: Look up by address. */
2978 if (kind != FUNCTIONS_NAMESPACE ||
2979 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
2981 /* Variables/Absolutes: Look up by name */
2982 if (lookup_symbol (SYMBOL_NAME (msymbol),
2983 (struct block *) NULL, VAR_NAMESPACE,
2984 0, (struct symtab **) NULL) == NULL)
2987 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
2989 psr->msymbol = msymbol;
2996 old_chain = make_cleanup_free_search_symbols (sr);
3010 discard_cleanups (old_chain);
3013 /* Helper function for symtab_symbol_info, this function uses
3014 the data returned from search_symbols() to print information
3015 regarding the match to gdb_stdout.
3018 print_symbol_info (namespace_enum kind, struct symtab *s, struct symbol *sym,
3019 int block, char *last)
3021 if (last == NULL || strcmp (last, s->filename) != 0)
3023 fputs_filtered ("\nFile ", gdb_stdout);
3024 fputs_filtered (s->filename, gdb_stdout);
3025 fputs_filtered (":\n", gdb_stdout);
3028 if (kind != TYPES_NAMESPACE && block == STATIC_BLOCK)
3029 printf_filtered ("static ");
3031 /* Typedef that is not a C++ class */
3032 if (kind == TYPES_NAMESPACE
3033 && SYMBOL_NAMESPACE (sym) != STRUCT_NAMESPACE)
3034 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3035 /* variable, func, or typedef-that-is-c++-class */
3036 else if (kind < TYPES_NAMESPACE ||
3037 (kind == TYPES_NAMESPACE &&
3038 SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE))
3040 type_print (SYMBOL_TYPE (sym),
3041 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3042 ? "" : SYMBOL_SOURCE_NAME (sym)),
3045 printf_filtered (";\n");
3049 /* This help function for symtab_symbol_info() prints information
3050 for non-debugging symbols to gdb_stdout.
3053 print_msymbol_info (struct minimal_symbol *msymbol)
3057 if (TARGET_ADDR_BIT <= 32)
3058 tmp = local_hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3059 & (CORE_ADDR) 0xffffffff,
3062 tmp = local_hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3064 printf_filtered ("%s %s\n",
3065 tmp, SYMBOL_SOURCE_NAME (msymbol));
3068 /* This is the guts of the commands "info functions", "info types", and
3069 "info variables". It calls search_symbols to find all matches and then
3070 print_[m]symbol_info to print out some useful information about the
3074 symtab_symbol_info (char *regexp, namespace_enum kind, int from_tty)
3076 static char *classnames[]
3078 {"variable", "function", "type", "method"};
3079 struct symbol_search *symbols;
3080 struct symbol_search *p;
3081 struct cleanup *old_chain;
3082 char *last_filename = NULL;
3085 /* must make sure that if we're interrupted, symbols gets freed */
3086 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3087 old_chain = make_cleanup_free_search_symbols (symbols);
3089 printf_filtered (regexp
3090 ? "All %ss matching regular expression \"%s\":\n"
3091 : "All defined %ss:\n",
3092 classnames[(int) (kind - VARIABLES_NAMESPACE)], regexp);
3094 for (p = symbols; p != NULL; p = p->next)
3098 if (p->msymbol != NULL)
3102 printf_filtered ("\nNon-debugging symbols:\n");
3105 print_msymbol_info (p->msymbol);
3109 print_symbol_info (kind,
3114 last_filename = p->symtab->filename;
3118 do_cleanups (old_chain);
3122 variables_info (char *regexp, int from_tty)
3124 symtab_symbol_info (regexp, VARIABLES_NAMESPACE, from_tty);
3128 functions_info (char *regexp, int from_tty)
3130 symtab_symbol_info (regexp, FUNCTIONS_NAMESPACE, from_tty);
3135 types_info (char *regexp, int from_tty)
3137 symtab_symbol_info (regexp, TYPES_NAMESPACE, from_tty);
3140 /* Breakpoint all functions matching regular expression. */
3143 rbreak_command_wrapper (char *regexp, int from_tty)
3145 rbreak_command (regexp, from_tty);
3149 rbreak_command (char *regexp, int from_tty)
3151 struct symbol_search *ss;
3152 struct symbol_search *p;
3153 struct cleanup *old_chain;
3155 search_symbols (regexp, FUNCTIONS_NAMESPACE, 0, (char **) NULL, &ss);
3156 old_chain = make_cleanup_free_search_symbols (ss);
3158 for (p = ss; p != NULL; p = p->next)
3160 if (p->msymbol == NULL)
3162 char *string = (char *) alloca (strlen (p->symtab->filename)
3163 + strlen (SYMBOL_NAME (p->symbol))
3165 strcpy (string, p->symtab->filename);
3166 strcat (string, ":'");
3167 strcat (string, SYMBOL_NAME (p->symbol));
3168 strcat (string, "'");
3169 break_command (string, from_tty);
3170 print_symbol_info (FUNCTIONS_NAMESPACE,
3174 p->symtab->filename);
3178 break_command (SYMBOL_NAME (p->msymbol), from_tty);
3179 printf_filtered ("<function, no debug info> %s;\n",
3180 SYMBOL_SOURCE_NAME (p->msymbol));
3184 do_cleanups (old_chain);
3188 /* Return Nonzero if block a is lexically nested within block b,
3189 or if a and b have the same pc range.
3190 Return zero otherwise. */
3192 contained_in (struct block *a, struct block *b)
3196 return BLOCK_START (a) >= BLOCK_START (b)
3197 && BLOCK_END (a) <= BLOCK_END (b);
3201 /* Helper routine for make_symbol_completion_list. */
3203 static int return_val_size;
3204 static int return_val_index;
3205 static char **return_val;
3207 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3209 if (SYMBOL_DEMANGLED_NAME (symbol) != NULL) \
3210 /* Put only the mangled name on the list. */ \
3211 /* Advantage: "b foo<TAB>" completes to "b foo(int, int)" */ \
3212 /* Disadvantage: "b foo__i<TAB>" doesn't complete. */ \
3213 completion_list_add_name \
3214 (SYMBOL_DEMANGLED_NAME (symbol), (sym_text), (len), (text), (word)); \
3216 completion_list_add_name \
3217 (SYMBOL_NAME (symbol), (sym_text), (len), (text), (word)); \
3220 /* Test to see if the symbol specified by SYMNAME (which is already
3221 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3222 characters. If so, add it to the current completion list. */
3225 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3226 char *text, char *word)
3231 /* clip symbols that cannot match */
3233 if (strncmp (symname, sym_text, sym_text_len) != 0)
3238 /* We have a match for a completion, so add SYMNAME to the current list
3239 of matches. Note that the name is moved to freshly malloc'd space. */
3243 if (word == sym_text)
3245 new = xmalloc (strlen (symname) + 5);
3246 strcpy (new, symname);
3248 else if (word > sym_text)
3250 /* Return some portion of symname. */
3251 new = xmalloc (strlen (symname) + 5);
3252 strcpy (new, symname + (word - sym_text));
3256 /* Return some of SYM_TEXT plus symname. */
3257 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3258 strncpy (new, word, sym_text - word);
3259 new[sym_text - word] = '\0';
3260 strcat (new, symname);
3263 if (return_val_index + 3 > return_val_size)
3265 newsize = (return_val_size *= 2) * sizeof (char *);
3266 return_val = (char **) xrealloc ((char *) return_val, newsize);
3268 return_val[return_val_index++] = new;
3269 return_val[return_val_index] = NULL;
3273 /* Return a NULL terminated array of all symbols (regardless of class)
3274 which begin by matching TEXT. If the answer is no symbols, then
3275 the return value is an array which contains only a NULL pointer.
3277 Problem: All of the symbols have to be copied because readline frees them.
3278 I'm not going to worry about this; hopefully there won't be that many. */
3281 make_symbol_completion_list (char *text, char *word)
3283 register struct symbol *sym;
3284 register struct symtab *s;
3285 register struct partial_symtab *ps;
3286 register struct minimal_symbol *msymbol;
3287 register struct objfile *objfile;
3288 register struct block *b, *surrounding_static_block = 0;
3290 struct partial_symbol **psym;
3291 /* The symbol we are completing on. Points in same buffer as text. */
3293 /* Length of sym_text. */
3296 /* Now look for the symbol we are supposed to complete on.
3297 FIXME: This should be language-specific. */
3301 char *quote_pos = NULL;
3303 /* First see if this is a quoted string. */
3305 for (p = text; *p != '\0'; ++p)
3307 if (quote_found != '\0')
3309 if (*p == quote_found)
3310 /* Found close quote. */
3312 else if (*p == '\\' && p[1] == quote_found)
3313 /* A backslash followed by the quote character
3314 doesn't end the string. */
3317 else if (*p == '\'' || *p == '"')
3323 if (quote_found == '\'')
3324 /* A string within single quotes can be a symbol, so complete on it. */
3325 sym_text = quote_pos + 1;
3326 else if (quote_found == '"')
3327 /* A double-quoted string is never a symbol, nor does it make sense
3328 to complete it any other way. */
3330 return_val = (char **) xmalloc (sizeof (char *));
3331 return_val[0] = NULL;
3336 /* It is not a quoted string. Break it based on the characters
3337 which are in symbols. */
3340 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3349 sym_text_len = strlen (sym_text);
3351 return_val_size = 100;
3352 return_val_index = 0;
3353 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3354 return_val[0] = NULL;
3356 /* Look through the partial symtabs for all symbols which begin
3357 by matching SYM_TEXT. Add each one that you find to the list. */
3359 ALL_PSYMTABS (objfile, ps)
3361 /* If the psymtab's been read in we'll get it when we search
3362 through the blockvector. */
3366 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3367 psym < (objfile->global_psymbols.list + ps->globals_offset
3368 + ps->n_global_syms);
3371 /* If interrupted, then quit. */
3373 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3376 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3377 psym < (objfile->static_psymbols.list + ps->statics_offset
3378 + ps->n_static_syms);
3382 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3386 /* At this point scan through the misc symbol vectors and add each
3387 symbol you find to the list. Eventually we want to ignore
3388 anything that isn't a text symbol (everything else will be
3389 handled by the psymtab code above). */
3391 ALL_MSYMBOLS (objfile, msymbol)
3394 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3397 /* Search upwards from currently selected frame (so that we can
3398 complete on local vars. */
3400 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3402 if (!BLOCK_SUPERBLOCK (b))
3404 surrounding_static_block = b; /* For elmin of dups */
3407 /* Also catch fields of types defined in this places which match our
3408 text string. Only complete on types visible from current context. */
3410 ALL_BLOCK_SYMBOLS (b, i, sym)
3412 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3413 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3415 struct type *t = SYMBOL_TYPE (sym);
3416 enum type_code c = TYPE_CODE (t);
3418 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3420 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3422 if (TYPE_FIELD_NAME (t, j))
3424 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3425 sym_text, sym_text_len, text, word);
3433 /* Go through the symtabs and check the externs and statics for
3434 symbols which match. */
3436 ALL_SYMTABS (objfile, s)
3439 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3440 ALL_BLOCK_SYMBOLS (b, i, sym)
3442 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3446 ALL_SYMTABS (objfile, s)
3449 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3450 /* Don't do this block twice. */
3451 if (b == surrounding_static_block)
3453 ALL_BLOCK_SYMBOLS (b, i, sym)
3455 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3459 return (return_val);
3462 /* Like make_symbol_completion_list, but returns a list of symbols
3463 defined in a source file FILE. */
3466 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3468 register struct symbol *sym;
3469 register struct symtab *s;
3470 register struct block *b;
3472 /* The symbol we are completing on. Points in same buffer as text. */
3474 /* Length of sym_text. */
3477 /* Now look for the symbol we are supposed to complete on.
3478 FIXME: This should be language-specific. */
3482 char *quote_pos = NULL;
3484 /* First see if this is a quoted string. */
3486 for (p = text; *p != '\0'; ++p)
3488 if (quote_found != '\0')
3490 if (*p == quote_found)
3491 /* Found close quote. */
3493 else if (*p == '\\' && p[1] == quote_found)
3494 /* A backslash followed by the quote character
3495 doesn't end the string. */
3498 else if (*p == '\'' || *p == '"')
3504 if (quote_found == '\'')
3505 /* A string within single quotes can be a symbol, so complete on it. */
3506 sym_text = quote_pos + 1;
3507 else if (quote_found == '"')
3508 /* A double-quoted string is never a symbol, nor does it make sense
3509 to complete it any other way. */
3511 return_val = (char **) xmalloc (sizeof (char *));
3512 return_val[0] = NULL;
3517 /* It is not a quoted string. Break it based on the characters
3518 which are in symbols. */
3521 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3530 sym_text_len = strlen (sym_text);
3532 return_val_size = 10;
3533 return_val_index = 0;
3534 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3535 return_val[0] = NULL;
3537 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3539 s = lookup_symtab (srcfile);
3542 /* Maybe they typed the file with leading directories, while the
3543 symbol tables record only its basename. */
3544 const char *tail = lbasename (srcfile);
3547 s = lookup_symtab (tail);
3550 /* If we have no symtab for that file, return an empty list. */
3552 return (return_val);
3554 /* Go through this symtab and check the externs and statics for
3555 symbols which match. */
3557 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3558 ALL_BLOCK_SYMBOLS (b, i, sym)
3560 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3563 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3564 ALL_BLOCK_SYMBOLS (b, i, sym)
3566 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3569 return (return_val);
3572 /* A helper function for make_source_files_completion_list. It adds
3573 another file name to a list of possible completions, growing the
3574 list as necessary. */
3577 add_filename_to_list (const char *fname, char *text, char *word,
3578 char ***list, int *list_used, int *list_alloced)
3581 size_t fnlen = strlen (fname);
3583 if (*list_used + 1 >= *list_alloced)
3586 *list = (char **) xrealloc ((char *) *list,
3587 *list_alloced * sizeof (char *));
3592 /* Return exactly fname. */
3593 new = xmalloc (fnlen + 5);
3594 strcpy (new, fname);
3596 else if (word > text)
3598 /* Return some portion of fname. */
3599 new = xmalloc (fnlen + 5);
3600 strcpy (new, fname + (word - text));
3604 /* Return some of TEXT plus fname. */
3605 new = xmalloc (fnlen + (text - word) + 5);
3606 strncpy (new, word, text - word);
3607 new[text - word] = '\0';
3608 strcat (new, fname);
3610 (*list)[*list_used] = new;
3611 (*list)[++*list_used] = NULL;
3615 not_interesting_fname (const char *fname)
3617 static const char *illegal_aliens[] = {
3618 "_globals_", /* inserted by coff_symtab_read */
3623 for (i = 0; illegal_aliens[i]; i++)
3625 if (strcmp (fname, illegal_aliens[i]) == 0)
3631 /* Return a NULL terminated array of all source files whose names
3632 begin with matching TEXT. The file names are looked up in the
3633 symbol tables of this program. If the answer is no matchess, then
3634 the return value is an array which contains only a NULL pointer. */
3637 make_source_files_completion_list (char *text, char *word)
3639 register struct symtab *s;
3640 register struct partial_symtab *ps;
3641 register struct objfile *objfile;
3643 int list_alloced = 1;
3645 size_t text_len = strlen (text);
3646 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
3647 const char *base_name;
3651 if (!have_full_symbols () && !have_partial_symbols ())
3654 ALL_SYMTABS (objfile, s)
3656 if (not_interesting_fname (s->filename))
3658 if (!filename_seen (s->filename, 1, &first)
3659 #if HAVE_DOS_BASED_FILE_SYSTEM
3660 && strncasecmp (s->filename, text, text_len) == 0
3662 && strncmp (s->filename, text, text_len) == 0
3666 /* This file matches for a completion; add it to the current
3668 add_filename_to_list (s->filename, text, word,
3669 &list, &list_used, &list_alloced);
3673 /* NOTE: We allow the user to type a base name when the
3674 debug info records leading directories, but not the other
3675 way around. This is what subroutines of breakpoint
3676 command do when they parse file names. */
3677 base_name = lbasename (s->filename);
3678 if (base_name != s->filename
3679 && !filename_seen (base_name, 1, &first)
3680 #if HAVE_DOS_BASED_FILE_SYSTEM
3681 && strncasecmp (base_name, text, text_len) == 0
3683 && strncmp (base_name, text, text_len) == 0
3686 add_filename_to_list (base_name, text, word,
3687 &list, &list_used, &list_alloced);
3691 ALL_PSYMTABS (objfile, ps)
3693 if (not_interesting_fname (ps->filename))
3697 if (!filename_seen (ps->filename, 1, &first)
3698 #if HAVE_DOS_BASED_FILE_SYSTEM
3699 && strncasecmp (ps->filename, text, text_len) == 0
3701 && strncmp (ps->filename, text, text_len) == 0
3705 /* This file matches for a completion; add it to the
3706 current list of matches. */
3707 add_filename_to_list (ps->filename, text, word,
3708 &list, &list_used, &list_alloced);
3713 base_name = lbasename (ps->filename);
3714 if (base_name != ps->filename
3715 && !filename_seen (base_name, 1, &first)
3716 #if HAVE_DOS_BASED_FILE_SYSTEM
3717 && strncasecmp (base_name, text, text_len) == 0
3719 && strncmp (base_name, text, text_len) == 0
3722 add_filename_to_list (base_name, text, word,
3723 &list, &list_used, &list_alloced);
3731 /* Determine if PC is in the prologue of a function. The prologue is the area
3732 between the first instruction of a function, and the first executable line.
3733 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3735 If non-zero, func_start is where we think the prologue starts, possibly
3736 by previous examination of symbol table information.
3740 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
3742 struct symtab_and_line sal;
3743 CORE_ADDR func_addr, func_end;
3745 /* We have several sources of information we can consult to figure
3747 - Compilers usually emit line number info that marks the prologue
3748 as its own "source line". So the ending address of that "line"
3749 is the end of the prologue. If available, this is the most
3751 - The minimal symbols and partial symbols, which can usually tell
3752 us the starting and ending addresses of a function.
3753 - If we know the function's start address, we can call the
3754 architecture-defined SKIP_PROLOGUE function to analyze the
3755 instruction stream and guess where the prologue ends.
3756 - Our `func_start' argument; if non-zero, this is the caller's
3757 best guess as to the function's entry point. At the time of
3758 this writing, handle_inferior_event doesn't get this right, so
3759 it should be our last resort. */
3761 /* Consult the partial symbol table, to find which function
3763 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3765 CORE_ADDR prologue_end;
3767 /* We don't even have minsym information, so fall back to using
3768 func_start, if given. */
3770 return 1; /* We *might* be in a prologue. */
3772 prologue_end = SKIP_PROLOGUE (func_start);
3774 return func_start <= pc && pc < prologue_end;
3777 /* If we have line number information for the function, that's
3778 usually pretty reliable. */
3779 sal = find_pc_line (func_addr, 0);
3781 /* Now sal describes the source line at the function's entry point,
3782 which (by convention) is the prologue. The end of that "line",
3783 sal.end, is the end of the prologue.
3785 Note that, for functions whose source code is all on a single
3786 line, the line number information doesn't always end up this way.
3787 So we must verify that our purported end-of-prologue address is
3788 *within* the function, not at its start or end. */
3790 || sal.end <= func_addr
3791 || func_end <= sal.end)
3793 /* We don't have any good line number info, so use the minsym
3794 information, together with the architecture-specific prologue
3796 CORE_ADDR prologue_end = SKIP_PROLOGUE (func_addr);
3798 return func_addr <= pc && pc < prologue_end;
3801 /* We have line number info, and it looks good. */
3802 return func_addr <= pc && pc < sal.end;
3806 /* Begin overload resolution functions */
3809 remove_params (const char *demangled_name)
3815 if (demangled_name == NULL)
3818 /* First find the end of the arg list. */
3819 argp = strrchr (demangled_name, ')');
3823 /* Back up to the beginning. */
3826 while (argp-- > demangled_name)
3830 else if (*argp == '(')
3839 internal_error (__FILE__, __LINE__,
3840 "bad demangled name %s\n", demangled_name);
3841 while (argp[-1] == ' ' && argp > demangled_name)
3844 new_name = xmalloc (argp - demangled_name + 1);
3845 memcpy (new_name, demangled_name, argp - demangled_name);
3846 new_name[argp - demangled_name] = '\0';
3850 /* Helper routine for make_symbol_completion_list. */
3852 static int sym_return_val_size;
3853 static int sym_return_val_index;
3854 static struct symbol **sym_return_val;
3856 /* Test to see if the symbol specified by SYMNAME (which is already
3857 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3858 characters. If so, add it to the current completion list. */
3861 overload_list_add_symbol (struct symbol *sym, char *oload_name)
3867 /* If there is no type information, we can't do anything, so skip */
3868 if (SYMBOL_TYPE (sym) == NULL)
3871 /* skip any symbols that we've already considered. */
3872 for (i = 0; i < sym_return_val_index; ++i)
3873 if (!strcmp (SYMBOL_NAME (sym), SYMBOL_NAME (sym_return_val[i])))
3876 /* Get the demangled name without parameters */
3877 sym_name = remove_params (SYMBOL_DEMANGLED_NAME (sym));
3881 /* skip symbols that cannot match */
3882 if (strcmp (sym_name, oload_name) != 0)
3890 /* We have a match for an overload instance, so add SYM to the current list
3891 * of overload instances */
3892 if (sym_return_val_index + 3 > sym_return_val_size)
3894 newsize = (sym_return_val_size *= 2) * sizeof (struct symbol *);
3895 sym_return_val = (struct symbol **) xrealloc ((char *) sym_return_val, newsize);
3897 sym_return_val[sym_return_val_index++] = sym;
3898 sym_return_val[sym_return_val_index] = NULL;
3901 /* Return a null-terminated list of pointers to function symbols that
3902 * match name of the supplied symbol FSYM.
3903 * This is used in finding all overloaded instances of a function name.
3904 * This has been modified from make_symbol_completion_list. */
3908 make_symbol_overload_list (struct symbol *fsym)
3910 register struct symbol *sym;
3911 register struct symtab *s;
3912 register struct partial_symtab *ps;
3913 register struct objfile *objfile;
3914 register struct block *b, *surrounding_static_block = 0;
3916 /* The name we are completing on. */
3917 char *oload_name = NULL;
3918 /* Length of name. */
3919 int oload_name_len = 0;
3921 /* Look for the symbol we are supposed to complete on. */
3923 oload_name = remove_params (SYMBOL_DEMANGLED_NAME (fsym));
3926 sym_return_val_size = 1;
3927 sym_return_val = (struct symbol **) xmalloc (2 * sizeof (struct symbol *));
3928 sym_return_val[0] = fsym;
3929 sym_return_val[1] = NULL;
3931 return sym_return_val;
3933 oload_name_len = strlen (oload_name);
3935 sym_return_val_size = 100;
3936 sym_return_val_index = 0;
3937 sym_return_val = (struct symbol **) xmalloc ((sym_return_val_size + 1) * sizeof (struct symbol *));
3938 sym_return_val[0] = NULL;
3940 /* Look through the partial symtabs for all symbols which begin
3941 by matching OLOAD_NAME. Make sure we read that symbol table in. */
3943 ALL_PSYMTABS (objfile, ps)
3945 struct partial_symbol **psym;
3947 /* If the psymtab's been read in we'll get it when we search
3948 through the blockvector. */
3952 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3953 psym < (objfile->global_psymbols.list + ps->globals_offset
3954 + ps->n_global_syms);
3957 /* If interrupted, then quit. */
3959 /* This will cause the symbol table to be read if it has not yet been */
3960 s = PSYMTAB_TO_SYMTAB (ps);
3963 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3964 psym < (objfile->static_psymbols.list + ps->statics_offset
3965 + ps->n_static_syms);
3969 /* This will cause the symbol table to be read if it has not yet been */
3970 s = PSYMTAB_TO_SYMTAB (ps);
3974 /* Search upwards from currently selected frame (so that we can
3975 complete on local vars. */
3977 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3979 if (!BLOCK_SUPERBLOCK (b))
3981 surrounding_static_block = b; /* For elimination of dups */
3984 /* Also catch fields of types defined in this places which match our
3985 text string. Only complete on types visible from current context. */
3987 ALL_BLOCK_SYMBOLS (b, i, sym)
3989 overload_list_add_symbol (sym, oload_name);
3993 /* Go through the symtabs and check the externs and statics for
3994 symbols which match. */
3996 ALL_SYMTABS (objfile, s)
3999 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4000 ALL_BLOCK_SYMBOLS (b, i, sym)
4002 overload_list_add_symbol (sym, oload_name);
4006 ALL_SYMTABS (objfile, s)
4009 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4010 /* Don't do this block twice. */
4011 if (b == surrounding_static_block)
4013 ALL_BLOCK_SYMBOLS (b, i, sym)
4015 overload_list_add_symbol (sym, oload_name);
4021 return (sym_return_val);
4024 /* End of overload resolution functions */
4026 struct symtabs_and_lines
4027 decode_line_spec (char *string, int funfirstline)
4029 struct symtabs_and_lines sals;
4030 struct symtab_and_line cursal;
4033 error ("Empty line specification.");
4035 /* We use whatever is set as the current source line. We do not try
4036 and get a default or it will recursively call us! */
4037 cursal = get_current_source_symtab_and_line ();
4039 sals = decode_line_1 (&string, funfirstline,
4040 cursal.symtab, cursal.line,
4044 error ("Junk at end of line specification: %s", string);
4049 static char *name_of_main;
4052 set_main_name (const char *name)
4054 if (name_of_main != NULL)
4056 xfree (name_of_main);
4057 name_of_main = NULL;
4061 name_of_main = xstrdup (name);
4068 if (name_of_main != NULL)
4069 return name_of_main;
4076 _initialize_symtab (void)
4078 add_info ("variables", variables_info,
4079 "All global and static variable names, or those matching REGEXP.");
4081 add_com ("whereis", class_info, variables_info,
4082 "All global and static variable names, or those matching REGEXP.");
4084 add_info ("functions", functions_info,
4085 "All function names, or those matching REGEXP.");
4088 /* FIXME: This command has at least the following problems:
4089 1. It prints builtin types (in a very strange and confusing fashion).
4090 2. It doesn't print right, e.g. with
4091 typedef struct foo *FOO
4092 type_print prints "FOO" when we want to make it (in this situation)
4093 print "struct foo *".
4094 I also think "ptype" or "whatis" is more likely to be useful (but if
4095 there is much disagreement "info types" can be fixed). */
4096 add_info ("types", types_info,
4097 "All type names, or those matching REGEXP.");
4099 add_info ("sources", sources_info,
4100 "Source files in the program.");
4102 add_com ("rbreak", class_breakpoint, rbreak_command,
4103 "Set a breakpoint for all functions matching REGEXP.");
4107 add_com ("lf", class_info, sources_info, "Source files in the program");
4108 add_com ("lg", class_info, variables_info,
4109 "All global and static variable names, or those matching REGEXP.");
4112 /* Initialize the one built-in type that isn't language dependent... */
4113 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4114 "<unknown type>", (struct objfile *) NULL);