1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "dwarf2-frame.h"
27 #include "trad-frame.h"
32 #include "gdb_string.h"
38 #include "arch-utils.h"
40 #include "reggroups.h"
43 #include "opcode/m68hc11.h"
44 #include "elf/m68hc11.h"
47 /* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
52 The MSB of the minimal symbol's "info" field is used for this purpose.
53 This field is already being used to store the symbol size, so the
54 assumption is that the symbol size cannot exceed 2^30.
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol.
60 MSYMBOL_SIZE Returns the size of the minimal symbol,
61 i.e. the "info" field with the "special" bit
64 #define MSYMBOL_SET_RTC(msym) \
65 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
68 #define MSYMBOL_SET_RTI(msym) \
69 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
72 #define MSYMBOL_IS_RTC(msym) \
73 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
75 #define MSYMBOL_IS_RTI(msym) \
76 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
78 #define MSYMBOL_SIZE(msym) \
79 ((long) MSYMBOL_INFO (msym) & 0x3fffffff)
81 enum insn_return_kind {
88 /* Register numbers of various important registers.
89 Note that some of these values are "real" register numbers,
90 and correspond to the general registers of the machine,
91 and some are "phony" register numbers which are too large
92 to be actual register numbers as far as the user is concerned
93 but do serve to get the desired values when passed to read_register. */
95 #define HARD_X_REGNUM 0
96 #define HARD_D_REGNUM 1
97 #define HARD_Y_REGNUM 2
98 #define HARD_SP_REGNUM 3
99 #define HARD_PC_REGNUM 4
101 #define HARD_A_REGNUM 5
102 #define HARD_B_REGNUM 6
103 #define HARD_CCR_REGNUM 7
105 /* 68HC12 page number register.
106 Note: to keep a compatibility with gcc register naming, we must
107 not have to rename FP and other soft registers. The page register
108 is a real hard register and must therefore be counted by NUM_REGS.
109 For this it has the same number as Z register (which is not used). */
110 #define HARD_PAGE_REGNUM 8
111 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
113 /* Z is replaced by X or Y by gcc during machine reorg.
114 ??? There is no way to get it and even know whether
115 it's in X or Y or in ZS. */
116 #define SOFT_Z_REGNUM 8
118 /* Soft registers. These registers are special. There are treated
119 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
120 They are physically located in memory. */
121 #define SOFT_FP_REGNUM 9
122 #define SOFT_TMP_REGNUM 10
123 #define SOFT_ZS_REGNUM 11
124 #define SOFT_XY_REGNUM 12
125 #define SOFT_UNUSED_REGNUM 13
126 #define SOFT_D1_REGNUM 14
127 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
128 #define M68HC11_MAX_SOFT_REGS 32
130 #define M68HC11_NUM_REGS (8)
131 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
132 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
134 #define M68HC11_REG_SIZE (2)
136 #define M68HC12_NUM_REGS (9)
137 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
138 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
140 struct insn_sequence;
143 /* Stack pointer correction value. For 68hc11, the stack pointer points
144 to the next push location. An offset of 1 must be applied to obtain
145 the address where the last value is saved. For 68hc12, the stack
146 pointer points to the last value pushed. No offset is necessary. */
147 int stack_correction;
149 /* Description of instructions in the prologue. */
150 struct insn_sequence *prologue;
152 /* True if the page memory bank register is available
154 int use_page_register;
156 /* ELF flags for ABI. */
160 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
161 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
162 #define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
164 struct m68hc11_unwind_cache
166 /* The previous frame's inner most stack address. Used as this
167 frame ID's stack_addr. */
169 /* The frame's base, optionally used by the high-level debug info. */
177 enum insn_return_kind return_kind;
179 /* Table indicating the location of each and every register. */
180 struct trad_frame_saved_reg *saved_regs;
183 /* Table of registers for 68HC11. This includes the hard registers
184 and the soft registers used by GCC. */
186 m68hc11_register_names[] =
188 "x", "d", "y", "sp", "pc", "a", "b",
189 "ccr", "page", "frame","tmp", "zs", "xy", 0,
190 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
191 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
192 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
193 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
194 "d29", "d30", "d31", "d32"
197 struct m68hc11_soft_reg
203 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
205 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
207 static int soft_min_addr;
208 static int soft_max_addr;
209 static int soft_reg_initialized = 0;
211 /* Look in the symbol table for the address of a pseudo register
212 in memory. If we don't find it, pretend the register is not used
213 and not available. */
215 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
217 struct minimal_symbol *msymbol;
219 msymbol = lookup_minimal_symbol (name, NULL, NULL);
222 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
223 reg->name = xstrdup (name);
225 /* Keep track of the address range for soft registers. */
226 if (reg->addr < (CORE_ADDR) soft_min_addr)
227 soft_min_addr = reg->addr;
228 if (reg->addr > (CORE_ADDR) soft_max_addr)
229 soft_max_addr = reg->addr;
238 /* Initialize the table of soft register addresses according
239 to the symbol table. */
241 m68hc11_initialize_register_info (void)
245 if (soft_reg_initialized)
248 soft_min_addr = INT_MAX;
250 for (i = 0; i < M68HC11_ALL_REGS; i++)
252 soft_regs[i].name = 0;
255 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
256 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
257 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
258 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
259 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
261 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
265 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
266 m68hc11_get_register_info (&soft_regs[i], buf);
269 if (soft_regs[SOFT_FP_REGNUM].name == 0)
271 warning ("No frame soft register found in the symbol table.\n");
272 warning ("Stack backtrace will not work.\n");
274 soft_reg_initialized = 1;
277 /* Given an address in memory, return the soft register number if
278 that address corresponds to a soft register. Returns -1 if not. */
280 m68hc11_which_soft_register (CORE_ADDR addr)
284 if (addr < soft_min_addr || addr > soft_max_addr)
287 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
289 if (soft_regs[i].name && soft_regs[i].addr == addr)
295 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
296 pseudo registers. They are located in memory. Translate the register
297 fetch into a memory read. */
299 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
300 struct regcache *regcache,
301 int regno, void *buf)
303 /* The PC is a pseudo reg only for 68HC12 with the memory bank
305 if (regno == M68HC12_HARD_PC_REGNUM)
308 const int regsize = TYPE_LENGTH (builtin_type_uint32);
310 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
311 if (pc >= 0x8000 && pc < 0xc000)
315 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
320 store_unsigned_integer (buf, regsize, pc);
324 m68hc11_initialize_register_info ();
326 /* Fetch a soft register: translate into a memory read. */
327 if (soft_regs[regno].name)
329 target_read_memory (soft_regs[regno].addr, buf, 2);
337 /* Store a pseudo register. Translate the register store
338 into a memory write. */
340 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
341 struct regcache *regcache,
342 int regno, const void *buf)
344 /* The PC is a pseudo reg only for 68HC12 with the memory bank
346 if (regno == M68HC12_HARD_PC_REGNUM)
348 const int regsize = TYPE_LENGTH (builtin_type_uint32);
349 char *tmp = alloca (regsize);
352 memcpy (tmp, buf, regsize);
353 pc = extract_unsigned_integer (tmp, regsize);
357 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
360 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
364 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
368 m68hc11_initialize_register_info ();
370 /* Store a soft register: translate into a memory write. */
371 if (soft_regs[regno].name)
373 const int regsize = 2;
374 char *tmp = alloca (regsize);
375 memcpy (tmp, buf, regsize);
376 target_write_memory (soft_regs[regno].addr, tmp, regsize);
381 m68hc11_register_name (int reg_nr)
383 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
385 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
390 if (reg_nr >= M68HC11_ALL_REGS)
393 /* If we don't know the address of a soft register, pretend it
395 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
397 return m68hc11_register_names[reg_nr];
400 static const unsigned char *
401 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
403 static unsigned char breakpoint[] = {0x0};
405 *lenptr = sizeof (breakpoint);
410 /* 68HC11 & 68HC12 prologue analysis.
415 /* 68HC11 opcodes. */
416 #undef M6811_OP_PAGE2
417 #define M6811_OP_PAGE2 (0x18)
418 #define M6811_OP_LDX (0xde)
419 #define M6811_OP_LDX_EXT (0xfe)
420 #define M6811_OP_PSHX (0x3c)
421 #define M6811_OP_STS (0x9f)
422 #define M6811_OP_STS_EXT (0xbf)
423 #define M6811_OP_TSX (0x30)
424 #define M6811_OP_XGDX (0x8f)
425 #define M6811_OP_ADDD (0xc3)
426 #define M6811_OP_TXS (0x35)
427 #define M6811_OP_DES (0x34)
429 /* 68HC12 opcodes. */
430 #define M6812_OP_PAGE2 (0x18)
431 #define M6812_OP_MOVW (0x01)
432 #define M6812_PB_PSHW (0xae)
433 #define M6812_OP_STS (0x5f)
434 #define M6812_OP_STS_EXT (0x7f)
435 #define M6812_OP_LEAS (0x1b)
436 #define M6812_OP_PSHX (0x34)
437 #define M6812_OP_PSHY (0x35)
439 /* Operand extraction. */
440 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
441 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
442 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
443 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
445 /* Identification of the sequence. */
449 P_SAVE_REG, /* Save a register on the stack. */
450 P_SET_FRAME, /* Setup the frame pointer. */
451 P_LOCAL_1, /* Allocate 1 byte for locals. */
452 P_LOCAL_2, /* Allocate 2 bytes for locals. */
453 P_LOCAL_N /* Allocate N bytes for locals. */
456 struct insn_sequence {
457 enum m6811_seq_type type;
459 unsigned short code[MAX_CODES];
462 /* Sequence of instructions in the 68HC11 function prologue. */
463 static struct insn_sequence m6811_prologue[] = {
464 /* Sequences to save a soft-register. */
465 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
467 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
468 M6811_OP_PAGE2, M6811_OP_PSHX } },
469 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
471 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
472 M6811_OP_PAGE2, M6811_OP_PSHX } },
474 /* Sequences to allocate local variables. */
475 { P_LOCAL_N, 7, { M6811_OP_TSX,
477 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
480 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
481 M6811_OP_PAGE2, M6811_OP_XGDX,
482 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
483 M6811_OP_PAGE2, M6811_OP_XGDX,
484 M6811_OP_PAGE2, M6811_OP_TXS } },
485 { P_LOCAL_1, 1, { M6811_OP_DES } },
486 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
487 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
489 /* Initialize the frame pointer. */
490 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
491 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
496 /* Sequence of instructions in the 68HC12 function prologue. */
497 static struct insn_sequence m6812_prologue[] = {
498 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
499 OP_IMM_HIGH, OP_IMM_LOW } },
500 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
501 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
502 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
503 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
504 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
509 /* Analyze the sequence of instructions starting at the given address.
510 Returns a pointer to the sequence when it is recognized and
511 the optional value (constant/address) associated with it. */
512 static struct insn_sequence *
513 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
516 unsigned char buffer[MAX_CODES];
523 for (; seq->type != P_LAST; seq++)
526 for (j = 0; j < seq->length; j++)
530 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
534 /* Continue while we match the opcode. */
535 if (seq->code[j] == buffer[j])
538 if ((seq->code[j] & 0xf00) == 0)
541 /* Extract a sequence parameter (address or constant). */
542 switch (seq->code[j])
545 cur_val = (CORE_ADDR) buffer[j];
549 cur_val = cur_val & 0x0ff;
550 cur_val |= (buffer[j] << 8);
555 cur_val |= buffer[j];
559 if ((buffer[j] & 0xE0) == 0x80)
561 v = buffer[j] & 0x1f;
565 else if ((buffer[j] & 0xfe) == 0xf0)
567 v = read_memory_unsigned_integer (pc + j + 1, 1);
571 else if (buffer[j] == 0xf2)
573 v = read_memory_unsigned_integer (pc + j + 1, 2);
580 /* We have a full match. */
581 if (j == seq->length)
590 /* Return the instruction that the function at the PC is using. */
591 static enum insn_return_kind
592 m68hc11_get_return_insn (CORE_ADDR pc)
594 struct minimal_symbol *sym;
596 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
597 function is stored by elfread.c in the high bit of the info field.
598 Use this to decide which instruction the function uses to return. */
599 sym = lookup_minimal_symbol_by_pc (pc);
603 if (MSYMBOL_IS_RTC (sym))
605 else if (MSYMBOL_IS_RTI (sym))
611 /* Analyze the function prologue to find some information
613 - the PC of the first line (for m68hc11_skip_prologue)
614 - the offset of the previous frame saved address (from current frame)
615 - the soft registers which are pushed. */
617 m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
618 struct m68hc11_unwind_cache *info)
623 int found_frame_point;
626 struct insn_sequence *seq_table;
630 if (pc >= current_pc)
635 m68hc11_initialize_register_info ();
642 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
644 /* The 68hc11 stack is as follows:
660 +-----------+ <--- current frame
663 With most processors (like 68K) the previous frame can be computed
664 easily because it is always at a fixed offset (see link/unlink).
665 That is, locals are accessed with negative offsets, arguments are
666 accessed with positive ones. Since 68hc11 only supports offsets
667 in the range [0..255], the frame is defined at the bottom of
668 locals (see picture).
670 The purpose of the analysis made here is to find out the size
671 of locals in this function. An alternative to this is to use
672 DWARF2 info. This would be better but I don't know how to
673 access dwarf2 debug from this function.
675 Walk from the function entry point to the point where we save
676 the frame. While walking instructions, compute the size of bytes
677 which are pushed. This gives us the index to access the previous
680 We limit the search to 128 bytes so that the algorithm is bounded
681 in case of random and wrong code. We also stop and abort if
682 we find an instruction which is not supposed to appear in the
683 prologue (as generated by gcc 2.95, 2.96).
686 found_frame_point = 0;
689 while (!done && pc + 2 < func_end)
691 struct insn_sequence *seq;
694 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
698 /* If we are within the instruction group, we can't advance the
699 pc nor the stack offset. Otherwise the caller's stack computed
700 from the current stack can be wrong. */
701 if (pc + seq->length > current_pc)
704 pc = pc + seq->length;
705 if (seq->type == P_SAVE_REG)
707 if (found_frame_point)
709 saved_reg = m68hc11_which_soft_register (val);
714 info->saved_regs[saved_reg].addr = save_addr;
721 else if (seq->type == P_SET_FRAME)
723 found_frame_point = 1;
726 else if (seq->type == P_LOCAL_1)
730 else if (seq->type == P_LOCAL_2)
734 else if (seq->type == P_LOCAL_N)
736 /* Stack pointer is decremented for the allocation. */
738 size -= (int) (val) | 0xffff0000;
743 if (found_frame_point == 0)
744 info->sp_offset = size;
746 info->sp_offset = -1;
751 m68hc11_skip_prologue (CORE_ADDR pc)
753 CORE_ADDR func_addr, func_end;
754 struct symtab_and_line sal;
755 struct m68hc11_unwind_cache tmp_cache = { 0 };
757 /* If we have line debugging information, then the end of the
758 prologue should be the first assembly instruction of the
759 first source line. */
760 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
762 sal = find_pc_line (func_addr, 0);
763 if (sal.end && sal.end < func_end)
767 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
772 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
776 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
781 /* Put here the code to store, into fi->saved_regs, the addresses of
782 the saved registers of frame described by FRAME_INFO. This
783 includes special registers such as pc and fp saved in special ways
784 in the stack frame. sp is even more special: the address we return
785 for it IS the sp for the next frame. */
787 struct m68hc11_unwind_cache *
788 m68hc11_frame_unwind_cache (struct frame_info *next_frame,
789 void **this_prologue_cache)
793 struct m68hc11_unwind_cache *info;
794 CORE_ADDR current_pc;
797 if ((*this_prologue_cache))
798 return (*this_prologue_cache);
800 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
801 (*this_prologue_cache) = info;
802 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
804 info->pc = frame_func_unwind (next_frame);
807 info->return_kind = m68hc11_get_return_insn (info->pc);
809 /* The SP was moved to the FP. This indicates that a new frame
810 was created. Get THIS frame's FP value by unwinding it from
812 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
819 current_pc = frame_pc_unwind (next_frame);
821 m68hc11_scan_prologue (info->pc, current_pc, info);
823 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
825 if (info->sp_offset != (CORE_ADDR) -1)
827 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
828 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
829 prev_sp = this_base + info->sp_offset + 2;
830 this_base += STACK_CORRECTION;
834 /* The FP points at the last saved register. Adjust the FP back
835 to before the first saved register giving the SP. */
836 prev_sp = this_base + info->size + 2;
838 this_base += STACK_CORRECTION;
839 if (soft_regs[SOFT_FP_REGNUM].name)
840 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
843 if (info->return_kind == RETURN_RTC)
846 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
847 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
849 else if (info->return_kind == RETURN_RTI)
852 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
853 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
854 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
855 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
856 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
859 /* Add 1 here to adjust for the post-decrement nature of the push
861 info->prev_sp = prev_sp;
863 info->base = this_base;
865 /* Adjust all the saved registers so that they contain addresses and not
867 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS - 1; i++)
868 if (trad_frame_addr_p (info->saved_regs, i))
870 info->saved_regs[i].addr += this_base;
873 /* The previous frame's SP needed to be computed. Save the computed
875 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
880 /* Given a GDB frame, determine the address of the calling function's
881 frame. This will be used to create a new GDB frame struct. */
884 m68hc11_frame_this_id (struct frame_info *next_frame,
885 void **this_prologue_cache,
886 struct frame_id *this_id)
888 struct m68hc11_unwind_cache *info
889 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
894 /* The FUNC is easy. */
895 func = frame_func_unwind (next_frame);
897 /* This is meant to halt the backtrace at "_start". Make sure we
898 don't halt it at a generic dummy frame. */
899 if (inside_entry_file (func))
902 /* Hopefully the prologue analysis either correctly determined the
903 frame's base (which is the SP from the previous frame), or set
904 that base to "NULL". */
905 base = info->prev_sp;
909 id = frame_id_build (base, func);
911 /* Check that we're not going round in circles with the same frame
912 ID (but avoid applying the test to sentinel frames which do go
913 round in circles). Can't use frame_id_eq() as that doesn't yet
914 compare the frame's PC value. */
915 if (frame_relative_level (next_frame) >= 0
916 && get_frame_type (next_frame) != DUMMY_FRAME
917 && frame_id_eq (get_frame_id (next_frame), id))
924 m68hc11_frame_prev_register (struct frame_info *next_frame,
925 void **this_prologue_cache,
926 int regnum, int *optimizedp,
927 enum lval_type *lvalp, CORE_ADDR *addrp,
928 int *realnump, void *bufferp)
930 struct m68hc11_unwind_cache *info
931 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
933 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
934 optimizedp, lvalp, addrp, realnump, bufferp);
936 if (regnum == HARD_PC_REGNUM)
938 /* Take into account the 68HC12 specific call (PC + page). */
939 if (info->return_kind == RETURN_RTC
940 && *addrp >= 0x08000 && *addrp < 0x0c000
941 && USE_PAGE_REGISTER)
947 trad_frame_prev_register (next_frame, info->saved_regs,
948 HARD_PAGE_REGNUM, &page_optimized,
951 *addrp += ((page & 0x0ff) << 14);
957 static const struct frame_unwind m68hc11_frame_unwind = {
959 m68hc11_frame_this_id,
960 m68hc11_frame_prev_register
963 const struct frame_unwind *
964 m68hc11_frame_sniffer (struct frame_info *next_frame)
966 return &m68hc11_frame_unwind;
970 m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
972 struct m68hc11_unwind_cache *info
973 = m68hc11_frame_unwind_cache (next_frame, this_cache);
979 m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
982 struct m68hc11_unwind_cache *info
983 = m68hc11_frame_unwind_cache (next_frame, this_cache);
985 addr = info->base + info->size;
986 if (info->return_kind == RETURN_RTC)
988 else if (info->return_kind == RETURN_RTI)
994 static const struct frame_base m68hc11_frame_base = {
995 &m68hc11_frame_unwind,
996 m68hc11_frame_base_address,
997 m68hc11_frame_base_address,
998 m68hc11_frame_args_address
1002 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1005 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
1009 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1010 dummy frame. The frame ID's base needs to match the TOS value
1011 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1014 static struct frame_id
1015 m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1018 CORE_ADDR pc = frame_pc_unwind (next_frame);
1020 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
1022 return frame_id_build (tos, pc);
1026 /* Get and print the register from the given frame. */
1028 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1029 struct frame_info *frame, int regno)
1033 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1034 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1035 frame_read_unsigned_register (frame, regno, &rval);
1037 frame_read_signed_register (frame, regno, &rval);
1039 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1040 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1042 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1043 if (regno != HARD_CCR_REGNUM)
1044 print_longest (file, 'd', 1, rval);
1048 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1052 frame_read_unsigned_register (frame, HARD_PAGE_REGNUM, &page);
1053 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1058 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1059 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1060 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1061 print_longest (file, 'd', 1, rval);
1065 if (regno == HARD_CCR_REGNUM)
1069 unsigned char l = rval & 0xff;
1071 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1072 l & M6811_S_BIT ? 'S' : '-',
1073 l & M6811_X_BIT ? 'X' : '-',
1074 l & M6811_H_BIT ? 'H' : '-',
1075 l & M6811_I_BIT ? 'I' : '-',
1076 l & M6811_N_BIT ? 'N' : '-',
1077 l & M6811_Z_BIT ? 'Z' : '-',
1078 l & M6811_V_BIT ? 'V' : '-',
1079 l & M6811_C_BIT ? 'C' : '-');
1080 N = (l & M6811_N_BIT) != 0;
1081 Z = (l & M6811_Z_BIT) != 0;
1082 V = (l & M6811_V_BIT) != 0;
1083 C = (l & M6811_C_BIT) != 0;
1085 /* Print flags following the h8300 */
1087 fprintf_filtered (file, "u> ");
1088 else if ((C | Z) == 1)
1089 fprintf_filtered (file, "u<= ");
1091 fprintf_filtered (file, "u< ");
1094 fprintf_filtered (file, "!= ");
1096 fprintf_filtered (file, "== ");
1099 fprintf_filtered (file, ">= ");
1101 fprintf_filtered (file, "< ");
1103 if ((Z | (N ^ V)) == 0)
1104 fprintf_filtered (file, "> ");
1106 fprintf_filtered (file, "<= ");
1110 /* Same as 'info reg' but prints the registers in a different way. */
1112 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1113 struct frame_info *frame, int regno, int cpregs)
1117 const char *name = gdbarch_register_name (gdbarch, regno);
1119 if (!name || !*name)
1122 fprintf_filtered (file, "%-10s ", name);
1123 m68hc11_print_register (gdbarch, file, frame, regno);
1124 fprintf_filtered (file, "\n");
1130 fprintf_filtered (file, "PC=");
1131 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1133 fprintf_filtered (file, " SP=");
1134 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1136 fprintf_filtered (file, " FP=");
1137 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1139 fprintf_filtered (file, "\nCCR=");
1140 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1142 fprintf_filtered (file, "\nD=");
1143 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1145 fprintf_filtered (file, " X=");
1146 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1148 fprintf_filtered (file, " Y=");
1149 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1151 if (gdbarch_tdep (gdbarch)->use_page_register)
1153 fprintf_filtered (file, "\nPage=");
1154 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1156 fprintf_filtered (file, "\n");
1159 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1161 /* Skip registers which are not defined in the symbol table. */
1162 if (soft_regs[i].name == 0)
1165 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1166 m68hc11_print_register (gdbarch, file, frame, i);
1169 fprintf_filtered (file, "\n");
1171 fprintf_filtered (file, " ");
1173 if (nr && (nr % 8) != 7)
1174 fprintf_filtered (file, "\n");
1178 /* Same as 'info reg' but prints the registers in a different way. */
1180 show_regs (char *args, int from_tty)
1182 m68hc11_print_registers_info (current_gdbarch, gdb_stdout,
1183 get_current_frame (), -1, 1);
1187 m68hc11_stack_align (CORE_ADDR addr)
1189 return ((addr + 1) & -2);
1193 m68hc11_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1194 struct regcache *regcache, CORE_ADDR bp_addr,
1195 int nargs, struct value **args, CORE_ADDR sp,
1196 int struct_return, CORE_ADDR struct_addr)
1199 int first_stack_argnum;
1205 first_stack_argnum = 0;
1208 /* The struct is allocated on the stack and gdb used the stack
1209 pointer for the address of that struct. We must apply the
1210 stack offset on the address. */
1211 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM,
1212 struct_addr + STACK_CORRECTION);
1216 type = VALUE_TYPE (args[0]);
1217 len = TYPE_LENGTH (type);
1219 /* First argument is passed in D and X registers. */
1224 v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
1225 first_stack_argnum = 1;
1227 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1231 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1236 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1238 type = VALUE_TYPE (args[argnum]);
1239 len = TYPE_LENGTH (type);
1243 static char zero = 0;
1246 write_memory (sp, &zero, 1);
1248 val = (char*) VALUE_CONTENTS (args[argnum]);
1250 write_memory (sp, val, len);
1253 /* Store return address. */
1255 store_unsigned_integer (buf, 2, bp_addr);
1256 write_memory (sp, buf, 2);
1258 /* Finally, update the stack pointer... */
1259 sp -= STACK_CORRECTION;
1260 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1262 /* ...and fake a frame pointer. */
1263 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1265 /* DWARF2/GCC uses the stack address *before* the function call as a
1271 /* Return the GDB type object for the "standard" data type
1272 of data in register N. */
1274 static struct type *
1275 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1279 case HARD_PAGE_REGNUM:
1282 case HARD_CCR_REGNUM:
1283 return builtin_type_uint8;
1285 case M68HC12_HARD_PC_REGNUM:
1286 return builtin_type_uint32;
1289 return builtin_type_uint16;
1294 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1299 len = TYPE_LENGTH (type);
1301 /* First argument is passed in D and X registers. */
1303 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1306 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1308 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1311 error ("return of value > 4 is not supported.");
1315 /* Given a return value in `regcache' with a type `type',
1316 extract and copy its value into `valbuf'. */
1319 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1322 int len = TYPE_LENGTH (type);
1323 char buf[M68HC11_REG_SIZE];
1325 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1329 memcpy (valbuf, buf + 1, 1);
1333 memcpy (valbuf, buf, 2);
1337 memcpy ((char*) valbuf + 1, buf, 2);
1338 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1339 memcpy (valbuf, buf + 1, 1);
1343 memcpy ((char*) valbuf + 2, buf, 2);
1344 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1345 memcpy (valbuf, buf, 2);
1349 error ("bad size for return value");
1353 /* Should call_function allocate stack space for a struct return? */
1355 m68hc11_use_struct_convention (int gcc_p, struct type *type)
1357 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1358 || TYPE_CODE (type) == TYPE_CODE_UNION
1359 || TYPE_LENGTH (type) > 4);
1363 m68hc11_return_value_on_stack (struct type *type)
1365 return TYPE_LENGTH (type) > 4;
1368 /* Extract from an array REGBUF containing the (raw) register state
1369 the address in which a function should return its structure value,
1370 as a CORE_ADDR (or an expression that can be used as one). */
1372 m68hc11_extract_struct_value_address (struct regcache *regcache)
1374 char buf[M68HC11_REG_SIZE];
1376 regcache_cooked_read (regcache, HARD_D_REGNUM, buf);
1377 return extract_unsigned_integer (buf, M68HC11_REG_SIZE);
1380 /* Test whether the ELF symbol corresponds to a function using rtc or
1384 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1386 unsigned char flags;
1388 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1389 if (flags & STO_M68HC12_FAR)
1390 MSYMBOL_SET_RTC (msym);
1391 if (flags & STO_M68HC12_INTERRUPT)
1392 MSYMBOL_SET_RTI (msym);
1396 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1398 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1399 return print_insn_m68hc11 (memaddr, info);
1401 return print_insn_m68hc12 (memaddr, info);
1406 /* 68HC11/68HC12 register groups.
1407 Identify real hard registers and soft registers used by gcc. */
1409 static struct reggroup *m68hc11_soft_reggroup;
1410 static struct reggroup *m68hc11_hard_reggroup;
1413 m68hc11_init_reggroups (void)
1415 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1416 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1420 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1422 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1423 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1424 reggroup_add (gdbarch, general_reggroup);
1425 reggroup_add (gdbarch, float_reggroup);
1426 reggroup_add (gdbarch, all_reggroup);
1427 reggroup_add (gdbarch, save_reggroup);
1428 reggroup_add (gdbarch, restore_reggroup);
1429 reggroup_add (gdbarch, vector_reggroup);
1430 reggroup_add (gdbarch, system_reggroup);
1434 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1435 struct reggroup *group)
1437 /* We must save the real hard register as well as gcc
1438 soft registers including the frame pointer. */
1439 if (group == save_reggroup || group == restore_reggroup)
1441 return (regnum <= gdbarch_num_regs (gdbarch)
1442 || ((regnum == SOFT_FP_REGNUM
1443 || regnum == SOFT_TMP_REGNUM
1444 || regnum == SOFT_ZS_REGNUM
1445 || regnum == SOFT_XY_REGNUM)
1446 && m68hc11_register_name (regnum)));
1449 /* Group to identify gcc soft registers (d1..dN). */
1450 if (group == m68hc11_soft_reggroup)
1452 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1455 if (group == m68hc11_hard_reggroup)
1457 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1458 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1459 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1461 return default_register_reggroup_p (gdbarch, regnum, group);
1464 static struct gdbarch *
1465 m68hc11_gdbarch_init (struct gdbarch_info info,
1466 struct gdbarch_list *arches)
1468 struct gdbarch *gdbarch;
1469 struct gdbarch_tdep *tdep;
1472 soft_reg_initialized = 0;
1474 /* Extract the elf_flags if available. */
1475 if (info.abfd != NULL
1476 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1477 elf_flags = elf_elfheader (info.abfd)->e_flags;
1481 /* try to find a pre-existing architecture */
1482 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1484 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1486 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1489 return arches->gdbarch;
1492 /* Need a new architecture. Fill in a target specific vector. */
1493 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1494 gdbarch = gdbarch_alloc (&info, tdep);
1495 tdep->elf_flags = elf_flags;
1497 switch (info.bfd_arch_info->arch)
1499 case bfd_arch_m68hc11:
1500 tdep->stack_correction = 1;
1501 tdep->use_page_register = 0;
1502 tdep->prologue = m6811_prologue;
1503 set_gdbarch_addr_bit (gdbarch, 16);
1504 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1505 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1506 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1509 case bfd_arch_m68hc12:
1510 tdep->stack_correction = 0;
1511 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1512 tdep->prologue = m6812_prologue;
1513 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1514 set_gdbarch_num_pseudo_regs (gdbarch,
1515 elf_flags & E_M68HC12_BANKS
1516 ? M68HC12_NUM_PSEUDO_REGS
1517 : M68HC11_NUM_PSEUDO_REGS);
1518 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1519 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1520 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1521 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1528 /* Initially set everything according to the ABI.
1529 Use 16-bit integers since it will be the case for most
1530 programs. The size of these types should normally be set
1531 according to the dwarf2 debug information. */
1532 set_gdbarch_short_bit (gdbarch, 16);
1533 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1534 set_gdbarch_float_bit (gdbarch, 32);
1535 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1536 set_gdbarch_long_double_bit (gdbarch, 64);
1537 set_gdbarch_long_bit (gdbarch, 32);
1538 set_gdbarch_ptr_bit (gdbarch, 16);
1539 set_gdbarch_long_long_bit (gdbarch, 64);
1541 /* Characters are unsigned. */
1542 set_gdbarch_char_signed (gdbarch, 0);
1544 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1545 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1547 /* Set register info. */
1548 set_gdbarch_fp0_regnum (gdbarch, -1);
1549 set_gdbarch_frame_args_skip (gdbarch, 0);
1551 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1553 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1554 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1555 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1556 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1557 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1559 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1561 set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
1562 set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1564 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1565 set_gdbarch_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
1567 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1568 set_gdbarch_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
1569 set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
1570 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1571 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1572 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1573 set_gdbarch_function_start_offset (gdbarch, 0);
1574 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1575 set_gdbarch_stack_align (gdbarch, m68hc11_stack_align);
1576 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1578 m68hc11_add_reggroups (gdbarch);
1579 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1580 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1582 /* Hook in the DWARF CFI frame unwinder. */
1583 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1585 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1586 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1588 /* Methods for saving / extracting a dummy frame's ID. The ID's
1589 stack address must match the SP value returned by
1590 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1591 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1593 /* Return the unwound PC value. */
1594 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1596 /* Minsymbol frobbing. */
1597 set_gdbarch_elf_make_msymbol_special (gdbarch,
1598 m68hc11_elf_make_msymbol_special);
1600 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1605 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1608 _initialize_m68hc11_tdep (void)
1610 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1611 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1612 m68hc11_init_reggroups ();
1614 deprecate_cmd (add_com ("regs", class_vars, show_regs,
1615 "Print all registers"),