1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
77 static struct type *desc_base_type (struct type *);
79 static struct type *desc_bounds_type (struct type *);
81 static struct value *desc_bounds (struct value *);
83 static int fat_pntr_bounds_bitpos (struct type *);
85 static int fat_pntr_bounds_bitsize (struct type *);
87 static struct type *desc_data_target_type (struct type *);
89 static struct value *desc_data (struct value *);
91 static int fat_pntr_data_bitpos (struct type *);
93 static int fat_pntr_data_bitsize (struct type *);
95 static struct value *desc_one_bound (struct value *, int, int);
97 static int desc_bound_bitpos (struct type *, int, int);
99 static int desc_bound_bitsize (struct type *, int, int);
101 static struct type *desc_index_type (struct type *, int);
103 static int desc_arity (struct type *);
105 static int ada_type_match (struct type *, struct type *, int);
107 static int ada_args_match (struct symbol *, struct value **, int);
109 static int full_match (const char *, const char *);
111 static struct value *make_array_descriptor (struct type *, struct value *);
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
117 static int is_nonfunction (struct ada_symbol_info *, int);
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 static int num_defns_collected (struct obstack *);
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
126 static struct value *resolve_subexp (struct expression **, int *, int,
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
134 static char *ada_op_name (enum exp_opcode);
136 static const char *ada_decoded_op_name (enum exp_opcode);
138 static int numeric_type_p (struct type *);
140 static int integer_type_p (struct type *);
142 static int scalar_type_p (struct type *);
144 static int discrete_type_p (struct type *);
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
151 static struct symbol *find_old_style_renaming_symbol (const char *,
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
157 static struct value *evaluate_subexp_type (struct expression *, int *);
159 static struct type *ada_find_parallel_type_with_name (struct type *,
162 static int is_dynamic_field (struct type *, int);
164 static struct type *to_fixed_variant_branch_type (struct type *,
166 CORE_ADDR, struct value *);
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170 static struct type *to_fixed_range_type (struct type *, struct value *);
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
175 static struct value *unwrap_value (struct value *);
177 static struct type *constrained_packed_array_type (struct type *, long *);
179 static struct type *decode_constrained_packed_array_type (struct type *);
181 static long decode_packed_array_bitsize (struct type *);
183 static struct value *decode_constrained_packed_array (struct value *);
185 static int ada_is_packed_array_type (struct type *);
187 static int ada_is_unconstrained_packed_array_type (struct type *);
189 static struct value *value_subscript_packed (struct value *, int,
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194 static struct value *coerce_unspec_val_to_type (struct value *,
197 static struct value *get_var_value (char *, char *);
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
201 static int equiv_types (struct type *, struct type *);
203 static int is_name_suffix (const char *);
205 static int advance_wild_match (const char **, const char *, int);
207 static int wild_match (const char *, const char *);
209 static struct value *ada_coerce_ref (struct value *);
211 static LONGEST pos_atr (struct value *);
213 static struct value *value_pos_atr (struct type *, struct value *);
215 static struct value *value_val_atr (struct type *, struct value *);
217 static struct symbol *standard_lookup (const char *, const struct block *,
220 static struct value *ada_search_struct_field (char *, struct value *, int,
223 static struct value *ada_value_primitive_field (struct value *, int, int,
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
236 static int ada_is_direct_array_type (struct type *);
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
241 static void check_size (const struct type *);
243 static struct value *ada_index_struct_field (int, struct value *, int,
246 static struct value *assign_aggregate (struct value *, struct value *,
250 static void aggregate_assign_from_choices (struct value *, struct value *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
255 static void aggregate_assign_positional (struct value *, struct value *,
257 int *, LONGEST *, int *, int,
261 static void aggregate_assign_others (struct value *, struct value *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
272 static void ada_forward_operator_length (struct expression *, int, int *,
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
293 /* Limit on the number of warnings to raise per expression evaluation. */
294 static int warning_limit = 2;
296 /* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298 static int warnings_issued = 0;
300 static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 /* Space for allocating results of ada_lookup_symbol_list. */
309 static struct obstack symbol_list_obstack;
311 /* Inferior-specific data. */
313 /* Per-inferior data for this module. */
315 struct ada_inferior_data
317 /* The ada__tags__type_specific_data type, which is used when decoding
318 tagged types. With older versions of GNAT, this type was directly
319 accessible through a component ("tsd") in the object tag. But this
320 is no longer the case, so we cache it for each inferior. */
321 struct type *tsd_type;
323 /* The exception_support_info data. This data is used to determine
324 how to implement support for Ada exception catchpoints in a given
326 const struct exception_support_info *exception_info;
329 /* Our key to this module's inferior data. */
330 static const struct inferior_data *ada_inferior_data;
332 /* A cleanup routine for our inferior data. */
334 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
336 struct ada_inferior_data *data;
338 data = inferior_data (inf, ada_inferior_data);
343 /* Return our inferior data for the given inferior (INF).
345 This function always returns a valid pointer to an allocated
346 ada_inferior_data structure. If INF's inferior data has not
347 been previously set, this functions creates a new one with all
348 fields set to zero, sets INF's inferior to it, and then returns
349 a pointer to that newly allocated ada_inferior_data. */
351 static struct ada_inferior_data *
352 get_ada_inferior_data (struct inferior *inf)
354 struct ada_inferior_data *data;
356 data = inferior_data (inf, ada_inferior_data);
359 data = XZALLOC (struct ada_inferior_data);
360 set_inferior_data (inf, ada_inferior_data, data);
366 /* Perform all necessary cleanups regarding our module's inferior data
367 that is required after the inferior INF just exited. */
370 ada_inferior_exit (struct inferior *inf)
372 ada_inferior_data_cleanup (inf, NULL);
373 set_inferior_data (inf, ada_inferior_data, NULL);
378 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
379 all typedef layers have been peeled. Otherwise, return TYPE.
381 Normally, we really expect a typedef type to only have 1 typedef layer.
382 In other words, we really expect the target type of a typedef type to be
383 a non-typedef type. This is particularly true for Ada units, because
384 the language does not have a typedef vs not-typedef distinction.
385 In that respect, the Ada compiler has been trying to eliminate as many
386 typedef definitions in the debugging information, since they generally
387 do not bring any extra information (we still use typedef under certain
388 circumstances related mostly to the GNAT encoding).
390 Unfortunately, we have seen situations where the debugging information
391 generated by the compiler leads to such multiple typedef layers. For
392 instance, consider the following example with stabs:
394 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
395 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
397 This is an error in the debugging information which causes type
398 pck__float_array___XUP to be defined twice, and the second time,
399 it is defined as a typedef of a typedef.
401 This is on the fringe of legality as far as debugging information is
402 concerned, and certainly unexpected. But it is easy to handle these
403 situations correctly, so we can afford to be lenient in this case. */
406 ada_typedef_target_type (struct type *type)
408 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
409 type = TYPE_TARGET_TYPE (type);
413 /* Given DECODED_NAME a string holding a symbol name in its
414 decoded form (ie using the Ada dotted notation), returns
415 its unqualified name. */
418 ada_unqualified_name (const char *decoded_name)
420 const char *result = strrchr (decoded_name, '.');
423 result++; /* Skip the dot... */
425 result = decoded_name;
430 /* Return a string starting with '<', followed by STR, and '>'.
431 The result is good until the next call. */
434 add_angle_brackets (const char *str)
436 static char *result = NULL;
439 result = xstrprintf ("<%s>", str);
444 ada_get_gdb_completer_word_break_characters (void)
446 return ada_completer_word_break_characters;
449 /* Print an array element index using the Ada syntax. */
452 ada_print_array_index (struct value *index_value, struct ui_file *stream,
453 const struct value_print_options *options)
455 LA_VALUE_PRINT (index_value, stream, options);
456 fprintf_filtered (stream, " => ");
459 /* Assuming VECT points to an array of *SIZE objects of size
460 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
461 updating *SIZE as necessary and returning the (new) array. */
464 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
466 if (*size < min_size)
469 if (*size < min_size)
471 vect = xrealloc (vect, *size * element_size);
476 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
477 suffix of FIELD_NAME beginning "___". */
480 field_name_match (const char *field_name, const char *target)
482 int len = strlen (target);
485 (strncmp (field_name, target, len) == 0
486 && (field_name[len] == '\0'
487 || (strncmp (field_name + len, "___", 3) == 0
488 && strcmp (field_name + strlen (field_name) - 6,
493 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
494 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
495 and return its index. This function also handles fields whose name
496 have ___ suffixes because the compiler sometimes alters their name
497 by adding such a suffix to represent fields with certain constraints.
498 If the field could not be found, return a negative number if
499 MAYBE_MISSING is set. Otherwise raise an error. */
502 ada_get_field_index (const struct type *type, const char *field_name,
506 struct type *struct_type = check_typedef ((struct type *) type);
508 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
509 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
513 error (_("Unable to find field %s in struct %s. Aborting"),
514 field_name, TYPE_NAME (struct_type));
519 /* The length of the prefix of NAME prior to any "___" suffix. */
522 ada_name_prefix_len (const char *name)
528 const char *p = strstr (name, "___");
531 return strlen (name);
537 /* Return non-zero if SUFFIX is a suffix of STR.
538 Return zero if STR is null. */
541 is_suffix (const char *str, const char *suffix)
548 len2 = strlen (suffix);
549 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 /* The contents of value VAL, treated as a value of type TYPE. The
553 result is an lval in memory if VAL is. */
555 static struct value *
556 coerce_unspec_val_to_type (struct value *val, struct type *type)
558 type = ada_check_typedef (type);
559 if (value_type (val) == type)
563 struct value *result;
565 /* Make sure that the object size is not unreasonable before
566 trying to allocate some memory for it. */
570 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
571 result = allocate_value_lazy (type);
574 result = allocate_value (type);
575 memcpy (value_contents_raw (result), value_contents (val),
578 set_value_component_location (result, val);
579 set_value_bitsize (result, value_bitsize (val));
580 set_value_bitpos (result, value_bitpos (val));
581 set_value_address (result, value_address (val));
586 static const gdb_byte *
587 cond_offset_host (const gdb_byte *valaddr, long offset)
592 return valaddr + offset;
596 cond_offset_target (CORE_ADDR address, long offset)
601 return address + offset;
604 /* Issue a warning (as for the definition of warning in utils.c, but
605 with exactly one argument rather than ...), unless the limit on the
606 number of warnings has passed during the evaluation of the current
609 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
610 provided by "complaint". */
611 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
614 lim_warning (const char *format, ...)
618 va_start (args, format);
619 warnings_issued += 1;
620 if (warnings_issued <= warning_limit)
621 vwarning (format, args);
626 /* Issue an error if the size of an object of type T is unreasonable,
627 i.e. if it would be a bad idea to allocate a value of this type in
631 check_size (const struct type *type)
633 if (TYPE_LENGTH (type) > varsize_limit)
634 error (_("object size is larger than varsize-limit"));
637 /* Maximum value of a SIZE-byte signed integer type. */
639 max_of_size (int size)
641 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
643 return top_bit | (top_bit - 1);
646 /* Minimum value of a SIZE-byte signed integer type. */
648 min_of_size (int size)
650 return -max_of_size (size) - 1;
653 /* Maximum value of a SIZE-byte unsigned integer type. */
655 umax_of_size (int size)
657 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
659 return top_bit | (top_bit - 1);
662 /* Maximum value of integral type T, as a signed quantity. */
664 max_of_type (struct type *t)
666 if (TYPE_UNSIGNED (t))
667 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
669 return max_of_size (TYPE_LENGTH (t));
672 /* Minimum value of integral type T, as a signed quantity. */
674 min_of_type (struct type *t)
676 if (TYPE_UNSIGNED (t))
679 return min_of_size (TYPE_LENGTH (t));
682 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
684 ada_discrete_type_high_bound (struct type *type)
686 switch (TYPE_CODE (type))
688 case TYPE_CODE_RANGE:
689 return TYPE_HIGH_BOUND (type);
691 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
696 return max_of_type (type);
698 error (_("Unexpected type in ada_discrete_type_high_bound."));
702 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
704 ada_discrete_type_low_bound (struct type *type)
706 switch (TYPE_CODE (type))
708 case TYPE_CODE_RANGE:
709 return TYPE_LOW_BOUND (type);
711 return TYPE_FIELD_BITPOS (type, 0);
716 return min_of_type (type);
718 error (_("Unexpected type in ada_discrete_type_low_bound."));
722 /* The identity on non-range types. For range types, the underlying
723 non-range scalar type. */
726 get_base_type (struct type *type)
728 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
730 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
732 type = TYPE_TARGET_TYPE (type);
738 /* Language Selection */
740 /* If the main program is in Ada, return language_ada, otherwise return LANG
741 (the main program is in Ada iif the adainit symbol is found). */
744 ada_update_initial_language (enum language lang)
746 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
747 (struct objfile *) NULL) != NULL)
753 /* If the main procedure is written in Ada, then return its name.
754 The result is good until the next call. Return NULL if the main
755 procedure doesn't appear to be in Ada. */
760 struct minimal_symbol *msym;
761 static char *main_program_name = NULL;
763 /* For Ada, the name of the main procedure is stored in a specific
764 string constant, generated by the binder. Look for that symbol,
765 extract its address, and then read that string. If we didn't find
766 that string, then most probably the main procedure is not written
768 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
772 CORE_ADDR main_program_name_addr;
775 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
776 if (main_program_name_addr == 0)
777 error (_("Invalid address for Ada main program name."));
779 xfree (main_program_name);
780 target_read_string (main_program_name_addr, &main_program_name,
785 return main_program_name;
788 /* The main procedure doesn't seem to be in Ada. */
794 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
797 const struct ada_opname_map ada_opname_table[] = {
798 {"Oadd", "\"+\"", BINOP_ADD},
799 {"Osubtract", "\"-\"", BINOP_SUB},
800 {"Omultiply", "\"*\"", BINOP_MUL},
801 {"Odivide", "\"/\"", BINOP_DIV},
802 {"Omod", "\"mod\"", BINOP_MOD},
803 {"Orem", "\"rem\"", BINOP_REM},
804 {"Oexpon", "\"**\"", BINOP_EXP},
805 {"Olt", "\"<\"", BINOP_LESS},
806 {"Ole", "\"<=\"", BINOP_LEQ},
807 {"Ogt", "\">\"", BINOP_GTR},
808 {"Oge", "\">=\"", BINOP_GEQ},
809 {"Oeq", "\"=\"", BINOP_EQUAL},
810 {"One", "\"/=\"", BINOP_NOTEQUAL},
811 {"Oand", "\"and\"", BINOP_BITWISE_AND},
812 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
813 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
814 {"Oconcat", "\"&\"", BINOP_CONCAT},
815 {"Oabs", "\"abs\"", UNOP_ABS},
816 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
817 {"Oadd", "\"+\"", UNOP_PLUS},
818 {"Osubtract", "\"-\"", UNOP_NEG},
822 /* The "encoded" form of DECODED, according to GNAT conventions.
823 The result is valid until the next call to ada_encode. */
826 ada_encode (const char *decoded)
828 static char *encoding_buffer = NULL;
829 static size_t encoding_buffer_size = 0;
836 GROW_VECT (encoding_buffer, encoding_buffer_size,
837 2 * strlen (decoded) + 10);
840 for (p = decoded; *p != '\0'; p += 1)
844 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
849 const struct ada_opname_map *mapping;
851 for (mapping = ada_opname_table;
852 mapping->encoded != NULL
853 && strncmp (mapping->decoded, p,
854 strlen (mapping->decoded)) != 0; mapping += 1)
856 if (mapping->encoded == NULL)
857 error (_("invalid Ada operator name: %s"), p);
858 strcpy (encoding_buffer + k, mapping->encoded);
859 k += strlen (mapping->encoded);
864 encoding_buffer[k] = *p;
869 encoding_buffer[k] = '\0';
870 return encoding_buffer;
873 /* Return NAME folded to lower case, or, if surrounded by single
874 quotes, unfolded, but with the quotes stripped away. Result good
878 ada_fold_name (const char *name)
880 static char *fold_buffer = NULL;
881 static size_t fold_buffer_size = 0;
883 int len = strlen (name);
884 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
888 strncpy (fold_buffer, name + 1, len - 2);
889 fold_buffer[len - 2] = '\000';
895 for (i = 0; i <= len; i += 1)
896 fold_buffer[i] = tolower (name[i]);
902 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
905 is_lower_alphanum (const char c)
907 return (isdigit (c) || (isalpha (c) && islower (c)));
910 /* ENCODED is the linkage name of a symbol and LEN contains its length.
911 This function saves in LEN the length of that same symbol name but
912 without either of these suffixes:
918 These are suffixes introduced by the compiler for entities such as
919 nested subprogram for instance, in order to avoid name clashes.
920 They do not serve any purpose for the debugger. */
923 ada_remove_trailing_digits (const char *encoded, int *len)
925 if (*len > 1 && isdigit (encoded[*len - 1]))
929 while (i > 0 && isdigit (encoded[i]))
931 if (i >= 0 && encoded[i] == '.')
933 else if (i >= 0 && encoded[i] == '$')
935 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
937 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
942 /* Remove the suffix introduced by the compiler for protected object
946 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
948 /* Remove trailing N. */
950 /* Protected entry subprograms are broken into two
951 separate subprograms: The first one is unprotected, and has
952 a 'N' suffix; the second is the protected version, and has
953 the 'P' suffix. The second calls the first one after handling
954 the protection. Since the P subprograms are internally generated,
955 we leave these names undecoded, giving the user a clue that this
956 entity is internal. */
959 && encoded[*len - 1] == 'N'
960 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
964 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
967 ada_remove_Xbn_suffix (const char *encoded, int *len)
971 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
974 if (encoded[i] != 'X')
980 if (isalnum (encoded[i-1]))
984 /* If ENCODED follows the GNAT entity encoding conventions, then return
985 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
988 The resulting string is valid until the next call of ada_decode.
989 If the string is unchanged by decoding, the original string pointer
993 ada_decode (const char *encoded)
1000 static char *decoding_buffer = NULL;
1001 static size_t decoding_buffer_size = 0;
1003 /* The name of the Ada main procedure starts with "_ada_".
1004 This prefix is not part of the decoded name, so skip this part
1005 if we see this prefix. */
1006 if (strncmp (encoded, "_ada_", 5) == 0)
1009 /* If the name starts with '_', then it is not a properly encoded
1010 name, so do not attempt to decode it. Similarly, if the name
1011 starts with '<', the name should not be decoded. */
1012 if (encoded[0] == '_' || encoded[0] == '<')
1015 len0 = strlen (encoded);
1017 ada_remove_trailing_digits (encoded, &len0);
1018 ada_remove_po_subprogram_suffix (encoded, &len0);
1020 /* Remove the ___X.* suffix if present. Do not forget to verify that
1021 the suffix is located before the current "end" of ENCODED. We want
1022 to avoid re-matching parts of ENCODED that have previously been
1023 marked as discarded (by decrementing LEN0). */
1024 p = strstr (encoded, "___");
1025 if (p != NULL && p - encoded < len0 - 3)
1033 /* Remove any trailing TKB suffix. It tells us that this symbol
1034 is for the body of a task, but that information does not actually
1035 appear in the decoded name. */
1037 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1040 /* Remove any trailing TB suffix. The TB suffix is slightly different
1041 from the TKB suffix because it is used for non-anonymous task
1044 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1047 /* Remove trailing "B" suffixes. */
1048 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1050 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1053 /* Make decoded big enough for possible expansion by operator name. */
1055 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1056 decoded = decoding_buffer;
1058 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1060 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1063 while ((i >= 0 && isdigit (encoded[i]))
1064 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1066 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1068 else if (encoded[i] == '$')
1072 /* The first few characters that are not alphabetic are not part
1073 of any encoding we use, so we can copy them over verbatim. */
1075 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1076 decoded[j] = encoded[i];
1081 /* Is this a symbol function? */
1082 if (at_start_name && encoded[i] == 'O')
1086 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1088 int op_len = strlen (ada_opname_table[k].encoded);
1089 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1091 && !isalnum (encoded[i + op_len]))
1093 strcpy (decoded + j, ada_opname_table[k].decoded);
1096 j += strlen (ada_opname_table[k].decoded);
1100 if (ada_opname_table[k].encoded != NULL)
1105 /* Replace "TK__" with "__", which will eventually be translated
1106 into "." (just below). */
1108 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1111 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1112 be translated into "." (just below). These are internal names
1113 generated for anonymous blocks inside which our symbol is nested. */
1115 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1116 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1117 && isdigit (encoded [i+4]))
1121 while (k < len0 && isdigit (encoded[k]))
1122 k++; /* Skip any extra digit. */
1124 /* Double-check that the "__B_{DIGITS}+" sequence we found
1125 is indeed followed by "__". */
1126 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1130 /* Remove _E{DIGITS}+[sb] */
1132 /* Just as for protected object subprograms, there are 2 categories
1133 of subprograms created by the compiler for each entry. The first
1134 one implements the actual entry code, and has a suffix following
1135 the convention above; the second one implements the barrier and
1136 uses the same convention as above, except that the 'E' is replaced
1139 Just as above, we do not decode the name of barrier functions
1140 to give the user a clue that the code he is debugging has been
1141 internally generated. */
1143 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1144 && isdigit (encoded[i+2]))
1148 while (k < len0 && isdigit (encoded[k]))
1152 && (encoded[k] == 'b' || encoded[k] == 's'))
1155 /* Just as an extra precaution, make sure that if this
1156 suffix is followed by anything else, it is a '_'.
1157 Otherwise, we matched this sequence by accident. */
1159 || (k < len0 && encoded[k] == '_'))
1164 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1165 the GNAT front-end in protected object subprograms. */
1168 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1170 /* Backtrack a bit up until we reach either the begining of
1171 the encoded name, or "__". Make sure that we only find
1172 digits or lowercase characters. */
1173 const char *ptr = encoded + i - 1;
1175 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1178 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1182 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1184 /* This is a X[bn]* sequence not separated from the previous
1185 part of the name with a non-alpha-numeric character (in other
1186 words, immediately following an alpha-numeric character), then
1187 verify that it is placed at the end of the encoded name. If
1188 not, then the encoding is not valid and we should abort the
1189 decoding. Otherwise, just skip it, it is used in body-nested
1193 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1197 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1199 /* Replace '__' by '.'. */
1207 /* It's a character part of the decoded name, so just copy it
1209 decoded[j] = encoded[i];
1214 decoded[j] = '\000';
1216 /* Decoded names should never contain any uppercase character.
1217 Double-check this, and abort the decoding if we find one. */
1219 for (i = 0; decoded[i] != '\0'; i += 1)
1220 if (isupper (decoded[i]) || decoded[i] == ' ')
1223 if (strcmp (decoded, encoded) == 0)
1229 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1230 decoded = decoding_buffer;
1231 if (encoded[0] == '<')
1232 strcpy (decoded, encoded);
1234 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1239 /* Table for keeping permanent unique copies of decoded names. Once
1240 allocated, names in this table are never released. While this is a
1241 storage leak, it should not be significant unless there are massive
1242 changes in the set of decoded names in successive versions of a
1243 symbol table loaded during a single session. */
1244 static struct htab *decoded_names_store;
1246 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1247 in the language-specific part of GSYMBOL, if it has not been
1248 previously computed. Tries to save the decoded name in the same
1249 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1250 in any case, the decoded symbol has a lifetime at least that of
1252 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1253 const, but nevertheless modified to a semantically equivalent form
1254 when a decoded name is cached in it. */
1257 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1260 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1262 if (*resultp == NULL)
1264 const char *decoded = ada_decode (gsymbol->name);
1266 if (gsymbol->obj_section != NULL)
1268 struct objfile *objf = gsymbol->obj_section->objfile;
1270 *resultp = obsavestring (decoded, strlen (decoded),
1271 &objf->objfile_obstack);
1273 /* Sometimes, we can't find a corresponding objfile, in which
1274 case, we put the result on the heap. Since we only decode
1275 when needed, we hope this usually does not cause a
1276 significant memory leak (FIXME). */
1277 if (*resultp == NULL)
1279 char **slot = (char **) htab_find_slot (decoded_names_store,
1283 *slot = xstrdup (decoded);
1292 ada_la_decode (const char *encoded, int options)
1294 return xstrdup (ada_decode (encoded));
1297 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1298 suffixes that encode debugging information or leading _ada_ on
1299 SYM_NAME (see is_name_suffix commentary for the debugging
1300 information that is ignored). If WILD, then NAME need only match a
1301 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1302 either argument is NULL. */
1305 match_name (const char *sym_name, const char *name, int wild)
1307 if (sym_name == NULL || name == NULL)
1310 return wild_match (sym_name, name) == 0;
1313 int len_name = strlen (name);
1315 return (strncmp (sym_name, name, len_name) == 0
1316 && is_name_suffix (sym_name + len_name))
1317 || (strncmp (sym_name, "_ada_", 5) == 0
1318 && strncmp (sym_name + 5, name, len_name) == 0
1319 && is_name_suffix (sym_name + len_name + 5));
1326 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1327 generated by the GNAT compiler to describe the index type used
1328 for each dimension of an array, check whether it follows the latest
1329 known encoding. If not, fix it up to conform to the latest encoding.
1330 Otherwise, do nothing. This function also does nothing if
1331 INDEX_DESC_TYPE is NULL.
1333 The GNAT encoding used to describle the array index type evolved a bit.
1334 Initially, the information would be provided through the name of each
1335 field of the structure type only, while the type of these fields was
1336 described as unspecified and irrelevant. The debugger was then expected
1337 to perform a global type lookup using the name of that field in order
1338 to get access to the full index type description. Because these global
1339 lookups can be very expensive, the encoding was later enhanced to make
1340 the global lookup unnecessary by defining the field type as being
1341 the full index type description.
1343 The purpose of this routine is to allow us to support older versions
1344 of the compiler by detecting the use of the older encoding, and by
1345 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1346 we essentially replace each field's meaningless type by the associated
1350 ada_fixup_array_indexes_type (struct type *index_desc_type)
1354 if (index_desc_type == NULL)
1356 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1358 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1359 to check one field only, no need to check them all). If not, return
1362 If our INDEX_DESC_TYPE was generated using the older encoding,
1363 the field type should be a meaningless integer type whose name
1364 is not equal to the field name. */
1365 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1366 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1367 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1370 /* Fixup each field of INDEX_DESC_TYPE. */
1371 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1373 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1374 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1377 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1381 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1383 static char *bound_name[] = {
1384 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1385 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1388 /* Maximum number of array dimensions we are prepared to handle. */
1390 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1393 /* The desc_* routines return primitive portions of array descriptors
1396 /* The descriptor or array type, if any, indicated by TYPE; removes
1397 level of indirection, if needed. */
1399 static struct type *
1400 desc_base_type (struct type *type)
1404 type = ada_check_typedef (type);
1405 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1406 type = ada_typedef_target_type (type);
1409 && (TYPE_CODE (type) == TYPE_CODE_PTR
1410 || TYPE_CODE (type) == TYPE_CODE_REF))
1411 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1416 /* True iff TYPE indicates a "thin" array pointer type. */
1419 is_thin_pntr (struct type *type)
1422 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1423 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1426 /* The descriptor type for thin pointer type TYPE. */
1428 static struct type *
1429 thin_descriptor_type (struct type *type)
1431 struct type *base_type = desc_base_type (type);
1433 if (base_type == NULL)
1435 if (is_suffix (ada_type_name (base_type), "___XVE"))
1439 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1441 if (alt_type == NULL)
1448 /* A pointer to the array data for thin-pointer value VAL. */
1450 static struct value *
1451 thin_data_pntr (struct value *val)
1453 struct type *type = ada_check_typedef (value_type (val));
1454 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1456 data_type = lookup_pointer_type (data_type);
1458 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1459 return value_cast (data_type, value_copy (val));
1461 return value_from_longest (data_type, value_address (val));
1464 /* True iff TYPE indicates a "thick" array pointer type. */
1467 is_thick_pntr (struct type *type)
1469 type = desc_base_type (type);
1470 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1471 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1474 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1475 pointer to one, the type of its bounds data; otherwise, NULL. */
1477 static struct type *
1478 desc_bounds_type (struct type *type)
1482 type = desc_base_type (type);
1486 else if (is_thin_pntr (type))
1488 type = thin_descriptor_type (type);
1491 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1493 return ada_check_typedef (r);
1495 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1497 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1499 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1504 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1505 one, a pointer to its bounds data. Otherwise NULL. */
1507 static struct value *
1508 desc_bounds (struct value *arr)
1510 struct type *type = ada_check_typedef (value_type (arr));
1512 if (is_thin_pntr (type))
1514 struct type *bounds_type =
1515 desc_bounds_type (thin_descriptor_type (type));
1518 if (bounds_type == NULL)
1519 error (_("Bad GNAT array descriptor"));
1521 /* NOTE: The following calculation is not really kosher, but
1522 since desc_type is an XVE-encoded type (and shouldn't be),
1523 the correct calculation is a real pain. FIXME (and fix GCC). */
1524 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1525 addr = value_as_long (arr);
1527 addr = value_address (arr);
1530 value_from_longest (lookup_pointer_type (bounds_type),
1531 addr - TYPE_LENGTH (bounds_type));
1534 else if (is_thick_pntr (type))
1536 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1537 _("Bad GNAT array descriptor"));
1538 struct type *p_bounds_type = value_type (p_bounds);
1541 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1543 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1545 if (TYPE_STUB (target_type))
1546 p_bounds = value_cast (lookup_pointer_type
1547 (ada_check_typedef (target_type)),
1551 error (_("Bad GNAT array descriptor"));
1559 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1560 position of the field containing the address of the bounds data. */
1563 fat_pntr_bounds_bitpos (struct type *type)
1565 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1568 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1569 size of the field containing the address of the bounds data. */
1572 fat_pntr_bounds_bitsize (struct type *type)
1574 type = desc_base_type (type);
1576 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1577 return TYPE_FIELD_BITSIZE (type, 1);
1579 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1582 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1583 pointer to one, the type of its array data (a array-with-no-bounds type);
1584 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1587 static struct type *
1588 desc_data_target_type (struct type *type)
1590 type = desc_base_type (type);
1592 /* NOTE: The following is bogus; see comment in desc_bounds. */
1593 if (is_thin_pntr (type))
1594 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1595 else if (is_thick_pntr (type))
1597 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1600 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1601 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1607 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1610 static struct value *
1611 desc_data (struct value *arr)
1613 struct type *type = value_type (arr);
1615 if (is_thin_pntr (type))
1616 return thin_data_pntr (arr);
1617 else if (is_thick_pntr (type))
1618 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1619 _("Bad GNAT array descriptor"));
1625 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1626 position of the field containing the address of the data. */
1629 fat_pntr_data_bitpos (struct type *type)
1631 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1634 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1635 size of the field containing the address of the data. */
1638 fat_pntr_data_bitsize (struct type *type)
1640 type = desc_base_type (type);
1642 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1643 return TYPE_FIELD_BITSIZE (type, 0);
1645 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1648 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1649 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1650 bound, if WHICH is 1. The first bound is I=1. */
1652 static struct value *
1653 desc_one_bound (struct value *bounds, int i, int which)
1655 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1656 _("Bad GNAT array descriptor bounds"));
1659 /* If BOUNDS is an array-bounds structure type, return the bit position
1660 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1661 bound, if WHICH is 1. The first bound is I=1. */
1664 desc_bound_bitpos (struct type *type, int i, int which)
1666 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1669 /* If BOUNDS is an array-bounds structure type, return the bit field size
1670 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1671 bound, if WHICH is 1. The first bound is I=1. */
1674 desc_bound_bitsize (struct type *type, int i, int which)
1676 type = desc_base_type (type);
1678 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1679 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1681 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1684 /* If TYPE is the type of an array-bounds structure, the type of its
1685 Ith bound (numbering from 1). Otherwise, NULL. */
1687 static struct type *
1688 desc_index_type (struct type *type, int i)
1690 type = desc_base_type (type);
1692 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1698 /* The number of index positions in the array-bounds type TYPE.
1699 Return 0 if TYPE is NULL. */
1702 desc_arity (struct type *type)
1704 type = desc_base_type (type);
1707 return TYPE_NFIELDS (type) / 2;
1711 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1712 an array descriptor type (representing an unconstrained array
1716 ada_is_direct_array_type (struct type *type)
1720 type = ada_check_typedef (type);
1721 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1722 || ada_is_array_descriptor_type (type));
1725 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1729 ada_is_array_type (struct type *type)
1732 && (TYPE_CODE (type) == TYPE_CODE_PTR
1733 || TYPE_CODE (type) == TYPE_CODE_REF))
1734 type = TYPE_TARGET_TYPE (type);
1735 return ada_is_direct_array_type (type);
1738 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1741 ada_is_simple_array_type (struct type *type)
1745 type = ada_check_typedef (type);
1746 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1747 || (TYPE_CODE (type) == TYPE_CODE_PTR
1748 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1749 == TYPE_CODE_ARRAY));
1752 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1755 ada_is_array_descriptor_type (struct type *type)
1757 struct type *data_type = desc_data_target_type (type);
1761 type = ada_check_typedef (type);
1762 return (data_type != NULL
1763 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1764 && desc_arity (desc_bounds_type (type)) > 0);
1767 /* Non-zero iff type is a partially mal-formed GNAT array
1768 descriptor. FIXME: This is to compensate for some problems with
1769 debugging output from GNAT. Re-examine periodically to see if it
1773 ada_is_bogus_array_descriptor (struct type *type)
1777 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1778 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1779 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1780 && !ada_is_array_descriptor_type (type);
1784 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1785 (fat pointer) returns the type of the array data described---specifically,
1786 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1787 in from the descriptor; otherwise, they are left unspecified. If
1788 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1789 returns NULL. The result is simply the type of ARR if ARR is not
1792 ada_type_of_array (struct value *arr, int bounds)
1794 if (ada_is_constrained_packed_array_type (value_type (arr)))
1795 return decode_constrained_packed_array_type (value_type (arr));
1797 if (!ada_is_array_descriptor_type (value_type (arr)))
1798 return value_type (arr);
1802 struct type *array_type =
1803 ada_check_typedef (desc_data_target_type (value_type (arr)));
1805 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1806 TYPE_FIELD_BITSIZE (array_type, 0) =
1807 decode_packed_array_bitsize (value_type (arr));
1813 struct type *elt_type;
1815 struct value *descriptor;
1817 elt_type = ada_array_element_type (value_type (arr), -1);
1818 arity = ada_array_arity (value_type (arr));
1820 if (elt_type == NULL || arity == 0)
1821 return ada_check_typedef (value_type (arr));
1823 descriptor = desc_bounds (arr);
1824 if (value_as_long (descriptor) == 0)
1828 struct type *range_type = alloc_type_copy (value_type (arr));
1829 struct type *array_type = alloc_type_copy (value_type (arr));
1830 struct value *low = desc_one_bound (descriptor, arity, 0);
1831 struct value *high = desc_one_bound (descriptor, arity, 1);
1834 create_range_type (range_type, value_type (low),
1835 longest_to_int (value_as_long (low)),
1836 longest_to_int (value_as_long (high)));
1837 elt_type = create_array_type (array_type, elt_type, range_type);
1839 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1841 /* We need to store the element packed bitsize, as well as
1842 recompute the array size, because it was previously
1843 computed based on the unpacked element size. */
1844 LONGEST lo = value_as_long (low);
1845 LONGEST hi = value_as_long (high);
1847 TYPE_FIELD_BITSIZE (elt_type, 0) =
1848 decode_packed_array_bitsize (value_type (arr));
1849 /* If the array has no element, then the size is already
1850 zero, and does not need to be recomputed. */
1854 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1856 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1861 return lookup_pointer_type (elt_type);
1865 /* If ARR does not represent an array, returns ARR unchanged.
1866 Otherwise, returns either a standard GDB array with bounds set
1867 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1868 GDB array. Returns NULL if ARR is a null fat pointer. */
1871 ada_coerce_to_simple_array_ptr (struct value *arr)
1873 if (ada_is_array_descriptor_type (value_type (arr)))
1875 struct type *arrType = ada_type_of_array (arr, 1);
1877 if (arrType == NULL)
1879 return value_cast (arrType, value_copy (desc_data (arr)));
1881 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1882 return decode_constrained_packed_array (arr);
1887 /* If ARR does not represent an array, returns ARR unchanged.
1888 Otherwise, returns a standard GDB array describing ARR (which may
1889 be ARR itself if it already is in the proper form). */
1892 ada_coerce_to_simple_array (struct value *arr)
1894 if (ada_is_array_descriptor_type (value_type (arr)))
1896 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1899 error (_("Bounds unavailable for null array pointer."));
1900 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1901 return value_ind (arrVal);
1903 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1904 return decode_constrained_packed_array (arr);
1909 /* If TYPE represents a GNAT array type, return it translated to an
1910 ordinary GDB array type (possibly with BITSIZE fields indicating
1911 packing). For other types, is the identity. */
1914 ada_coerce_to_simple_array_type (struct type *type)
1916 if (ada_is_constrained_packed_array_type (type))
1917 return decode_constrained_packed_array_type (type);
1919 if (ada_is_array_descriptor_type (type))
1920 return ada_check_typedef (desc_data_target_type (type));
1925 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1928 ada_is_packed_array_type (struct type *type)
1932 type = desc_base_type (type);
1933 type = ada_check_typedef (type);
1935 ada_type_name (type) != NULL
1936 && strstr (ada_type_name (type), "___XP") != NULL;
1939 /* Non-zero iff TYPE represents a standard GNAT constrained
1940 packed-array type. */
1943 ada_is_constrained_packed_array_type (struct type *type)
1945 return ada_is_packed_array_type (type)
1946 && !ada_is_array_descriptor_type (type);
1949 /* Non-zero iff TYPE represents an array descriptor for a
1950 unconstrained packed-array type. */
1953 ada_is_unconstrained_packed_array_type (struct type *type)
1955 return ada_is_packed_array_type (type)
1956 && ada_is_array_descriptor_type (type);
1959 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1960 return the size of its elements in bits. */
1963 decode_packed_array_bitsize (struct type *type)
1965 const char *raw_name;
1969 /* Access to arrays implemented as fat pointers are encoded as a typedef
1970 of the fat pointer type. We need the name of the fat pointer type
1971 to do the decoding, so strip the typedef layer. */
1972 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1973 type = ada_typedef_target_type (type);
1975 raw_name = ada_type_name (ada_check_typedef (type));
1977 raw_name = ada_type_name (desc_base_type (type));
1982 tail = strstr (raw_name, "___XP");
1983 gdb_assert (tail != NULL);
1985 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1988 (_("could not understand bit size information on packed array"));
1995 /* Given that TYPE is a standard GDB array type with all bounds filled
1996 in, and that the element size of its ultimate scalar constituents
1997 (that is, either its elements, or, if it is an array of arrays, its
1998 elements' elements, etc.) is *ELT_BITS, return an identical type,
1999 but with the bit sizes of its elements (and those of any
2000 constituent arrays) recorded in the BITSIZE components of its
2001 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2004 static struct type *
2005 constrained_packed_array_type (struct type *type, long *elt_bits)
2007 struct type *new_elt_type;
2008 struct type *new_type;
2009 LONGEST low_bound, high_bound;
2011 type = ada_check_typedef (type);
2012 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2015 new_type = alloc_type_copy (type);
2017 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2019 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2020 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2021 TYPE_NAME (new_type) = ada_type_name (type);
2023 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2024 &low_bound, &high_bound) < 0)
2025 low_bound = high_bound = 0;
2026 if (high_bound < low_bound)
2027 *elt_bits = TYPE_LENGTH (new_type) = 0;
2030 *elt_bits *= (high_bound - low_bound + 1);
2031 TYPE_LENGTH (new_type) =
2032 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2035 TYPE_FIXED_INSTANCE (new_type) = 1;
2039 /* The array type encoded by TYPE, where
2040 ada_is_constrained_packed_array_type (TYPE). */
2042 static struct type *
2043 decode_constrained_packed_array_type (struct type *type)
2045 const char *raw_name = ada_type_name (ada_check_typedef (type));
2048 struct type *shadow_type;
2052 raw_name = ada_type_name (desc_base_type (type));
2057 name = (char *) alloca (strlen (raw_name) + 1);
2058 tail = strstr (raw_name, "___XP");
2059 type = desc_base_type (type);
2061 memcpy (name, raw_name, tail - raw_name);
2062 name[tail - raw_name] = '\000';
2064 shadow_type = ada_find_parallel_type_with_name (type, name);
2066 if (shadow_type == NULL)
2068 lim_warning (_("could not find bounds information on packed array"));
2071 CHECK_TYPEDEF (shadow_type);
2073 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2075 lim_warning (_("could not understand bounds "
2076 "information on packed array"));
2080 bits = decode_packed_array_bitsize (type);
2081 return constrained_packed_array_type (shadow_type, &bits);
2084 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2085 array, returns a simple array that denotes that array. Its type is a
2086 standard GDB array type except that the BITSIZEs of the array
2087 target types are set to the number of bits in each element, and the
2088 type length is set appropriately. */
2090 static struct value *
2091 decode_constrained_packed_array (struct value *arr)
2095 arr = ada_coerce_ref (arr);
2097 /* If our value is a pointer, then dererence it. Make sure that
2098 this operation does not cause the target type to be fixed, as
2099 this would indirectly cause this array to be decoded. The rest
2100 of the routine assumes that the array hasn't been decoded yet,
2101 so we use the basic "value_ind" routine to perform the dereferencing,
2102 as opposed to using "ada_value_ind". */
2103 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2104 arr = value_ind (arr);
2106 type = decode_constrained_packed_array_type (value_type (arr));
2109 error (_("can't unpack array"));
2113 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2114 && ada_is_modular_type (value_type (arr)))
2116 /* This is a (right-justified) modular type representing a packed
2117 array with no wrapper. In order to interpret the value through
2118 the (left-justified) packed array type we just built, we must
2119 first left-justify it. */
2120 int bit_size, bit_pos;
2123 mod = ada_modulus (value_type (arr)) - 1;
2130 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2131 arr = ada_value_primitive_packed_val (arr, NULL,
2132 bit_pos / HOST_CHAR_BIT,
2133 bit_pos % HOST_CHAR_BIT,
2138 return coerce_unspec_val_to_type (arr, type);
2142 /* The value of the element of packed array ARR at the ARITY indices
2143 given in IND. ARR must be a simple array. */
2145 static struct value *
2146 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2149 int bits, elt_off, bit_off;
2150 long elt_total_bit_offset;
2151 struct type *elt_type;
2155 elt_total_bit_offset = 0;
2156 elt_type = ada_check_typedef (value_type (arr));
2157 for (i = 0; i < arity; i += 1)
2159 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2160 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2162 (_("attempt to do packed indexing of "
2163 "something other than a packed array"));
2166 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2167 LONGEST lowerbound, upperbound;
2170 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2172 lim_warning (_("don't know bounds of array"));
2173 lowerbound = upperbound = 0;
2176 idx = pos_atr (ind[i]);
2177 if (idx < lowerbound || idx > upperbound)
2178 lim_warning (_("packed array index %ld out of bounds"),
2180 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2181 elt_total_bit_offset += (idx - lowerbound) * bits;
2182 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2185 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2186 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2188 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2193 /* Non-zero iff TYPE includes negative integer values. */
2196 has_negatives (struct type *type)
2198 switch (TYPE_CODE (type))
2203 return !TYPE_UNSIGNED (type);
2204 case TYPE_CODE_RANGE:
2205 return TYPE_LOW_BOUND (type) < 0;
2210 /* Create a new value of type TYPE from the contents of OBJ starting
2211 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2212 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2213 assigning through the result will set the field fetched from.
2214 VALADDR is ignored unless OBJ is NULL, in which case,
2215 VALADDR+OFFSET must address the start of storage containing the
2216 packed value. The value returned in this case is never an lval.
2217 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2220 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2221 long offset, int bit_offset, int bit_size,
2225 int src, /* Index into the source area */
2226 targ, /* Index into the target area */
2227 srcBitsLeft, /* Number of source bits left to move */
2228 nsrc, ntarg, /* Number of source and target bytes */
2229 unusedLS, /* Number of bits in next significant
2230 byte of source that are unused */
2231 accumSize; /* Number of meaningful bits in accum */
2232 unsigned char *bytes; /* First byte containing data to unpack */
2233 unsigned char *unpacked;
2234 unsigned long accum; /* Staging area for bits being transferred */
2236 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2237 /* Transmit bytes from least to most significant; delta is the direction
2238 the indices move. */
2239 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2241 type = ada_check_typedef (type);
2245 v = allocate_value (type);
2246 bytes = (unsigned char *) (valaddr + offset);
2248 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2251 value_address (obj) + offset);
2252 bytes = (unsigned char *) alloca (len);
2253 read_memory (value_address (v), bytes, len);
2257 v = allocate_value (type);
2258 bytes = (unsigned char *) value_contents (obj) + offset;
2265 set_value_component_location (v, obj);
2266 new_addr = value_address (obj) + offset;
2267 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2268 set_value_bitsize (v, bit_size);
2269 if (value_bitpos (v) >= HOST_CHAR_BIT)
2272 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2274 set_value_address (v, new_addr);
2277 set_value_bitsize (v, bit_size);
2278 unpacked = (unsigned char *) value_contents (v);
2280 srcBitsLeft = bit_size;
2282 ntarg = TYPE_LENGTH (type);
2286 memset (unpacked, 0, TYPE_LENGTH (type));
2289 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2292 if (has_negatives (type)
2293 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2297 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2300 switch (TYPE_CODE (type))
2302 case TYPE_CODE_ARRAY:
2303 case TYPE_CODE_UNION:
2304 case TYPE_CODE_STRUCT:
2305 /* Non-scalar values must be aligned at a byte boundary... */
2307 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2308 /* ... And are placed at the beginning (most-significant) bytes
2310 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2315 targ = TYPE_LENGTH (type) - 1;
2321 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2324 unusedLS = bit_offset;
2327 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2334 /* Mask for removing bits of the next source byte that are not
2335 part of the value. */
2336 unsigned int unusedMSMask =
2337 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2339 /* Sign-extend bits for this byte. */
2340 unsigned int signMask = sign & ~unusedMSMask;
2343 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2344 accumSize += HOST_CHAR_BIT - unusedLS;
2345 if (accumSize >= HOST_CHAR_BIT)
2347 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2348 accumSize -= HOST_CHAR_BIT;
2349 accum >>= HOST_CHAR_BIT;
2353 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2360 accum |= sign << accumSize;
2361 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2362 accumSize -= HOST_CHAR_BIT;
2363 accum >>= HOST_CHAR_BIT;
2371 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2372 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2375 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2376 int src_offset, int n, int bits_big_endian_p)
2378 unsigned int accum, mask;
2379 int accum_bits, chunk_size;
2381 target += targ_offset / HOST_CHAR_BIT;
2382 targ_offset %= HOST_CHAR_BIT;
2383 source += src_offset / HOST_CHAR_BIT;
2384 src_offset %= HOST_CHAR_BIT;
2385 if (bits_big_endian_p)
2387 accum = (unsigned char) *source;
2389 accum_bits = HOST_CHAR_BIT - src_offset;
2395 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2396 accum_bits += HOST_CHAR_BIT;
2398 chunk_size = HOST_CHAR_BIT - targ_offset;
2401 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2402 mask = ((1 << chunk_size) - 1) << unused_right;
2405 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2407 accum_bits -= chunk_size;
2414 accum = (unsigned char) *source >> src_offset;
2416 accum_bits = HOST_CHAR_BIT - src_offset;
2420 accum = accum + ((unsigned char) *source << accum_bits);
2421 accum_bits += HOST_CHAR_BIT;
2423 chunk_size = HOST_CHAR_BIT - targ_offset;
2426 mask = ((1 << chunk_size) - 1) << targ_offset;
2427 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2429 accum_bits -= chunk_size;
2430 accum >>= chunk_size;
2437 /* Store the contents of FROMVAL into the location of TOVAL.
2438 Return a new value with the location of TOVAL and contents of
2439 FROMVAL. Handles assignment into packed fields that have
2440 floating-point or non-scalar types. */
2442 static struct value *
2443 ada_value_assign (struct value *toval, struct value *fromval)
2445 struct type *type = value_type (toval);
2446 int bits = value_bitsize (toval);
2448 toval = ada_coerce_ref (toval);
2449 fromval = ada_coerce_ref (fromval);
2451 if (ada_is_direct_array_type (value_type (toval)))
2452 toval = ada_coerce_to_simple_array (toval);
2453 if (ada_is_direct_array_type (value_type (fromval)))
2454 fromval = ada_coerce_to_simple_array (fromval);
2456 if (!deprecated_value_modifiable (toval))
2457 error (_("Left operand of assignment is not a modifiable lvalue."));
2459 if (VALUE_LVAL (toval) == lval_memory
2461 && (TYPE_CODE (type) == TYPE_CODE_FLT
2462 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2464 int len = (value_bitpos (toval)
2465 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2467 char *buffer = (char *) alloca (len);
2469 CORE_ADDR to_addr = value_address (toval);
2471 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2472 fromval = value_cast (type, fromval);
2474 read_memory (to_addr, buffer, len);
2475 from_size = value_bitsize (fromval);
2477 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2478 if (gdbarch_bits_big_endian (get_type_arch (type)))
2479 move_bits (buffer, value_bitpos (toval),
2480 value_contents (fromval), from_size - bits, bits, 1);
2482 move_bits (buffer, value_bitpos (toval),
2483 value_contents (fromval), 0, bits, 0);
2484 write_memory (to_addr, buffer, len);
2485 observer_notify_memory_changed (to_addr, len, buffer);
2487 val = value_copy (toval);
2488 memcpy (value_contents_raw (val), value_contents (fromval),
2489 TYPE_LENGTH (type));
2490 deprecated_set_value_type (val, type);
2495 return value_assign (toval, fromval);
2499 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2500 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2501 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2502 * COMPONENT, and not the inferior's memory. The current contents
2503 * of COMPONENT are ignored. */
2505 value_assign_to_component (struct value *container, struct value *component,
2508 LONGEST offset_in_container =
2509 (LONGEST) (value_address (component) - value_address (container));
2510 int bit_offset_in_container =
2511 value_bitpos (component) - value_bitpos (container);
2514 val = value_cast (value_type (component), val);
2516 if (value_bitsize (component) == 0)
2517 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2519 bits = value_bitsize (component);
2521 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2522 move_bits (value_contents_writeable (container) + offset_in_container,
2523 value_bitpos (container) + bit_offset_in_container,
2524 value_contents (val),
2525 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2528 move_bits (value_contents_writeable (container) + offset_in_container,
2529 value_bitpos (container) + bit_offset_in_container,
2530 value_contents (val), 0, bits, 0);
2533 /* The value of the element of array ARR at the ARITY indices given in IND.
2534 ARR may be either a simple array, GNAT array descriptor, or pointer
2538 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2542 struct type *elt_type;
2544 elt = ada_coerce_to_simple_array (arr);
2546 elt_type = ada_check_typedef (value_type (elt));
2547 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2548 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2549 return value_subscript_packed (elt, arity, ind);
2551 for (k = 0; k < arity; k += 1)
2553 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2554 error (_("too many subscripts (%d expected)"), k);
2555 elt = value_subscript (elt, pos_atr (ind[k]));
2560 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2561 value of the element of *ARR at the ARITY indices given in
2562 IND. Does not read the entire array into memory. */
2564 static struct value *
2565 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2570 for (k = 0; k < arity; k += 1)
2574 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2575 error (_("too many subscripts (%d expected)"), k);
2576 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2578 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2579 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2580 type = TYPE_TARGET_TYPE (type);
2583 return value_ind (arr);
2586 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2587 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2588 elements starting at index LOW. The lower bound of this array is LOW, as
2590 static struct value *
2591 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2594 struct type *type0 = ada_check_typedef (type);
2595 CORE_ADDR base = value_as_address (array_ptr)
2596 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2597 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2598 struct type *index_type =
2599 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2601 struct type *slice_type =
2602 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2604 return value_at_lazy (slice_type, base);
2608 static struct value *
2609 ada_value_slice (struct value *array, int low, int high)
2611 struct type *type = ada_check_typedef (value_type (array));
2612 struct type *index_type =
2613 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2614 struct type *slice_type =
2615 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2617 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2620 /* If type is a record type in the form of a standard GNAT array
2621 descriptor, returns the number of dimensions for type. If arr is a
2622 simple array, returns the number of "array of"s that prefix its
2623 type designation. Otherwise, returns 0. */
2626 ada_array_arity (struct type *type)
2633 type = desc_base_type (type);
2636 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2637 return desc_arity (desc_bounds_type (type));
2639 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2642 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2648 /* If TYPE is a record type in the form of a standard GNAT array
2649 descriptor or a simple array type, returns the element type for
2650 TYPE after indexing by NINDICES indices, or by all indices if
2651 NINDICES is -1. Otherwise, returns NULL. */
2654 ada_array_element_type (struct type *type, int nindices)
2656 type = desc_base_type (type);
2658 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2661 struct type *p_array_type;
2663 p_array_type = desc_data_target_type (type);
2665 k = ada_array_arity (type);
2669 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2670 if (nindices >= 0 && k > nindices)
2672 while (k > 0 && p_array_type != NULL)
2674 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2677 return p_array_type;
2679 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2681 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2683 type = TYPE_TARGET_TYPE (type);
2692 /* The type of nth index in arrays of given type (n numbering from 1).
2693 Does not examine memory. Throws an error if N is invalid or TYPE
2694 is not an array type. NAME is the name of the Ada attribute being
2695 evaluated ('range, 'first, 'last, or 'length); it is used in building
2696 the error message. */
2698 static struct type *
2699 ada_index_type (struct type *type, int n, const char *name)
2701 struct type *result_type;
2703 type = desc_base_type (type);
2705 if (n < 0 || n > ada_array_arity (type))
2706 error (_("invalid dimension number to '%s"), name);
2708 if (ada_is_simple_array_type (type))
2712 for (i = 1; i < n; i += 1)
2713 type = TYPE_TARGET_TYPE (type);
2714 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2715 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2716 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2717 perhaps stabsread.c would make more sense. */
2718 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2723 result_type = desc_index_type (desc_bounds_type (type), n);
2724 if (result_type == NULL)
2725 error (_("attempt to take bound of something that is not an array"));
2731 /* Given that arr is an array type, returns the lower bound of the
2732 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2733 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2734 array-descriptor type. It works for other arrays with bounds supplied
2735 by run-time quantities other than discriminants. */
2738 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2740 struct type *type, *elt_type, *index_type_desc, *index_type;
2743 gdb_assert (which == 0 || which == 1);
2745 if (ada_is_constrained_packed_array_type (arr_type))
2746 arr_type = decode_constrained_packed_array_type (arr_type);
2748 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2749 return (LONGEST) - which;
2751 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2752 type = TYPE_TARGET_TYPE (arr_type);
2757 for (i = n; i > 1; i--)
2758 elt_type = TYPE_TARGET_TYPE (type);
2760 index_type_desc = ada_find_parallel_type (type, "___XA");
2761 ada_fixup_array_indexes_type (index_type_desc);
2762 if (index_type_desc != NULL)
2763 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2766 index_type = TYPE_INDEX_TYPE (elt_type);
2769 (LONGEST) (which == 0
2770 ? ada_discrete_type_low_bound (index_type)
2771 : ada_discrete_type_high_bound (index_type));
2774 /* Given that arr is an array value, returns the lower bound of the
2775 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2776 WHICH is 1. This routine will also work for arrays with bounds
2777 supplied by run-time quantities other than discriminants. */
2780 ada_array_bound (struct value *arr, int n, int which)
2782 struct type *arr_type = value_type (arr);
2784 if (ada_is_constrained_packed_array_type (arr_type))
2785 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2786 else if (ada_is_simple_array_type (arr_type))
2787 return ada_array_bound_from_type (arr_type, n, which);
2789 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2792 /* Given that arr is an array value, returns the length of the
2793 nth index. This routine will also work for arrays with bounds
2794 supplied by run-time quantities other than discriminants.
2795 Does not work for arrays indexed by enumeration types with representation
2796 clauses at the moment. */
2799 ada_array_length (struct value *arr, int n)
2801 struct type *arr_type = ada_check_typedef (value_type (arr));
2803 if (ada_is_constrained_packed_array_type (arr_type))
2804 return ada_array_length (decode_constrained_packed_array (arr), n);
2806 if (ada_is_simple_array_type (arr_type))
2807 return (ada_array_bound_from_type (arr_type, n, 1)
2808 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2810 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2811 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2814 /* An empty array whose type is that of ARR_TYPE (an array type),
2815 with bounds LOW to LOW-1. */
2817 static struct value *
2818 empty_array (struct type *arr_type, int low)
2820 struct type *arr_type0 = ada_check_typedef (arr_type);
2821 struct type *index_type =
2822 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2824 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2826 return allocate_value (create_array_type (NULL, elt_type, index_type));
2830 /* Name resolution */
2832 /* The "decoded" name for the user-definable Ada operator corresponding
2836 ada_decoded_op_name (enum exp_opcode op)
2840 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2842 if (ada_opname_table[i].op == op)
2843 return ada_opname_table[i].decoded;
2845 error (_("Could not find operator name for opcode"));
2849 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2850 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2851 undefined namespace) and converts operators that are
2852 user-defined into appropriate function calls. If CONTEXT_TYPE is
2853 non-null, it provides a preferred result type [at the moment, only
2854 type void has any effect---causing procedures to be preferred over
2855 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2856 return type is preferred. May change (expand) *EXP. */
2859 resolve (struct expression **expp, int void_context_p)
2861 struct type *context_type = NULL;
2865 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2867 resolve_subexp (expp, &pc, 1, context_type);
2870 /* Resolve the operator of the subexpression beginning at
2871 position *POS of *EXPP. "Resolving" consists of replacing
2872 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2873 with their resolutions, replacing built-in operators with
2874 function calls to user-defined operators, where appropriate, and,
2875 when DEPROCEDURE_P is non-zero, converting function-valued variables
2876 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2877 are as in ada_resolve, above. */
2879 static struct value *
2880 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2881 struct type *context_type)
2885 struct expression *exp; /* Convenience: == *expp. */
2886 enum exp_opcode op = (*expp)->elts[pc].opcode;
2887 struct value **argvec; /* Vector of operand types (alloca'ed). */
2888 int nargs; /* Number of operands. */
2895 /* Pass one: resolve operands, saving their types and updating *pos,
2900 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2901 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2906 resolve_subexp (expp, pos, 0, NULL);
2908 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2913 resolve_subexp (expp, pos, 0, NULL);
2918 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2921 case OP_ATR_MODULUS:
2931 case TERNOP_IN_RANGE:
2932 case BINOP_IN_BOUNDS:
2938 case OP_DISCRETE_RANGE:
2940 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2949 arg1 = resolve_subexp (expp, pos, 0, NULL);
2951 resolve_subexp (expp, pos, 1, NULL);
2953 resolve_subexp (expp, pos, 1, value_type (arg1));
2970 case BINOP_LOGICAL_AND:
2971 case BINOP_LOGICAL_OR:
2972 case BINOP_BITWISE_AND:
2973 case BINOP_BITWISE_IOR:
2974 case BINOP_BITWISE_XOR:
2977 case BINOP_NOTEQUAL:
2984 case BINOP_SUBSCRIPT:
2992 case UNOP_LOGICAL_NOT:
3008 case OP_INTERNALVAR:
3018 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3021 case STRUCTOP_STRUCT:
3022 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3035 error (_("Unexpected operator during name resolution"));
3038 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3039 for (i = 0; i < nargs; i += 1)
3040 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3044 /* Pass two: perform any resolution on principal operator. */
3051 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3053 struct ada_symbol_info *candidates;
3057 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3058 (exp->elts[pc + 2].symbol),
3059 exp->elts[pc + 1].block, VAR_DOMAIN,
3062 if (n_candidates > 1)
3064 /* Types tend to get re-introduced locally, so if there
3065 are any local symbols that are not types, first filter
3068 for (j = 0; j < n_candidates; j += 1)
3069 switch (SYMBOL_CLASS (candidates[j].sym))
3074 case LOC_REGPARM_ADDR:
3082 if (j < n_candidates)
3085 while (j < n_candidates)
3087 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3089 candidates[j] = candidates[n_candidates - 1];
3098 if (n_candidates == 0)
3099 error (_("No definition found for %s"),
3100 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3101 else if (n_candidates == 1)
3103 else if (deprocedure_p
3104 && !is_nonfunction (candidates, n_candidates))
3106 i = ada_resolve_function
3107 (candidates, n_candidates, NULL, 0,
3108 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3111 error (_("Could not find a match for %s"),
3112 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3116 printf_filtered (_("Multiple matches for %s\n"),
3117 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3118 user_select_syms (candidates, n_candidates, 1);
3122 exp->elts[pc + 1].block = candidates[i].block;
3123 exp->elts[pc + 2].symbol = candidates[i].sym;
3124 if (innermost_block == NULL
3125 || contained_in (candidates[i].block, innermost_block))
3126 innermost_block = candidates[i].block;
3130 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3133 replace_operator_with_call (expp, pc, 0, 0,
3134 exp->elts[pc + 2].symbol,
3135 exp->elts[pc + 1].block);
3142 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3143 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3145 struct ada_symbol_info *candidates;
3149 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3150 (exp->elts[pc + 5].symbol),
3151 exp->elts[pc + 4].block, VAR_DOMAIN,
3153 if (n_candidates == 1)
3157 i = ada_resolve_function
3158 (candidates, n_candidates,
3160 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3163 error (_("Could not find a match for %s"),
3164 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3167 exp->elts[pc + 4].block = candidates[i].block;
3168 exp->elts[pc + 5].symbol = candidates[i].sym;
3169 if (innermost_block == NULL
3170 || contained_in (candidates[i].block, innermost_block))
3171 innermost_block = candidates[i].block;
3182 case BINOP_BITWISE_AND:
3183 case BINOP_BITWISE_IOR:
3184 case BINOP_BITWISE_XOR:
3186 case BINOP_NOTEQUAL:
3194 case UNOP_LOGICAL_NOT:
3196 if (possible_user_operator_p (op, argvec))
3198 struct ada_symbol_info *candidates;
3202 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3203 (struct block *) NULL, VAR_DOMAIN,
3205 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3206 ada_decoded_op_name (op), NULL);
3210 replace_operator_with_call (expp, pc, nargs, 1,
3211 candidates[i].sym, candidates[i].block);
3222 return evaluate_subexp_type (exp, pos);
3225 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3226 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3228 /* The term "match" here is rather loose. The match is heuristic and
3232 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3234 ftype = ada_check_typedef (ftype);
3235 atype = ada_check_typedef (atype);
3237 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3238 ftype = TYPE_TARGET_TYPE (ftype);
3239 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3240 atype = TYPE_TARGET_TYPE (atype);
3242 switch (TYPE_CODE (ftype))
3245 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3247 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3248 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3249 TYPE_TARGET_TYPE (atype), 0);
3252 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3254 case TYPE_CODE_ENUM:
3255 case TYPE_CODE_RANGE:
3256 switch (TYPE_CODE (atype))
3259 case TYPE_CODE_ENUM:
3260 case TYPE_CODE_RANGE:
3266 case TYPE_CODE_ARRAY:
3267 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3268 || ada_is_array_descriptor_type (atype));
3270 case TYPE_CODE_STRUCT:
3271 if (ada_is_array_descriptor_type (ftype))
3272 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3273 || ada_is_array_descriptor_type (atype));
3275 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3276 && !ada_is_array_descriptor_type (atype));
3278 case TYPE_CODE_UNION:
3280 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3284 /* Return non-zero if the formals of FUNC "sufficiently match" the
3285 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3286 may also be an enumeral, in which case it is treated as a 0-
3287 argument function. */
3290 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3293 struct type *func_type = SYMBOL_TYPE (func);
3295 if (SYMBOL_CLASS (func) == LOC_CONST
3296 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3297 return (n_actuals == 0);
3298 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3301 if (TYPE_NFIELDS (func_type) != n_actuals)
3304 for (i = 0; i < n_actuals; i += 1)
3306 if (actuals[i] == NULL)
3310 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3312 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3314 if (!ada_type_match (ftype, atype, 1))
3321 /* False iff function type FUNC_TYPE definitely does not produce a value
3322 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3323 FUNC_TYPE is not a valid function type with a non-null return type
3324 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3327 return_match (struct type *func_type, struct type *context_type)
3329 struct type *return_type;
3331 if (func_type == NULL)
3334 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3335 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3337 return_type = get_base_type (func_type);
3338 if (return_type == NULL)
3341 context_type = get_base_type (context_type);
3343 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3344 return context_type == NULL || return_type == context_type;
3345 else if (context_type == NULL)
3346 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3348 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3352 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3353 function (if any) that matches the types of the NARGS arguments in
3354 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3355 that returns that type, then eliminate matches that don't. If
3356 CONTEXT_TYPE is void and there is at least one match that does not
3357 return void, eliminate all matches that do.
3359 Asks the user if there is more than one match remaining. Returns -1
3360 if there is no such symbol or none is selected. NAME is used
3361 solely for messages. May re-arrange and modify SYMS in
3362 the process; the index returned is for the modified vector. */
3365 ada_resolve_function (struct ada_symbol_info syms[],
3366 int nsyms, struct value **args, int nargs,
3367 const char *name, struct type *context_type)
3371 int m; /* Number of hits */
3374 /* In the first pass of the loop, we only accept functions matching
3375 context_type. If none are found, we add a second pass of the loop
3376 where every function is accepted. */
3377 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3379 for (k = 0; k < nsyms; k += 1)
3381 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3383 if (ada_args_match (syms[k].sym, args, nargs)
3384 && (fallback || return_match (type, context_type)))
3396 printf_filtered (_("Multiple matches for %s\n"), name);
3397 user_select_syms (syms, m, 1);
3403 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3404 in a listing of choices during disambiguation (see sort_choices, below).
3405 The idea is that overloadings of a subprogram name from the
3406 same package should sort in their source order. We settle for ordering
3407 such symbols by their trailing number (__N or $N). */
3410 encoded_ordered_before (const char *N0, const char *N1)
3414 else if (N0 == NULL)
3420 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3422 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3424 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3425 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3430 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3433 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3435 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3436 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3438 return (strcmp (N0, N1) < 0);
3442 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3446 sort_choices (struct ada_symbol_info syms[], int nsyms)
3450 for (i = 1; i < nsyms; i += 1)
3452 struct ada_symbol_info sym = syms[i];
3455 for (j = i - 1; j >= 0; j -= 1)
3457 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3458 SYMBOL_LINKAGE_NAME (sym.sym)))
3460 syms[j + 1] = syms[j];
3466 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3467 by asking the user (if necessary), returning the number selected,
3468 and setting the first elements of SYMS items. Error if no symbols
3471 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3472 to be re-integrated one of these days. */
3475 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3478 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3480 int first_choice = (max_results == 1) ? 1 : 2;
3481 const char *select_mode = multiple_symbols_select_mode ();
3483 if (max_results < 1)
3484 error (_("Request to select 0 symbols!"));
3488 if (select_mode == multiple_symbols_cancel)
3490 canceled because the command is ambiguous\n\
3491 See set/show multiple-symbol."));
3493 /* If select_mode is "all", then return all possible symbols.
3494 Only do that if more than one symbol can be selected, of course.
3495 Otherwise, display the menu as usual. */
3496 if (select_mode == multiple_symbols_all && max_results > 1)
3499 printf_unfiltered (_("[0] cancel\n"));
3500 if (max_results > 1)
3501 printf_unfiltered (_("[1] all\n"));
3503 sort_choices (syms, nsyms);
3505 for (i = 0; i < nsyms; i += 1)
3507 if (syms[i].sym == NULL)
3510 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3512 struct symtab_and_line sal =
3513 find_function_start_sal (syms[i].sym, 1);
3515 if (sal.symtab == NULL)
3516 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3518 SYMBOL_PRINT_NAME (syms[i].sym),
3521 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3522 SYMBOL_PRINT_NAME (syms[i].sym),
3523 sal.symtab->filename, sal.line);
3529 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3530 && SYMBOL_TYPE (syms[i].sym) != NULL
3531 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3532 struct symtab *symtab = syms[i].sym->symtab;
3534 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3535 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3537 SYMBOL_PRINT_NAME (syms[i].sym),
3538 symtab->filename, SYMBOL_LINE (syms[i].sym));
3539 else if (is_enumeral
3540 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3542 printf_unfiltered (("[%d] "), i + first_choice);
3543 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3545 printf_unfiltered (_("'(%s) (enumeral)\n"),
3546 SYMBOL_PRINT_NAME (syms[i].sym));
3548 else if (symtab != NULL)
3549 printf_unfiltered (is_enumeral
3550 ? _("[%d] %s in %s (enumeral)\n")
3551 : _("[%d] %s at %s:?\n"),
3553 SYMBOL_PRINT_NAME (syms[i].sym),
3556 printf_unfiltered (is_enumeral
3557 ? _("[%d] %s (enumeral)\n")
3558 : _("[%d] %s at ?\n"),
3560 SYMBOL_PRINT_NAME (syms[i].sym));
3564 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3567 for (i = 0; i < n_chosen; i += 1)
3568 syms[i] = syms[chosen[i]];
3573 /* Read and validate a set of numeric choices from the user in the
3574 range 0 .. N_CHOICES-1. Place the results in increasing
3575 order in CHOICES[0 .. N-1], and return N.
3577 The user types choices as a sequence of numbers on one line
3578 separated by blanks, encoding them as follows:
3580 + A choice of 0 means to cancel the selection, throwing an error.
3581 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3582 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3584 The user is not allowed to choose more than MAX_RESULTS values.
3586 ANNOTATION_SUFFIX, if present, is used to annotate the input
3587 prompts (for use with the -f switch). */
3590 get_selections (int *choices, int n_choices, int max_results,
3591 int is_all_choice, char *annotation_suffix)
3596 int first_choice = is_all_choice ? 2 : 1;
3598 prompt = getenv ("PS2");
3602 args = command_line_input (prompt, 0, annotation_suffix);
3605 error_no_arg (_("one or more choice numbers"));
3609 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3610 order, as given in args. Choices are validated. */
3616 args = skip_spaces (args);
3617 if (*args == '\0' && n_chosen == 0)
3618 error_no_arg (_("one or more choice numbers"));
3619 else if (*args == '\0')
3622 choice = strtol (args, &args2, 10);
3623 if (args == args2 || choice < 0
3624 || choice > n_choices + first_choice - 1)
3625 error (_("Argument must be choice number"));
3629 error (_("cancelled"));
3631 if (choice < first_choice)
3633 n_chosen = n_choices;
3634 for (j = 0; j < n_choices; j += 1)
3638 choice -= first_choice;
3640 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3644 if (j < 0 || choice != choices[j])
3648 for (k = n_chosen - 1; k > j; k -= 1)
3649 choices[k + 1] = choices[k];
3650 choices[j + 1] = choice;
3655 if (n_chosen > max_results)
3656 error (_("Select no more than %d of the above"), max_results);
3661 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3662 on the function identified by SYM and BLOCK, and taking NARGS
3663 arguments. Update *EXPP as needed to hold more space. */
3666 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3667 int oplen, struct symbol *sym,
3668 struct block *block)
3670 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3671 symbol, -oplen for operator being replaced). */
3672 struct expression *newexp = (struct expression *)
3673 xzalloc (sizeof (struct expression)
3674 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3675 struct expression *exp = *expp;
3677 newexp->nelts = exp->nelts + 7 - oplen;
3678 newexp->language_defn = exp->language_defn;
3679 newexp->gdbarch = exp->gdbarch;
3680 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3681 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3682 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3684 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3685 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3687 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3688 newexp->elts[pc + 4].block = block;
3689 newexp->elts[pc + 5].symbol = sym;
3695 /* Type-class predicates */
3697 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3701 numeric_type_p (struct type *type)
3707 switch (TYPE_CODE (type))
3712 case TYPE_CODE_RANGE:
3713 return (type == TYPE_TARGET_TYPE (type)
3714 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3721 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3724 integer_type_p (struct type *type)
3730 switch (TYPE_CODE (type))
3734 case TYPE_CODE_RANGE:
3735 return (type == TYPE_TARGET_TYPE (type)
3736 || integer_type_p (TYPE_TARGET_TYPE (type)));
3743 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3746 scalar_type_p (struct type *type)
3752 switch (TYPE_CODE (type))
3755 case TYPE_CODE_RANGE:
3756 case TYPE_CODE_ENUM:
3765 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3768 discrete_type_p (struct type *type)
3774 switch (TYPE_CODE (type))
3777 case TYPE_CODE_RANGE:
3778 case TYPE_CODE_ENUM:
3779 case TYPE_CODE_BOOL:
3787 /* Returns non-zero if OP with operands in the vector ARGS could be
3788 a user-defined function. Errs on the side of pre-defined operators
3789 (i.e., result 0). */
3792 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3794 struct type *type0 =
3795 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3796 struct type *type1 =
3797 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3811 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3815 case BINOP_BITWISE_AND:
3816 case BINOP_BITWISE_IOR:
3817 case BINOP_BITWISE_XOR:
3818 return (!(integer_type_p (type0) && integer_type_p (type1)));
3821 case BINOP_NOTEQUAL:
3826 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3829 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3832 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3836 case UNOP_LOGICAL_NOT:
3838 return (!numeric_type_p (type0));
3847 1. In the following, we assume that a renaming type's name may
3848 have an ___XD suffix. It would be nice if this went away at some
3850 2. We handle both the (old) purely type-based representation of
3851 renamings and the (new) variable-based encoding. At some point,
3852 it is devoutly to be hoped that the former goes away
3853 (FIXME: hilfinger-2007-07-09).
3854 3. Subprogram renamings are not implemented, although the XRS
3855 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3857 /* If SYM encodes a renaming,
3859 <renaming> renames <renamed entity>,
3861 sets *LEN to the length of the renamed entity's name,
3862 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3863 the string describing the subcomponent selected from the renamed
3864 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3865 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3866 are undefined). Otherwise, returns a value indicating the category
3867 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3868 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3869 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3870 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3871 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3872 may be NULL, in which case they are not assigned.
3874 [Currently, however, GCC does not generate subprogram renamings.] */
3876 enum ada_renaming_category
3877 ada_parse_renaming (struct symbol *sym,
3878 const char **renamed_entity, int *len,
3879 const char **renaming_expr)
3881 enum ada_renaming_category kind;
3886 return ADA_NOT_RENAMING;
3887 switch (SYMBOL_CLASS (sym))
3890 return ADA_NOT_RENAMING;
3892 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3893 renamed_entity, len, renaming_expr);
3897 case LOC_OPTIMIZED_OUT:
3898 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3900 return ADA_NOT_RENAMING;
3904 kind = ADA_OBJECT_RENAMING;
3908 kind = ADA_EXCEPTION_RENAMING;
3912 kind = ADA_PACKAGE_RENAMING;
3916 kind = ADA_SUBPROGRAM_RENAMING;
3920 return ADA_NOT_RENAMING;
3924 if (renamed_entity != NULL)
3925 *renamed_entity = info;
3926 suffix = strstr (info, "___XE");
3927 if (suffix == NULL || suffix == info)
3928 return ADA_NOT_RENAMING;
3930 *len = strlen (info) - strlen (suffix);
3932 if (renaming_expr != NULL)
3933 *renaming_expr = suffix;
3937 /* Assuming TYPE encodes a renaming according to the old encoding in
3938 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3939 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3940 ADA_NOT_RENAMING otherwise. */
3941 static enum ada_renaming_category
3942 parse_old_style_renaming (struct type *type,
3943 const char **renamed_entity, int *len,
3944 const char **renaming_expr)
3946 enum ada_renaming_category kind;
3951 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3952 || TYPE_NFIELDS (type) != 1)
3953 return ADA_NOT_RENAMING;
3955 name = type_name_no_tag (type);
3957 return ADA_NOT_RENAMING;
3959 name = strstr (name, "___XR");
3961 return ADA_NOT_RENAMING;
3966 kind = ADA_OBJECT_RENAMING;
3969 kind = ADA_EXCEPTION_RENAMING;
3972 kind = ADA_PACKAGE_RENAMING;
3975 kind = ADA_SUBPROGRAM_RENAMING;
3978 return ADA_NOT_RENAMING;
3981 info = TYPE_FIELD_NAME (type, 0);
3983 return ADA_NOT_RENAMING;
3984 if (renamed_entity != NULL)
3985 *renamed_entity = info;
3986 suffix = strstr (info, "___XE");
3987 if (renaming_expr != NULL)
3988 *renaming_expr = suffix + 5;
3989 if (suffix == NULL || suffix == info)
3990 return ADA_NOT_RENAMING;
3992 *len = suffix - info;
3998 /* Evaluation: Function Calls */
4000 /* Return an lvalue containing the value VAL. This is the identity on
4001 lvalues, and otherwise has the side-effect of allocating memory
4002 in the inferior where a copy of the value contents is copied. */
4004 static struct value *
4005 ensure_lval (struct value *val)
4007 if (VALUE_LVAL (val) == not_lval
4008 || VALUE_LVAL (val) == lval_internalvar)
4010 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4011 const CORE_ADDR addr =
4012 value_as_long (value_allocate_space_in_inferior (len));
4014 set_value_address (val, addr);
4015 VALUE_LVAL (val) = lval_memory;
4016 write_memory (addr, value_contents (val), len);
4022 /* Return the value ACTUAL, converted to be an appropriate value for a
4023 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4024 allocating any necessary descriptors (fat pointers), or copies of
4025 values not residing in memory, updating it as needed. */
4028 ada_convert_actual (struct value *actual, struct type *formal_type0)
4030 struct type *actual_type = ada_check_typedef (value_type (actual));
4031 struct type *formal_type = ada_check_typedef (formal_type0);
4032 struct type *formal_target =
4033 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4034 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4035 struct type *actual_target =
4036 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4037 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4039 if (ada_is_array_descriptor_type (formal_target)
4040 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4041 return make_array_descriptor (formal_type, actual);
4042 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4043 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4045 struct value *result;
4047 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4048 && ada_is_array_descriptor_type (actual_target))
4049 result = desc_data (actual);
4050 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4052 if (VALUE_LVAL (actual) != lval_memory)
4056 actual_type = ada_check_typedef (value_type (actual));
4057 val = allocate_value (actual_type);
4058 memcpy ((char *) value_contents_raw (val),
4059 (char *) value_contents (actual),
4060 TYPE_LENGTH (actual_type));
4061 actual = ensure_lval (val);
4063 result = value_addr (actual);
4067 return value_cast_pointers (formal_type, result);
4069 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4070 return ada_value_ind (actual);
4075 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4076 type TYPE. This is usually an inefficient no-op except on some targets
4077 (such as AVR) where the representation of a pointer and an address
4081 value_pointer (struct value *value, struct type *type)
4083 struct gdbarch *gdbarch = get_type_arch (type);
4084 unsigned len = TYPE_LENGTH (type);
4085 gdb_byte *buf = alloca (len);
4088 addr = value_address (value);
4089 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4090 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4095 /* Push a descriptor of type TYPE for array value ARR on the stack at
4096 *SP, updating *SP to reflect the new descriptor. Return either
4097 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4098 to-descriptor type rather than a descriptor type), a struct value *
4099 representing a pointer to this descriptor. */
4101 static struct value *
4102 make_array_descriptor (struct type *type, struct value *arr)
4104 struct type *bounds_type = desc_bounds_type (type);
4105 struct type *desc_type = desc_base_type (type);
4106 struct value *descriptor = allocate_value (desc_type);
4107 struct value *bounds = allocate_value (bounds_type);
4110 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4113 modify_field (value_type (bounds), value_contents_writeable (bounds),
4114 ada_array_bound (arr, i, 0),
4115 desc_bound_bitpos (bounds_type, i, 0),
4116 desc_bound_bitsize (bounds_type, i, 0));
4117 modify_field (value_type (bounds), value_contents_writeable (bounds),
4118 ada_array_bound (arr, i, 1),
4119 desc_bound_bitpos (bounds_type, i, 1),
4120 desc_bound_bitsize (bounds_type, i, 1));
4123 bounds = ensure_lval (bounds);
4125 modify_field (value_type (descriptor),
4126 value_contents_writeable (descriptor),
4127 value_pointer (ensure_lval (arr),
4128 TYPE_FIELD_TYPE (desc_type, 0)),
4129 fat_pntr_data_bitpos (desc_type),
4130 fat_pntr_data_bitsize (desc_type));
4132 modify_field (value_type (descriptor),
4133 value_contents_writeable (descriptor),
4134 value_pointer (bounds,
4135 TYPE_FIELD_TYPE (desc_type, 1)),
4136 fat_pntr_bounds_bitpos (desc_type),
4137 fat_pntr_bounds_bitsize (desc_type));
4139 descriptor = ensure_lval (descriptor);
4141 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4142 return value_addr (descriptor);
4147 /* Dummy definitions for an experimental caching module that is not
4148 * used in the public sources. */
4151 lookup_cached_symbol (const char *name, domain_enum namespace,
4152 struct symbol **sym, struct block **block)
4158 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4159 struct block *block)
4165 /* Return nonzero if wild matching should be used when searching for
4166 all symbols matching LOOKUP_NAME.
4168 LOOKUP_NAME is expected to be a symbol name after transformation
4169 for Ada lookups (see ada_name_for_lookup). */
4172 should_use_wild_match (const char *lookup_name)
4174 return (strstr (lookup_name, "__") == NULL);
4177 /* Return the result of a standard (literal, C-like) lookup of NAME in
4178 given DOMAIN, visible from lexical block BLOCK. */
4180 static struct symbol *
4181 standard_lookup (const char *name, const struct block *block,
4186 if (lookup_cached_symbol (name, domain, &sym, NULL))
4188 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4189 cache_symbol (name, domain, sym, block_found);
4194 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4195 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4196 since they contend in overloading in the same way. */
4198 is_nonfunction (struct ada_symbol_info syms[], int n)
4202 for (i = 0; i < n; i += 1)
4203 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4204 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4205 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4211 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4212 struct types. Otherwise, they may not. */
4215 equiv_types (struct type *type0, struct type *type1)
4219 if (type0 == NULL || type1 == NULL
4220 || TYPE_CODE (type0) != TYPE_CODE (type1))
4222 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4223 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4224 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4225 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4231 /* True iff SYM0 represents the same entity as SYM1, or one that is
4232 no more defined than that of SYM1. */
4235 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4239 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4240 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4243 switch (SYMBOL_CLASS (sym0))
4249 struct type *type0 = SYMBOL_TYPE (sym0);
4250 struct type *type1 = SYMBOL_TYPE (sym1);
4251 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4252 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4253 int len0 = strlen (name0);
4256 TYPE_CODE (type0) == TYPE_CODE (type1)
4257 && (equiv_types (type0, type1)
4258 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4259 && strncmp (name1 + len0, "___XV", 5) == 0));
4262 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4263 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4269 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4270 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4273 add_defn_to_vec (struct obstack *obstackp,
4275 struct block *block)
4278 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4280 /* Do not try to complete stub types, as the debugger is probably
4281 already scanning all symbols matching a certain name at the
4282 time when this function is called. Trying to replace the stub
4283 type by its associated full type will cause us to restart a scan
4284 which may lead to an infinite recursion. Instead, the client
4285 collecting the matching symbols will end up collecting several
4286 matches, with at least one of them complete. It can then filter
4287 out the stub ones if needed. */
4289 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4291 if (lesseq_defined_than (sym, prevDefns[i].sym))
4293 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4295 prevDefns[i].sym = sym;
4296 prevDefns[i].block = block;
4302 struct ada_symbol_info info;
4306 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4310 /* Number of ada_symbol_info structures currently collected in
4311 current vector in *OBSTACKP. */
4314 num_defns_collected (struct obstack *obstackp)
4316 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4319 /* Vector of ada_symbol_info structures currently collected in current
4320 vector in *OBSTACKP. If FINISH, close off the vector and return
4321 its final address. */
4323 static struct ada_symbol_info *
4324 defns_collected (struct obstack *obstackp, int finish)
4327 return obstack_finish (obstackp);
4329 return (struct ada_symbol_info *) obstack_base (obstackp);
4332 /* Return a minimal symbol matching NAME according to Ada decoding
4333 rules. Returns NULL if there is no such minimal symbol. Names
4334 prefixed with "standard__" are handled specially: "standard__" is
4335 first stripped off, and only static and global symbols are searched. */
4337 struct minimal_symbol *
4338 ada_lookup_simple_minsym (const char *name)
4340 struct objfile *objfile;
4341 struct minimal_symbol *msymbol;
4342 const int wild_match = should_use_wild_match (name);
4344 /* Special case: If the user specifies a symbol name inside package
4345 Standard, do a non-wild matching of the symbol name without
4346 the "standard__" prefix. This was primarily introduced in order
4347 to allow the user to specifically access the standard exceptions
4348 using, for instance, Standard.Constraint_Error when Constraint_Error
4349 is ambiguous (due to the user defining its own Constraint_Error
4350 entity inside its program). */
4351 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4352 name += sizeof ("standard__") - 1;
4354 ALL_MSYMBOLS (objfile, msymbol)
4356 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4357 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4364 /* For all subprograms that statically enclose the subprogram of the
4365 selected frame, add symbols matching identifier NAME in DOMAIN
4366 and their blocks to the list of data in OBSTACKP, as for
4367 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4371 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4372 const char *name, domain_enum namespace,
4377 /* True if TYPE is definitely an artificial type supplied to a symbol
4378 for which no debugging information was given in the symbol file. */
4381 is_nondebugging_type (struct type *type)
4383 const char *name = ada_type_name (type);
4385 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4388 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4389 that are deemed "identical" for practical purposes.
4391 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4392 types and that their number of enumerals is identical (in other
4393 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4396 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4400 /* The heuristic we use here is fairly conservative. We consider
4401 that 2 enumerate types are identical if they have the same
4402 number of enumerals and that all enumerals have the same
4403 underlying value and name. */
4405 /* All enums in the type should have an identical underlying value. */
4406 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4407 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4410 /* All enumerals should also have the same name (modulo any numerical
4412 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4414 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4415 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4416 int len_1 = strlen (name_1);
4417 int len_2 = strlen (name_2);
4419 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4420 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4422 || strncmp (TYPE_FIELD_NAME (type1, i),
4423 TYPE_FIELD_NAME (type2, i),
4431 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4432 that are deemed "identical" for practical purposes. Sometimes,
4433 enumerals are not strictly identical, but their types are so similar
4434 that they can be considered identical.
4436 For instance, consider the following code:
4438 type Color is (Black, Red, Green, Blue, White);
4439 type RGB_Color is new Color range Red .. Blue;
4441 Type RGB_Color is a subrange of an implicit type which is a copy
4442 of type Color. If we call that implicit type RGB_ColorB ("B" is
4443 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4444 As a result, when an expression references any of the enumeral
4445 by name (Eg. "print green"), the expression is technically
4446 ambiguous and the user should be asked to disambiguate. But
4447 doing so would only hinder the user, since it wouldn't matter
4448 what choice he makes, the outcome would always be the same.
4449 So, for practical purposes, we consider them as the same. */
4452 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4456 /* Before performing a thorough comparison check of each type,
4457 we perform a series of inexpensive checks. We expect that these
4458 checks will quickly fail in the vast majority of cases, and thus
4459 help prevent the unnecessary use of a more expensive comparison.
4460 Said comparison also expects us to make some of these checks
4461 (see ada_identical_enum_types_p). */
4463 /* Quick check: All symbols should have an enum type. */
4464 for (i = 0; i < nsyms; i++)
4465 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4468 /* Quick check: They should all have the same value. */
4469 for (i = 1; i < nsyms; i++)
4470 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4473 /* Quick check: They should all have the same number of enumerals. */
4474 for (i = 1; i < nsyms; i++)
4475 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4476 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4479 /* All the sanity checks passed, so we might have a set of
4480 identical enumeration types. Perform a more complete
4481 comparison of the type of each symbol. */
4482 for (i = 1; i < nsyms; i++)
4483 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4484 SYMBOL_TYPE (syms[0].sym)))
4490 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4491 duplicate other symbols in the list (The only case I know of where
4492 this happens is when object files containing stabs-in-ecoff are
4493 linked with files containing ordinary ecoff debugging symbols (or no
4494 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4495 Returns the number of items in the modified list. */
4498 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4502 /* We should never be called with less than 2 symbols, as there
4503 cannot be any extra symbol in that case. But it's easy to
4504 handle, since we have nothing to do in that case. */
4513 /* If two symbols have the same name and one of them is a stub type,
4514 the get rid of the stub. */
4516 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4517 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4519 for (j = 0; j < nsyms; j++)
4522 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4523 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4524 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4525 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4530 /* Two symbols with the same name, same class and same address
4531 should be identical. */
4533 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4534 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4535 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4537 for (j = 0; j < nsyms; j += 1)
4540 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4541 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4542 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4543 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4544 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4545 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4552 for (j = i + 1; j < nsyms; j += 1)
4553 syms[j - 1] = syms[j];
4560 /* If all the remaining symbols are identical enumerals, then
4561 just keep the first one and discard the rest.
4563 Unlike what we did previously, we do not discard any entry
4564 unless they are ALL identical. This is because the symbol
4565 comparison is not a strict comparison, but rather a practical
4566 comparison. If all symbols are considered identical, then
4567 we can just go ahead and use the first one and discard the rest.
4568 But if we cannot reduce the list to a single element, we have
4569 to ask the user to disambiguate anyways. And if we have to
4570 present a multiple-choice menu, it's less confusing if the list
4571 isn't missing some choices that were identical and yet distinct. */
4572 if (symbols_are_identical_enums (syms, nsyms))
4578 /* Given a type that corresponds to a renaming entity, use the type name
4579 to extract the scope (package name or function name, fully qualified,
4580 and following the GNAT encoding convention) where this renaming has been
4581 defined. The string returned needs to be deallocated after use. */
4584 xget_renaming_scope (struct type *renaming_type)
4586 /* The renaming types adhere to the following convention:
4587 <scope>__<rename>___<XR extension>.
4588 So, to extract the scope, we search for the "___XR" extension,
4589 and then backtrack until we find the first "__". */
4591 const char *name = type_name_no_tag (renaming_type);
4592 char *suffix = strstr (name, "___XR");
4597 /* Now, backtrack a bit until we find the first "__". Start looking
4598 at suffix - 3, as the <rename> part is at least one character long. */
4600 for (last = suffix - 3; last > name; last--)
4601 if (last[0] == '_' && last[1] == '_')
4604 /* Make a copy of scope and return it. */
4606 scope_len = last - name;
4607 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4609 strncpy (scope, name, scope_len);
4610 scope[scope_len] = '\0';
4615 /* Return nonzero if NAME corresponds to a package name. */
4618 is_package_name (const char *name)
4620 /* Here, We take advantage of the fact that no symbols are generated
4621 for packages, while symbols are generated for each function.
4622 So the condition for NAME represent a package becomes equivalent
4623 to NAME not existing in our list of symbols. There is only one
4624 small complication with library-level functions (see below). */
4628 /* If it is a function that has not been defined at library level,
4629 then we should be able to look it up in the symbols. */
4630 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4633 /* Library-level function names start with "_ada_". See if function
4634 "_ada_" followed by NAME can be found. */
4636 /* Do a quick check that NAME does not contain "__", since library-level
4637 functions names cannot contain "__" in them. */
4638 if (strstr (name, "__") != NULL)
4641 fun_name = xstrprintf ("_ada_%s", name);
4643 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4646 /* Return nonzero if SYM corresponds to a renaming entity that is
4647 not visible from FUNCTION_NAME. */
4650 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4654 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4657 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4659 make_cleanup (xfree, scope);
4661 /* If the rename has been defined in a package, then it is visible. */
4662 if (is_package_name (scope))
4665 /* Check that the rename is in the current function scope by checking
4666 that its name starts with SCOPE. */
4668 /* If the function name starts with "_ada_", it means that it is
4669 a library-level function. Strip this prefix before doing the
4670 comparison, as the encoding for the renaming does not contain
4672 if (strncmp (function_name, "_ada_", 5) == 0)
4675 return (strncmp (function_name, scope, strlen (scope)) != 0);
4678 /* Remove entries from SYMS that corresponds to a renaming entity that
4679 is not visible from the function associated with CURRENT_BLOCK or
4680 that is superfluous due to the presence of more specific renaming
4681 information. Places surviving symbols in the initial entries of
4682 SYMS and returns the number of surviving symbols.
4685 First, in cases where an object renaming is implemented as a
4686 reference variable, GNAT may produce both the actual reference
4687 variable and the renaming encoding. In this case, we discard the
4690 Second, GNAT emits a type following a specified encoding for each renaming
4691 entity. Unfortunately, STABS currently does not support the definition
4692 of types that are local to a given lexical block, so all renamings types
4693 are emitted at library level. As a consequence, if an application
4694 contains two renaming entities using the same name, and a user tries to
4695 print the value of one of these entities, the result of the ada symbol
4696 lookup will also contain the wrong renaming type.
4698 This function partially covers for this limitation by attempting to
4699 remove from the SYMS list renaming symbols that should be visible
4700 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4701 method with the current information available. The implementation
4702 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4704 - When the user tries to print a rename in a function while there
4705 is another rename entity defined in a package: Normally, the
4706 rename in the function has precedence over the rename in the
4707 package, so the latter should be removed from the list. This is
4708 currently not the case.
4710 - This function will incorrectly remove valid renames if
4711 the CURRENT_BLOCK corresponds to a function which symbol name
4712 has been changed by an "Export" pragma. As a consequence,
4713 the user will be unable to print such rename entities. */
4716 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4717 int nsyms, const struct block *current_block)
4719 struct symbol *current_function;
4720 const char *current_function_name;
4722 int is_new_style_renaming;
4724 /* If there is both a renaming foo___XR... encoded as a variable and
4725 a simple variable foo in the same block, discard the latter.
4726 First, zero out such symbols, then compress. */
4727 is_new_style_renaming = 0;
4728 for (i = 0; i < nsyms; i += 1)
4730 struct symbol *sym = syms[i].sym;
4731 struct block *block = syms[i].block;
4735 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4737 name = SYMBOL_LINKAGE_NAME (sym);
4738 suffix = strstr (name, "___XR");
4742 int name_len = suffix - name;
4745 is_new_style_renaming = 1;
4746 for (j = 0; j < nsyms; j += 1)
4747 if (i != j && syms[j].sym != NULL
4748 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4750 && block == syms[j].block)
4754 if (is_new_style_renaming)
4758 for (j = k = 0; j < nsyms; j += 1)
4759 if (syms[j].sym != NULL)
4767 /* Extract the function name associated to CURRENT_BLOCK.
4768 Abort if unable to do so. */
4770 if (current_block == NULL)
4773 current_function = block_linkage_function (current_block);
4774 if (current_function == NULL)
4777 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4778 if (current_function_name == NULL)
4781 /* Check each of the symbols, and remove it from the list if it is
4782 a type corresponding to a renaming that is out of the scope of
4783 the current block. */
4788 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4789 == ADA_OBJECT_RENAMING
4790 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4794 for (j = i + 1; j < nsyms; j += 1)
4795 syms[j - 1] = syms[j];
4805 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4806 whose name and domain match NAME and DOMAIN respectively.
4807 If no match was found, then extend the search to "enclosing"
4808 routines (in other words, if we're inside a nested function,
4809 search the symbols defined inside the enclosing functions).
4811 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4814 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4815 struct block *block, domain_enum domain,
4818 int block_depth = 0;
4820 while (block != NULL)
4823 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4825 /* If we found a non-function match, assume that's the one. */
4826 if (is_nonfunction (defns_collected (obstackp, 0),
4827 num_defns_collected (obstackp)))
4830 block = BLOCK_SUPERBLOCK (block);
4833 /* If no luck so far, try to find NAME as a local symbol in some lexically
4834 enclosing subprogram. */
4835 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4836 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4839 /* An object of this type is used as the user_data argument when
4840 calling the map_matching_symbols method. */
4844 struct objfile *objfile;
4845 struct obstack *obstackp;
4846 struct symbol *arg_sym;
4850 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4851 to a list of symbols. DATA0 is a pointer to a struct match_data *
4852 containing the obstack that collects the symbol list, the file that SYM
4853 must come from, a flag indicating whether a non-argument symbol has
4854 been found in the current block, and the last argument symbol
4855 passed in SYM within the current block (if any). When SYM is null,
4856 marking the end of a block, the argument symbol is added if no
4857 other has been found. */
4860 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4862 struct match_data *data = (struct match_data *) data0;
4866 if (!data->found_sym && data->arg_sym != NULL)
4867 add_defn_to_vec (data->obstackp,
4868 fixup_symbol_section (data->arg_sym, data->objfile),
4870 data->found_sym = 0;
4871 data->arg_sym = NULL;
4875 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4877 else if (SYMBOL_IS_ARGUMENT (sym))
4878 data->arg_sym = sym;
4881 data->found_sym = 1;
4882 add_defn_to_vec (data->obstackp,
4883 fixup_symbol_section (sym, data->objfile),
4890 /* Compare STRING1 to STRING2, with results as for strcmp.
4891 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4892 implies compare_names (STRING1, STRING2) (they may differ as to
4893 what symbols compare equal). */
4896 compare_names (const char *string1, const char *string2)
4898 while (*string1 != '\0' && *string2 != '\0')
4900 if (isspace (*string1) || isspace (*string2))
4901 return strcmp_iw_ordered (string1, string2);
4902 if (*string1 != *string2)
4910 return strcmp_iw_ordered (string1, string2);
4912 if (*string2 == '\0')
4914 if (is_name_suffix (string1))
4921 if (*string2 == '(')
4922 return strcmp_iw_ordered (string1, string2);
4924 return *string1 - *string2;
4928 /* Add to OBSTACKP all non-local symbols whose name and domain match
4929 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4930 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4933 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4934 domain_enum domain, int global,
4937 struct objfile *objfile;
4938 struct match_data data;
4940 memset (&data, 0, sizeof data);
4941 data.obstackp = obstackp;
4943 ALL_OBJFILES (objfile)
4945 data.objfile = objfile;
4948 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4949 aux_add_nonlocal_symbols, &data,
4952 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4953 aux_add_nonlocal_symbols, &data,
4954 full_match, compare_names);
4957 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4959 ALL_OBJFILES (objfile)
4961 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4962 strcpy (name1, "_ada_");
4963 strcpy (name1 + sizeof ("_ada_") - 1, name);
4964 data.objfile = objfile;
4965 objfile->sf->qf->map_matching_symbols (name1, domain,
4967 aux_add_nonlocal_symbols,
4969 full_match, compare_names);
4974 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4975 scope and in global scopes, returning the number of matches. Sets
4976 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4977 indicating the symbols found and the blocks and symbol tables (if
4978 any) in which they were found. This vector are transient---good only to
4979 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4980 symbol match within the nest of blocks whose innermost member is BLOCK0,
4981 is the one match returned (no other matches in that or
4982 enclosing blocks is returned). If there are any matches in or
4983 surrounding BLOCK0, then these alone are returned. Otherwise, if
4984 FULL_SEARCH is non-zero, then the search extends to global and
4985 file-scope (static) symbol tables.
4986 Names prefixed with "standard__" are handled specially: "standard__"
4987 is first stripped off, and only static and global symbols are searched. */
4990 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4991 domain_enum namespace,
4992 struct ada_symbol_info **results,
4996 struct block *block;
4998 const int wild_match = should_use_wild_match (name0);
5002 obstack_free (&symbol_list_obstack, NULL);
5003 obstack_init (&symbol_list_obstack);
5007 /* Search specified block and its superiors. */
5010 block = (struct block *) block0; /* FIXME: No cast ought to be
5011 needed, but adding const will
5012 have a cascade effect. */
5014 /* Special case: If the user specifies a symbol name inside package
5015 Standard, do a non-wild matching of the symbol name without
5016 the "standard__" prefix. This was primarily introduced in order
5017 to allow the user to specifically access the standard exceptions
5018 using, for instance, Standard.Constraint_Error when Constraint_Error
5019 is ambiguous (due to the user defining its own Constraint_Error
5020 entity inside its program). */
5021 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5024 name = name0 + sizeof ("standard__") - 1;
5027 /* Check the non-global symbols. If we have ANY match, then we're done. */
5029 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5031 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5034 /* No non-global symbols found. Check our cache to see if we have
5035 already performed this search before. If we have, then return
5039 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5042 add_defn_to_vec (&symbol_list_obstack, sym, block);
5046 /* Search symbols from all global blocks. */
5048 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5051 /* Now add symbols from all per-file blocks if we've gotten no hits
5052 (not strictly correct, but perhaps better than an error). */
5054 if (num_defns_collected (&symbol_list_obstack) == 0)
5055 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5059 ndefns = num_defns_collected (&symbol_list_obstack);
5060 *results = defns_collected (&symbol_list_obstack, 1);
5062 ndefns = remove_extra_symbols (*results, ndefns);
5065 cache_symbol (name0, namespace, NULL, NULL);
5067 if (ndefns == 1 && cacheIfUnique)
5068 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5070 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5075 /* If NAME is the name of an entity, return a string that should
5076 be used to look that entity up in Ada units. This string should
5077 be deallocated after use using xfree.
5079 NAME can have any form that the "break" or "print" commands might
5080 recognize. In other words, it does not have to be the "natural"
5081 name, or the "encoded" name. */
5084 ada_name_for_lookup (const char *name)
5087 int nlen = strlen (name);
5089 if (name[0] == '<' && name[nlen - 1] == '>')
5091 canon = xmalloc (nlen - 1);
5092 memcpy (canon, name + 1, nlen - 2);
5093 canon[nlen - 2] = '\0';
5096 canon = xstrdup (ada_encode (ada_fold_name (name)));
5100 /* Implementation of the la_iterate_over_symbols method. */
5103 ada_iterate_over_symbols (const struct block *block,
5104 const char *name, domain_enum domain,
5105 symbol_found_callback_ftype *callback,
5109 struct ada_symbol_info *results;
5111 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5112 for (i = 0; i < ndefs; ++i)
5114 if (! (*callback) (results[i].sym, data))
5120 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
5121 domain_enum namespace, struct block **block_found)
5123 struct ada_symbol_info *candidates;
5126 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates,
5129 if (n_candidates == 0)
5132 if (block_found != NULL)
5133 *block_found = candidates[0].block;
5135 return fixup_symbol_section (candidates[0].sym, NULL);
5138 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5139 scope and in global scopes, or NULL if none. NAME is folded and
5140 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5141 choosing the first symbol if there are multiple choices.
5142 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5143 table in which the symbol was found (in both cases, these
5144 assignments occur only if the pointers are non-null). */
5146 ada_lookup_symbol (const char *name, const struct block *block0,
5147 domain_enum namespace, int *is_a_field_of_this)
5149 if (is_a_field_of_this != NULL)
5150 *is_a_field_of_this = 0;
5153 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5154 block0, namespace, NULL);
5157 static struct symbol *
5158 ada_lookup_symbol_nonlocal (const char *name,
5159 const struct block *block,
5160 const domain_enum domain)
5162 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5166 /* True iff STR is a possible encoded suffix of a normal Ada name
5167 that is to be ignored for matching purposes. Suffixes of parallel
5168 names (e.g., XVE) are not included here. Currently, the possible suffixes
5169 are given by any of the regular expressions:
5171 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5172 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5173 TKB [subprogram suffix for task bodies]
5174 _E[0-9]+[bs]$ [protected object entry suffixes]
5175 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5177 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5178 match is performed. This sequence is used to differentiate homonyms,
5179 is an optional part of a valid name suffix. */
5182 is_name_suffix (const char *str)
5185 const char *matching;
5186 const int len = strlen (str);
5188 /* Skip optional leading __[0-9]+. */
5190 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5193 while (isdigit (str[0]))
5199 if (str[0] == '.' || str[0] == '$')
5202 while (isdigit (matching[0]))
5204 if (matching[0] == '\0')
5210 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5213 while (isdigit (matching[0]))
5215 if (matching[0] == '\0')
5219 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5221 if (strcmp (str, "TKB") == 0)
5225 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5226 with a N at the end. Unfortunately, the compiler uses the same
5227 convention for other internal types it creates. So treating
5228 all entity names that end with an "N" as a name suffix causes
5229 some regressions. For instance, consider the case of an enumerated
5230 type. To support the 'Image attribute, it creates an array whose
5232 Having a single character like this as a suffix carrying some
5233 information is a bit risky. Perhaps we should change the encoding
5234 to be something like "_N" instead. In the meantime, do not do
5235 the following check. */
5236 /* Protected Object Subprograms */
5237 if (len == 1 && str [0] == 'N')
5242 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5245 while (isdigit (matching[0]))
5247 if ((matching[0] == 'b' || matching[0] == 's')
5248 && matching [1] == '\0')
5252 /* ??? We should not modify STR directly, as we are doing below. This
5253 is fine in this case, but may become problematic later if we find
5254 that this alternative did not work, and want to try matching
5255 another one from the begining of STR. Since we modified it, we
5256 won't be able to find the begining of the string anymore! */
5260 while (str[0] != '_' && str[0] != '\0')
5262 if (str[0] != 'n' && str[0] != 'b')
5268 if (str[0] == '\000')
5273 if (str[1] != '_' || str[2] == '\000')
5277 if (strcmp (str + 3, "JM") == 0)
5279 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5280 the LJM suffix in favor of the JM one. But we will
5281 still accept LJM as a valid suffix for a reasonable
5282 amount of time, just to allow ourselves to debug programs
5283 compiled using an older version of GNAT. */
5284 if (strcmp (str + 3, "LJM") == 0)
5288 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5289 || str[4] == 'U' || str[4] == 'P')
5291 if (str[4] == 'R' && str[5] != 'T')
5295 if (!isdigit (str[2]))
5297 for (k = 3; str[k] != '\0'; k += 1)
5298 if (!isdigit (str[k]) && str[k] != '_')
5302 if (str[0] == '$' && isdigit (str[1]))
5304 for (k = 2; str[k] != '\0'; k += 1)
5305 if (!isdigit (str[k]) && str[k] != '_')
5312 /* Return non-zero if the string starting at NAME and ending before
5313 NAME_END contains no capital letters. */
5316 is_valid_name_for_wild_match (const char *name0)
5318 const char *decoded_name = ada_decode (name0);
5321 /* If the decoded name starts with an angle bracket, it means that
5322 NAME0 does not follow the GNAT encoding format. It should then
5323 not be allowed as a possible wild match. */
5324 if (decoded_name[0] == '<')
5327 for (i=0; decoded_name[i] != '\0'; i++)
5328 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5334 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5335 that could start a simple name. Assumes that *NAMEP points into
5336 the string beginning at NAME0. */
5339 advance_wild_match (const char **namep, const char *name0, int target0)
5341 const char *name = *namep;
5351 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5354 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5359 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5360 || name[2] == target0))
5368 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5378 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5379 informational suffixes of NAME (i.e., for which is_name_suffix is
5380 true). Assumes that PATN is a lower-cased Ada simple name. */
5383 wild_match (const char *name, const char *patn)
5386 const char *name0 = name;
5390 const char *match = name;
5394 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5397 if (*p == '\0' && is_name_suffix (name))
5398 return match != name0 && !is_valid_name_for_wild_match (name0);
5400 if (name[-1] == '_')
5403 if (!advance_wild_match (&name, name0, *patn))
5408 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5409 informational suffix. */
5412 full_match (const char *sym_name, const char *search_name)
5414 return !match_name (sym_name, search_name, 0);
5418 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5419 vector *defn_symbols, updating the list of symbols in OBSTACKP
5420 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5421 OBJFILE is the section containing BLOCK.
5422 SYMTAB is recorded with each symbol added. */
5425 ada_add_block_symbols (struct obstack *obstackp,
5426 struct block *block, const char *name,
5427 domain_enum domain, struct objfile *objfile,
5430 struct dict_iterator iter;
5431 int name_len = strlen (name);
5432 /* A matching argument symbol, if any. */
5433 struct symbol *arg_sym;
5434 /* Set true when we find a matching non-argument symbol. */
5442 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5444 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5446 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5447 SYMBOL_DOMAIN (sym), domain)
5448 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5450 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5452 else if (SYMBOL_IS_ARGUMENT (sym))
5457 add_defn_to_vec (obstackp,
5458 fixup_symbol_section (sym, objfile),
5466 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5468 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5470 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5471 SYMBOL_DOMAIN (sym), domain))
5473 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5475 if (SYMBOL_IS_ARGUMENT (sym))
5480 add_defn_to_vec (obstackp,
5481 fixup_symbol_section (sym, objfile),
5489 if (!found_sym && arg_sym != NULL)
5491 add_defn_to_vec (obstackp,
5492 fixup_symbol_section (arg_sym, objfile),
5501 ALL_BLOCK_SYMBOLS (block, iter, sym)
5503 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5504 SYMBOL_DOMAIN (sym), domain))
5508 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5511 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5513 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5518 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5520 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5522 if (SYMBOL_IS_ARGUMENT (sym))
5527 add_defn_to_vec (obstackp,
5528 fixup_symbol_section (sym, objfile),
5536 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5537 They aren't parameters, right? */
5538 if (!found_sym && arg_sym != NULL)
5540 add_defn_to_vec (obstackp,
5541 fixup_symbol_section (arg_sym, objfile),
5548 /* Symbol Completion */
5550 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5551 name in a form that's appropriate for the completion. The result
5552 does not need to be deallocated, but is only good until the next call.
5554 TEXT_LEN is equal to the length of TEXT.
5555 Perform a wild match if WILD_MATCH is set.
5556 ENCODED should be set if TEXT represents the start of a symbol name
5557 in its encoded form. */
5560 symbol_completion_match (const char *sym_name,
5561 const char *text, int text_len,
5562 int wild_match, int encoded)
5564 const int verbatim_match = (text[0] == '<');
5569 /* Strip the leading angle bracket. */
5574 /* First, test against the fully qualified name of the symbol. */
5576 if (strncmp (sym_name, text, text_len) == 0)
5579 if (match && !encoded)
5581 /* One needed check before declaring a positive match is to verify
5582 that iff we are doing a verbatim match, the decoded version
5583 of the symbol name starts with '<'. Otherwise, this symbol name
5584 is not a suitable completion. */
5585 const char *sym_name_copy = sym_name;
5586 int has_angle_bracket;
5588 sym_name = ada_decode (sym_name);
5589 has_angle_bracket = (sym_name[0] == '<');
5590 match = (has_angle_bracket == verbatim_match);
5591 sym_name = sym_name_copy;
5594 if (match && !verbatim_match)
5596 /* When doing non-verbatim match, another check that needs to
5597 be done is to verify that the potentially matching symbol name
5598 does not include capital letters, because the ada-mode would
5599 not be able to understand these symbol names without the
5600 angle bracket notation. */
5603 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5608 /* Second: Try wild matching... */
5610 if (!match && wild_match)
5612 /* Since we are doing wild matching, this means that TEXT
5613 may represent an unqualified symbol name. We therefore must
5614 also compare TEXT against the unqualified name of the symbol. */
5615 sym_name = ada_unqualified_name (ada_decode (sym_name));
5617 if (strncmp (sym_name, text, text_len) == 0)
5621 /* Finally: If we found a mach, prepare the result to return. */
5627 sym_name = add_angle_brackets (sym_name);
5630 sym_name = ada_decode (sym_name);
5635 /* A companion function to ada_make_symbol_completion_list().
5636 Check if SYM_NAME represents a symbol which name would be suitable
5637 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5638 it is appended at the end of the given string vector SV.
5640 ORIG_TEXT is the string original string from the user command
5641 that needs to be completed. WORD is the entire command on which
5642 completion should be performed. These two parameters are used to
5643 determine which part of the symbol name should be added to the
5645 if WILD_MATCH is set, then wild matching is performed.
5646 ENCODED should be set if TEXT represents a symbol name in its
5647 encoded formed (in which case the completion should also be
5651 symbol_completion_add (VEC(char_ptr) **sv,
5652 const char *sym_name,
5653 const char *text, int text_len,
5654 const char *orig_text, const char *word,
5655 int wild_match, int encoded)
5657 const char *match = symbol_completion_match (sym_name, text, text_len,
5658 wild_match, encoded);
5664 /* We found a match, so add the appropriate completion to the given
5667 if (word == orig_text)
5669 completion = xmalloc (strlen (match) + 5);
5670 strcpy (completion, match);
5672 else if (word > orig_text)
5674 /* Return some portion of sym_name. */
5675 completion = xmalloc (strlen (match) + 5);
5676 strcpy (completion, match + (word - orig_text));
5680 /* Return some of ORIG_TEXT plus sym_name. */
5681 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5682 strncpy (completion, word, orig_text - word);
5683 completion[orig_text - word] = '\0';
5684 strcat (completion, match);
5687 VEC_safe_push (char_ptr, *sv, completion);
5690 /* An object of this type is passed as the user_data argument to the
5691 expand_partial_symbol_names method. */
5692 struct add_partial_datum
5694 VEC(char_ptr) **completions;
5703 /* A callback for expand_partial_symbol_names. */
5705 ada_expand_partial_symbol_name (const char *name, void *user_data)
5707 struct add_partial_datum *data = user_data;
5709 return symbol_completion_match (name, data->text, data->text_len,
5710 data->wild_match, data->encoded) != NULL;
5713 /* Return a list of possible symbol names completing TEXT0. The list
5714 is NULL terminated. WORD is the entire command on which completion
5718 ada_make_symbol_completion_list (char *text0, char *word)
5724 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5727 struct minimal_symbol *msymbol;
5728 struct objfile *objfile;
5729 struct block *b, *surrounding_static_block = 0;
5731 struct dict_iterator iter;
5733 if (text0[0] == '<')
5735 text = xstrdup (text0);
5736 make_cleanup (xfree, text);
5737 text_len = strlen (text);
5743 text = xstrdup (ada_encode (text0));
5744 make_cleanup (xfree, text);
5745 text_len = strlen (text);
5746 for (i = 0; i < text_len; i++)
5747 text[i] = tolower (text[i]);
5749 encoded = (strstr (text0, "__") != NULL);
5750 /* If the name contains a ".", then the user is entering a fully
5751 qualified entity name, and the match must not be done in wild
5752 mode. Similarly, if the user wants to complete what looks like
5753 an encoded name, the match must not be done in wild mode. */
5754 wild_match = (strchr (text0, '.') == NULL && !encoded);
5757 /* First, look at the partial symtab symbols. */
5759 struct add_partial_datum data;
5761 data.completions = &completions;
5763 data.text_len = text_len;
5766 data.wild_match = wild_match;
5767 data.encoded = encoded;
5768 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5771 /* At this point scan through the misc symbol vectors and add each
5772 symbol you find to the list. Eventually we want to ignore
5773 anything that isn't a text symbol (everything else will be
5774 handled by the psymtab code above). */
5776 ALL_MSYMBOLS (objfile, msymbol)
5779 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5780 text, text_len, text0, word, wild_match, encoded);
5783 /* Search upwards from currently selected frame (so that we can
5784 complete on local vars. */
5786 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5788 if (!BLOCK_SUPERBLOCK (b))
5789 surrounding_static_block = b; /* For elmin of dups */
5791 ALL_BLOCK_SYMBOLS (b, iter, sym)
5793 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5794 text, text_len, text0, word,
5795 wild_match, encoded);
5799 /* Go through the symtabs and check the externs and statics for
5800 symbols which match. */
5802 ALL_SYMTABS (objfile, s)
5805 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5806 ALL_BLOCK_SYMBOLS (b, iter, sym)
5808 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5809 text, text_len, text0, word,
5810 wild_match, encoded);
5814 ALL_SYMTABS (objfile, s)
5817 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5818 /* Don't do this block twice. */
5819 if (b == surrounding_static_block)
5821 ALL_BLOCK_SYMBOLS (b, iter, sym)
5823 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5824 text, text_len, text0, word,
5825 wild_match, encoded);
5829 /* Append the closing NULL entry. */
5830 VEC_safe_push (char_ptr, completions, NULL);
5832 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5833 return the copy. It's unfortunate that we have to make a copy
5834 of an array that we're about to destroy, but there is nothing much
5835 we can do about it. Fortunately, it's typically not a very large
5838 const size_t completions_size =
5839 VEC_length (char_ptr, completions) * sizeof (char *);
5840 char **result = xmalloc (completions_size);
5842 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5844 VEC_free (char_ptr, completions);
5851 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5852 for tagged types. */
5855 ada_is_dispatch_table_ptr_type (struct type *type)
5859 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5862 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5866 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5869 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5870 to be invisible to users. */
5873 ada_is_ignored_field (struct type *type, int field_num)
5875 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5878 /* Check the name of that field. */
5880 const char *name = TYPE_FIELD_NAME (type, field_num);
5882 /* Anonymous field names should not be printed.
5883 brobecker/2007-02-20: I don't think this can actually happen
5884 but we don't want to print the value of annonymous fields anyway. */
5888 /* A field named "_parent" is internally generated by GNAT for
5889 tagged types, and should not be printed either. */
5890 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5894 /* If this is the dispatch table of a tagged type, then ignore. */
5895 if (ada_is_tagged_type (type, 1)
5896 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5899 /* Not a special field, so it should not be ignored. */
5903 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5904 pointer or reference type whose ultimate target has a tag field. */
5907 ada_is_tagged_type (struct type *type, int refok)
5909 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5912 /* True iff TYPE represents the type of X'Tag */
5915 ada_is_tag_type (struct type *type)
5917 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5921 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5923 return (name != NULL
5924 && strcmp (name, "ada__tags__dispatch_table") == 0);
5928 /* The type of the tag on VAL. */
5931 ada_tag_type (struct value *val)
5933 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5936 /* The value of the tag on VAL. */
5939 ada_value_tag (struct value *val)
5941 return ada_value_struct_elt (val, "_tag", 0);
5944 /* The value of the tag on the object of type TYPE whose contents are
5945 saved at VALADDR, if it is non-null, or is at memory address
5948 static struct value *
5949 value_tag_from_contents_and_address (struct type *type,
5950 const gdb_byte *valaddr,
5953 int tag_byte_offset;
5954 struct type *tag_type;
5956 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5959 const gdb_byte *valaddr1 = ((valaddr == NULL)
5961 : valaddr + tag_byte_offset);
5962 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5964 return value_from_contents_and_address (tag_type, valaddr1, address1);
5969 static struct type *
5970 type_from_tag (struct value *tag)
5972 const char *type_name = ada_tag_name (tag);
5974 if (type_name != NULL)
5975 return ada_find_any_type (ada_encode (type_name));
5986 static int ada_tag_name_1 (void *);
5987 static int ada_tag_name_2 (struct tag_args *);
5989 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5990 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5991 The value stored in ARGS->name is valid until the next call to
5995 ada_tag_name_1 (void *args0)
5997 struct tag_args *args = (struct tag_args *) args0;
5998 static char name[1024];
6003 val = ada_value_struct_elt (args->tag, "tsd", 1);
6005 return ada_tag_name_2 (args);
6006 val = ada_value_struct_elt (val, "expanded_name", 1);
6009 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6010 for (p = name; *p != '\0'; p += 1)
6017 /* Return the "ada__tags__type_specific_data" type. */
6019 static struct type *
6020 ada_get_tsd_type (struct inferior *inf)
6022 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6024 if (data->tsd_type == 0)
6025 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6026 return data->tsd_type;
6029 /* Utility function for ada_tag_name_1 that tries the second
6030 representation for the dispatch table (in which there is no
6031 explicit 'tsd' field in the referent of the tag pointer, and instead
6032 the tsd pointer is stored just before the dispatch table. */
6035 ada_tag_name_2 (struct tag_args *args)
6037 struct type *info_type;
6038 static char name[1024];
6040 struct value *val, *valp;
6043 info_type = ada_get_tsd_type (current_inferior());
6044 if (info_type == NULL)
6046 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
6047 valp = value_cast (info_type, args->tag);
6050 val = value_ind (value_ptradd (valp, -1));
6053 val = ada_value_struct_elt (val, "expanded_name", 1);
6056 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6057 for (p = name; *p != '\0'; p += 1)
6064 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6068 ada_tag_name (struct value *tag)
6070 struct tag_args args;
6072 if (!ada_is_tag_type (value_type (tag)))
6076 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6080 /* The parent type of TYPE, or NULL if none. */
6083 ada_parent_type (struct type *type)
6087 type = ada_check_typedef (type);
6089 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6092 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6093 if (ada_is_parent_field (type, i))
6095 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6097 /* If the _parent field is a pointer, then dereference it. */
6098 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6099 parent_type = TYPE_TARGET_TYPE (parent_type);
6100 /* If there is a parallel XVS type, get the actual base type. */
6101 parent_type = ada_get_base_type (parent_type);
6103 return ada_check_typedef (parent_type);
6109 /* True iff field number FIELD_NUM of structure type TYPE contains the
6110 parent-type (inherited) fields of a derived type. Assumes TYPE is
6111 a structure type with at least FIELD_NUM+1 fields. */
6114 ada_is_parent_field (struct type *type, int field_num)
6116 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6118 return (name != NULL
6119 && (strncmp (name, "PARENT", 6) == 0
6120 || strncmp (name, "_parent", 7) == 0));
6123 /* True iff field number FIELD_NUM of structure type TYPE is a
6124 transparent wrapper field (which should be silently traversed when doing
6125 field selection and flattened when printing). Assumes TYPE is a
6126 structure type with at least FIELD_NUM+1 fields. Such fields are always
6130 ada_is_wrapper_field (struct type *type, int field_num)
6132 const char *name = TYPE_FIELD_NAME (type, field_num);
6134 return (name != NULL
6135 && (strncmp (name, "PARENT", 6) == 0
6136 || strcmp (name, "REP") == 0
6137 || strncmp (name, "_parent", 7) == 0
6138 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6141 /* True iff field number FIELD_NUM of structure or union type TYPE
6142 is a variant wrapper. Assumes TYPE is a structure type with at least
6143 FIELD_NUM+1 fields. */
6146 ada_is_variant_part (struct type *type, int field_num)
6148 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6150 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6151 || (is_dynamic_field (type, field_num)
6152 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6153 == TYPE_CODE_UNION)));
6156 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6157 whose discriminants are contained in the record type OUTER_TYPE,
6158 returns the type of the controlling discriminant for the variant.
6159 May return NULL if the type could not be found. */
6162 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6164 char *name = ada_variant_discrim_name (var_type);
6166 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6169 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6170 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6171 represents a 'when others' clause; otherwise 0. */
6174 ada_is_others_clause (struct type *type, int field_num)
6176 const char *name = TYPE_FIELD_NAME (type, field_num);
6178 return (name != NULL && name[0] == 'O');
6181 /* Assuming that TYPE0 is the type of the variant part of a record,
6182 returns the name of the discriminant controlling the variant.
6183 The value is valid until the next call to ada_variant_discrim_name. */
6186 ada_variant_discrim_name (struct type *type0)
6188 static char *result = NULL;
6189 static size_t result_len = 0;
6192 const char *discrim_end;
6193 const char *discrim_start;
6195 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6196 type = TYPE_TARGET_TYPE (type0);
6200 name = ada_type_name (type);
6202 if (name == NULL || name[0] == '\000')
6205 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6208 if (strncmp (discrim_end, "___XVN", 6) == 0)
6211 if (discrim_end == name)
6214 for (discrim_start = discrim_end; discrim_start != name + 3;
6217 if (discrim_start == name + 1)
6219 if ((discrim_start > name + 3
6220 && strncmp (discrim_start - 3, "___", 3) == 0)
6221 || discrim_start[-1] == '.')
6225 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6226 strncpy (result, discrim_start, discrim_end - discrim_start);
6227 result[discrim_end - discrim_start] = '\0';
6231 /* Scan STR for a subtype-encoded number, beginning at position K.
6232 Put the position of the character just past the number scanned in
6233 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6234 Return 1 if there was a valid number at the given position, and 0
6235 otherwise. A "subtype-encoded" number consists of the absolute value
6236 in decimal, followed by the letter 'm' to indicate a negative number.
6237 Assumes 0m does not occur. */
6240 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6244 if (!isdigit (str[k]))
6247 /* Do it the hard way so as not to make any assumption about
6248 the relationship of unsigned long (%lu scan format code) and
6251 while (isdigit (str[k]))
6253 RU = RU * 10 + (str[k] - '0');
6260 *R = (-(LONGEST) (RU - 1)) - 1;
6266 /* NOTE on the above: Technically, C does not say what the results of
6267 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6268 number representable as a LONGEST (although either would probably work
6269 in most implementations). When RU>0, the locution in the then branch
6270 above is always equivalent to the negative of RU. */
6277 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6278 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6279 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6282 ada_in_variant (LONGEST val, struct type *type, int field_num)
6284 const char *name = TYPE_FIELD_NAME (type, field_num);
6298 if (!ada_scan_number (name, p + 1, &W, &p))
6308 if (!ada_scan_number (name, p + 1, &L, &p)
6309 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6311 if (val >= L && val <= U)
6323 /* FIXME: Lots of redundancy below. Try to consolidate. */
6325 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6326 ARG_TYPE, extract and return the value of one of its (non-static)
6327 fields. FIELDNO says which field. Differs from value_primitive_field
6328 only in that it can handle packed values of arbitrary type. */
6330 static struct value *
6331 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6332 struct type *arg_type)
6336 arg_type = ada_check_typedef (arg_type);
6337 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6339 /* Handle packed fields. */
6341 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6343 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6344 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6346 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6347 offset + bit_pos / 8,
6348 bit_pos % 8, bit_size, type);
6351 return value_primitive_field (arg1, offset, fieldno, arg_type);
6354 /* Find field with name NAME in object of type TYPE. If found,
6355 set the following for each argument that is non-null:
6356 - *FIELD_TYPE_P to the field's type;
6357 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6358 an object of that type;
6359 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6360 - *BIT_SIZE_P to its size in bits if the field is packed, and
6362 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6363 fields up to but not including the desired field, or by the total
6364 number of fields if not found. A NULL value of NAME never
6365 matches; the function just counts visible fields in this case.
6367 Returns 1 if found, 0 otherwise. */
6370 find_struct_field (const char *name, struct type *type, int offset,
6371 struct type **field_type_p,
6372 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6377 type = ada_check_typedef (type);
6379 if (field_type_p != NULL)
6380 *field_type_p = NULL;
6381 if (byte_offset_p != NULL)
6383 if (bit_offset_p != NULL)
6385 if (bit_size_p != NULL)
6388 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6390 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6391 int fld_offset = offset + bit_pos / 8;
6392 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6394 if (t_field_name == NULL)
6397 else if (name != NULL && field_name_match (t_field_name, name))
6399 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6401 if (field_type_p != NULL)
6402 *field_type_p = TYPE_FIELD_TYPE (type, i);
6403 if (byte_offset_p != NULL)
6404 *byte_offset_p = fld_offset;
6405 if (bit_offset_p != NULL)
6406 *bit_offset_p = bit_pos % 8;
6407 if (bit_size_p != NULL)
6408 *bit_size_p = bit_size;
6411 else if (ada_is_wrapper_field (type, i))
6413 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6414 field_type_p, byte_offset_p, bit_offset_p,
6415 bit_size_p, index_p))
6418 else if (ada_is_variant_part (type, i))
6420 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6423 struct type *field_type
6424 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6426 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6428 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6430 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6431 field_type_p, byte_offset_p,
6432 bit_offset_p, bit_size_p, index_p))
6436 else if (index_p != NULL)
6442 /* Number of user-visible fields in record type TYPE. */
6445 num_visible_fields (struct type *type)
6450 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6454 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6455 and search in it assuming it has (class) type TYPE.
6456 If found, return value, else return NULL.
6458 Searches recursively through wrapper fields (e.g., '_parent'). */
6460 static struct value *
6461 ada_search_struct_field (char *name, struct value *arg, int offset,
6466 type = ada_check_typedef (type);
6467 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6469 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6471 if (t_field_name == NULL)
6474 else if (field_name_match (t_field_name, name))
6475 return ada_value_primitive_field (arg, offset, i, type);
6477 else if (ada_is_wrapper_field (type, i))
6479 struct value *v = /* Do not let indent join lines here. */
6480 ada_search_struct_field (name, arg,
6481 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6482 TYPE_FIELD_TYPE (type, i));
6488 else if (ada_is_variant_part (type, i))
6490 /* PNH: Do we ever get here? See find_struct_field. */
6492 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6494 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6496 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6498 struct value *v = ada_search_struct_field /* Force line
6501 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6502 TYPE_FIELD_TYPE (field_type, j));
6512 static struct value *ada_index_struct_field_1 (int *, struct value *,
6513 int, struct type *);
6516 /* Return field #INDEX in ARG, where the index is that returned by
6517 * find_struct_field through its INDEX_P argument. Adjust the address
6518 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6519 * If found, return value, else return NULL. */
6521 static struct value *
6522 ada_index_struct_field (int index, struct value *arg, int offset,
6525 return ada_index_struct_field_1 (&index, arg, offset, type);
6529 /* Auxiliary function for ada_index_struct_field. Like
6530 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6533 static struct value *
6534 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6538 type = ada_check_typedef (type);
6540 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6542 if (TYPE_FIELD_NAME (type, i) == NULL)
6544 else if (ada_is_wrapper_field (type, i))
6546 struct value *v = /* Do not let indent join lines here. */
6547 ada_index_struct_field_1 (index_p, arg,
6548 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6549 TYPE_FIELD_TYPE (type, i));
6555 else if (ada_is_variant_part (type, i))
6557 /* PNH: Do we ever get here? See ada_search_struct_field,
6558 find_struct_field. */
6559 error (_("Cannot assign this kind of variant record"));
6561 else if (*index_p == 0)
6562 return ada_value_primitive_field (arg, offset, i, type);
6569 /* Given ARG, a value of type (pointer or reference to a)*
6570 structure/union, extract the component named NAME from the ultimate
6571 target structure/union and return it as a value with its
6574 The routine searches for NAME among all members of the structure itself
6575 and (recursively) among all members of any wrapper members
6578 If NO_ERR, then simply return NULL in case of error, rather than
6582 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6584 struct type *t, *t1;
6588 t1 = t = ada_check_typedef (value_type (arg));
6589 if (TYPE_CODE (t) == TYPE_CODE_REF)
6591 t1 = TYPE_TARGET_TYPE (t);
6594 t1 = ada_check_typedef (t1);
6595 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6597 arg = coerce_ref (arg);
6602 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6604 t1 = TYPE_TARGET_TYPE (t);
6607 t1 = ada_check_typedef (t1);
6608 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6610 arg = value_ind (arg);
6617 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6621 v = ada_search_struct_field (name, arg, 0, t);
6624 int bit_offset, bit_size, byte_offset;
6625 struct type *field_type;
6628 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6629 address = value_as_address (arg);
6631 address = unpack_pointer (t, value_contents (arg));
6633 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6634 if (find_struct_field (name, t1, 0,
6635 &field_type, &byte_offset, &bit_offset,
6640 if (TYPE_CODE (t) == TYPE_CODE_REF)
6641 arg = ada_coerce_ref (arg);
6643 arg = ada_value_ind (arg);
6644 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6645 bit_offset, bit_size,
6649 v = value_at_lazy (field_type, address + byte_offset);
6653 if (v != NULL || no_err)
6656 error (_("There is no member named %s."), name);
6662 error (_("Attempt to extract a component of "
6663 "a value that is not a record."));
6666 /* Given a type TYPE, look up the type of the component of type named NAME.
6667 If DISPP is non-null, add its byte displacement from the beginning of a
6668 structure (pointed to by a value) of type TYPE to *DISPP (does not
6669 work for packed fields).
6671 Matches any field whose name has NAME as a prefix, possibly
6674 TYPE can be either a struct or union. If REFOK, TYPE may also
6675 be a (pointer or reference)+ to a struct or union, and the
6676 ultimate target type will be searched.
6678 Looks recursively into variant clauses and parent types.
6680 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6681 TYPE is not a type of the right kind. */
6683 static struct type *
6684 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6685 int noerr, int *dispp)
6692 if (refok && type != NULL)
6695 type = ada_check_typedef (type);
6696 if (TYPE_CODE (type) != TYPE_CODE_PTR
6697 && TYPE_CODE (type) != TYPE_CODE_REF)
6699 type = TYPE_TARGET_TYPE (type);
6703 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6704 && TYPE_CODE (type) != TYPE_CODE_UNION))
6710 target_terminal_ours ();
6711 gdb_flush (gdb_stdout);
6713 error (_("Type (null) is not a structure or union type"));
6716 /* XXX: type_sprint */
6717 fprintf_unfiltered (gdb_stderr, _("Type "));
6718 type_print (type, "", gdb_stderr, -1);
6719 error (_(" is not a structure or union type"));
6724 type = to_static_fixed_type (type);
6726 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6728 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6732 if (t_field_name == NULL)
6735 else if (field_name_match (t_field_name, name))
6738 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6739 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6742 else if (ada_is_wrapper_field (type, i))
6745 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6750 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6755 else if (ada_is_variant_part (type, i))
6758 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6761 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6763 /* FIXME pnh 2008/01/26: We check for a field that is
6764 NOT wrapped in a struct, since the compiler sometimes
6765 generates these for unchecked variant types. Revisit
6766 if the compiler changes this practice. */
6767 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6769 if (v_field_name != NULL
6770 && field_name_match (v_field_name, name))
6771 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6773 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6780 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6791 target_terminal_ours ();
6792 gdb_flush (gdb_stdout);
6795 /* XXX: type_sprint */
6796 fprintf_unfiltered (gdb_stderr, _("Type "));
6797 type_print (type, "", gdb_stderr, -1);
6798 error (_(" has no component named <null>"));
6802 /* XXX: type_sprint */
6803 fprintf_unfiltered (gdb_stderr, _("Type "));
6804 type_print (type, "", gdb_stderr, -1);
6805 error (_(" has no component named %s"), name);
6812 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6813 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6814 represents an unchecked union (that is, the variant part of a
6815 record that is named in an Unchecked_Union pragma). */
6818 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6820 char *discrim_name = ada_variant_discrim_name (var_type);
6822 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6827 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6828 within a value of type OUTER_TYPE that is stored in GDB at
6829 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6830 numbering from 0) is applicable. Returns -1 if none are. */
6833 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6834 const gdb_byte *outer_valaddr)
6838 char *discrim_name = ada_variant_discrim_name (var_type);
6839 struct value *outer;
6840 struct value *discrim;
6841 LONGEST discrim_val;
6843 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6844 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6845 if (discrim == NULL)
6847 discrim_val = value_as_long (discrim);
6850 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6852 if (ada_is_others_clause (var_type, i))
6854 else if (ada_in_variant (discrim_val, var_type, i))
6858 return others_clause;
6863 /* Dynamic-Sized Records */
6865 /* Strategy: The type ostensibly attached to a value with dynamic size
6866 (i.e., a size that is not statically recorded in the debugging
6867 data) does not accurately reflect the size or layout of the value.
6868 Our strategy is to convert these values to values with accurate,
6869 conventional types that are constructed on the fly. */
6871 /* There is a subtle and tricky problem here. In general, we cannot
6872 determine the size of dynamic records without its data. However,
6873 the 'struct value' data structure, which GDB uses to represent
6874 quantities in the inferior process (the target), requires the size
6875 of the type at the time of its allocation in order to reserve space
6876 for GDB's internal copy of the data. That's why the
6877 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6878 rather than struct value*s.
6880 However, GDB's internal history variables ($1, $2, etc.) are
6881 struct value*s containing internal copies of the data that are not, in
6882 general, the same as the data at their corresponding addresses in
6883 the target. Fortunately, the types we give to these values are all
6884 conventional, fixed-size types (as per the strategy described
6885 above), so that we don't usually have to perform the
6886 'to_fixed_xxx_type' conversions to look at their values.
6887 Unfortunately, there is one exception: if one of the internal
6888 history variables is an array whose elements are unconstrained
6889 records, then we will need to create distinct fixed types for each
6890 element selected. */
6892 /* The upshot of all of this is that many routines take a (type, host
6893 address, target address) triple as arguments to represent a value.
6894 The host address, if non-null, is supposed to contain an internal
6895 copy of the relevant data; otherwise, the program is to consult the
6896 target at the target address. */
6898 /* Assuming that VAL0 represents a pointer value, the result of
6899 dereferencing it. Differs from value_ind in its treatment of
6900 dynamic-sized types. */
6903 ada_value_ind (struct value *val0)
6905 struct value *val = unwrap_value (value_ind (val0));
6907 return ada_to_fixed_value (val);
6910 /* The value resulting from dereferencing any "reference to"
6911 qualifiers on VAL0. */
6913 static struct value *
6914 ada_coerce_ref (struct value *val0)
6916 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6918 struct value *val = val0;
6920 val = coerce_ref (val);
6921 val = unwrap_value (val);
6922 return ada_to_fixed_value (val);
6928 /* Return OFF rounded upward if necessary to a multiple of
6929 ALIGNMENT (a power of 2). */
6932 align_value (unsigned int off, unsigned int alignment)
6934 return (off + alignment - 1) & ~(alignment - 1);
6937 /* Return the bit alignment required for field #F of template type TYPE. */
6940 field_alignment (struct type *type, int f)
6942 const char *name = TYPE_FIELD_NAME (type, f);
6946 /* The field name should never be null, unless the debugging information
6947 is somehow malformed. In this case, we assume the field does not
6948 require any alignment. */
6952 len = strlen (name);
6954 if (!isdigit (name[len - 1]))
6957 if (isdigit (name[len - 2]))
6958 align_offset = len - 2;
6960 align_offset = len - 1;
6962 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6963 return TARGET_CHAR_BIT;
6965 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6968 /* Find a symbol named NAME. Ignores ambiguity. */
6971 ada_find_any_symbol (const char *name)
6975 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6976 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6979 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6983 /* Find a type named NAME. Ignores ambiguity. This routine will look
6984 solely for types defined by debug info, it will not search the GDB
6988 ada_find_any_type (const char *name)
6990 struct symbol *sym = ada_find_any_symbol (name);
6993 return SYMBOL_TYPE (sym);
6998 /* Given NAME and an associated BLOCK, search all symbols for
6999 NAME suffixed with "___XR", which is the ``renaming'' symbol
7000 associated to NAME. Return this symbol if found, return
7004 ada_find_renaming_symbol (const char *name, struct block *block)
7008 sym = find_old_style_renaming_symbol (name, block);
7013 /* Not right yet. FIXME pnh 7/20/2007. */
7014 sym = ada_find_any_symbol (name);
7015 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7021 static struct symbol *
7022 find_old_style_renaming_symbol (const char *name, struct block *block)
7024 const struct symbol *function_sym = block_linkage_function (block);
7027 if (function_sym != NULL)
7029 /* If the symbol is defined inside a function, NAME is not fully
7030 qualified. This means we need to prepend the function name
7031 as well as adding the ``___XR'' suffix to build the name of
7032 the associated renaming symbol. */
7033 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7034 /* Function names sometimes contain suffixes used
7035 for instance to qualify nested subprograms. When building
7036 the XR type name, we need to make sure that this suffix is
7037 not included. So do not include any suffix in the function
7038 name length below. */
7039 int function_name_len = ada_name_prefix_len (function_name);
7040 const int rename_len = function_name_len + 2 /* "__" */
7041 + strlen (name) + 6 /* "___XR\0" */ ;
7043 /* Strip the suffix if necessary. */
7044 ada_remove_trailing_digits (function_name, &function_name_len);
7045 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7046 ada_remove_Xbn_suffix (function_name, &function_name_len);
7048 /* Library-level functions are a special case, as GNAT adds
7049 a ``_ada_'' prefix to the function name to avoid namespace
7050 pollution. However, the renaming symbols themselves do not
7051 have this prefix, so we need to skip this prefix if present. */
7052 if (function_name_len > 5 /* "_ada_" */
7053 && strstr (function_name, "_ada_") == function_name)
7056 function_name_len -= 5;
7059 rename = (char *) alloca (rename_len * sizeof (char));
7060 strncpy (rename, function_name, function_name_len);
7061 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7066 const int rename_len = strlen (name) + 6;
7068 rename = (char *) alloca (rename_len * sizeof (char));
7069 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7072 return ada_find_any_symbol (rename);
7075 /* Because of GNAT encoding conventions, several GDB symbols may match a
7076 given type name. If the type denoted by TYPE0 is to be preferred to
7077 that of TYPE1 for purposes of type printing, return non-zero;
7078 otherwise return 0. */
7081 ada_prefer_type (struct type *type0, struct type *type1)
7085 else if (type0 == NULL)
7087 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7089 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7091 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7093 else if (ada_is_constrained_packed_array_type (type0))
7095 else if (ada_is_array_descriptor_type (type0)
7096 && !ada_is_array_descriptor_type (type1))
7100 const char *type0_name = type_name_no_tag (type0);
7101 const char *type1_name = type_name_no_tag (type1);
7103 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7104 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7110 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7111 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7114 ada_type_name (struct type *type)
7118 else if (TYPE_NAME (type) != NULL)
7119 return TYPE_NAME (type);
7121 return TYPE_TAG_NAME (type);
7124 /* Search the list of "descriptive" types associated to TYPE for a type
7125 whose name is NAME. */
7127 static struct type *
7128 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7130 struct type *result;
7132 /* If there no descriptive-type info, then there is no parallel type
7134 if (!HAVE_GNAT_AUX_INFO (type))
7137 result = TYPE_DESCRIPTIVE_TYPE (type);
7138 while (result != NULL)
7140 const char *result_name = ada_type_name (result);
7142 if (result_name == NULL)
7144 warning (_("unexpected null name on descriptive type"));
7148 /* If the names match, stop. */
7149 if (strcmp (result_name, name) == 0)
7152 /* Otherwise, look at the next item on the list, if any. */
7153 if (HAVE_GNAT_AUX_INFO (result))
7154 result = TYPE_DESCRIPTIVE_TYPE (result);
7159 /* If we didn't find a match, see whether this is a packed array. With
7160 older compilers, the descriptive type information is either absent or
7161 irrelevant when it comes to packed arrays so the above lookup fails.
7162 Fall back to using a parallel lookup by name in this case. */
7163 if (result == NULL && ada_is_constrained_packed_array_type (type))
7164 return ada_find_any_type (name);
7169 /* Find a parallel type to TYPE with the specified NAME, using the
7170 descriptive type taken from the debugging information, if available,
7171 and otherwise using the (slower) name-based method. */
7173 static struct type *
7174 ada_find_parallel_type_with_name (struct type *type, const char *name)
7176 struct type *result = NULL;
7178 if (HAVE_GNAT_AUX_INFO (type))
7179 result = find_parallel_type_by_descriptive_type (type, name);
7181 result = ada_find_any_type (name);
7186 /* Same as above, but specify the name of the parallel type by appending
7187 SUFFIX to the name of TYPE. */
7190 ada_find_parallel_type (struct type *type, const char *suffix)
7193 const char *typename = ada_type_name (type);
7196 if (typename == NULL)
7199 len = strlen (typename);
7201 name = (char *) alloca (len + strlen (suffix) + 1);
7203 strcpy (name, typename);
7204 strcpy (name + len, suffix);
7206 return ada_find_parallel_type_with_name (type, name);
7209 /* If TYPE is a variable-size record type, return the corresponding template
7210 type describing its fields. Otherwise, return NULL. */
7212 static struct type *
7213 dynamic_template_type (struct type *type)
7215 type = ada_check_typedef (type);
7217 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7218 || ada_type_name (type) == NULL)
7222 int len = strlen (ada_type_name (type));
7224 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7227 return ada_find_parallel_type (type, "___XVE");
7231 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7232 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7235 is_dynamic_field (struct type *templ_type, int field_num)
7237 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7240 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7241 && strstr (name, "___XVL") != NULL;
7244 /* The index of the variant field of TYPE, or -1 if TYPE does not
7245 represent a variant record type. */
7248 variant_field_index (struct type *type)
7252 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7255 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7257 if (ada_is_variant_part (type, f))
7263 /* A record type with no fields. */
7265 static struct type *
7266 empty_record (struct type *template)
7268 struct type *type = alloc_type_copy (template);
7270 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7271 TYPE_NFIELDS (type) = 0;
7272 TYPE_FIELDS (type) = NULL;
7273 INIT_CPLUS_SPECIFIC (type);
7274 TYPE_NAME (type) = "<empty>";
7275 TYPE_TAG_NAME (type) = NULL;
7276 TYPE_LENGTH (type) = 0;
7280 /* An ordinary record type (with fixed-length fields) that describes
7281 the value of type TYPE at VALADDR or ADDRESS (see comments at
7282 the beginning of this section) VAL according to GNAT conventions.
7283 DVAL0 should describe the (portion of a) record that contains any
7284 necessary discriminants. It should be NULL if value_type (VAL) is
7285 an outer-level type (i.e., as opposed to a branch of a variant.) A
7286 variant field (unless unchecked) is replaced by a particular branch
7289 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7290 length are not statically known are discarded. As a consequence,
7291 VALADDR, ADDRESS and DVAL0 are ignored.
7293 NOTE: Limitations: For now, we assume that dynamic fields and
7294 variants occupy whole numbers of bytes. However, they need not be
7298 ada_template_to_fixed_record_type_1 (struct type *type,
7299 const gdb_byte *valaddr,
7300 CORE_ADDR address, struct value *dval0,
7301 int keep_dynamic_fields)
7303 struct value *mark = value_mark ();
7306 int nfields, bit_len;
7312 /* Compute the number of fields in this record type that are going
7313 to be processed: unless keep_dynamic_fields, this includes only
7314 fields whose position and length are static will be processed. */
7315 if (keep_dynamic_fields)
7316 nfields = TYPE_NFIELDS (type);
7320 while (nfields < TYPE_NFIELDS (type)
7321 && !ada_is_variant_part (type, nfields)
7322 && !is_dynamic_field (type, nfields))
7326 rtype = alloc_type_copy (type);
7327 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7328 INIT_CPLUS_SPECIFIC (rtype);
7329 TYPE_NFIELDS (rtype) = nfields;
7330 TYPE_FIELDS (rtype) = (struct field *)
7331 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7332 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7333 TYPE_NAME (rtype) = ada_type_name (type);
7334 TYPE_TAG_NAME (rtype) = NULL;
7335 TYPE_FIXED_INSTANCE (rtype) = 1;
7341 for (f = 0; f < nfields; f += 1)
7343 off = align_value (off, field_alignment (type, f))
7344 + TYPE_FIELD_BITPOS (type, f);
7345 TYPE_FIELD_BITPOS (rtype, f) = off;
7346 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7348 if (ada_is_variant_part (type, f))
7353 else if (is_dynamic_field (type, f))
7355 const gdb_byte *field_valaddr = valaddr;
7356 CORE_ADDR field_address = address;
7357 struct type *field_type =
7358 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7362 /* rtype's length is computed based on the run-time
7363 value of discriminants. If the discriminants are not
7364 initialized, the type size may be completely bogus and
7365 GDB may fail to allocate a value for it. So check the
7366 size first before creating the value. */
7368 dval = value_from_contents_and_address (rtype, valaddr, address);
7373 /* If the type referenced by this field is an aligner type, we need
7374 to unwrap that aligner type, because its size might not be set.
7375 Keeping the aligner type would cause us to compute the wrong
7376 size for this field, impacting the offset of the all the fields
7377 that follow this one. */
7378 if (ada_is_aligner_type (field_type))
7380 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7382 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7383 field_address = cond_offset_target (field_address, field_offset);
7384 field_type = ada_aligned_type (field_type);
7387 field_valaddr = cond_offset_host (field_valaddr,
7388 off / TARGET_CHAR_BIT);
7389 field_address = cond_offset_target (field_address,
7390 off / TARGET_CHAR_BIT);
7392 /* Get the fixed type of the field. Note that, in this case,
7393 we do not want to get the real type out of the tag: if
7394 the current field is the parent part of a tagged record,
7395 we will get the tag of the object. Clearly wrong: the real
7396 type of the parent is not the real type of the child. We
7397 would end up in an infinite loop. */
7398 field_type = ada_get_base_type (field_type);
7399 field_type = ada_to_fixed_type (field_type, field_valaddr,
7400 field_address, dval, 0);
7401 /* If the field size is already larger than the maximum
7402 object size, then the record itself will necessarily
7403 be larger than the maximum object size. We need to make
7404 this check now, because the size might be so ridiculously
7405 large (due to an uninitialized variable in the inferior)
7406 that it would cause an overflow when adding it to the
7408 check_size (field_type);
7410 TYPE_FIELD_TYPE (rtype, f) = field_type;
7411 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7412 /* The multiplication can potentially overflow. But because
7413 the field length has been size-checked just above, and
7414 assuming that the maximum size is a reasonable value,
7415 an overflow should not happen in practice. So rather than
7416 adding overflow recovery code to this already complex code,
7417 we just assume that it's not going to happen. */
7419 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7423 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7425 /* If our field is a typedef type (most likely a typedef of
7426 a fat pointer, encoding an array access), then we need to
7427 look at its target type to determine its characteristics.
7428 In particular, we would miscompute the field size if we took
7429 the size of the typedef (zero), instead of the size of
7431 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7432 field_type = ada_typedef_target_type (field_type);
7434 TYPE_FIELD_TYPE (rtype, f) = field_type;
7435 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7436 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7438 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7441 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7443 if (off + fld_bit_len > bit_len)
7444 bit_len = off + fld_bit_len;
7446 TYPE_LENGTH (rtype) =
7447 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7450 /* We handle the variant part, if any, at the end because of certain
7451 odd cases in which it is re-ordered so as NOT to be the last field of
7452 the record. This can happen in the presence of representation
7454 if (variant_field >= 0)
7456 struct type *branch_type;
7458 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7461 dval = value_from_contents_and_address (rtype, valaddr, address);
7466 to_fixed_variant_branch_type
7467 (TYPE_FIELD_TYPE (type, variant_field),
7468 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7469 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7470 if (branch_type == NULL)
7472 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7473 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7474 TYPE_NFIELDS (rtype) -= 1;
7478 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7479 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7481 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7483 if (off + fld_bit_len > bit_len)
7484 bit_len = off + fld_bit_len;
7485 TYPE_LENGTH (rtype) =
7486 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7490 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7491 should contain the alignment of that record, which should be a strictly
7492 positive value. If null or negative, then something is wrong, most
7493 probably in the debug info. In that case, we don't round up the size
7494 of the resulting type. If this record is not part of another structure,
7495 the current RTYPE length might be good enough for our purposes. */
7496 if (TYPE_LENGTH (type) <= 0)
7498 if (TYPE_NAME (rtype))
7499 warning (_("Invalid type size for `%s' detected: %d."),
7500 TYPE_NAME (rtype), TYPE_LENGTH (type));
7502 warning (_("Invalid type size for <unnamed> detected: %d."),
7503 TYPE_LENGTH (type));
7507 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7508 TYPE_LENGTH (type));
7511 value_free_to_mark (mark);
7512 if (TYPE_LENGTH (rtype) > varsize_limit)
7513 error (_("record type with dynamic size is larger than varsize-limit"));
7517 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7520 static struct type *
7521 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7522 CORE_ADDR address, struct value *dval0)
7524 return ada_template_to_fixed_record_type_1 (type, valaddr,
7528 /* An ordinary record type in which ___XVL-convention fields and
7529 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7530 static approximations, containing all possible fields. Uses
7531 no runtime values. Useless for use in values, but that's OK,
7532 since the results are used only for type determinations. Works on both
7533 structs and unions. Representation note: to save space, we memorize
7534 the result of this function in the TYPE_TARGET_TYPE of the
7537 static struct type *
7538 template_to_static_fixed_type (struct type *type0)
7544 if (TYPE_TARGET_TYPE (type0) != NULL)
7545 return TYPE_TARGET_TYPE (type0);
7547 nfields = TYPE_NFIELDS (type0);
7550 for (f = 0; f < nfields; f += 1)
7552 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7553 struct type *new_type;
7555 if (is_dynamic_field (type0, f))
7556 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7558 new_type = static_unwrap_type (field_type);
7559 if (type == type0 && new_type != field_type)
7561 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7562 TYPE_CODE (type) = TYPE_CODE (type0);
7563 INIT_CPLUS_SPECIFIC (type);
7564 TYPE_NFIELDS (type) = nfields;
7565 TYPE_FIELDS (type) = (struct field *)
7566 TYPE_ALLOC (type, nfields * sizeof (struct field));
7567 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7568 sizeof (struct field) * nfields);
7569 TYPE_NAME (type) = ada_type_name (type0);
7570 TYPE_TAG_NAME (type) = NULL;
7571 TYPE_FIXED_INSTANCE (type) = 1;
7572 TYPE_LENGTH (type) = 0;
7574 TYPE_FIELD_TYPE (type, f) = new_type;
7575 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7580 /* Given an object of type TYPE whose contents are at VALADDR and
7581 whose address in memory is ADDRESS, returns a revision of TYPE,
7582 which should be a non-dynamic-sized record, in which the variant
7583 part, if any, is replaced with the appropriate branch. Looks
7584 for discriminant values in DVAL0, which can be NULL if the record
7585 contains the necessary discriminant values. */
7587 static struct type *
7588 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7589 CORE_ADDR address, struct value *dval0)
7591 struct value *mark = value_mark ();
7594 struct type *branch_type;
7595 int nfields = TYPE_NFIELDS (type);
7596 int variant_field = variant_field_index (type);
7598 if (variant_field == -1)
7602 dval = value_from_contents_and_address (type, valaddr, address);
7606 rtype = alloc_type_copy (type);
7607 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7608 INIT_CPLUS_SPECIFIC (rtype);
7609 TYPE_NFIELDS (rtype) = nfields;
7610 TYPE_FIELDS (rtype) =
7611 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7612 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7613 sizeof (struct field) * nfields);
7614 TYPE_NAME (rtype) = ada_type_name (type);
7615 TYPE_TAG_NAME (rtype) = NULL;
7616 TYPE_FIXED_INSTANCE (rtype) = 1;
7617 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7619 branch_type = to_fixed_variant_branch_type
7620 (TYPE_FIELD_TYPE (type, variant_field),
7621 cond_offset_host (valaddr,
7622 TYPE_FIELD_BITPOS (type, variant_field)
7624 cond_offset_target (address,
7625 TYPE_FIELD_BITPOS (type, variant_field)
7626 / TARGET_CHAR_BIT), dval);
7627 if (branch_type == NULL)
7631 for (f = variant_field + 1; f < nfields; f += 1)
7632 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7633 TYPE_NFIELDS (rtype) -= 1;
7637 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7638 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7639 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7640 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7642 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7644 value_free_to_mark (mark);
7648 /* An ordinary record type (with fixed-length fields) that describes
7649 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7650 beginning of this section]. Any necessary discriminants' values
7651 should be in DVAL, a record value; it may be NULL if the object
7652 at ADDR itself contains any necessary discriminant values.
7653 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7654 values from the record are needed. Except in the case that DVAL,
7655 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7656 unchecked) is replaced by a particular branch of the variant.
7658 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7659 is questionable and may be removed. It can arise during the
7660 processing of an unconstrained-array-of-record type where all the
7661 variant branches have exactly the same size. This is because in
7662 such cases, the compiler does not bother to use the XVS convention
7663 when encoding the record. I am currently dubious of this
7664 shortcut and suspect the compiler should be altered. FIXME. */
7666 static struct type *
7667 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7668 CORE_ADDR address, struct value *dval)
7670 struct type *templ_type;
7672 if (TYPE_FIXED_INSTANCE (type0))
7675 templ_type = dynamic_template_type (type0);
7677 if (templ_type != NULL)
7678 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7679 else if (variant_field_index (type0) >= 0)
7681 if (dval == NULL && valaddr == NULL && address == 0)
7683 return to_record_with_fixed_variant_part (type0, valaddr, address,
7688 TYPE_FIXED_INSTANCE (type0) = 1;
7694 /* An ordinary record type (with fixed-length fields) that describes
7695 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7696 union type. Any necessary discriminants' values should be in DVAL,
7697 a record value. That is, this routine selects the appropriate
7698 branch of the union at ADDR according to the discriminant value
7699 indicated in the union's type name. Returns VAR_TYPE0 itself if
7700 it represents a variant subject to a pragma Unchecked_Union. */
7702 static struct type *
7703 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7704 CORE_ADDR address, struct value *dval)
7707 struct type *templ_type;
7708 struct type *var_type;
7710 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7711 var_type = TYPE_TARGET_TYPE (var_type0);
7713 var_type = var_type0;
7715 templ_type = ada_find_parallel_type (var_type, "___XVU");
7717 if (templ_type != NULL)
7718 var_type = templ_type;
7720 if (is_unchecked_variant (var_type, value_type (dval)))
7723 ada_which_variant_applies (var_type,
7724 value_type (dval), value_contents (dval));
7727 return empty_record (var_type);
7728 else if (is_dynamic_field (var_type, which))
7729 return to_fixed_record_type
7730 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7731 valaddr, address, dval);
7732 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7734 to_fixed_record_type
7735 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7737 return TYPE_FIELD_TYPE (var_type, which);
7740 /* Assuming that TYPE0 is an array type describing the type of a value
7741 at ADDR, and that DVAL describes a record containing any
7742 discriminants used in TYPE0, returns a type for the value that
7743 contains no dynamic components (that is, no components whose sizes
7744 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7745 true, gives an error message if the resulting type's size is over
7748 static struct type *
7749 to_fixed_array_type (struct type *type0, struct value *dval,
7752 struct type *index_type_desc;
7753 struct type *result;
7754 int constrained_packed_array_p;
7756 type0 = ada_check_typedef (type0);
7757 if (TYPE_FIXED_INSTANCE (type0))
7760 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7761 if (constrained_packed_array_p)
7762 type0 = decode_constrained_packed_array_type (type0);
7764 index_type_desc = ada_find_parallel_type (type0, "___XA");
7765 ada_fixup_array_indexes_type (index_type_desc);
7766 if (index_type_desc == NULL)
7768 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7770 /* NOTE: elt_type---the fixed version of elt_type0---should never
7771 depend on the contents of the array in properly constructed
7773 /* Create a fixed version of the array element type.
7774 We're not providing the address of an element here,
7775 and thus the actual object value cannot be inspected to do
7776 the conversion. This should not be a problem, since arrays of
7777 unconstrained objects are not allowed. In particular, all
7778 the elements of an array of a tagged type should all be of
7779 the same type specified in the debugging info. No need to
7780 consult the object tag. */
7781 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7783 /* Make sure we always create a new array type when dealing with
7784 packed array types, since we're going to fix-up the array
7785 type length and element bitsize a little further down. */
7786 if (elt_type0 == elt_type && !constrained_packed_array_p)
7789 result = create_array_type (alloc_type_copy (type0),
7790 elt_type, TYPE_INDEX_TYPE (type0));
7795 struct type *elt_type0;
7798 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7799 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7801 /* NOTE: result---the fixed version of elt_type0---should never
7802 depend on the contents of the array in properly constructed
7804 /* Create a fixed version of the array element type.
7805 We're not providing the address of an element here,
7806 and thus the actual object value cannot be inspected to do
7807 the conversion. This should not be a problem, since arrays of
7808 unconstrained objects are not allowed. In particular, all
7809 the elements of an array of a tagged type should all be of
7810 the same type specified in the debugging info. No need to
7811 consult the object tag. */
7813 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7816 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7818 struct type *range_type =
7819 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7821 result = create_array_type (alloc_type_copy (elt_type0),
7822 result, range_type);
7823 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7825 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7826 error (_("array type with dynamic size is larger than varsize-limit"));
7829 if (constrained_packed_array_p)
7831 /* So far, the resulting type has been created as if the original
7832 type was a regular (non-packed) array type. As a result, the
7833 bitsize of the array elements needs to be set again, and the array
7834 length needs to be recomputed based on that bitsize. */
7835 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7836 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7838 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7839 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7840 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7841 TYPE_LENGTH (result)++;
7844 TYPE_FIXED_INSTANCE (result) = 1;
7849 /* A standard type (containing no dynamically sized components)
7850 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7851 DVAL describes a record containing any discriminants used in TYPE0,
7852 and may be NULL if there are none, or if the object of type TYPE at
7853 ADDRESS or in VALADDR contains these discriminants.
7855 If CHECK_TAG is not null, in the case of tagged types, this function
7856 attempts to locate the object's tag and use it to compute the actual
7857 type. However, when ADDRESS is null, we cannot use it to determine the
7858 location of the tag, and therefore compute the tagged type's actual type.
7859 So we return the tagged type without consulting the tag. */
7861 static struct type *
7862 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7863 CORE_ADDR address, struct value *dval, int check_tag)
7865 type = ada_check_typedef (type);
7866 switch (TYPE_CODE (type))
7870 case TYPE_CODE_STRUCT:
7872 struct type *static_type = to_static_fixed_type (type);
7873 struct type *fixed_record_type =
7874 to_fixed_record_type (type, valaddr, address, NULL);
7876 /* If STATIC_TYPE is a tagged type and we know the object's address,
7877 then we can determine its tag, and compute the object's actual
7878 type from there. Note that we have to use the fixed record
7879 type (the parent part of the record may have dynamic fields
7880 and the way the location of _tag is expressed may depend on
7883 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7885 struct type *real_type =
7886 type_from_tag (value_tag_from_contents_and_address
7891 if (real_type != NULL)
7892 return to_fixed_record_type (real_type, valaddr, address, NULL);
7895 /* Check to see if there is a parallel ___XVZ variable.
7896 If there is, then it provides the actual size of our type. */
7897 else if (ada_type_name (fixed_record_type) != NULL)
7899 const char *name = ada_type_name (fixed_record_type);
7900 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7904 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7905 size = get_int_var_value (xvz_name, &xvz_found);
7906 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7908 fixed_record_type = copy_type (fixed_record_type);
7909 TYPE_LENGTH (fixed_record_type) = size;
7911 /* The FIXED_RECORD_TYPE may have be a stub. We have
7912 observed this when the debugging info is STABS, and
7913 apparently it is something that is hard to fix.
7915 In practice, we don't need the actual type definition
7916 at all, because the presence of the XVZ variable allows us
7917 to assume that there must be a XVS type as well, which we
7918 should be able to use later, when we need the actual type
7921 In the meantime, pretend that the "fixed" type we are
7922 returning is NOT a stub, because this can cause trouble
7923 when using this type to create new types targeting it.
7924 Indeed, the associated creation routines often check
7925 whether the target type is a stub and will try to replace
7926 it, thus using a type with the wrong size. This, in turn,
7927 might cause the new type to have the wrong size too.
7928 Consider the case of an array, for instance, where the size
7929 of the array is computed from the number of elements in
7930 our array multiplied by the size of its element. */
7931 TYPE_STUB (fixed_record_type) = 0;
7934 return fixed_record_type;
7936 case TYPE_CODE_ARRAY:
7937 return to_fixed_array_type (type, dval, 1);
7938 case TYPE_CODE_UNION:
7942 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7946 /* The same as ada_to_fixed_type_1, except that it preserves the type
7947 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7949 The typedef layer needs be preserved in order to differentiate between
7950 arrays and array pointers when both types are implemented using the same
7951 fat pointer. In the array pointer case, the pointer is encoded as
7952 a typedef of the pointer type. For instance, considering:
7954 type String_Access is access String;
7955 S1 : String_Access := null;
7957 To the debugger, S1 is defined as a typedef of type String. But
7958 to the user, it is a pointer. So if the user tries to print S1,
7959 we should not dereference the array, but print the array address
7962 If we didn't preserve the typedef layer, we would lose the fact that
7963 the type is to be presented as a pointer (needs de-reference before
7964 being printed). And we would also use the source-level type name. */
7967 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7968 CORE_ADDR address, struct value *dval, int check_tag)
7971 struct type *fixed_type =
7972 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7974 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7975 then preserve the typedef layer.
7977 Implementation note: We can only check the main-type portion of
7978 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7979 from TYPE now returns a type that has the same instance flags
7980 as TYPE. For instance, if TYPE is a "typedef const", and its
7981 target type is a "struct", then the typedef elimination will return
7982 a "const" version of the target type. See check_typedef for more
7983 details about how the typedef layer elimination is done.
7985 brobecker/2010-11-19: It seems to me that the only case where it is
7986 useful to preserve the typedef layer is when dealing with fat pointers.
7987 Perhaps, we could add a check for that and preserve the typedef layer
7988 only in that situation. But this seems unecessary so far, probably
7989 because we call check_typedef/ada_check_typedef pretty much everywhere.
7991 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7992 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7993 == TYPE_MAIN_TYPE (fixed_type)))
7999 /* A standard (static-sized) type corresponding as well as possible to
8000 TYPE0, but based on no runtime data. */
8002 static struct type *
8003 to_static_fixed_type (struct type *type0)
8010 if (TYPE_FIXED_INSTANCE (type0))
8013 type0 = ada_check_typedef (type0);
8015 switch (TYPE_CODE (type0))
8019 case TYPE_CODE_STRUCT:
8020 type = dynamic_template_type (type0);
8022 return template_to_static_fixed_type (type);
8024 return template_to_static_fixed_type (type0);
8025 case TYPE_CODE_UNION:
8026 type = ada_find_parallel_type (type0, "___XVU");
8028 return template_to_static_fixed_type (type);
8030 return template_to_static_fixed_type (type0);
8034 /* A static approximation of TYPE with all type wrappers removed. */
8036 static struct type *
8037 static_unwrap_type (struct type *type)
8039 if (ada_is_aligner_type (type))
8041 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8042 if (ada_type_name (type1) == NULL)
8043 TYPE_NAME (type1) = ada_type_name (type);
8045 return static_unwrap_type (type1);
8049 struct type *raw_real_type = ada_get_base_type (type);
8051 if (raw_real_type == type)
8054 return to_static_fixed_type (raw_real_type);
8058 /* In some cases, incomplete and private types require
8059 cross-references that are not resolved as records (for example,
8061 type FooP is access Foo;
8063 type Foo is array ...;
8064 ). In these cases, since there is no mechanism for producing
8065 cross-references to such types, we instead substitute for FooP a
8066 stub enumeration type that is nowhere resolved, and whose tag is
8067 the name of the actual type. Call these types "non-record stubs". */
8069 /* A type equivalent to TYPE that is not a non-record stub, if one
8070 exists, otherwise TYPE. */
8073 ada_check_typedef (struct type *type)
8078 /* If our type is a typedef type of a fat pointer, then we're done.
8079 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8080 what allows us to distinguish between fat pointers that represent
8081 array types, and fat pointers that represent array access types
8082 (in both cases, the compiler implements them as fat pointers). */
8083 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8084 && is_thick_pntr (ada_typedef_target_type (type)))
8087 CHECK_TYPEDEF (type);
8088 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8089 || !TYPE_STUB (type)
8090 || TYPE_TAG_NAME (type) == NULL)
8094 const char *name = TYPE_TAG_NAME (type);
8095 struct type *type1 = ada_find_any_type (name);
8100 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8101 stubs pointing to arrays, as we don't create symbols for array
8102 types, only for the typedef-to-array types). If that's the case,
8103 strip the typedef layer. */
8104 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8105 type1 = ada_check_typedef (type1);
8111 /* A value representing the data at VALADDR/ADDRESS as described by
8112 type TYPE0, but with a standard (static-sized) type that correctly
8113 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8114 type, then return VAL0 [this feature is simply to avoid redundant
8115 creation of struct values]. */
8117 static struct value *
8118 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8121 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8123 if (type == type0 && val0 != NULL)
8126 return value_from_contents_and_address (type, 0, address);
8129 /* A value representing VAL, but with a standard (static-sized) type
8130 that correctly describes it. Does not necessarily create a new
8134 ada_to_fixed_value (struct value *val)
8136 return ada_to_fixed_value_create (value_type (val),
8137 value_address (val),
8144 /* Table mapping attribute numbers to names.
8145 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8147 static const char *attribute_names[] = {
8165 ada_attribute_name (enum exp_opcode n)
8167 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8168 return attribute_names[n - OP_ATR_FIRST + 1];
8170 return attribute_names[0];
8173 /* Evaluate the 'POS attribute applied to ARG. */
8176 pos_atr (struct value *arg)
8178 struct value *val = coerce_ref (arg);
8179 struct type *type = value_type (val);
8181 if (!discrete_type_p (type))
8182 error (_("'POS only defined on discrete types"));
8184 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8187 LONGEST v = value_as_long (val);
8189 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8191 if (v == TYPE_FIELD_BITPOS (type, i))
8194 error (_("enumeration value is invalid: can't find 'POS"));
8197 return value_as_long (val);
8200 static struct value *
8201 value_pos_atr (struct type *type, struct value *arg)
8203 return value_from_longest (type, pos_atr (arg));
8206 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8208 static struct value *
8209 value_val_atr (struct type *type, struct value *arg)
8211 if (!discrete_type_p (type))
8212 error (_("'VAL only defined on discrete types"));
8213 if (!integer_type_p (value_type (arg)))
8214 error (_("'VAL requires integral argument"));
8216 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8218 long pos = value_as_long (arg);
8220 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8221 error (_("argument to 'VAL out of range"));
8222 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8225 return value_from_longest (type, value_as_long (arg));
8231 /* True if TYPE appears to be an Ada character type.
8232 [At the moment, this is true only for Character and Wide_Character;
8233 It is a heuristic test that could stand improvement]. */
8236 ada_is_character_type (struct type *type)
8240 /* If the type code says it's a character, then assume it really is,
8241 and don't check any further. */
8242 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8245 /* Otherwise, assume it's a character type iff it is a discrete type
8246 with a known character type name. */
8247 name = ada_type_name (type);
8248 return (name != NULL
8249 && (TYPE_CODE (type) == TYPE_CODE_INT
8250 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8251 && (strcmp (name, "character") == 0
8252 || strcmp (name, "wide_character") == 0
8253 || strcmp (name, "wide_wide_character") == 0
8254 || strcmp (name, "unsigned char") == 0));
8257 /* True if TYPE appears to be an Ada string type. */
8260 ada_is_string_type (struct type *type)
8262 type = ada_check_typedef (type);
8264 && TYPE_CODE (type) != TYPE_CODE_PTR
8265 && (ada_is_simple_array_type (type)
8266 || ada_is_array_descriptor_type (type))
8267 && ada_array_arity (type) == 1)
8269 struct type *elttype = ada_array_element_type (type, 1);
8271 return ada_is_character_type (elttype);
8277 /* The compiler sometimes provides a parallel XVS type for a given
8278 PAD type. Normally, it is safe to follow the PAD type directly,
8279 but older versions of the compiler have a bug that causes the offset
8280 of its "F" field to be wrong. Following that field in that case
8281 would lead to incorrect results, but this can be worked around
8282 by ignoring the PAD type and using the associated XVS type instead.
8284 Set to True if the debugger should trust the contents of PAD types.
8285 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8286 static int trust_pad_over_xvs = 1;
8288 /* True if TYPE is a struct type introduced by the compiler to force the
8289 alignment of a value. Such types have a single field with a
8290 distinctive name. */
8293 ada_is_aligner_type (struct type *type)
8295 type = ada_check_typedef (type);
8297 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8300 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8301 && TYPE_NFIELDS (type) == 1
8302 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8305 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8306 the parallel type. */
8309 ada_get_base_type (struct type *raw_type)
8311 struct type *real_type_namer;
8312 struct type *raw_real_type;
8314 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8317 if (ada_is_aligner_type (raw_type))
8318 /* The encoding specifies that we should always use the aligner type.
8319 So, even if this aligner type has an associated XVS type, we should
8322 According to the compiler gurus, an XVS type parallel to an aligner
8323 type may exist because of a stabs limitation. In stabs, aligner
8324 types are empty because the field has a variable-sized type, and
8325 thus cannot actually be used as an aligner type. As a result,
8326 we need the associated parallel XVS type to decode the type.
8327 Since the policy in the compiler is to not change the internal
8328 representation based on the debugging info format, we sometimes
8329 end up having a redundant XVS type parallel to the aligner type. */
8332 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8333 if (real_type_namer == NULL
8334 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8335 || TYPE_NFIELDS (real_type_namer) != 1)
8338 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8340 /* This is an older encoding form where the base type needs to be
8341 looked up by name. We prefer the newer enconding because it is
8343 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8344 if (raw_real_type == NULL)
8347 return raw_real_type;
8350 /* The field in our XVS type is a reference to the base type. */
8351 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8354 /* The type of value designated by TYPE, with all aligners removed. */
8357 ada_aligned_type (struct type *type)
8359 if (ada_is_aligner_type (type))
8360 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8362 return ada_get_base_type (type);
8366 /* The address of the aligned value in an object at address VALADDR
8367 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8370 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8372 if (ada_is_aligner_type (type))
8373 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8375 TYPE_FIELD_BITPOS (type,
8376 0) / TARGET_CHAR_BIT);
8383 /* The printed representation of an enumeration literal with encoded
8384 name NAME. The value is good to the next call of ada_enum_name. */
8386 ada_enum_name (const char *name)
8388 static char *result;
8389 static size_t result_len = 0;
8392 /* First, unqualify the enumeration name:
8393 1. Search for the last '.' character. If we find one, then skip
8394 all the preceding characters, the unqualified name starts
8395 right after that dot.
8396 2. Otherwise, we may be debugging on a target where the compiler
8397 translates dots into "__". Search forward for double underscores,
8398 but stop searching when we hit an overloading suffix, which is
8399 of the form "__" followed by digits. */
8401 tmp = strrchr (name, '.');
8406 while ((tmp = strstr (name, "__")) != NULL)
8408 if (isdigit (tmp[2]))
8419 if (name[1] == 'U' || name[1] == 'W')
8421 if (sscanf (name + 2, "%x", &v) != 1)
8427 GROW_VECT (result, result_len, 16);
8428 if (isascii (v) && isprint (v))
8429 xsnprintf (result, result_len, "'%c'", v);
8430 else if (name[1] == 'U')
8431 xsnprintf (result, result_len, "[\"%02x\"]", v);
8433 xsnprintf (result, result_len, "[\"%04x\"]", v);
8439 tmp = strstr (name, "__");
8441 tmp = strstr (name, "$");
8444 GROW_VECT (result, result_len, tmp - name + 1);
8445 strncpy (result, name, tmp - name);
8446 result[tmp - name] = '\0';
8454 /* Evaluate the subexpression of EXP starting at *POS as for
8455 evaluate_type, updating *POS to point just past the evaluated
8458 static struct value *
8459 evaluate_subexp_type (struct expression *exp, int *pos)
8461 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8464 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8467 static struct value *
8468 unwrap_value (struct value *val)
8470 struct type *type = ada_check_typedef (value_type (val));
8472 if (ada_is_aligner_type (type))
8474 struct value *v = ada_value_struct_elt (val, "F", 0);
8475 struct type *val_type = ada_check_typedef (value_type (v));
8477 if (ada_type_name (val_type) == NULL)
8478 TYPE_NAME (val_type) = ada_type_name (type);
8480 return unwrap_value (v);
8484 struct type *raw_real_type =
8485 ada_check_typedef (ada_get_base_type (type));
8487 /* If there is no parallel XVS or XVE type, then the value is
8488 already unwrapped. Return it without further modification. */
8489 if ((type == raw_real_type)
8490 && ada_find_parallel_type (type, "___XVE") == NULL)
8494 coerce_unspec_val_to_type
8495 (val, ada_to_fixed_type (raw_real_type, 0,
8496 value_address (val),
8501 static struct value *
8502 cast_to_fixed (struct type *type, struct value *arg)
8506 if (type == value_type (arg))
8508 else if (ada_is_fixed_point_type (value_type (arg)))
8509 val = ada_float_to_fixed (type,
8510 ada_fixed_to_float (value_type (arg),
8511 value_as_long (arg)));
8514 DOUBLEST argd = value_as_double (arg);
8516 val = ada_float_to_fixed (type, argd);
8519 return value_from_longest (type, val);
8522 static struct value *
8523 cast_from_fixed (struct type *type, struct value *arg)
8525 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8526 value_as_long (arg));
8528 return value_from_double (type, val);
8531 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8532 return the converted value. */
8534 static struct value *
8535 coerce_for_assign (struct type *type, struct value *val)
8537 struct type *type2 = value_type (val);
8542 type2 = ada_check_typedef (type2);
8543 type = ada_check_typedef (type);
8545 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8546 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8548 val = ada_value_ind (val);
8549 type2 = value_type (val);
8552 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8553 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8555 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8556 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8557 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8558 error (_("Incompatible types in assignment"));
8559 deprecated_set_value_type (val, type);
8564 static struct value *
8565 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8568 struct type *type1, *type2;
8571 arg1 = coerce_ref (arg1);
8572 arg2 = coerce_ref (arg2);
8573 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8574 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8576 if (TYPE_CODE (type1) != TYPE_CODE_INT
8577 || TYPE_CODE (type2) != TYPE_CODE_INT)
8578 return value_binop (arg1, arg2, op);
8587 return value_binop (arg1, arg2, op);
8590 v2 = value_as_long (arg2);
8592 error (_("second operand of %s must not be zero."), op_string (op));
8594 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8595 return value_binop (arg1, arg2, op);
8597 v1 = value_as_long (arg1);
8602 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8603 v += v > 0 ? -1 : 1;
8611 /* Should not reach this point. */
8615 val = allocate_value (type1);
8616 store_unsigned_integer (value_contents_raw (val),
8617 TYPE_LENGTH (value_type (val)),
8618 gdbarch_byte_order (get_type_arch (type1)), v);
8623 ada_value_equal (struct value *arg1, struct value *arg2)
8625 if (ada_is_direct_array_type (value_type (arg1))
8626 || ada_is_direct_array_type (value_type (arg2)))
8628 /* Automatically dereference any array reference before
8629 we attempt to perform the comparison. */
8630 arg1 = ada_coerce_ref (arg1);
8631 arg2 = ada_coerce_ref (arg2);
8633 arg1 = ada_coerce_to_simple_array (arg1);
8634 arg2 = ada_coerce_to_simple_array (arg2);
8635 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8636 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8637 error (_("Attempt to compare array with non-array"));
8638 /* FIXME: The following works only for types whose
8639 representations use all bits (no padding or undefined bits)
8640 and do not have user-defined equality. */
8642 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8643 && memcmp (value_contents (arg1), value_contents (arg2),
8644 TYPE_LENGTH (value_type (arg1))) == 0;
8646 return value_equal (arg1, arg2);
8649 /* Total number of component associations in the aggregate starting at
8650 index PC in EXP. Assumes that index PC is the start of an
8654 num_component_specs (struct expression *exp, int pc)
8658 m = exp->elts[pc + 1].longconst;
8661 for (i = 0; i < m; i += 1)
8663 switch (exp->elts[pc].opcode)
8669 n += exp->elts[pc + 1].longconst;
8672 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8677 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8678 component of LHS (a simple array or a record), updating *POS past
8679 the expression, assuming that LHS is contained in CONTAINER. Does
8680 not modify the inferior's memory, nor does it modify LHS (unless
8681 LHS == CONTAINER). */
8684 assign_component (struct value *container, struct value *lhs, LONGEST index,
8685 struct expression *exp, int *pos)
8687 struct value *mark = value_mark ();
8690 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8692 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8693 struct value *index_val = value_from_longest (index_type, index);
8695 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8699 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8700 elt = ada_to_fixed_value (unwrap_value (elt));
8703 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8704 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8706 value_assign_to_component (container, elt,
8707 ada_evaluate_subexp (NULL, exp, pos,
8710 value_free_to_mark (mark);
8713 /* Assuming that LHS represents an lvalue having a record or array
8714 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8715 of that aggregate's value to LHS, advancing *POS past the
8716 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8717 lvalue containing LHS (possibly LHS itself). Does not modify
8718 the inferior's memory, nor does it modify the contents of
8719 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8721 static struct value *
8722 assign_aggregate (struct value *container,
8723 struct value *lhs, struct expression *exp,
8724 int *pos, enum noside noside)
8726 struct type *lhs_type;
8727 int n = exp->elts[*pos+1].longconst;
8728 LONGEST low_index, high_index;
8731 int max_indices, num_indices;
8732 int is_array_aggregate;
8736 if (noside != EVAL_NORMAL)
8738 for (i = 0; i < n; i += 1)
8739 ada_evaluate_subexp (NULL, exp, pos, noside);
8743 container = ada_coerce_ref (container);
8744 if (ada_is_direct_array_type (value_type (container)))
8745 container = ada_coerce_to_simple_array (container);
8746 lhs = ada_coerce_ref (lhs);
8747 if (!deprecated_value_modifiable (lhs))
8748 error (_("Left operand of assignment is not a modifiable lvalue."));
8750 lhs_type = value_type (lhs);
8751 if (ada_is_direct_array_type (lhs_type))
8753 lhs = ada_coerce_to_simple_array (lhs);
8754 lhs_type = value_type (lhs);
8755 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8756 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8757 is_array_aggregate = 1;
8759 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8762 high_index = num_visible_fields (lhs_type) - 1;
8763 is_array_aggregate = 0;
8766 error (_("Left-hand side must be array or record."));
8768 num_specs = num_component_specs (exp, *pos - 3);
8769 max_indices = 4 * num_specs + 4;
8770 indices = alloca (max_indices * sizeof (indices[0]));
8771 indices[0] = indices[1] = low_index - 1;
8772 indices[2] = indices[3] = high_index + 1;
8775 for (i = 0; i < n; i += 1)
8777 switch (exp->elts[*pos].opcode)
8780 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8781 &num_indices, max_indices,
8782 low_index, high_index);
8785 aggregate_assign_positional (container, lhs, exp, pos, indices,
8786 &num_indices, max_indices,
8787 low_index, high_index);
8791 error (_("Misplaced 'others' clause"));
8792 aggregate_assign_others (container, lhs, exp, pos, indices,
8793 num_indices, low_index, high_index);
8796 error (_("Internal error: bad aggregate clause"));
8803 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8804 construct at *POS, updating *POS past the construct, given that
8805 the positions are relative to lower bound LOW, where HIGH is the
8806 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8807 updating *NUM_INDICES as needed. CONTAINER is as for
8808 assign_aggregate. */
8810 aggregate_assign_positional (struct value *container,
8811 struct value *lhs, struct expression *exp,
8812 int *pos, LONGEST *indices, int *num_indices,
8813 int max_indices, LONGEST low, LONGEST high)
8815 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8817 if (ind - 1 == high)
8818 warning (_("Extra components in aggregate ignored."));
8821 add_component_interval (ind, ind, indices, num_indices, max_indices);
8823 assign_component (container, lhs, ind, exp, pos);
8826 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8829 /* Assign into the components of LHS indexed by the OP_CHOICES
8830 construct at *POS, updating *POS past the construct, given that
8831 the allowable indices are LOW..HIGH. Record the indices assigned
8832 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8833 needed. CONTAINER is as for assign_aggregate. */
8835 aggregate_assign_from_choices (struct value *container,
8836 struct value *lhs, struct expression *exp,
8837 int *pos, LONGEST *indices, int *num_indices,
8838 int max_indices, LONGEST low, LONGEST high)
8841 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8842 int choice_pos, expr_pc;
8843 int is_array = ada_is_direct_array_type (value_type (lhs));
8845 choice_pos = *pos += 3;
8847 for (j = 0; j < n_choices; j += 1)
8848 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8850 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8852 for (j = 0; j < n_choices; j += 1)
8854 LONGEST lower, upper;
8855 enum exp_opcode op = exp->elts[choice_pos].opcode;
8857 if (op == OP_DISCRETE_RANGE)
8860 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8862 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8867 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8879 name = &exp->elts[choice_pos + 2].string;
8882 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8885 error (_("Invalid record component association."));
8887 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8889 if (! find_struct_field (name, value_type (lhs), 0,
8890 NULL, NULL, NULL, NULL, &ind))
8891 error (_("Unknown component name: %s."), name);
8892 lower = upper = ind;
8895 if (lower <= upper && (lower < low || upper > high))
8896 error (_("Index in component association out of bounds."));
8898 add_component_interval (lower, upper, indices, num_indices,
8900 while (lower <= upper)
8905 assign_component (container, lhs, lower, exp, &pos1);
8911 /* Assign the value of the expression in the OP_OTHERS construct in
8912 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8913 have not been previously assigned. The index intervals already assigned
8914 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8915 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8917 aggregate_assign_others (struct value *container,
8918 struct value *lhs, struct expression *exp,
8919 int *pos, LONGEST *indices, int num_indices,
8920 LONGEST low, LONGEST high)
8923 int expr_pc = *pos + 1;
8925 for (i = 0; i < num_indices - 2; i += 2)
8929 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8934 assign_component (container, lhs, ind, exp, &localpos);
8937 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8940 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8941 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8942 modifying *SIZE as needed. It is an error if *SIZE exceeds
8943 MAX_SIZE. The resulting intervals do not overlap. */
8945 add_component_interval (LONGEST low, LONGEST high,
8946 LONGEST* indices, int *size, int max_size)
8950 for (i = 0; i < *size; i += 2) {
8951 if (high >= indices[i] && low <= indices[i + 1])
8955 for (kh = i + 2; kh < *size; kh += 2)
8956 if (high < indices[kh])
8958 if (low < indices[i])
8960 indices[i + 1] = indices[kh - 1];
8961 if (high > indices[i + 1])
8962 indices[i + 1] = high;
8963 memcpy (indices + i + 2, indices + kh, *size - kh);
8964 *size -= kh - i - 2;
8967 else if (high < indices[i])
8971 if (*size == max_size)
8972 error (_("Internal error: miscounted aggregate components."));
8974 for (j = *size-1; j >= i+2; j -= 1)
8975 indices[j] = indices[j - 2];
8977 indices[i + 1] = high;
8980 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8983 static struct value *
8984 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8986 if (type == ada_check_typedef (value_type (arg2)))
8989 if (ada_is_fixed_point_type (type))
8990 return (cast_to_fixed (type, arg2));
8992 if (ada_is_fixed_point_type (value_type (arg2)))
8993 return cast_from_fixed (type, arg2);
8995 return value_cast (type, arg2);
8998 /* Evaluating Ada expressions, and printing their result.
8999 ------------------------------------------------------
9004 We usually evaluate an Ada expression in order to print its value.
9005 We also evaluate an expression in order to print its type, which
9006 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9007 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9008 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9009 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9012 Evaluating expressions is a little more complicated for Ada entities
9013 than it is for entities in languages such as C. The main reason for
9014 this is that Ada provides types whose definition might be dynamic.
9015 One example of such types is variant records. Or another example
9016 would be an array whose bounds can only be known at run time.
9018 The following description is a general guide as to what should be
9019 done (and what should NOT be done) in order to evaluate an expression
9020 involving such types, and when. This does not cover how the semantic
9021 information is encoded by GNAT as this is covered separatly. For the
9022 document used as the reference for the GNAT encoding, see exp_dbug.ads
9023 in the GNAT sources.
9025 Ideally, we should embed each part of this description next to its
9026 associated code. Unfortunately, the amount of code is so vast right
9027 now that it's hard to see whether the code handling a particular
9028 situation might be duplicated or not. One day, when the code is
9029 cleaned up, this guide might become redundant with the comments
9030 inserted in the code, and we might want to remove it.
9032 2. ``Fixing'' an Entity, the Simple Case:
9033 -----------------------------------------
9035 When evaluating Ada expressions, the tricky issue is that they may
9036 reference entities whose type contents and size are not statically
9037 known. Consider for instance a variant record:
9039 type Rec (Empty : Boolean := True) is record
9042 when False => Value : Integer;
9045 Yes : Rec := (Empty => False, Value => 1);
9046 No : Rec := (empty => True);
9048 The size and contents of that record depends on the value of the
9049 descriminant (Rec.Empty). At this point, neither the debugging
9050 information nor the associated type structure in GDB are able to
9051 express such dynamic types. So what the debugger does is to create
9052 "fixed" versions of the type that applies to the specific object.
9053 We also informally refer to this opperation as "fixing" an object,
9054 which means creating its associated fixed type.
9056 Example: when printing the value of variable "Yes" above, its fixed
9057 type would look like this:
9064 On the other hand, if we printed the value of "No", its fixed type
9071 Things become a little more complicated when trying to fix an entity
9072 with a dynamic type that directly contains another dynamic type,
9073 such as an array of variant records, for instance. There are
9074 two possible cases: Arrays, and records.
9076 3. ``Fixing'' Arrays:
9077 ---------------------
9079 The type structure in GDB describes an array in terms of its bounds,
9080 and the type of its elements. By design, all elements in the array
9081 have the same type and we cannot represent an array of variant elements
9082 using the current type structure in GDB. When fixing an array,
9083 we cannot fix the array element, as we would potentially need one
9084 fixed type per element of the array. As a result, the best we can do
9085 when fixing an array is to produce an array whose bounds and size
9086 are correct (allowing us to read it from memory), but without having
9087 touched its element type. Fixing each element will be done later,
9088 when (if) necessary.
9090 Arrays are a little simpler to handle than records, because the same
9091 amount of memory is allocated for each element of the array, even if
9092 the amount of space actually used by each element differs from element
9093 to element. Consider for instance the following array of type Rec:
9095 type Rec_Array is array (1 .. 2) of Rec;
9097 The actual amount of memory occupied by each element might be different
9098 from element to element, depending on the value of their discriminant.
9099 But the amount of space reserved for each element in the array remains
9100 fixed regardless. So we simply need to compute that size using
9101 the debugging information available, from which we can then determine
9102 the array size (we multiply the number of elements of the array by
9103 the size of each element).
9105 The simplest case is when we have an array of a constrained element
9106 type. For instance, consider the following type declarations:
9108 type Bounded_String (Max_Size : Integer) is
9110 Buffer : String (1 .. Max_Size);
9112 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9114 In this case, the compiler describes the array as an array of
9115 variable-size elements (identified by its XVS suffix) for which
9116 the size can be read in the parallel XVZ variable.
9118 In the case of an array of an unconstrained element type, the compiler
9119 wraps the array element inside a private PAD type. This type should not
9120 be shown to the user, and must be "unwrap"'ed before printing. Note
9121 that we also use the adjective "aligner" in our code to designate
9122 these wrapper types.
9124 In some cases, the size allocated for each element is statically
9125 known. In that case, the PAD type already has the correct size,
9126 and the array element should remain unfixed.
9128 But there are cases when this size is not statically known.
9129 For instance, assuming that "Five" is an integer variable:
9131 type Dynamic is array (1 .. Five) of Integer;
9132 type Wrapper (Has_Length : Boolean := False) is record
9135 when True => Length : Integer;
9139 type Wrapper_Array is array (1 .. 2) of Wrapper;
9141 Hello : Wrapper_Array := (others => (Has_Length => True,
9142 Data => (others => 17),
9146 The debugging info would describe variable Hello as being an
9147 array of a PAD type. The size of that PAD type is not statically
9148 known, but can be determined using a parallel XVZ variable.
9149 In that case, a copy of the PAD type with the correct size should
9150 be used for the fixed array.
9152 3. ``Fixing'' record type objects:
9153 ----------------------------------
9155 Things are slightly different from arrays in the case of dynamic
9156 record types. In this case, in order to compute the associated
9157 fixed type, we need to determine the size and offset of each of
9158 its components. This, in turn, requires us to compute the fixed
9159 type of each of these components.
9161 Consider for instance the example:
9163 type Bounded_String (Max_Size : Natural) is record
9164 Str : String (1 .. Max_Size);
9167 My_String : Bounded_String (Max_Size => 10);
9169 In that case, the position of field "Length" depends on the size
9170 of field Str, which itself depends on the value of the Max_Size
9171 discriminant. In order to fix the type of variable My_String,
9172 we need to fix the type of field Str. Therefore, fixing a variant
9173 record requires us to fix each of its components.
9175 However, if a component does not have a dynamic size, the component
9176 should not be fixed. In particular, fields that use a PAD type
9177 should not fixed. Here is an example where this might happen
9178 (assuming type Rec above):
9180 type Container (Big : Boolean) is record
9184 when True => Another : Integer;
9188 My_Container : Container := (Big => False,
9189 First => (Empty => True),
9192 In that example, the compiler creates a PAD type for component First,
9193 whose size is constant, and then positions the component After just
9194 right after it. The offset of component After is therefore constant
9197 The debugger computes the position of each field based on an algorithm
9198 that uses, among other things, the actual position and size of the field
9199 preceding it. Let's now imagine that the user is trying to print
9200 the value of My_Container. If the type fixing was recursive, we would
9201 end up computing the offset of field After based on the size of the
9202 fixed version of field First. And since in our example First has
9203 only one actual field, the size of the fixed type is actually smaller
9204 than the amount of space allocated to that field, and thus we would
9205 compute the wrong offset of field After.
9207 To make things more complicated, we need to watch out for dynamic
9208 components of variant records (identified by the ___XVL suffix in
9209 the component name). Even if the target type is a PAD type, the size
9210 of that type might not be statically known. So the PAD type needs
9211 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9212 we might end up with the wrong size for our component. This can be
9213 observed with the following type declarations:
9215 type Octal is new Integer range 0 .. 7;
9216 type Octal_Array is array (Positive range <>) of Octal;
9217 pragma Pack (Octal_Array);
9219 type Octal_Buffer (Size : Positive) is record
9220 Buffer : Octal_Array (1 .. Size);
9224 In that case, Buffer is a PAD type whose size is unset and needs
9225 to be computed by fixing the unwrapped type.
9227 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9228 ----------------------------------------------------------
9230 Lastly, when should the sub-elements of an entity that remained unfixed
9231 thus far, be actually fixed?
9233 The answer is: Only when referencing that element. For instance
9234 when selecting one component of a record, this specific component
9235 should be fixed at that point in time. Or when printing the value
9236 of a record, each component should be fixed before its value gets
9237 printed. Similarly for arrays, the element of the array should be
9238 fixed when printing each element of the array, or when extracting
9239 one element out of that array. On the other hand, fixing should
9240 not be performed on the elements when taking a slice of an array!
9242 Note that one of the side-effects of miscomputing the offset and
9243 size of each field is that we end up also miscomputing the size
9244 of the containing type. This can have adverse results when computing
9245 the value of an entity. GDB fetches the value of an entity based
9246 on the size of its type, and thus a wrong size causes GDB to fetch
9247 the wrong amount of memory. In the case where the computed size is
9248 too small, GDB fetches too little data to print the value of our
9249 entiry. Results in this case as unpredicatble, as we usually read
9250 past the buffer containing the data =:-o. */
9252 /* Implement the evaluate_exp routine in the exp_descriptor structure
9253 for the Ada language. */
9255 static struct value *
9256 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9257 int *pos, enum noside noside)
9262 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9265 struct value **argvec;
9269 op = exp->elts[pc].opcode;
9275 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9276 arg1 = unwrap_value (arg1);
9278 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9279 then we need to perform the conversion manually, because
9280 evaluate_subexp_standard doesn't do it. This conversion is
9281 necessary in Ada because the different kinds of float/fixed
9282 types in Ada have different representations.
9284 Similarly, we need to perform the conversion from OP_LONG
9286 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9287 arg1 = ada_value_cast (expect_type, arg1, noside);
9293 struct value *result;
9296 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9297 /* The result type will have code OP_STRING, bashed there from
9298 OP_ARRAY. Bash it back. */
9299 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9300 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9306 type = exp->elts[pc + 1].type;
9307 arg1 = evaluate_subexp (type, exp, pos, noside);
9308 if (noside == EVAL_SKIP)
9310 arg1 = ada_value_cast (type, arg1, noside);
9315 type = exp->elts[pc + 1].type;
9316 return ada_evaluate_subexp (type, exp, pos, noside);
9319 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9320 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9322 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9323 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9325 return ada_value_assign (arg1, arg1);
9327 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9328 except if the lhs of our assignment is a convenience variable.
9329 In the case of assigning to a convenience variable, the lhs
9330 should be exactly the result of the evaluation of the rhs. */
9331 type = value_type (arg1);
9332 if (VALUE_LVAL (arg1) == lval_internalvar)
9334 arg2 = evaluate_subexp (type, exp, pos, noside);
9335 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9337 if (ada_is_fixed_point_type (value_type (arg1)))
9338 arg2 = cast_to_fixed (value_type (arg1), arg2);
9339 else if (ada_is_fixed_point_type (value_type (arg2)))
9341 (_("Fixed-point values must be assigned to fixed-point variables"));
9343 arg2 = coerce_for_assign (value_type (arg1), arg2);
9344 return ada_value_assign (arg1, arg2);
9347 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9348 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9349 if (noside == EVAL_SKIP)
9351 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9352 return (value_from_longest
9354 value_as_long (arg1) + value_as_long (arg2)));
9355 if ((ada_is_fixed_point_type (value_type (arg1))
9356 || ada_is_fixed_point_type (value_type (arg2)))
9357 && value_type (arg1) != value_type (arg2))
9358 error (_("Operands of fixed-point addition must have the same type"));
9359 /* Do the addition, and cast the result to the type of the first
9360 argument. We cannot cast the result to a reference type, so if
9361 ARG1 is a reference type, find its underlying type. */
9362 type = value_type (arg1);
9363 while (TYPE_CODE (type) == TYPE_CODE_REF)
9364 type = TYPE_TARGET_TYPE (type);
9365 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9366 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9369 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9370 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9371 if (noside == EVAL_SKIP)
9373 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9374 return (value_from_longest
9376 value_as_long (arg1) - value_as_long (arg2)));
9377 if ((ada_is_fixed_point_type (value_type (arg1))
9378 || ada_is_fixed_point_type (value_type (arg2)))
9379 && value_type (arg1) != value_type (arg2))
9380 error (_("Operands of fixed-point subtraction "
9381 "must have the same type"));
9382 /* Do the substraction, and cast the result to the type of the first
9383 argument. We cannot cast the result to a reference type, so if
9384 ARG1 is a reference type, find its underlying type. */
9385 type = value_type (arg1);
9386 while (TYPE_CODE (type) == TYPE_CODE_REF)
9387 type = TYPE_TARGET_TYPE (type);
9388 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9389 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9396 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9397 if (noside == EVAL_SKIP)
9399 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9401 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9402 return value_zero (value_type (arg1), not_lval);
9406 type = builtin_type (exp->gdbarch)->builtin_double;
9407 if (ada_is_fixed_point_type (value_type (arg1)))
9408 arg1 = cast_from_fixed (type, arg1);
9409 if (ada_is_fixed_point_type (value_type (arg2)))
9410 arg2 = cast_from_fixed (type, arg2);
9411 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9412 return ada_value_binop (arg1, arg2, op);
9416 case BINOP_NOTEQUAL:
9417 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9418 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9419 if (noside == EVAL_SKIP)
9421 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9425 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9426 tem = ada_value_equal (arg1, arg2);
9428 if (op == BINOP_NOTEQUAL)
9430 type = language_bool_type (exp->language_defn, exp->gdbarch);
9431 return value_from_longest (type, (LONGEST) tem);
9434 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9435 if (noside == EVAL_SKIP)
9437 else if (ada_is_fixed_point_type (value_type (arg1)))
9438 return value_cast (value_type (arg1), value_neg (arg1));
9441 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9442 return value_neg (arg1);
9445 case BINOP_LOGICAL_AND:
9446 case BINOP_LOGICAL_OR:
9447 case UNOP_LOGICAL_NOT:
9452 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9453 type = language_bool_type (exp->language_defn, exp->gdbarch);
9454 return value_cast (type, val);
9457 case BINOP_BITWISE_AND:
9458 case BINOP_BITWISE_IOR:
9459 case BINOP_BITWISE_XOR:
9463 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9465 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9467 return value_cast (value_type (arg1), val);
9473 if (noside == EVAL_SKIP)
9478 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9479 /* Only encountered when an unresolved symbol occurs in a
9480 context other than a function call, in which case, it is
9482 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9484 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9486 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9487 /* Check to see if this is a tagged type. We also need to handle
9488 the case where the type is a reference to a tagged type, but
9489 we have to be careful to exclude pointers to tagged types.
9490 The latter should be shown as usual (as a pointer), whereas
9491 a reference should mostly be transparent to the user. */
9492 if (ada_is_tagged_type (type, 0)
9493 || (TYPE_CODE(type) == TYPE_CODE_REF
9494 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9496 /* Tagged types are a little special in the fact that the real
9497 type is dynamic and can only be determined by inspecting the
9498 object's tag. This means that we need to get the object's
9499 value first (EVAL_NORMAL) and then extract the actual object
9502 Note that we cannot skip the final step where we extract
9503 the object type from its tag, because the EVAL_NORMAL phase
9504 results in dynamic components being resolved into fixed ones.
9505 This can cause problems when trying to print the type
9506 description of tagged types whose parent has a dynamic size:
9507 We use the type name of the "_parent" component in order
9508 to print the name of the ancestor type in the type description.
9509 If that component had a dynamic size, the resolution into
9510 a fixed type would result in the loss of that type name,
9511 thus preventing us from printing the name of the ancestor
9512 type in the type description. */
9513 struct type *actual_type;
9515 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9516 actual_type = type_from_tag (ada_value_tag (arg1));
9517 if (actual_type == NULL)
9518 /* If, for some reason, we were unable to determine
9519 the actual type from the tag, then use the static
9520 approximation that we just computed as a fallback.
9521 This can happen if the debugging information is
9522 incomplete, for instance. */
9525 return value_zero (actual_type, not_lval);
9530 (to_static_fixed_type
9531 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9536 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9537 arg1 = unwrap_value (arg1);
9538 return ada_to_fixed_value (arg1);
9544 /* Allocate arg vector, including space for the function to be
9545 called in argvec[0] and a terminating NULL. */
9546 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9548 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9550 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9551 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9552 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9553 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9556 for (tem = 0; tem <= nargs; tem += 1)
9557 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9560 if (noside == EVAL_SKIP)
9564 if (ada_is_constrained_packed_array_type
9565 (desc_base_type (value_type (argvec[0]))))
9566 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9567 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9568 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9569 /* This is a packed array that has already been fixed, and
9570 therefore already coerced to a simple array. Nothing further
9573 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9574 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9575 && VALUE_LVAL (argvec[0]) == lval_memory))
9576 argvec[0] = value_addr (argvec[0]);
9578 type = ada_check_typedef (value_type (argvec[0]));
9580 /* Ada allows us to implicitly dereference arrays when subscripting
9581 them. So, if this is an array typedef (encoding use for array
9582 access types encoded as fat pointers), strip it now. */
9583 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9584 type = ada_typedef_target_type (type);
9586 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9588 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9590 case TYPE_CODE_FUNC:
9591 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9593 case TYPE_CODE_ARRAY:
9595 case TYPE_CODE_STRUCT:
9596 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9597 argvec[0] = ada_value_ind (argvec[0]);
9598 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9601 error (_("cannot subscript or call something of type `%s'"),
9602 ada_type_name (value_type (argvec[0])));
9607 switch (TYPE_CODE (type))
9609 case TYPE_CODE_FUNC:
9610 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9611 return allocate_value (TYPE_TARGET_TYPE (type));
9612 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9613 case TYPE_CODE_STRUCT:
9617 arity = ada_array_arity (type);
9618 type = ada_array_element_type (type, nargs);
9620 error (_("cannot subscript or call a record"));
9622 error (_("wrong number of subscripts; expecting %d"), arity);
9623 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9624 return value_zero (ada_aligned_type (type), lval_memory);
9626 unwrap_value (ada_value_subscript
9627 (argvec[0], nargs, argvec + 1));
9629 case TYPE_CODE_ARRAY:
9630 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9632 type = ada_array_element_type (type, nargs);
9634 error (_("element type of array unknown"));
9636 return value_zero (ada_aligned_type (type), lval_memory);
9639 unwrap_value (ada_value_subscript
9640 (ada_coerce_to_simple_array (argvec[0]),
9641 nargs, argvec + 1));
9642 case TYPE_CODE_PTR: /* Pointer to array */
9643 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9644 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9646 type = ada_array_element_type (type, nargs);
9648 error (_("element type of array unknown"));
9650 return value_zero (ada_aligned_type (type), lval_memory);
9653 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9654 nargs, argvec + 1));
9657 error (_("Attempt to index or call something other than an "
9658 "array or function"));
9663 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9664 struct value *low_bound_val =
9665 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9666 struct value *high_bound_val =
9667 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9671 low_bound_val = coerce_ref (low_bound_val);
9672 high_bound_val = coerce_ref (high_bound_val);
9673 low_bound = pos_atr (low_bound_val);
9674 high_bound = pos_atr (high_bound_val);
9676 if (noside == EVAL_SKIP)
9679 /* If this is a reference to an aligner type, then remove all
9681 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9682 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9683 TYPE_TARGET_TYPE (value_type (array)) =
9684 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9686 if (ada_is_constrained_packed_array_type (value_type (array)))
9687 error (_("cannot slice a packed array"));
9689 /* If this is a reference to an array or an array lvalue,
9690 convert to a pointer. */
9691 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9692 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9693 && VALUE_LVAL (array) == lval_memory))
9694 array = value_addr (array);
9696 if (noside == EVAL_AVOID_SIDE_EFFECTS
9697 && ada_is_array_descriptor_type (ada_check_typedef
9698 (value_type (array))))
9699 return empty_array (ada_type_of_array (array, 0), low_bound);
9701 array = ada_coerce_to_simple_array_ptr (array);
9703 /* If we have more than one level of pointer indirection,
9704 dereference the value until we get only one level. */
9705 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9706 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9708 array = value_ind (array);
9710 /* Make sure we really do have an array type before going further,
9711 to avoid a SEGV when trying to get the index type or the target
9712 type later down the road if the debug info generated by
9713 the compiler is incorrect or incomplete. */
9714 if (!ada_is_simple_array_type (value_type (array)))
9715 error (_("cannot take slice of non-array"));
9717 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9720 struct type *type0 = ada_check_typedef (value_type (array));
9722 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9723 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9726 struct type *arr_type0 =
9727 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9729 return ada_value_slice_from_ptr (array, arr_type0,
9730 longest_to_int (low_bound),
9731 longest_to_int (high_bound));
9734 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9736 else if (high_bound < low_bound)
9737 return empty_array (value_type (array), low_bound);
9739 return ada_value_slice (array, longest_to_int (low_bound),
9740 longest_to_int (high_bound));
9745 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9746 type = check_typedef (exp->elts[pc + 1].type);
9748 if (noside == EVAL_SKIP)
9751 switch (TYPE_CODE (type))
9754 lim_warning (_("Membership test incompletely implemented; "
9755 "always returns true"));
9756 type = language_bool_type (exp->language_defn, exp->gdbarch);
9757 return value_from_longest (type, (LONGEST) 1);
9759 case TYPE_CODE_RANGE:
9760 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9761 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9762 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9763 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9764 type = language_bool_type (exp->language_defn, exp->gdbarch);
9766 value_from_longest (type,
9767 (value_less (arg1, arg3)
9768 || value_equal (arg1, arg3))
9769 && (value_less (arg2, arg1)
9770 || value_equal (arg2, arg1)));
9773 case BINOP_IN_BOUNDS:
9775 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9776 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9778 if (noside == EVAL_SKIP)
9781 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9783 type = language_bool_type (exp->language_defn, exp->gdbarch);
9784 return value_zero (type, not_lval);
9787 tem = longest_to_int (exp->elts[pc + 1].longconst);
9789 type = ada_index_type (value_type (arg2), tem, "range");
9791 type = value_type (arg1);
9793 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9794 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9796 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9797 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9798 type = language_bool_type (exp->language_defn, exp->gdbarch);
9800 value_from_longest (type,
9801 (value_less (arg1, arg3)
9802 || value_equal (arg1, arg3))
9803 && (value_less (arg2, arg1)
9804 || value_equal (arg2, arg1)));
9806 case TERNOP_IN_RANGE:
9807 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9808 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9809 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9811 if (noside == EVAL_SKIP)
9814 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9815 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9816 type = language_bool_type (exp->language_defn, exp->gdbarch);
9818 value_from_longest (type,
9819 (value_less (arg1, arg3)
9820 || value_equal (arg1, arg3))
9821 && (value_less (arg2, arg1)
9822 || value_equal (arg2, arg1)));
9828 struct type *type_arg;
9830 if (exp->elts[*pos].opcode == OP_TYPE)
9832 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9834 type_arg = check_typedef (exp->elts[pc + 2].type);
9838 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9842 if (exp->elts[*pos].opcode != OP_LONG)
9843 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9844 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9847 if (noside == EVAL_SKIP)
9850 if (type_arg == NULL)
9852 arg1 = ada_coerce_ref (arg1);
9854 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9855 arg1 = ada_coerce_to_simple_array (arg1);
9857 type = ada_index_type (value_type (arg1), tem,
9858 ada_attribute_name (op));
9860 type = builtin_type (exp->gdbarch)->builtin_int;
9862 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9863 return allocate_value (type);
9867 default: /* Should never happen. */
9868 error (_("unexpected attribute encountered"));
9870 return value_from_longest
9871 (type, ada_array_bound (arg1, tem, 0));
9873 return value_from_longest
9874 (type, ada_array_bound (arg1, tem, 1));
9876 return value_from_longest
9877 (type, ada_array_length (arg1, tem));
9880 else if (discrete_type_p (type_arg))
9882 struct type *range_type;
9883 const char *name = ada_type_name (type_arg);
9886 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9887 range_type = to_fixed_range_type (type_arg, NULL);
9888 if (range_type == NULL)
9889 range_type = type_arg;
9893 error (_("unexpected attribute encountered"));
9895 return value_from_longest
9896 (range_type, ada_discrete_type_low_bound (range_type));
9898 return value_from_longest
9899 (range_type, ada_discrete_type_high_bound (range_type));
9901 error (_("the 'length attribute applies only to array types"));
9904 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9905 error (_("unimplemented type attribute"));
9910 if (ada_is_constrained_packed_array_type (type_arg))
9911 type_arg = decode_constrained_packed_array_type (type_arg);
9913 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9915 type = builtin_type (exp->gdbarch)->builtin_int;
9917 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9918 return allocate_value (type);
9923 error (_("unexpected attribute encountered"));
9925 low = ada_array_bound_from_type (type_arg, tem, 0);
9926 return value_from_longest (type, low);
9928 high = ada_array_bound_from_type (type_arg, tem, 1);
9929 return value_from_longest (type, high);
9931 low = ada_array_bound_from_type (type_arg, tem, 0);
9932 high = ada_array_bound_from_type (type_arg, tem, 1);
9933 return value_from_longest (type, high - low + 1);
9939 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9940 if (noside == EVAL_SKIP)
9943 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9944 return value_zero (ada_tag_type (arg1), not_lval);
9946 return ada_value_tag (arg1);
9950 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9951 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9952 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9953 if (noside == EVAL_SKIP)
9955 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9956 return value_zero (value_type (arg1), not_lval);
9959 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9960 return value_binop (arg1, arg2,
9961 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9964 case OP_ATR_MODULUS:
9966 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9968 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9969 if (noside == EVAL_SKIP)
9972 if (!ada_is_modular_type (type_arg))
9973 error (_("'modulus must be applied to modular type"));
9975 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9976 ada_modulus (type_arg));
9981 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9982 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9983 if (noside == EVAL_SKIP)
9985 type = builtin_type (exp->gdbarch)->builtin_int;
9986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9987 return value_zero (type, not_lval);
9989 return value_pos_atr (type, arg1);
9992 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9993 type = value_type (arg1);
9995 /* If the argument is a reference, then dereference its type, since
9996 the user is really asking for the size of the actual object,
9997 not the size of the pointer. */
9998 if (TYPE_CODE (type) == TYPE_CODE_REF)
9999 type = TYPE_TARGET_TYPE (type);
10001 if (noside == EVAL_SKIP)
10003 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10004 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10006 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10007 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10010 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10011 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10012 type = exp->elts[pc + 2].type;
10013 if (noside == EVAL_SKIP)
10015 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10016 return value_zero (type, not_lval);
10018 return value_val_atr (type, arg1);
10021 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10022 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10023 if (noside == EVAL_SKIP)
10025 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10026 return value_zero (value_type (arg1), not_lval);
10029 /* For integer exponentiation operations,
10030 only promote the first argument. */
10031 if (is_integral_type (value_type (arg2)))
10032 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10034 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10036 return value_binop (arg1, arg2, op);
10040 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10041 if (noside == EVAL_SKIP)
10047 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10048 if (noside == EVAL_SKIP)
10050 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10051 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10052 return value_neg (arg1);
10057 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10058 if (noside == EVAL_SKIP)
10060 type = ada_check_typedef (value_type (arg1));
10061 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10063 if (ada_is_array_descriptor_type (type))
10064 /* GDB allows dereferencing GNAT array descriptors. */
10066 struct type *arrType = ada_type_of_array (arg1, 0);
10068 if (arrType == NULL)
10069 error (_("Attempt to dereference null array pointer."));
10070 return value_at_lazy (arrType, 0);
10072 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10073 || TYPE_CODE (type) == TYPE_CODE_REF
10074 /* In C you can dereference an array to get the 1st elt. */
10075 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10077 type = to_static_fixed_type
10079 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10081 return value_zero (type, lval_memory);
10083 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10085 /* GDB allows dereferencing an int. */
10086 if (expect_type == NULL)
10087 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10092 to_static_fixed_type (ada_aligned_type (expect_type));
10093 return value_zero (expect_type, lval_memory);
10097 error (_("Attempt to take contents of a non-pointer value."));
10099 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10100 type = ada_check_typedef (value_type (arg1));
10102 if (TYPE_CODE (type) == TYPE_CODE_INT)
10103 /* GDB allows dereferencing an int. If we were given
10104 the expect_type, then use that as the target type.
10105 Otherwise, assume that the target type is an int. */
10107 if (expect_type != NULL)
10108 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10111 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10112 (CORE_ADDR) value_as_address (arg1));
10115 if (ada_is_array_descriptor_type (type))
10116 /* GDB allows dereferencing GNAT array descriptors. */
10117 return ada_coerce_to_simple_array (arg1);
10119 return ada_value_ind (arg1);
10121 case STRUCTOP_STRUCT:
10122 tem = longest_to_int (exp->elts[pc + 1].longconst);
10123 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10124 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10125 if (noside == EVAL_SKIP)
10127 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10129 struct type *type1 = value_type (arg1);
10131 if (ada_is_tagged_type (type1, 1))
10133 type = ada_lookup_struct_elt_type (type1,
10134 &exp->elts[pc + 2].string,
10137 /* In this case, we assume that the field COULD exist
10138 in some extension of the type. Return an object of
10139 "type" void, which will match any formal
10140 (see ada_type_match). */
10141 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10146 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10149 return value_zero (ada_aligned_type (type), lval_memory);
10152 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10153 arg1 = unwrap_value (arg1);
10154 return ada_to_fixed_value (arg1);
10157 /* The value is not supposed to be used. This is here to make it
10158 easier to accommodate expressions that contain types. */
10160 if (noside == EVAL_SKIP)
10162 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10163 return allocate_value (exp->elts[pc + 1].type);
10165 error (_("Attempt to use a type name as an expression"));
10170 case OP_DISCRETE_RANGE:
10171 case OP_POSITIONAL:
10173 if (noside == EVAL_NORMAL)
10177 error (_("Undefined name, ambiguous name, or renaming used in "
10178 "component association: %s."), &exp->elts[pc+2].string);
10180 error (_("Aggregates only allowed on the right of an assignment"));
10182 internal_error (__FILE__, __LINE__,
10183 _("aggregate apparently mangled"));
10186 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10188 for (tem = 0; tem < nargs; tem += 1)
10189 ada_evaluate_subexp (NULL, exp, pos, noside);
10194 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10200 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10201 type name that encodes the 'small and 'delta information.
10202 Otherwise, return NULL. */
10204 static const char *
10205 fixed_type_info (struct type *type)
10207 const char *name = ada_type_name (type);
10208 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10210 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10212 const char *tail = strstr (name, "___XF_");
10219 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10220 return fixed_type_info (TYPE_TARGET_TYPE (type));
10225 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10228 ada_is_fixed_point_type (struct type *type)
10230 return fixed_type_info (type) != NULL;
10233 /* Return non-zero iff TYPE represents a System.Address type. */
10236 ada_is_system_address_type (struct type *type)
10238 return (TYPE_NAME (type)
10239 && strcmp (TYPE_NAME (type), "system__address") == 0);
10242 /* Assuming that TYPE is the representation of an Ada fixed-point
10243 type, return its delta, or -1 if the type is malformed and the
10244 delta cannot be determined. */
10247 ada_delta (struct type *type)
10249 const char *encoding = fixed_type_info (type);
10252 /* Strictly speaking, num and den are encoded as integer. However,
10253 they may not fit into a long, and they will have to be converted
10254 to DOUBLEST anyway. So scan them as DOUBLEST. */
10255 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10262 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10263 factor ('SMALL value) associated with the type. */
10266 scaling_factor (struct type *type)
10268 const char *encoding = fixed_type_info (type);
10269 DOUBLEST num0, den0, num1, den1;
10272 /* Strictly speaking, num's and den's are encoded as integer. However,
10273 they may not fit into a long, and they will have to be converted
10274 to DOUBLEST anyway. So scan them as DOUBLEST. */
10275 n = sscanf (encoding,
10276 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10277 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10278 &num0, &den0, &num1, &den1);
10283 return num1 / den1;
10285 return num0 / den0;
10289 /* Assuming that X is the representation of a value of fixed-point
10290 type TYPE, return its floating-point equivalent. */
10293 ada_fixed_to_float (struct type *type, LONGEST x)
10295 return (DOUBLEST) x *scaling_factor (type);
10298 /* The representation of a fixed-point value of type TYPE
10299 corresponding to the value X. */
10302 ada_float_to_fixed (struct type *type, DOUBLEST x)
10304 return (LONGEST) (x / scaling_factor (type) + 0.5);
10311 /* Scan STR beginning at position K for a discriminant name, and
10312 return the value of that discriminant field of DVAL in *PX. If
10313 PNEW_K is not null, put the position of the character beyond the
10314 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10315 not alter *PX and *PNEW_K if unsuccessful. */
10318 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10321 static char *bound_buffer = NULL;
10322 static size_t bound_buffer_len = 0;
10325 struct value *bound_val;
10327 if (dval == NULL || str == NULL || str[k] == '\0')
10330 pend = strstr (str + k, "__");
10334 k += strlen (bound);
10338 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10339 bound = bound_buffer;
10340 strncpy (bound_buffer, str + k, pend - (str + k));
10341 bound[pend - (str + k)] = '\0';
10345 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10346 if (bound_val == NULL)
10349 *px = value_as_long (bound_val);
10350 if (pnew_k != NULL)
10355 /* Value of variable named NAME in the current environment. If
10356 no such variable found, then if ERR_MSG is null, returns 0, and
10357 otherwise causes an error with message ERR_MSG. */
10359 static struct value *
10360 get_var_value (char *name, char *err_msg)
10362 struct ada_symbol_info *syms;
10365 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10370 if (err_msg == NULL)
10373 error (("%s"), err_msg);
10376 return value_of_variable (syms[0].sym, syms[0].block);
10379 /* Value of integer variable named NAME in the current environment. If
10380 no such variable found, returns 0, and sets *FLAG to 0. If
10381 successful, sets *FLAG to 1. */
10384 get_int_var_value (char *name, int *flag)
10386 struct value *var_val = get_var_value (name, 0);
10398 return value_as_long (var_val);
10403 /* Return a range type whose base type is that of the range type named
10404 NAME in the current environment, and whose bounds are calculated
10405 from NAME according to the GNAT range encoding conventions.
10406 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10407 corresponding range type from debug information; fall back to using it
10408 if symbol lookup fails. If a new type must be created, allocate it
10409 like ORIG_TYPE was. The bounds information, in general, is encoded
10410 in NAME, the base type given in the named range type. */
10412 static struct type *
10413 to_fixed_range_type (struct type *raw_type, struct value *dval)
10416 struct type *base_type;
10417 char *subtype_info;
10419 gdb_assert (raw_type != NULL);
10420 gdb_assert (TYPE_NAME (raw_type) != NULL);
10422 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10423 base_type = TYPE_TARGET_TYPE (raw_type);
10425 base_type = raw_type;
10427 name = TYPE_NAME (raw_type);
10428 subtype_info = strstr (name, "___XD");
10429 if (subtype_info == NULL)
10431 LONGEST L = ada_discrete_type_low_bound (raw_type);
10432 LONGEST U = ada_discrete_type_high_bound (raw_type);
10434 if (L < INT_MIN || U > INT_MAX)
10437 return create_range_type (alloc_type_copy (raw_type), raw_type,
10438 ada_discrete_type_low_bound (raw_type),
10439 ada_discrete_type_high_bound (raw_type));
10443 static char *name_buf = NULL;
10444 static size_t name_len = 0;
10445 int prefix_len = subtype_info - name;
10451 GROW_VECT (name_buf, name_len, prefix_len + 5);
10452 strncpy (name_buf, name, prefix_len);
10453 name_buf[prefix_len] = '\0';
10456 bounds_str = strchr (subtype_info, '_');
10459 if (*subtype_info == 'L')
10461 if (!ada_scan_number (bounds_str, n, &L, &n)
10462 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10464 if (bounds_str[n] == '_')
10466 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10474 strcpy (name_buf + prefix_len, "___L");
10475 L = get_int_var_value (name_buf, &ok);
10478 lim_warning (_("Unknown lower bound, using 1."));
10483 if (*subtype_info == 'U')
10485 if (!ada_scan_number (bounds_str, n, &U, &n)
10486 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10493 strcpy (name_buf + prefix_len, "___U");
10494 U = get_int_var_value (name_buf, &ok);
10497 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10502 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10503 TYPE_NAME (type) = name;
10508 /* True iff NAME is the name of a range type. */
10511 ada_is_range_type_name (const char *name)
10513 return (name != NULL && strstr (name, "___XD"));
10517 /* Modular types */
10519 /* True iff TYPE is an Ada modular type. */
10522 ada_is_modular_type (struct type *type)
10524 struct type *subranged_type = get_base_type (type);
10526 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10527 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10528 && TYPE_UNSIGNED (subranged_type));
10531 /* Try to determine the lower and upper bounds of the given modular type
10532 using the type name only. Return non-zero and set L and U as the lower
10533 and upper bounds (respectively) if successful. */
10536 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10538 const char *name = ada_type_name (type);
10539 const char *suffix;
10546 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10547 we are looking for static bounds, which means an __XDLU suffix.
10548 Moreover, we know that the lower bound of modular types is always
10549 zero, so the actual suffix should start with "__XDLU_0__", and
10550 then be followed by the upper bound value. */
10551 suffix = strstr (name, "__XDLU_0__");
10552 if (suffix == NULL)
10555 if (!ada_scan_number (suffix, k, &U, NULL))
10558 *modulus = (ULONGEST) U + 1;
10562 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10565 ada_modulus (struct type *type)
10567 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10571 /* Ada exception catchpoint support:
10572 ---------------------------------
10574 We support 3 kinds of exception catchpoints:
10575 . catchpoints on Ada exceptions
10576 . catchpoints on unhandled Ada exceptions
10577 . catchpoints on failed assertions
10579 Exceptions raised during failed assertions, or unhandled exceptions
10580 could perfectly be caught with the general catchpoint on Ada exceptions.
10581 However, we can easily differentiate these two special cases, and having
10582 the option to distinguish these two cases from the rest can be useful
10583 to zero-in on certain situations.
10585 Exception catchpoints are a specialized form of breakpoint,
10586 since they rely on inserting breakpoints inside known routines
10587 of the GNAT runtime. The implementation therefore uses a standard
10588 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10591 Support in the runtime for exception catchpoints have been changed
10592 a few times already, and these changes affect the implementation
10593 of these catchpoints. In order to be able to support several
10594 variants of the runtime, we use a sniffer that will determine
10595 the runtime variant used by the program being debugged. */
10597 /* The different types of catchpoints that we introduced for catching
10600 enum exception_catchpoint_kind
10602 ex_catch_exception,
10603 ex_catch_exception_unhandled,
10607 /* Ada's standard exceptions. */
10609 static char *standard_exc[] = {
10610 "constraint_error",
10616 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10618 /* A structure that describes how to support exception catchpoints
10619 for a given executable. */
10621 struct exception_support_info
10623 /* The name of the symbol to break on in order to insert
10624 a catchpoint on exceptions. */
10625 const char *catch_exception_sym;
10627 /* The name of the symbol to break on in order to insert
10628 a catchpoint on unhandled exceptions. */
10629 const char *catch_exception_unhandled_sym;
10631 /* The name of the symbol to break on in order to insert
10632 a catchpoint on failed assertions. */
10633 const char *catch_assert_sym;
10635 /* Assuming that the inferior just triggered an unhandled exception
10636 catchpoint, this function is responsible for returning the address
10637 in inferior memory where the name of that exception is stored.
10638 Return zero if the address could not be computed. */
10639 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10642 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10643 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10645 /* The following exception support info structure describes how to
10646 implement exception catchpoints with the latest version of the
10647 Ada runtime (as of 2007-03-06). */
10649 static const struct exception_support_info default_exception_support_info =
10651 "__gnat_debug_raise_exception", /* catch_exception_sym */
10652 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10653 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10654 ada_unhandled_exception_name_addr
10657 /* The following exception support info structure describes how to
10658 implement exception catchpoints with a slightly older version
10659 of the Ada runtime. */
10661 static const struct exception_support_info exception_support_info_fallback =
10663 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10664 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10665 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10666 ada_unhandled_exception_name_addr_from_raise
10669 /* Return nonzero if we can detect the exception support routines
10670 described in EINFO.
10672 This function errors out if an abnormal situation is detected
10673 (for instance, if we find the exception support routines, but
10674 that support is found to be incomplete). */
10677 ada_has_this_exception_support (const struct exception_support_info *einfo)
10679 struct symbol *sym;
10681 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10682 that should be compiled with debugging information. As a result, we
10683 expect to find that symbol in the symtabs. */
10685 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10688 /* Perhaps we did not find our symbol because the Ada runtime was
10689 compiled without debugging info, or simply stripped of it.
10690 It happens on some GNU/Linux distributions for instance, where
10691 users have to install a separate debug package in order to get
10692 the runtime's debugging info. In that situation, let the user
10693 know why we cannot insert an Ada exception catchpoint.
10695 Note: Just for the purpose of inserting our Ada exception
10696 catchpoint, we could rely purely on the associated minimal symbol.
10697 But we would be operating in degraded mode anyway, since we are
10698 still lacking the debugging info needed later on to extract
10699 the name of the exception being raised (this name is printed in
10700 the catchpoint message, and is also used when trying to catch
10701 a specific exception). We do not handle this case for now. */
10702 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10703 error (_("Your Ada runtime appears to be missing some debugging "
10704 "information.\nCannot insert Ada exception catchpoint "
10705 "in this configuration."));
10710 /* Make sure that the symbol we found corresponds to a function. */
10712 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10713 error (_("Symbol \"%s\" is not a function (class = %d)"),
10714 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10719 /* Inspect the Ada runtime and determine which exception info structure
10720 should be used to provide support for exception catchpoints.
10722 This function will always set the per-inferior exception_info,
10723 or raise an error. */
10726 ada_exception_support_info_sniffer (void)
10728 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10729 struct symbol *sym;
10731 /* If the exception info is already known, then no need to recompute it. */
10732 if (data->exception_info != NULL)
10735 /* Check the latest (default) exception support info. */
10736 if (ada_has_this_exception_support (&default_exception_support_info))
10738 data->exception_info = &default_exception_support_info;
10742 /* Try our fallback exception suport info. */
10743 if (ada_has_this_exception_support (&exception_support_info_fallback))
10745 data->exception_info = &exception_support_info_fallback;
10749 /* Sometimes, it is normal for us to not be able to find the routine
10750 we are looking for. This happens when the program is linked with
10751 the shared version of the GNAT runtime, and the program has not been
10752 started yet. Inform the user of these two possible causes if
10755 if (ada_update_initial_language (language_unknown) != language_ada)
10756 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10758 /* If the symbol does not exist, then check that the program is
10759 already started, to make sure that shared libraries have been
10760 loaded. If it is not started, this may mean that the symbol is
10761 in a shared library. */
10763 if (ptid_get_pid (inferior_ptid) == 0)
10764 error (_("Unable to insert catchpoint. Try to start the program first."));
10766 /* At this point, we know that we are debugging an Ada program and
10767 that the inferior has been started, but we still are not able to
10768 find the run-time symbols. That can mean that we are in
10769 configurable run time mode, or that a-except as been optimized
10770 out by the linker... In any case, at this point it is not worth
10771 supporting this feature. */
10773 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10776 /* True iff FRAME is very likely to be that of a function that is
10777 part of the runtime system. This is all very heuristic, but is
10778 intended to be used as advice as to what frames are uninteresting
10782 is_known_support_routine (struct frame_info *frame)
10784 struct symtab_and_line sal;
10785 const char *func_name;
10786 enum language func_lang;
10789 /* If this code does not have any debugging information (no symtab),
10790 This cannot be any user code. */
10792 find_frame_sal (frame, &sal);
10793 if (sal.symtab == NULL)
10796 /* If there is a symtab, but the associated source file cannot be
10797 located, then assume this is not user code: Selecting a frame
10798 for which we cannot display the code would not be very helpful
10799 for the user. This should also take care of case such as VxWorks
10800 where the kernel has some debugging info provided for a few units. */
10802 if (symtab_to_fullname (sal.symtab) == NULL)
10805 /* Check the unit filename againt the Ada runtime file naming.
10806 We also check the name of the objfile against the name of some
10807 known system libraries that sometimes come with debugging info
10810 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10812 re_comp (known_runtime_file_name_patterns[i]);
10813 if (re_exec (sal.symtab->filename))
10815 if (sal.symtab->objfile != NULL
10816 && re_exec (sal.symtab->objfile->name))
10820 /* Check whether the function is a GNAT-generated entity. */
10822 find_frame_funname (frame, &func_name, &func_lang, NULL);
10823 if (func_name == NULL)
10826 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10828 re_comp (known_auxiliary_function_name_patterns[i]);
10829 if (re_exec (func_name))
10836 /* Find the first frame that contains debugging information and that is not
10837 part of the Ada run-time, starting from FI and moving upward. */
10840 ada_find_printable_frame (struct frame_info *fi)
10842 for (; fi != NULL; fi = get_prev_frame (fi))
10844 if (!is_known_support_routine (fi))
10853 /* Assuming that the inferior just triggered an unhandled exception
10854 catchpoint, return the address in inferior memory where the name
10855 of the exception is stored.
10857 Return zero if the address could not be computed. */
10860 ada_unhandled_exception_name_addr (void)
10862 return parse_and_eval_address ("e.full_name");
10865 /* Same as ada_unhandled_exception_name_addr, except that this function
10866 should be used when the inferior uses an older version of the runtime,
10867 where the exception name needs to be extracted from a specific frame
10868 several frames up in the callstack. */
10871 ada_unhandled_exception_name_addr_from_raise (void)
10874 struct frame_info *fi;
10875 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10877 /* To determine the name of this exception, we need to select
10878 the frame corresponding to RAISE_SYM_NAME. This frame is
10879 at least 3 levels up, so we simply skip the first 3 frames
10880 without checking the name of their associated function. */
10881 fi = get_current_frame ();
10882 for (frame_level = 0; frame_level < 3; frame_level += 1)
10884 fi = get_prev_frame (fi);
10888 const char *func_name;
10889 enum language func_lang;
10891 find_frame_funname (fi, &func_name, &func_lang, NULL);
10892 if (func_name != NULL
10893 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10894 break; /* We found the frame we were looking for... */
10895 fi = get_prev_frame (fi);
10902 return parse_and_eval_address ("id.full_name");
10905 /* Assuming the inferior just triggered an Ada exception catchpoint
10906 (of any type), return the address in inferior memory where the name
10907 of the exception is stored, if applicable.
10909 Return zero if the address could not be computed, or if not relevant. */
10912 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10913 struct breakpoint *b)
10915 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10919 case ex_catch_exception:
10920 return (parse_and_eval_address ("e.full_name"));
10923 case ex_catch_exception_unhandled:
10924 return data->exception_info->unhandled_exception_name_addr ();
10927 case ex_catch_assert:
10928 return 0; /* Exception name is not relevant in this case. */
10932 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10936 return 0; /* Should never be reached. */
10939 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10940 any error that ada_exception_name_addr_1 might cause to be thrown.
10941 When an error is intercepted, a warning with the error message is printed,
10942 and zero is returned. */
10945 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10946 struct breakpoint *b)
10948 volatile struct gdb_exception e;
10949 CORE_ADDR result = 0;
10951 TRY_CATCH (e, RETURN_MASK_ERROR)
10953 result = ada_exception_name_addr_1 (ex, b);
10958 warning (_("failed to get exception name: %s"), e.message);
10965 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
10967 const struct breakpoint_ops **);
10968 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
10970 /* Ada catchpoints.
10972 In the case of catchpoints on Ada exceptions, the catchpoint will
10973 stop the target on every exception the program throws. When a user
10974 specifies the name of a specific exception, we translate this
10975 request into a condition expression (in text form), and then parse
10976 it into an expression stored in each of the catchpoint's locations.
10977 We then use this condition to check whether the exception that was
10978 raised is the one the user is interested in. If not, then the
10979 target is resumed again. We store the name of the requested
10980 exception, in order to be able to re-set the condition expression
10981 when symbols change. */
10983 /* An instance of this type is used to represent an Ada catchpoint
10984 breakpoint location. It includes a "struct bp_location" as a kind
10985 of base class; users downcast to "struct bp_location *" when
10988 struct ada_catchpoint_location
10990 /* The base class. */
10991 struct bp_location base;
10993 /* The condition that checks whether the exception that was raised
10994 is the specific exception the user specified on catchpoint
10996 struct expression *excep_cond_expr;
10999 /* Implement the DTOR method in the bp_location_ops structure for all
11000 Ada exception catchpoint kinds. */
11003 ada_catchpoint_location_dtor (struct bp_location *bl)
11005 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11007 xfree (al->excep_cond_expr);
11010 /* The vtable to be used in Ada catchpoint locations. */
11012 static const struct bp_location_ops ada_catchpoint_location_ops =
11014 ada_catchpoint_location_dtor
11017 /* An instance of this type is used to represent an Ada catchpoint.
11018 It includes a "struct breakpoint" as a kind of base class; users
11019 downcast to "struct breakpoint *" when needed. */
11021 struct ada_catchpoint
11023 /* The base class. */
11024 struct breakpoint base;
11026 /* The name of the specific exception the user specified. */
11027 char *excep_string;
11030 /* Parse the exception condition string in the context of each of the
11031 catchpoint's locations, and store them for later evaluation. */
11034 create_excep_cond_exprs (struct ada_catchpoint *c)
11036 struct cleanup *old_chain;
11037 struct bp_location *bl;
11040 /* Nothing to do if there's no specific exception to catch. */
11041 if (c->excep_string == NULL)
11044 /* Same if there are no locations... */
11045 if (c->base.loc == NULL)
11048 /* Compute the condition expression in text form, from the specific
11049 expection we want to catch. */
11050 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11051 old_chain = make_cleanup (xfree, cond_string);
11053 /* Iterate over all the catchpoint's locations, and parse an
11054 expression for each. */
11055 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11057 struct ada_catchpoint_location *ada_loc
11058 = (struct ada_catchpoint_location *) bl;
11059 struct expression *exp = NULL;
11061 if (!bl->shlib_disabled)
11063 volatile struct gdb_exception e;
11067 TRY_CATCH (e, RETURN_MASK_ERROR)
11069 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11072 warning (_("failed to reevaluate internal exception condition "
11073 "for catchpoint %d: %s"),
11074 c->base.number, e.message);
11077 ada_loc->excep_cond_expr = exp;
11080 do_cleanups (old_chain);
11083 /* Implement the DTOR method in the breakpoint_ops structure for all
11084 exception catchpoint kinds. */
11087 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11089 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11091 xfree (c->excep_string);
11093 bkpt_breakpoint_ops.dtor (b);
11096 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11097 structure for all exception catchpoint kinds. */
11099 static struct bp_location *
11100 allocate_location_exception (enum exception_catchpoint_kind ex,
11101 struct breakpoint *self)
11103 struct ada_catchpoint_location *loc;
11105 loc = XNEW (struct ada_catchpoint_location);
11106 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11107 loc->excep_cond_expr = NULL;
11111 /* Implement the RE_SET method in the breakpoint_ops structure for all
11112 exception catchpoint kinds. */
11115 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11117 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11119 /* Call the base class's method. This updates the catchpoint's
11121 bkpt_breakpoint_ops.re_set (b);
11123 /* Reparse the exception conditional expressions. One for each
11125 create_excep_cond_exprs (c);
11128 /* Returns true if we should stop for this breakpoint hit. If the
11129 user specified a specific exception, we only want to cause a stop
11130 if the program thrown that exception. */
11133 should_stop_exception (const struct bp_location *bl)
11135 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11136 const struct ada_catchpoint_location *ada_loc
11137 = (const struct ada_catchpoint_location *) bl;
11138 volatile struct gdb_exception ex;
11141 /* With no specific exception, should always stop. */
11142 if (c->excep_string == NULL)
11145 if (ada_loc->excep_cond_expr == NULL)
11147 /* We will have a NULL expression if back when we were creating
11148 the expressions, this location's had failed to parse. */
11153 TRY_CATCH (ex, RETURN_MASK_ALL)
11155 struct value *mark;
11157 mark = value_mark ();
11158 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11159 value_free_to_mark (mark);
11162 exception_fprintf (gdb_stderr, ex,
11163 _("Error in testing exception condition:\n"));
11167 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11168 for all exception catchpoint kinds. */
11171 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11173 bs->stop = should_stop_exception (bs->bp_location_at);
11176 /* Implement the PRINT_IT method in the breakpoint_ops structure
11177 for all exception catchpoint kinds. */
11179 static enum print_stop_action
11180 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11182 struct ui_out *uiout = current_uiout;
11183 struct breakpoint *b = bs->breakpoint_at;
11185 annotate_catchpoint (b->number);
11187 if (ui_out_is_mi_like_p (uiout))
11189 ui_out_field_string (uiout, "reason",
11190 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11191 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11194 ui_out_text (uiout,
11195 b->disposition == disp_del ? "\nTemporary catchpoint "
11196 : "\nCatchpoint ");
11197 ui_out_field_int (uiout, "bkptno", b->number);
11198 ui_out_text (uiout, ", ");
11202 case ex_catch_exception:
11203 case ex_catch_exception_unhandled:
11205 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11206 char exception_name[256];
11210 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11211 exception_name [sizeof (exception_name) - 1] = '\0';
11215 /* For some reason, we were unable to read the exception
11216 name. This could happen if the Runtime was compiled
11217 without debugging info, for instance. In that case,
11218 just replace the exception name by the generic string
11219 "exception" - it will read as "an exception" in the
11220 notification we are about to print. */
11221 memcpy (exception_name, "exception", sizeof ("exception"));
11223 /* In the case of unhandled exception breakpoints, we print
11224 the exception name as "unhandled EXCEPTION_NAME", to make
11225 it clearer to the user which kind of catchpoint just got
11226 hit. We used ui_out_text to make sure that this extra
11227 info does not pollute the exception name in the MI case. */
11228 if (ex == ex_catch_exception_unhandled)
11229 ui_out_text (uiout, "unhandled ");
11230 ui_out_field_string (uiout, "exception-name", exception_name);
11233 case ex_catch_assert:
11234 /* In this case, the name of the exception is not really
11235 important. Just print "failed assertion" to make it clearer
11236 that his program just hit an assertion-failure catchpoint.
11237 We used ui_out_text because this info does not belong in
11239 ui_out_text (uiout, "failed assertion");
11242 ui_out_text (uiout, " at ");
11243 ada_find_printable_frame (get_current_frame ());
11245 return PRINT_SRC_AND_LOC;
11248 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11249 for all exception catchpoint kinds. */
11252 print_one_exception (enum exception_catchpoint_kind ex,
11253 struct breakpoint *b, struct bp_location **last_loc)
11255 struct ui_out *uiout = current_uiout;
11256 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11257 struct value_print_options opts;
11259 get_user_print_options (&opts);
11260 if (opts.addressprint)
11262 annotate_field (4);
11263 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11266 annotate_field (5);
11267 *last_loc = b->loc;
11270 case ex_catch_exception:
11271 if (c->excep_string != NULL)
11273 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11275 ui_out_field_string (uiout, "what", msg);
11279 ui_out_field_string (uiout, "what", "all Ada exceptions");
11283 case ex_catch_exception_unhandled:
11284 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11287 case ex_catch_assert:
11288 ui_out_field_string (uiout, "what", "failed Ada assertions");
11292 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11297 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11298 for all exception catchpoint kinds. */
11301 print_mention_exception (enum exception_catchpoint_kind ex,
11302 struct breakpoint *b)
11304 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11305 struct ui_out *uiout = current_uiout;
11307 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11308 : _("Catchpoint "));
11309 ui_out_field_int (uiout, "bkptno", b->number);
11310 ui_out_text (uiout, ": ");
11314 case ex_catch_exception:
11315 if (c->excep_string != NULL)
11317 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11318 struct cleanup *old_chain = make_cleanup (xfree, info);
11320 ui_out_text (uiout, info);
11321 do_cleanups (old_chain);
11324 ui_out_text (uiout, _("all Ada exceptions"));
11327 case ex_catch_exception_unhandled:
11328 ui_out_text (uiout, _("unhandled Ada exceptions"));
11331 case ex_catch_assert:
11332 ui_out_text (uiout, _("failed Ada assertions"));
11336 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11341 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11342 for all exception catchpoint kinds. */
11345 print_recreate_exception (enum exception_catchpoint_kind ex,
11346 struct breakpoint *b, struct ui_file *fp)
11348 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11352 case ex_catch_exception:
11353 fprintf_filtered (fp, "catch exception");
11354 if (c->excep_string != NULL)
11355 fprintf_filtered (fp, " %s", c->excep_string);
11358 case ex_catch_exception_unhandled:
11359 fprintf_filtered (fp, "catch exception unhandled");
11362 case ex_catch_assert:
11363 fprintf_filtered (fp, "catch assert");
11367 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11369 print_recreate_thread (b, fp);
11372 /* Virtual table for "catch exception" breakpoints. */
11375 dtor_catch_exception (struct breakpoint *b)
11377 dtor_exception (ex_catch_exception, b);
11380 static struct bp_location *
11381 allocate_location_catch_exception (struct breakpoint *self)
11383 return allocate_location_exception (ex_catch_exception, self);
11387 re_set_catch_exception (struct breakpoint *b)
11389 re_set_exception (ex_catch_exception, b);
11393 check_status_catch_exception (bpstat bs)
11395 check_status_exception (ex_catch_exception, bs);
11398 static enum print_stop_action
11399 print_it_catch_exception (bpstat bs)
11401 return print_it_exception (ex_catch_exception, bs);
11405 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11407 print_one_exception (ex_catch_exception, b, last_loc);
11411 print_mention_catch_exception (struct breakpoint *b)
11413 print_mention_exception (ex_catch_exception, b);
11417 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11419 print_recreate_exception (ex_catch_exception, b, fp);
11422 static struct breakpoint_ops catch_exception_breakpoint_ops;
11424 /* Virtual table for "catch exception unhandled" breakpoints. */
11427 dtor_catch_exception_unhandled (struct breakpoint *b)
11429 dtor_exception (ex_catch_exception_unhandled, b);
11432 static struct bp_location *
11433 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11435 return allocate_location_exception (ex_catch_exception_unhandled, self);
11439 re_set_catch_exception_unhandled (struct breakpoint *b)
11441 re_set_exception (ex_catch_exception_unhandled, b);
11445 check_status_catch_exception_unhandled (bpstat bs)
11447 check_status_exception (ex_catch_exception_unhandled, bs);
11450 static enum print_stop_action
11451 print_it_catch_exception_unhandled (bpstat bs)
11453 return print_it_exception (ex_catch_exception_unhandled, bs);
11457 print_one_catch_exception_unhandled (struct breakpoint *b,
11458 struct bp_location **last_loc)
11460 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11464 print_mention_catch_exception_unhandled (struct breakpoint *b)
11466 print_mention_exception (ex_catch_exception_unhandled, b);
11470 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11471 struct ui_file *fp)
11473 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11476 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11478 /* Virtual table for "catch assert" breakpoints. */
11481 dtor_catch_assert (struct breakpoint *b)
11483 dtor_exception (ex_catch_assert, b);
11486 static struct bp_location *
11487 allocate_location_catch_assert (struct breakpoint *self)
11489 return allocate_location_exception (ex_catch_assert, self);
11493 re_set_catch_assert (struct breakpoint *b)
11495 return re_set_exception (ex_catch_assert, b);
11499 check_status_catch_assert (bpstat bs)
11501 check_status_exception (ex_catch_assert, bs);
11504 static enum print_stop_action
11505 print_it_catch_assert (bpstat bs)
11507 return print_it_exception (ex_catch_assert, bs);
11511 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11513 print_one_exception (ex_catch_assert, b, last_loc);
11517 print_mention_catch_assert (struct breakpoint *b)
11519 print_mention_exception (ex_catch_assert, b);
11523 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11525 print_recreate_exception (ex_catch_assert, b, fp);
11528 static struct breakpoint_ops catch_assert_breakpoint_ops;
11530 /* Return a newly allocated copy of the first space-separated token
11531 in ARGSP, and then adjust ARGSP to point immediately after that
11534 Return NULL if ARGPS does not contain any more tokens. */
11537 ada_get_next_arg (char **argsp)
11539 char *args = *argsp;
11543 args = skip_spaces (args);
11544 if (args[0] == '\0')
11545 return NULL; /* No more arguments. */
11547 /* Find the end of the current argument. */
11549 end = skip_to_space (args);
11551 /* Adjust ARGSP to point to the start of the next argument. */
11555 /* Make a copy of the current argument and return it. */
11557 result = xmalloc (end - args + 1);
11558 strncpy (result, args, end - args);
11559 result[end - args] = '\0';
11564 /* Split the arguments specified in a "catch exception" command.
11565 Set EX to the appropriate catchpoint type.
11566 Set EXCEP_STRING to the name of the specific exception if
11567 specified by the user. */
11570 catch_ada_exception_command_split (char *args,
11571 enum exception_catchpoint_kind *ex,
11572 char **excep_string)
11574 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11575 char *exception_name;
11577 exception_name = ada_get_next_arg (&args);
11578 make_cleanup (xfree, exception_name);
11580 /* Check that we do not have any more arguments. Anything else
11583 args = skip_spaces (args);
11585 if (args[0] != '\0')
11586 error (_("Junk at end of expression"));
11588 discard_cleanups (old_chain);
11590 if (exception_name == NULL)
11592 /* Catch all exceptions. */
11593 *ex = ex_catch_exception;
11594 *excep_string = NULL;
11596 else if (strcmp (exception_name, "unhandled") == 0)
11598 /* Catch unhandled exceptions. */
11599 *ex = ex_catch_exception_unhandled;
11600 *excep_string = NULL;
11604 /* Catch a specific exception. */
11605 *ex = ex_catch_exception;
11606 *excep_string = exception_name;
11610 /* Return the name of the symbol on which we should break in order to
11611 implement a catchpoint of the EX kind. */
11613 static const char *
11614 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11616 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11618 gdb_assert (data->exception_info != NULL);
11622 case ex_catch_exception:
11623 return (data->exception_info->catch_exception_sym);
11625 case ex_catch_exception_unhandled:
11626 return (data->exception_info->catch_exception_unhandled_sym);
11628 case ex_catch_assert:
11629 return (data->exception_info->catch_assert_sym);
11632 internal_error (__FILE__, __LINE__,
11633 _("unexpected catchpoint kind (%d)"), ex);
11637 /* Return the breakpoint ops "virtual table" used for catchpoints
11640 static const struct breakpoint_ops *
11641 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11645 case ex_catch_exception:
11646 return (&catch_exception_breakpoint_ops);
11648 case ex_catch_exception_unhandled:
11649 return (&catch_exception_unhandled_breakpoint_ops);
11651 case ex_catch_assert:
11652 return (&catch_assert_breakpoint_ops);
11655 internal_error (__FILE__, __LINE__,
11656 _("unexpected catchpoint kind (%d)"), ex);
11660 /* Return the condition that will be used to match the current exception
11661 being raised with the exception that the user wants to catch. This
11662 assumes that this condition is used when the inferior just triggered
11663 an exception catchpoint.
11665 The string returned is a newly allocated string that needs to be
11666 deallocated later. */
11669 ada_exception_catchpoint_cond_string (const char *excep_string)
11673 /* The standard exceptions are a special case. They are defined in
11674 runtime units that have been compiled without debugging info; if
11675 EXCEP_STRING is the not-fully-qualified name of a standard
11676 exception (e.g. "constraint_error") then, during the evaluation
11677 of the condition expression, the symbol lookup on this name would
11678 *not* return this standard exception. The catchpoint condition
11679 may then be set only on user-defined exceptions which have the
11680 same not-fully-qualified name (e.g. my_package.constraint_error).
11682 To avoid this unexcepted behavior, these standard exceptions are
11683 systematically prefixed by "standard". This means that "catch
11684 exception constraint_error" is rewritten into "catch exception
11685 standard.constraint_error".
11687 If an exception named contraint_error is defined in another package of
11688 the inferior program, then the only way to specify this exception as a
11689 breakpoint condition is to use its fully-qualified named:
11690 e.g. my_package.constraint_error. */
11692 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11694 if (strcmp (standard_exc [i], excep_string) == 0)
11696 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11700 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11703 /* Return the symtab_and_line that should be used to insert an exception
11704 catchpoint of the TYPE kind.
11706 EXCEP_STRING should contain the name of a specific exception that
11707 the catchpoint should catch, or NULL otherwise.
11709 ADDR_STRING returns the name of the function where the real
11710 breakpoint that implements the catchpoints is set, depending on the
11711 type of catchpoint we need to create. */
11713 static struct symtab_and_line
11714 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11715 char **addr_string, const struct breakpoint_ops **ops)
11717 const char *sym_name;
11718 struct symbol *sym;
11720 /* First, find out which exception support info to use. */
11721 ada_exception_support_info_sniffer ();
11723 /* Then lookup the function on which we will break in order to catch
11724 the Ada exceptions requested by the user. */
11725 sym_name = ada_exception_sym_name (ex);
11726 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11728 /* We can assume that SYM is not NULL at this stage. If the symbol
11729 did not exist, ada_exception_support_info_sniffer would have
11730 raised an exception.
11732 Also, ada_exception_support_info_sniffer should have already
11733 verified that SYM is a function symbol. */
11734 gdb_assert (sym != NULL);
11735 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11737 /* Set ADDR_STRING. */
11738 *addr_string = xstrdup (sym_name);
11741 *ops = ada_exception_breakpoint_ops (ex);
11743 return find_function_start_sal (sym, 1);
11746 /* Parse the arguments (ARGS) of the "catch exception" command.
11748 If the user asked the catchpoint to catch only a specific
11749 exception, then save the exception name in ADDR_STRING.
11751 See ada_exception_sal for a description of all the remaining
11752 function arguments of this function. */
11754 static struct symtab_and_line
11755 ada_decode_exception_location (char *args, char **addr_string,
11756 char **excep_string,
11757 const struct breakpoint_ops **ops)
11759 enum exception_catchpoint_kind ex;
11761 catch_ada_exception_command_split (args, &ex, excep_string);
11762 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11765 /* Create an Ada exception catchpoint. */
11768 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11769 struct symtab_and_line sal,
11771 char *excep_string,
11772 const struct breakpoint_ops *ops,
11776 struct ada_catchpoint *c;
11778 c = XNEW (struct ada_catchpoint);
11779 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11780 ops, tempflag, from_tty);
11781 c->excep_string = excep_string;
11782 create_excep_cond_exprs (c);
11783 install_breakpoint (0, &c->base, 1);
11786 /* Implement the "catch exception" command. */
11789 catch_ada_exception_command (char *arg, int from_tty,
11790 struct cmd_list_element *command)
11792 struct gdbarch *gdbarch = get_current_arch ();
11794 struct symtab_and_line sal;
11795 char *addr_string = NULL;
11796 char *excep_string = NULL;
11797 const struct breakpoint_ops *ops = NULL;
11799 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11803 sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops);
11804 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11805 excep_string, ops, tempflag, from_tty);
11808 static struct symtab_and_line
11809 ada_decode_assert_location (char *args, char **addr_string,
11810 const struct breakpoint_ops **ops)
11812 /* Check that no argument where provided at the end of the command. */
11816 args = skip_spaces (args);
11818 error (_("Junk at end of arguments."));
11821 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11824 /* Implement the "catch assert" command. */
11827 catch_assert_command (char *arg, int from_tty,
11828 struct cmd_list_element *command)
11830 struct gdbarch *gdbarch = get_current_arch ();
11832 struct symtab_and_line sal;
11833 char *addr_string = NULL;
11834 const struct breakpoint_ops *ops = NULL;
11836 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11840 sal = ada_decode_assert_location (arg, &addr_string, &ops);
11841 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11842 NULL, ops, tempflag, from_tty);
11845 /* Information about operators given special treatment in functions
11847 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11849 #define ADA_OPERATORS \
11850 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11851 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11852 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11853 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11854 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11855 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11856 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11857 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11858 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11859 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11860 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11861 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11862 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11863 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11864 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11865 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11866 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11867 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11868 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11871 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11874 switch (exp->elts[pc - 1].opcode)
11877 operator_length_standard (exp, pc, oplenp, argsp);
11880 #define OP_DEFN(op, len, args, binop) \
11881 case op: *oplenp = len; *argsp = args; break;
11887 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11892 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11897 /* Implementation of the exp_descriptor method operator_check. */
11900 ada_operator_check (struct expression *exp, int pos,
11901 int (*objfile_func) (struct objfile *objfile, void *data),
11904 const union exp_element *const elts = exp->elts;
11905 struct type *type = NULL;
11907 switch (elts[pos].opcode)
11909 case UNOP_IN_RANGE:
11911 type = elts[pos + 1].type;
11915 return operator_check_standard (exp, pos, objfile_func, data);
11918 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11920 if (type && TYPE_OBJFILE (type)
11921 && (*objfile_func) (TYPE_OBJFILE (type), data))
11928 ada_op_name (enum exp_opcode opcode)
11933 return op_name_standard (opcode);
11935 #define OP_DEFN(op, len, args, binop) case op: return #op;
11940 return "OP_AGGREGATE";
11942 return "OP_CHOICES";
11948 /* As for operator_length, but assumes PC is pointing at the first
11949 element of the operator, and gives meaningful results only for the
11950 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11953 ada_forward_operator_length (struct expression *exp, int pc,
11954 int *oplenp, int *argsp)
11956 switch (exp->elts[pc].opcode)
11959 *oplenp = *argsp = 0;
11962 #define OP_DEFN(op, len, args, binop) \
11963 case op: *oplenp = len; *argsp = args; break;
11969 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11974 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11980 int len = longest_to_int (exp->elts[pc + 1].longconst);
11982 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11990 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11992 enum exp_opcode op = exp->elts[elt].opcode;
11997 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12001 /* Ada attributes ('Foo). */
12004 case OP_ATR_LENGTH:
12008 case OP_ATR_MODULUS:
12015 case UNOP_IN_RANGE:
12017 /* XXX: gdb_sprint_host_address, type_sprint */
12018 fprintf_filtered (stream, _("Type @"));
12019 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12020 fprintf_filtered (stream, " (");
12021 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12022 fprintf_filtered (stream, ")");
12024 case BINOP_IN_BOUNDS:
12025 fprintf_filtered (stream, " (%d)",
12026 longest_to_int (exp->elts[pc + 2].longconst));
12028 case TERNOP_IN_RANGE:
12033 case OP_DISCRETE_RANGE:
12034 case OP_POSITIONAL:
12041 char *name = &exp->elts[elt + 2].string;
12042 int len = longest_to_int (exp->elts[elt + 1].longconst);
12044 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12049 return dump_subexp_body_standard (exp, stream, elt);
12053 for (i = 0; i < nargs; i += 1)
12054 elt = dump_subexp (exp, stream, elt);
12059 /* The Ada extension of print_subexp (q.v.). */
12062 ada_print_subexp (struct expression *exp, int *pos,
12063 struct ui_file *stream, enum precedence prec)
12065 int oplen, nargs, i;
12067 enum exp_opcode op = exp->elts[pc].opcode;
12069 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12076 print_subexp_standard (exp, pos, stream, prec);
12080 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12083 case BINOP_IN_BOUNDS:
12084 /* XXX: sprint_subexp */
12085 print_subexp (exp, pos, stream, PREC_SUFFIX);
12086 fputs_filtered (" in ", stream);
12087 print_subexp (exp, pos, stream, PREC_SUFFIX);
12088 fputs_filtered ("'range", stream);
12089 if (exp->elts[pc + 1].longconst > 1)
12090 fprintf_filtered (stream, "(%ld)",
12091 (long) exp->elts[pc + 1].longconst);
12094 case TERNOP_IN_RANGE:
12095 if (prec >= PREC_EQUAL)
12096 fputs_filtered ("(", stream);
12097 /* XXX: sprint_subexp */
12098 print_subexp (exp, pos, stream, PREC_SUFFIX);
12099 fputs_filtered (" in ", stream);
12100 print_subexp (exp, pos, stream, PREC_EQUAL);
12101 fputs_filtered (" .. ", stream);
12102 print_subexp (exp, pos, stream, PREC_EQUAL);
12103 if (prec >= PREC_EQUAL)
12104 fputs_filtered (")", stream);
12109 case OP_ATR_LENGTH:
12113 case OP_ATR_MODULUS:
12118 if (exp->elts[*pos].opcode == OP_TYPE)
12120 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12121 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12125 print_subexp (exp, pos, stream, PREC_SUFFIX);
12126 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12131 for (tem = 1; tem < nargs; tem += 1)
12133 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12134 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12136 fputs_filtered (")", stream);
12141 type_print (exp->elts[pc + 1].type, "", stream, 0);
12142 fputs_filtered ("'(", stream);
12143 print_subexp (exp, pos, stream, PREC_PREFIX);
12144 fputs_filtered (")", stream);
12147 case UNOP_IN_RANGE:
12148 /* XXX: sprint_subexp */
12149 print_subexp (exp, pos, stream, PREC_SUFFIX);
12150 fputs_filtered (" in ", stream);
12151 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12154 case OP_DISCRETE_RANGE:
12155 print_subexp (exp, pos, stream, PREC_SUFFIX);
12156 fputs_filtered ("..", stream);
12157 print_subexp (exp, pos, stream, PREC_SUFFIX);
12161 fputs_filtered ("others => ", stream);
12162 print_subexp (exp, pos, stream, PREC_SUFFIX);
12166 for (i = 0; i < nargs-1; i += 1)
12169 fputs_filtered ("|", stream);
12170 print_subexp (exp, pos, stream, PREC_SUFFIX);
12172 fputs_filtered (" => ", stream);
12173 print_subexp (exp, pos, stream, PREC_SUFFIX);
12176 case OP_POSITIONAL:
12177 print_subexp (exp, pos, stream, PREC_SUFFIX);
12181 fputs_filtered ("(", stream);
12182 for (i = 0; i < nargs; i += 1)
12185 fputs_filtered (", ", stream);
12186 print_subexp (exp, pos, stream, PREC_SUFFIX);
12188 fputs_filtered (")", stream);
12193 /* Table mapping opcodes into strings for printing operators
12194 and precedences of the operators. */
12196 static const struct op_print ada_op_print_tab[] = {
12197 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12198 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12199 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12200 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12201 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12202 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12203 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12204 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12205 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12206 {">=", BINOP_GEQ, PREC_ORDER, 0},
12207 {">", BINOP_GTR, PREC_ORDER, 0},
12208 {"<", BINOP_LESS, PREC_ORDER, 0},
12209 {">>", BINOP_RSH, PREC_SHIFT, 0},
12210 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12211 {"+", BINOP_ADD, PREC_ADD, 0},
12212 {"-", BINOP_SUB, PREC_ADD, 0},
12213 {"&", BINOP_CONCAT, PREC_ADD, 0},
12214 {"*", BINOP_MUL, PREC_MUL, 0},
12215 {"/", BINOP_DIV, PREC_MUL, 0},
12216 {"rem", BINOP_REM, PREC_MUL, 0},
12217 {"mod", BINOP_MOD, PREC_MUL, 0},
12218 {"**", BINOP_EXP, PREC_REPEAT, 0},
12219 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12220 {"-", UNOP_NEG, PREC_PREFIX, 0},
12221 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12222 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12223 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12224 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12225 {".all", UNOP_IND, PREC_SUFFIX, 1},
12226 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12227 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12231 enum ada_primitive_types {
12232 ada_primitive_type_int,
12233 ada_primitive_type_long,
12234 ada_primitive_type_short,
12235 ada_primitive_type_char,
12236 ada_primitive_type_float,
12237 ada_primitive_type_double,
12238 ada_primitive_type_void,
12239 ada_primitive_type_long_long,
12240 ada_primitive_type_long_double,
12241 ada_primitive_type_natural,
12242 ada_primitive_type_positive,
12243 ada_primitive_type_system_address,
12244 nr_ada_primitive_types
12248 ada_language_arch_info (struct gdbarch *gdbarch,
12249 struct language_arch_info *lai)
12251 const struct builtin_type *builtin = builtin_type (gdbarch);
12253 lai->primitive_type_vector
12254 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12257 lai->primitive_type_vector [ada_primitive_type_int]
12258 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12260 lai->primitive_type_vector [ada_primitive_type_long]
12261 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12262 0, "long_integer");
12263 lai->primitive_type_vector [ada_primitive_type_short]
12264 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12265 0, "short_integer");
12266 lai->string_char_type
12267 = lai->primitive_type_vector [ada_primitive_type_char]
12268 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12269 lai->primitive_type_vector [ada_primitive_type_float]
12270 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12272 lai->primitive_type_vector [ada_primitive_type_double]
12273 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12274 "long_float", NULL);
12275 lai->primitive_type_vector [ada_primitive_type_long_long]
12276 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12277 0, "long_long_integer");
12278 lai->primitive_type_vector [ada_primitive_type_long_double]
12279 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12280 "long_long_float", NULL);
12281 lai->primitive_type_vector [ada_primitive_type_natural]
12282 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12284 lai->primitive_type_vector [ada_primitive_type_positive]
12285 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12287 lai->primitive_type_vector [ada_primitive_type_void]
12288 = builtin->builtin_void;
12290 lai->primitive_type_vector [ada_primitive_type_system_address]
12291 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12292 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12293 = "system__address";
12295 lai->bool_type_symbol = NULL;
12296 lai->bool_type_default = builtin->builtin_bool;
12299 /* Language vector */
12301 /* Not really used, but needed in the ada_language_defn. */
12304 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12306 ada_emit_char (c, type, stream, quoter, 1);
12312 warnings_issued = 0;
12313 return ada_parse ();
12316 static const struct exp_descriptor ada_exp_descriptor = {
12318 ada_operator_length,
12319 ada_operator_check,
12321 ada_dump_subexp_body,
12322 ada_evaluate_subexp
12325 /* Implement the "la_get_symbol_name_cmp" language_defn method
12328 static symbol_name_cmp_ftype
12329 ada_get_symbol_name_cmp (const char *lookup_name)
12331 if (should_use_wild_match (lookup_name))
12334 return compare_names;
12337 const struct language_defn ada_language_defn = {
12338 "ada", /* Language name */
12342 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12343 that's not quite what this means. */
12345 macro_expansion_no,
12346 &ada_exp_descriptor,
12350 ada_printchar, /* Print a character constant */
12351 ada_printstr, /* Function to print string constant */
12352 emit_char, /* Function to print single char (not used) */
12353 ada_print_type, /* Print a type using appropriate syntax */
12354 ada_print_typedef, /* Print a typedef using appropriate syntax */
12355 ada_val_print, /* Print a value using appropriate syntax */
12356 ada_value_print, /* Print a top-level value */
12357 NULL, /* Language specific skip_trampoline */
12358 NULL, /* name_of_this */
12359 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12360 basic_lookup_transparent_type, /* lookup_transparent_type */
12361 ada_la_decode, /* Language specific symbol demangler */
12362 NULL, /* Language specific
12363 class_name_from_physname */
12364 ada_op_print_tab, /* expression operators for printing */
12365 0, /* c-style arrays */
12366 1, /* String lower bound */
12367 ada_get_gdb_completer_word_break_characters,
12368 ada_make_symbol_completion_list,
12369 ada_language_arch_info,
12370 ada_print_array_index,
12371 default_pass_by_reference,
12373 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12374 ada_iterate_over_symbols,
12378 /* Provide a prototype to silence -Wmissing-prototypes. */
12379 extern initialize_file_ftype _initialize_ada_language;
12381 /* Command-list for the "set/show ada" prefix command. */
12382 static struct cmd_list_element *set_ada_list;
12383 static struct cmd_list_element *show_ada_list;
12385 /* Implement the "set ada" prefix command. */
12388 set_ada_command (char *arg, int from_tty)
12390 printf_unfiltered (_(\
12391 "\"set ada\" must be followed by the name of a setting.\n"));
12392 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12395 /* Implement the "show ada" prefix command. */
12398 show_ada_command (char *args, int from_tty)
12400 cmd_show_list (show_ada_list, from_tty, "");
12404 initialize_ada_catchpoint_ops (void)
12406 struct breakpoint_ops *ops;
12408 initialize_breakpoint_ops ();
12410 ops = &catch_exception_breakpoint_ops;
12411 *ops = bkpt_breakpoint_ops;
12412 ops->dtor = dtor_catch_exception;
12413 ops->allocate_location = allocate_location_catch_exception;
12414 ops->re_set = re_set_catch_exception;
12415 ops->check_status = check_status_catch_exception;
12416 ops->print_it = print_it_catch_exception;
12417 ops->print_one = print_one_catch_exception;
12418 ops->print_mention = print_mention_catch_exception;
12419 ops->print_recreate = print_recreate_catch_exception;
12421 ops = &catch_exception_unhandled_breakpoint_ops;
12422 *ops = bkpt_breakpoint_ops;
12423 ops->dtor = dtor_catch_exception_unhandled;
12424 ops->allocate_location = allocate_location_catch_exception_unhandled;
12425 ops->re_set = re_set_catch_exception_unhandled;
12426 ops->check_status = check_status_catch_exception_unhandled;
12427 ops->print_it = print_it_catch_exception_unhandled;
12428 ops->print_one = print_one_catch_exception_unhandled;
12429 ops->print_mention = print_mention_catch_exception_unhandled;
12430 ops->print_recreate = print_recreate_catch_exception_unhandled;
12432 ops = &catch_assert_breakpoint_ops;
12433 *ops = bkpt_breakpoint_ops;
12434 ops->dtor = dtor_catch_assert;
12435 ops->allocate_location = allocate_location_catch_assert;
12436 ops->re_set = re_set_catch_assert;
12437 ops->check_status = check_status_catch_assert;
12438 ops->print_it = print_it_catch_assert;
12439 ops->print_one = print_one_catch_assert;
12440 ops->print_mention = print_mention_catch_assert;
12441 ops->print_recreate = print_recreate_catch_assert;
12445 _initialize_ada_language (void)
12447 add_language (&ada_language_defn);
12449 initialize_ada_catchpoint_ops ();
12451 add_prefix_cmd ("ada", no_class, set_ada_command,
12452 _("Prefix command for changing Ada-specfic settings"),
12453 &set_ada_list, "set ada ", 0, &setlist);
12455 add_prefix_cmd ("ada", no_class, show_ada_command,
12456 _("Generic command for showing Ada-specific settings."),
12457 &show_ada_list, "show ada ", 0, &showlist);
12459 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12460 &trust_pad_over_xvs, _("\
12461 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12462 Show whether an optimization trusting PAD types over XVS types is activated"),
12464 This is related to the encoding used by the GNAT compiler. The debugger\n\
12465 should normally trust the contents of PAD types, but certain older versions\n\
12466 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12467 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12468 work around this bug. It is always safe to turn this option \"off\", but\n\
12469 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12470 this option to \"off\" unless necessary."),
12471 NULL, NULL, &set_ada_list, &show_ada_list);
12473 add_catch_command ("exception", _("\
12474 Catch Ada exceptions, when raised.\n\
12475 With an argument, catch only exceptions with the given name."),
12476 catch_ada_exception_command,
12480 add_catch_command ("assert", _("\
12481 Catch failed Ada assertions, when raised.\n\
12482 With an argument, catch only exceptions with the given name."),
12483 catch_assert_command,
12488 varsize_limit = 65536;
12490 obstack_init (&symbol_list_obstack);
12492 decoded_names_store = htab_create_alloc
12493 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12494 NULL, xcalloc, xfree);
12496 /* Setup per-inferior data. */
12497 observer_attach_inferior_exit (ada_inferior_exit);
12499 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);