1 /* AVR-specific support for 32-bit ELF
2 Copyright (C) 1999-2016 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
27 #include "elf32-avr.h"
28 #include "bfd_stdint.h"
30 /* Enable debugging printout at stdout with this variable. */
31 static bfd_boolean debug_relax = FALSE;
33 /* Enable debugging printout at stdout with this variable. */
34 static bfd_boolean debug_stubs = FALSE;
36 static bfd_reloc_status_type
37 bfd_elf_avr_diff_reloc (bfd *, arelent *, asymbol *, void *,
38 asection *, bfd *, char **);
40 /* Hash table initialization and handling. Code is taken from the hppa port
41 and adapted to the needs of AVR. */
43 /* We use two hash tables to hold information for linking avr objects.
45 The first is the elf32_avr_link_hash_table which is derived from the
46 stanard ELF linker hash table. We use this as a place to attach the other
47 hash table and some static information.
49 The second is the stub hash table which is derived from the base BFD
50 hash table. The stub hash table holds the information on the linker
53 struct elf32_avr_stub_hash_entry
55 /* Base hash table entry structure. */
56 struct bfd_hash_entry bh_root;
58 /* Offset within stub_sec of the beginning of this stub. */
61 /* Given the symbol's value and its section we can determine its final
62 value when building the stubs (so the stub knows where to jump). */
65 /* This way we could mark stubs to be no longer necessary. */
66 bfd_boolean is_actually_needed;
69 struct elf32_avr_link_hash_table
71 /* The main hash table. */
72 struct elf_link_hash_table etab;
74 /* The stub hash table. */
75 struct bfd_hash_table bstab;
79 /* Linker stub bfd. */
82 /* The stub section. */
85 /* Usually 0, unless we are generating code for a bootloader. Will
86 be initialized by elf32_avr_size_stubs to the vma offset of the
87 output section associated with the stub section. */
90 /* Assorted information used by elf32_avr_size_stubs. */
91 unsigned int bfd_count;
92 unsigned int top_index;
93 asection ** input_list;
94 Elf_Internal_Sym ** all_local_syms;
96 /* Tables for mapping vma beyond the 128k boundary to the address of the
97 corresponding stub. (AMT)
98 "amt_max_entry_cnt" reflects the number of entries that memory is allocated
99 for in the "amt_stub_offsets" and "amt_destination_addr" arrays.
100 "amt_entry_cnt" informs how many of these entries actually contain
102 unsigned int amt_entry_cnt;
103 unsigned int amt_max_entry_cnt;
104 bfd_vma * amt_stub_offsets;
105 bfd_vma * amt_destination_addr;
108 /* Various hash macros and functions. */
109 #define avr_link_hash_table(p) \
110 /* PR 3874: Check that we have an AVR style hash table before using it. */\
111 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
112 == AVR_ELF_DATA ? ((struct elf32_avr_link_hash_table *) ((p)->hash)) : NULL)
114 #define avr_stub_hash_entry(ent) \
115 ((struct elf32_avr_stub_hash_entry *)(ent))
117 #define avr_stub_hash_lookup(table, string, create, copy) \
118 ((struct elf32_avr_stub_hash_entry *) \
119 bfd_hash_lookup ((table), (string), (create), (copy)))
121 static reloc_howto_type elf_avr_howto_table[] =
123 HOWTO (R_AVR_NONE, /* type */
125 3, /* size (0 = byte, 1 = short, 2 = long) */
127 FALSE, /* pc_relative */
129 complain_overflow_dont, /* complain_on_overflow */
130 bfd_elf_generic_reloc, /* special_function */
131 "R_AVR_NONE", /* name */
132 FALSE, /* partial_inplace */
135 FALSE), /* pcrel_offset */
137 HOWTO (R_AVR_32, /* type */
139 2, /* size (0 = byte, 1 = short, 2 = long) */
141 FALSE, /* pc_relative */
143 complain_overflow_bitfield, /* complain_on_overflow */
144 bfd_elf_generic_reloc, /* special_function */
145 "R_AVR_32", /* name */
146 FALSE, /* partial_inplace */
147 0xffffffff, /* src_mask */
148 0xffffffff, /* dst_mask */
149 FALSE), /* pcrel_offset */
151 /* A 7 bit PC relative relocation. */
152 HOWTO (R_AVR_7_PCREL, /* type */
154 1, /* size (0 = byte, 1 = short, 2 = long) */
156 TRUE, /* pc_relative */
158 complain_overflow_bitfield, /* complain_on_overflow */
159 bfd_elf_generic_reloc, /* special_function */
160 "R_AVR_7_PCREL", /* name */
161 FALSE, /* partial_inplace */
162 0xffff, /* src_mask */
163 0xffff, /* dst_mask */
164 TRUE), /* pcrel_offset */
166 /* A 13 bit PC relative relocation. */
167 HOWTO (R_AVR_13_PCREL, /* type */
169 1, /* size (0 = byte, 1 = short, 2 = long) */
171 TRUE, /* pc_relative */
173 complain_overflow_bitfield, /* complain_on_overflow */
174 bfd_elf_generic_reloc, /* special_function */
175 "R_AVR_13_PCREL", /* name */
176 FALSE, /* partial_inplace */
177 0xfff, /* src_mask */
178 0xfff, /* dst_mask */
179 TRUE), /* pcrel_offset */
181 /* A 16 bit absolute relocation. */
182 HOWTO (R_AVR_16, /* type */
184 1, /* size (0 = byte, 1 = short, 2 = long) */
186 FALSE, /* pc_relative */
188 complain_overflow_dont, /* complain_on_overflow */
189 bfd_elf_generic_reloc, /* special_function */
190 "R_AVR_16", /* name */
191 FALSE, /* partial_inplace */
192 0xffff, /* src_mask */
193 0xffff, /* dst_mask */
194 FALSE), /* pcrel_offset */
196 /* A 16 bit absolute relocation for command address
197 Will be changed when linker stubs are needed. */
198 HOWTO (R_AVR_16_PM, /* type */
200 1, /* size (0 = byte, 1 = short, 2 = long) */
202 FALSE, /* pc_relative */
204 complain_overflow_bitfield, /* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_AVR_16_PM", /* name */
207 FALSE, /* partial_inplace */
208 0xffff, /* src_mask */
209 0xffff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211 /* A low 8 bit absolute relocation of 16 bit address.
213 HOWTO (R_AVR_LO8_LDI, /* type */
215 1, /* size (0 = byte, 1 = short, 2 = long) */
217 FALSE, /* pc_relative */
219 complain_overflow_dont, /* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_AVR_LO8_LDI", /* name */
222 FALSE, /* partial_inplace */
223 0xffff, /* src_mask */
224 0xffff, /* dst_mask */
225 FALSE), /* pcrel_offset */
226 /* A high 8 bit absolute relocation of 16 bit address.
228 HOWTO (R_AVR_HI8_LDI, /* type */
230 1, /* size (0 = byte, 1 = short, 2 = long) */
232 FALSE, /* pc_relative */
234 complain_overflow_dont, /* complain_on_overflow */
235 bfd_elf_generic_reloc, /* special_function */
236 "R_AVR_HI8_LDI", /* name */
237 FALSE, /* partial_inplace */
238 0xffff, /* src_mask */
239 0xffff, /* dst_mask */
240 FALSE), /* pcrel_offset */
241 /* A high 6 bit absolute relocation of 22 bit address.
242 For LDI command. As well second most significant 8 bit value of
243 a 32 bit link-time constant. */
244 HOWTO (R_AVR_HH8_LDI, /* type */
246 1, /* size (0 = byte, 1 = short, 2 = long) */
248 FALSE, /* pc_relative */
250 complain_overflow_dont, /* complain_on_overflow */
251 bfd_elf_generic_reloc, /* special_function */
252 "R_AVR_HH8_LDI", /* name */
253 FALSE, /* partial_inplace */
254 0xffff, /* src_mask */
255 0xffff, /* dst_mask */
256 FALSE), /* pcrel_offset */
257 /* A negative low 8 bit absolute relocation of 16 bit address.
259 HOWTO (R_AVR_LO8_LDI_NEG, /* type */
261 1, /* size (0 = byte, 1 = short, 2 = long) */
263 FALSE, /* pc_relative */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_AVR_LO8_LDI_NEG", /* name */
268 FALSE, /* partial_inplace */
269 0xffff, /* src_mask */
270 0xffff, /* dst_mask */
271 FALSE), /* pcrel_offset */
272 /* A negative high 8 bit absolute relocation of 16 bit address.
274 HOWTO (R_AVR_HI8_LDI_NEG, /* type */
276 1, /* size (0 = byte, 1 = short, 2 = long) */
278 FALSE, /* pc_relative */
280 complain_overflow_dont, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_AVR_HI8_LDI_NEG", /* name */
283 FALSE, /* partial_inplace */
284 0xffff, /* src_mask */
285 0xffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287 /* A negative high 6 bit absolute relocation of 22 bit address.
289 HOWTO (R_AVR_HH8_LDI_NEG, /* type */
291 1, /* size (0 = byte, 1 = short, 2 = long) */
293 FALSE, /* pc_relative */
295 complain_overflow_dont, /* complain_on_overflow */
296 bfd_elf_generic_reloc, /* special_function */
297 "R_AVR_HH8_LDI_NEG", /* name */
298 FALSE, /* partial_inplace */
299 0xffff, /* src_mask */
300 0xffff, /* dst_mask */
301 FALSE), /* pcrel_offset */
302 /* A low 8 bit absolute relocation of 24 bit program memory address.
303 For LDI command. Will not be changed when linker stubs are needed. */
304 HOWTO (R_AVR_LO8_LDI_PM, /* type */
306 1, /* size (0 = byte, 1 = short, 2 = long) */
308 FALSE, /* pc_relative */
310 complain_overflow_dont, /* complain_on_overflow */
311 bfd_elf_generic_reloc, /* special_function */
312 "R_AVR_LO8_LDI_PM", /* name */
313 FALSE, /* partial_inplace */
314 0xffff, /* src_mask */
315 0xffff, /* dst_mask */
316 FALSE), /* pcrel_offset */
317 /* A low 8 bit absolute relocation of 24 bit program memory address.
318 For LDI command. Will not be changed when linker stubs are needed. */
319 HOWTO (R_AVR_HI8_LDI_PM, /* type */
321 1, /* size (0 = byte, 1 = short, 2 = long) */
323 FALSE, /* pc_relative */
325 complain_overflow_dont, /* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_AVR_HI8_LDI_PM", /* name */
328 FALSE, /* partial_inplace */
329 0xffff, /* src_mask */
330 0xffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332 /* A low 8 bit absolute relocation of 24 bit program memory address.
333 For LDI command. Will not be changed when linker stubs are needed. */
334 HOWTO (R_AVR_HH8_LDI_PM, /* type */
336 1, /* size (0 = byte, 1 = short, 2 = long) */
338 FALSE, /* pc_relative */
340 complain_overflow_dont, /* complain_on_overflow */
341 bfd_elf_generic_reloc, /* special_function */
342 "R_AVR_HH8_LDI_PM", /* name */
343 FALSE, /* partial_inplace */
344 0xffff, /* src_mask */
345 0xffff, /* dst_mask */
346 FALSE), /* pcrel_offset */
347 /* A low 8 bit absolute relocation of 24 bit program memory address.
348 For LDI command. Will not be changed when linker stubs are needed. */
349 HOWTO (R_AVR_LO8_LDI_PM_NEG, /* type */
351 1, /* size (0 = byte, 1 = short, 2 = long) */
353 FALSE, /* pc_relative */
355 complain_overflow_dont, /* complain_on_overflow */
356 bfd_elf_generic_reloc, /* special_function */
357 "R_AVR_LO8_LDI_PM_NEG", /* name */
358 FALSE, /* partial_inplace */
359 0xffff, /* src_mask */
360 0xffff, /* dst_mask */
361 FALSE), /* pcrel_offset */
362 /* A low 8 bit absolute relocation of 24 bit program memory address.
363 For LDI command. Will not be changed when linker stubs are needed. */
364 HOWTO (R_AVR_HI8_LDI_PM_NEG, /* type */
366 1, /* size (0 = byte, 1 = short, 2 = long) */
368 FALSE, /* pc_relative */
370 complain_overflow_dont, /* complain_on_overflow */
371 bfd_elf_generic_reloc, /* special_function */
372 "R_AVR_HI8_LDI_PM_NEG", /* name */
373 FALSE, /* partial_inplace */
374 0xffff, /* src_mask */
375 0xffff, /* dst_mask */
376 FALSE), /* pcrel_offset */
377 /* A low 8 bit absolute relocation of 24 bit program memory address.
378 For LDI command. Will not be changed when linker stubs are needed. */
379 HOWTO (R_AVR_HH8_LDI_PM_NEG, /* type */
381 1, /* size (0 = byte, 1 = short, 2 = long) */
383 FALSE, /* pc_relative */
385 complain_overflow_dont, /* complain_on_overflow */
386 bfd_elf_generic_reloc, /* special_function */
387 "R_AVR_HH8_LDI_PM_NEG", /* name */
388 FALSE, /* partial_inplace */
389 0xffff, /* src_mask */
390 0xffff, /* dst_mask */
391 FALSE), /* pcrel_offset */
392 /* Relocation for CALL command in ATmega. */
393 HOWTO (R_AVR_CALL, /* type */
395 2, /* size (0 = byte, 1 = short, 2 = long) */
397 FALSE, /* pc_relative */
399 complain_overflow_dont,/* complain_on_overflow */
400 bfd_elf_generic_reloc, /* special_function */
401 "R_AVR_CALL", /* name */
402 FALSE, /* partial_inplace */
403 0xffffffff, /* src_mask */
404 0xffffffff, /* dst_mask */
405 FALSE), /* pcrel_offset */
406 /* A 16 bit absolute relocation of 16 bit address.
408 HOWTO (R_AVR_LDI, /* type */
410 1, /* size (0 = byte, 1 = short, 2 = long) */
412 FALSE, /* pc_relative */
414 complain_overflow_dont,/* complain_on_overflow */
415 bfd_elf_generic_reloc, /* special_function */
416 "R_AVR_LDI", /* name */
417 FALSE, /* partial_inplace */
418 0xffff, /* src_mask */
419 0xffff, /* dst_mask */
420 FALSE), /* pcrel_offset */
421 /* A 6 bit absolute relocation of 6 bit offset.
422 For ldd/sdd command. */
423 HOWTO (R_AVR_6, /* type */
425 0, /* size (0 = byte, 1 = short, 2 = long) */
427 FALSE, /* pc_relative */
429 complain_overflow_dont,/* complain_on_overflow */
430 bfd_elf_generic_reloc, /* special_function */
431 "R_AVR_6", /* name */
432 FALSE, /* partial_inplace */
433 0xffff, /* src_mask */
434 0xffff, /* dst_mask */
435 FALSE), /* pcrel_offset */
436 /* A 6 bit absolute relocation of 6 bit offset.
437 For sbiw/adiw command. */
438 HOWTO (R_AVR_6_ADIW, /* type */
440 0, /* size (0 = byte, 1 = short, 2 = long) */
442 FALSE, /* pc_relative */
444 complain_overflow_dont,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_AVR_6_ADIW", /* name */
447 FALSE, /* partial_inplace */
448 0xffff, /* src_mask */
449 0xffff, /* dst_mask */
450 FALSE), /* pcrel_offset */
451 /* Most significant 8 bit value of a 32 bit link-time constant. */
452 HOWTO (R_AVR_MS8_LDI, /* type */
454 1, /* size (0 = byte, 1 = short, 2 = long) */
456 FALSE, /* pc_relative */
458 complain_overflow_dont, /* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_AVR_MS8_LDI", /* name */
461 FALSE, /* partial_inplace */
462 0xffff, /* src_mask */
463 0xffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465 /* Negative most significant 8 bit value of a 32 bit link-time constant. */
466 HOWTO (R_AVR_MS8_LDI_NEG, /* type */
468 1, /* size (0 = byte, 1 = short, 2 = long) */
470 FALSE, /* pc_relative */
472 complain_overflow_dont, /* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_AVR_MS8_LDI_NEG", /* name */
475 FALSE, /* partial_inplace */
476 0xffff, /* src_mask */
477 0xffff, /* dst_mask */
478 FALSE), /* pcrel_offset */
479 /* A low 8 bit absolute relocation of 24 bit program memory address.
480 For LDI command. Will be changed when linker stubs are needed. */
481 HOWTO (R_AVR_LO8_LDI_GS, /* type */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
485 FALSE, /* pc_relative */
487 complain_overflow_dont, /* complain_on_overflow */
488 bfd_elf_generic_reloc, /* special_function */
489 "R_AVR_LO8_LDI_GS", /* name */
490 FALSE, /* partial_inplace */
491 0xffff, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494 /* A low 8 bit absolute relocation of 24 bit program memory address.
495 For LDI command. Will be changed when linker stubs are needed. */
496 HOWTO (R_AVR_HI8_LDI_GS, /* type */
498 1, /* size (0 = byte, 1 = short, 2 = long) */
500 FALSE, /* pc_relative */
502 complain_overflow_dont, /* complain_on_overflow */
503 bfd_elf_generic_reloc, /* special_function */
504 "R_AVR_HI8_LDI_GS", /* name */
505 FALSE, /* partial_inplace */
506 0xffff, /* src_mask */
507 0xffff, /* dst_mask */
508 FALSE), /* pcrel_offset */
510 HOWTO (R_AVR_8, /* type */
512 0, /* size (0 = byte, 1 = short, 2 = long) */
514 FALSE, /* pc_relative */
516 complain_overflow_bitfield,/* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
518 "R_AVR_8", /* name */
519 FALSE, /* partial_inplace */
520 0x000000ff, /* src_mask */
521 0x000000ff, /* dst_mask */
522 FALSE), /* pcrel_offset */
523 /* lo8-part to use in .byte lo8(sym). */
524 HOWTO (R_AVR_8_LO8, /* type */
526 0, /* size (0 = byte, 1 = short, 2 = long) */
528 FALSE, /* pc_relative */
530 complain_overflow_dont,/* complain_on_overflow */
531 bfd_elf_generic_reloc, /* special_function */
532 "R_AVR_8_LO8", /* name */
533 FALSE, /* partial_inplace */
534 0xffffff, /* src_mask */
535 0xffffff, /* dst_mask */
536 FALSE), /* pcrel_offset */
537 /* hi8-part to use in .byte hi8(sym). */
538 HOWTO (R_AVR_8_HI8, /* type */
540 0, /* size (0 = byte, 1 = short, 2 = long) */
542 FALSE, /* pc_relative */
544 complain_overflow_dont,/* complain_on_overflow */
545 bfd_elf_generic_reloc, /* special_function */
546 "R_AVR_8_HI8", /* name */
547 FALSE, /* partial_inplace */
548 0xffffff, /* src_mask */
549 0xffffff, /* dst_mask */
550 FALSE), /* pcrel_offset */
551 /* hlo8-part to use in .byte hlo8(sym). */
552 HOWTO (R_AVR_8_HLO8, /* type */
554 0, /* size (0 = byte, 1 = short, 2 = long) */
556 FALSE, /* pc_relative */
558 complain_overflow_dont,/* complain_on_overflow */
559 bfd_elf_generic_reloc, /* special_function */
560 "R_AVR_8_HLO8", /* name */
561 FALSE, /* partial_inplace */
562 0xffffff, /* src_mask */
563 0xffffff, /* dst_mask */
564 FALSE), /* pcrel_offset */
565 HOWTO (R_AVR_DIFF8, /* type */
567 0, /* size (0 = byte, 1 = short, 2 = long) */
569 FALSE, /* pc_relative */
571 complain_overflow_bitfield, /* complain_on_overflow */
572 bfd_elf_avr_diff_reloc, /* special_function */
573 "R_AVR_DIFF8", /* name */
574 FALSE, /* partial_inplace */
577 FALSE), /* pcrel_offset */
578 HOWTO (R_AVR_DIFF16, /* type */
580 1, /* size (0 = byte, 1 = short, 2 = long) */
582 FALSE, /* pc_relative */
584 complain_overflow_bitfield, /* complain_on_overflow */
585 bfd_elf_avr_diff_reloc,/* special_function */
586 "R_AVR_DIFF16", /* name */
587 FALSE, /* partial_inplace */
589 0xffff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591 HOWTO (R_AVR_DIFF32, /* type */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
595 FALSE, /* pc_relative */
597 complain_overflow_bitfield, /* complain_on_overflow */
598 bfd_elf_avr_diff_reloc,/* special_function */
599 "R_AVR_DIFF32", /* name */
600 FALSE, /* partial_inplace */
602 0xffffffff, /* dst_mask */
603 FALSE), /* pcrel_offset */
604 /* 7 bit immediate for LDS/STS in Tiny core. */
605 HOWTO (R_AVR_LDS_STS_16, /* type */
607 1, /* size (0 = byte, 1 = short, 2 = long) */
609 FALSE, /* pc_relative */
611 complain_overflow_dont,/* complain_on_overflow */
612 bfd_elf_generic_reloc, /* special_function */
613 "R_AVR_LDS_STS_16", /* name */
614 FALSE, /* partial_inplace */
615 0xffff, /* src_mask */
616 0xffff, /* dst_mask */
617 FALSE), /* pcrel_offset */
619 HOWTO (R_AVR_PORT6, /* type */
621 0, /* size (0 = byte, 1 = short, 2 = long) */
623 FALSE, /* pc_relative */
625 complain_overflow_dont,/* complain_on_overflow */
626 bfd_elf_generic_reloc, /* special_function */
627 "R_AVR_PORT6", /* name */
628 FALSE, /* partial_inplace */
629 0xffffff, /* src_mask */
630 0xffffff, /* dst_mask */
631 FALSE), /* pcrel_offset */
632 HOWTO (R_AVR_PORT5, /* type */
634 0, /* size (0 = byte, 1 = short, 2 = long) */
636 FALSE, /* pc_relative */
638 complain_overflow_dont,/* complain_on_overflow */
639 bfd_elf_generic_reloc, /* special_function */
640 "R_AVR_PORT5", /* name */
641 FALSE, /* partial_inplace */
642 0xffffff, /* src_mask */
643 0xffffff, /* dst_mask */
644 FALSE), /* pcrel_offset */
646 /* A 32 bit PC relative relocation. */
647 HOWTO (R_AVR_32_PCREL, /* type */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
651 TRUE, /* pc_relative */
653 complain_overflow_bitfield, /* complain_on_overflow */
654 bfd_elf_generic_reloc, /* special_function */
655 "R_AVR_32_PCREL", /* name */
656 FALSE, /* partial_inplace */
657 0xffffffff, /* src_mask */
658 0xffffffff, /* dst_mask */
659 TRUE), /* pcrel_offset */
662 /* Map BFD reloc types to AVR ELF reloc types. */
666 bfd_reloc_code_real_type bfd_reloc_val;
667 unsigned int elf_reloc_val;
670 static const struct avr_reloc_map avr_reloc_map[] =
672 { BFD_RELOC_NONE, R_AVR_NONE },
673 { BFD_RELOC_32, R_AVR_32 },
674 { BFD_RELOC_AVR_7_PCREL, R_AVR_7_PCREL },
675 { BFD_RELOC_AVR_13_PCREL, R_AVR_13_PCREL },
676 { BFD_RELOC_16, R_AVR_16 },
677 { BFD_RELOC_AVR_16_PM, R_AVR_16_PM },
678 { BFD_RELOC_AVR_LO8_LDI, R_AVR_LO8_LDI},
679 { BFD_RELOC_AVR_HI8_LDI, R_AVR_HI8_LDI },
680 { BFD_RELOC_AVR_HH8_LDI, R_AVR_HH8_LDI },
681 { BFD_RELOC_AVR_MS8_LDI, R_AVR_MS8_LDI },
682 { BFD_RELOC_AVR_LO8_LDI_NEG, R_AVR_LO8_LDI_NEG },
683 { BFD_RELOC_AVR_HI8_LDI_NEG, R_AVR_HI8_LDI_NEG },
684 { BFD_RELOC_AVR_HH8_LDI_NEG, R_AVR_HH8_LDI_NEG },
685 { BFD_RELOC_AVR_MS8_LDI_NEG, R_AVR_MS8_LDI_NEG },
686 { BFD_RELOC_AVR_LO8_LDI_PM, R_AVR_LO8_LDI_PM },
687 { BFD_RELOC_AVR_LO8_LDI_GS, R_AVR_LO8_LDI_GS },
688 { BFD_RELOC_AVR_HI8_LDI_PM, R_AVR_HI8_LDI_PM },
689 { BFD_RELOC_AVR_HI8_LDI_GS, R_AVR_HI8_LDI_GS },
690 { BFD_RELOC_AVR_HH8_LDI_PM, R_AVR_HH8_LDI_PM },
691 { BFD_RELOC_AVR_LO8_LDI_PM_NEG, R_AVR_LO8_LDI_PM_NEG },
692 { BFD_RELOC_AVR_HI8_LDI_PM_NEG, R_AVR_HI8_LDI_PM_NEG },
693 { BFD_RELOC_AVR_HH8_LDI_PM_NEG, R_AVR_HH8_LDI_PM_NEG },
694 { BFD_RELOC_AVR_CALL, R_AVR_CALL },
695 { BFD_RELOC_AVR_LDI, R_AVR_LDI },
696 { BFD_RELOC_AVR_6, R_AVR_6 },
697 { BFD_RELOC_AVR_6_ADIW, R_AVR_6_ADIW },
698 { BFD_RELOC_8, R_AVR_8 },
699 { BFD_RELOC_AVR_8_LO, R_AVR_8_LO8 },
700 { BFD_RELOC_AVR_8_HI, R_AVR_8_HI8 },
701 { BFD_RELOC_AVR_8_HLO, R_AVR_8_HLO8 },
702 { BFD_RELOC_AVR_DIFF8, R_AVR_DIFF8 },
703 { BFD_RELOC_AVR_DIFF16, R_AVR_DIFF16 },
704 { BFD_RELOC_AVR_DIFF32, R_AVR_DIFF32 },
705 { BFD_RELOC_AVR_LDS_STS_16, R_AVR_LDS_STS_16},
706 { BFD_RELOC_AVR_PORT6, R_AVR_PORT6},
707 { BFD_RELOC_AVR_PORT5, R_AVR_PORT5},
708 { BFD_RELOC_32_PCREL, R_AVR_32_PCREL}
711 /* Meant to be filled one day with the wrap around address for the
712 specific device. I.e. should get the value 0x4000 for 16k devices,
713 0x8000 for 32k devices and so on.
715 We initialize it here with a value of 0x1000000 resulting in
716 that we will never suggest a wrap-around jump during relaxation.
717 The logic of the source code later on assumes that in
718 avr_pc_wrap_around one single bit is set. */
719 static bfd_vma avr_pc_wrap_around = 0x10000000;
721 /* If this variable holds a value different from zero, the linker relaxation
722 machine will try to optimize call/ret sequences by a single jump
723 instruction. This option could be switched off by a linker switch. */
724 static int avr_replace_call_ret_sequences = 1;
727 /* Per-section relaxation related information for avr. */
729 struct avr_relax_info
731 /* Track the avr property records that apply to this section. */
735 /* Number of records in the list. */
738 /* How many records worth of space have we allocated. */
741 /* The records, only COUNT records are initialised. */
742 struct avr_property_record *items;
746 /* Per section data, specialised for avr. */
748 struct elf_avr_section_data
750 /* The standard data must appear first. */
751 struct bfd_elf_section_data elf;
753 /* Relaxation related information. */
754 struct avr_relax_info relax_info;
757 /* Possibly initialise avr specific data for new section SEC from ABFD. */
760 elf_avr_new_section_hook (bfd *abfd, asection *sec)
762 if (!sec->used_by_bfd)
764 struct elf_avr_section_data *sdata;
765 bfd_size_type amt = sizeof (*sdata);
767 sdata = bfd_zalloc (abfd, amt);
770 sec->used_by_bfd = sdata;
773 return _bfd_elf_new_section_hook (abfd, sec);
776 /* Return a pointer to the relaxation information for SEC. */
778 static struct avr_relax_info *
779 get_avr_relax_info (asection *sec)
781 struct elf_avr_section_data *section_data;
783 /* No info available if no section or if it is an output section. */
784 if (!sec || sec == sec->output_section)
787 section_data = (struct elf_avr_section_data *) elf_section_data (sec);
788 return §ion_data->relax_info;
791 /* Initialise the per section relaxation information for SEC. */
794 init_avr_relax_info (asection *sec)
796 struct avr_relax_info *relax_info = get_avr_relax_info (sec);
798 relax_info->records.count = 0;
799 relax_info->records.allocated = 0;
800 relax_info->records.items = NULL;
803 /* Initialize an entry in the stub hash table. */
805 static struct bfd_hash_entry *
806 stub_hash_newfunc (struct bfd_hash_entry *entry,
807 struct bfd_hash_table *table,
810 /* Allocate the structure if it has not already been allocated by a
814 entry = bfd_hash_allocate (table,
815 sizeof (struct elf32_avr_stub_hash_entry));
820 /* Call the allocation method of the superclass. */
821 entry = bfd_hash_newfunc (entry, table, string);
824 struct elf32_avr_stub_hash_entry *hsh;
826 /* Initialize the local fields. */
827 hsh = avr_stub_hash_entry (entry);
828 hsh->stub_offset = 0;
829 hsh->target_value = 0;
835 /* This function is just a straight passthrough to the real
836 function in linker.c. Its prupose is so that its address
837 can be compared inside the avr_link_hash_table macro. */
839 static struct bfd_hash_entry *
840 elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry,
841 struct bfd_hash_table * table,
844 return _bfd_elf_link_hash_newfunc (entry, table, string);
847 /* Free the derived linker hash table. */
850 elf32_avr_link_hash_table_free (bfd *obfd)
852 struct elf32_avr_link_hash_table *htab
853 = (struct elf32_avr_link_hash_table *) obfd->link.hash;
855 /* Free the address mapping table. */
856 if (htab->amt_stub_offsets != NULL)
857 free (htab->amt_stub_offsets);
858 if (htab->amt_destination_addr != NULL)
859 free (htab->amt_destination_addr);
861 bfd_hash_table_free (&htab->bstab);
862 _bfd_elf_link_hash_table_free (obfd);
865 /* Create the derived linker hash table. The AVR ELF port uses the derived
866 hash table to keep information specific to the AVR ELF linker (without
867 using static variables). */
869 static struct bfd_link_hash_table *
870 elf32_avr_link_hash_table_create (bfd *abfd)
872 struct elf32_avr_link_hash_table *htab;
873 bfd_size_type amt = sizeof (*htab);
875 htab = bfd_zmalloc (amt);
879 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
880 elf32_avr_link_hash_newfunc,
881 sizeof (struct elf_link_hash_entry),
888 /* Init the stub hash table too. */
889 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
890 sizeof (struct elf32_avr_stub_hash_entry)))
892 _bfd_elf_link_hash_table_free (abfd);
895 htab->etab.root.hash_table_free = elf32_avr_link_hash_table_free;
897 return &htab->etab.root;
900 /* Calculates the effective distance of a pc relative jump/call. */
903 avr_relative_distance_considering_wrap_around (unsigned int distance)
905 unsigned int wrap_around_mask = avr_pc_wrap_around - 1;
906 int dist_with_wrap_around = distance & wrap_around_mask;
908 if (dist_with_wrap_around > ((int) (avr_pc_wrap_around >> 1)))
909 dist_with_wrap_around -= avr_pc_wrap_around;
911 return dist_with_wrap_around;
915 static reloc_howto_type *
916 bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
917 bfd_reloc_code_real_type code)
922 i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map);
924 if (avr_reloc_map[i].bfd_reloc_val == code)
925 return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val];
930 static reloc_howto_type *
931 bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
937 i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]);
939 if (elf_avr_howto_table[i].name != NULL
940 && strcasecmp (elf_avr_howto_table[i].name, r_name) == 0)
941 return &elf_avr_howto_table[i];
946 /* Set the howto pointer for an AVR ELF reloc. */
949 avr_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
951 Elf_Internal_Rela *dst)
955 r_type = ELF32_R_TYPE (dst->r_info);
956 if (r_type >= (unsigned int) R_AVR_max)
958 _bfd_error_handler (_("%B: invalid AVR reloc number: %d"), abfd, r_type);
961 cache_ptr->howto = &elf_avr_howto_table[r_type];
965 avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation)
967 return (relocation >= 0x020000);
970 /* Returns the address of the corresponding stub if there is one.
971 Returns otherwise an address above 0x020000. This function
972 could also be used, if there is no knowledge on the section where
973 the destination is found. */
976 avr_get_stub_addr (bfd_vma srel,
977 struct elf32_avr_link_hash_table *htab)
980 bfd_vma stub_sec_addr =
981 (htab->stub_sec->output_section->vma +
982 htab->stub_sec->output_offset);
984 for (sindex = 0; sindex < htab->amt_max_entry_cnt; sindex ++)
985 if (htab->amt_destination_addr[sindex] == srel)
986 return htab->amt_stub_offsets[sindex] + stub_sec_addr;
988 /* Return an address that could not be reached by 16 bit relocs. */
992 /* Perform a diff relocation. Nothing to do, as the difference value is already
993 written into the section's contents. */
995 static bfd_reloc_status_type
996 bfd_elf_avr_diff_reloc (bfd *abfd ATTRIBUTE_UNUSED,
997 arelent *reloc_entry ATTRIBUTE_UNUSED,
998 asymbol *symbol ATTRIBUTE_UNUSED,
999 void *data ATTRIBUTE_UNUSED,
1000 asection *input_section ATTRIBUTE_UNUSED,
1001 bfd *output_bfd ATTRIBUTE_UNUSED,
1002 char **error_message ATTRIBUTE_UNUSED)
1004 return bfd_reloc_ok;
1008 /* Perform a single relocation. By default we use the standard BFD
1009 routines, but a few relocs, we have to do them ourselves. */
1011 static bfd_reloc_status_type
1012 avr_final_link_relocate (reloc_howto_type * howto,
1014 asection * input_section,
1015 bfd_byte * contents,
1016 Elf_Internal_Rela * rel,
1018 struct elf32_avr_link_hash_table * htab)
1020 bfd_reloc_status_type r = bfd_reloc_ok;
1022 bfd_signed_vma srel;
1023 bfd_signed_vma reloc_addr;
1024 bfd_boolean use_stubs = FALSE;
1025 /* Usually is 0, unless we are generating code for a bootloader. */
1026 bfd_signed_vma base_addr = htab->vector_base;
1028 /* Absolute addr of the reloc in the final excecutable. */
1029 reloc_addr = rel->r_offset + input_section->output_section->vma
1030 + input_section->output_offset;
1032 switch (howto->type)
1035 contents += rel->r_offset;
1036 srel = (bfd_signed_vma) relocation;
1037 srel += rel->r_addend;
1038 srel -= rel->r_offset;
1039 srel -= 2; /* Branch instructions add 2 to the PC... */
1040 srel -= (input_section->output_section->vma +
1041 input_section->output_offset);
1044 return bfd_reloc_outofrange;
1045 if (srel > ((1 << 7) - 1) || (srel < - (1 << 7)))
1046 return bfd_reloc_overflow;
1047 x = bfd_get_16 (input_bfd, contents);
1048 x = (x & 0xfc07) | (((srel >> 1) << 3) & 0x3f8);
1049 bfd_put_16 (input_bfd, x, contents);
1052 case R_AVR_13_PCREL:
1053 contents += rel->r_offset;
1054 srel = (bfd_signed_vma) relocation;
1055 srel += rel->r_addend;
1056 srel -= rel->r_offset;
1057 srel -= 2; /* Branch instructions add 2 to the PC... */
1058 srel -= (input_section->output_section->vma +
1059 input_section->output_offset);
1062 return bfd_reloc_outofrange;
1064 srel = avr_relative_distance_considering_wrap_around (srel);
1066 /* AVR addresses commands as words. */
1069 /* Check for overflow. */
1070 if (srel < -2048 || srel > 2047)
1072 /* Relative distance is too large. */
1074 /* Always apply WRAPAROUND for avr2, avr25, and avr4. */
1075 switch (bfd_get_mach (input_bfd))
1078 case bfd_mach_avr25:
1083 return bfd_reloc_overflow;
1087 x = bfd_get_16 (input_bfd, contents);
1088 x = (x & 0xf000) | (srel & 0xfff);
1089 bfd_put_16 (input_bfd, x, contents);
1093 contents += rel->r_offset;
1094 srel = (bfd_signed_vma) relocation + rel->r_addend;
1095 x = bfd_get_16 (input_bfd, contents);
1096 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1097 bfd_put_16 (input_bfd, x, contents);
1101 contents += rel->r_offset;
1102 srel = (bfd_signed_vma) relocation + rel->r_addend;
1103 if (((srel > 0) && (srel & 0xffff) > 255)
1104 || ((srel < 0) && ((-srel) & 0xffff) > 128))
1105 /* Remove offset for data/eeprom section. */
1106 return bfd_reloc_overflow;
1108 x = bfd_get_16 (input_bfd, contents);
1109 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1110 bfd_put_16 (input_bfd, x, contents);
1114 contents += rel->r_offset;
1115 srel = (bfd_signed_vma) relocation + rel->r_addend;
1116 if (((srel & 0xffff) > 63) || (srel < 0))
1117 /* Remove offset for data/eeprom section. */
1118 return bfd_reloc_overflow;
1119 x = bfd_get_16 (input_bfd, contents);
1120 x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7)
1121 | ((srel & (1 << 5)) << 8));
1122 bfd_put_16 (input_bfd, x, contents);
1126 contents += rel->r_offset;
1127 srel = (bfd_signed_vma) relocation + rel->r_addend;
1128 if (((srel & 0xffff) > 63) || (srel < 0))
1129 /* Remove offset for data/eeprom section. */
1130 return bfd_reloc_overflow;
1131 x = bfd_get_16 (input_bfd, contents);
1132 x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2);
1133 bfd_put_16 (input_bfd, x, contents);
1137 contents += rel->r_offset;
1138 srel = (bfd_signed_vma) relocation + rel->r_addend;
1139 srel = (srel >> 8) & 0xff;
1140 x = bfd_get_16 (input_bfd, contents);
1141 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1142 bfd_put_16 (input_bfd, x, contents);
1146 contents += rel->r_offset;
1147 srel = (bfd_signed_vma) relocation + rel->r_addend;
1148 srel = (srel >> 16) & 0xff;
1149 x = bfd_get_16 (input_bfd, contents);
1150 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1151 bfd_put_16 (input_bfd, x, contents);
1155 contents += rel->r_offset;
1156 srel = (bfd_signed_vma) relocation + rel->r_addend;
1157 srel = (srel >> 24) & 0xff;
1158 x = bfd_get_16 (input_bfd, contents);
1159 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1160 bfd_put_16 (input_bfd, x, contents);
1163 case R_AVR_LO8_LDI_NEG:
1164 contents += rel->r_offset;
1165 srel = (bfd_signed_vma) relocation + rel->r_addend;
1167 x = bfd_get_16 (input_bfd, contents);
1168 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1169 bfd_put_16 (input_bfd, x, contents);
1172 case R_AVR_HI8_LDI_NEG:
1173 contents += rel->r_offset;
1174 srel = (bfd_signed_vma) relocation + rel->r_addend;
1176 srel = (srel >> 8) & 0xff;
1177 x = bfd_get_16 (input_bfd, contents);
1178 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1179 bfd_put_16 (input_bfd, x, contents);
1182 case R_AVR_HH8_LDI_NEG:
1183 contents += rel->r_offset;
1184 srel = (bfd_signed_vma) relocation + rel->r_addend;
1186 srel = (srel >> 16) & 0xff;
1187 x = bfd_get_16 (input_bfd, contents);
1188 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1189 bfd_put_16 (input_bfd, x, contents);
1192 case R_AVR_MS8_LDI_NEG:
1193 contents += rel->r_offset;
1194 srel = (bfd_signed_vma) relocation + rel->r_addend;
1196 srel = (srel >> 24) & 0xff;
1197 x = bfd_get_16 (input_bfd, contents);
1198 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1199 bfd_put_16 (input_bfd, x, contents);
1202 case R_AVR_LO8_LDI_GS:
1203 use_stubs = (!htab->no_stubs);
1205 case R_AVR_LO8_LDI_PM:
1206 contents += rel->r_offset;
1207 srel = (bfd_signed_vma) relocation + rel->r_addend;
1210 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1212 bfd_vma old_srel = srel;
1214 /* We need to use the address of the stub instead. */
1215 srel = avr_get_stub_addr (srel, htab);
1217 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1218 "reloc at address 0x%x.\n",
1219 (unsigned int) srel,
1220 (unsigned int) old_srel,
1221 (unsigned int) reloc_addr);
1223 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1224 return bfd_reloc_outofrange;
1228 return bfd_reloc_outofrange;
1230 x = bfd_get_16 (input_bfd, contents);
1231 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1232 bfd_put_16 (input_bfd, x, contents);
1235 case R_AVR_HI8_LDI_GS:
1236 use_stubs = (!htab->no_stubs);
1238 case R_AVR_HI8_LDI_PM:
1239 contents += rel->r_offset;
1240 srel = (bfd_signed_vma) relocation + rel->r_addend;
1243 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1245 bfd_vma old_srel = srel;
1247 /* We need to use the address of the stub instead. */
1248 srel = avr_get_stub_addr (srel, htab);
1250 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1251 "reloc at address 0x%x.\n",
1252 (unsigned int) srel,
1253 (unsigned int) old_srel,
1254 (unsigned int) reloc_addr);
1256 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1257 return bfd_reloc_outofrange;
1261 return bfd_reloc_outofrange;
1263 srel = (srel >> 8) & 0xff;
1264 x = bfd_get_16 (input_bfd, contents);
1265 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1266 bfd_put_16 (input_bfd, x, contents);
1269 case R_AVR_HH8_LDI_PM:
1270 contents += rel->r_offset;
1271 srel = (bfd_signed_vma) relocation + rel->r_addend;
1273 return bfd_reloc_outofrange;
1275 srel = (srel >> 16) & 0xff;
1276 x = bfd_get_16 (input_bfd, contents);
1277 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1278 bfd_put_16 (input_bfd, x, contents);
1281 case R_AVR_LO8_LDI_PM_NEG:
1282 contents += rel->r_offset;
1283 srel = (bfd_signed_vma) relocation + rel->r_addend;
1286 return bfd_reloc_outofrange;
1288 x = bfd_get_16 (input_bfd, contents);
1289 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1290 bfd_put_16 (input_bfd, x, contents);
1293 case R_AVR_HI8_LDI_PM_NEG:
1294 contents += rel->r_offset;
1295 srel = (bfd_signed_vma) relocation + rel->r_addend;
1298 return bfd_reloc_outofrange;
1300 srel = (srel >> 8) & 0xff;
1301 x = bfd_get_16 (input_bfd, contents);
1302 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1303 bfd_put_16 (input_bfd, x, contents);
1306 case R_AVR_HH8_LDI_PM_NEG:
1307 contents += rel->r_offset;
1308 srel = (bfd_signed_vma) relocation + rel->r_addend;
1311 return bfd_reloc_outofrange;
1313 srel = (srel >> 16) & 0xff;
1314 x = bfd_get_16 (input_bfd, contents);
1315 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1316 bfd_put_16 (input_bfd, x, contents);
1320 contents += rel->r_offset;
1321 srel = (bfd_signed_vma) relocation + rel->r_addend;
1323 return bfd_reloc_outofrange;
1325 x = bfd_get_16 (input_bfd, contents);
1326 x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16;
1327 bfd_put_16 (input_bfd, x, contents);
1328 bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2);
1332 use_stubs = (!htab->no_stubs);
1333 contents += rel->r_offset;
1334 srel = (bfd_signed_vma) relocation + rel->r_addend;
1337 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1339 bfd_vma old_srel = srel;
1341 /* We need to use the address of the stub instead. */
1342 srel = avr_get_stub_addr (srel,htab);
1344 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1345 "reloc at address 0x%x.\n",
1346 (unsigned int) srel,
1347 (unsigned int) old_srel,
1348 (unsigned int) reloc_addr);
1350 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1351 return bfd_reloc_outofrange;
1355 return bfd_reloc_outofrange;
1357 bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents);
1363 /* Nothing to do here, as contents already contains the diff value. */
1367 case R_AVR_LDS_STS_16:
1368 contents += rel->r_offset;
1369 srel = (bfd_signed_vma) relocation + rel->r_addend;
1370 if ((srel & 0xFFFF) < 0x40 || (srel & 0xFFFF) > 0xbf)
1371 return bfd_reloc_outofrange;
1373 x = bfd_get_16 (input_bfd, contents);
1374 x |= (srel & 0x0f) | ((srel & 0x30) << 5) | ((srel & 0x40) << 2);
1375 bfd_put_16 (input_bfd, x, contents);
1379 contents += rel->r_offset;
1380 srel = (bfd_signed_vma) relocation + rel->r_addend;
1381 if ((srel & 0xffff) > 0x3f)
1382 return bfd_reloc_outofrange;
1383 x = bfd_get_16 (input_bfd, contents);
1384 x = (x & 0xf9f0) | ((srel & 0x30) << 5) | (srel & 0x0f);
1385 bfd_put_16 (input_bfd, x, contents);
1389 contents += rel->r_offset;
1390 srel = (bfd_signed_vma) relocation + rel->r_addend;
1391 if ((srel & 0xffff) > 0x1f)
1392 return bfd_reloc_outofrange;
1393 x = bfd_get_16 (input_bfd, contents);
1394 x = (x & 0xff07) | ((srel & 0x1f) << 3);
1395 bfd_put_16 (input_bfd, x, contents);
1399 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1400 contents, rel->r_offset,
1401 relocation, rel->r_addend);
1407 /* Relocate an AVR ELF section. */
1410 elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1411 struct bfd_link_info *info,
1413 asection *input_section,
1415 Elf_Internal_Rela *relocs,
1416 Elf_Internal_Sym *local_syms,
1417 asection **local_sections)
1419 Elf_Internal_Shdr * symtab_hdr;
1420 struct elf_link_hash_entry ** sym_hashes;
1421 Elf_Internal_Rela * rel;
1422 Elf_Internal_Rela * relend;
1423 struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info);
1428 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1429 sym_hashes = elf_sym_hashes (input_bfd);
1430 relend = relocs + input_section->reloc_count;
1432 for (rel = relocs; rel < relend; rel ++)
1434 reloc_howto_type * howto;
1435 unsigned long r_symndx;
1436 Elf_Internal_Sym * sym;
1438 struct elf_link_hash_entry * h;
1440 bfd_reloc_status_type r;
1444 r_type = ELF32_R_TYPE (rel->r_info);
1445 r_symndx = ELF32_R_SYM (rel->r_info);
1446 howto = elf_avr_howto_table + r_type;
1451 if (r_symndx < symtab_hdr->sh_info)
1453 sym = local_syms + r_symndx;
1454 sec = local_sections [r_symndx];
1455 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1457 name = bfd_elf_string_from_elf_section
1458 (input_bfd, symtab_hdr->sh_link, sym->st_name);
1459 name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1463 bfd_boolean unresolved_reloc, warned, ignored;
1465 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1466 r_symndx, symtab_hdr, sym_hashes,
1468 unresolved_reloc, warned, ignored);
1470 name = h->root.root.string;
1473 if (sec != NULL && discarded_section (sec))
1474 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1475 rel, 1, relend, howto, 0, contents);
1477 if (bfd_link_relocatable (info))
1480 r = avr_final_link_relocate (howto, input_bfd, input_section,
1481 contents, rel, relocation, htab);
1483 if (r != bfd_reloc_ok)
1485 const char * msg = (const char *) NULL;
1489 case bfd_reloc_overflow:
1490 (*info->callbacks->reloc_overflow)
1491 (info, (h ? &h->root : NULL), name, howto->name,
1492 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1495 case bfd_reloc_undefined:
1496 (*info->callbacks->undefined_symbol)
1497 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
1500 case bfd_reloc_outofrange:
1501 msg = _("internal error: out of range error");
1504 case bfd_reloc_notsupported:
1505 msg = _("internal error: unsupported relocation error");
1508 case bfd_reloc_dangerous:
1509 msg = _("internal error: dangerous relocation");
1513 msg = _("internal error: unknown error");
1518 (*info->callbacks->warning) (info, msg, name, input_bfd,
1519 input_section, rel->r_offset);
1526 /* The final processing done just before writing out a AVR ELF object
1527 file. This gets the AVR architecture right based on the machine
1531 bfd_elf_avr_final_write_processing (bfd *abfd,
1532 bfd_boolean linker ATTRIBUTE_UNUSED)
1536 switch (bfd_get_mach (abfd))
1540 val = E_AVR_MACH_AVR2;
1544 val = E_AVR_MACH_AVR1;
1547 case bfd_mach_avr25:
1548 val = E_AVR_MACH_AVR25;
1552 val = E_AVR_MACH_AVR3;
1555 case bfd_mach_avr31:
1556 val = E_AVR_MACH_AVR31;
1559 case bfd_mach_avr35:
1560 val = E_AVR_MACH_AVR35;
1564 val = E_AVR_MACH_AVR4;
1568 val = E_AVR_MACH_AVR5;
1571 case bfd_mach_avr51:
1572 val = E_AVR_MACH_AVR51;
1576 val = E_AVR_MACH_AVR6;
1579 case bfd_mach_avrxmega1:
1580 val = E_AVR_MACH_XMEGA1;
1583 case bfd_mach_avrxmega2:
1584 val = E_AVR_MACH_XMEGA2;
1587 case bfd_mach_avrxmega3:
1588 val = E_AVR_MACH_XMEGA3;
1591 case bfd_mach_avrxmega4:
1592 val = E_AVR_MACH_XMEGA4;
1595 case bfd_mach_avrxmega5:
1596 val = E_AVR_MACH_XMEGA5;
1599 case bfd_mach_avrxmega6:
1600 val = E_AVR_MACH_XMEGA6;
1603 case bfd_mach_avrxmega7:
1604 val = E_AVR_MACH_XMEGA7;
1607 case bfd_mach_avrtiny:
1608 val = E_AVR_MACH_AVRTINY;
1612 elf_elfheader (abfd)->e_machine = EM_AVR;
1613 elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH;
1614 elf_elfheader (abfd)->e_flags |= val;
1617 /* Set the right machine number. */
1620 elf32_avr_object_p (bfd *abfd)
1622 unsigned int e_set = bfd_mach_avr2;
1624 if (elf_elfheader (abfd)->e_machine == EM_AVR
1625 || elf_elfheader (abfd)->e_machine == EM_AVR_OLD)
1627 int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH;
1632 case E_AVR_MACH_AVR2:
1633 e_set = bfd_mach_avr2;
1636 case E_AVR_MACH_AVR1:
1637 e_set = bfd_mach_avr1;
1640 case E_AVR_MACH_AVR25:
1641 e_set = bfd_mach_avr25;
1644 case E_AVR_MACH_AVR3:
1645 e_set = bfd_mach_avr3;
1648 case E_AVR_MACH_AVR31:
1649 e_set = bfd_mach_avr31;
1652 case E_AVR_MACH_AVR35:
1653 e_set = bfd_mach_avr35;
1656 case E_AVR_MACH_AVR4:
1657 e_set = bfd_mach_avr4;
1660 case E_AVR_MACH_AVR5:
1661 e_set = bfd_mach_avr5;
1664 case E_AVR_MACH_AVR51:
1665 e_set = bfd_mach_avr51;
1668 case E_AVR_MACH_AVR6:
1669 e_set = bfd_mach_avr6;
1672 case E_AVR_MACH_XMEGA1:
1673 e_set = bfd_mach_avrxmega1;
1676 case E_AVR_MACH_XMEGA2:
1677 e_set = bfd_mach_avrxmega2;
1680 case E_AVR_MACH_XMEGA3:
1681 e_set = bfd_mach_avrxmega3;
1684 case E_AVR_MACH_XMEGA4:
1685 e_set = bfd_mach_avrxmega4;
1688 case E_AVR_MACH_XMEGA5:
1689 e_set = bfd_mach_avrxmega5;
1692 case E_AVR_MACH_XMEGA6:
1693 e_set = bfd_mach_avrxmega6;
1696 case E_AVR_MACH_XMEGA7:
1697 e_set = bfd_mach_avrxmega7;
1700 case E_AVR_MACH_AVRTINY:
1701 e_set = bfd_mach_avrtiny;
1705 return bfd_default_set_arch_mach (abfd, bfd_arch_avr,
1709 /* Returns whether the relocation type passed is a diff reloc. */
1712 elf32_avr_is_diff_reloc (Elf_Internal_Rela *irel)
1714 return (ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF8
1715 ||ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF16
1716 || ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF32);
1719 /* Reduce the diff value written in the section by count if the shrinked
1720 insn address happens to fall between the two symbols for which this
1721 diff reloc was emitted. */
1724 elf32_avr_adjust_diff_reloc_value (bfd *abfd,
1725 struct bfd_section *isec,
1726 Elf_Internal_Rela *irel,
1728 bfd_vma shrinked_insn_address,
1731 unsigned char *reloc_contents = NULL;
1732 unsigned char *isec_contents = elf_section_data (isec)->this_hdr.contents;
1733 if (isec_contents == NULL)
1735 if (! bfd_malloc_and_get_section (abfd, isec, &isec_contents))
1738 elf_section_data (isec)->this_hdr.contents = isec_contents;
1741 reloc_contents = isec_contents + irel->r_offset;
1743 /* Read value written in object file. */
1745 switch (ELF32_R_TYPE (irel->r_info))
1749 x = *reloc_contents;
1754 x = bfd_get_16 (abfd, reloc_contents);
1759 x = bfd_get_32 (abfd, reloc_contents);
1768 /* For a diff reloc sym1 - sym2 the diff at assembly time (x) is written
1769 into the object file at the reloc offset. sym2's logical value is
1770 symval (<start_of_section>) + reloc addend. Compute the start and end
1771 addresses and check if the shrinked insn falls between sym1 and sym2. */
1773 bfd_vma end_address = symval + irel->r_addend;
1774 bfd_vma start_address = end_address - x;
1776 /* Reduce the diff value by count bytes and write it back into section
1779 if (shrinked_insn_address >= start_address
1780 && shrinked_insn_address <= end_address)
1782 switch (ELF32_R_TYPE (irel->r_info))
1786 *reloc_contents = (x - count);
1791 bfd_put_16 (abfd, (x - count) & 0xFFFF, reloc_contents);
1796 bfd_put_32 (abfd, (x - count) & 0xFFFFFFFF, reloc_contents);
1808 /* Delete some bytes from a section while changing the size of an instruction.
1809 The parameter "addr" denotes the section-relative offset pointing just
1810 behind the shrinked instruction. "addr+count" point at the first
1811 byte just behind the original unshrinked instruction. */
1814 elf32_avr_relax_delete_bytes (bfd *abfd,
1819 Elf_Internal_Shdr *symtab_hdr;
1820 unsigned int sec_shndx;
1822 Elf_Internal_Rela *irel, *irelend;
1823 Elf_Internal_Sym *isym;
1824 Elf_Internal_Sym *isymbuf = NULL;
1826 struct elf_link_hash_entry **sym_hashes;
1827 struct elf_link_hash_entry **end_hashes;
1828 unsigned int symcount;
1829 struct avr_relax_info *relax_info;
1830 struct avr_property_record *prop_record = NULL;
1832 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1833 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1834 contents = elf_section_data (sec)->this_hdr.contents;
1835 relax_info = get_avr_relax_info (sec);
1839 if (relax_info->records.count > 0)
1841 /* There should be no property record within the range of deleted
1842 bytes, however, there might be a property record for ADDR, this is
1843 how we handle alignment directives.
1844 Find the next (if any) property record after the deleted bytes. */
1847 for (i = 0; i < relax_info->records.count; ++i)
1849 bfd_vma offset = relax_info->records.items [i].offset;
1851 BFD_ASSERT (offset <= addr || offset >= (addr + count));
1852 if (offset >= (addr + count))
1854 prop_record = &relax_info->records.items [i];
1861 irel = elf_section_data (sec)->relocs;
1862 irelend = irel + sec->reloc_count;
1864 /* Actually delete the bytes. */
1865 if (toaddr - addr - count > 0)
1866 memmove (contents + addr, contents + addr + count,
1867 (size_t) (toaddr - addr - count));
1868 if (prop_record == NULL)
1872 /* Use the property record to fill in the bytes we've opened up. */
1874 switch (prop_record->type)
1876 case RECORD_ORG_AND_FILL:
1877 fill = prop_record->data.org.fill;
1881 case RECORD_ALIGN_AND_FILL:
1882 fill = prop_record->data.align.fill;
1885 prop_record->data.align.preceding_deleted += count;
1888 memset (contents + toaddr - count, fill, count);
1890 /* Adjust the TOADDR to avoid moving symbols located at the address
1891 of the property record, which has not moved. */
1895 /* Adjust all the reloc addresses. */
1896 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
1898 bfd_vma old_reloc_address;
1900 old_reloc_address = (sec->output_section->vma
1901 + sec->output_offset + irel->r_offset);
1903 /* Get the new reloc address. */
1904 if ((irel->r_offset > addr
1905 && irel->r_offset < toaddr))
1908 printf ("Relocation at address 0x%x needs to be moved.\n"
1909 "Old section offset: 0x%x, New section offset: 0x%x \n",
1910 (unsigned int) old_reloc_address,
1911 (unsigned int) irel->r_offset,
1912 (unsigned int) ((irel->r_offset) - count));
1914 irel->r_offset -= count;
1919 /* The reloc's own addresses are now ok. However, we need to readjust
1920 the reloc's addend, i.e. the reloc's value if two conditions are met:
1921 1.) the reloc is relative to a symbol in this section that
1922 is located in front of the shrinked instruction
1923 2.) symbol plus addend end up behind the shrinked instruction.
1925 The most common case where this happens are relocs relative to
1926 the section-start symbol.
1928 This step needs to be done for all of the sections of the bfd. */
1931 struct bfd_section *isec;
1933 for (isec = abfd->sections; isec; isec = isec->next)
1936 bfd_vma shrinked_insn_address;
1938 if (isec->reloc_count == 0)
1941 shrinked_insn_address = (sec->output_section->vma
1942 + sec->output_offset + addr - count);
1944 irel = elf_section_data (isec)->relocs;
1945 /* PR 12161: Read in the relocs for this section if necessary. */
1947 irel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
1949 for (irelend = irel + isec->reloc_count;
1953 /* Read this BFD's local symbols if we haven't done
1955 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
1957 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1958 if (isymbuf == NULL)
1959 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1960 symtab_hdr->sh_info, 0,
1962 if (isymbuf == NULL)
1966 /* Get the value of the symbol referred to by the reloc. */
1967 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
1969 /* A local symbol. */
1972 isym = isymbuf + ELF32_R_SYM (irel->r_info);
1973 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1974 symval = isym->st_value;
1975 /* If the reloc is absolute, it will not have
1976 a symbol or section associated with it. */
1979 symval += sym_sec->output_section->vma
1980 + sym_sec->output_offset;
1983 printf ("Checking if the relocation's "
1984 "addend needs corrections.\n"
1985 "Address of anchor symbol: 0x%x \n"
1986 "Address of relocation target: 0x%x \n"
1987 "Address of relaxed insn: 0x%x \n",
1988 (unsigned int) symval,
1989 (unsigned int) (symval + irel->r_addend),
1990 (unsigned int) shrinked_insn_address);
1992 if (symval <= shrinked_insn_address
1993 && (symval + irel->r_addend) > shrinked_insn_address)
1995 if (elf32_avr_is_diff_reloc (irel))
1997 elf32_avr_adjust_diff_reloc_value (abfd, isec, irel,
1999 shrinked_insn_address,
2003 irel->r_addend -= count;
2006 printf ("Relocation's addend needed to be fixed \n");
2009 /* else...Reference symbol is absolute. No adjustment needed. */
2011 /* else...Reference symbol is extern. No need for adjusting
2017 /* Adjust the local symbols defined in this section. */
2018 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2019 /* Fix PR 9841, there may be no local symbols. */
2022 Elf_Internal_Sym *isymend;
2024 isymend = isym + symtab_hdr->sh_info;
2025 for (; isym < isymend; isym++)
2027 if (isym->st_shndx == sec_shndx)
2029 if (isym->st_value > addr
2030 && isym->st_value <= toaddr)
2031 isym->st_value -= count;
2033 if (isym->st_value <= addr
2034 && isym->st_value + isym->st_size > addr)
2036 /* If this assert fires then we have a symbol that ends
2037 part way through an instruction. Does that make
2039 BFD_ASSERT (isym->st_value + isym->st_size >= addr + count);
2040 isym->st_size -= count;
2046 /* Now adjust the global symbols defined in this section. */
2047 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2048 - symtab_hdr->sh_info);
2049 sym_hashes = elf_sym_hashes (abfd);
2050 end_hashes = sym_hashes + symcount;
2051 for (; sym_hashes < end_hashes; sym_hashes++)
2053 struct elf_link_hash_entry *sym_hash = *sym_hashes;
2054 if ((sym_hash->root.type == bfd_link_hash_defined
2055 || sym_hash->root.type == bfd_link_hash_defweak)
2056 && sym_hash->root.u.def.section == sec)
2058 if (sym_hash->root.u.def.value > addr
2059 && sym_hash->root.u.def.value <= toaddr)
2060 sym_hash->root.u.def.value -= count;
2062 if (sym_hash->root.u.def.value <= addr
2063 && (sym_hash->root.u.def.value + sym_hash->size > addr))
2065 /* If this assert fires then we have a symbol that ends
2066 part way through an instruction. Does that make
2068 BFD_ASSERT (sym_hash->root.u.def.value + sym_hash->size
2070 sym_hash->size -= count;
2078 static Elf_Internal_Sym *
2079 retrieve_local_syms (bfd *input_bfd)
2081 Elf_Internal_Shdr *symtab_hdr;
2082 Elf_Internal_Sym *isymbuf;
2085 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2086 locsymcount = symtab_hdr->sh_info;
2088 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2089 if (isymbuf == NULL && locsymcount != 0)
2090 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
2093 /* Save the symbols for this input file so they won't be read again. */
2094 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
2095 symtab_hdr->contents = (unsigned char *) isymbuf;
2100 /* Get the input section for a given symbol index.
2102 . a section symbol, return the section;
2103 . a common symbol, return the common section;
2104 . an undefined symbol, return the undefined section;
2105 . an indirect symbol, follow the links;
2106 . an absolute value, return the absolute section. */
2109 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
2111 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2112 asection *target_sec = NULL;
2113 if (r_symndx < symtab_hdr->sh_info)
2115 Elf_Internal_Sym *isymbuf;
2116 unsigned int section_index;
2118 isymbuf = retrieve_local_syms (abfd);
2119 section_index = isymbuf[r_symndx].st_shndx;
2121 if (section_index == SHN_UNDEF)
2122 target_sec = bfd_und_section_ptr;
2123 else if (section_index == SHN_ABS)
2124 target_sec = bfd_abs_section_ptr;
2125 else if (section_index == SHN_COMMON)
2126 target_sec = bfd_com_section_ptr;
2128 target_sec = bfd_section_from_elf_index (abfd, section_index);
2132 unsigned long indx = r_symndx - symtab_hdr->sh_info;
2133 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
2135 while (h->root.type == bfd_link_hash_indirect
2136 || h->root.type == bfd_link_hash_warning)
2137 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2139 switch (h->root.type)
2141 case bfd_link_hash_defined:
2142 case bfd_link_hash_defweak:
2143 target_sec = h->root.u.def.section;
2145 case bfd_link_hash_common:
2146 target_sec = bfd_com_section_ptr;
2148 case bfd_link_hash_undefined:
2149 case bfd_link_hash_undefweak:
2150 target_sec = bfd_und_section_ptr;
2152 default: /* New indirect warning. */
2153 target_sec = bfd_und_section_ptr;
2160 /* Get the section-relative offset for a symbol number. */
2163 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
2165 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2168 if (r_symndx < symtab_hdr->sh_info)
2170 Elf_Internal_Sym *isymbuf;
2171 isymbuf = retrieve_local_syms (abfd);
2172 offset = isymbuf[r_symndx].st_value;
2176 unsigned long indx = r_symndx - symtab_hdr->sh_info;
2177 struct elf_link_hash_entry *h =
2178 elf_sym_hashes (abfd)[indx];
2180 while (h->root.type == bfd_link_hash_indirect
2181 || h->root.type == bfd_link_hash_warning)
2182 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2183 if (h->root.type == bfd_link_hash_defined
2184 || h->root.type == bfd_link_hash_defweak)
2185 offset = h->root.u.def.value;
2190 /* Iterate over the property records in R_LIST, and copy each record into
2191 the list of records within the relaxation information for the section to
2192 which the record applies. */
2195 avr_elf32_assign_records_to_sections (struct avr_property_record_list *r_list)
2199 for (i = 0; i < r_list->record_count; ++i)
2201 struct avr_relax_info *relax_info;
2203 relax_info = get_avr_relax_info (r_list->records [i].section);
2204 BFD_ASSERT (relax_info != NULL);
2206 if (relax_info->records.count
2207 == relax_info->records.allocated)
2209 /* Allocate more space. */
2212 relax_info->records.allocated += 10;
2213 size = (sizeof (struct avr_property_record)
2214 * relax_info->records.allocated);
2215 relax_info->records.items
2216 = bfd_realloc (relax_info->records.items, size);
2219 memcpy (&relax_info->records.items [relax_info->records.count],
2220 &r_list->records [i],
2221 sizeof (struct avr_property_record));
2222 relax_info->records.count++;
2226 /* Compare two STRUCT AVR_PROPERTY_RECORD in AP and BP, used as the
2227 ordering callback from QSORT. */
2230 avr_property_record_compare (const void *ap, const void *bp)
2232 const struct avr_property_record *a
2233 = (struct avr_property_record *) ap;
2234 const struct avr_property_record *b
2235 = (struct avr_property_record *) bp;
2237 if (a->offset != b->offset)
2238 return (a->offset - b->offset);
2240 if (a->section != b->section)
2241 return (bfd_get_section_vma (a->section->owner, a->section)
2242 - bfd_get_section_vma (b->section->owner, b->section));
2244 return (a->type - b->type);
2247 /* Load all of the avr property sections from all of the bfd objects
2248 referenced from LINK_INFO. All of the records within each property
2249 section are assigned to the STRUCT AVR_RELAX_INFO within the section
2250 specific data of the appropriate section. */
2253 avr_load_all_property_sections (struct bfd_link_info *link_info)
2258 /* Initialize the per-section relaxation info. */
2259 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2260 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2262 init_avr_relax_info (sec);
2265 /* Load the descriptor tables from .avr.prop sections. */
2266 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2268 struct avr_property_record_list *r_list;
2270 r_list = avr_elf32_load_property_records (abfd);
2272 avr_elf32_assign_records_to_sections (r_list);
2277 /* Now, for every section, ensure that the descriptor list in the
2278 relaxation data is sorted by ascending offset within the section. */
2279 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2280 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2282 struct avr_relax_info *relax_info = get_avr_relax_info (sec);
2283 if (relax_info && relax_info->records.count > 0)
2287 qsort (relax_info->records.items,
2288 relax_info->records.count,
2289 sizeof (struct avr_property_record),
2290 avr_property_record_compare);
2292 /* For debug purposes, list all the descriptors. */
2293 for (i = 0; i < relax_info->records.count; ++i)
2295 switch (relax_info->records.items [i].type)
2299 case RECORD_ORG_AND_FILL:
2303 case RECORD_ALIGN_AND_FILL:
2311 /* This function handles relaxing for the avr.
2312 Many important relaxing opportunities within functions are already
2313 realized by the compiler itself.
2314 Here we try to replace call (4 bytes) -> rcall (2 bytes)
2315 and jump -> rjmp (safes also 2 bytes).
2316 As well we now optimize seqences of
2317 - call/rcall function
2322 . In case that within a sequence
2325 the ret could no longer be reached it is optimized away. In order
2326 to check if the ret is no longer needed, it is checked that the ret's address
2327 is not the target of a branch or jump within the same section, it is checked
2328 that there is no skip instruction before the jmp/rjmp and that there
2329 is no local or global label place at the address of the ret.
2331 We refrain from relaxing within sections ".vectors" and
2332 ".jumptables" in order to maintain the position of the instructions.
2333 There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop
2334 if possible. (In future one could possibly use the space of the nop
2335 for the first instruction of the irq service function.
2337 The .jumptables sections is meant to be used for a future tablejump variant
2338 for the devices with 3-byte program counter where the table itself
2339 contains 4-byte jump instructions whose relative offset must not
2343 elf32_avr_relax_section (bfd *abfd,
2345 struct bfd_link_info *link_info,
2348 Elf_Internal_Shdr *symtab_hdr;
2349 Elf_Internal_Rela *internal_relocs;
2350 Elf_Internal_Rela *irel, *irelend;
2351 bfd_byte *contents = NULL;
2352 Elf_Internal_Sym *isymbuf = NULL;
2353 struct elf32_avr_link_hash_table *htab;
2354 static bfd_boolean relaxation_initialised = FALSE;
2356 if (!relaxation_initialised)
2358 relaxation_initialised = TRUE;
2360 /* Load entries from the .avr.prop sections. */
2361 avr_load_all_property_sections (link_info);
2364 /* If 'shrinkable' is FALSE, do not shrink by deleting bytes while
2365 relaxing. Such shrinking can cause issues for the sections such
2366 as .vectors and .jumptables. Instead the unused bytes should be
2367 filled with nop instructions. */
2368 bfd_boolean shrinkable = TRUE;
2370 if (!strcmp (sec->name,".vectors")
2371 || !strcmp (sec->name,".jumptables"))
2374 if (bfd_link_relocatable (link_info))
2375 (*link_info->callbacks->einfo)
2376 (_("%P%F: --relax and -r may not be used together\n"));
2378 htab = avr_link_hash_table (link_info);
2382 /* Assume nothing changes. */
2385 if ((!htab->no_stubs) && (sec == htab->stub_sec))
2387 /* We are just relaxing the stub section.
2388 Let's calculate the size needed again. */
2389 bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size;
2392 printf ("Relaxing the stub section. Size prior to this pass: %i\n",
2393 (int) last_estimated_stub_section_size);
2395 elf32_avr_size_stubs (htab->stub_sec->output_section->owner,
2398 /* Check if the number of trampolines changed. */
2399 if (last_estimated_stub_section_size != htab->stub_sec->size)
2403 printf ("Size of stub section after this pass: %i\n",
2404 (int) htab->stub_sec->size);
2409 /* We don't have to do anything for a relocatable link, if
2410 this section does not have relocs, or if this is not a
2412 if (bfd_link_relocatable (link_info)
2413 || (sec->flags & SEC_RELOC) == 0
2414 || sec->reloc_count == 0
2415 || (sec->flags & SEC_CODE) == 0)
2418 /* Check if the object file to relax uses internal symbols so that we
2419 could fix up the relocations. */
2420 if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED))
2423 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2425 /* Get a copy of the native relocations. */
2426 internal_relocs = (_bfd_elf_link_read_relocs
2427 (abfd, sec, NULL, NULL, link_info->keep_memory));
2428 if (internal_relocs == NULL)
2431 /* Walk through the relocs looking for relaxing opportunities. */
2432 irelend = internal_relocs + sec->reloc_count;
2433 for (irel = internal_relocs; irel < irelend; irel++)
2437 if ( ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL
2438 && ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL
2439 && ELF32_R_TYPE (irel->r_info) != R_AVR_CALL)
2442 /* Get the section contents if we haven't done so already. */
2443 if (contents == NULL)
2445 /* Get cached copy if it exists. */
2446 if (elf_section_data (sec)->this_hdr.contents != NULL)
2447 contents = elf_section_data (sec)->this_hdr.contents;
2450 /* Go get them off disk. */
2451 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
2456 /* Read this BFD's local symbols if we haven't done so already. */
2457 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2459 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2460 if (isymbuf == NULL)
2461 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2462 symtab_hdr->sh_info, 0,
2464 if (isymbuf == NULL)
2469 /* Get the value of the symbol referred to by the reloc. */
2470 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2472 /* A local symbol. */
2473 Elf_Internal_Sym *isym;
2476 isym = isymbuf + ELF32_R_SYM (irel->r_info);
2477 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2478 symval = isym->st_value;
2479 /* If the reloc is absolute, it will not have
2480 a symbol or section associated with it. */
2482 symval += sym_sec->output_section->vma
2483 + sym_sec->output_offset;
2488 struct elf_link_hash_entry *h;
2490 /* An external symbol. */
2491 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2492 h = elf_sym_hashes (abfd)[indx];
2493 BFD_ASSERT (h != NULL);
2494 if (h->root.type != bfd_link_hash_defined
2495 && h->root.type != bfd_link_hash_defweak)
2496 /* This appears to be a reference to an undefined
2497 symbol. Just ignore it--it will be caught by the
2498 regular reloc processing. */
2501 symval = (h->root.u.def.value
2502 + h->root.u.def.section->output_section->vma
2503 + h->root.u.def.section->output_offset);
2506 /* For simplicity of coding, we are going to modify the section
2507 contents, the section relocs, and the BFD symbol table. We
2508 must tell the rest of the code not to free up this
2509 information. It would be possible to instead create a table
2510 of changes which have to be made, as is done in coff-mips.c;
2511 that would be more work, but would require less memory when
2512 the linker is run. */
2513 switch (ELF32_R_TYPE (irel->r_info))
2515 /* Try to turn a 22-bit absolute call/jump into an 13-bit
2516 pc-relative rcall/rjmp. */
2519 bfd_vma value = symval + irel->r_addend;
2521 int distance_short_enough = 0;
2523 /* Get the address of this instruction. */
2524 dot = (sec->output_section->vma
2525 + sec->output_offset + irel->r_offset);
2527 /* Compute the distance from this insn to the branch target. */
2530 /* Check if the gap falls in the range that can be accommodated
2531 in 13bits signed (It is 12bits when encoded, as we deal with
2532 word addressing). */
2533 if (!shrinkable && ((int) gap >= -4096 && (int) gap <= 4095))
2534 distance_short_enough = 1;
2535 /* If shrinkable, then we can check for a range of distance which
2536 is two bytes farther on both the directions because the call
2537 or jump target will be closer by two bytes after the
2539 else if (shrinkable && ((int) gap >= -4094 && (int) gap <= 4097))
2540 distance_short_enough = 1;
2542 /* Here we handle the wrap-around case. E.g. for a 16k device
2543 we could use a rjmp to jump from address 0x100 to 0x3d00!
2544 In order to make this work properly, we need to fill the
2545 vaiable avr_pc_wrap_around with the appropriate value.
2546 I.e. 0x4000 for a 16k device. */
2548 /* Shrinking the code size makes the gaps larger in the
2549 case of wrap-arounds. So we use a heuristical safety
2550 margin to avoid that during relax the distance gets
2551 again too large for the short jumps. Let's assume
2552 a typical code-size reduction due to relax for a
2553 16k device of 600 bytes. So let's use twice the
2554 typical value as safety margin. */
2558 int assumed_shrink = 600;
2559 if (avr_pc_wrap_around > 0x4000)
2560 assumed_shrink = 900;
2562 safety_margin = 2 * assumed_shrink;
2564 rgap = avr_relative_distance_considering_wrap_around (gap);
2566 if (rgap >= (-4092 + safety_margin)
2567 && rgap <= (4094 - safety_margin))
2568 distance_short_enough = 1;
2571 if (distance_short_enough)
2573 unsigned char code_msb;
2574 unsigned char code_lsb;
2577 printf ("shrinking jump/call instruction at address 0x%x"
2578 " in section %s\n\n",
2579 (int) dot, sec->name);
2581 /* Note that we've changed the relocs, section contents,
2583 elf_section_data (sec)->relocs = internal_relocs;
2584 elf_section_data (sec)->this_hdr.contents = contents;
2585 symtab_hdr->contents = (unsigned char *) isymbuf;
2587 /* Get the instruction code for relaxing. */
2588 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset);
2589 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
2591 /* Mask out the relocation bits. */
2594 if (code_msb == 0x94 && code_lsb == 0x0E)
2596 /* we are changing call -> rcall . */
2597 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
2598 bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1);
2600 else if (code_msb == 0x94 && code_lsb == 0x0C)
2602 /* we are changeing jump -> rjmp. */
2603 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
2604 bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1);
2609 /* Fix the relocation's type. */
2610 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
2613 /* We should not modify the ordering if 'shrinkable' is
2617 /* Let's insert a nop. */
2618 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2);
2619 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3);
2623 /* Delete two bytes of data. */
2624 if (!elf32_avr_relax_delete_bytes (abfd, sec,
2625 irel->r_offset + 2, 2))
2628 /* That will change things, so, we should relax again.
2629 Note that this is not required, and it may be slow. */
2637 unsigned char code_msb;
2638 unsigned char code_lsb;
2641 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
2642 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0);
2644 /* Get the address of this instruction. */
2645 dot = (sec->output_section->vma
2646 + sec->output_offset + irel->r_offset);
2648 /* Here we look for rcall/ret or call/ret sequences that could be
2649 safely replaced by rjmp/ret or jmp/ret. */
2650 if (((code_msb & 0xf0) == 0xd0)
2651 && avr_replace_call_ret_sequences)
2653 /* This insn is a rcall. */
2654 unsigned char next_insn_msb = 0;
2655 unsigned char next_insn_lsb = 0;
2657 if (irel->r_offset + 3 < sec->size)
2660 bfd_get_8 (abfd, contents + irel->r_offset + 3);
2662 bfd_get_8 (abfd, contents + irel->r_offset + 2);
2665 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2667 /* The next insn is a ret. We now convert the rcall insn
2668 into a rjmp instruction. */
2670 bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1);
2672 printf ("converted rcall/ret sequence at address 0x%x"
2673 " into rjmp/ret sequence. Section is %s\n\n",
2674 (int) dot, sec->name);
2679 else if ((0x94 == (code_msb & 0xfe))
2680 && (0x0e == (code_lsb & 0x0e))
2681 && avr_replace_call_ret_sequences)
2683 /* This insn is a call. */
2684 unsigned char next_insn_msb = 0;
2685 unsigned char next_insn_lsb = 0;
2687 if (irel->r_offset + 5 < sec->size)
2690 bfd_get_8 (abfd, contents + irel->r_offset + 5);
2692 bfd_get_8 (abfd, contents + irel->r_offset + 4);
2695 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2697 /* The next insn is a ret. We now convert the call insn
2698 into a jmp instruction. */
2701 bfd_put_8 (abfd, code_lsb, contents + irel->r_offset);
2703 printf ("converted call/ret sequence at address 0x%x"
2704 " into jmp/ret sequence. Section is %s\n\n",
2705 (int) dot, sec->name);
2710 else if ((0xc0 == (code_msb & 0xf0))
2711 || ((0x94 == (code_msb & 0xfe))
2712 && (0x0c == (code_lsb & 0x0e))))
2714 /* This insn is a rjmp or a jmp. */
2715 unsigned char next_insn_msb = 0;
2716 unsigned char next_insn_lsb = 0;
2719 if (0xc0 == (code_msb & 0xf0))
2720 insn_size = 2; /* rjmp insn */
2722 insn_size = 4; /* jmp insn */
2724 if (irel->r_offset + insn_size + 1 < sec->size)
2727 bfd_get_8 (abfd, contents + irel->r_offset
2730 bfd_get_8 (abfd, contents + irel->r_offset
2734 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2736 /* The next insn is a ret. We possibly could delete
2737 this ret. First we need to check for preceding
2738 sbis/sbic/sbrs or cpse "skip" instructions. */
2740 int there_is_preceding_non_skip_insn = 1;
2741 bfd_vma address_of_ret;
2743 address_of_ret = dot + insn_size;
2745 if (debug_relax && (insn_size == 2))
2746 printf ("found rjmp / ret sequence at address 0x%x\n",
2748 if (debug_relax && (insn_size == 4))
2749 printf ("found jmp / ret sequence at address 0x%x\n",
2752 /* We have to make sure that there is a preceding insn. */
2753 if (irel->r_offset >= 2)
2755 unsigned char preceding_msb;
2756 unsigned char preceding_lsb;
2759 bfd_get_8 (abfd, contents + irel->r_offset - 1);
2761 bfd_get_8 (abfd, contents + irel->r_offset - 2);
2764 if (0x99 == preceding_msb)
2765 there_is_preceding_non_skip_insn = 0;
2768 if (0x9b == preceding_msb)
2769 there_is_preceding_non_skip_insn = 0;
2772 if ((0xfc == (preceding_msb & 0xfe)
2773 && (0x00 == (preceding_lsb & 0x08))))
2774 there_is_preceding_non_skip_insn = 0;
2777 if ((0xfe == (preceding_msb & 0xfe)
2778 && (0x00 == (preceding_lsb & 0x08))))
2779 there_is_preceding_non_skip_insn = 0;
2782 if (0x10 == (preceding_msb & 0xfc))
2783 there_is_preceding_non_skip_insn = 0;
2785 if (there_is_preceding_non_skip_insn == 0)
2787 printf ("preceding skip insn prevents deletion of"
2788 " ret insn at Addy 0x%x in section %s\n",
2789 (int) dot + 2, sec->name);
2793 /* There is no previous instruction. */
2794 there_is_preceding_non_skip_insn = 0;
2797 if (there_is_preceding_non_skip_insn)
2799 /* We now only have to make sure that there is no
2800 local label defined at the address of the ret
2801 instruction and that there is no local relocation
2802 in this section pointing to the ret. */
2804 int deleting_ret_is_safe = 1;
2805 unsigned int section_offset_of_ret_insn =
2806 irel->r_offset + insn_size;
2807 Elf_Internal_Sym *isym, *isymend;
2808 unsigned int sec_shndx;
2809 struct bfd_section *isec;
2812 _bfd_elf_section_from_bfd_section (abfd, sec);
2814 /* Check for local symbols. */
2815 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2816 isymend = isym + symtab_hdr->sh_info;
2817 /* PR 6019: There may not be any local symbols. */
2818 for (; isym != NULL && isym < isymend; isym++)
2820 if (isym->st_value == section_offset_of_ret_insn
2821 && isym->st_shndx == sec_shndx)
2823 deleting_ret_is_safe = 0;
2825 printf ("local label prevents deletion of ret "
2826 "insn at address 0x%x\n",
2827 (int) dot + insn_size);
2831 /* Now check for global symbols. */
2834 struct elf_link_hash_entry **sym_hashes;
2835 struct elf_link_hash_entry **end_hashes;
2837 symcount = (symtab_hdr->sh_size
2838 / sizeof (Elf32_External_Sym)
2839 - symtab_hdr->sh_info);
2840 sym_hashes = elf_sym_hashes (abfd);
2841 end_hashes = sym_hashes + symcount;
2842 for (; sym_hashes < end_hashes; sym_hashes++)
2844 struct elf_link_hash_entry *sym_hash =
2846 if ((sym_hash->root.type == bfd_link_hash_defined
2847 || sym_hash->root.type ==
2848 bfd_link_hash_defweak)
2849 && sym_hash->root.u.def.section == sec
2850 && sym_hash->root.u.def.value == section_offset_of_ret_insn)
2852 deleting_ret_is_safe = 0;
2854 printf ("global label prevents deletion of "
2855 "ret insn at address 0x%x\n",
2856 (int) dot + insn_size);
2861 /* Now we check for relocations pointing to ret. */
2862 for (isec = abfd->sections; isec && deleting_ret_is_safe; isec = isec->next)
2864 Elf_Internal_Rela *rel;
2865 Elf_Internal_Rela *relend;
2867 rel = elf_section_data (isec)->relocs;
2869 rel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
2871 relend = rel + isec->reloc_count;
2873 for (; rel && rel < relend; rel++)
2875 bfd_vma reloc_target = 0;
2877 /* Read this BFD's local symbols if we haven't
2879 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2881 isymbuf = (Elf_Internal_Sym *)
2882 symtab_hdr->contents;
2883 if (isymbuf == NULL)
2884 isymbuf = bfd_elf_get_elf_syms
2887 symtab_hdr->sh_info, 0,
2889 if (isymbuf == NULL)
2893 /* Get the value of the symbol referred to
2895 if (ELF32_R_SYM (rel->r_info)
2896 < symtab_hdr->sh_info)
2898 /* A local symbol. */
2902 + ELF32_R_SYM (rel->r_info);
2903 sym_sec = bfd_section_from_elf_index
2904 (abfd, isym->st_shndx);
2905 symval = isym->st_value;
2907 /* If the reloc is absolute, it will not
2908 have a symbol or section associated
2914 sym_sec->output_section->vma
2915 + sym_sec->output_offset;
2916 reloc_target = symval + rel->r_addend;
2920 reloc_target = symval + rel->r_addend;
2921 /* Reference symbol is absolute. */
2924 /* else ... reference symbol is extern. */
2926 if (address_of_ret == reloc_target)
2928 deleting_ret_is_safe = 0;
2931 "rjmp/jmp ret sequence at address"
2932 " 0x%x could not be deleted. ret"
2933 " is target of a relocation.\n",
2934 (int) address_of_ret);
2940 if (deleting_ret_is_safe)
2943 printf ("unreachable ret instruction "
2944 "at address 0x%x deleted.\n",
2945 (int) dot + insn_size);
2947 /* Delete two bytes of data. */
2948 if (!elf32_avr_relax_delete_bytes (abfd, sec,
2949 irel->r_offset + insn_size, 2))
2952 /* That will change things, so, we should relax
2953 again. Note that this is not required, and it
2968 /* Look through all the property records in this section to see if
2969 there's any alignment records that can be moved. */
2970 struct avr_relax_info *relax_info;
2972 relax_info = get_avr_relax_info (sec);
2973 if (relax_info->records.count > 0)
2977 for (i = 0; i < relax_info->records.count; ++i)
2979 switch (relax_info->records.items [i].type)
2982 case RECORD_ORG_AND_FILL:
2985 case RECORD_ALIGN_AND_FILL:
2987 struct avr_property_record *record;
2988 unsigned long bytes_to_align;
2991 /* Look for alignment directives that have had enough
2992 bytes deleted before them, such that the directive
2993 can be moved backwards and still maintain the
2994 required alignment. */
2995 record = &relax_info->records.items [i];
2997 = (unsigned long) (1 << record->data.align.bytes);
2998 while (record->data.align.preceding_deleted >=
3001 record->data.align.preceding_deleted
3003 count += bytes_to_align;
3008 bfd_vma addr = record->offset;
3010 /* We can delete COUNT bytes and this alignment
3011 directive will still be correctly aligned.
3012 First move the alignment directive, then delete
3014 record->offset -= count;
3015 elf32_avr_relax_delete_bytes (abfd, sec,
3027 if (contents != NULL
3028 && elf_section_data (sec)->this_hdr.contents != contents)
3030 if (! link_info->keep_memory)
3034 /* Cache the section contents for elf_link_input_bfd. */
3035 elf_section_data (sec)->this_hdr.contents = contents;
3039 if (internal_relocs != NULL
3040 && elf_section_data (sec)->relocs != internal_relocs)
3041 free (internal_relocs);
3047 && symtab_hdr->contents != (unsigned char *) isymbuf)
3049 if (contents != NULL
3050 && elf_section_data (sec)->this_hdr.contents != contents)
3052 if (internal_relocs != NULL
3053 && elf_section_data (sec)->relocs != internal_relocs)
3054 free (internal_relocs);
3059 /* This is a version of bfd_generic_get_relocated_section_contents
3060 which uses elf32_avr_relocate_section.
3062 For avr it's essentially a cut and paste taken from the H8300 port.
3063 The author of the relaxation support patch for avr had absolutely no
3064 clue what is happening here but found out that this part of the code
3065 seems to be important. */
3068 elf32_avr_get_relocated_section_contents (bfd *output_bfd,
3069 struct bfd_link_info *link_info,
3070 struct bfd_link_order *link_order,
3072 bfd_boolean relocatable,
3075 Elf_Internal_Shdr *symtab_hdr;
3076 asection *input_section = link_order->u.indirect.section;
3077 bfd *input_bfd = input_section->owner;
3078 asection **sections = NULL;
3079 Elf_Internal_Rela *internal_relocs = NULL;
3080 Elf_Internal_Sym *isymbuf = NULL;
3082 /* We only need to handle the case of relaxing, or of having a
3083 particular set of section contents, specially. */
3085 || elf_section_data (input_section)->this_hdr.contents == NULL)
3086 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
3090 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3092 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
3093 (size_t) input_section->size);
3095 if ((input_section->flags & SEC_RELOC) != 0
3096 && input_section->reloc_count > 0)
3099 Elf_Internal_Sym *isym, *isymend;
3102 internal_relocs = (_bfd_elf_link_read_relocs
3103 (input_bfd, input_section, NULL, NULL, FALSE));
3104 if (internal_relocs == NULL)
3107 if (symtab_hdr->sh_info != 0)
3109 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3110 if (isymbuf == NULL)
3111 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3112 symtab_hdr->sh_info, 0,
3114 if (isymbuf == NULL)
3118 amt = symtab_hdr->sh_info;
3119 amt *= sizeof (asection *);
3120 sections = bfd_malloc (amt);
3121 if (sections == NULL && amt != 0)
3124 isymend = isymbuf + symtab_hdr->sh_info;
3125 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
3129 if (isym->st_shndx == SHN_UNDEF)
3130 isec = bfd_und_section_ptr;
3131 else if (isym->st_shndx == SHN_ABS)
3132 isec = bfd_abs_section_ptr;
3133 else if (isym->st_shndx == SHN_COMMON)
3134 isec = bfd_com_section_ptr;
3136 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
3141 if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd,
3142 input_section, data, internal_relocs,
3146 if (sections != NULL)
3149 && symtab_hdr->contents != (unsigned char *) isymbuf)
3151 if (elf_section_data (input_section)->relocs != internal_relocs)
3152 free (internal_relocs);
3158 if (sections != NULL)
3161 && symtab_hdr->contents != (unsigned char *) isymbuf)
3163 if (internal_relocs != NULL
3164 && elf_section_data (input_section)->relocs != internal_relocs)
3165 free (internal_relocs);
3170 /* Determines the hash entry name for a particular reloc. It consists of
3171 the identifier of the symbol section and the added reloc addend and
3172 symbol offset relative to the section the symbol is attached to. */
3175 avr_stub_name (const asection *symbol_section,
3176 const bfd_vma symbol_offset,
3177 const Elf_Internal_Rela *rela)
3182 len = 8 + 1 + 8 + 1 + 1;
3183 stub_name = bfd_malloc (len);
3185 sprintf (stub_name, "%08x+%08x",
3186 symbol_section->id & 0xffffffff,
3187 (unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset));
3193 /* Add a new stub entry to the stub hash. Not all fields of the new
3194 stub entry are initialised. */
3196 static struct elf32_avr_stub_hash_entry *
3197 avr_add_stub (const char *stub_name,
3198 struct elf32_avr_link_hash_table *htab)
3200 struct elf32_avr_stub_hash_entry *hsh;
3202 /* Enter this entry into the linker stub hash table. */
3203 hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, TRUE, FALSE);
3207 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3212 hsh->stub_offset = 0;
3216 /* We assume that there is already space allocated for the stub section
3217 contents and that before building the stubs the section size is
3218 initialized to 0. We assume that within the stub hash table entry,
3219 the absolute position of the jmp target has been written in the
3220 target_value field. We write here the offset of the generated jmp insn
3221 relative to the trampoline section start to the stub_offset entry in
3222 the stub hash table entry. */
3225 avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
3227 struct elf32_avr_stub_hash_entry *hsh;
3228 struct bfd_link_info *info;
3229 struct elf32_avr_link_hash_table *htab;
3236 bfd_vma jmp_insn = 0x0000940c;
3238 /* Massage our args to the form they really have. */
3239 hsh = avr_stub_hash_entry (bh);
3241 if (!hsh->is_actually_needed)
3244 info = (struct bfd_link_info *) in_arg;
3246 htab = avr_link_hash_table (info);
3250 target = hsh->target_value;
3252 /* Make a note of the offset within the stubs for this entry. */
3253 hsh->stub_offset = htab->stub_sec->size;
3254 loc = htab->stub_sec->contents + hsh->stub_offset;
3256 stub_bfd = htab->stub_sec->owner;
3259 printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n",
3260 (unsigned int) target,
3261 (unsigned int) hsh->stub_offset);
3263 /* We now have to add the information on the jump target to the bare
3264 opcode bits already set in jmp_insn. */
3266 /* Check for the alignment of the address. */
3270 starget = target >> 1;
3271 jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16;
3272 bfd_put_16 (stub_bfd, jmp_insn, loc);
3273 bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2);
3275 htab->stub_sec->size += 4;
3277 /* Now add the entries in the address mapping table if there is still
3282 nr = htab->amt_entry_cnt + 1;
3283 if (nr <= htab->amt_max_entry_cnt)
3285 htab->amt_entry_cnt = nr;
3287 htab->amt_stub_offsets[nr - 1] = hsh->stub_offset;
3288 htab->amt_destination_addr[nr - 1] = target;
3296 avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh,
3297 void *in_arg ATTRIBUTE_UNUSED)
3299 struct elf32_avr_stub_hash_entry *hsh;
3301 hsh = avr_stub_hash_entry (bh);
3302 hsh->is_actually_needed = FALSE;
3308 avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
3310 struct elf32_avr_stub_hash_entry *hsh;
3311 struct elf32_avr_link_hash_table *htab;
3314 /* Massage our args to the form they really have. */
3315 hsh = avr_stub_hash_entry (bh);
3318 if (hsh->is_actually_needed)
3323 htab->stub_sec->size += size;
3328 elf32_avr_setup_params (struct bfd_link_info *info,
3330 asection *avr_stub_section,
3331 bfd_boolean no_stubs,
3332 bfd_boolean deb_stubs,
3333 bfd_boolean deb_relax,
3334 bfd_vma pc_wrap_around,
3335 bfd_boolean call_ret_replacement)
3337 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3341 htab->stub_sec = avr_stub_section;
3342 htab->stub_bfd = avr_stub_bfd;
3343 htab->no_stubs = no_stubs;
3345 debug_relax = deb_relax;
3346 debug_stubs = deb_stubs;
3347 avr_pc_wrap_around = pc_wrap_around;
3348 avr_replace_call_ret_sequences = call_ret_replacement;
3352 /* Set up various things so that we can make a list of input sections
3353 for each output section included in the link. Returns -1 on error,
3354 0 when no stubs will be needed, and 1 on success. It also sets
3355 information on the stubs bfd and the stub section in the info
3359 elf32_avr_setup_section_lists (bfd *output_bfd,
3360 struct bfd_link_info *info)
3363 unsigned int bfd_count;
3364 unsigned int top_id, top_index;
3366 asection **input_list, **list;
3368 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3370 if (htab == NULL || htab->no_stubs)
3373 /* Count the number of input BFDs and find the top input section id. */
3374 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3376 input_bfd = input_bfd->link.next)
3379 for (section = input_bfd->sections;
3381 section = section->next)
3382 if (top_id < section->id)
3383 top_id = section->id;
3386 htab->bfd_count = bfd_count;
3388 /* We can't use output_bfd->section_count here to find the top output
3389 section index as some sections may have been removed, and
3390 strip_excluded_output_sections doesn't renumber the indices. */
3391 for (section = output_bfd->sections, top_index = 0;
3393 section = section->next)
3394 if (top_index < section->index)
3395 top_index = section->index;
3397 htab->top_index = top_index;
3398 amt = sizeof (asection *) * (top_index + 1);
3399 input_list = bfd_malloc (amt);
3400 htab->input_list = input_list;
3401 if (input_list == NULL)
3404 /* For sections we aren't interested in, mark their entries with a
3405 value we can check later. */
3406 list = input_list + top_index;
3408 *list = bfd_abs_section_ptr;
3409 while (list-- != input_list);
3411 for (section = output_bfd->sections;
3413 section = section->next)
3414 if ((section->flags & SEC_CODE) != 0)
3415 input_list[section->index] = NULL;
3421 /* Read in all local syms for all input bfds, and create hash entries
3422 for export stubs if we are building a multi-subspace shared lib.
3423 Returns -1 on error, 0 otherwise. */
3426 get_local_syms (bfd *input_bfd, struct bfd_link_info *info)
3428 unsigned int bfd_indx;
3429 Elf_Internal_Sym *local_syms, **all_local_syms;
3430 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3436 /* We want to read in symbol extension records only once. To do this
3437 we need to read in the local symbols in parallel and save them for
3438 later use; so hold pointers to the local symbols in an array. */
3439 amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
3440 all_local_syms = bfd_zmalloc (amt);
3441 htab->all_local_syms = all_local_syms;
3442 if (all_local_syms == NULL)
3445 /* Walk over all the input BFDs, swapping in local symbols.
3446 If we are creating a shared library, create hash entries for the
3450 input_bfd = input_bfd->link.next, bfd_indx++)
3452 Elf_Internal_Shdr *symtab_hdr;
3454 /* We'll need the symbol table in a second. */
3455 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3456 if (symtab_hdr->sh_info == 0)
3459 /* We need an array of the local symbols attached to the input bfd. */
3460 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
3461 if (local_syms == NULL)
3463 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3464 symtab_hdr->sh_info, 0,
3466 /* Cache them for elf_link_input_bfd. */
3467 symtab_hdr->contents = (unsigned char *) local_syms;
3469 if (local_syms == NULL)
3472 all_local_syms[bfd_indx] = local_syms;
3478 #define ADD_DUMMY_STUBS_FOR_DEBUGGING 0
3481 elf32_avr_size_stubs (bfd *output_bfd,
3482 struct bfd_link_info *info,
3483 bfd_boolean is_prealloc_run)
3485 struct elf32_avr_link_hash_table *htab;
3486 int stub_changed = 0;
3488 htab = avr_link_hash_table (info);
3492 /* At this point we initialize htab->vector_base
3493 To the start of the text output section. */
3494 htab->vector_base = htab->stub_sec->output_section->vma;
3496 if (get_local_syms (info->input_bfds, info))
3498 if (htab->all_local_syms)
3499 goto error_ret_free_local;
3503 if (ADD_DUMMY_STUBS_FOR_DEBUGGING)
3505 struct elf32_avr_stub_hash_entry *test;
3507 test = avr_add_stub ("Hugo",htab);
3508 test->target_value = 0x123456;
3509 test->stub_offset = 13;
3511 test = avr_add_stub ("Hugo2",htab);
3512 test->target_value = 0x84210;
3513 test->stub_offset = 14;
3519 unsigned int bfd_indx;
3521 /* We will have to re-generate the stub hash table each time anything
3522 in memory has changed. */
3524 bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab);
3525 for (input_bfd = info->input_bfds, bfd_indx = 0;
3527 input_bfd = input_bfd->link.next, bfd_indx++)
3529 Elf_Internal_Shdr *symtab_hdr;
3531 Elf_Internal_Sym *local_syms;
3533 /* We'll need the symbol table in a second. */
3534 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3535 if (symtab_hdr->sh_info == 0)
3538 local_syms = htab->all_local_syms[bfd_indx];
3540 /* Walk over each section attached to the input bfd. */
3541 for (section = input_bfd->sections;
3543 section = section->next)
3545 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3547 /* If there aren't any relocs, then there's nothing more
3549 if ((section->flags & SEC_RELOC) == 0
3550 || section->reloc_count == 0)
3553 /* If this section is a link-once section that will be
3554 discarded, then don't create any stubs. */
3555 if (section->output_section == NULL
3556 || section->output_section->owner != output_bfd)
3559 /* Get the relocs. */
3561 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
3563 if (internal_relocs == NULL)
3564 goto error_ret_free_local;
3566 /* Now examine each relocation. */
3567 irela = internal_relocs;
3568 irelaend = irela + section->reloc_count;
3569 for (; irela < irelaend; irela++)
3571 unsigned int r_type, r_indx;
3572 struct elf32_avr_stub_hash_entry *hsh;
3575 bfd_vma destination;
3576 struct elf_link_hash_entry *hh;
3579 r_type = ELF32_R_TYPE (irela->r_info);
3580 r_indx = ELF32_R_SYM (irela->r_info);
3582 /* Only look for 16 bit GS relocs. No other reloc will need a
3584 if (!((r_type == R_AVR_16_PM)
3585 || (r_type == R_AVR_LO8_LDI_GS)
3586 || (r_type == R_AVR_HI8_LDI_GS)))
3589 /* Now determine the call target, its name, value,
3595 if (r_indx < symtab_hdr->sh_info)
3597 /* It's a local symbol. */
3598 Elf_Internal_Sym *sym;
3599 Elf_Internal_Shdr *hdr;
3602 sym = local_syms + r_indx;
3603 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3604 sym_value = sym->st_value;
3605 shndx = sym->st_shndx;
3606 if (shndx < elf_numsections (input_bfd))
3608 hdr = elf_elfsections (input_bfd)[shndx];
3609 sym_sec = hdr->bfd_section;
3610 destination = (sym_value + irela->r_addend
3611 + sym_sec->output_offset
3612 + sym_sec->output_section->vma);
3617 /* It's an external symbol. */
3620 e_indx = r_indx - symtab_hdr->sh_info;
3621 hh = elf_sym_hashes (input_bfd)[e_indx];
3623 while (hh->root.type == bfd_link_hash_indirect
3624 || hh->root.type == bfd_link_hash_warning)
3625 hh = (struct elf_link_hash_entry *)
3626 (hh->root.u.i.link);
3628 if (hh->root.type == bfd_link_hash_defined
3629 || hh->root.type == bfd_link_hash_defweak)
3631 sym_sec = hh->root.u.def.section;
3632 sym_value = hh->root.u.def.value;
3633 if (sym_sec->output_section != NULL)
3634 destination = (sym_value + irela->r_addend
3635 + sym_sec->output_offset
3636 + sym_sec->output_section->vma);
3638 else if (hh->root.type == bfd_link_hash_undefweak)
3640 if (! bfd_link_pic (info))
3643 else if (hh->root.type == bfd_link_hash_undefined)
3645 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3646 && (ELF_ST_VISIBILITY (hh->other)
3652 bfd_set_error (bfd_error_bad_value);
3654 error_ret_free_internal:
3655 if (elf_section_data (section)->relocs == NULL)
3656 free (internal_relocs);
3657 goto error_ret_free_local;
3661 if (! avr_stub_is_required_for_16_bit_reloc
3662 (destination - htab->vector_base))
3664 if (!is_prealloc_run)
3665 /* We are having a reloc that does't need a stub. */
3668 /* We don't right now know if a stub will be needed.
3669 Let's rather be on the safe side. */
3672 /* Get the name of this stub. */
3673 stub_name = avr_stub_name (sym_sec, sym_value, irela);
3676 goto error_ret_free_internal;
3679 hsh = avr_stub_hash_lookup (&htab->bstab,
3684 /* The proper stub has already been created. Mark it
3685 to be used and write the possibly changed destination
3687 hsh->is_actually_needed = TRUE;
3688 hsh->target_value = destination;
3693 hsh = avr_add_stub (stub_name, htab);
3697 goto error_ret_free_internal;
3700 hsh->is_actually_needed = TRUE;
3701 hsh->target_value = destination;
3704 printf ("Adding stub with destination 0x%x to the"
3705 " hash table.\n", (unsigned int) destination);
3707 printf ("(Pre-Alloc run: %i)\n", is_prealloc_run);
3709 stub_changed = TRUE;
3712 /* We're done with the internal relocs, free them. */
3713 if (elf_section_data (section)->relocs == NULL)
3714 free (internal_relocs);
3718 /* Re-Calculate the number of needed stubs. */
3719 htab->stub_sec->size = 0;
3720 bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab);
3725 stub_changed = FALSE;
3728 free (htab->all_local_syms);
3731 error_ret_free_local:
3732 free (htab->all_local_syms);
3737 /* Build all the stubs associated with the current output file. The
3738 stubs are kept in a hash table attached to the main linker hash
3739 table. We also set up the .plt entries for statically linked PIC
3740 functions here. This function is called via hppaelf_finish in the
3744 elf32_avr_build_stubs (struct bfd_link_info *info)
3747 struct bfd_hash_table *table;
3748 struct elf32_avr_link_hash_table *htab;
3749 bfd_size_type total_size = 0;
3751 htab = avr_link_hash_table (info);
3755 /* In case that there were several stub sections: */
3756 for (stub_sec = htab->stub_bfd->sections;
3758 stub_sec = stub_sec->next)
3762 /* Allocate memory to hold the linker stubs. */
3763 size = stub_sec->size;
3766 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3767 if (stub_sec->contents == NULL && size != 0)
3772 /* Allocate memory for the adress mapping table. */
3773 htab->amt_entry_cnt = 0;
3774 htab->amt_max_entry_cnt = total_size / 4;
3775 htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma)
3776 * htab->amt_max_entry_cnt);
3777 htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma)
3778 * htab->amt_max_entry_cnt );
3781 printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt);
3783 /* Build the stubs as directed by the stub hash table. */
3784 table = &htab->bstab;
3785 bfd_hash_traverse (table, avr_build_one_stub, info);
3788 printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size);
3793 /* Callback used by QSORT to order relocations AP and BP. */
3796 internal_reloc_compare (const void *ap, const void *bp)
3798 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
3799 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
3801 if (a->r_offset != b->r_offset)
3802 return (a->r_offset - b->r_offset);
3804 /* We don't need to sort on these criteria for correctness,
3805 but enforcing a more strict ordering prevents unstable qsort
3806 from behaving differently with different implementations.
3807 Without the code below we get correct but different results
3808 on Solaris 2.7 and 2.8. We would like to always produce the
3809 same results no matter the host. */
3811 if (a->r_info != b->r_info)
3812 return (a->r_info - b->r_info);
3814 return (a->r_addend - b->r_addend);
3817 /* Return true if ADDRESS is within the vma range of SECTION from ABFD. */
3820 avr_is_section_for_address (bfd *abfd, asection *section, bfd_vma address)
3825 vma = bfd_get_section_vma (abfd, section);
3829 size = section->size;
3830 if (address >= vma + size)
3836 /* Data structure used by AVR_FIND_SECTION_FOR_ADDRESS. */
3838 struct avr_find_section_data
3840 /* The address we're looking for. */
3843 /* The section we've found. */
3847 /* Helper function to locate the section holding a certain virtual memory
3848 address. This is called via bfd_map_over_sections. The DATA is an
3849 instance of STRUCT AVR_FIND_SECTION_DATA, the address field of which
3850 has been set to the address to search for, and the section field has
3851 been set to NULL. If SECTION from ABFD contains ADDRESS then the
3852 section field in DATA will be set to SECTION. As an optimisation, if
3853 the section field is already non-null then this function does not
3854 perform any checks, and just returns. */
3857 avr_find_section_for_address (bfd *abfd,
3858 asection *section, void *data)
3860 struct avr_find_section_data *fs_data
3861 = (struct avr_find_section_data *) data;
3863 /* Return if already found. */
3864 if (fs_data->section != NULL)
3867 /* If this section isn't part of the addressable code content, skip it. */
3868 if ((bfd_get_section_flags (abfd, section) & SEC_ALLOC) == 0
3869 && (bfd_get_section_flags (abfd, section) & SEC_CODE) == 0)
3872 if (avr_is_section_for_address (abfd, section, fs_data->address))
3873 fs_data->section = section;
3876 /* Load all of the property records from SEC, a section from ABFD. Return
3877 a STRUCT AVR_PROPERTY_RECORD_LIST containing all the records. The
3878 memory for the returned structure, and all of the records pointed too by
3879 the structure are allocated with a single call to malloc, so, only the
3880 pointer returned needs to be free'd. */
3882 static struct avr_property_record_list *
3883 avr_elf32_load_records_from_section (bfd *abfd, asection *sec)
3885 char *contents = NULL, *ptr;
3886 bfd_size_type size, mem_size;
3887 bfd_byte version, flags;
3888 uint16_t record_count, i;
3889 struct avr_property_record_list *r_list = NULL;
3890 Elf_Internal_Rela *internal_relocs = NULL, *rel, *rel_end;
3891 struct avr_find_section_data fs_data;
3893 fs_data.section = NULL;
3895 size = bfd_get_section_size (sec);
3896 contents = bfd_malloc (size);
3897 bfd_get_section_contents (abfd, sec, contents, 0, size);
3900 /* Load the relocations for the '.avr.prop' section if there are any, and
3902 internal_relocs = (_bfd_elf_link_read_relocs
3903 (abfd, sec, NULL, NULL, FALSE));
3904 if (internal_relocs)
3905 qsort (internal_relocs, sec->reloc_count,
3906 sizeof (Elf_Internal_Rela), internal_reloc_compare);
3908 /* There is a header at the start of the property record section SEC, the
3909 format of this header is:
3910 uint8_t : version number
3912 uint16_t : record counter
3915 /* Check we have at least got a headers worth of bytes. */
3916 if (size < AVR_PROPERTY_SECTION_HEADER_SIZE)
3919 version = *((bfd_byte *) ptr);
3921 flags = *((bfd_byte *) ptr);
3923 record_count = *((uint16_t *) ptr);
3925 BFD_ASSERT (ptr - contents == AVR_PROPERTY_SECTION_HEADER_SIZE);
3927 /* Now allocate space for the list structure, and all of the list
3928 elements in a single block. */
3929 mem_size = sizeof (struct avr_property_record_list)
3930 + sizeof (struct avr_property_record) * record_count;
3931 r_list = bfd_malloc (mem_size);
3935 r_list->version = version;
3936 r_list->flags = flags;
3937 r_list->section = sec;
3938 r_list->record_count = record_count;
3939 r_list->records = (struct avr_property_record *) (&r_list [1]);
3940 size -= AVR_PROPERTY_SECTION_HEADER_SIZE;
3942 /* Check that we understand the version number. There is only one
3943 version number right now, anything else is an error. */
3944 if (r_list->version != AVR_PROPERTY_RECORDS_VERSION)
3947 rel = internal_relocs;
3948 rel_end = rel + sec->reloc_count;
3949 for (i = 0; i < record_count; ++i)
3953 /* Each entry is a 32-bit address, followed by a single byte type.
3954 After that is the type specific data. We must take care to
3955 ensure that we don't read beyond the end of the section data. */
3959 r_list->records [i].section = NULL;
3960 r_list->records [i].offset = 0;
3964 /* The offset of the address within the .avr.prop section. */
3965 size_t offset = ptr - contents;
3967 while (rel < rel_end && rel->r_offset < offset)
3972 else if (rel->r_offset == offset)
3974 /* Find section and section offset. */
3975 unsigned long r_symndx;
3980 r_symndx = ELF32_R_SYM (rel->r_info);
3981 rel_sec = get_elf_r_symndx_section (abfd, r_symndx);
3982 sec_offset = get_elf_r_symndx_offset (abfd, r_symndx)
3985 r_list->records [i].section = rel_sec;
3986 r_list->records [i].offset = sec_offset;
3990 address = *((uint32_t *) ptr);
3994 if (r_list->records [i].section == NULL)
3996 /* Try to find section and offset from address. */
3997 if (fs_data.section != NULL
3998 && !avr_is_section_for_address (abfd, fs_data.section,
4000 fs_data.section = NULL;
4002 if (fs_data.section == NULL)
4004 fs_data.address = address;
4005 bfd_map_over_sections (abfd, avr_find_section_for_address,
4009 if (fs_data.section == NULL)
4011 fprintf (stderr, "Failed to find matching section.\n");
4015 r_list->records [i].section = fs_data.section;
4016 r_list->records [i].offset
4017 = address - bfd_get_section_vma (abfd, fs_data.section);
4020 r_list->records [i].type = *((bfd_byte *) ptr);
4024 switch (r_list->records [i].type)
4027 /* Nothing else to load. */
4029 case RECORD_ORG_AND_FILL:
4030 /* Just a 4-byte fill to load. */
4033 r_list->records [i].data.org.fill = *((uint32_t *) ptr);
4038 /* Just a 4-byte alignment to load. */
4041 r_list->records [i].data.align.bytes = *((uint32_t *) ptr);
4044 /* Just initialise PRECEDING_DELETED field, this field is
4045 used during linker relaxation. */
4046 r_list->records [i].data.align.preceding_deleted = 0;
4048 case RECORD_ALIGN_AND_FILL:
4049 /* A 4-byte alignment, and a 4-byte fill to load. */
4052 r_list->records [i].data.align.bytes = *((uint32_t *) ptr);
4054 r_list->records [i].data.align.fill = *((uint32_t *) ptr);
4057 /* Just initialise PRECEDING_DELETED field, this field is
4058 used during linker relaxation. */
4059 r_list->records [i].data.align.preceding_deleted = 0;
4067 if (elf_section_data (sec)->relocs != internal_relocs)
4068 free (internal_relocs);
4072 if (elf_section_data (sec)->relocs != internal_relocs)
4073 free (internal_relocs);
4079 /* Load all of the property records from ABFD. See
4080 AVR_ELF32_LOAD_RECORDS_FROM_SECTION for details of the return value. */
4082 struct avr_property_record_list *
4083 avr_elf32_load_property_records (bfd *abfd)
4087 /* Find the '.avr.prop' section and load the contents into memory. */
4088 sec = bfd_get_section_by_name (abfd, AVR_PROPERTY_RECORD_SECTION_NAME);
4091 return avr_elf32_load_records_from_section (abfd, sec);
4095 avr_elf32_property_record_name (struct avr_property_record *rec)
4104 case RECORD_ORG_AND_FILL:
4110 case RECORD_ALIGN_AND_FILL:
4121 #define ELF_ARCH bfd_arch_avr
4122 #define ELF_TARGET_ID AVR_ELF_DATA
4123 #define ELF_MACHINE_CODE EM_AVR
4124 #define ELF_MACHINE_ALT1 EM_AVR_OLD
4125 #define ELF_MAXPAGESIZE 1
4127 #define TARGET_LITTLE_SYM avr_elf32_vec
4128 #define TARGET_LITTLE_NAME "elf32-avr"
4130 #define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create
4132 #define elf_info_to_howto avr_info_to_howto_rela
4133 #define elf_info_to_howto_rel NULL
4134 #define elf_backend_relocate_section elf32_avr_relocate_section
4135 #define elf_backend_can_gc_sections 1
4136 #define elf_backend_rela_normal 1
4137 #define elf_backend_final_write_processing \
4138 bfd_elf_avr_final_write_processing
4139 #define elf_backend_object_p elf32_avr_object_p
4141 #define bfd_elf32_bfd_relax_section elf32_avr_relax_section
4142 #define bfd_elf32_bfd_get_relocated_section_contents \
4143 elf32_avr_get_relocated_section_contents
4144 #define bfd_elf32_new_section_hook elf_avr_new_section_hook
4146 #include "elf32-target.h"